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Figure 1: The system comprised of the transmitter and receiver. The transmitter detects the parts of the image which are

important to the perception of a viewer and assign more bandwidth to them. The receiver runs the artifact removal algorithm

which recover the missing details accordingly.

ABSTRACT

We have seen a rise in video based user communication in the last

year, unfortunately fueled by the spread of COVID-19 disease. Effi-

cient low-latency delay of transmission of video is a challenging

problem which must also deal with the segmented nature of net-

work infrastructure not always allowing a high throughput. Lossy

video compression is a basic requirement to enable such technology

widely. While this may compromise the quality of the streamed

video there are recent deep learning based solutions to restore

quality of a lossy compressed video.

Considering the very nature of video conferencing, bitrate alloca-

tion in video streaming could be driven semantically, differentiating

quality between the talking subjects and the background. Currently

there have not been any work studying the restoration of semanti-

cally coded video using deep learning. In this work we show how

such videos can be efficiently generated by shifting bitrate with

masks derived via computer vision and how a deep generative ad-

versarial network can be trained to restore video quality. Our study
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shows that the combination of semantic coding and learning based

video restoration can provide superior results.
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1 INTRODUCTION

The era of day-to-day videoconferencing has dawned. Stimulated

in the recent years by developments in networking like the 5G

and modern video codecs, it has seen a dramatic increase with the

global spread of COVID-19. People constrained at home by the

emergency, talk shows and meetings have all adopted the use of

videoconferencing as main media of communication. As a result,

global networks have been profoundly impacted with an excessive

traffic that they were not prepared to receive. To transmit or store a

raw video, it must be compressed to reduce bandwidth and storage

requirements. This happens at the cost of the perceived quality

which strongly depends on the amount of available bandwidth

and the compression algorithm. While video coding algorithms

are designed to reduce perceptual quality loss using a model of

the human visual system, they do not know video semantics or
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cues on which information is more important to a human viewer.

When dealing with specialized tasks, such as video conferencing,

the usual bitrate allocation of modern video codecs may not favor

the right portion of the frame (e.g. face and upper body of the

speaker). The background has so little relevance in this context

that some commercial solutions provide features to blur [1] or

completely replace the background with a virtual one [2]. For this

reason, by combining state-of-the art computer vision techniques

with saliency based bitrate allocation, it is possible to drive codecs

bitrate to favor content based on semantics and not just on low-

level features such as frequency content of the signal. User studies

on videos crafted as such have shown little or no effect on the user

experience [45].

An obvious solution to reducing bandwidth for transmission is

to dramatically cut the quality of compressed video thus reducing

bitrate. On the one hand this will łallowž the video call to run

smoothly without any delay, on the other hand, the reduced quality

in the perceived video will make the user experience, in certain

cases, almost unbearable. Recently, solutions to improve image and

video quality have been proposed, also running in real-time on

tablets and smartphones [14ś16]. With these algorithms in play

it is possible to increase quality and resolution of inbound highly

compressed and subsampled videos.

In this work we provide the following contributions:

• We design a system for streaming talking humans efficiently,

combining semantic coding of a source video with a deep

learning based image restoration process.

• We provide an extensive evaluation using both full-reference

and no-reference image assessment metrics, showing that

our GAN trained on semantically coded video is able to

improve the overall quality better than a generic image en-

hancement network.

Currently, to the best of our knowledge, learning based image en-

hancement methods have not been applied onto videos which have

been semantically encoded. Moreover we show that our system is

able to provide comparable quality for videos talking humans with

a third of the bandwidth.

2 PREVIOUS WORK

Semantic video coding is regarded as a straightforward solution for

bandwidth requirements. The basic idea is to identify objects which

are more perceptually relevant for the viewer and improve their

appearance increasing bit allocation adaptively. We can frame two

main lines of research: visual saliency [4, 26] and object [12, 45]

based video coding. In the former approach some function of the

image is computed pixelwise irrespectively of the semantic content

of the image. Such function measure the relevance of frame regions

and is used to modulate bitrate. Object based video instead assumes

some form of segmentation has been applied to obtain masks of

relevant objects. This approach requires using robust object seg-

mentation which are nowadays deployable at high efficiency [8, 18].

Video and image restoration. Recently, learning based image en-

hancement has been proposed [9, 10, 13, 14, 21, 28, 29, 39, 44, 46].

Such approaches, learn deep convolutional architectures to trans-

form images corrupted by artifacts into high quality ones.

The first work employing CNNs for compression artifact removal

is [10]. Their network design is specialized for JPEG compression,

while more recent works [9, 39] employ general purpose architec-

tures all sharing some common features such as residual learning

and skip connections bringing the benefit of allowing several layers

of representation and propagating information from earlier layers

to the final reconstruction directly. Interestingly, most perceptu-

ally satisfying results are obtained using Generative Adversarial

Networks [14]. In [13, 14] Galteri et al. show that GAN based im-

age restoration can be performed on various encoders even in an

agnostic setting by predicting coding parameters. All of the above

algorithms have never been used in conjunction with semantic

video coding. In this work we present GAN models to increase

quality of semantically coded faces.
Video and image compression. Semantic video coding approaches

can be used in very different domains, such as airplane cockpits [30],

sport videos [6], drone videos [41], vehicles [3], and surveillance

videos [5]. Some preliminary effort has been made to perform video

and image coding using neural networks [36, 37]. These approaches

are currently not deployable with satisfying visual results due to

an unbearable computational footprint. Moreover, fully learned

compression, requires the standardisation and diffusion of a novel

technology thus raising a high market barrier to entry. This can be

mitigated if the decoding end of the pipeline is kept to standard.

As partially reviewed in [35] there are two main strategies to im-

prove video quality while still relying on standardized encoding

solutions: pre-processing based and post-processing based. As an

example, Talebi et al. [40] proposed an hybrid approach to improve

the quality of compressed images. Instead of relying on a deep

network for encoding and decoding they learn a deep network for

pre-processing images before standard JPEG compression. Train-

ing objective minimize entropy and image distortion jointly for a

given JPEG quality factor. In this work we are the first to apply

state-of-the-art GAN based image restoration to video that have

been compressed with a semantic cue, thus intervening on both

ends of the coding pipeline, which is still based on standard video

codecs.
Quality metrics. It is important to also consider how images

appear at the end of the encoding-decoding pipeline. In our sce-

nario a reference image is available allowing to also perform Full-

reference image quality assessment. The recent work from Blau and

Michaeli [7] has shown that there is a rate-distortion-perception

trade-off showing that optimizing the statistical similarity of source

and decoded images will increase the signal distortion rate. This

is in line with the copious amount of results that shows how im-

ages ranked higher by humans obtains a lower score according

to SSIM and PSNR metrics. For these reasons a lot of work has

been dedicated to obtain more reliable metrics for image quality

assessment [23, 32, 33, 48]. In our work we will rely on modern

LPIPS metric as a full-reference evaluation and BRISQUE for a

no-reference image quality assessment.

3 THE PROPOSED METHOD

Our approach is based on the idea that a compression artefact

removal method can restore videos with a better perceived visual

quality by exploiting semantically encoded video. We first describe

how the semantic video encoding is performed on the transmitter.
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Then, we report the GAN-based video restoration approach to

improve the perceptual visual quality on the receiver party.

3.1 Semantic video encoding

The main idea of semantic video encoding is to allocate more bits to

the regions that depict semantic content of interest for the viewer,

to the detriment of background. Ideally, the amount of bits should

be enough to maximize the perceptual quality of the objects of

interest for a viewer. Semantic video encoding is related to saliency

based video encoding [26, 27] as they both consider regions that

should be stored with a higher amount of data. Nonetheless they

aim at different targets. Semantic encoding aims at transferring the

high level semantic content that is of most interest of the viewer,

regardless of any other element of background. The saliency based

encoding, instead, has no specific knowledge of objects of the scene.

It aims at transferring the content which is most probably observed

by the eyes of a viewer, regardless of its importance.

To perform the encoding, we construct a semantic mask for

each frame where we label each pixel as foreground (i.e. pixels of

regions that are allottedmore bits) or background. Depending on the

domain, the foreground may be different. In our considered context

of a video conference application, the foreground is the speaking

person, more specifically its face. Hence, we employ the popular

BiSeNet [47] image segmentation method, trained on CelebAMask-

HQ [25] to perform face parsing. We label each pixel detected as a

part of face and neck as foreground, the remainder as background.

The final video is encoded using a h.264 encoder which has been

modified to allot a predetermined 𝑃 percentage of a given bitrate

to an input mask. We employ the implementation of [26] which

uses a non-trivial estimation of macroblock sizes with respect to

the quantization of parameter of h.264 constant quantizer.

3.2 Video restoration

Most restoration approaches based on deep learning tackle the

artifact removal problem trying to minimize the squared pixel-

wise Euclidean distance between a reference raw frame 𝐼 and the

generated output 𝐼𝑅 from a compressed input 𝐼𝐶 . However, this

kind of training strategy leads to feeble restored images as they

appear often blurry and lacking important details. Besides, the h.264

encoder typically contains a strong loop de-blocking filter at the

end of the compression pipeline, which leads to producing blurry

frames, so that using an MSE based neural network to restore the

images is even less effective.

Generative Adversarial Networks have been broadly used for both

restoration and enhancement tasks to solve the aforementioned

issues. The GAN framework tries to estimate a model distribution

that approximate a target distribution, and it comprises two dis-

tinct entities, a generator and a discriminator. In this setup, the

aim of the generator is to produce the model distribution given

some noisy input and the role of the discriminator is to discern

the model distribution from the target one. The two networks are

trained one after another while gradually the distance between the

model distribution and the generator decreases.

Since we do not want to generate completely novel images from

the model distribution, but we rather want to restore some distorted

data, we need to condition the training procedure of the GAN

accordingly. Therefore, we feed the discriminator with real samples

𝐼 |𝐼𝐶 and fake samples 𝐼𝑅 |𝐼𝐶 where the operator ·|· defines the

channel-wise concatenation of the inputs.

Architectures. The architecture of our generator is based on [13],

which is composed mostly of residual blocks and convolutional

layers, with no Batch-Normalization. Differently from [13] we train

the network to learn the residual image, hence there is a skip-

connection between the input image and the restored output. Using

this scheme we reduce the overall training time and improve its

stability. We choose both input and output values to be in the [0, 1]

range. We employ the most common architecture for our discrimi-

nator, a sequence of convolutional layers followed by LeakyReLU

activation, with a final output dense layer.

Losses. Following the results of [42] we choose the Relativis-

tic GAN [20] instead of the standard GAN setup to get better re-

construction outputs. Here, the key idea is to drive the discrim-

inator to estimate the probability that a ground truth image 𝐼

is relatively more realistic than a generated one 𝐼𝑅 . We define

𝐷 (𝐼 , 𝐼𝑅) = 𝜎 (𝐶 (𝐼 ) − E𝐼𝑅
[

𝐶 (𝐼𝑅)
]

) as the output of the relativistic

discriminator, where 𝜎 , 𝐶 (.) and E𝐼𝑅 [.] stand for the sigmoid acti-

vation, the dense layer output of the discriminator and the average

for all reconstructed images in the mini-batch, respectively. The

discriminator loss is defined as:

𝐿𝐷 = − E𝐼 [𝑙𝑜𝑔(𝐷 (𝐼 , 𝐼𝑅))]

− E𝐼𝑅 [1 − 𝑙𝑜𝑔(𝐷 (𝐼𝑅, 𝐼 ))]
(1)

and the adversarial loss for the generator as:

𝐿𝐴𝑑𝑣 = − E𝐼 [1 − 𝑙𝑜𝑔(𝐷 (𝐼 , 𝐼𝑅))]

− E𝐼𝑅 [𝑙𝑜𝑔(𝐷 (𝐼𝑅, 𝐼 ))]
(2)

Following the contribution ofmany perceptual-driven approaches

[11, 17, 19, 24] to improve the visual quality of restored outputs, we

use a loss based on perceptual similarity in our adversarial training.

We minimize the distance between images by projecting 𝐼 and 𝐼𝑅

on a feature space with a differentiable function 𝜙 and taking the

L1 distance between the two different representations:

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = E(𝐼 ,𝐼𝑅)

[

| |𝜙 (𝐼 ) − 𝜙 (𝐼𝑅) | |
]

(3)

In this work we implement the VGG-19 network to extract the

feature representations, adopting the output taken from the fourth

convolutional layer of the fifth block before the ReLU activation.

For convenience we name the standard perceptual loss based on

the VGG-19 network as 𝐿𝑉𝐺𝐺 .

We define a more effective perceptual loss by realizing that our

data to be reconstructed is not homogeneous. As amatter of fact, the

semantic encoding partitions the image in two regions that differs

from content (background/faces) and quality (low-quality/high-

quality). Therefore, the network needs to learn the reconstruction

of different parts according to separate objectives using the semantic

masks computed by the face parser. We define𝑀 as the foreground

binary mask and𝑀 as the background mask that is computed by

the logical negation of𝑀 .

We keep the VGG loss for the background, but we limit its com-

putation to the parts of the image where 𝑀 values are not zero.
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Figure 2: Examples of frames restored using the two losses: Left) GAN with VGG perceptual loss; Right) GAN with combined

VGG background and VGG-Face foreground loss. Note how the mouth (especially lower lip) and the nasolabial folds are more

detailed and with less artifacts; the zoomed area of the hairs of the right image has more details and natural texture. See

supplementary materials for higher quality image.

We name the perceptual loss based on the VGG-19 network for the

background as 𝐿𝐵 :

𝐿𝐵 = E(𝐼 ,𝐼𝑅)

[

| |𝑉𝐺𝐺 (𝐼 ⊙ 𝑀) −𝑉𝐺𝐺 (𝐼𝑅 ⊙ 𝑀) | |
]

(4)

where ⊙ stands for element by element multiplication. Since the

foreground is composed of human faces, we choose to adopt a

different extractor to handle this specific category of features. The

logical choice is to extract such features from a pre-trained network

that has processed millions of face images, that is VGG-Face [34].

As VGG-Face is based on VGG-16 backbone, we extract the output

taken from the third convolutional layer of the fifth block before the

ReLU activation for the loss computation. Under these assumptions,

we define the perceptual loss constrained to the foreground as:

𝐿𝐹 = E(𝐼 ,𝐼𝑅)

[

| |𝑉𝐺𝐺𝐹𝑎𝑐𝑒 (𝐼 ⊙ 𝑀) −𝑉𝐺𝐺𝐹𝑎𝑐𝑒 (𝐼𝑅 ⊙ 𝑀) | |
]

(5)

The total loss for the generator is:

𝐿𝐺 = 𝐿𝐵 + 𝐿𝐹 + 𝜆𝐿𝐴𝑑𝑣 (6)

where 𝜆 is a fixed coefficient to balance the contribution of the

adversarial loss.

Training Details. In all our configurations we extract 8 random

256 × 256 patches from the training data with random left-right

flipping. During the training phase we use Adam [22] as optimizer

for both generator and discriminator with momentum 0.9 and a

learning rate of 10−4 for the first 10 epochs. We halve the learning

rate every other 10 epochs for an overall amount of 40. We have

trained our reconstruction models with PyTorch and a NVIDIA

Titan Xp GPU.

4 EXPERIMENTAL RESULTS

4.1 Dataset

We have used Deep Fake Detection dataset [38], that is composed

of 363 high resolution and high quality videos depicting different

activities performed by 28 actors; we have used the raw (compres-

sion rate factor 0) versions of the original sequences (∼ 200GB size).

We have then selected 55 videos of actions in which the actor is

talking while facing the camera as in a setup of a video conference

(i.e. łpodium speech" and łtalking against wall" scenes) for an over-

all size of ∼ 40 GB and a duration of ∼ 40 minutes. The first 22

identities have been used for training and the last 6 for testing.

4.2 Video quality metrics

Since we are dealing with image compression and restoration tasks,

a reference image is available to perform evaluation. Full-reference

image quality assessment uses a reference version of an image to

compute a similarity. The popular SSIM (Structural SIMilarity) [43]

is a metric of structural similarity that is more consistent than MSE

and PSNR with perceived quality. The SSIM index varies between

-1 and 1, where 1 indicates perfect structural similarity, while 0

indicates no structural similarity. However, it must be noted that, as

reported in [23], many existing image quality algorithms like SSIM

are unreliable on GAN generated content, since images generated

by GANs may appear quite realistic and similar to an original, yet

may match it poorly based on simple pixel comparisons; metrics

based on łnaturalness" are more suitable in this case. Nevertheless,

we report results using this metric due to its widespread use.

Differently from SSIM, BRISQUE (Blind/Referenceless Image

Spatial Quality Evaluator) [31] is a no-reference metric, thus it

does not require a reference image to evaluate the quality of the
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compressed version. BRISQUE evaluates natural scene statistics

to quantify losses of łnaturalness" due to distortions like those

introduced by compression. A smaller BRISQUE score indicates

better perceptual quality. We report results using this metric as a

way to measure the naturalness of an image, that may be associated

in our use case to how natural looks a face and its features.

Finally, we have used the recent LPIPS (Learned Perceptual Im-

age Patch Similarity) [48] metric, a novel full-reference metric that

evaluates the distance between image patches, based on deep fea-

tures; the authors have shown that LPIPS outperforms traditional

metrics like SSIM by a large margin in a two alternative forced

choice (2AFC) test, that asks which of two distorted images is more

similar to a reference. Higher LPIPS score means that two patches

are more different perceptually, a lower score means they are more

similar. We report results using this metric to evaluate the quality

of reconstruction w.r.t. the high quality version of videos using a

metric that is able to capture better distortions as perceived by the

human visual system. Typically LPIPS measures are in contrast with

SSIM, i.e. distortions that look more similar for SSIM are considered

distant in LPIPS.

The SSIM and LPIPS full-reference metrics have been computed

comparing the compressed and reconstructed frames to the frames

obtained from the raw (CRF 0) videos; BRISQUE has been computed

directly on patches of the compressed and reconstructed frames,

since it does not require any comparison. Measures have been

computed considering only patches obtained from automatically

detected faces and from patches over the whole frame.

4.3 Semantic video coding

In the first set of experiments we evaluate the effect of semantic

video coding at varying bitrate and with different percentages of

bitrate allocation to the semantically relevant parts of the frame,

i.e. face parts. The quality of the compressed videos is evaluated on

the patches within the bounding box of the detected faces and over

the whole frame.

Table 1 and Table 2 report quality metrics for videos compressed

with relatively high bitrates of 1000 kb/sec. The value reported

in the first column reports the percentage of the bitrate allocated

to the semantically salient regions, i.e. the mask generated by the

segments of the face; when the value is 0 then no semantic video

coding is used and the standard h.264 coding is used. Tab. 1 values

have been computed on patches of the face, while values of Tab. 2

have been computed over the whole frame. It can be observed

that as the percentage of bitrate allocated to semantically salient

regions increases all the metrics improve when considering the

quality of faces. Considering the whole frame the best LPIPS results

are obtained for a saliency allocation of 15%, and second best for

a value of 25%. Instead, the best BRISQUE and SSIM results are

obtained without using saliency, as the encoder has enough bitrate

available to encode in high quality all the frame and is free to

allocate bandwidth wherever necessary; it must be also considered

that there are many more patches belonging to the background

than to the face and that the background is relatively uniform.

Table 3 and Table 4 report quality metrics for a more challenging

setup, where videos are compressed with relatively low bitrates

of 400 kb/sec, resulting in an overall dimension of a third of the

Table 1: Qualitymetrics for higher bitrate videos (1000Kbps);

metrics computed on face patches only. Best results high-

lighted in bold, second best are underlined.

% sal. BR LPIPS BRISQUE SSIM Dim. (KB)

0 0,052 32,95 93,45 301.616

10 0,043 29,61 94,15 269.932

15 0,038 27,73 94,59 268.788

25 0,034 25,58 94,91 267.308

Table 2: Qualitymetrics for higher bitrate videos (1000Kbps);

metrics computed on whole frame. Best results highlighted

in bold, second best are underlined.

% sal. BR LPIPS BRISQUE SSIM Dim. (KB)

0 0,417 60,18 97,37 301.616

10 0,413 62,14 97,22 269.932

15 0,408 63,11 97,05 268.788

25 0,411 63,73 96,71 267.308

previous one. As in the previous tables, we include a version that

does not use semantic coding, i.e. the percentage of bitrate allo-

cated to semantically salient regions is 0. Tab. 3 values have been

computed on patches of the face, while values of Tab. 4 have been

computed over the whole frame. As it can be expected the values

are worst than those obtained for higher bitrates reported in the

two previous tables. Also in this case, using saliency improves im-

age quality computed on the face patches, but it must be noted

that in this more challenging scenario also the BRISQUE metric is

better with saliency when evaluating over the whole frame; only

the older SSIM metric is better without saliency, but only by a very

small value. Overall coding with a 15-25% bitrate assigned to salient

regions provides the best results when coding at lower bitrates.

Table 3: Quality metrics for lower bitrate videos (400Kbps);

metrics computed on face patches only. Best results high-

lighted in bold, second best are underlined.

% sal. BR LPIPS BRISQUE SSIM Dim. (KB)

0 0,078 38,02 91,32 117.540

10 0,068 35,44 92,24 118.288

15 0,063 33,92 92,62 118.596

25 0,061 32,34 92,73 118.968

35 0,062 31,45 92,58 119.204

45 0,063 30,67 92,46 119.308

4.4 Improving video quality

In this set of experiments we evaluate the quality of the proposed

quality improvement method described in Sect. 3.2, applied both to

videos compressed semantically and without semantic compression.

Similarly to the first set of experiments, visual quality is computed

on the patches within the bounding box of the detected faces and

over the whole frame. In these experiments the dimension of files

is not reported since the proposed approach performs quality im-

provement when decoding frames, so the size of the files is the
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Table 4: Quality metrics for lower bitrate videos (400Kbps);

metrics computed on whole frame. Best results highlighted

in bold, second best are underlined.

% sal. BR LPIPS BRISQUE SSIM Dim. (KB)

0 0,411 64,79 96,60 117.540

10 0,412 65,01 96,40 118.288

15 0,410 64,74 96,17 118.596

25 0,409 64,24 95,66 118.968

35 0,416 64,50 95,11 119.204

45 0,421 64,97 94,56 119.308

same of those reported in the previous section. Table 5 reports

quality metrics computed over face patches, while Table 6 results

have been obtained computing them over the whole frame. Quality

improvement has been applied to the low bitrate versions of videos

(400 kb/s), since they are the more challenging and this setup is

more relevant for the video chat domain. The tables report also the

variation w.r.t. the corresponding metrics of Tab. 3 and Tab. 4.

Comparing the values of Tab. 5 with those of Tab. 3, shows

that the proposed approach greatly improves image quality of the

faces; the GAN is able to add realistic face details and the LPIPS

values are now in the same range of those of videos encoded at

1000 kb/s, showing that using our proposed approach is possible to

encode at less than half the bitrate while keeping the same quality.

It is interesting to note that the proposed approach reduces the

difference in LPIPS score between semantic coding and standard

coding: this means that the proposed restoration is effective even

if no semantic coding is used. Similarly to Tab. 3 using a 15-25%

allocation for semantic saliency results in the best performance in

terms of LPIPS full-reference metrics. Considering Tab. 6, the best

values of the more reliable LPIPS metric are obtained on videos

compressed using saliency. Comparing Tab. 6 with Tab. 4, shows

that also in this case metrics are improved, although with a lesser

extent than when considering faces only. It is interesting to note

that BRISQUE metric improves greatly, with a ratio similar to that

of faces only. We explain this due to the fact that the GAN-based

approach adds łnatural" details to the background in the image.

As expected, and noted in other works that applied generative

approaches to image quality improvement like [13, 23], the SSIM

metric shows a small decrease in both cases. This is due to the fact

that GANs łhallucinate" details, thus signal-based full-reference

metrics are unable to account for the improvements. As an example

consider a GAN that restores łnaturally looking" hairs in positions

that are slightly off-set w.r.t. their actual position in the raw videos:

the SSIM metric would result in a lower value, while a metric like

LPIPS correctly results in an improvement.

Table 7 reports results obtained using the GAN approach that

combines VGG background and VGG-Face foreground loss. Quality

metrics computed over face patches, and comparing them with

those of Tab. 5 we can observe that reference metrics are improved,

with the reliable LPIPS and the older SSIM. Instead BRISQUE, al-

though greatly improving with respect to the compressed video has

a smaller reduction with respect to the other GAN approach. This

can be explained by the fact that this GAN is able to better recover

details that are more similar to the uncompressed frames, thus the

Table 5: Quality metrics for improved versions of lower

bitrate videos (400Kbps); metrics computed on face

patches only. Best results highlighted in bold, second

best are underlined. Changes w.r.t. compressed versions

(Tab. 3) reported in parentheses, +/- stands for improve-

ment/deterioration.

% sal. BR LPIPS BRISQUE SSIM

0 0,047 (+40,00%) 15,44 (+59,38%) 89,04 (-2,49%)

10 0,042 (+38,24%) 13,55 (+61,77%) 89,85 (-2,59%)

15 0,040 (+36,25%) 12,90 (+61,95%) 90,18 (-2,64%)

25 0,041 (+32,79%) 12,12 (+62,51%) 90,23 (-2,70%)

35 0,044 (+29,03%) 11,69 (+62,82%) 90,04 (-2,74%)

45 0,046 (+27,45%) 11,25 (+63,31%) 89,82 (-2,86%)

Table 6: Quality metrics for improved versions of lower bi-

trate videos (400Kbps); metrics computed on whole frame.

Best results highlighted in bold, second best are underlined.

Changes w.r.t. compressed versions (Tab. 4) reported in

parentheses, +/- stands for improvement/deterioration.

% sal. BR LPIPS BRISQUE SSIM

0 0,406 (+1,1%) 24,01 (+62,9%) 95,19 (-1,46%)

10 0,405 (+1,8%) 24,39 (+62,5%) 95,07 (-1,38%)

15 0,408 (+0,4%) 24,79 (+61,7%) 94,93 (-1,29%)

25 0,406 (+0,7%) 24,93 (+61,2%) 94,57 (-1,14%)

35 0,403 (+3,2%) 25,08 (+61,1%) 94,17 (-0,99%)

45 0,410 (+2,6%) 24,53 (62,2%) 93,69 (-0,92%)

Table 7: Quality metrics for improved versions of lower bi-

trate videos (400Kbps), using the loss that combines VGG

background and VGG-Face foreground losses; metrics com-

puted on face patches only. Best results highlighted in bold,

second best are underlined. Changes w.r.t. compressed ver-

sions (Tab. 3) reported in parentheses, +/- stands for improve-

ment/deterioration.

% sal. BR LPIPS BRISQUE SSIM

0 0,046 (+40,69%) 18,31 (+51,83%) 89,23 (-2,28%)

10 0,041 (+39,37%) 16,24 (+54,16%) 90,07 (-2,35%)

15 0,039 (+37,81%) 15,39 (+54,63%) 90,41 (-2,38%)

25 0,040 (+34,20%) 14,45 (+55,33%) 90,47 (-2,43%)

35 0,042 (+31,52%) 13,86 (+55,93%) 90,29 (-2,47%)

45 0,045 (+29,37%) 13,26 (+56,76%) 90,07 (-2,59%)

reference-based score is better, while adding less high frequency

details that make the image appear more łnatural" according to

BRISQUE algorithm. Overall, results show that using an allocation

of 15-25% of the bitrate to the salient regions results in the best

performance.

4.4.1 Qualitative examples. All the figures and Fig. 2 are reported

in higher quality in the supplementary materials. Readers are sug-

gested to refer to them in order to better appreciate the differences.

All the figures are frames from videos compressed at 400 kb/s

and compare different versions of the same frame. In Figure 3 the

left image shows a frame compressed using standard h.264; many
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details have compression artifacts, such as the eyes and the hairs,

that have lost their finer structure. The bottom lip shows some

ringing artifacts in the mouth, there are blockiness artifacts on the

skin of face and neck. Also the background shows false colors and

bands, e.g. in the upper left part. The middle image shows a frame

compressed using h.264 and saliency, assigning 15% of bitrate to

the parts of the image containing face, hair and neck. In this case

the eyes are more detailed, especially the left one, the skin of the

face has less blocking artifacts and hairs are more detailed. The

right image shows a frame reconstructed from the middle image

using the proposed GAN approach. It can be noticed that mouth is

more detailed, the skin of face and neck is smoother and with even

less blockiness, hairs are more detailed, especially the tip near the

arms; also many artifacts in the background have been eliminated

(e.g. in the upper left part). In Figure 4 the left image shows a frame

compressed using standard h.264; similarly to Fig. 3 finer details

like eyes, eyebrows, facial hair and hair have lost details. The skin

has blockiness artifacts both in the face and arms, and the shirt has

the same issues. The middle image shows a frame compressed using

h.264 and saliency, assigning 15% of bitrate to the parts of the image

containing face, hair and neck. This results in a smoother skin, more

details for eyes and hair. The skin of the arms is still blocky, and the

background has about or even more artifacts than the top image.

The right image shows a frame reconstructed from themiddle image

using the proposed GAN approach. Hair are more detailed, and

also facial hair and eyebrows. The arms have a smoother skin, the

shirt has more details and artifacts in the background have been

reduced. In Figure 5 the left image shows a frame compressed using

standard h.264; many features of the face have been distorted by

compression artifacts, such as the eyes mouth and teeth. Hairs show

blockiness artifacts, wall and dress have posterization effects. The

middle image shows a frame compressed using h.264 and saliency,

assigning 15% of bitrate to the parts of the image containing face,

hair and neck. In this case the eyes and mouth are more detailed,

the skin of the face has less blocking artifacts and hairs are more

detailed. The right image shows a frame reconstructed from the

middle image using the proposed GAN approach. It can be noticed

that cheeks are smoother, hairs have more details, the posterization

of dress and wall has been eliminated.

5 CONCLUSIONS

In this work we have evaluated the improvement in perceptual

video quality that can be obtained by combining two approaches:

semantic video coding by the transmitter and GAN-based compres-

sion artefact removal by the receiver. The method has been applied

to videos that simulate the use case of video chats, coding semanti-

cally salient parts like face and neck with a predefined percentage

of the total bitrate. Experimental results show that each approach,

when applied alone improves objective quality metrics like LPIPS

and BRISQUE that evaluate perceptual quality and naturalness of

images. The experiments show also that the combination of both

approaches results in increased improvements, and the it is possible

to obtain a perceptual quality similar to that obtained using three

Figure 3: Examples of frames compressed with: Left) standard h.264; Mid) h.264 and saliency (15%); Right) saliency and pro-

posed GAN improvement. Details like, eyes, mouth, skin, hair and even tiles in the background are progressively improved.
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Figure 4: Examples of frames compressed with: Left) standard h.264; Mid) h.264 and saliency (15%); Right) saliency and pro-

posedGAN improvement. Note howdetails like, eyes,mouth, skin, hair, shirt and background tiles are progressively improved.

Figure 5: Examples of frames compressed with: Left) standard h.264; Mid) h.264 and saliency (15%); Right) saliency and pro-

posed GAN improvement. Note how details like, eyes, mouth, skin, hair, dress and wall are progressively improved.

times the bandwidth. Using a GAN-based approach allows not only

to eliminate compression artefacts but also to recreate plausible

natural details like hair and facial features.
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