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Abstract
We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic
energies having matrix of coefficients in a Sobolev space with summability exponent
larger than the space dimension and provide an application to the corresponding free
boundary analysis for the related classical obstacle problems.

Keywords Classical obstacle problem · Free boundary · Monotonicity formulas

Mathematics Subject Classification 35R35 · 49N60

1 Introduction

The structure of free boundaries for classical obstacle problems has been described
first by Caffarelli for quadratic energies having suitably regular matrix fields, and it
is the resume of his long-term program on the subject (cf., for instance, [1–4] and the
books [5–7] for more details and references also on related problems). Similar results
for smooth nonlinear operators can then be obtained via a freezing argument.

In the last years, such a topic has been investigated in the case inwhich the quadratic
energy involved has matrix of coefficients either Lipschitz continuous (cf. [8]) or
belonging to a fractional Sobolev space (cf. [9]), with parameters suitably related.
Let us also mention that obstacle problems for nondegenerate nonlinear variational
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energies have been studied in [10] through a linearization argument and the quoted
results in the Lipschitz quadratic case.

The papers [8,9] follow the variational approach to free boundary analysis devel-
oped remarkably by Weiss [11] and by Monneau [12] that is based on (quasi-)
monotonicity formulas. The extensions ofWeiss’ andMonneau’smonotonicity formu-
las, obtained in [8,9], hinge upon a generalization of the Rellich and Nečas’ inequality
due to Payne and Weinberger (cf. [13]). On a technical side, they involve the differ-
entiation of the matrix field.

The aim of this short note is to extend the range of validity ofWeiss’ andMonneau’s
type quasi-monotonicity formulas to classical obstacle problems, involving quadratic
forms having matrix of coefficients in a Sobolev space with summability exponent
lager than the space dimension.

Themain difference contained in the present note, with respect to the existing litera-
ture, concerns the (quasi-)monotone quantity itself. Indeed, rather than considering the
natural quadratic energy associatedwith the obstacle problemunder study,we establish
quasi-monotonicity for a related constant coefficient quadratic form. The latter result
is obtained thanks to a freezing argument inspired by some computations in a paper
by Monneau (cf. [12, Section 6]) in combination with the well-known quadratic lower
bound on the growth of solutions from free boundary points (see Sects. 4, 5 for more
details). Such an insight, though elementary, has been overlooked in the literature and
enables us to obtain Weiss’ and Monneau’s quasi-monotonicity formulas under mild
assumptions (cf. (H1) and (H3) below, the latter having no role, if the obstacle function
is null), since the matrix field is not differentiated along the derivation process of the
quasi-monotonicity formulas. We stress again that the mentioned quasi-monotonicity
formulas are instrumental to pursue the variational approach for the analysis of the
corresponding free boundaries in classical obstacle problems.

To conclude this introduction, we briefly resume the structure of the paper: Weiss’
and Monneau’s quasi-monotonicity formulas, the main results of the paper, together
with their application to free boundaries, are stated in Sect. 2. Several preliminaries
for the classical obstacle problem under study are collected in Sect. 3. The mentioned
generalizations ofWeiss’ andMonneau’s quasi-monotonicity formulas are established
in Sects. 4 and 5, respectively. Finally, Sect. 6 contains the proof of the quoted appli-
cations to the free boundary stratification for quadratic problems.

2 Statement of theMain Results

In this section, we state Weiss’ and Monneau’s type quasi-monotonicity formulas for
the quadratic problem and their application to the free boundary analysis.

We start off introducing the variational problem related to free boundaries together
with the necessary notations and assumptions in the next section.
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2.1 Free Boundary Analysis: Statement

We consider the functional E : W 1,2(Ω) → R given by

E(v) :=
∫

Ω

(〈A(x)∇v(x),∇v(x)〉 + 2h(x)v(x)
)
dx, (1)

and study regularity issues related to its unique minimizer w on the set

Kψ,g := {
v ∈ W 1,2(Ω) : v ≥ ψ Ln-a.e. on Ω, Tr(v) = g on ∂Ω

}
.

HereΩ ⊂ R
n is a bounded Lipschitz open set, n ≥ 2,ψ ∈ C1,1

loc (Ω) and g ∈ H
1/2(∂Ω)

are such that ψ ≤ g Hn−1-a.e on ∂Ω , A : Ω → R
n×n is a matrix-valued field and

f : Ω → R is a function satisfying:

(H1) A ∈ W 1,p(Ω;Rn×n) with p > n;
(H2) A(x) = (

ai j (x)
)

i, j=1,...,n is symmetric, continuous and coercive that is ai j (x) =
a ji (x) for all x ∈ Ω and for all i, j ∈ {1, . . . , n}, and for some Λ ≥ 1

Λ−1|ξ |2 ≤ 〈A(x)ξ, ξ 〉 ≤ Λ|ξ |2 (2)

for all x ∈ Ω , ξ ∈ R
n ;

(H3) f := h − div (A∇ψ) > c0 Ln-a.e. on Ω , for some c0 > 0, and f is Dini
continuous, namely ∫ 1

0

ω f (t)

t
dt < ∞, (3)

where ω f (t) := supx,y∈Ω, |x−y|≤t | f (x) − f (y)|.
In some instances in place of (H3), we will require the stronger condition

(H4) f > c0 Ln-a.e. on Ω , for some c0 > 0, and f is double Dini continuous, that is

∫ 1

0

ω f (r)

r
| log r |a dr < ∞, (4)

for some a ≥ 1.

Note that for the zero obstacle problem, i.e.ψ = 0, assumptions (H3) and (H4) involve
only the lower-order term h in the integrand and not the matrix field of coefficients A.
Moreover, the positivity condition on f corresponds to the concavity assumption on
the obstacle function in the case of the Laplacian. Elementary examples show that it
is needed to enforce free boundary regularity.

Given the assumptions introduced above, we provide a full free boundary stratifi-
cation result.

Theorem 2.1 Assume (H1)–(H4) to hold, and let w be the (unique) minimizer of E in
(1) on Kψ,g.
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Then, w is W 2,p
loc ∩ C1,1−n/p

loc (Ω), and the free boundary can be decomposed as
∂{w = ψ} ∩ Ω = Reg(w) ∪ Sing(w), where Reg(w) and Sing(w) are called its
regular and singular part, respectively. Moreover, Reg(w) ∩ Sing(w) = ∅ and

(i) if a > 2 in (H4), then Reg(w) is relatively open in ∂{w = ψ} and, for every point
x0 ∈ Reg(w), there exist a radius r = r(x0) > 0 such that ∂{w = ψ} ∩ Br (x0) is
a C1 (n − 1)-dimensional manifold with normal vector absolutely continuous.
In particular, if f is Hölder continuous, there exists r = r(x0) > 0 such that
∂{w = ψ} ∩ Br (x0) is a C1,β (n − 1)-dimensional manifold for some exponent
β ∈]0, 1[.

(ii) if a ≥ 1 in (H4), then Sing(w) = ∪n−1
k=0Sk, with Sk contained in the union of at

most countably many submanifolds of dimension k and class C1.

Remark 2.1 Very recently, the fine structure of the set of the so-called singular points
in the case of theDirichlet energy has been unveiled in the papers byColombo, Spolaor
and Velichkov [14] and Figalli and Serra [15] by means of a logarithmic epiperimetric
inequality and new monotonicity formulas, respectively.

2.2 Quasi-Monotonicity Formulas: Statements

Theorem 2.1 is a consequence of Weiss’ and Monneau’s quasi-monotonicity type
formulas that will be stated in this section (cf. Sect. 6 for the proofs). With this aim,
we introduce first some notation.

We first reduce ourselves to the zero obstacle problem. Let w be the unique mini-
mizer of E in (1) over Kψ,g , and define u := w − ψ . Then, u is the unique minimizer
of

E (v) :=
∫

Ω

(〈A(x)∇v(x),∇v(x)〉 + 2 f (x)v(x)
)
dx, (5)

over

Kψ,g := {
v ∈ W 1,2(Ω) : v ≥ 0 Ln-a.e. on Ω, Tr(v) = g − ψ on ∂Ω

}
,

where f = h−div (A∇ψ). Clearly, ∂{w = ψ}∩Ω = ∂{u = 0}∩Ω =: Γu ; therefore,
we shall establish all the results in Theorem 2.1 for u (notice that assumptions (H3)
and (H4) are formulated exactly in terms of f ).

Let x0 ∈ Γu be any point of the free boundary; then, the affine change of variables

x �→ x0 + f −1/2(x0)A
1/2(x0)x =: x0 + L(x0) x

leads to
E (u) = f 1−

n
2 (x0) det(A

1/2(x0))EL(x0)(uL(x0)), (6)

where ΩL(x0) := L
−1(x0) (Ω − x0), and we have set

EL(x0)(v) :=
∫

ΩL(x0)

(
〈Cx0∇v,∇v〉 + 2

fL(x0)

f (x0)
v

)
dx, (7)
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with

uL(x0)(x) := u
(
x0 + L(x0)x

)
, (8)

fL(x0)(x) := f
(
x0 + L(x0)x

)
,

Cx0(x) := A
−1/2(x0)A(x0 + L(x0)x)A−1/2(x0).

Note that fL(x0)(0) = f (x0) and Cx0(0) = Id. Moreover, the free boundary is trans-
formed under this map into

ΓuL(x0)
:= L

−1(x0)(Γu − x0),

and the energy E in (5) is minimized by u, if and only if EL(x0) in (7) is minimized by
the function uL(x0) in (8).

In addition, writing the Euler–Lagrange equation for uL(x0) in nondivergence form
we get Ln-a.e. on ΩL(x0):

ci j (x)
∂2uL(x0)

∂xi∂x j
+ divCi

x0(x)
∂uL(x0)

∂xi
= fL(x0)(x)

f (x0)
χ{uL(x0)>0} ,

(using Einstein’s convention) with Cx0 = (ci j )i, j=1,...,n . Moreover, we may further
rewrite the latter equation Ln-a.e. on ΩL(x0) as

ΔuL(x0) = 1 +
( fL(x0)(x)

f (x0)
χ{uL(x0)>0} − 1

− (
ci j (x) − δi j

)∂2uL(x0)

∂xi∂x j
− divCi

x0(x)
∂uL(x0)

∂xi

)
=: 1 + fx0(x) .

(9)

Consider next the Weiss’ type boundary adjusted energy

Φu(x0, r) := 1

rn+2

∫
Br

(|∇uL(x0)|2 + 2 uL(x0)
)
dx − 2

rn+3

∫
∂ Br

u2
L(x0) dHn−1 , (10)

for x0 ∈ Γu . We claim its quasi-monotonicity.

Theorem 2.2 (Weiss’ quasi-monotonicity formula) Under assumptions (H1)–(H3),
for every compact set K ⊂ Ω , there exists a positive constant C = C(n, p,Λ, c0, K ,

‖ f ‖L∞ , ‖A‖W 1,p ) > 0 such that for all x0 ∈ K ∩ Γu

d

dr

(
Φu(x0, r)+C

∫ r

0

ω(t)

t
dt

)
≥ 2

rn+4

∫
∂ Br

(〈∇uL(x0), x〉−2uL(x0))
2dHn−1, (11)

for L1-a.e. r ∈]0, 1
2dist(K , ∂Ω)[, where ω(r) := ω f (r) + r1−

n
p .
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In particular, Φu(x0, ·) has finite right limit Φu(x0, 0+) in zero, and for all r ∈
]0, 1

2dist(K , ∂Ω)[,

Φu(x0, r) − Φu(x0, 0
+) ≥ −C

∫ r

0

ω(t)

t
dt . (12)

We recall that Weiss’ original monotonicity formula for the Dirichlet energy provides
an explicit expression for the derivative of Φu(x0, ·). Namely, formula (11) is actually
an equality for u, rather than for uL(x0), and ω is null.

The second quasi-monotonicity formula we deal with holds for a distinguished
subset of points of the free boundary, that of singular points Sing(u). Namely, we
assume that x0 ∈ Γu satisfies

Φu(x0, 0
+) = Φv(0, 1) (13)

for some 2-homogeneous solution v of

Δv = 1 on R
n . (14)

Note that, by 2-homogeneity, elementary calculations lead to

Φv(0, r) = Φv(0, 1) =
∫

B1

v dy, (15)

for all r > 0.

Theorem 2.3 (Monneau’s quasi-monotonicity formula)Under hypotheses (H1), (H2),
(H4) with a = 1, if K ⊂ Ω is a compact set and (15) holds for x0 ∈ K ∩ Γu, then a
constant C = C(n, p,Λ, c0, K , ‖ f ‖L∞ , ‖A‖W 1,p ) > 0 exists such that the function

]
0,

1

2
dist(K , ∂Ω)

[ � r �−→ 1

rn+3

∫
∂ Br

(uL(x0)−v)2 dx+C
∫ r

0

dt

t

∫ t

0

ω(s)

s
ds (16)

is nondecreasing, where v is any 2-homogeneus polynomial solution of (14), and ω

is the modulus of continuity provided by Theorem 2.2.

3 Preliminaries on the Classical Obstacle Problem

Throughout the section, we use the notation introduced in Sect. 2 and adopt Einstein’
summation convention.

The next result has been established by Ural’tseva (cf. for instance [16, Theorem
2.1]) for general variational inequalities with a penalization method. Our argument
instead follows the approach in [8], inspired by the ideas of Weiss for the Laplacian in
[11]. Let us briefly sketch our arguments. Consider the minimizer u of the energy E
introduced in (5). It turns out that u satisfies a PDE both in the distributional sense and
Ln-a.e. on Ω; elliptic regularity then applies to establish the smoothness of u itself.
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Proposition 3.1 Let u be the minimum of E on Kψ,g. Then,

div(A∇u) = f χ{u>0} (17)

Ln-a.e. on Ω and in D′(Ω). Moreover, u ∈ W 2,p
loc ∩ C

1,1− n
p

loc (Ω).

Proof For the validity of (17), we refer to [10, Proposition 3.2], where the result is
proved in the broader context of variational inequalities (see also [8, Proposition 2.2]).

From this, by taking into account that A ∈ C0,1−n/p

loc (Ω,Rn×n) in view of Morrey

embedding theorem, Schauder estimates yield u ∈ C1,1−n/p

loc (Ω) (cf. [17, Theorem
3.13]).

Next consider the equation

ai j
∂2v

∂xi∂x j
= f χ{u>0} − divA j ∂u

∂x j
=: ϕ, (18)

where A j denotes the j-column of A. Being ∇u ∈ L∞
loc(Ω,Rn) and being divA j ∈

L p(Ω) for all j ∈ {1, . . . , n}, then ϕ ∈ L p
loc(Ω). [18, Corollary 9.18] implies the

uniqueness of a solution v ∈ W 2,p
loc (Ω) to (18). By taking into account the identity

Tr(A∇2v) = div(A∇v) − divA j ∂v
∂x j

, (18) rewrites as

div(A∇v) − divA j ∂v

∂x j
= ϕ;

then we have that u and v are two solutions. Then, by [19, Theorem 1.I] and (17) we
deduce that u = v. ��

We recall next the standard notations for the coincidence set and for the correspond-
ing free boundary

Λu := {x ∈ Ω : u(x) = 0} , Γu := ∂Λu ∩ Ω.

For any point x0 ∈ Γu , we introduce the family of rescaled functions

ux0,r (x) := u(x0 + r x)

r2

for x ∈ 1
r (Ω − {x0}). The existence of C1,γ -limits as r ↓ 0 of the latter family is

standard by noting that the rescaled functions satisfy an appropriate PDE and then
uniform W 2,p estimates.

Proposition 3.2 ([9, Proposition 4.1]) Let u be the unique minimizer of E over Kψ,g,
and K ⊂ Ω a compact set. Then, for every x0 ∈ K ∩ Γu, for every R > 0 there
exists a constant C = C(n, p,Λ, R, K , ‖ f ‖L∞ , ‖A‖W 1,p ) > 0 such that, for every
r ∈]0, 1

4R dist(K , ∂Ω)[
‖ux0,r‖W 2,p(BR) ≤ C . (19)
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In particular, (ux0,r )r is equibounded in C1,γ
loc for γ ∈]0, 1 − n/p].

Then, up to extracting a subsequence, the rescaled functions have limits in the C1,γ

topology. The functions arising in this process are called blowup limits.

Corollary 3.1 (Existence of blowups) Let u be the unique minimizer of E over Kψ,g,
and let x0 ∈ Γu. Then, for every sequence rk ↓ 0 there exists a subsequence (rk j ) j ⊂
(rk)k such that the rescaled functions (ux0,rk j

) j converge in C1,γ
loc , γ ∈]0, 1 − n/p[, to

some function belonging to C1,1−n/p

loc .

Elementary growth conditions of the solution from free boundary points are easily
deduced from Proposition 3.2 and the condition p > n. In turn, such properties will
be crucial in the derivation of the quasi-monotonicity formulas.

Proposition 3.3 Let u be the unique minimizer of E over Kψ,g. Then, for all compact
sets K ⊂ Ω a constant C = C(n, p,Λ, K , ‖ f ‖L∞ , ‖A‖W 1,p ) > 0 exists, such that
for all points x0 ∈ Γu ∩ K , and for all r ∈ ]

0, 1
2dist(K , ∂Ω)

[
it holds

‖u‖L∞(Br (x0)) ≤ C r2 , ‖∇u‖L∞(Br (x0),Rn) ≤ C r . (20)

and
‖∇2u‖L p(Br (x0),Rn×n) ≤ C r

n/p. (21)

Finally, we recall the fundamental quadratic detachment property from free bound-
ary points that entails nontriviality of blowup limits. It has been established by Blank
andHao [20, Theorem 3.9] under the sole boundedness andmeasurability assumptions
on the matrix field A, hypotheses clearly weaker than (H1).

Lemma 3.1 ([20, Theorem 3.9]) There exists a positive constant ϑ , with ϑ =
ϑ(n,Λ, c0, ‖ f ‖L∞), such that for every x0 ∈ Γu and r ∈]0, 1

2dist(x0, ∂Ω)[, it holds

sup
x∈∂ Br (x0)

u(x) ≥ ϑ r2.

4 Weiss’ Quasi-Monotonicity Formula: Proof of Theorem 2.2

In this section, we prove the quasi-monotonicity of theWeiss’ energyΦu(x0, ·) defined
in (10). The proof is based on equality (9) and Proposition 3.3.

Proof of Theorem 2.2 We analyse separately the volume and the boundary terms
appearing in the definition of the Weiss energy in (10). For the sake of notational
simplicity we write ux0 in place of uL(x0). In what follows, with C we denote a con-
stant C = C(n, p,Λ, c0, K , ‖ f ‖L∞ , ‖A‖W 1,p ) > 0 that may vary from line to line.
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We start off with the bulk term. The Coarea formula implies for L1-a.e. r ∈
]0, dist(K , ∂Ω)[

d

dr

( 1

rn+2

∫
Br

(
|∇ux0 |2 + 2 ux0

)
dx

)

= − n + 2

rn+3

∫
Br

(
|∇ux0 |2 + 2 ux0

)
dx + 1

rn+2

∫
∂ Br

(
|∇ux0 |2 + 2 ux0

)
dx . (22)

We use the divergence theorem together with the following identities

|∇ux0 |2 = 1

2
div (∇(u2

x0)) − ux0 Δux0 ,

div
(
|∇ux0 |2

x

r

)
= n − 2

r
|∇ux0 |2 − 2Δux0

〈
∇ux0 ,

x

r

〉
+ 2 div

(〈
∇ux0 ,

x

r

〉
∇ux0

)
,

div
(

ux0
x

r

)
= ux0

n

r
+

〈
∇ux0 ,

x

r

〉
,

to deal with the first, third and fourth addend in (22), respectively. Hence, we can
rewrite the right-hand side of equality (22) as follows

d

dr

( 1

rn+2

∫
Br

(
|∇ux0 |2 + 2 ux0

)
dx

)

= 2

rn+2

∫
Br

(Δux0 − 1)
(
2

ux0

r
−

〈
∇ux0 ,

x

r

〉)
dx

+ 2

rn+2

∫
∂ Br

〈
∇ux0 ,

x

r

〉2
dHn−1 − 4

rn+2

∫
∂ Br

ux0

r

〈
∇ux0 ,

x

r

〉
dHn−1 . (23)

We consider next the boundary term in the expression ofΦu . By scaling and a direct
calculation, we get

d

dr

( 2

rn+3

∫
∂ Br

u2
x0 dHn−1

)
x=r y= 2

∫
∂ B1

d

dr

(
ux0(r y)

r2

)2

dHn−1

= 4
∫

∂ B1

ux0(r y)

r4

(〈∇ux0(r y), y
〉 − 2

ux0(r y)

r

)
dHn−1

x=r y= 4

rn+2

∫
∂ Br

ux0

r

〈
∇ux0 ,

x

r

〉
dHn−1

− 8

rn+2

∫
∂ Br

u2
x0

r2
dHn−1 . (24)
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Then, by combining together Eqs. (23) and (24) and recalling Eq. (9), we obtain

Φ ′
u(x0, r) = 2

rn+2

∫
Br

fx0

(
2

ux0

r
− 〈∇ux0 ,

x

r
〉
)
dx

+ 2

rn+2

∫
∂ Br

(〈
∇ux0 ,

x

r

〉
− 2

ux0

r

)2
dHn−1

= 2

rn+2

∫
Br \Λux0

fx0

(
2

ux0

r
−

〈
∇ux0 ,

x

r

〉)
dx

+ 2

rn+2

∫
∂ Br

(〈
∇ux0 ,

x

r

〉
− 2

ux0

r

)2
dHn−1,

where in the last equality we used the unilateral obstacle condition to deduce that
Λux0

⊆ {∇ux0 = 0}. Therefore, by the growth of u and ∇u from x0 in (20) we obtain

Φ ′
u(x0, r) ≥ − C

rn+1

∫
Br \Λux0

| fx0 | dx + 2

rn+2

∫
∂ Br

(〈
∇ux0 ,

x

r

〉
− 2

ux0

r

)2
dHn−1 .

(25)
Next note that by (H1), (H3), and by the very definition of fx0 in (9) it follows that

1

rn+1

∫
Br \Λux0

| fx0 | dx ≤ ω f (r)

c0 r
+ C

r
n
(
1+ 1

p

)
∫

Br

|∇2ux0 | dx + C

rn

∫
Br

|divCx0 | dx .

(26)
By (21) we estimate the second addend on the right-hand side of the last inequality as
follows

1

r
n
(
1+ 1

p

)
∫

Br

|∇2ux0 | dx ≤ C

r
n
(
1+ 1

p

) ‖∇2ux0‖L p(Br ,Rn×n)(ωnrn)
1− 1

p ≤ C r− n
p ,

(27)
and by Hölder inequality we get for the third addend

1

rn

∫
Br

|divCx0 | dx ≤ 1

rn
‖divCx0‖L p(Br ,Rn) (ωnrn)

1− 1
p ≤ C r− n

p . (28)

Therefore, we conclude from (25)–(28)

Φ ′
u(x0, r) ≥ −C

ω(r)

r
+ 2

rn+2

∫
∂ Br

(〈
∇ux0 ,

x

r

〉
− 2

ux0

r

)2
dHn−1 ,

where ω(r) := ω f (r) + r1−
n
p . ��

Remark 4.1 Recalling that f is Dini continuous by (H3), the modulus of continuity ω

provided by Theorem 2.2 is in turn Dini continuous as p > n.
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Remark 4.2 More generally, the argument in Theorem 2.2 works for solutions to
second-order elliptic PDEs in nondivergence form of the type

ai j (x) ui j + bi (x) ui + c(x) u = f (x)χ{u>0} ,

the only difference with the statement of Theorem 2.2 being that in this framework

ω(r) := ω f (r) + r1−
n
p + r2 supBr

c (cf. [12, Appendix]).

5 Monneau’s Quasi-Monotonicity Formula: Proof of Theorem 2.3

In this section, we prove Monneau’s quasi-monotonicity formula for the L2 distance
on the boundary of uL(x0) from any 2-homogeneous solution to Eq. (14). As for
Theorem 2.2, the proof of Theorem 2.3 uses equality (9) and Proposition 3.3.

Proof of Theorem 2.3 For the sake of notational simplicity, we write ux0 rather than
uL(x0) (as in the proof of Theorem 2.2).

Set w := ux0 − v, and then arguing as in (24) and by applying the divergence
theorem, we get

d

dr

(
1

rn+3

∫
∂ Br

w2 dHn−1
)

= 2

rn+3

∫
∂ Br

w
(〈

∇w,
x

r

〉
− 2

w

r

)
dHn−1

= 2

rn+3

∫
Br

div (w∇w) dx − 4

rn+4

∫
∂ Br

w2 dHn−1

= 2

rn+3

∫
Br

wΔw dx + 2

rn+3

∫
Br

|∇w|2 dx

− 4

rn+4

∫
∂ Br

w2 dHn−1 . (29)

For what the first term on the right-hand side of (29) is concerned, recall that u ∈
W 2,p

loc (Ω); thus, by locality of the weak derivatives we have that Ln
({∇ux0 = 0} \

{∇2ux0 = 0}) = 0. Being Λux0
⊆ {∇ux0 = 0}, we conclude that Δux0 = 0 Ln-a.e.

in Λux0
, and therefore, in view of (9) we infer

wΔw = (ux0 − v)(Δux0 − 1) =
{

(ux0 − v) fx0 Ln-a.e. Ω \ Λux0

v Ln-a.e. Λux0
.

Instead, estimating the second and third terms on the right-hand side of (29) thanks
to (14) yields

1

rn+3

∫
Br

|∇w|2 dx − 2

rn+4

∫
∂ Br

w2 dHn−1

= 1

rn+3

∫
Br

(
|∇ux0 |2 + |∇v|2

)
dx
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− 2

rn+3

∫
Br

div (ux0∇v) dx + 2

rn+3

∫
Br

ux0 dx − 2

rn+4

∫
∂ Br

w2 dHn−1

(15)= 1

r

(
Φux0

(x0, r) − Φv(x0, r)
) − 2

rn+4

∫
∂ Br

ux0

(〈
∇v,

x

r

〉
− 2v

)
dx

(13)= 1

r

(
Φux0

(x0, r) − Φux0
(x0, 0

+)
)

.

Then, (29) rewrites as

d

dr

(
1

rn+3

∫
∂ Br

w2 dHn−1
)

= 2

r

(
Φu(x0, r) − Φu(x0, 0

+)
)

+ 2

rn+3

∫
Br \Λux0

(ux0 − v) fx0 dx

+ 2

rn+3

∫
Br ∩Λux0

v dx .

Inequality (12) in Theorem 2.2, the growth of the solution u from free boundary points
in (20), the 2-homogeneity and positivity of v yield the conclusion (cf. (26)–(28)):

d

dr

(
1

rn+3

∫
∂ Br

w2 dHn−1
)

≥ − C

r

∫ r

0

ω(t)

t
dt − C

rn+1

∫
Br \Λux0

| fx0 | dx = − C

r

∫ r

0

ω(t)

t
dt

for some C = C(n, p,Λ, c0, K , ‖ f ‖L∞ , ‖A‖W 1,p ) > 0. ��

6 Free Boundary Analysis: Proof of Theorem 2.1

Weiss’ and Monneau’s quasi-monotonicity formulas proved in Sects. 4 and 5, respec-
tively, are important tools to deduce regularity of free boundaries for classical obstacle
problems for variational energies, both in the quadratic and in the nonlinear setting
(see [7–12]).

In this section, we improve upon [8, Theorems 4.12 and 4.14] in the quadratic case
weakening the regularity of the coefficients of the relevant energies. This is possible
thanks to the above-mentioned new quasi-monotonicity formulas.

In the ensuing proof, we will highlight only the substantial changes, since the
arguments are essentially those given in [8,9]. In particular, we remark again that
in the quadratic case the main differences concern the quasi-monotonicity formulas
established for the quantity Φu rather than for the natural candidate related to E .

We follow the variational approach byWeiss [11] and byMonneau [12] for the free
boundary analysis in Theorem 2.1.
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Proof of Theorem 2.1 First, recall thatwemayestablish the conclusions for the function
u = w − ψ introduced in Sect. 3. Given this, the only minor change to be done to the
arguments in [8, Section 4] is related to the freezing of the energy, where the regularity
of the coefficients plays a substantial role. More precisely, in the current framework
for all v ∈ W 1,2(B1) we have

∣∣∣∣
∫

B1

(
A(r x)∇v,∇v〉 + 2 f (r x)v

)
dx −

∫
B1

(|∇v|2 + 2v
)
dx

∣∣∣∣
≤ (r1−

n
p + ω f (r))

∫
B1

(|∇v|2 + 2v
)
dx .

We thendescribe shortly the route to the conclusion. Tobeginwith, recall that the quasi-
monotonicity formulas established in [8, Section 3] are to be substituted by those in
Sects. 4 and 5. Then, the 2-homogeneity of blowup limits in [8, Proposition 4.2] now
follows from Theorem 2.2. The quadratic growth of solutions from free boundary
points contained in [8, Lemma 4.3] that implies nondegeneracy of blowup limits is
contained in Lemma 3.1. The classification of blowup limits is performed exactly as
in [8, Proposition 4.5]. The conclusions of [8, Lemma 4.8], a result instrumental for
the uniqueness of blowup limits at regular points, can be obtained with essentially no
difference. The proofs of [8, Propositions 4.10, 4.11, Theorems 4.12, 4.14] remain
unchanged. The theses then follow at once. ��

7 Conclusions

We have established quasi-monotonicity formulas of Weiss’ and Monneau’s type for
quadratic energies having matrix of coefficients in W 1,p, p > n, and we have given
an application to the corresponding free boundary analysis for the related classical
obstacle problem.

As pointed out in Sect. 1, concerning the quasi-monotonicity formulas the main
difference with the existing literature is related to themonotone quantity itself. Indeed,
rather than considering the natural quadratic energy E associated with the obstacle
problem under study, we may consider the classical Dirichlet energy thanks to a
normalization. In doing this, we have been inspired by Monneau [12, Section 6].
The advantage of this formulation is that the matrix field A is not differentiated in
deriving the quasi-monotonicity formulas contrary to [8,9]. Our additional insight is
elementary, but crucial: we further exploit the quadratic growth of solutions from free
boundary points in Proposition 3.3 to establish quasi-monotonicity. In view of all of
this, we are able to weaken the required regularity assumptions on the matrix field A

(cf. (H1)).
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