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Abstract. In this work we exploit a nonmonotonic Description Logic of typicality as a tool for the generation and the exploration
of novel creative concepts. Our logic, called TCL, is able to deal with the phenomenon of prototypical concept combination,
which has been shown to be problematic to be modelled in formalisms like fuzzy logic. The logic TCL is the result of combining
three main ingredients: (i) the logic of typicality ALC +TR, that allows one to describe typical properties of a class by means
of a typicality operator, (ii) the distributed semantics of probabilistic Description Logics, that allows one to provide a probability
distribution over worlds/scenarios, and (iii) established heuristics used by humans for concept composition coming from the field
of cognitive semantics. Our approach could be useful in many applicative scenarios, ranging from video games to the creation of
new movie characters.
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1. Introduction

The automatic generation of novel concepts, ob-
tained by coupling the typical knowledge of pre-
existing ones, is an important trait of human creativity.
Dealing with this problem requires, from an AI per-
spective, the harmonization of two conflicting require-
ments that are hardly accommodated in symbolic sys-
tems: the need of a syntactic compositionality (typical
of logical systems) and one concerning the exhibition
of typicality effects [15]. According to a well-known
argument [23], in fact, prototypical concepts are not
compositional. The argument runs as follows: consider
a concept like pet fish. It results from the composition
of the concept pet and of the concept fish. However,
the prototype of pet fish cannot result from the compo-
sition of the prototypes of a pet and a fish: e.g. a typi-
cal pet is furry and warm, a typical fish is grayish, but

*Corresponding author. E-mail: antonio.lieto@unito.it.

a typical pet fish is neither furry and warm nor grayish
(typically, it is red).

In this work we provide a framework able to ac-
count for this type of human-like concept combination
in the scenario of typical concept invention. We exploit
a nonmonotonic Description Logic (from now on DL)
of typicality called TCL (typical compositional logic),
that has been already shown able to capture well estab-
lished examples in the literature of cognitive science
concerning concept combination, in particular we have
shown that the logic TCL is able to model the above
mentioned pet fish composition (i.e. the guppy effect),
the conjunction fallacy problem (also known as the
Linda problem) and the phenomena of metaphorical
concept composition. We remind the interested reader
to [18,19].

This logic combines three main ingredients. The
first one relies on the DL of typicality ALC + TR in-
troduced in [7,8]. In this logic, “typical” properties can
be directly specified by means of a “typicality” oper-
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ator T enriching the underlying DL, and a TBox can
contain inclusions of the form T(C) v D to repre-
sent that “typical Cs are also Ds”1. As a difference
with standard DLs, in the logic ALC + TR one can
consistently express exceptions and reason about de-
feasible inheritance as well. For instance, a knowledge
base can consistently express that “normally, athletes
are fit”, whereas “sumo wrestlers usually are not fit” by
T(Athlete) v Fit and T(SumoWrestler) v ¬Fit ,
given that SumoWrestler v Athlete . The semantics
of the T operator is characterized by the properties of
rational logic [13], recognized as the core properties of
nonmonotonic reasoning. ALC + TR is characterized
by a minimal model semantics corresponding to an ex-
tension to DLs of a notion of rational closure as de-
fined in [13] for propositional logic: the idea is to adopt
a preference relation amongALC+TR models, where
intuitively a model is preferred to another one if it con-
tains less exceptional elements, as well as a notion of
minimal entailment restricted to models that are mini-
mal with respect to such preference relation. As a con-
sequence, T inherits well-established properties like
specificity and irrelevance: in the example, the logic
ALC+TR allows us to infer that, normally, an athlete
who is also bald is fit, i.e. T(Athlete u Bald) v Fit
(being bald is irrelevant with respect to being fit) and,
if one knows that Hiroyuki is a typical sumo wrestler,
to infer that he is not fit, giving preference to the most
specific information.

As a second ingredient, we consider a distributed se-
mantics similar to the one of probabilistic DLs known
as DISPONTE [27], allowing one to label axioms
with degrees representing probabilities, but restricted
to typicality inclusions. The basic idea is to label in-
clusions T(C) v D with a real number between 0.5
and 1, representing its probability2: such a number rep-
resents the probability of finding elements of C being
also D, then we impose that it is at least 50% since
we are only considering typicality properties. We as-
sume that the axioms are independent from each other.

1In this paper we use the term properties as intended in classical
logic. In this respect, in Description Logics, for an inclusion relation
of the form either C v D or T(C) v D, we say that D is a
property of the concept C (as we will see later, either a rigid or a
typical one).

2Probabilities for typicality inclusions are assumed to come from
an application domain as in any probabilistic formal framework
(probabilities in probabilistic extensions of logic programs, degrees
of belief in fuzzy logics). Here, we focus on the proposal of the
formalism itself, therefore the machinery for obtaining probabilities
from an application domain will not be discussed.

The resulting knowledge base defines a probability
distribution over scenarios: roughly speaking, a sce-
nario is obtained by choosing, for each typicality in-
clusion, whether it is considered as true of false. In a
slight extension of the above example, we could have
the need of representing that both typicality inclusions
about athletes and sumo wrestlers have a probability of
80%, whereas we also believe that athletes are usually
young with a higher probability of 95%, with the fol-
lowing KB: (1) SumoWrestler v Athlete; (2) 0.8 ::
T(Athlete) v Fit ; (3) 0.8 :: T(SumoWrestler) v
¬Fit ; (4) 0.95 :: T(Athlete) v YoungPerson . We
consider eight different scenarios, representing all pos-
sible combinations of typicality inclusion: as an ex-
ample, {((2), 1), ((3), 0), ((4), 1)} represents the sce-
nario in which (2) and (4) hold, whereas (3) does not.
We equip each scenario with a probability depending
on those of the involved inclusions, then we restrict
reasoning to scenarios whose probabilities belong to a
given and fixed range.

As a third element of the proposed formalization we
employ a method inspired by cognitive semantics [10]
for the identification of a dominance effect between the
concepts to be combined: for every combination, we
distinguish a HEAD, representing the stronger element
of the combination, and a MODIFIER. The basic idea
is: given a KB and two concepts CH (HEAD) and CM
(MODIFIER) occurring in it, we consider only some
scenarios in order to define a revised knowledge base,
enriched by typical properties of the combined concept
C v CH u CM (the heuristics for the scenario selec-
tions are detailed in Section 2, Definition 7).

In this work, we show that the proposed logic TCL

is able to tackle the problem of composing prototyp-
ical concepts (by creating a novel, plausible, concep-
tual prototype) and we exploit the proposed formalism
as a tool for the generation of novel creative concepts,
that could be useful in many applicative scenarios. We
also outline that the reasoning complexity of TCL is
EXPTIME-complete, as in the standard ALC, witness-
ing that the proposed approach is promising since it re-
mains in the same complexity class of the underlying
logic.

The plan of the paper is as follows. In Section 2 we
first describe the logic TCL presented in [18], then in
Section 3 we introduce COCOS, a tool implementing
reasoning service in such a logic. Section 4 describes
some applications of the proposed approach. We con-
clude in Section 5 with a discussion on related ap-
proaches and some pointers to future works. This pa-
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per extends and revises preliminary results presented
in [17].

2. A Logic for Concept Combination

The nonmonotonic Description Logic TCL com-
bines the semantics based on the rational closure of
ALC + TR [7] with the probabilistic DISPONTE se-
mantics [27]. By taking inspiration from [21], we con-
sider two types of properties associated to a given con-
cept: rigid and typical. Rigid properties are those that
hold under any circumstance, e.g. C v D (all Cs are
Ds). Typical properties are represented by inclusions
equipped by a probability. Additionally, we employ
a cognitive heuristic for the identification of a domi-
nance effect between the concepts to be combined, dis-
tinguishing between HEAD and MODIFIER3.

The language of TCL extends the basic DL ALC by
typicality inclusions of the form T(C) v D equipped
by a real number p ∈ (0.5, 1) representing its proba-
bility, whose meaning is that “normally, Cs are also D
with probability p”.

Definition 1 (Language of TCL) We consider an al-
phabet C of concept names, R of role names, and O of
individual constants. Given A ∈ C and R ∈ R, we de-
fine:

C,D := A | > | ⊥ | ¬C | C u C | C t C | ∀R.C | ∃R.C

We define a knowledge base K = 〈R, T ,A〉 where:

– R is a finite set of rigid properties of the form
C v D;

– T is a finite set of typicality properties of the form
p :: T(C) v D, where p ∈ (0.5, 1) ⊆ R is the
probability of the inclusion;

– A is the ABox, i.e. a finite set of formulas of the
form either C(a) or R(a, b), where a, b ∈ O.

It is worth noticing that we avoid typicality inclusions
with degree 1. Indeed, an inclusion 1 :: T(C) v D
would mean that it is a rigid property, that we repre-
sent with C v D ∈ R. Also, observe that we only
allow typicality inclusions equipped with probabilities
p > 0.5. Indeed, the very notion of typicality derives
from the one of probability distribution, in particular
typical properties attributed to entities are those char-

3Here we assume that some methods for the automatic assignment
of the HEAD/MODIFER pairs are/may be available and focus on
the discussion of the reasoning part.

acterizing the majority of instances involved. More-
over, in our effort of integrating two different seman-
tics – DISPONTE and typicality logic – the choice of
having probabilities higher than 0.5 for typicality in-
clusions seems to be the only compliant with both for-
malisms. In fact, despite the DISPONTE semantics al-
lows one to assign also low probabilities/degrees of be-
lief to standard inclusions, in the logic TCL it would
be misleading to also allow low probabilities for typ-
icality inclusions. Please, note that this is not a limi-
tation of the expressivity of the logic TCL: we can in
fact represent properties not holding for typical mem-
bers of a category, for instance if one need to represent
that typical students are not married, we can have that
0.8 :: T(Student) v ¬Married .

Following from the DISPONTE semantics, each ax-
iom is independent from each others. This allows us to
deal with conflicting typical properties equipped with
different probabilities.

A modelM of TCL extends standard ALC models
by a preference relation among domain elements as in
the logic of typicality [7]. In this respect, x < y means
that x is “more normal” than y, and that the typical
members of a concept C are the minimal elements of
C with respect to this relation. An element x ∈ ∆I is
a typical instance of some concept C if x ∈ CI and
there is no element in CI more typical than x.

Definition 2 (Model) A modelM is any structure

〈∆I , <, .I〉

where:

– ∆I is a non empty set of items called the domain;
– < is an irreflexive, transitive, well-founded and

modular (for all x, y, z in ∆I , if x < y then either
x < z or z < y) relation over ∆I;

– .I is the extension function that maps each con-
cept C to CI ⊆ ∆I , and each role R to RI ⊆
∆I ×∆I . For concepts ofALC, CI is defined as
usual. For the T operator, we have

(T(C))I = Min<(CI),

where Min<(CI) = {x ∈ CI | @y ∈
CI s.t. y < x}.

A modelM can be equivalently defined by postulating
the existence of a function kM : ∆I 7−→ N, where
kM assigns a finite rank to each domain element [7]:
the rank of x is the length of the longest chain x0 <
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· · · < x from x to a minimal x0, i.e. such that there is
no x′ such that x′ < x0. The rank function kM and <
can be defined from each other by letting x < y if and
only if kM(x) < kM(y).

Definition 3 (Model satisfying a KB) LetK = 〈R, T ,A〉
be a KB. Given a modelM = 〈∆I , <, .I〉, we assume
that .I is extended to assign a domain element aI of
∆I to each individual constant a of O. We say that:

– M satisfies R if, for all C v D ∈ R, we have
CI ⊆ DI;

– M satisfies T if, for all p :: T(C) v D ∈ T , we
have that T(C)I ⊆ DI , i.e. Min<(CI) ⊆ DI;

– M satisfies A if, for each assertion F ∈ A, if
F = C(a) then aI ∈ CI , otherwise if F =
R(a, b) then (aI , bI) ∈ RI .

Even if the typicality operator T itself is nonmono-
tonic (i.e. T(C) v E does not imply T(C uD) v E),
what is inferred from a KB can still be inferred from
any KB’ with KB ⊆ KB’, i.e. the resulting logic is
monotonic. In order to perform useful nonmonotonic
inferences, in [7] the authors have strengthened the
above semantics by restricting entailment to a class
of minimal models. Intuitively, the idea is to restrict
entailment to models that minimize the atypical in-
stances of a concept. The resulting logic corresponds
to a notion of rational closure on top of ALC + TR.
Such a notion is a natural extension of the rational clo-
sure construction provided in [13] for the propositional
logic. This nonmonotonic semantics relies on minimal
rational models that minimize the rank of domain el-
ements. Informally, given two models of KB, one in
which a given domain element x has rank 2 (because
for instance z < y < x), and another in which it has
rank 1 (because only y < x), we prefer the latter, as
in this model the element x is assumed to be “more
typical” than in the former. Query entailment is then
restricted to minimal canonical models. The intuition
is that a canonical model contains all the individuals
that enjoy properties that are consistent with KB. This
is needed when reasoning about the rank of the con-
cepts: it is important to have them all represented. A
query F is minimally entailed from a KB if it holds in
all minimal canonical models of KB. In [7] it is shown
that query entailment in the nonmonotonicALC+TR

is in EXPTIME.

Definition 4 (Entailment) Let K = 〈R, T ,A〉 be a
KB and let F be either C v D (C could be T(C ′)) or
C(a) or R(a, b). We say that F follows from K if, for
all minimalM satisfying K, then alsoM satisfies F .

Let us now define the notion of scenario of the com-
position of concepts. Intuitively, a scenario is a knowl-
edge base obtained by adding to all rigid properties
in R and to all ABox facts in A only some typicality
properties. More in detail, we define an atomic choice
on each typicality inclusion, then we define a selection
as a set of atomic choices in order to select which typ-
icality inclusions have to be considered in a scenario.

Definition 5 (Atomic choice) Given K = 〈R, T ,A〉,
where T = {E1 = p1 :: T(C1) v D1, . . . , En =
pn :: T(Cn) v Dn} we define (Ei, ki) an atomic
choice for some i ∈ {1, 2, . . . , n}, where ki ∈ {0, 1}.

Definition 6 (Selection) GivenK = 〈R, T ,A〉, where
T = {E1 = p1 :: T(C1) v D1, . . . , En = pn ::
T(Cn) v Dn} and a set of atomic choices ν, we say
that ν is a selection if, for each Ei, one decision is
taken, i.e. either (Ei, 0) ∈ ν and (Ei, 1) 6∈ ν or (Ei, 1)
∈ ν and (Ei, 0) 6∈ ν for i = 1, 2, . . . , n. The probabil-
ity of ν is P (ν) =

∏
(Ei,1)∈ν

pi
∏

(Ei,0)∈ν
(1− pi).

Definition 7 (Scenario) GivenK = 〈R, T ,A〉, where
T = {E1 = q1 :: T(C1) v D1, . . . , En = qn ::
T(Cn) v Dn} and given a selection σ, we define a
scenario wσ = 〈R, {Ei | (Ei, 1) ∈ σ},A〉. We also
define the probability of a scenariowσ as the probabil-
ity of the corresponding selection, i.e. P (wσ) = P (σ).
Last, we say that a scenario is consistent when it ad-
mits a model in the logic TCL.

2.1. Selected scenarios

We denote with WK the set of all scenarios for a
knowledge base K. It immediately follows that the
probability of a scenario P (wσ) is a probability distri-
bution over scenarios, that is to say

∑
w∈WK

P (w) = 1.

Given a KB K = 〈R, T ,A〉 and given two con-
cepts CH and CM occurring in K, our logic allows
one to define the compound conceptC as the combina-
tion of the HEAD CH and the MODIFIER CM , where
C v CH u CM and the typical properties of the form
T(C) v D to ascribe to the concept C are obtained in
the set of scenarios that:

1. are consistent;
2. are not trivial, in the sense that the scenarios con-

sidering all typical properties of the HEAD that
can be consistently ascribed to C are discarded;



A. Lieto and G.L. Pozzato / Applications of a DL of Typicality for Concept Combination in Computational Creativity 5

3. are those giving preference to the typical prop-
erties of the HEAD CH (with respect to those
of the MODIFIER CM ) with the highest prob-
ability. Notice that, in case of conflicting typi-
cal properties like D and ¬D, given two scenar-
ios w1 and w2, both belonging to the set of con-
sistent scenarios with the highest probability and
such that an inclusion p1 :: T(CH) v D be-
longs to w1 whereas p2 :: T(CM ) v ¬D be-
longs to w2, the scenario w2 is discarded in favor
of w1.

In order to select the desired scenarios we apply points
1, 2, and 3 above to blocks of scenarios with the same
probability, in decreasing order starting from the high-
est one. More in detail, we first discard all the incon-
sistent scenarios, then we consider the remaining (con-
sistent) ones in decreasing order by their probabilities.
We then consider the blocks of scenarios with the same
probability, and we proceed as follows:

– we discard those considered as trivial, consis-
tently inheriting all (or most of) the typical prop-
erties from the starting concepts to be combined;

– among the remaining ones, we discard those in-
heriting typical properties from the MODIFIER
in conflict with typical properties inherited from
the HEAD in another scenario of the same block
(i.e., with the same probability);

– if the set of scenarios of the current block is
empty, i.e. all the scenarios have been discarded
either because trivial or because preferring the
MODIFIER, we repeat the procedure by consid-
ering the block of scenarios, all having the imme-
diately lower probability.

The set of scenarios not discarded in the current block
are those selected by the logic TCL as the result of the
procedure.

The knowledge base obtained as the result of com-
bining concepts CH and CM into the compound con-
cept C is called C-revised knowledge base:

KC = 〈R, T ∪ {p : T(C) v D},A〉,

for allD such that T(C) v D belongs to w. The prob-
ability p is defined as follows: if D is a typical prop-
erty inherited either from the HEAD (or from both the
HEAD and the MODIFIER), then p corresponds to the
probability of such inclusion of the HEAD in the ini-
tial knowledge base, i.e. p : T(CH) v D ∈ T ; oth-
erwise, p corresponds to the probability of such inclu-

sion of a MODIFIER in the initial knowledge base, i.e.
p : T(CM ) v D ∈ T . Notice that, since the C-
revised knowledge base is still in the language of the
TCL logic, we can iteratively repeat the same proce-
dure in order to combine not only atomic concepts, but
also compound concepts. Examples and details of such
procedure are described in [19].

In [18] we have shown that reasoning in TCL in the
revised knowledge is EXPTIME-complete, obtaining
that it remains in the same complexity class of stan-
dard ALC. For the completeness, let n be the size of
KB, then the number of typicality inclusions is O(n).
It is straightforward to observe that we have an expo-
nential number of different scenarios, for each one we
need to check whether the resulting KB is consistent
inALC+TR which is EXPTIME-complete. Hardness
immediately follows from the fact that TCL extends
ALC + TR.

It is worth noticing that, even if reasoning in the
logic TCL remains in the same complexity class of
ALC, the generation of all 2n scenarios could be very
expensive in case of large knowledge bases. Optimiza-
tion techniques like those in [1,2] could be used in or-
der to limit this problem.

3. COCOS: a typicality based COncept
COmbination System

In this section we describe COCOS [20], a first im-
plementation of a reasoning machinery for the logic
TCL, generating scenarios and choosing the selected
one(s) according to Section 2.1. The current version of
the system is implemented in Python and exploits the
translation of anALC+TR knowledge base into stan-
dard ALC introduced in [7] and adopted by the sys-
tem RAT-OWL [9]. COCOS makes use of the library
owlready2 4 that allows one to rely on the services
of efficient DL reasoners, e.g. the HermiT reasoner.

Our system relies on the procedures developed for
the logic TCL and recalled in the previous section. CO-
COS allows one: i) to include the logical descriptions
of the concepts to be combined; ii) to select which
among the concepts has to be intended as HEAD and
as MODIFIER(s); iii) to choose, via a slider, how many
typical properties we want to inherit in the scenarios
that will be selected by TCL. In addition to present-
ing the selected scenario with typical properties of the

4https://pythonhosted.org/Owlready2/
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combined concept, COCOS also allows the users to se-
lect alternative scenarios by means of a slider, ranging
from more trivial to more surprising ones.

Some pictures of COCOS are shown in Figure 1.
As mentioned, COCOS represents a very preliminary
attempt to implement reasoning services for the logic
TCL. We are currently working on a more mature ver-
sion by adopting techniques in [1,2] in order to im-
prove its efficiency.

4. Artificial Prototypes Composition and Concept
Invention

In this section we exploit the logic TCL to show both
how it allows to automatically generate novel, plau-
sible, prototypical concepts by composing two initial
prototypes and how it can be used as a generative tool
in the field of computational creativity (with applica-
tions in the so called creative industry). In detail, we
first show how our logic can model the generation of a
quite complex concept recently introduced in the field
of narratology, i.e. that one of the Anti-Hero (a role in-
vented by narratologists to generate new story lines),
by combining the typical properties of the concepts
Hero and Villain . Of course, the specific domain of
the example is not relevant here; our goal is showing
how TCL can model this kind of prototypical concept
composition (a crucial aspect of human concept inven-
tion) that, on the other hand, has been proven to be
problematic for other kinds of logics (e.g fuzzy logic,
[11,23]). We then show how the same machinery can
be used as a creative support tool to generate new char-
acters, for instance for a video game or a movie. In
particular, we first show how the logic TCL is able to
generate a concept like Batman as the combination of
the prototypes of Man and Bat , then we exploit it to
generate an entirely new fictional character that we as-
sume to be composed by combining the narrative pro-
totypes of Batman and of an Homeric Hero, as well
as to create a new type of villain as the result of the
combination with a chair.

For the examples we have exploited COCOS intro-
duced in Section 3. The current version of the sys-
tem along with the files for the following examples are
available at http://di.unito.it/cocos.

4.1. The Anti Hero

We will take into account the concepts of Hero,
AntiHero and Villain extracted by the common sense

descriptions coming from the TvTropes repository
(https://tvtropes.org). In such online repos-
itory, typical descriptions of character roles are pro-
vided. They can be useful for practitioners of the nar-
rative field in order to design their own character ac-
cording to the main assets presented in such schemas.
In particular, Tropes can be seen as devices and con-
ventions that a writer can reasonably rely on as be-
ing present in the audience members’ minds and ex-
pectations. Regarding the Hero, TvTropes identifies
the following relevant representative features: e.g. the
fact that it is characterized by his/her fights against
the Villain of a story, the fact that his/her actions are
necessarily guided by general goals to be achieved in
the interest of the collectivity, the fact that they fight
against the Villain in a fair way and so on. Examples
of such Trope are: Superman, Flash Gordon, Captain
America, etc.. The AntiHero, on the other hand, is de-
scribed as characterized by the fact of sharing most of
its typical traits with the Hero (e.g. the fact that it is
the protagonist of a plot fighting against the Villain of
the story); however, his/her moves are not guided by a
general spirit of sacrifice for the collectivity but, rather,
they are usually based on some personal motivations
that, incidentally and/or indirectly, coincide with the
needs of the collectivity. Furthermore the AntiHero
may also act in a not fair way in order to achieve the
desired goal. A classical example of such trope is Bat-
man, whose moves are guided by his desire of revenge.
Finally the Villain is represented as a classic negative
role in a plot and is characterized as the main opponent
of the protagonist/Hero. In addition to this classical
contraposition, TvTropes also reports some physical
elements characterizing such role from a visual point
of view. For example: the characters of this Trope are
usually physically endowed with some demoniac cues
(e.g. they have the “eyes of fire”). Finally, they are
guided by negative moral values. Examples of such
role can be easily taken from the classical literature
to the modern comics. Some representative exemplars
are Cruella de Vil in Disney’s filmic saga or Voldemort
in Harry Potter.

Let us now exploit our logic TCL in order to define a
prototype of AntiHero. First of all, we define a knowl-
edge base describing both rigid and typical properties
of concepts Hero and Villain , then we rely on the
logic TCL in order to formalize an AntiHero-revised
knowledge base.

Let K = 〈R, T ,A〉 be a KB, where the ABox A
is empty. Concerning rigid properties, let R be as fol-
lows:
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Fig. 1. Some pictures of the graphical interface of COCOS.

Hero v ∃hasOpponent .Villain (R1)
Villain v ∀fightsFor .PersonalGoal (R2)
Villain vWithNegativeMoralValues (R3)
CollectiveGoal u PersonalGoal v ⊥ (R4)
WithPositiveMoralValuesu

uWithNegativeMoralValues v ⊥ (R5)
AngelicIconicityuDemoniacIconicity v ⊥ (R6)

Prototypical properties of villains and heroes are de-
scribed in T is as follows:

0.95 :: T(Hero) v Protagonist (T1)
0.85 :: T(Hero) v ∃fightsFor .CollectiveGoal (T2)
0.9 :: T(Hero) v WithPositiveMoralValues (T3)
0.6 :: T(Hero) v AngelicIconicity (T4)
0.75 :: T(Villain) v DemoniacIconicity (T5)
0.8 :: T(Villain) v Impulsive (T6)
0.75 :: T(Villain) v Protagonist (T7)

We make use of the logic TCL in order to build the
compound concept AntiHero as the result of the com-
bination of concepts Hero and Villain . Differently
from what the natural language seems to suggest, we
consider this compound concept by assuming that the
HEAD is Villain (since the AntiHero shares more
typical traits with this concept than with the Hero con-
cept). In COCOS, such knowledg base is easily en-
coded in a file containing:

– the choice about the HEAD concept and the
MODIFIER one. This is provided by a key-value
expression, in this case we just need to add the
strings:

Head Concept Name: Villain
Modifier Concept Name: Hero

– the set of rigid and typical properties, expressed
by pairs

head,concept_name
modifier,concept_name

and by triples

T(head),concept_name,prob
T(modifier),concept_name,prob

respectively. In the example, for instance T1, R3
and T6 are encoded as follows:

T(modifier),protagonist,0.95 #T1
head,withnegativemoralvalues #R3
T(head),impulsive,0.8 #T6

First of all,e we have that the compound concepts in-
herits all the rigid properties of both its components (if
not contradictory), therefore in the logic TCL we have
that:

(i) AntiHero v ∃hasOpponent .Villain
(ii) AntiHero v ∀fightsFor .PersonalGoal

(iii) AntiHero vWithNegativeMoralValues

For the typical properties, we consider all the 27 =
256 different scenarios obtained from all possible se-
lections about inclusion in T . Some of them are in-
consistent, namely those including either axiom T2 or
axiom T3, since they would ascribe typical properties
in contrast with inherited rigid properties of (ii) and
(iii): rigid properties impose that an anti hero has nega-
tive moral values, and all his goals are personal, there-
fore he is an atypical hero in those respects (T2 states
that typical heroes fights also for some collective goals,
whereas T3 states that normally heroes have positive
moral values). Also scenarios containing both axioms
T4 and T5 are inconsistent, due to the fact that the con-
cepts AngelicIconicity and DemoniacIconicity are
disjoint (formalized by R6).

Let us consider the remaining, consistent scenarios:
the one having the highest probability considers all
the typical properties of both concepts by excluding
only AngelicIconicity , that is to say the one with the
lowest probability between the two typical properties
in conflict. In TCL this scenario is discarded since it
is the most trivial one. When we consider scenarios
less trivial, i.e., more surprising scenarios (we analyze
scenarios in decreasing order of probability), we dis-
card the scenario with probability 0.13%, which in-
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cludes T4, associated to the MODIFIER, rather than
T5, associated to the HEAD, since it does not sat-
isfy the HEAD/MODIFIER heuristics, allowing one to
conclude, in a counter intuitive way, that typical anti
heroes have an angelic iconicity rather than a demo-
niac one.

Next scenarios, sharing the same probability (0.09%),
are as follows:

0.95 :: T(Hero) v Protagonist (T1)
0.75 :: T(Villain) v DemoniacIconicity (T5)
0.8 :: T(Villain) v Impulsive (T6)

0.95 :: T(Hero) v Protagonist (T1)
0.8 :: T(Villain) v Impulsive (T6)
0.75 :: T(Villain) v Protagonist (T7)

According to the logic TCL, both are adequate and rep-
resent the outcome of the whole heuristic procedures
adopted in TCL. Probably, in this case, it could be more
useful to opt for the first solution allowing to inherit a
further typical property (i.e. DemoniacIconicity) for
the generated prototypical Anti-Hero. However, we re-
main agnostic about the selection of the final options
provided by TCL. This choice can be plausibly left to
human decision makers and based on their own goals.

The resulting, alternative Hero u Villain-revised
knowledge bases are as follows:

0.95 :: T(Hero uVillain) v Protagonist

0.75 :: T(HerouVillain) v DemoniacIconicity

0.8 :: T(Hero uVillain) v Impulsive

0.75 :: T(Hero uVillain) v Protagonist

0.8 :: T(Hero uVillain) v Impulsive

Notice that, in the second case, the inclusion T(Herou
Villain) v Protagonist is inherited from both the
HEAD and the MODIFIER, therefore the probability
in the revised knowledge base corresponds to the one
coming from the HEAD (0.75).

COCOS ends its computation by providing the out-
put of Figure 4.1, where tuples of 0 and 1 represent
selections generating scenarios and the selected one is
scenario numbered 19 at the end.

A final element that is worth noticing in TCL is the
following: in our logic, adding a new inclusion, e.g.
T(AntiHero) v Brave, would not be problematic.
That is to say that our formalism is able to tackle the
phenomenon of prototypical attributes emergence for

the new compound concept, widely described in the
Cognitive Science literature [10].

4.2. Batman

In this section we use the logic TCL to generate a char-
acter that is considered a typical Anti-Hero in the nar-
ratological commununity: i.e. Batman. In this case, we
assume that this character results from the combina-
tion of the concepts Man and Bat , where Man is the
HEAD and Bat is the MODIFIER.

First of all, let us consider the following list of pro-
totypical descriptions for the concept Man (the list is,
of course, plausible but not exhaustive):

Man v Male (R1)
Man v Human (R2)
Man v Mammal (R3)
0.7 :: T(Man) v HeteroSexual (T1)
0.85 :: T(Man) v SportLover (T2)
0.6 :: T(Man) v ¬AcuteVoice (T3)
0.8 :: T(Man) v Omnivore (T4)

Let us now formalize in the logic TCL the prototype
of a bat, as follows:

Bat v Mammal (R4)
Bat v Animal (R5)
0.9 :: T(Bat) v Fly (T5)
0.95 :: T(Bat) v Nocturnal (T6)
0.9 :: T(Bat) v ¬Omnivore (T7)
0.9 :: T(Bat) v LivesInCave (T8)

We have exploited COCOS [20] in order to generate
all 28 = 256 different scenarios. Excluding the incon-
sistent scenarios, let us consider those remaining in de-
scending order of probability. The first scenario, whose
probability is 4.95%, includes typicality inclusions T1,
T2, T3, T5, T6, T7, and T8, namely all typical proper-
ties of the MODIFIER are inherited. However, this sce-
nario is discarded since a typical property of the MOD-
IFIER (¬Onnivore) is preferred to a conflict one in the
HEAD (Onnivore). The same for subsequent scenario
including T1, T2, T5, T6, T7, and T8, with probability
3.297%. The following scenario, excluding only T7,
has probability 2.198%, but it is considered as trivial
(all typicality properties of HEAD are inherited) and
therefore discarded. The next scenario has probability
2.12% and includes T2, T3, T5, T6, T7, and T8. As
for the most probable scenario, here again ¬Onnivore
of T7 in the MODIFIER is preferred to the conflicting
Onnivore of T4 in the HEAD: again, this scenario is
therefore discarded.
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...
([’0’, ’1’, ’1’, ’1’, ’0’, ’0’, ’0’, 0.08549999999999999], 19)

* Owlready2 * Running HermiT...
...
...... consisten scenario: OK ........
...... NOT trivial scenario: OK ........
...... HEAD/MODIFIER: OK ........
...
Result: Head Concept: Villain Modifier Concept: Hero
Recommended scenario(s) N.: 19

Fig. 2. An excerpt of the output of COCOS running the example of the AntiHero.

In TCL the selected scenario, whose probability is
1.47% is the next one, including T1, T2, T4, T5, T6,
and T8 and it describes the following Man u Bat-
revised knowledge base:

0.7 :: T(Man u Bat) v HeteroSexual (T1)
0.85 :: T(Man u Bat) v SportLover (T2)
0.8 :: T(Man u Bat) v Omnivore (T4)
0.9 :: T(Man u Bat) v Fly (T5)
0.95 :: T(Man u Bat) v Nocturnal (T6)
0.9 :: T(Man u Bat) v LivesInCave (T8)

This kind of revised knowledge base is perfectly com-
pliant with that one generated in the previous section
about the Anti-Hero. Also in this case, adding new in-
clusions which are typical of an Anti-Hero such as:

0.95 :: T(Man u Bat) v Protagonist (i)
0.8 :: T(Man u Bat) v Impulsive (ii)
0.75 :: T(Man u Bat) v Brave (iii)

would not be problematic. It is also true that, at this
stage, the obtained description is also formally compli-
ant with the both the descriptions of Hero and Villain.
However, as soon as data about different instances of
the new character class come in, e.g. by knowing that
(Man uBat)(michaelKeaton), we can assume that it
will become evident that the following facts will hold:

(i) ∃hasOpponent .Villain(michaelKeaton)
(ii) ∀fightsFor .PersonalGoal(michaelKeaton)

(iii) WithNegativeMoralValues(michaelKeaton)

and therefore that correct narrative class of the novel
generated character can only be the Anti-Hero one: in-
deed, it can be assumed that Michael Keaton is a typi-
cal Batman, therefore inheriting all the typical proper-
ties of the revised knowledge base. It can be observed
that this does not hold in case we consider another in-
dividual, call it Diomedes, being a Hero and a Batman:

in this case, the only consistent definition leads to as-
sume that Diomedes in an atypical Batman.

In the next subsection we show how TCL can be
used to invent novel concepts by iteratively applying
the heuristics devised in TCL .

4.3. Iterative Character Generation: Combining
Batman with an Homeric Hero

A C-revised knowledge base in the logic TCL is still
in the language of the TCL logic. This allows us to iter-
atively repeat the same procedure in order to combine
not only atomic concepts, but also compound concepts.

In this section we show how to generate a further
new character by exploiting this feature, in particu-
lar we handle the concept combination of C-revised
knowledge bases in order to combine the concept
Batman , obtained in Section 4.2 as the combination of
Man and Bat , and the prototype of an HomericHero.

For the sake of readability, let us recall the knowl-
edge base concerning Batman:

Batman v Male (R1)
Batman v Human (R2)
Batman v Mammal (R3)
Batman v Animal (R4)
0.7 :: T(Batman) v HeteroSexual (T1)
0.85 :: T(Batman) v SportLover (T2)
0.8 :: T(Batman) v Omnivore (T3)
0.9 :: T(Batman) v Fly (T5)
0.95 :: T(Batman) v Nocturnal (T4)
0.9 :: T(Batman) v LivesInCave (T6)

Concerning the Homeric hero, we can consider the fol-
lowing knowledge base:

HomericHero v Brave (R5)
HomericHero v Valuable (6)
0.9 :: T(HomericHero) v Male (T7)
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0.95 :: T(HomericHero) vWarrior (T8)
0.85 :: T(HomericHero) v

v ∃fightsFor .CollectiveGoals (T9)
0.8 :: T(HomericHero) v ¬Nocturnal (T10)

We have considered the alternative of having BatMan
as the HEAD and HomericHero as the MODIFIER
and vice-versa and obtained the following revised
knowledge bases. The Batman u HomericHero-
revised knowledge base, where Batman is the HEAD,
is as follows:

Batman v Male (R1)
Batman v Human (R2)
Batman v Mammal (R3)
Batman v Animal (R4)
HomericHero v Brave (R5)
HomericHero v Valuable (R6)
0.7 :: T(Batman) v HeteroSexual (T1)
0.85 :: T(Batman) v SportLover (T2)
0.8 :: T(Batman) v Omnivore (T3)
0.9 :: T(Batman) v Fly (T5)
0.95 :: T(Batman) v Nocturnal (T4)
0.9 :: T(Batman) v LivesInCave (T6)
0.9 :: T(HomericHero) v Male (T7)
0.95 :: T(HomericHero) vWarrior (T8)
0.85 :: T(HomericHero) v

v ∃fightsFor .CollectiveGoals (T9)
0.8 :: T(HomericHero) v ¬Nocturnal (T10)
0.85 :: T(BatmanuHomericHero) v SportLover
0.8 :: T(BatmanuHomericHero) v Omnivore
0.9 :: T(Batman uHomericHero) v Fly
0.95 :: T(BatmanuHomericHero) v Nocturnal
0.9 :: T(BatmanuHomericHero) v LivesInCave
0.9 :: T(Batman uHomericHero) v Male
0.95 :: T(BatmanuHomericHero) vWarrior
0.85 :: T(Batman uHomericHero) v

v ∃fightsFor .CollectiveGoals

It is worth noticing that in the revised knowledge base,
the typical batman homeric hero is nocturnal, thus con-
tradicting the typical property of one of the super-
classes (i.e. HomericHero). This datum does not con-
stitute a problem since the logic TCL is based on the
nonmonotonic logic ALC + TR which allows one to
handle this kind of exceptions by the nonmonotonic-
ity of the operator T (C v D does not imply that
T(C) v T(D), then we can have a propertyP holding
for elements of T(C) whereas ¬P holds for elements
of T(D)). Notice also that the combined concept
Batman uHomericHero inherits the typical property
of being male from the MODIFIER of the combina-

tion, i.e. 0.9 :: T(BatmanuHomericHero) v Male
from T7. This inclusion is allowed and it is not prob-
lematic because it is not in conflict with the rigid prop-
erty R1 stating that all batmans are males.

The HomericHero u Batman-revised knowledge
base, where HomericHero is the HEAD, is as follows:

Batman v Male (R1)
Batman v Human (R2)
Batman v Mammal (R3)
Batman v Animal (R4)
HomericHero v Brave (R5)
HomericHero v Valuable (R6)
0.7 :: T(Batman) v HeteroSexual (T1)
0.85 :: T(Batman) v SportLover (T2)
0.8 :: T(Batman) v Omnivore (T3)
0.9 :: T(Batman) v Fly (T5)
0.95 :: T(Batman) v Nocturnal (T4)
0.9 :: T(Batman) v LivesInCave (T6)
0.9 :: T(HomericHero) v Male (T7)
0.95 :: T(HomericHero) vWarrior (T8)
0.85 :: T(HomericHero) v

v ∃fightsFor .CollectiveGoals (T9)
0.8 :: T(HomericHero) v ¬Nocturnal (T10)
0.7 :: T(HomericHerouBatman) v HeteroSexual
0.85 :: T(HomericHerouBatman) v SportLover
0.8 :: T(HomericHerouBatman) v Omnivore
0.9 :: T(HomericHero u Batman) v Fly
0.9 :: T(HomericHerouBatman) v LivesInCave
0.9 :: T(HomericHero u Batman) v Male
0.95 :: T(HomericHerouBatman) vWarrior
0.85 :: T(HomericHero u Batman) v

v ∃fightsFor .CollectiveGoals

As a difference with the Batman u HomericHero-
revised knowledge base, the typical property of be-
ing Nocturnal is no longer inherited by the combined
concept. It is worth noticing that, even if the typical
property ¬Nocturnal would have been inherited, this
would not be problematic, again by the nonmonotonic-
ity of the underlying logic ALC + TR.

4.4. The Villain Chair

Let us assume to generate a novel concept obtained
as the combination of concepts Villain (as HEAD)5

and Chair (as MODIFIER). Let K = 〈R, T , ∅〉 be as
follows:

5Please, note that with respect to Section 4.1 we have slightly
enriched the description of Villain .
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Villain v ∃fightsFor .PersonalGoal (R1)
Villain v Animate (R2)
Villain vWithNegativeMoralValues (R3)
Chair v ∃hasComponent .

.SupportingSeatComponent (R4)
Chair v ∃hasComponent .Seat (R5)
CollectiveGoal u PersonalGoal v ⊥ (R6)

and T is as follows:

0.9 :: T(Villain) v DemoniacIconicity (T1)
0.75 :: T(Villain) v ∃hasOpponent .Hero (T2)
0.75 :: T(Villain) v Protagonist (T3)
0.8 :: T(Villain) v Impulsive (T4)
0.95 :: T(Chair) v ¬Animate (T5)
0.95 :: T(Chair) v ∃hasComponent .Back (T6)
0.65 :: T(Chair) v ∃madeOf .Wood (T7)
0.8 :: T(Chair) v Comfortable (T8)
0.7 :: T(Chair) v Inflammable (T9)

We consider the 512 scenarios, from which we discard
the inconsistent ones, namely those including T5: in-
deed, since R2 imposes that villains are animate, in the
underlying ALC + TR we conclude that Villain u
Chair v Animate , therefore all scenarios including
T5, imposing that T(Villain u Chair) v ¬Animate
are consistent only if there are no villain chairs. As in
the previous examples, we also discard trivial scenar-
ios containing all the inclusions related to the HEAD.
The first suitable scenarios are those have probability
0.23% and contain all typical properties coming from
the MODIFIER and three out of four typical properties
coming from the HEAD. Such scenarios define two al-
ternative revised knowledge bases: one containing T2
and not T3, the other one containing T3 and not T2.
These scenarios are the preferred ones selected by the
logic TCL.

However, in this application setting, we could imag-
ine to use our framework as a creativity support tool
and thus considering alternative - more surprising -
scenarios by adding additional constraints. For ex-
ample, we could impose that the compound concept
should inherit exactly six typical properties. In this
case, we would get that the scenario having the highest
probability (0.16%) is the one including all the typical
properties of the HEAD, namely T1, T2, T3 and T4,
and two out of four typical properties of the MODI-
FIER, namely T6 and T8. Due to its triviality, this sce-
nario is discarded, in favor of the following more cre-
ative scenarios, with probability 0.13%, obtained by
excluding T7 of the MODIFIER and one out of four
typical properties of the HEAD:

0.9 :: T(Villain u Chair) v DemoniacIconicity
0.75 :: T(Villain u Chair) v ∃hasOpponent .Hero
0.8 :: T(Villain u Chair) v Impulsive
0.95 :: T(Villain u Chair) v ∃hasComponent .Back
0.8 :: T(Villain u Chair) v Comfortable
0.7 :: T(Villain u Chair) v Inflammable

0.9 :: T(Villain u Chair) v DemoniacIconicity
0.75 :: T(Villain u Chair) v Protagonist
0.8 :: T(Villain u Chair) v Impulsive
0.95 :: T(Villain u Chair) v ∃hasComponent .Back
0.8 :: T(Villain u Chair) v Comfortable
0.7 :: T(Villain u Chair) v Inflammable

5. Related and Future Works

In this work we have considered a nonmonotonic
Description Logic TCL, extending the DL of typical-
ity ALC + TR with a DISPONTE semantics, in order
to deal with the generation of novel creative concepts.
This logic enjoys good computational properties, since
entailment in it remains ExpTime as the underlying
monotonic ALC, and is able to take into account the
concept combination of prototypical properties. To this
aim, the logic TCL allows one to have inclusions of the
form p :: T(C) v D, representing that, with a prob-
ability p, typical Cs are also Ds. Then, several differ-
ent scenarios – having different probabilities – are de-
scribed by including or not such inclusions, and pro-
totypical properties of combinations of concepts are
obtained by restricting reasoning services to scenarios
having suitable probabilities, excluding “trivial” ones
with the highest probabilities.

In AI, several approaches have been proposed to
deal with the problem of prototypical concept com-
position in a human-like fashion. The authors of [14]
present a detailed analysis of the limits of the set-
theoretic approaches, the fuzzy logics (whose limi-
tations was already shown in [28]), the vector-space
models and quantum probability approaches proposed
to model this phenomenon. In addition, they propose
to use hierarchical conceptual spaces [5] to model the
phenomenon in a way that accurately reflects how hu-
mans exploit their creativity in conjunctive concept
combination. While we agree with the authors with
the comments moved to the described approaches, we
showed that our logic can equally model, in a cogni-
tively compliant-way, the composition of prototypes
by using a nonmonotonic formalism whose complex-
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ity remains in the same class of standard monotonic
ALC. Other attempts similar to the one proposed here
concerns the conceptual blending: a task where the ob-
tained concept is entirely novel and has no strong as-
sociation with the two base concepts (while in concept
combination the compound concept is always a subset
of the base concepts, for details see [22]). In [3] the
authors propose a mechanism for conceptual blending
based on the DL EL++. They construct the generic
space of two concepts by introducing an upward re-
finement operator that is used for finding common gen-
eralizations of EL++ concepts. However, differently
from us, what they call prototypes are expressed in
the standard monotonic DL, which does not allow one
to reason about typicality and defeasible inheritance.
More recently, a different approach is proposed in [4],
where the authors see the problem of concept blend-
ing as a nonmonotonic search problem and propose to
use Answer Set Programming (ASP) to deal with this
search problem in a nonmonotonic way. In a related
work [25], the author extends the logic of typicality
ALC + TR by means of probabilities equipping typ-
icality inclusions of the form T(C) vp D, whose in-
tuitive meaning is that, “normally, Cs are Ds and we
have a probability of 1−p of having exceptionalCs not
being Ds”. Probabilities of exceptions are then used in
order to reason about plausible scenarios, obtained by
selecting only some typicality assumptions and whose
probabilities belong to a given and fixed range. As a
difference with the logic TCL, all typicality assump-
tions are systematically taken into account: as a con-
sequence, one cannot exploit such a DL for capturing
compositionality, since it is not possible to block in-
heritance of prototypical properties in concept combi-
nation. The logic TCL extends the work of [25] in that
it does not systematically take into account all typical-
ity assumptions. As a consequence, TCL blocks inher-
itance of prototypical properties in concept combina-
tion. The same criticism applies also to the approach
proposed in [24], where ALC + TR is extended by
inclusions of the form T(C) vd D, where d is a de-
gree of expectedness, used to define a preference rela-
tion among extended ABoxes: entailment of queries is
then restricted to ABoxes that are minimal with respect
to such preference relations and that represent surpris-
ing scenarios. Also in this case, however, the result-
ing logic does not allow us to define scenarios contain-
ing only some inclusions, since all of them are system-
atically considered. Similarly, probabilistic DLs [26]
themselves cannot be employed as a framework for
dealing with the combination of concepts, since these

logics are not able to represent and reason about pro-
totypical properties.

In future research we aim at extending our approach
to more expressive DLs, such as those underlying the
standard OWL language. Starting from the work of [6],
applying the logic with the typicality operator and the
rational closure to SHIQ, we intend to study whether
and how TCL could provide an alternative solution to
the problem of the “all or nothing” behavior of ratio-
nal closure with respect to property inheritance. Other
applications field of the proposed approach other em-
ployments can be considered. For example, we plan to
use our logic for the development of a goal-directed
and automatic generation of novel knowledge in a cog-
nitive artificial agent, starting from an initial common-
sense knowledge base. This approach will require to
enrich the knowledge processing mechanisms of cur-
rent cognitive agents [16] since it does not assume that
the only way to process and reason on new knowledge
is via an external knowledge injection. On the con-
trary, it assumes that a mechanism for the automatic
and creative re-framing, or re-formulation, of the avail-
able knowledge. Such procedure, in particular, can be
used to extend the mechanisms of universal subgoal-
ing in cognitive architectures like SOAR [12].

In this work we have also described COCOS, a tool
for combining concepts in the logic TCL. As men-
tioned, COCOS represents a very preliminary attempt
to implement reasoning services for the logic TCL, and
a more mature version, exploiting optimization tech-
niques in [1,2] in order to improve its efficiency, is cur-
rently under development.
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