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Abstract 

BACKGROUND: Aspergillus fumigatus, the causal agent of aspergillosis in humans, is commonly 

present as saprophyte in various organic substrates, such as spoiled silages. Aspergillosis is 

generally combated with demethylation inhibitor (DMI) fungicides, but the recent appearance of 
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resistant medical and environmental strains made current treatment strategies less reliable. The goal 

of this study was to determine the evolution of A. fumigatus populations during the ensiling process 

of whole-crop corn, high moisture corn and wet grain corn, and to monitor the sensitivity of isolates 

from treated and untreated fields to one medical and one agricultural DMI fungicide.  

 

RESULTS: A. fumigatus was isolated from fresh forage at harvest at rather low concentrations (102 

cfu/g). The low frequency lingered during the silage process (at 60 and 160 days), whereas it 

significantly increased during air exposure (at 7 and 14 days of air exposure). Field treatment of 

corn with a mixture of prothioconazole and tebuconazole did not affect the sensitivity of A. 

fumigatus isolates. One isolate out of 29 coming from the untreated plot was resistant to 

voriconazole. A unique amino acid substitution (E427K) was detected in the cyp51A gene of 10 out 

of 12 sequenced isolates, but it was not associated to DMI resistance.   

 

CONCLUSION: A. fumigatus significantly increased during aerobic deterioration of ensilaged corn 

after silo opening, compared to the low presence in fresh corn and during ensiling. Field treatment 

of corn with DMI fungicides did not affect the sensitivity of A. fumigatus isolates collected from 

fresh and ensiled corn.  

 

Keywords: Aspergillus fumigatus; corn; ensiling; environmental samples; fungicide treatment; 

quantification; sensitivity to DMIs  
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INTRODUCTION 

 

Aspergillus fumigatus (Fresen., syn. Neosartorya fumigata, O'Gorman, Fuller and Dyer), common 

soil inhabiting fungus and saprophyte of decomposing organic matter, is an important human 

pathogen provoking serious to life-threatening diseases in immunocompromised patients, such as 

invasive pulmonary aspergillosis.1,2 It propagates by releasing into the atmosphere a large amount 

of asexual spores (conidia) which stay viable for a prolonged period of time.3 A teleomorph of A. 

fumigatus was recently found and named as N. fumigata.4 The conidia are resistant to high 

temperatures, with the ability to germinate from 20 °C to 50 °C.5 The fungus can survive in extreme 

environments at high concentrations of CO2 and N2, limited nutrients and oxidative stress.6 Besides, 

it represents an important threat for bred animals, especially cattle, due to its capacity to colonize 

feed and fibre entering the ensiling process.5,7 

Ensiling is one of the most effective techniques to conserve forages, cereals and other feeds in dairy 

and beef farm. The conservation of feed is due to an acidification by lactic acid bacteria (LAB) that 

convert water soluble carbohydrates into lactic and other acids under anaerobic conditions. The 

acidification and the anaerobic conditions inhibit the growth of aerobic microorganisms, such as 

yeast and moulds. During the feed-out, silages are exposed to the air and, after an initial stable 

phase, the silages begin to deteriorate as a result of the activity of aerobic microorganisms, first 

yeast and later moulds.8,9 High concentration of A. fumigatus capable of producing thermogenic 

mycotoxins have been found repeatedly in aerobic deteriorated silages and forages for dairy 

cows.10-13 
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Demethylation inhibitor (DMI) fungicides, chemically known as “azoles”, are the main antifungals 

used for prophylactic and therapeutic treatments of diseases caused by A. fumigatus in humans and 

animals.14 DMIs are also commonly used in agriculture as fungicides against a wide range of fungal 

pathogens of plants.15 DMIs bind the cytochrome P450 mediated lanosterol 14-α demethylase, 

encoded by two paralogues (A and B) of the cyp51 gene, thus preventing the biosynthesis of 

ergosterol, the principal fungal cell membrane sterol.16,17 

Soon after the introduction of medical DMIs for therapy and prophylaxis of aspergilloses, resistant 

isolates were recorded.18 Resistance was attributed to few mutations in the cyp51A gene and started 

to expand in DMI treated patients in several countries. The main mutations involved in DMI 

resistance occurred in cyp51A gene causing amino acid changes at positions 98, 121 and 289 

(L98H, Y121F and T289A), together with modifications of the promoter region by the presence of a 

tandem repeat (TR34 or TR46). DMI-resistant strains recently isolated from DMI naïve patients 

indicated that resistance might originate not only from clinical treatments, but may also have 

environmental sources.19,20 DMI resistant isolates carrying cyp51A mutations and TR promoter 

modifications were also reported to occur in different environmental matrices, such as soil and 

compost enforcing the suggestion that DMI resistance in patients may originate also from the 

application of similar DMIs in agriculture which were used to control plant diseases but have hit 

also A. fumigatus as collateral effect thereafter producing resistant conidia which were inhalated by 

the patient.21 

Since DMI sensitivity evaluation of A. fumigatus from agricultural and environmental habitats, e.g. 

compost22,23 is still limited, we carried out this study in corn silage, one of the preferred habitats of 

A. fumigatus on dairy farms. Silage is considered one of the major sources of conidia release of A. 
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fumigatus into air24 and emphasis has been given to different corn silage types (whole-crop corn, 

high moisture corn and wet grain silages) from corn harvest to conservation and aerobic 

deterioration of silage during feed-out phase.  

 

MATERIALS AND METHODS 

 

Field experiment and corn harvest 

The experiment was carried out at the experimental farm of the University of Turin in the western 

Po plain, northern Italy (44°53' N, 7°41’ E, altitude 232 m a.s.l.) on corn (Zea mays L.). The field 

was cultivated with maize under fungicide spray programme on the previous year. Corn (P1517W, 

Pioneer Hi-Bred Italia Srl, Cremona, Italy) was sown in April 2016, at expected planting density of 

75,000 seeds/ha. At the beginning of flowering (61 BBCH scale), half of the plots were treated with 

a commercial fungicide (Prosaro®, Bayer Crop Science: 12.7 g prothioconazole and 12.7 g 

tebuconazole per 100 g) applied at the dose of 1.0 l/ha (twice the commercial dose). Corn was 

harvested at around 2/3 milk line stage as whole-crop corn and at the black line stage for high 

moisture corn and wet grain silages. Fresh forage for whole-crop corn and high moisture corn were 

harvested, using a precision forage harvester (Claas Jaguar 950, Claas, Harsewinkel, Germany) and 

then ensiled in 20 l plastic silos. Wet grain was harvested with a grain harvester (Wintersteiger 

Quantum plot combine, Wintersteiger AG, Ried, Austria). 

 

Sample preparation and analyses 
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Corn plants were harvested and conserved as: a) whole-crop corn silage (WCC) = ensiling of the 

whole chopped plant; b) high moisture corn silage (HMC) = ensiling of the chopped ear (cob and 

grain); c) wet grain silage (WG) = ensiling of the whole wet grain.  

Fresh forages were sampled and ensiled (about 10 to 12, 13 to 15, 16 to 18 kg of wet forage for 

WCC, HMC and WG, respectively) into 20 l plastic silos equipped with a lid that only enabled gas 

release. The forages were hand-packed and final packing densities, on a wet basis, were 490 ± 33 kg 

fresh matter (FM)/m3, 698 ± 23 kg FM/m3, 852 ± 22 kg FM/m3 for WCC, HMC and WG, 

respectively. All silos were filled within three hours. The silos were weighed, conserved at ambient 

temperature and opened after 60 and 160 days. At opening, the content of each silo was mixed 

thoroughly and sub-sampled to determine the DM content, the fermentative and chemical 

characteristics and the microbial counts. After sampling, the silages were subjected to an aerobic 

stability test and the silages were sampled after 7 d and 14 d of aerobic exposure in order to 

quantify the microbial changes in the silages during air exposure. 

Pre-ensiled material and silages were split into four subsamples. One sub-sample was immediately 

analysed for DM content by oven drying at 80 °C for 24 h. Dry matter was corrected according to 

Porter and Murray25, in order to consider the losses of volatile compounds that can take place at 80 

°C. The second fresh sub-sample was used to determine the water activity (aw), pH and nitrate 

(NO3
-) concentration. The water activity was measured at 25 °C on a fresh sample using an 

AquaLab Series 3TE (Decagon Devices Inc., Pullman, WA), which adopts the chilled-mirror dew 

point technique. The fresh forage was extracted for pH, and NO3
- determination, using a Stomacher 

blender (Seward Ltd, Worthing, UK), for 4 min in distilled water at a 9:1 water-to-sample material 

(fresh weight) ratio. The total nitrate concentration was determined in the water extract, through 
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semi-quantitative analysis, using Merckoquant test strips (Merck, Darmstadt, Germany; detection 

limit 100 mg NO3/kg). The pH was determined using specific electrodes. The third subsample was 

used for the microbial analyses. For the microbial counts, 30 g of sample was transferred into a 

sterile homogenization bag, suspended 1:10 w/v in a peptone salt solution (1 g of bacteriological 

peptone and 9 g of sodium chloride per litre) and homogenized for 4 min in a laboratory Stomacher 

blender (Seward Ltd, London, UK). Serial dilutions were prepared and the yeast and mould 

numbers were determined using the pour plate technique with 40.0 g/l of Yeast Extract Glucose 

Chloramphenicol Agar (YGC agar, DIFCO, West Molesey, Surrey, UK) after incubation at 25 °C 

for 3 and 5 d for yeasts and moulds, respectively. Yeast and mould colonies were divided in 

morphotypes, based on the macro and micro morphological features observed. Subsequently, yeast 

and moulds were counted separately on plates that yielded 1 to 100 colony forming units (cfu). The 

LAB were determined on MRS agar (Merck, Whitehouse Station, NY) with added natamycin (0.25 

g/l), by incubating Petri plates at 30 °C for 3 d under anaerobic conditions. Since LAB are 

facultative anaerobic, the choice of anaerobic incubation was made to improve the selectivity of the 

media against Bacillus spp. For each type of matrix, sampling was carried out in 6 replicates, 3 

replicates for treated plant material (T) with DMIs, and 3 replicates for untreated plants (NT) (Table 

1). The fourth sub-sample was used to identification, quantification and selection of Aspergillus 

fumigatus. Sub-amples from which A. fumigatus was isolated are indicated in Table 2.  

 

Morphological and molecular identification, and quantification of Aspergillus fumigatus 

isolates 
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Morphological identification was performed by isolation of Aspergillus fumigatus according to the 

protocol by Franceschini et al.26 Samples (30 g) were collected from each of the three corn mixtures 

(DMI-treated and untreated) at pre-silage and silage conservation periods. The samples were 

resuspended (1:10 w/v) in a peptone salt solution (1 g of bacteriological peptone and 9 g of sodium 

chloride/l) and placed into a sterile bag for a 4 min homogenization by laboratory Stomacher 

blender (Seward Ltd, London, UK). One hundred μl of suspension and its serial dilutions (with a 

factor 10) were grown in triplicate onto potato dextrose agar (PDA, Merck, Darmstadt, Germany) 

amended with streptomycin (50 mg/l; Merck). Plates were sealed with parafilm and incubated at 50 

°C for 4-5 days to select A. fumigatus from other fungal species. 

Identification of Aspergillus-like colonies was based on the selection of the grey-green and 

powdery colonies and observation of their macro- and micro-morphological characteristics. 

Surviving colonies of A. fumigatus were quantified by considering the dilution factor and the 

average of three replicates.  

Three monoconidial cultures were prepared per each isolate and they were stored at –80 °C in 30% 

glycerol. Fifty isolates of A. fumigatus initially isolated from the different matrices were chosen for 

further study: molecular characterization of the β-tubulin (tub2), and cyp51A genes, molecular 

identification of the mating type and DMI sensitivity assays (Table 3). Fungal DNA was extracted 

from 100 mg fungal mycelium using EZNA® Fungal DNA extraction kit (Omega Bio-Tek, 

Darmstadt, Germany) according to the manufacturer protocol. The tub2 gene portion was amplified 

following the PCR protocol described by Glass and Donaldson27, and subsequent sequencing of the 

tub2 amplicons.  
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Mating types identification 

A. fumigatus mating types were determined by multiplex PCR as decribed by Paoletti et al.28 using 

specific primers MAT-1 (AFM1, 5′-CCTTGACGCGATGGGGTGG-3′) and MAT-2 (AFM2, 5′-

CGCTCCTCATCAGAACAACTCG-3′), along with common primer AFM3 (5′-

CGGAAATCTGATGTCGCCACG-3′). The PCR-25 µl reaction included 10 ng of fungal DNA, 1× 

PCR buffer, 1.4 mM MgCl2, 0.2 mM dNTPs, 0.4 µM of each primer (AFM1 and AFM2), 0.8 µM 

primer AFM3, and 1 U Taq DNA polymerase (Qiagen, Hilden, Germany). PCR conditions were as 

follows: initial denaturation at 95 °C for 5 min, 35 cycles at 95 °C for 30 s, 60 °C for 30 s, and 72 

°C for 1 min, and a final extension at 72 °C for 5 min. The PCR products (5 µl) were stained with 

RedGel (Biotium, Hayward, CA, USA) in a 1.2% agarose gel and following the electrophoresis 

visualized under UV light. The mating type of isolates was determined by the amplicon size: 834 bp 

(MAT-1), and 438 bp (MAT-2). 

 

DMI sensitivity of A. fumigatus by in vitro assays 

Sensitivity of A. fumigatus against imazalil (agricultural/veterinary DMI), and voriconazole 

(medical DMI) was evaluated by using the EUCAST protocol29 with some modifications applying 

the FRAC standard protocol regarding plant pathogens (http://www.frac.info/monitoring-methods). 

Three reference environmental isolates were also included in the study: a wild-type (WT) and 

resistant isolate (TR34+L98H) from NL, and resistant isolate (TR46+Y121F+T289A) from UK 

(kindly provided by B. Fraaije, Rothamsted Research, UK).  

Imazalil (Pestanal® analytical standard; Sigma-Aldrich, Milan, Italy) and voriconazole (Vetranal™ 

analytical standard; Sigma-Aldrich) were applied in five concentrations (50, 10, 2, 0.4 and 0.08 
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mg/l) and in two replicates. The PMI 1640/L-glutamine medium (Sigma-Aldrich) supplemented 

with 2% glucose and 3-(N-morpholino) propanesulfonic acid (MOPS) at a 0.165 mol/l 

concentration (pH 7.0), was loaded together with each fungicide in flat-bottom Nunc™ 96-well 

microplate (100 µl/well; Thermo Fisher Scientific, Wilmington, USA). Then, 100 µl of the fungal 

spore suspension at 2 to 5 × 105 conidia/ml was loaded per well. The substrates without fungicide 

and without A. fumigatus were used as controls. The microplates were kept at 37 °C for 48 hours 

and then the mycelial growth was estimated visually29 by a turbidity-grade scale (0-5),  where 0 

indicates optically clear well and 5 refers to no turbidity change with respect to the turbidity of the 

fungicide-free control.  

Percent growth inhibition (GI) was determined by formula as % GI = (Gc – Gf / Gc) x 100 where Gc 

refers to the control growth and Gf refers to the growth percentage at each concentration of 

fungicide. A log/logit dose response was chosen for EC50 calculation (concentrations inducing 50 % 

of growth inhibition) by GraphPadPrism® software (7.02 v.; La Jolla, CA, USA). A fungicide 

concentration (log) vs. normalized response-variable (percentage of the growth inhibition) was 

calculated as: Y = Bottom + (Top-Bottom) / {1+10[(LogEC50-X) × HillSlope]} where Y indicates 

the response (GI) and X the fungicide concentration. Top and Bottom refers to the plateaus of the Y 

axis units. Hillslope indicates the steepness of the curve.30 According to the sensitivity of A. 

fumigatus to imazalil and voriconazole, an isolate was considered as less sensitive if its EC50 was at 

least five times the mean EC50 of sensitive (S) isolates (0.26 and 0.31 µg/ml for imazalil and 

voriconazole, respectively), and resistant (R) if the EC50 showed 50 times the mean EC50 of S) 

isolates. The sensitivity distribution of all 50 isolates were then estimated for both fungicides and 

compared to the reference isolates.  
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Molecular characterization of the cyp51A gene sequences 

PCR amplification was carried out for the cyp51A coding sequence of 12 A. fumigatus isolates. The 

primers P450-A1 (5’-ATGGTGCCGATGCTATGG-3’) and P450-A2 (5’-

CTGTCTCACTTGGATGTG-3’)31 were used for the PCR applying the conditions described by 

Snelders et al.32 Initial denaturation at 95 °C for 5 min, was followed by 94 °C for 30 s, 58 °C for 

45 s, and 72 °C for 2 min for 40 cycles, and by a final extension at 72 °C for 7 min.  

 

Sequence analyses 

The PCR products of the tub2 and cyp51A genes were sequenced at BMR Genomics (Padua, Italy) 

and deposited in GenBank with the accession numbers reported in Table 3 for tub2 and for cyp51A. 

The sequences were compared with those at NCBI GenBank database. Nucleotide and amino-acid 

alignments were performed with Vector NTI Advance 11 software (InforMax, North Bethesda, 

Maryland, USA) by the Clustal W algorithm.33 Phylogenetic analyses were carried out by MEGA 7 

software34 by creating the neighbour-joining (NJ) trees at 1000 bootstrap replications. 

 

RESULTS 

 

Silage characteristics 

The chemical characteristics and microbial counts on corn plants and in silages at harvest, silo 

opening and after air exposure are summarized in Table 1. At harvest, the DM content was on 

average around 46%, 65% and 75% for WCC, HMC and WG, respectively. The WG showed 
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slightly higher pH and lower LAB, yeast and mould counts compared to WCC and HMC. After 60 

d of conservation the pH reached values below 4 in WCC and HMC, in which the LAB counts 

increased whereas the yeast and mould counts decreased. The pH of WG at opening did not show 

significant differences compared to harvest although an increase of LAB was detected. After 160 d 

of conservation, the silages showed characteristics similar to those detected at 60 d except for a 

further reduction of the mould counts (on average from 3.16×102 cfu/g to below 0.32×102 cfu/g). 

After 7 days of air exposure, both for 60 and 160 d of conservation, yeast counts increased in all the 

matrices. A further development of aerobic microorganisms was detected after 14 d of air exposure, 

with mould counts higher than 1.00×107 cfu/g in WCC and WG. After 7 days of air exposure, HMC 

had a pH close to that at silo opening; mould counts were below the detection limit, whereas in 

WCC and WG, these parameters increased after 14 d of air exposure. 

 

Quantification of A. fumigatus in silages 

A. fumigatus frequency was expressed as cfu/g dry weight of silage (Fig. 1). A. fumigatus was 

isolated from the corn samples at harvest in rather low concentrations: 2.60×103 cfu/g in WCC and 

0.20×103 cfu/g in WG, while in HMC it was below the detection limit (<10 cfu/g). During silage 

conservation, A. fumigatus counts was stable after 60 and 160 days of conservation, whereas it 

significantly increased during air exposure (at 7 and 14 days of air exposure after silo opening). In 

the 60 days of conservation samples, the fungal presence was quite high in WCC and HMC 

(3.50×107 and 1.37×107 cfu/g, respectively) after 14 days of air exposure. The highest concentration 

of A. fumigatus was measured after 160 days of conservation, on the samples after 14 days of air 

exposure in WCC (2.63×108 cfu/g), followed by wet grain (1.28×107 cfu/g). 
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Molecular identification of A. fumigatus isolates and mating type 

Fifty Aspergillus-like colonies were chosen for molecular identification based on morphological 

characterization and survival at 50 °C. One hundred percent of isolates collected from corn samples 

at harvest and after ensiling were confirmed as A. fumigatus by BLASTn analysis of the β-tubulin 

sequences (Table 3), and selected for further studies. 

The isolates were further analysed by mating-type specific PCR resulting in 26% MAT1-1 and 74% 

MAT1-2 idiomorph (Table 3). No isolate showed simultaneously amplification of both mating-

types. 

 

Sensitivity of A. fumigatus isolates to imazalil and voriconazole 

Fifty A. fumigatus isolates collected at harvest, silage opening and subsequent air exposure were 

evaluated for sensitivity to imazalil and voriconazole (Table 3). The intrinsic antifungal activity of 

the two DMI fungicides was similar: for imazalil the mean EC50 was 0.31 mg/l, ranging from <0.01 

to 1.47 mg/l, and for voriconazole the mean EC50 was 0.26 mg/l, ranging from <0.01 to 1.48 mg/l. 

The sensitivity distribution of A. fumigatus isolates was rather continuous for both fungicides 

without a clear separation between sensitive (EC50 < 1.50 mgl) and less sensitive isolates (EC50 > 

1.51 mg/l), only one resistant isolate against voriconazole (EC50 > 10 mg/l) was detected (Fig. 2). 

No significant differences in sensitivity to either imazalil or voriconazole were found between the 

isolates coming from the treated and those coming from the untreated plots (Fig. 2).  The resistant 

reference isolate (TR34+L98) was clearly separated from all silage isolates for imazalil, but it 

grouped together with one silage isolate (HMC.N.60S.1C) for voriconazole (Fig. 2 and Table 3). 
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Ten (for imazalil) and three (for voriconazole) isolates were distributed in an intermediate group 

between sensitive and resistant isolates, together with another reference isolate (TR46 +Y121F 

+T289A) representing the group of intermediate resistant isolates. The resistant reference isolate 

TR34+L98 was 34 fold less sensitive against voriconazole and 138 fold less sensitive against 

imazalil, with respect to the value of the WT reference isolate (Table 3).  

 

The cyp51A molecular characterization  

Out of 12 isolates, the cyp51A amino acid substitution (E427K) was found in 10 corn-silage A. 

fumigatus isolates (either DMI sensitive or less sensitive isolates, originating from either treated or 

untreated plots), including the silage isolate HMC.N.60S.1C that showed resistance to voriconazole. 

No other cyp51A mutations including those coding for DMI resistance (L98H, Y121F, and T289A) 

present in the resistant reference isolates21,35 were found in the studied A. fumigatus isolates from 

corn silage.  

The E427K polymorphism was found in the isolates of one subcluster of the main cluster, while the 

second subcluster included two other silage isolates (WCC.N.H.3B and HMC.T.60S.2B) with the 

reference resistant and sensitive isolates (Fig. 3). 

 

DISCUSSION AND CONCLUSIONS 

Emphasis in this study has been given to corn harvest as whole-crop corn, high moisture corn and 

wet grain which was conserved as silage for different time periods since deteriorated silages could 

be considered a major source of release of A. fumigatus spores into air in the farm 

environment.13,36,37 A. fumigatus is a saprophytic fungus that thrives on organic debris. It is 
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ubiquitous worldwide and is frequently present in silage,7,37,38 mainly under aerobic conditions 

(Dolci et al., 2011), where the heat derived from degradation of the organic matter favours the 

development of thermophilic microorganisms. The occurrence of A. fumigatus in whole-crop corn 

silage has already been documented in different reports,13,22,36,37 but the growth evolution of the 

fungus through different conservation periods in high moisture corn and wet grain silages is still 

poorly investigated. 

In this study, A. fumigatus was detected both at crop harvest and after ensiling. In the fresh forage at 

harvest, it was found at rather low concentrations in wet grains (0.11 × 103 cfu/g) and whole-crop 

corn (2.60 × 103 cfu/g). It was not detected in the high moisture corn. This was probably due to 

insufficiently sensitive detection levels of the used technique (10 cfu/g). There is still limited 

information on the presence of A. fumigatus on corn plants and grains in the field, where it was 

detected only by more sensitive methods like molecular techniques, however without fungal 

quantification.39 

Thermophilic competence of A. fumigatus is evident through surviving at temperatures that 

approach the upper limit for eukaryotes, thanks to unique mechanisms of stress resistance, useful to 

bypass high-temperature processes and starting a re-colonization of the substrate in absence of 

competition with other microbial species.13 Thus, in the present study, the highest number of 

contaminated samples by A. fumigatus was found after 60 days of silage conservation, indicating 

that the fungus was able to survive 60 days under anaerobic conditions. Whereas, after longer 

conservation period (160 days of anaerobic condition), the number of samples containing A. 

fumigatus was low as previously reported by Ferrero et al.40. The occurrence of A. fumigatus in corn 

silages at opening was previously described by Dolci et al.10 and Spadaro et al.13 after 110 and 146 
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days of conservation. The highest counts of A. fumigatus were detected during aerobic deterioration 

of silages when the inhibiting conditions to the growth of the fungus (absence of oxygen and low 

pH) were depleted by the previous activity of yeast allowing the fungus  to develop reaching 

frequencies over 1.00×108 cfu/g. These data are in accordance with a high amount of A. fumigatus 

found in corn silage by Santoro et al.22. During the experiments, a fungicide treatment was 

performed in the corn field at the beginning of flowering with a mixture of prothioconazole and 

tebuconazole, both are DMIs. The DMI mixture was applied at twice the commercial dose. The aim 

was to evaluate if a high-dose fungicide treatment would affect the occurrence of A. fumigatus and 

the sensitivity of the isolates coming from treated plots. Neither a lower frequency of A. fumigatus, 

nor a significantly different sensitivity profile of the isolates to the two fungicides, imazalil and 

voriconazole, were detected in the treated plots. The only isolate resistant to voriconazole was 

found in silage sample originating from a plot which was not treated with DMI. The low number of 

treatments of field crops like corn with DMIs per cropping season does not seem to be a factor 

favouring the selection of fungal pathogens or A. fumigatus resistant to DMIs. In other crops, such 

as grapevine or apple, up to four DMI sprays per cropping season are made (FRAC, 

www.frac.info), potentially representing a higher risk ofresistance selection. 

The presence of A. fumigatus teleomorph stage seems rare in nature.4 The genes related to the 

mating type expression were found in the A. fumigatus genome. Mating type 1 seems to be 

attributed to a higher invasiveness of A. fumigatus in human populations, while the mating type 2 is 

found more frequently in environmental habitats.22,41 In this study, the isolates did not show a 

simultaneous expression of both mating types, most of them belonged to mating type 2. The isolate 

resistant to voriconazole belonged to mat 2. This could be related to a higher aggressiveness of  
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silage isolates as was also described previously for  compost isolates (both environmental origin), 

where mat 2 was predominant and a high sensitivity to DMI fungicides was reported in northern 

Italy.23 

Out of 50 silage isolates evaluated, nine and three were less sensitive to imazalil and voriconazole, 

respectively, while only one isolate showed resistance to voriconazole. However, none of these 

isolates harbored the mutations known to code for DMI resistance in A. fumigatus as reported from 

other European countries and India for DMI resistant environmental isolates (TR34+L98H, 

TR46+Y121F and T289A).21,42-45 In this survey, ten silage A. fumigatus isolates contained the 

cyp51A E427K amino acid mutation. The polymorphism E427K has been already found in our 

previous reports in A. fumigatus deriving from composts of kitchen and garden wastes, and orange 

compost23,26 and brown compost22 from Italy and Spain. This mutation, detected now also in several 

corn silage isolates, is not related to DMIs resistance, it rather represents a specific genotype 

existing at certain geographic sites.The silage isolate 9378C resistant to voriconazole probably 

possesses some additional mechanisms associated with DMI resistance such as overexpression of 

cyp 51 gene.46 

While field treatment with DMIs did not influence the sensitivity of A. fumigatus isolates from fresh 

and ensiled corn, more investigation should be done on the presence and sensitivity of A. fumigatus 

in corn silage and samples from other crops including vegatables, due to the risk of contamination 

of food samples. 
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FIGURE CAPTIONS 

 

Figure 1. Abundance (cfu/g dry weight) of Aspergillus fumigatus in different types of silage and its period of 

conservation, at silo opening, and at 7 days and  14 days of air exposure (n.d. = not detected or below 10 

cfu/g; n.m. = not measured). 
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Figure 2. Sensitivity distribution of A. fumigatus silage isolates and reference isolates to 

voriconazole and imazalil. Mean EC50 is shown by inverted triangle. 
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Figure 3. Phylogenetic relatedness of 12 Aspergillus fumigatus isolates from corn silage and 

reference environmental isolates based on the cyp51A gene sequence inferred by Neighbour-joining 

analysis. Bootstrap analysis is supported with 1000 replications. 
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Tables 
 
Table 1.  Characteristics of whole-crop corn (WCC), high moisture corn (HMC) and wet grain (WG) corn silages at harvest, silo opening 
and after 7 and 14 days of air exposure 
 

Sampling time Matrices Treatment* DM 
(%) aw pH 

LAB 
(cfu × 
105/g) 

Yeast 
(cfu × 
106/g) 

Mould 
(cfu × 
106/g)                     

Harvest WCC T 46.0 0.985 5.87 15.85 2.63 1.70 
          

  
NT 47.3 0.984 5.89 26.30 5.50 2.24 

          
 

HMC T 64.2 0.976 5.93 19.50 3.80 1.12 
          

  
NT 67.7 0.978 5.96 7.08 3.72 1.62 

          
 

WG T 73.3 0.967 6.35 0.05 0.33 0.04 
          

  
NT 76.3 0.954 6.33 0.01 0.26 0.03 

          
                      Silo opening  7 days of air exposure  14 days of air exposure 

   

DM 
(%) aw  pH 

LAB 
(cfu × 
107/g) 

Yeast 
(cfu × 
103/g) 

Mould 
(cfu × 
103/g) 

 

DM 
(%) pH 

Yeast 
(cfu × 
107/g) 

Mould 
(cfu × 
103/g) 

 

DM 
(%) pH 

Yeast 
(cfu × 
107/g) 

Mould 
(cfu × 
105/g) 

60 d of 
conservation WCC T 45.4 0.982 3.79 0.30 0.79 0.19 

 
48.7 4.97 30.9 0.09 

 
52.7 6.33 44.7 501.2 

  
NT 47.1 0.980 3.82 0.98 0.28 0.32 

 
47.9 4.10 16.22 7.59 

 
54.0 6.57 54.95 691.8 

 
HMC T 64.1 0.969 3.78 1.05 2.00 0.68 

 
64.6 3.81 0.63 0.01 

 
68.6 5.35 19.50 77.62 

  
NT 66.4 0.963 3.82 1.20 0.55 0.35 

 
67.2 3.83 0.04 0.00 

 
68.6 4.09 2.69 0.21 

 
WG T 71.7 0.973 5.93 1.02 955.0 1.38 

 
73.4 5.98 15.85 275.4 

 
75.3 5.95 8.13 478.6 

  
NT 74.6 0.971 6.16 0.38 794.3 0.66 

 
76.2 5.84 10.47 208.9 

 
76.6 5.94 13.49 181.9 

                   160 d of 
conservation WCC T 46.3 0.984 3.79 0.20 2.95 0.15 

 
48.0 4.02 15.5 2.51 

 
50.4 6.26 5.01 3630 

  
NT 46.6 0.978 3.81 0.03 10.96 0.03 

 
48.1 4.29 25.12 20.89 

 
46.9 6.79 4.27 5011 

 
HMC T 62.7 0.963 3.80 0.42 0.05 0.01 

 
64.0 3.83 0.35 n. d. 

 
63.6 4.73 11.48 7.76 

  
NT 65.8 0.953 3.86 0.46 0.13 0.01 

 
67.0 3.86 0.01 n. d. 

 
68.4 3.95 2.04 0.01 
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WG T 71.8 0.964 5.56 0.21 575.44 n. d. 

 
74.8 6.14 13.80 1174.9 

 
76.9 6.01 11.75 537.0 

    NT 74.0 0.957 5.46 0.09 691.83 n. d.   76.5 5.80 10.23 0.06   77.7 5.92 14.79 436.5 
 
*T= treated with Prosaro® (Bayer Crop Science: 12.7 g prothioconazole and 12.7 g tebuconazole per 100 g); NT= not treated; WCC = whole-crop corn; HMC = 
high moisture corn; WG = wet grain; DM = dry matter; aw = activity water; LAB = lactic acid bacteria; cfu = colony forming unit; n.d. = not detected or below 
10 cfu/g. 
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Table 2. List of samples in different corn mixtures (DMI-treated and non-treated) through the different stages: pre-silage and silage conservation 
(selected samples for molecular characterization and in vitro sensitivity assays are highlighted in grey) 
 

Silage type Harvest 
60 d conservation 160 d conservation 

Silo 
opening 

7 d air 
exposure 

14 d air 
exposure 

Silo 
opening 

7 d air 
exposure 

14 d air 
exposure 

Whole-crop corn 
T* WCC.TH WCC.T.60S WCC.T.607 WCC.T.6014 WCC.T.160S WCC.T.1607 WCC.T.16014 

NT WCC.N.H WCC.N.60S WCC.N.607 WCC.N.6014 WCC.N.160S WCC.N.1607 WCC.T.16014 

High misture corn 
T HMC.T.H HMC.T.60S HMC.T.607 HMC.T.6014 HMC.T.160S HMC.T.1607 HMC.T.16014 

NT HMC.N.H HMC.N.60S HMC.N.607 HMC.N.6014 HMC.N.160S HMC.N.1607 HMC.N.16014 

Wet grain 
T WG.T.H WG.T.60S WG.T.607 WG.T.6014 WG.T.160S WG.T.1607 WG.T.16014 

NT WG.N.H WG.N.60S  WG.N.607 WG.N.6014 WG.N.160N WG.N.1607 WG.N.16014 
 

*T= treated twice with Prosaro® (Bayer Crop Science: 12.7 g prothioconazole and 12.7 g tebuconazole per 100 g), NT= not treated  
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Table 3. Sensitivity to two DMI fungicides (EC50) of Aspergillus fumigatus isolates collected from different silage samples  
 

 EC50 (mg/L)  EC50 (mg/L)  Mating type 

Isolate Period Accession no. 
(𝛽𝛽-tubulin) 

Accession no. 
(cyp51A)* Imazalil Reaction** Voriconazole Reaction** 1 2 

WCC.T.H.1D 

 
 

Harvest 

MK879472  0.04 S 1.09 S +  
WCC.T.H.3B MK879473  <0.01 S <0.01 S  + 
WCC.N.H.1C MK879474  0.27 S 0.02 S +  
WCC.N.H.3B MK879475 MK879460 (-) 3.21 LS 1.29 S  + 
WG.T.H.1A MK879476  0.06 S <0.01 S  + 
WG.T.H.2A MK879477  <0.01 S <0.01 S +  

WCC.T.60S.1A 

 
 
 
 
 

60 d conservation 

MK879478 MK879466 (+) 0.18 S 0.09 S +  
WCC.T.60S.2C MK879479  0.65 S 0.06 S  + 
WCC.T.60S.3B MK879480  1.45 S 1.20 S +  
WCC.N.60S.1C MK879481  2.50 LS 0.29 S +  
WCC.N.60S.3A MK879482 MK879465 (+) 0.09 S 0.08 S  + 
HMC.T.60S.1B MK879483 MK879461 (-) 0.09 S 0.08 S  + 
HMC.T.60S.2B MK879484 MK879467 (+) 3.92 LS 5.45 LS  + 
HMC.T.60S.3C MK879485 MK879470 (+) 2.34 LS 4.46 LS  + 
HMC.N.60S.1C MK879486 MK879468 (+) 2.42 LS 10.84 R +  
HMC.N.60S.2A MK879487  0.20 S 0.08 S +  
HMC.N.60S.3B MK879488  0.28 S 0.21 S  + 
WG.T.60S.3A MK879489 MK879471 (+) 0.26 S 0.09 S  + 
WG.N.60S.3A MK879490  0.32 S 0.15 S +  
WCC.T.607.1A 

 
 
 
 

60 d conservation 
(+ 7 d air exposure) 

MK879491  0.21 S 0.04 S +  
WCC.T.607.2A MK879492  0.05 S 0.02 S  + 
WCC.T.607.3A MK879493  <0.01 S 0.04 S  + 
WCC.N.607.1A MK879494  0.01 S <0.01 S +  
WCC.N.607.3A MK879495  <0.01 S 0.04 S  + 
HMC.T.607.1A MK879496  <0.01 S 0.02 S  + 
HMC.T.607.2B MK879497 MK879463 (+) 0.32 S 0.10 S  + 
HMC.T.607.2A MK879498 MK879469 (+) 2.00 LS 1.16 S +  
WG.T.607.1B MK879499  0.04 S 0.08 S +  
WG.T.607.2B MK879500  0.03 S 0.09 S  + 
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WG.T.607.3C MK879501  0.05 S 0.10 S +  
WG.N.607.1C MK879502  0.03 S 0.03 S  + 

WCC.T.6014.1A 
 

60 d conservation 
(+ 14 d air exposure) 

MK879503  1.19 S 1.12 S  + 
WCC.N.6014.1A MK879504  1.51 LS 1.47 S  + 
WCC.N.6014.2D MK879505  2.86 LS 0.43 S  + 
HMC.T.6014.1B MK879506  0.03 S 0.04 S  + 
HMC.T.6014.3A MK879507  0.05 S 0.05 S  + 
WCC.T.160S.1A 

 
 
 

160 d conservation 

MK879508  0.28 S 0.11 S  + 
WCC.T.160S.2A MK879509  0.01 S 0.04 S  + 
WCC.N.160S.2B MK879510  0.06 S <0.01 S  + 
WCC.N.160S.3A MK879511  0.99 S 3.67 LS  + 
HMC.T.160S.1A MK879512  0.05 S <0.01 S  + 
HMC.T.160S.2A MK879513  0.06 S <0.01 S  + 
HMC.N.160S.2A MK879514  0.05 S 0.05 S +  
HMC.N.160S.3A MK879515  1.48 S 1.25 S +  

WCC.T.1607.2D 160 d conservation 
(+ 7 d air exposure) MK879516  0.14 S 0.08 S +  

WCC.T.16014.3A 
 

160 d conservation 
(+ 14 d air exposure) 

MK879517  0.07 S <0.01 S  + 
WCC.N.16014.1A MK879518 MK879462 (+) 3.05 LS 1.14 S  + 
WCC.N.16014.3C MK879519  1.41 S 0.76 S  + 
HMC.N.16014.2B MK879520  1.81 LS 1.20 S +  
WG.T.16014.1B MK879521 MK879464 (+) 0.05 S <0.01 S +  

 Mean EC50*   0.26  0.31    
 WT   0.09 S 0.33 S nt  
 TR34 +L98H   12.49 R 11.33 R nt  

 TR46 +Y121F 
+T289A   1.71 LS 4.42 LS nt  

 
* The presence of the E427K mutation is indicated by a +, while the absence by a -. 
**Less sensitive isolates (EC50 between 1.51 and 10.0) and resistant isolates (EC50 higher than 10.0) were not included in calculation of mean EC50. 
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