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Abstract: To achieve a carbon-free economy by 2050, the construction of low-carbon schools in Italy 

must select the proper structural and technological solutions for the building envelope while ensur-

ing a low economic cost. The aim of this study was to analyze and compare several technological 

solutions for the building envelope and the related structural solutions in terms of thermo-dynamic 

properties, energy performance, environmental sustainability parameters, and economic evalua-

tions, to obtain one or more alternatives. After a general study, the binomial load-bearing structure–

external wall was investigated given its strong influence on both the environment and the total cost. 

The solutions were used in a new typological model for the kindergarten. All the solutions are com-

parable from an energy and environmental point of view, obtaining a primary energy demand of 

<25 kWh/(m2year) and an environmental impact of <20 kWh/(m2year). However, considering the 

economic factor and analyzing the binomial load-bearing structure–external wall, the advisable so-

lutions are those that use wooden structures with insulation layer in wood fiber as they have a sig-

nificantly lower environmental impact, along with the same good energy performance and have an 

acceptable cost compared to other analyzed solutions. 
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1. Introduction 

Given the several aspects of sustainability, including social, environmental, and eco-

nomical, schools are buildings that play a triple role: Educational, social, and cultural. At 

the educational level, schools as institutions provide instruction on topics and extracur-

ricular activities and teach students and their families to respect and protect the natural 

environment and save energy, from the earliest years of school. The environmental cer-

tifications specifically reference the teaching of subjects relevant to sustainability. For 

instance, the Leadership in Energy and Environmental Design (LEED) protocol under 

the Innovation in Design category refers to “the school as a teaching tool” and awards 

one point of the certification to schools introducing the theme of sustainability into the 

curriculum activities and workshops. Pietrapertosa et al. [1] described the results ob-

tained through a learning by doing project (Schools4energy) conducted between 2018 

and 2019, which involved students between 3 and 14 years old and aimed to create a 

competition between different schools to reduce energy consumption through the cor-

rect behavior of users (particularly students). 

Socially, schools as institutions have become civic centers, acting as places of refer-

ence not only for teachers, students, and families, but for the whole local community. 

Hence, several functional units are used during extracurricular hours for various activi-

ties. They are a multicultural place, open to everyone, hosting children of all ethnic 

groups, including those from disadvantaged backgrounds, promoting social inclusion 

and fighting inequality. In addition, education has been a right for every child since 20 
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November 1959, with the Declaration on the Rights of Child proclaimed in New York by 

the United Nations, and later with the Convention of the Rights of Child in 1989. The first 

document states that primary education must be free and compulsory for every child, 

without distinction. 

Culturally, the school buildings provide an example of sustainable architecture, a real 

3D textbook [2] from which both children, actively participating in the management of the 

building, and the neighborhood can learn about respect for the environment and the prin-

ciples of sustainability and acquiring increased awareness. Tucker et al. [3] showed that 

students in a school built according to sustainability have a better attitude toward envi-

ronmental protection and are more prone to saving energy. The sustainable school build-

ing can provide a starting point for the regeneration and redevelopment of entire neigh-

borhoods, particularly in the suburbs. Both public and private institutions have a common 

interest in building environmentally friendly and low-carbon buildings for the European 

Union’s goal of achieving a carbon-free economy by 2050. 

The need for the construction of new school buildings or the redevelopment of exist-

ing schools with sustainable cost-effective measures is clear to satisfy the educational 

needs of compulsory schooling and ensure an adequate education for all children from 

widely different social backgrounds. The local administrations state that new construc-

tions are required mainly for kindergarten and elementary school buildings. The need of 

schools for children 0–6 age in both Europe and Italy was outlined in Barcelona European 

Council in 2002 [4,5]. The Council established that the standards to meet are 33% for chil-

dren 0–3 age and 99% for those 3–6 age. According to a report by Istat (Istituto Nazionale 

di Statistica—National Statistical Institute) [6] in Italy the 33% for children 0–3 age has not 

yet been reached. In fact, for the academic year 2018/2019 this percentage is equal to about 

25%. 

Moreover, the Italian school heritage, which is mostly old and obsolete, is character-

ized by limited energy efficiency and low environmental performance. Of schools in Italy, 

75% were designed before 1976 [7]. In this year, the first law concerning the energy con-

sumption of buildings at national level was enacted. In Italy in 2018, only 1% of school 

buildings were categorized as energy efficiency class A (global energy performance index 

for non-renewables EPgl,nren > 0.8 EPgl,nren,rif,standard (2019/21) reference building global energy 

performance index for non-renewable) according to Legambiente’s report on the quality 

of school buildings [7], while 45.3% were energy efficiency class G (EPgl,nren > 3.50 

EPgl,nren,rif,standard (2019/21)) [8]. In Italy, there are many financial plans for schools that could be 

used for the redevelopment of school buildings asset with respect to architecture, struc-

ture, and energy/environmental point of view. In 2012, the “Fondo unico edilizia scolas-

tica” (“School Buildings fund”) [9] by the Italian Government was established. It outlined 

that this fund must be dedicated to all resources and funds for schools. There are many 

initiatives in the past deal with schools, the main are the following ones: “Scuole sicure” 

(“Safe schools”) [10] in 2013 that funded many improvement measures and the 60% was 

concluded, “Scuole belle” (“Good-looking schools”) [11] and “Scuole antisismiche” 

(“Anti-seismic schools”) [12] in 2015, a three-year financial plan in 2019. The last financial 

plan for schools for 0–6 age is the fund “Asili nido e scuole dell’infaniza” (“Kindergartens 

and childhood schools”) [9] settled in 2020 to improve existing buildings and to build new 

schools where needed in the range of time 2024–2034. In the past, one of the most im-

portant initiative for kindergartens is the fund “Poli per l’infanzia” (“Childhood care cen-

ter”) [13] dedicated precisely to the construction of new schools for children 0–6 age. 

According to the Paris Agreement in 2015 concerning the reduction in greenhouse 

gas emissions into the atmosphere to 80% compared to the levels of the Kyoto Protocol, 

tackling climate change and, as required by the international standard 2030 Climate and 

Energy Package [14] and the Italian Ministerial Decree (DM) No. 162 of 26 June 2015 [8], 

dealing with the energy performance of buildings, new buildings must be constructed 

following the nearly zero-energy buildings (nZEB) standards and low-carbon construc-

tion. Consequently, to construct new carbon-zero school buildings in Italy, all possible 
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energy and environmental strategies must be used that reduce the primary energy de-

mand of the building and consequently its environmental impact. 

In Italy, the current legislation deals with schools design and sizing dates to 1975 [15] 

and design manuals are completely outdated. Briefly, they are inappropriate because they 

propose typological models that do not comply with modern teaching methods needs. For 

the design of new school buildings, there are no specific reference or standards that sim-

ultaneously consider the new pedagogical methods that need new internal distribution 

with different types of areas or the current Italian and European legislation in terms of 

energy and emissions requirements. 

The proper design of the building envelope can be considered a passive energy strat-

egy that regulates the energy flow between the inside and outside [16,17]. Considering the 

huge surface area and weight and their composition with materials of different natures, 

the building envelope is the set of technical elements that most influences on the calcula-

tion of CO2 emissions for the construction of a building. 

The main goal of this research was to propose several technological solutions both 

for the structure and external envelope for the construction of low-cost and environmen-

tal-friendly kindergarten schools in Italy. Our aim is to encourage and ensure a sustaina-

ble school architecture for every child, with education their fundamental right, regardless 

of the social context. Therefore, in addition to proposing an accessible school that is better 

from a distributive and functional point of view [18], cost-effective technological and 

structural solutions are proposed; they reduce the environmental impact and safeguard 

the health of the children that grow up inside the schools. 

The main objective of this work was achieved by analyzing different technological 

solutions for the building envelope combined with different solutions for a technologi-

cally compatible load-bearing structure (five different technological solutions for the ex-

ternal walls (EWs) and four for the roof) and comparing them with the current structural 

and technological solutions used for the construction of Italian school buildings (Tables 1 

and 2, S1). For each EW component and its load-bearing structural solution, we compared 

the different technological solutions in terms of thermo-dynamic properties, environmen-

tal sustainability indexes, and economic evaluations. Applying the technological solutions 

to a typological model of a school building for kindergarten, which was previously out-

lined and taken as a reference, we compared the technological solutions in terms of annual 

energy demand for heating and cooling, internal surface temperature for the EW exposed 

to the south (related to inner thermo-hygrometric comfort), annual primary energy de-

mand, and environmental impact (CO2 emissions into the atmosphere in kgCO2/(m2year) 

for the product stage, the end-of-life stage, the benefits and loads beyond the system 

boundary, and the servicing). The comparison between different types of building enve-

lope was necessary because the choice of the most appropriate technological solution by 

the designer during the preliminary phase of the design process depends on the energy 

consumption of the building and its environmental impact, as well as on other issues such 

as cost, construction time, constructability, flexibility in deciding the arrangement and size 

of the openings in the façade, the availability of materials, and the construction traditions 

in the area. This study is part of a broader research work addressing the definition of a 

new building type for the construction of low-carbon kindergartens in Italy, outlined 

through the environmental and technological system and completed with the quantifica-

tion of energy and environmental impacts [18]. 
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Table 1. Technological solutions of the external walls (EWs). m, material; t, thickness (m); XLAM, cross-laminated timber; 

OSB, oriented strand board; U, thermal transmittance (W/m2K) 

Solution 1 (S1) Solution 2 (S2) Solution 3 (S3) Solution 4 (S4) Solution 5 (S5) 

Structure: Reinforced 

Concrete Frame 
Structure: Steel Frame Structure: Steel Frame 

Structure: Platform 

Frame (Wooden) 

Structure: XLAM 

(Wooden) 

m t m t m t m t m t 

External Plaster 0.025 Cement Board 0.012 
External  

plaster 
0.025 

External  

Plaster 
0.025 

External 

Plaster 
0.025 

Wood fiber 0.08 

Waterproof and 

windproof 

sheet 

0.002 

Autoclaved 

aerated con-

crete blocks 

0.30 Wood fiber 0.02 Wood fiber 0.10 

Lightweight 

bricks 
0.30 Wood fiber 0.14 - OSB panel 0.02 XLAM 0.13 

- 
Plasterboard 

panel 
0.015 - Wood fiber 0.12 - 

- - - 

Waterproof 

and wind-

proof sheet 

0.002 - 

- - - OSB panel 0.02 - 

Mineral wool 0.04 Mineral wool 0.04 Mineral wool 0.04 Mineral wool 0.04 
Mineral 

wool 
0.04 

Plasterboard 

panel 
0.015 

Plasterboard 

panel 
0.015 

Plasterboard 

panel 
0.015 

Plasterboard 

panel 
0.015 

Plaster-

board 

panel 

0.015 

Plasterboard 

panel 
0.015 

Plasterboard 

panel 
0.015 

Plasterboard 

panel 
0.015 

Plasterboard 

panel 
0.015 

Plaster-

board 

panel 

0.015 

U 0.190 U 0.186 U 0.177 U 0.179 U 0.190 

Table 2. Technological solutions for the roof. U, thermal transmittance (W/m2K). 

S1 S2 S3 S4 S5 

m t m t m t m t m t 

Gravel 0.05 Gravel 0.05 Gravel 0.05 Gravel 0.05 Gravel 0.05 

Bituminous 

waterproofing 

sheet 

0.005 

Bituminous 

waterproofing 

sheet 

0.005 

Bituminous 

waterproofing 

sheet 

0.005 

Bituminous 

waterproofing 

sheet 

0.005 

Bituminous 

waterproof-

ing sheet 

0.005 

Wood fiber 0.22 Wood fiber 0.24 Wood fiber 0.24 
Wood cement 

panel 
0.022 

Wood cement 

panel 
0.022 

Vapor barrier 0.00045 Vapor barrier 0.00045 Vapor barrier 0.00045 Wood fiber 0.24 Wood fiber 0.18 

Slope creed 0.05 Slope creed 0.05 Slope creed 0.05 Vapor barrier 0.0004 Wood fiber 0.04 

Brick slab 0.32 
Collaborating 

slab 
0.045 

Collaborating 

slab 
0.045 OSB panel 0.02 Vapor barrier 0.00045 

Internal  

plaster 
0.025 

Corrugated 

sheet slab 
0.0015 

Corrugated 

sheet slab 
0.0015 - XLAM 0.13 

- 
Plasterboard 

panel 
0.015 

Plasterboard 

panel 
0.015 - - 

U 0.138 U 0.142 U 0.142 U 0.145 U 0.138 

The importance of this study and its practical implication is being first to address the 

designer during the early stage of the design process when choosing the most appropriate 

structural and technical solution to build a school to ensure an appropriate compromise 
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between environmental, technological, and economical sustainability. Secondly, we sug-

gest a method of evaluation that can be applied in different climate conditions by updat-

ing the climate characteristics and the legislation requirements for the considered site. 

Most of the studies about school building envelopes in Italy have concerned the en-

ergy refurbishment of existing school buildings. Often, studies of existing schools have 

started with the monitoring of the buildings. Studies have many dealt with improving the 

energy performance of the building envelope (for instance, increasing the overall thermal 

transmittance or replacing windows) and understanding which are the most advisable 

improvements for existing school buildings to save energy and reduce the environmental 

impact at a reasonable cost [19–22]. For instance, de Santoli et al. [23] examined 1296 ex-

isting schools, classifying them in terms of general information, energy label, and building 

consumption, then analyzing the energy performance of the building envelope and the 

thermal system. They proposed some interventions to improve the envelope performance 

while complying with historical and architectural features and considering the costs of 

the different solutions. Ascione et al. [24] examined building envelopes, applying multi-

objective optimization to improve the energy performance of an office building consider-

ing different climate zones in Italy. The optimization aimed at minimizing the energy con-

sumption, the global cost, and the thermal discomfort. 

In the paper, firstly the state of the art, mainly concerned with the current situation 

of school buildings asset in Italy and studies on external envelope, will be shown; sec-

ondly, the methodology used for the research will be outlined and the input data for the 

study will be detailed, then the main results of the performed analyses will be shown and 

discussed, and finally some conclusions for the study will be delineated. 

2. State of the Art 

According to the Annual Report on Energy Efficiency 2020 by the National Agency 

for Energy Efficiency (ENEA), the primary energy demand in Italy in 2018 is about 57 

Mtoe, of which only 19% is met through energy produced from renewables [25]. Accord-

ing to Eurostat statistics, a high percentage (43%) of energy is consumed in Italy for civil-

ian uses [25]. Considering the national school sector in 2012, the energy consumption was 

estimated to be about 1 Mtoe/year, of which 77% was thermal energy requirements and 

the remaining 23% was electrical energy [26]. For instance, in accordance with a study 

performed during the European project COMMONCENSE in 2009, the thermal energy 

consumption for schools was estimated as 24–32 kWh/(m2year) for Rome and 73–85 

kWh/(m2year) for Milan [27]. From the ENEA’s analysis for 2009 concerning the thermal 

energy needs, the highest consumption was found for kindergartens (about 32% of school 

buildings in Italy), with an average ranging between 80 and 100 kWh/(m2year) [28]. Re-

garding the total energy consumption for the school sector in Italy, kindergartens require 

about 16% of the total. According to the Paris Agreement, for achieving a carbon-free 

economy by 2050, a reduction of 40% in greenhouse gas emissions into the atmosphere 

and the improvement in energy efficiency to a share of 32.5% in the construction of a new 

building are required; from the preliminary stage of the design process, all the energy and 

environmental strategies will be necessary to reduce the annual primary energy demand 

and its environmental impact. 

In the three-year period before 2017, 500 new school buildings were built in Italy. By 

analyzing the available data regarding energy consumption (mainly related to climate 

zones E and D), the energy requirement, on average, was about 26.6 kWh/(m2year), while 

the environmental impact for consumption during operational phase, on average, was 

about 13.2 kgCO2/(m2year). However, for school buildings, most of the studies on their 

environmental impact in terms of CO2 emissions refer to existing buildings needing an 

energy upgrade. These studies mainly compared possible energy and environmental effi-

ciency strategies to be adopted in schools to improve their energy performance and de-

crease their environmental impact [29–31]. 
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The energy performance of a building, whatever its intended use, is related to three 

main topics: first, the physical behavior of the building, regulated precisely by the external 

envelope; secondly, the micro-climate of the different environments; and thirdly, by the 

internal hygro-thermal well-being required for the particular intended use [32]. The ex-

ternal envelope significantly influences the energy balance because it helps control the 

energy flow between the internal and external environments [33], essentially due to the 

difference in temperature that is created to ensure the thermo-hygrometric well-being of 

the occupants. The external envelope therefore affects the energy balance mainly in rela-

tion to its contribution to dispersion and the number of solar gains. Especially in a school 

building, when considering the different technological solutions to be adopted, natural 

materials should be used that respect the minimum environmental criteria (Criteri Ambi-

entali Minimi (CAM)) [34] and that are not harmful to the health of children and teachers, 

who spend most of their time inside the school. CAM are a serious of requirements for 17 

categories of product and services that must be satisfied when choose the best one in terms 

of life cycle assessment (LCA) among those available on market, with the aim of promot-

ing environmentally friendly products and services in the context of obtaining a carbon-

free economy by 2050. In the literature, the studies on the performance of the building 

envelope have compared several solutions with respect to thermal transmittance, the in-

trinsic properties of the different materials used, the material and thickness of the thermal 

insulation layer, and the surface mass [35]. These parameters influence the annual primary 

energy demand and the indoor comfort conditions, especially in terms of air temperature, 

during both winter and summer seasons. These studies mainly referred to residential 

buildings and existing buildings, including schools, which need upgrading from an en-

ergy point of view [36,37]. For instance, Alshamarani et al. [36], regarding the school 

building type, performed a LCA and calculated the energy consumed for heating and 

cooling by the possible technological solutions to be adopted for the EW of an existing 

building considering seven different EW solutions combined with four different load-

bearing structures and three different insulation solutions (uninsulated case, minimum 

insulation, and recommended insulation). In a subsequent study, Alshamarani et al. [38] 

compared 14 different structural solutions combined with different types of envelope us-

ing an algorithm developed to assess cost (construction, operation, maintenance, and ren-

ovation) and environmental impact (LEED categories). They found that the optimal tech-

nological solution to build school buildings in USA and North America is based on precast 

concrete elements for both the structure and the EWs. 

Concerning different types of buildings, other authors used a LCA to study the envi-

ronmental impact of different types of insulation materials. For instance, Llantoy et al. [39] 

investigated three different types of insulation material (polyurethane, extruded polysty-

rene, and mineral wool) to assess the environmental impact and the reduction in energy 

demand for heating in the Mediterranean climate. According to their studies, the mineral 

wool has the lowest environmental impact (with an environmental payback period of 

seven years), providing the same thermal performance. In addition, considering the Med-

iterranean climate conditions, Stazi et al. [40] analyzed a super-insulated envelope in a 

residential building with wooden structure to propose some strategies to avoid the over-

heating problem in the warmest period identified through monitoring. They performed a 

parametric analysis of the external envelope considering different internal areal capacities 

but the same thermal transmittance. They considered the cost and the LCA of the different 

solutions. They concluded that the use of an inner massive layer (solid brick, 12 cm thick) 

for the external vertical wall can improve the internal comfort of the occupants. Carretero-

Ayuso et al. [41] analyzed different types of external envelopes used in the design of 

healthcare buildings in Spain to evaluate the issues related to the technological solutions 

and technical construction aspects that can lead to problems during the service life of the 

building. Ferrara et al. [42] analyzed and proposed different refurbishment strategies for 

the external envelope of a residential building to reduce the energy costs for heating and 
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cooling. As design parameters to improve the external envelope performance, they con-

sidered: Thermal resistance of the insulation panel and solar absorption coefficient. Fi-

nally, Ascione at al. [43] compared different passive strategies related to the design of the 

external envelope for designing nZEB residential buildings in the Mediterranean area. 

They defined some guidelines to improve performance both in summer and winter. 

Many authors considered the optimization of the insulation thickness of the external 

envelope considering three different aspects: environmental, energy and, economic [44]. 

The performance of the buildings was compared in terms of the energy demand for heat-

ing and cooling respectively (kWh/(m2year) and MWh/year), net cost for energy for heat-

ing and cooling ($/m2) [45–47], the global warming potential (GWP) for the evaluation of 

CO2 emissions into the atmosphere, the total cost including energy and environmental 

cost [48,49], and the payback period [50,51]. For instance, D’Agostino et al. [46], through 

a cost-optimal analysis for the optimization of the insulation layer in an office building, 

showed that excessive insulation in a Mediterranean climate does not always lead to an 

advantage in terms of energy savings, mainly due to the increased energy requirements 

for cooling during the summer season. 

3. Methods 

The 5 different solutions proposed in this paper were chosen in a previous phase of 

the research, starting with an analysis of the environmental and technological system of 

many school buildings built between 2003 and 2015 that received awards for their energy 

performance or their innovative internal distribution [52]. These solutions were the recur-

rent ones. Secondly, we analyzed the technological and structural solutions suitable for 

school buildings in Italy. 

Five different technological solutions (Table 1) for the EW were analyzed in terms of 

thermal transmittance and thermodynamic properties (surface mass Ms, periodic thermal 

transmittance YIE, time shift φ, and attenuation fD) to verify that they met the requirements 

of the current energy regulations [8]. The thermodynamic properties of the EWs were cal-

culated according to Italian national Agency of Unification European Committee for 

Standardization International Organization for Standardization (UNI EN ISO) 13786: (i) 

The surface mass measured in kg/m2 depends on the density of the materials composing 

the considered wall stratigraphy and their thickness, (ii) the periodic thermal transmit-

tance allows evaluation of the capacity of the materials to attenuate and shift the thermal 

wave, (iii) the attenuation factor is the ratio between the periodic thermal transmittance 

and the thermal transmittance calculated in steady state, and (iv) the time shift indicating 

the time range in hours between the maximum peak outside air temperature and that 

inside, and depends on the density of the materials and their specific heat. 

Then, the 5 different technological solutions for the EW and the roof stratigraphy 

were applied to the typological model, which has a compact shape and internal courtyard 

(model I1, Figure 1) [18]. A dynamic energy simulation with hourly time steps was per-

formed using Energy Plus software [53], using Design Builder [54] as the graphical inter-

face, to evaluate the energy performance of the building for each solution. The analysis 

was performed considering the energy requirements for heating and cooling and the an-

nual primary energy demand as reference parameters due to the contribution of heating, 

cooling, artificial lighting, auxiliary energy, equipment, and domestic hot water (DHW). 

Since the electrical energy required for the needs of the building is provided on-site by 

photovoltaic panels on the roof, the conversion factor for the calculation of primary energy 

demand is equal to 1 [8]. At this stage, the hourly variation in the internal surface temper-

ature of the technological solution for the EW of the south-facing classrooms on the de-

signed day for the summer season (15 July) was also determined to enable comparison 

with the trend in the outdoor air temperature. 

The analysis was carried out considering Florence as a representative site in climate 

zone D [55]. However, the methodology used and the type of analysis could be extended 
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to climatic zones that have the same climatic characteristics as zone D in terms, for in-

stance, of heating and cooling degree days. The methodology proposed for this type of 

study could be used for other sites with different climate characteristics firstly by checking 

if the technological solutions proposed are proper for the considered climate, then updat-

ing the minimum requirements for the thermal properties of the technological solutions 

for the external envelope, according to the current legislation in chosen site, and finally 

updating the climate characteristics in the software used for the energy simulation in dy-

namic regime. 

Then, the CO2 emissions produced during both the construction and operational 

phases of the building were calculated according to the surface area of the building 

(kgCO2/(m2year)). In this phase, the useful life of the building was considered as 50 years, 

with 30 years for the photovoltaic system that produces electricity on-site. The service life 

of some materials is must be considered lower than 50 years (lifespan of the building for 

LCA) because of their durability. For instance, for the bituminous waterproofing sheet 

and glazing panes for windows the service life was considered equal to 30 years. For those 

materials, the end-of-life (C3–C4) was considered. 

The atmospheric emissions due to the construction phase of the building were calcu-

lated using eLCA software [56]. To calculate the environmental impact with eLCA, the 

product stage, the end-of-life stage, the benefits and loads beyond the system boundary, 

and the servicing were considered (construction phase). To calculate the environmental 

impact with eLCA, the product stage (A1–A3), the end-of-life stage (C3–C4), only for those 

materials with different service life with respect to the building lifespan (50 years), the 

benefits and loads beyond the system boundary (D1–D4), and the servicing were consid-

ered (construction phase). In this paper what happens at the end-of-life (C1–C4) and so 

after 50 years of lifespan of the school is not considered and calculated. This due to the 

lack of data about these stages in the available database for LCA [57]. Moreover, it is very 

difficult to know what happens after the service life of a building during the preliminary 

stage of the design process [58]. For instance, in Italy for a school building after 50 years 

of service life the designer could suppose the demolition and reconstruction of the build-

ing because the Italian Technical Standard for Construction required extraordinary 

maintenance of structure during the service life of the building (for lifespan higher than 

50 years), but at the preliminary stage of the design process, the designer cannot know if 

this maintenance will be done or not. So, the choice of a probable demolition and recon-

struction at the end-of-life could be the better choice in terms of safety. Moreover, some 

authors affirm that the C1 (demolition of end-of-life stage) has irrelevant environmental 

impact and C2-C4 is lower than 6% [59]. Finally, the environmental gain of the end-of-life 

stage can be considered only between 0.2–2.6% [60]. The conversion factor for the calcu-

lation of CO2 emissions due to the construction of the photovoltaic system was set to 50 

gCO2/kWh [61]. The conversion factor for emissions due to consumption for the operating 

phase (B) was assumed to be 0 kgCO2/m2kWh because most of the electricity needs were 

produced on-site through renewables. 

Once each stratigraphy for the building envelope and the related structural solution 

were established, we assessed the energy, environmental, and economic sustainability of 

the EW–structural solution binomial. This was necessary since this combination signifi-

cantly influences both the environmental impact and the total cost of the construction [38]. 

For instance, regarding environmental impact, the GWP of the EW–load-bearing structure 

binomial (which is the sum of GWP for the EW and load-bearing structure) ranged be-

tween 20% (structural solution = wood) and 55% of the total. To estimate the environmen-

tal sustainability of the different solutions, 3 indices of the LCA were considered: (1) GWP 

in kgCO2/m2, (2) acidification potential (AP) in kgSO2/m2, and (3) total use of non-renew-

able primary energy resources (PENRT) in MJ. Some authors in the literature used these 

indices to evaluate the environmental impact of construction materials or buildings. For 

instance, Lizana et al. [29] considered for the energy rating the CO2 emissions in 

kgCO2/(m2year) and the Non-Renewable Primary energy consumption in kWh/(m2year). 
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Estokova et al. [62] calculated the environmental assessment of 20 residential masonry 

houses considering the embodied energy (Potential environmental impact PEI in GJ), 

GWP in tCO2eq, and AP in tSO2eq. Moreover, Hollber et al. [63] outlined a wider review 

on visualizing method for LCA results and they include GWP and PENRT. Finally, Žega-

rac et al. [57] analyzed the LCA of cross-laminated timber buildings and they considered 

as indices GWP, AP, and PENRT. 

We finished the study with cost analysis of the different alternatives proposed, since 

the construction of a new school and, in general, of a public building, is closely related to 

the financial means of the public administration that constructs the building. For a kin-

dergarten, the economic incidence (which is the cost of the technological solution with 

respect to the total cost of the building) of the technological solution on the total cost of 

construction is about 8% [64]. The economic incidence of the structural solution (i.e., a 

wooden structure) is about 30% [65]. The cost of each solution was based on the Regional 

Price List of Public Works of the Lombardy Region and other nationally trusted price lists 

(DEI price list). 

Lastly, to enable comparison and establish the best EW–load-bearing structure com-

bination in terms of sustainability for a kindergarten in Italy, a normalization was carried 

out comparing all solutions to the recurrent one used to build schools in Italy until today 

(Table 1, solution 1) considering GWP, primary energy demand, and cost. 

The 3 indices considered for this evaluation will be combined in this way: 

���,�����
=  

�����

�����

+
������

������

+  
������� ��������

������� ��������

, (1) 

where the values of GWP and cost are calculated considering the sum of the single value 

for each element of both EW and structure for each technological solution. Specifically, 

the value of GWP is estimated by the sum of the impact of each element of the EW tech-

nological solutions and the structure solutions with respect to the GWP of the entire build-

ing. The value of the primary energy demand is calculated through energy simulation 

(Table A2). As shown by the equation the normalization was done with respect to solution 

1 (Table 1, S1). 

Input Data 

As mentioned above, the study was conducting considering Florence as a representa-

tive city of the Mediterranean climate, characterized by 1415 heating degree days and be-

longing to climate zone D. 

For the analysis, the typological model for the kindergarten, characterized by a com-

pact shape with internal courtyard and 3 classes (Figure 1), was considered. The building 

was developed on a single ground floor, without a prevailing geometric orientation and 

arranged according to 5 horizontal functional bands of different sizes. The functional band 

of the home base [66] is south-facing (functional band number 1 in Figure 1). Model I1 has 

an area of about 1050 m2, a volume of about 6000 m3, and is characterized by an aspect 

ratio (ratio surface to volume (S/V) = the surfaces through which the dispersions of the 

building occur (m2) and the heated volume m3) [8] of 0.53 m−1. 
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Figure 1. Typological model I1 for kindergarten. The 4 horizontal functional bands are showed on 

the left of the Figure 1 with grey bands and their sizes are in red. 

The construction system considered as a reference for comparison with other possible 

technological solutions for building a low-carbon school is characterized by a reinforced 

concrete frame structure with an EW consisting of lightweight bricks (0.30 m), an external 

wood fiber insulation 0.08 m thick, an internal false-wall 0.10 m thick composed of a dou-

ble plasterboard panel (0.07 m air cavity and two 0.015 m thick panel), and rock wool 

insulation (0.04 m) to ensure proper acoustic insulation of the façade (Table 1, S1). The 

roof was built with a reinforced concrete slab (0.32 m), completed with a slope screed (0.05 

m), a vapor barrier with polypropylene protection felt and polyethylene–copolymer film 

(0.00045 m), wood fiber insulation with a thickness of 0.24 m, a bituminous waterproofing 

sheet with double reinforcement (0.005 m), and a gravel layer (0.05 m) (Table 2, S1). Wood 

fiber insulation was chosen for the stratigraphy of both the EW and the roof because it is 

commonly used for the construction of new school buildings in Italy. Wood fiber is a nat-

ural material with low CO2 emissions in the construction of the building. The technologi-

cal solutions proposed as an alternative both related to the EW (Table 1, S2–S5) and to the 

roof (Table 2, S2–S5) are described in detail below (Figures 2–3). 

 In solution 2, the building has a steel frame structure, an EW (dry solution) made of 

external cement board (0.0125 m), a waterproof and windproof sheet (0.0018 m) that 

is permeable to vapor, an insulation layer, a plasterboard panel (0.015 m), and an 

internal false wall, as in solution 1. The roof is composed of a corrugated steel sheet 

slab (0.0015 m thick and 0.053 m high) with collaborating slab (0.045 m), slope screed 

(minimum 0.05 m), a vapor barrier with polypropylene protection felt and polyeth-

ylene-copolymer film (0.00045 m), wood fiber insulation, bituminous waterproofing 

sheet with double reinforcement (0.005 m), and a gravel layer (0.05 m). 

 For solution 3, the building has a steel frame structure, an EW with autoclaved aer-

ated concrete blocks (0.30 m), and an internal false wall, as in solution 1. The insula-

tion layer is not present because the low thermal conductivity of the autoclaved aer-

ated concrete blocks allows the required transmittance to be obtained without insu-

lation. The technological solution is the same as that used for the roof in solution 2. 

 For solution 4, the building has a wooden structure with a platform frame with 0.08 

× 0.16 m columns organized 0.60 m apart and 0.06 × 0.12 m beams, an EW composed 

of a single oriented strand board (OSB, 0.02 m), an insulation layer with a waterproof 

and windproof sheet (0.0018 m) that is permeable to vapor, a single OSB panel (0.02 

m), and an internal false wall, as in solution 1. The roof consists of a platform frame 

structure with a single OSB panel (0.02 m), a vapor barrier with polypropylene pro-

tection felt and polyethylene–copolymer film (0.00045 m), wood fiber insulation, a 

wood cement panel (0.022 m), a bituminous waterproofing sheet with double rein-

forcement (0.005 m), and a gravel layer (0.05 m). 
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 For solution 5, the building has a wooden structure with 0.13 m thick 5-layer cross-

laminated timber (XLAM) panels, an EW with external insulation applied directly on 

the XLAM panel, and an internal false wall, as in solution 1. The roof has a wooden 

structure with a XLAM panel (0.13 m), a vapor barrier with polypropylene protection 

felt and polyethylene–copolymer film (0.00045 m), wood fiber insulation (low den-

sity, 0.04 m), wood fiber insulation (high density), a wood cement panel (0.022 m), a 

bituminous waterproofing sheet with double reinforcement (0.005 m), and a gravel 

layer (0.05 m). 

The technological solutions proposed for the stratigraphy of both external wall and 

roof are combined in such way because, at least in Italy, dry technological solutions for 

the external walls are usually combined with dry structural solutions for load bearing 

structure because of their construction approach based on prefabrication. The same thing 

happens for wet technological/structural solutions. These choices do not lead to any issues 

during the construction phase because the main possible criticalities have already been 

solved in the construction tradition. 

Tables 1 and 2 shows the stratigraphy of the different technological solutions ana-

lyzed for the EW and roof (S1–S5), respectively, in terms of the material (m), thickness (t, 

in m), and thermal transmittance (U, in W/m2K) of the whole stratigraphy. The insulation 

thickness obtains half the thermal transmittance required by the current regulations for 

the reference building [8]. The thermal transmittance among the different technological 

solutions was kept similar facilitate comparison in terms of energy performance. 

All the analyzed technological solutions ensure a value of D2m,nT,w (standardized fa-

çade sound insulation) higher than the requirement of the Italian standard [67] for schools. 

Moreover, the fire reaction is implicitly satisfied because of materials nature or treatment 

that are complying with the current Italian fire prevention regulation [68,69]. 

For the ground floor layers, the plastic formwork for the underfloor ventilation was 

used for all solutions, with a system screed 0.08 m thick, an expanded polystyrene (EPS) 

insulation layer 0.04 m thick completed with a radiant floor system of the same material 

(0.05 m), a lightweight screed 0.04 m thick for flooring, and an internal wooden floor (0.015 

m). Concerning windows, an aluminum thermal break frame was adopted (Thermal 

transmittance Uf = 1.7 W/m2K) with double glazing, characterized by: (i) Thermal trans-

mittance Ug = 1.2 W/m2K, (ii) solar factor g = 50%, and (iii) solar transmittance TL = 74%. 

The minimum value of the window-to-wall ratio (WWR) was defined according to 

the current health and hygiene regulations in Italy for the east, west, and north orienta-

tions, while it was assumed to be 50% for the south façade [70]. In the model, a fixed solar 

shading system with an overhang of 2.00 m and an automated internal solar shading (in-

ternal blinds) with control on the external temperature (>24 °C) for each south-facing func-

tional unit [71] was used. For the energy simulation, the following design parameters for 

each single functional unit (thermal zone) were considered: (i) Occupancy (persons/m2) 

according to Appendix A of UNI 10339 [72] (UNI Italian National Agency of Unification), 

(ii) minimum air flow rate according to the same legislation in Table III, (iii) heating set-

point of 20 °C during activity periods and 10 °C during the rest of the day in accordance 

with UNI/TS 11300-1, (iv) cooling setpoint temperature of 26 °C during activity periods 

and 36 °C at other times in accordance with UNI/TS 11300-1, and (v) internal gains accord-

ing to UNI/Technical Specification (TS) 11300-1 [73]. The system was considered with a 

heat pump for both heating (coefficient of performance ((COP) = 3.6) and cooling (energy 

efficiency ratio (EER) = 3.2), and a mechanically controlled ventilation system with a heat 

recovery efficiency of >65%. On the roof, a photovoltaic system (0.15 kWp/m2) with 

east/west orientation and a tilt angle of 10° was considered [74]. The photovoltaic system 

is on-grid, so electrical energy can be used from the public grid when the solar radiation 

is unavailable. However, electrical energy storage for the building is provided. 
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Figure 2. Stratigraphy of the external walls for each analyzed solution. 
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Figure 3. Stratigraphy of the roofs for each analyzed solution. 

4. Results and Discussion 

According to the solutions described in Section 3.1, Table 3 lists thermodynamic 

properties of the technological solutions assumed for the EW. 

Table 3. Dynamic thermal characteristics of the analyzed technological solutions: The surface mass 

(Ms), the periodic thermal transmittance (YIE), the attenuation (fd), and the time shift (φ). 

Solution Ms YIE fd φ 

 (kg/m2) (W/m2K)  (hours) 

S1 329 0.003 0.015 21.11 

S2 79 0.087 0.446 8.14 

S3 152 0.018 0.106 15.89 

S4 118 0.05 0.226 11.88 

S5 207 0.008 0.041 17.18 
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As shown in Table 3, the technological solution considered as a reference for the 

study, characterized by a reinforced concrete frame structure, with the load-bearing ele-

ment of the EW consisting of lightweight bricks, and external insulation with wood fiber 

(Table 1, S1), has the largest surface mass mainly due to the density of lightweight bricks 

(800 kg/m3). This also guarantees the highest number of hours in terms of time shift (>20 

h). The most noticeable and significant difference occurs with solution 2 with respect to 

all analyzed thermo-dynamic properties. For instance, the S1 Ms value is about four times 

higher than that of S2, or the time shift is more than double. This is particularly important 

in the summer season when the time shift is essential to avoid the maximum internal tem-

perature during the day. 

For the other technological solutions, although they do not have a surface mass of 

230 kg/m2 [8], they are all characterized by a periodic thermal transmittance lower than 

0.1 W/m2K and a time shift greater than 8 h. Consequently, considering the thermody-

namic properties, all solutions comply with the current legislation [8] and they can be 

used as alternatives to the recurrent solution for the construction of school buildings in 

Italy (Table 1, S1). The wooden solutions (S4 and S5) show the main differences in terms 

of the periodic thermal transmittance and attenuation. The solution with the XLAM struc-

ture (S5) performs better as it characterized by a lower value for both parameters due to 

its higher surface mass. The dry solution with a cement board panel (Table 1, S2) has the 

lowest thermodynamic property values in terms of surface mass and time shift as it is 

mainly composed of materials characterized by low density and reduced thickness. How-

ever, in comparison to the others, it has the advantage of being a dry solution, thereby 

having shorter installation times and greater flexibility over time. 

Figure 4 shows a graph of the hourly variation in the internal surface temperature of 

the south-facing EW (thermal zone: Class) compared to the external temperature on the 

designed day for the summer season (15 July). 

 

Figure 4. Variation in the internal surface temperature for the southern façade. 

Figure 4 shows that the different technological solutions for the EW, considering the 

variation in the internal surface temperature, which can negatively affect the internal ther-

mal comfort conditions, are characterized by the same trend, exhibiting a maximum var-

iation of about 3 °C. The solution with platform frame load-bearing structure and double 

OSB panel with external insulation in wood fiber (Tables 1 and 2, S4) has the highest in-

ternal surface temperature at 6:00 p.m. with a maximum peak of 31 °C. The lowest internal 
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surface temperature (~27 °C) is attained by S1 and S5 because of the higher surface mass. 

It is fundamental to control this variation to ensure thermal comfort for the occupants 

within classrooms during summer season as well. 

Figure 5 shows the graph of energy needs for heating and cooling for the reference 

model considering the different structural and technological solutions (Tables 1 and 2). 

 

Figure 5. Energy needs for heating and cooling (kWh/(m2year)). The final energy needs for heating 

and cooling was evaluated with an energy simulation with Design Builder considering the setup 

of the software as explained in Section 3.1 Input data. 

Regarding energy demand for heating and cooling, the analyzed technological solu-

tions showed similar behavior, with no significant difference between them (Figure 5). 

This is mainly because, for an appropriate comparison, all the technological solutions have 

the same thermal transmittance equal to half of that required by the current energy legis-

lation for the reference building. The energy needs for both heating and cooling are about 

5 kWh/(m2year). The solution with platform frame structure, double OSB panel, and ex-

ternal insulation in wood fiber (Table 1, S4) has a slightly higher energy demand. 

Figure 6 indicates the annual primary energy demand for the I1 model, located in the 

city of Florence, considering the different technological solutions analyzed. 
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Figure 6. Primary energy demand (kWh/(m2year)) for the five technological solutions. DHW, do-

mestic hot water. 

Figure 6 reports that the annual primary energy demand of the typological model is 

about 25 kWh/(m2year) for each proposed technological solution. The graph also shows 

that artificial lighting and the use of internal equipment (such as computers, interactive 

whiteboard, printers, etc.) requires less electricity (lower primary energy demand) than 

all other parameters. This is closely related to the intended use of these buildings. We 

conclude that the energy performance of the building in terms of annual primary energy 

demand is the same considering all five solutions. 

The electricity needs of the building are mainly satisfied by a photovoltaic system 

(0.15 kWp/m2, on grid) installed on the roof in an east/west orientation, tilt angle of 10°, 

and distance between the rows of photovoltaic panels of 0.70 m. In this configuration, the 

system produces 120 kWh/(m2year) (calculated with respect to the floor area of the build-

ing) with about 300 m2 of photovoltaic panels [74]. 

Figure 7 shows the CO2 emissions of the typological model taken as reference, located 

in Florence, considering the emissions due to the construction of the building, the con-

struction of the photovoltaic system on the roof, and the consumption during the opera-

tional phase (heating, cooling, artificial lighting, auxiliary energy, equipment, and domes-

tic hot water). 
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Figure 7. CO2 emissions (kgCO2/(m2year)) for the whole building construction for the five techno-

logical solutions. Structure represents the CO2 emissions for the building; system represents the 

CO2 emissions for the photovoltaic system. The value of CO2 emissions refers to the product, end 

of life, benefits, and load beyond the system boundary and servicing stages. 

Figure 7 shows that the solution with reinforced concrete structure and lightweight 

bricks with external insulation in wood fiber (Table 1, S1) is characterized by the highest 

CO2 emissions produced to the atmosphere during the construction phase of the building: 

About 12 kgCO2/(m2year). Conversely, the solutions with a steel structure have an envi-

ronmental impact related to the construction phase of about 11 kgCO2/(m2year). The other 

solutions with a wooden structure (Table 1, S4, and S5) are comparable, emitting about 7 

kgCO2/(m2year) into the atmosphere for the same phase. 

The emissions due to the construction of the photovoltaic panels installed on the roof 

to meet the electricity needs of the building are the same for each solution analyzed about 

6 kgCO2/(m2year). However, all the solutions are characterized by low emissions because 

natural materials were chosen, such as the wood fiber for the thermal insulation layer. The 

use of wooden materials reduces the CO2 emissions and thereby the GWP because of the 

decrease in the carbon dioxide due to the process of photosynthesis during its life cycle 

being considered during the calculation. 

Figure 7 shows that the CO2 emissions produced into the atmosphere during the 

building’s operational phase are zero as the electricity needs are powered and mainly sat-

isfied by the photovoltaic system installed on the roof. Regarding CO2 emissions, all the 

technological solutions for the EWs can be used for the construction of carbon-zero kin-

dergartens in Italy, having a GWP of <20 kgCO2/(m2year) for the construction phase and 

0 kgCO2/(m2year) for the operational phase. 

Lastly, to determine the best solution in terms of energy, environmental, and eco-

nomic sustainability, the EW–load-bearing structure binomial was considered since it has 

strong influences on both the environmental impact and the cost of construction. Consid-

ering energy sustainability, we verified that the solutions are comparable and equally 

adoptable. 

Firstly, regarding environmental impact, Figure 8 shows the incidence in percentage, 

referring to the total for all construction, of the three indices for the environmental evalu-

ation in this phase (GWP, AP, and PENRT) for both the EW and the relative structural 

solution. 



Sustainability 2021, 13, 1702 18 of 24 
 

 

Figure 8. Environmental evaluation through global warming potential (GWP), acidification poten-

tial (AP), and total use of non-renewable primary energy resources (PENRT) indexes of the differ-

ent technological and structural solutions. 

Considering the three indices, we found that the wooden structural solutions, one 

with a platform frame and the other with XLAM (Table 1, S1 and S5), have values consid-

erably lower than the other solutions calculated with respect to the whole construction. 

with a difference of about 20% compared to the other proposed solutions. This is mainly 

because the wooden structural solutions have an overall negative value if we consider the 

product stage (A1–A3), the end-of-life stage (C3–C4), and the benefit and loads beyond 

the system boundary (D1–D4). For the other analyzed solutions, those adopting a steel 

structure are characterized by a higher PENRT, mainly due to the incidence of structural 

elements such as pillars (~14.5% of total) and steel main beams (~18.5% of total). Solution 

3 is characterized by a worse environmental impact value due not only to the steel struc-

ture but also to the EW composed of autoclaved aerated concrete blocks that have a GWP 

of 69.35 kgCO2/m2, an acidification potential of 0.11 kgSO2/m2, and a PENRT of 514.11 MJ 

referring to the total surface of the external wall. These high values are connected to the 

absence of a wood fiber insulating layer, which provides an advantage in the overall bal-

ance. 

Figure 9 shows the results in terms of the normalized indexes (GWP, primary energy 

demand, and cost) with respect to the reference solution (Table 1, S1) for the different EW–

structure combinations. All indexes were evaluated with respect to the area of the refer-

ence model (Figure 1). Figure 10 illustrates the overall assessment of the environmental, 

energy, and economic sustainability (sum of the three normalized aspects) of the different 

technological solutions for the EW and the related structural solution for the construction 

of a low-carbon school in Italy or in areas characterized by the same climatic conditions. 
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Figure 9. Environmental (GWP), energy (primary energy demand), and economic (cost) evalua-

tion of the different technological and structural solutions. Each index was evaluated separately. 

The values for GWP and Cost are calculated considering the sum of the single value for each ele-

ment of both EW and structure for each technological solution. Specifically, the value of GWP is 

estimated by the sum of the impact of each element of the EW technological solutions and the 

structure solutions with respect to the GWP of the entire building (impact %). The value of the 

Primary energy demand is calculated through energy simulation (Table A2). The values in the 

graph are normalized with respect to solution 1 (Table 1) with lightweight-brick wall and concrete 

structure. 

 

Figure 10. Environmental (GWP), energy (primary energy demand), and economic (cost) sustaina-

bility evaluation of the different technological and structural solutions. The values in the graph are 

normalized with respect to solution 1 (Table 1) with lightweight-brick wall and concrete structure. 

Solutions 2 and 4 in Figure 9, which adopt a steel structure combined with a dry EW 

and aerated autoclaved concrete blocks, respectively, have a higher cost per meter square 

of area of the building, about 749 and 605 €/m2, respectively. Considering the primary 
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energy demand, the result previously shown was confirmed again. Considering the envi-

ronmental impact in terms of GWP, the same trend was found: The highest value is at-

tained by solution 3, with an increase of about 20% with respect to the reference solution. 

Figure 10 shows that considering the environmental, energy, and economic sustainability 

for the construction of the structure and an EW for a kindergarten, wooden solutions are 

preferable, providing an initial investment comparable with the reference solution (Table 

1, S1) and ensuring the same energy performance with the lowest environmental impact. 

5. Conclusions 

In conclusion, from our analysis on the different types of building envelope, we con-

clude that all of them can be used for the construction of zero-emissions kindergartens in 

Italy. 

All the proposed technological solutions for the external wall satisfy the require-

ments of current energy legislation in terms of surface mass and/or periodic thermal trans-

mittance. In addition, a time shift greater than eight hours is ensured by all the analyzed 

solutions. From an energy performance point of view, the technological solutions behave 

similarly in terms of the annual primary energy demand of the building; among them, the 

difference is lower than 1%. All solutions have a low annual primary energy demand of 

about 25 kWh/(m2year). 

All the solutions proposed for the building envelope emit less than 20 

kgCO2/(m2year) into the atmosphere However, solutions 1, 2, and 3 have a higher envi-

ronmental impact considering the CO2 emissions during the construction phase. During 

the operational phase, the emissions are zero as the electricity is produced through renew-

ables. 

In the construction of a school building, it is necessary to consider the total cost of 

construction, corresponding to the total initial investment, because it plays an important 

role. Thus, two elements (EW and structure) that considerably affect cost were deeply an-

alyzed and discussed considering their environmental impact, energy performance, and 

cost. The wooden solutions (Table 1, S1 and S5) are the most sustainable, as they provide 

the best compromise between these three fundamental aspects for the construction of a 

low-carbon school in the Mediterranean area. 

Currently, schools are representative buildings both on social and cultural levels; at 

it is also important to ensure an education to all children in a healthy and environmental-

friendly place, supporting their environmental education. To configure solutions that are 

sustainable both from energy-environmental and economic viewpoints, designers must 

integrate and address the aspects with an interdisciplinary approach from the earliest 

stages of the design process of a school building. 

We proposed a method here to define the building envelope and the load-bearing 

structure by correlating the energy, environmental, and economic aspects. So, this consid-

ering at the same time an index for the evaluation of the environmental impact (GWP), 

the cost of the solution with respect to the price list of the considered location and finally 

an energy rating to evaluate the performance of the building during service life with the 

use of the proposed solutions (for instance primary energy demand). What has been ap-

plied here to the city of Florence can be used in any social and climatic context (for instance 

North Europe) firstly by checking the more suitable technological solutions for the con-

sidered climate, updating the minimum requirements for the thermal properties accord-

ing to the current legislation in chosen site and finally updating the climate characteristics 

for the energy simulation. Moreover, by performing an economic evaluation of different 

technological solutions according to the construction price list of the considered locations. 

This could be done to evaluate the sustainability of a school building in a preliminary 

stage of the design process and the proposed methodology could be considered as a stra-

tegic result for this reason. The application in Florence is only a way to show in a better 

and concise way the results and the related discussion. One of the future developments of 
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the research could be applying the same method to different building type located in dif-

ferent climate conditions, obviously taking into account the most proper technological so-

lutions or structural solutions for the considered intended use. 
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Appendix A 

Table A1. GWP, cost and primary energy value for the calculation of the normalized values. 

Solution GWP 1,2 Cost 2 Primary energy demand 

 (Impact %) (€/m2) (kWh/m2year) 

S1 5.015 339.72 24.70 

S2 5.933 749.56 24.38 

S3 5.257 605.67 24.44 

S4 1.483 329.16 24.91 

S5 1.5784 277.50 24.75 
1 The GWP is estimate by the sum of the impact of each element (for instance insulation layer, pil-

lar, frame, slab etc.) of the external wall technological solutions and the structure solutions with 

respect to the GWP of the entire building (impact %). 2 The values are the sum of the single value 

for each element of both EW and structure. 

Table A2. Normalized values of each parameters with respect to the solution 1 (S1). 

Solution GWP Cost Primary Energy Demand Sum 1 

S1 Reference solution Reference solution Reference solution 1 

S2 1.18 2.21 0.99 1.41 

S3 1.05 1.78 0.99 1.32 

S4 0.29 0.97 1.01 0.76 

S5 0.31 0.82 1.01 0.71 
1 To obtain this value the sum of GWP, Cost and Primary energy demand normalized values is evaluated with respect 1 

that represent the solution S1 (reference solution for the normalization). 
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