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Abstract. Recommender systems (RS) play a key role in e-commerce by pre-
selecting presumably interesting products for customers. Hybrid RSs using 
a weighted average of individual RSs’ predictions have been widely adopted 
for improving accuracy and robustness over individual RSs. While for 
regression tasks, approaches to estimate optimal weighting schemes based 
on individual RSs’ out-of-sample errors exist, there is scant literature in 
classification settings. Class prediction is important for RSs in e-commerce, 
as here item purchases are to be predicted. We propose a method for 
estimating weighting schemes to combine classifying RSs based on the 
variance-covariance structures of the errors of individual models' 
probability scores. We evaluate the approach on a large real-world e-
commerce data set from a European telecommunications provider, where it 
shows superior accuracy compared to the best individual model as well as a 
weighting scheme that averages the predictions using equal weights. 

Keywords: hybrid recommender systems, forecast combination, optimal 
weights, demographic filtering 

1 Introduction 

Personalized information systems (IS) are crucial nowadays in the areas of 
marketing and sales, providing a unique experience to users with the help of 
dialogues and relevant content. Advances in technology have made it possible to 
collect and process increasing amounts of data, such as customer profiles, 
activities and interests. Turning this data into actionable insights is not only key 
to acquiring and retaining customers, but also to providing suitable purchasing 
recommendations for up- and cross-selling items relevant to and appreciated by 
existing customers in order to increase customer lifetime values. 

In this spirit, recommender systems (RS) are personalized ISs with the goal of 
helping customers make better (purchasing) decisions. There are different criteria 



for measuring the quality of an RS, e.g. serendipity, diversity, and predictive 
accuracy. In this paper, we focus on the latter aspect. IS research has shown that 
the accuracy of recommendations, i.e. the perceived personalization, is of key 
importance for customers to adopt an RS as a decision aid, and thus, purchasing 
recommended items. More accurate RSs increase decision quality and also help 
companies retain customers [1]. 

Increasing the predictive accuracy of an RS can be achieved in several ways, e.g. 
by applying an improved predictive algorithm, tuning hyper-parameters or 
collecting additional input data for single RS techniques used. In addition to and 
independent of the former approaches, accuracy and robustness of RSs can be 
improved by combining multiple different prediction algorithms. This is called a 
hybrid RS (HRS). HRSs have been shown in the IS literature to improve decision 
quality and satisfaction with the system, compared to using only single 
recommendation methods such as collaborative or content-based approaches [2]. 

There are different ways of combining RSs into a hybrid, e.g. weighted, 
switching, mixed, or feature combination. In this study, we focus on weighted 
HRSs. The literature on how to select combination weights in weighted HRSs is 
very limited, specifically in the context of purchase predictions. Providing 
products or product categories of interest to a current user is key to content and 
affiliate marketing, generating leads and developing existing customers in terms 
of up- and cross-selling endeavors. 

In [3], the authors propose a method of estimating optimal weights (OW) for 
combining multiple RSs in a rating prediction scenario. Their approach derives in-
sample OW that minimize the mean squared error (MSE) of the HRS on the 
training data given certain assumptions. We transfer the weighting method from 
regression to a multi-category classification problem, where the goal is to predict 
the next purchase of a given customer based on the customer profile. For that, we 
use the Brier score, which quantifies the mean squared deviation of the estimated 
purchase probability from the true outcome. The Brier score is therefore 
analogous to the MSE in regression settings and is used in this work to estimate 
weights for combining probability scores of multiple classifiers. 

The approach is evaluated on a labeled real-world data set from a large 
European telecommunications provider, where it is used to predict purchasing 
probabilities for three categories of mobile devices. The task is to predict the 
conditional probability, given that a certain customer is going to buy a mobile 
device, in which category it will be. Thus, the problem can be regarded as a top-1 
recommendation task. Experimental results show that the proposed classifier 
weighting method leads to significant improvements, both in the Brier score and 
the accuracy score, compared to both the individual models as well as a 
combination where all models receive equal weights. 

The remainder of this paper is organized as follows. Section 2 provides 
foundations of HRSs and forecast combination. Section 3 describes the proposed 
classifier weighting method. Section 4 outlines the experimental design to 
evaluate the proposed method on a real-world data set. Section 5 reports the 
experimental results, and Section 6 discusses the benefits and shortcomings of the 



proposed approach. Finally, we conclude and suggest directions for future 
research in Section 7. 

2 Related Work 

In this section, we review foundations of the proposed weighting approach. 
Section 2.1 gives an overview of HRSs with a focus on weighted approaches. 
Section 2.2 provides background on statistical forecast combination. Section 2.3 
summarizes the research gap and motivates the novel method. 

2.1 Hybrid Recommender Systems 

An RS is a software system designed for estimating users’ interest for products, 
based on their past purchases and possibly other inputs, and suggesting them 
those items with the highest estimated interest. RSs reduce information overload 
and improve users’ decision quality by limiting the number of options. For 
companies, they increase sales and help market long-tail items which would 
otherwise be hard to find. RSs are nowadays used by, among others, e-commerce 
sites, digital marketing systems, social networks, and streaming platforms, where 
their advantages have been shown extensively [2]. 

An RS’s quality relates to criteria such as serendipity, diversity, and accuracy. 
Serendipity denotes the ability of an RS to suggest items that a given user was not 
aware of, but finds interesting. Diversity refers to the composition of 
recommendations. Instead of suggesting several similar items, a good RS should 
be able to cater to the different interests of a given user. Finally, an accurate RS 
makes recommendations which fit user needs, such that the products are then 
taken by users with high probability, e.g. a customer ultimately purchases 
suggested products or watches suggested movies (e.g. [4]). 

There are several methods for calculating prediction scores from available data, 
such as collaborative filtering, content-based filtering, demographic filtering, or 
knowledge-based systems, each using different input data sources and applying 
different algorithms. Each RS algorithm has certain shortcomings, e.g. the cold-
start problem, where collaborative filtering methods are not able to provide 
recommendations for new users or new items (e.g. [4]). 

HRSs combine two or more individual RSs in order to alleviate those problems 
as well as improve accuracy and robustness. Burke [5] classifies HRSs into seven 
types: weighted, switching, mixed, feature combination, cascade, feature 
augmentation, and meta-level. In this study, we focus on weighted HRSs, where 
several individual RSs calculate predictions independently, and those predictions 
are then combined using an aggregation function. While it has been shown that 
using a weighted average of RSs’ predictions often leads to increased accuracy due 
to reduced model variance, published work on the selection of combination 
weights is scarce. In [6], different supervised models like ridge regression, neural 
networks, or gradient boosted decision trees for learning weights are compared. 



In [3], a model to learn weighting schemes from the errors observed for individual 
models is transferred from the forecasting to the RS domain, using the error 
covariance structure of the RSs to estimate OW. The model transferred is the one 
introduced in [7], which will be described in more detail in the next section. 

2.2 Statistical Forecast Combination 

In statistical forecasting, the combination of multiple prediction models has been 
subject to a large body of research. In [7], a weighting strategy is introduced which, 
for two combined models, can be shown to minimize the MSE in-sample, given the 
individual forecasts are unbiased, i.e. they do not consistently over- or 
underestimate the true values, and the performance of the individual forecasts is 
time-invariant. This weighting strategy is coined OW. 

OW can generally be calculated for 𝑘 prediction models (see e.g. [8]): Let 𝒚 be 
the vector of actual outcomes and �̂�𝑙  model 𝑙’s predictions for the entries in 𝒚. 
Assuming error vectors 𝒆𝑙 = 𝒚 − �̂�𝑙 , 𝑙 ∈ {1, … , 𝑘} of the individual models are 
multivariate normal with mean 0, OW can be learned that minimize the MSE over 
available ratings in 𝒚. With Σ𝐸  denoting the variance-covariance matrix of the 

error matrix 𝐸 = (𝒆1, … , 𝒆𝑘), and �⃗⃗�  as a 𝑘-dimensional column vector with all 
ones, Equation (1) derives the OW vector.  

 

𝒘 = 
Σ𝐸

−1�⃗⃗�  

�⃗⃗�  ′Σ𝐸
−1�⃗⃗�  

(1) 

 
Note that Equation (1) minimizes the sum of squared deviations from zero (as of 
the unbiasedness assumption) subject to the constraint that the weights sum up 
to one, i.e. a weighted average. Although optimal in-sample, OW has often been 
reported to be outperformed on unseen data by more robust weighting strategies 
such as giving equal weights to all forecasts, i.e. a simple average (SA) (e.g. [9, 10]). 
This observation is called the “forecast combination puzzle”. It can be explained 
by the fact that learned weights like OW must be estimated from past errors, often 
with rather small data sets available. Hence, OW can overfit the training data due 
to high model variance. SA, on the other hand, has no variance as it does not adjust 
weights to training data and is therefore more robust (e.g. [10]). 

Contrary to the forecast combination puzzle, in [3] it is shown that given 
sufficient amounts of training observations, OW can be learned that are close to 
the ex-post OW (i.e. the unknown linear weight vector leading to the smallest out-
of-sample MSE). The authors analyze this approach on a large publicly available 
data set with ratings of movies and find that it leads to accuracy improvements 
over the best individual RS as well as SA. 



2.3 Contribution of this Paper 

In summary, little research has been published on the selection of combination 
weights in weighted HRSs. As described above, there exist some weighting 
strategies for regression scenarios, mainly rating prediction, but for classification 
tasks, binary or multi-class, we are not aware of analytical methods for weighting 
different kinds of algorithms. 

However, those kinds of problems appear very often in e-commerce, where a 
company wants to estimate, for a given user, purchasing probabilities of different 
products or product categories in order to show personalized advertisements or 
select suitable customers for marketing campaigns. In this paper, we propose an 
analytical weighting procedure to increase the accuracy and robustness of a multi-
class classifier ensemble over the best individual classifier as well as SA. The 
proposed technique offers a means to increase accuracy and robustness without 
requiring expensive brute-force search or additional input data. 

Commonly, e-commerce companies already test and compare different 
algorithms with the goal of maximizing predictive accuracy. Depending on the size 
of a company and its number of customers, an accuracy increase as small as 1% 
can lead to a significantly higher profit. The proposed approach offers a simple 
and efficient means to combine their existing methods and thus achieve higher 
levels of performance and profit. 

We adapt the method introduced in [3] of learning combination weights for 
combining multiple RSs in a rating prediction task. We combine classifying RSs 
based on the covariance structures of the individual models' probability scores 
such that the Brier score is minimized in the same fashion as the MSE is minimized 
in regression settings. Next purchase (class) predictions on unseen data are then 
derived as the class with the highest probability score. 

As described in Section 1, both the importance of accurate RSs and the benefits 
of HRSs have been demonstrated in IS research. The weighting method proposed 
in this paper therefore provides a relevant contribution both to the existing body 
of research and to practitioners, mainly large companies with substantial data 
available and many customers. 

3 Methodology 

This section introduces the approach to estimate OW for combining predictions of 
classification algorithms. Section 3.1 considers the assumptions and requirements 
of the weighting method. Section 3.2 describes the estimation of optimal 
combination weights in detail. 

3.1 Model Assumptions 

The classifier weighting is based on statistical forecast combination, as introduced 
in Section 2.2. In regression settings, Equation (1) ensures a minimal in-sample 



MSE given that the individual models’ errors follow a multivariate normal 
distribution with mean 0, i.e. the models are unbiased. 

Our adapted classifier weighting scheme relies on the Brier score [11] as the 
classification equivalent of the MSE. For 𝑐 possible outcomes (classes) and 𝑛 
observations, it calculates as shown in Equation (2), where 𝑦𝑖𝑗  represents the 

actual outcome for observation 𝑖 and class 𝑗, which is either 0 or 1, and �̂�𝑖𝑗  

represents the estimated probability with 0 ≤  �̂�𝑖𝑗 ≤ 1 and 

∑ �̂�𝑖𝑗
𝑐
𝑗=1 =  1, 𝑖 ∈  {1, … , 𝑛}. 

 

𝐵𝑆 =  
1

𝑛
∑∑(𝑦𝑖𝑗 − �̂�𝑖𝑗)

2
𝑐

𝑗=1

𝑛

𝑖=1

(2) 

 
For each observation and each class label, we calculate the deviation between the 
predicted probability of the observation pertaining to the class and the true 
outcome. For each observation, the predicted probabilities sum to 1, and the true 
outcome is 1 for one class label and 0 for all the other labels. Since the errors are 
flattened, yielding error vectors of length 𝑛𝑐, the deviations between prediction 
and ground truth sum exactly to 0 for each observation. Consequently, the mean 
deviation for each flattened error vector is also 0. Regarding the multivariate 
normality of the error vectors, respective analyses of the data set are provided in 
Section 5.1. 

Another assumption of the classifier weighting method is that the minimization 
of the Brier score of a classifier ensemble results in an accuracy gain over all 
individual classifiers as well as an equal weights combination. We expect the Brier 
score to be an appropriate metric due to its interpretation as the MSE in 
probability estimation. 

3.2 Classifier Weighting Method 

Input to the method is a labeled classification data set with 𝑛 observations, and 𝑘 
classification models. The output is �̂�, the estimate of the out-of-sample OW 
vector with �̂� ∈ ℝ𝑘 and ∑ �̂�𝑙

𝑘
𝑙=1 = 1. The number of classes in the data set is 

denoted by 𝑐. A portion of the input data is held out, resulting in two subsets, the 
training set with 𝑛𝑡  observations and the holdout set with 𝑛ℎ observations. The 
split is performed stratified, i.e. the class distributions in the training and holdout 
set are practically equal. 

All classifiers are fitted on the training set. Each classifier 𝑙 ∈  {1, … , 𝑘} then 
makes probability predictions �̂�ℎ𝑙 ∈  [0, 1]𝑛ℎ×𝑐  on the holdout set. These 
predictions are flattened into a prediction vector �̂�ℎ𝑙  of length 𝑛ℎ𝑐, which contains 
predicted probabilities for each instance 𝑖 ∈ {1, … , 𝑛ℎ} and for each class 
𝑗 ∈  {1, … , 𝑐}. 𝒚ℎ = (𝑦1,1, … , 𝑦𝑛ℎ,𝑐)′ denotes the vector of true outcomes in the 

holdout set. For each instance, 𝒚ℎ contains 1 for the actual class label of the 
instance, and 0 for all other class labels. Figure 1 shows an example of two 



prediction vectors and the true outcome. For simplicity, we omit the ℎ subscript 
in this and the following figures. 

For each classifier 𝑙, the vector �̂�ℎ𝑙  of predicted probabilities is then compared 
to the vector 𝒚ℎ of actual outcomes. The error vector for classifier 𝑙 is calculated 
as 𝒆ℎ𝑙 = 𝒚ℎ − �̂�ℎ𝑙 . For each of the 𝑘 classifiers, this error vector is computed, 
yielding an error matrix 𝐸ℎ = (𝒆ℎ1, … , 𝒆ℎ𝑘). Calculating OW from those error 
vectors can be shown to minimize the Brier score in-sample, analogous to the MSE 
in a regression setting. Figure 2 displays the error matrix for the predictions from 
Figure 1. 

With Σℎ  as the variance-covariance matrix of 𝐸ℎ , the OW estimate �̂� can be 
computed using Equation (1). The variance-covariance matrix of the error matrix 
from Figure 2 is given by 

Σℎ = (
0.1789 0.1730
0.1730 0.1825

) . 

Figure 2. Example for error matrix based on the predictions in Figure 1 

Figure 1. Example for prediction vectors and actual outcomes with 
𝑛 = 3 instances, 𝑐 = 3 classes, and 𝑘 = 2 classification models 



The weight vector estimated in this example is �̂� = (0.6163, 0.3837)′. Finally, 
training and holdout set are concatenated again, and all 𝑘 individual classifiers are 
re-fitted on all 𝑛 observations. This is to ensure that all models can process as 
many observations as possible in the training phase. The classifiers’ probability 
predictions on new, unseen data are subsequently combined using the weight 
vector �̂� estimated on the training set. 

Many classification algorithms yield class membership scores that can be used 
to rank observations based on their likelihood to pertain to a certain class. 
However, those scores in general cannot be interpreted as proper probability 
estimates, since they are not well-calibrated, i.e. predicted class membership 
scores do not match ex-post probabilities [12]. While this is not an issue for class 
predictions of single classifiers, in classifier ensembles it is important to have 
reliable probability estimates. Therefore, we compare the OW estimation with and 
without calibration. For the calibration setting, we use isotonic regression as 
introduced in [13]. 

4 Experimental Design 

We now describe the experiments conducted to evaluate the proposed weighting 
approach. Section 4.1 describes the use case and data set used for evaluation. 
Section 4.2 introduces the individual classifier methods used for the HRS. In 
Section 4.3, details about the experiments and evaluation criteria are given. 

4.1 Use Case and Data Set 

For the evaluation of the proposed classifier weighting scheme, we used a 
proprietary real-world data set from a large European telecommunications 
provider. Figure 3 displays the schema of the data set. It contains several hundred 
thousand purchases of mobile devices by customers. All purchases occurred in the 
years 2018 and 2019. In the figure, the last column represents the target variable, 
the first two columns are metadata for identification, and the columns in between 
are predictors. 

Figure 3. Schematic display of the data set used for evaluation 



The mobile devices are divided into three categories. The goal is to predict, for 
each of the 𝑐 = 3 categories, the conditional probability that the given customer 
will select the respective category, given a purchase. The category with the highest 
estimated probability is then recommended. The most frequent of the three class 
labels occurs in 48% of cases in the data set. Thus, a simple classifier which always 
predicts that label would already achieve an accuracy score of 48%, which can 
serve as a lowest bound for more sophisticated models. 

The data set contains more than 40 predictor variables, consisting of customer 
properties such as sociodemographics, characteristics of the customer’s contract, 
and aggregated behavioral information such as mobile data usage. The data types 
of the predictors are mixed, comprising binary, integer, real-valued as well as 
categorical variables. All values of the predictors were measured immediately 
before the respective purchase, representing a snapshot of the respective 
customer and contract in order to recognize purchasing patterns. 

4.2 Individual Classifiers 

This section describes the individual models used to test the weighting method. 
Since the model’s inputs are vectors representing customers via their respective 
properties, the method used here can be classified as demographic filtering (e.g. 
[14]), although the predictors do not only contain demographic information. In 
total, 𝑘 = 7 classifying algorithms were combined, which are briefly outlined here. 
We used the implementations in the Python package scikit-learn [15] for the 
individual classifiers. 

 Logistic regression: The logistic regression model assumes a linear 
relationship between the predictor variables and the log-odds of the positive 
outcome of a binary dependent variable (e.g. [16]). The model can be extended 
for non-binary classification either fitting a one-vs-all model for each class label 
or minimizing the multinomial logistic loss. The latter is used here. 

 𝒌-nearest neighbors classifier1: A 𝑘-nearest neighbors classifier predicts, for 
a given instance to classify, the class which most occurs in the 𝑘 training points 
with the smallest distance to that instance [17]. For probabilistic predictions, 
the class distribution of those 𝑘 instances is predicted. The distance metric used 
here is the Euclidean distance, and the number of neighbors considered was set 
to 𝑘 = 5. 

 Multi-layer perceptron: A multi-layer perceptron is a frequently-used form of 
neural networks, consisting of an input layer with 𝑚 nodes (the number of 
features), an output layer with 𝑐 nodes (the number of classes), and one or more 
hidden layers (e.g. [16]). The nodes of the hidden layer use a nonlinear 
activation function, in our case the rectified linear unit 𝑓(𝑥) =  max {0, x}. The 
weights between nodes are initialized randomly and then sequentially updated 

                                                                    
1 Note that in this bullet point only, 𝑘 represents the number of neighbors. In the rest of the 

article, 𝑘 is used to denote the number of classifiers combined in the HRS. 



using the backpropagation algorithm, which computes the gradient of the loss 
function with respect to each weight. The weight optimization is done using the 
efficient stochastic gradient descent method Adam [18], and the maximum 
number of iterations is set to 1000. 

 Decision tree: The decision tree algorithm [19] learns simple “if-else” style 
decision rules by recursively splitting the data set with respect to a certain 
variable and value in order to create subsets which are more pure in terms of 
class distribution. We used a maximum depth of 5 in order not to overfit the 
training set. 

 Random forest: The random forest algorithm [20] fits an ensemble of decision 
trees on the training data. By randomly selecting bootstrap samples of data and 
randomly selecting a subset of variables available for splitting at each node, the 
trees in the ensemble are partially independent, reducing the model variance 
and thus alleviating a single decision tree's tendency to overfit the training data. 
For predicting probabilities on new data, the average of predicted probabilities 
of all trees in the ensemble is calculated. We chose a number of 100 trees with 
a maximum depth of 5 for the forest. 

 AdaBoost: AdaBoost [21] is an ensemble method which fits simple base 
learners sequentially, where in each iteration, weights for previously 
misclassified instances are increased such that the next base learner is forced 
to focus on more difficult cases. For prediction, the outputs of all base learners 
are aggregated. We used 50 decision trees with a depth of 1, also known as 
“decision stumps”. 

 Gradient boosting: Gradient boosting [22] sequentially builds an additive 
model. In each iteration, 𝑐 (the number of classes) regression trees are fitted on 
the negative gradient of the loss function, which for probabilistic outputs is the 
deviance. We chose a value of 100 iterations. 

4.3 Evaluation and Benchmarks 

As mentioned in Section 4.1, the prediction task in this business case was to 
recommend one of 𝑐 = 3 possible classes of mobile devices to each customer in 
the test set. Therefore, an ensemble of three-class classifiers was used. In order to 
evaluate the classifier weighting approach we propose, the following methods 
were compared: 

 Individual classifiers: For each of the seven models described in Section 4.2, 
the individual performance on the test set was calculated. 

 SA: An equal weights average of the predictions of all seven classifiers on the 
test set was used as a benchmark for the hybrid approach. 

 OW estimate: This is the approach proposed in this paper (see Section 3 for 
details). 

 Out-of-sample OW: The linear weight vector with ex-post minimal Brier score, 
calculated on the test set, serves as an upper performance bound for any linear 



weight vector. The goal of the OW estimate is to come as close as possible to 
this performance. 

For each of the mentioned methods, there are two treatments: First, the 
probabilistic predictions are taken as-is. Second, the predicted probabilities are 
calibrated using isotonic regression before making predictions or combining the 
probabilistic predictions. The un-calibrated and calibrated treatments are 
compared. 

In order to evaluate the weighting approach and compare it to other strategies, 
10% of the data set was used as a test set. Another 10% of the data set was used 
as a holdout set to calculate out-of-sample errors of the individual classifiers in 
order to estimate OW, as described in Section 3.2. This leaves 80% of the data set 
as a training set. 

We used two evaluation metrics in the experiment: the accuracy score and the 
Brier score which was also used for weight estimation. Those two metrics were 
chosen because the proposed weighting approach aims at increasing the accuracy 
of a classifier ensemble over all individual components as well as an SA 
combination by minimizing the Brier score. As mentioned in Section 3.1, we expect 
the minimization of the Brier score to result in a significant accuracy gain. 

For reasons of robustness, the experiment was repeated ten times with random 
training-holdout-test allocations. Accuracy and Brier scores were averaged over 
those runs, and their standard deviations are reported. 

5 Empirical Evaluation 

This section contains the experimental results of comparing the proposed 
classifier weighting method to the afore-mentioned benchmarks. Section 5.1 
describes the data preparation, i.e. checking the model requirements. Section 5.2 
reports the results. 

5.1 Data Preparation 

As mentioned above, the weighting method requires unbiased individual 
estimators (mean errors of 0) and multivariate normal error vectors. We 
described in Section 3.1 that the mean errors are 0 when using the flattened 
deviation between predicted probabilities and true outcomes as error vectors. 
Now, we inspect the distribution of deviations. 

Figure 4 displays, for each individual classifier, a histogram of out-of-sample 
errors, using ten equal-width bins. The vertical axes are not labeled since the 
number of observations in the test set would give away the number of 
observations in the entire data set (see Section 4.1). The left part of the figure 
shows the histograms when feeding error vectors into the weight estimation as-
is, i.e. without calibration. It is clear to see that the errors are not normally 
distributed. Some of the classifiers partially exhibit a bell-shaped distribution, 



however all with a gap around 0. Others, especially AdaBoost, are nowhere near 
bell-shaped. 

However, applying the mentioned classifier calibration technique using 
isotonic regression changes the error distribution. The right part of Figure 4 
shows the same plot, but this time after isotonic calibration of each classifier. 
While there is still a gap near 0, all distributions now exhibit a bell-shaped form. 
They are still not normally distributed, but the calibration helps to better 
approach the assumption. 

5.2 Results 

Table 1 displays the results of comparing the HRS using OW estimation, an HRS 
using SA combination, and the individual classifiers. Both for the accuracy and the 
Brier score, the mean and standard deviation over ten runs are reported. For 
better comparability, the percentage differences between the OW estimation and 
the other methods is also reported for both metrics (columns “Diff.”). As 
mentioned in Section 4.3, in addition to the individual classifiers, the SA 
combination and the OW estimate, the results using out-of-sample OW are also 
reported (last row) as an upper bound for the performance of a linear weighting 
vector. 

The table shows that the combination using OW estimation clearly outperforms 
all individual methods as well as the SA combination. The best-performing 
individual classifier, which is the neural network with an accuracy of 66.8%, has a 
2.4% lower accuracy and a 4.99% higher Brier score than the HRS using the OW 
estimate. An SA combination using equal weights slightly outperforms the best 
individual method, but leads to a 2.2% lower accuracy and a 6.25% higher Brier 
score than estimated OW. 

 

Figure 4. Histograms of individual classifiers’ out-of-sample errors without calibration 
(left) and with isotonic calibration (right) 



Table 1. Comparison of performance between a hybrid recommender system using 
optimal weight estimation, a simple average combination, and all individual classifiers 

Method Accuracy (std.) Diff. Brier score (std.) Diff. 

Logistic regression 0.6440 (0.0012) +6.14% 0.1595 (0.0004) -10.70% 

𝑘-nearest-neighbors 0.6280 (0.0016) +8.84% 0.1677 (0.0004) -15.09% 

Multi-layer perceptron 0.6675 (0.0015) +2.40% 0.1499 (0.0005)  -4.99% 

Decision tree 0.6463 (0.0013) +5.76% 0.1600 (0.0003) -10.98% 

Random forest 0.6430 (0.0014) +6.30% 0.1649 (0.0004) -13.63% 

AdaBoost 0.6503 (0.0012) +5.10% 0.2187 (0.0000) -34.88% 

Gradient boosting 0.6590 (0.0013) +3.71% 0.1529 (0.0003)  -6.88% 

Simple average 0.6688 (0.0012) +2.20% 0.1519 (0.0002) -6.25% 

Optimal weight estimate 0.6835 (0.0013)  0.1424 (0.0003)  

Ex-post optimal weights 0.6840 (0.0013) -0.07% 0.1423 (0.0003) +0.07% 

 
The results also show that the estimated OW vector is very close in both accuracy 
(0.07% lower) and Brier score (0.07% higher) to the ex-post, out-of-sample OW 
vector. This indicates that the weighting approach proposed in this study can yield 
weight vectors that are close to the best possible linear weighting HRS. 

Table 2 displays the results when all classifiers’ probability estimates are 
calibrated using isotonic regression before estimating OW. After calibration, all 
classifiers’ Brier scores are in a range between 0.15 and 0.16. Their individual 
accuracies are not significantly affected, with one exception: The calibrated 
nearest-neighbors classifier has an accuracy of 64.8%, as compared to 62.8% for 
the non-calibrated version. This indicates that the calibration changed the order 
of the class ranking for some instances, leading to a higher number of correct class 
predictions. 

Table 2. Results analogous to Table 1 after isotonic calibration of individual classifiers 

Method Accuracy (std.) Diff. Brier score (std.) Diff. 

Logistic regression 0.6440 (0.0014) +6.40% 0.1593 (0.0004) -10.83% 

𝑘-nearest-neighbors 0.6484 (0.0017) +5.69% 0.1561 (0.0003) -9.01% 

Multi-layer perceptron 0.6673 (0.0015) +2.68% 0.1500 (0.0005) -5.29% 

Decision tree 0.6460 (0.0013) +6.07% 0.1600 (0.0003) -11.21% 

Random forest 0.6461 (0.0018) +6.05% 0.1593 (0.0003) -10.80% 

AdaBoost 0.6487 (0.0011) +5.63% 0.1579 (0.0003) -10.03% 

Gradient boosting 0.6590 (0.0012) +3.97% 0.1528 (0.0003) -7.03% 

Simple average 0.6648 (0.0015) +3.07% 0.1500 (0.0002) -5.29% 

Optimal weight estimate 0.6852 (0.0013)  0.1421 (0.0003)  

Ex-post optimal weights 0.6861 (0.0013) -0.12% 0.1419 (0.0003) +0.12% 

 
As for the weighted HRSs, the SA combination of calibrated classifiers has a 
slightly better (smaller) Brier score and worse (smaller) accuracy than the non-
calibrated SA combination. Now, the best individual classifier, which is again the 
neural network, slightly outperforms the SA combination in terms of accuracy. For 



the estimated OW, the Brier score is virtually unchanged, while the accuracy 
slightly increases when using calibration. This is probably caused by the nearest-
neighbors classifier’s gain in accuracy. The performance increase of the OW 
estimation over the best classifier (2.68%) as well as the SA (3.07%) is even higher 
than in the no-calibration treatment. 

6 Discussion 

In this section, we discuss and interpret the results obtained from the 
experimental evaluation in the previous section. 

First, as apparent in Table 1, the technique of estimating OW using a subset of 
the available training data and then applying the learned weighting to the full data 
set clearly outperforms the SA combination as well as all individual methods. 
Although seven classification models were combined, meaning a weight vector of 
length 𝑘 = 7 had to be estimated, the estimated OW comes very close to the ex-
post OW, both in terms of accuracy and Brier score. This is probably due to the 
rather large data set used in the experiments, leading to robust weight estimates. 
Large e-commerce vendors usually have large data sets available, making the 
proposed approach a feasible and effective means to boost predictive accuracy. 

In the use case of this paper, the proposed classifier weighting approach was 
able to increase the accuracy over the best individual classifier as well as SA by 
more than 2%. The impact of such an improvement depends on the business case 
at hand. For the project partner that provided the data set, this improvement is 
significant. Due to the high number of customers, being able to predict the right 
purchase in 2% more of the cases can lead to a considerable profit enhancement. 
Other large corporations, especially in e-commerce, could benefit in a similar way. 
On the other hand, for smaller companies with fewer customers as well as smaller 
data sets, other factors are more important, such as the model interpretability. 

The theoretical model requirements were not entirely fulfilled in the use case, 
since the classifier error vectors were not normally distributed. Real-world use 
cases often differ substantially from theoretical requirements, which is why many 
approaches do not work well under those circumstances. However, the proposed 
approach was still able to reach an accuracy and Brier score very close to the ex-
post best possible, and to improve performance over individual classifiers and SA 
combination. This shows that the classifier weighting is well suited for 
practitioners, even if the data is messy, as it often is in practice. 

The classifier weighting method can be integrated into existing machine 
learning pipelines rather easily. Due to its analytical nature, it does not require 
expensive computations, and the weights are readjusted automatically without 
regular human intervention. Therefore, the cost-benefit ratio calculates favorably. 
The potential of gaining significant performance was shown in this study, and 
because of the added robustness, there is minimal risk of losing accuracy given 
sufficient data. 



Second, as can be seen when comparing Table 1 to Table 2, although calibrating 
the probability estimates of the individual classifiers using isotonic regression led 
to decreasing Brier scores of the individual models (especially AdaBoost), it did 
not lead to significant differences in the accuracy of the OW combination. This is 
probably because almost all classifiers already had mostly well-calibrated scores. 

Finally, while in general, a minimal Brier score does not automatically lead to 
the highest accuracy, in our case, the methods with the lowest Brier score (neural 
network for the individual methods and OW estimate for the HRSs) did have the 
highest accuracies as well. Especially the OW estimate, which aims at minimizing 
the Brier score of an HRS, outperforms all other models by more than 2% in terms 
of accuracy. This indicates that selecting combination weights based on the Brier 
score is a good strategy for creating accurate HRSs and therefore confirms our last 
assumption from Section 3.1. 

7 Conclusion 

In this paper, we presented an approach to estimate optimal combination weights 
for HRSs in a classification context, e.g. for purchase prediction. The weighting 
method fits all individual classifiers on a subset of the available training data and 
calculates out-of-sample errors of probabilistic predictions on the rest of the 
training data. Using the variance-covariance matrix of those out-of-sample errors, 
a weight vector is calculated which is optimal on the holdout set. Then, all 
classifiers are re-fitted on the entire available data set, and the calculated weight 
vector is used for combining predictions on new, unseen data. 

Results on a real-world e-commerce data set show that this approach 
significantly outperforms both an SA combination, assigning equal weights to all 
components, as well as all individual classifiers. This is an encouraging finding, 
indicating that OW estimated using the Brier score is an adequate and simple 
method for increasing accuracy and robustness of classifiers. 

This study contributes to research and practice. First, a novel and accurate 
analytical weighting scheme for classifiers is proposed. It contributes to the 
literature on weighted HRSs as well as classifier ensembles in general. For 
practitioners, especially companies with many customers and large data sets as 
well as different classifying models in use, the method provides a computationally 
efficient means of increasing accuracy and robustness, and thus revenue and 
profit, without requiring great effort to set up or maintain. 

As a limiting factor, we did not engage in extensive hyper-parameter tuning for 
the individual classification algorithms, since the goal of this study was to 
demonstrate the improvement of a weighted HRS using an OW estimate over all 
individual models as well as an SA combination. In addition, we did not perform 
any feature selection or engineering. Performing both of those tasks might have 
improved the accuracy of the HRS even further. 

Future research should investigate how well the OW estimation based on the 
Brier score performs in settings with fewer training observations or more 



classifiers. We expect that for smaller data sets, the advantage over SA decreases 
due to the bias-variance trade-off between those two weighting methods. 
Shrinking the estimated OW vector toward SA (e.g. [23]) or similar robust 
weighting strategies with lower variance might be a remedy against this effect. 

Another interesting direction for future studies is to test the approach 
introduced in this paper using other algorithms, e.g. implicit feedback 
collaborative filtering methods (which would require other data sets), and study 
whether it is also able to improve an ensemble of RSs in terms of other metrics, 
such as ranking metrics which are often relevant in a top-𝑁 recommendation 
setting. 
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