
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

Wirtschaftsinformatik 2021 Proceedings Track 12: Information Security, Privacy and
Blockchain

CyberSecurity Challenges for Software Developer Awareness CyberSecurity Challenges for Software Developer Awareness

Training in Industrial Environments Training in Industrial Environments

Tiago Espinha Gasiba
Siemens AG, Universität der Bundeswehr München, Germany

Ulrike Lechner
Universität der Bundeswehr München, Germany

Maria Pinto-Albuquerque
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisboa, Portugal

Follow this and additional works at: https://aisel.aisnet.org/wi2021

Gasiba, Tiago Espinha; Lechner, Ulrike; and Pinto-Albuquerque, Maria, "CyberSecurity Challenges for
Software Developer Awareness Training in Industrial Environments" (2021). Wirtschaftsinformatik 2021
Proceedings. 2.
https://aisel.aisnet.org/wi2021/NInformation12/Track12/2

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted
for inclusion in Wirtschaftsinformatik 2021 Proceedings by an authorized administrator of AIS Electronic Library
(AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/wi2021
https://aisel.aisnet.org/wi2021/NInformation12
https://aisel.aisnet.org/wi2021/NInformation12
https://aisel.aisnet.org/wi2021?utm_source=aisel.aisnet.org%2Fwi2021%2FNInformation12%2FTrack12%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/wi2021/NInformation12/Track12/2?utm_source=aisel.aisnet.org%2Fwi2021%2FNInformation12%2FTrack12%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

16th	International	Conference	on	Wirtschaftsinformatik,	
March	2021,	Essen,	Germany	

CyberSecurity Challenges for Software Developer
Awareness Training in Industrial Environments

Tiago Gasiba1,2, Ulrike Lechner2, and Maria Pinto-Albuquerque3

1 Siemens AG, Munich, Germany
tiago.gasiba@siemens.com

2 Universität der Bundeswehr München, Munich, Germany
tiago.gasiba@unibw.de ulrike.lechner@unibw.de

3 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Lisboa, Portugal
maria.albuquerque@iscte-iul.pt

Abstract. Awareness of cybersecurity topics facilitates software developers to
produce secure code. This awareness is especially important in industrial
environments for the products and services in critical infrastructures. In this
work, we address how to raise awareness of software developers on the topic of
secure coding. We propose the “CyberSecurity Challenges”, a serious game
designed to be used in an industrial environment and address software
developers’ needs. Our work distills the experience gained in conducting these
CyberSecurity Challenges in an industrial setting. The main contributions are the
design of the CyberSecurity Challenges events, the analysis of the perceived
benefits, and practical advice for practitioners who wish to design or refine these
games.

Keywords: Cybersecurity, Serious Games, Awareness, Industry, Capture-the-
Flag · Education

1 Introduction

Over the last years, the number of industrial security-related incidents, e.g., reported by
the ICS-CERT [8], has been steadily increasing. When malicious parties exploit
security vulnerabilities present in products and services, the outcome of its exploitation
has serious negative consequences for society, the customers, and the company that
produced the software. Think, e.g., of critical infrastructures as the grid, transportation,
or production lines: a security vulnerability in the code may cause interruptions in
service quality or cause safety issues for society or individual customers when critical
machinery fails. Several efforts can be made to increase the level of security in critical
infrastructures. These efforts include, among others: analysis of threat and risks,
implementing a secure software development lifecycle process, deployment of static
application security testing tools, code reviews, and training. This paper addresses the
software vulnerabilities through awareness training of software developers in the
industry, based on a serious game: the CyberSecurity Challenges (CSC). Serious

Games are games that are designed for a primary purpose other than pure
entertainment [9]. The serious game “CyberSecurity Challenges” (CSC) aims at raising
awareness of secure coding topics among industrial software engineers. In this game,
software developers are trained to spot security vulnerabilities in software and write
secure code. i.e., code that is free from known vulnerabilities and adheres to secure
coding policies. Previous work introduced the CyberSecurity Challenges from a
theoretical point-of-view [11,16] and focused on particular aspects [15]. The current
work extends previous publications by a presentation of a unified view on the design
process, tailoring to the industry’s needs and the perceived usefulness of the CSC
events. Our results are based on data from several CSC events held in the industry from
2017 to 2020. As such, the main contributions of this work are:

- CSC Artifact: consolidated view of the design and deployment of CSCs, based on
results from thirteen events held in an industrial context, and
- CSC Evaluation: analysis of results from industry events covering the following
aspects: adequacy of CSC as a means to raise secure coding awareness, impact of
CSC on software developers, and success factors for CSC events.

This paper aims to guide practitioners who wish to develop or refine a software
developer awareness training in an industrial context, provide a solid reference to the
research community who wishes to address serious games for the industry, and close
the existing literature gap. This work is organized as follows. In the following section,
we give a summary of the game idea and logic of CSC games. Section 3 presents related
work. In Section 4, the research method and research questions are introduced. The
unified view of the CSC artifact is presented in Section 5. Section 6 presents a summary
of the survey results, together with critical discussions. Finally, Section 7 concludes the
paper with an outlook of next steps.

2 Cybersecurity Challenges at a glance

The CyberSecurity Challenges (CSCs) are a serious game, designed to raise awareness
for cybersecurity topics among industrial software engineers. A CSC game consists of
several challenges designed to raise awareness on secure coding guidelines and secure
coding on software developers. These challenges are oriented towards improving the
defensive skills of the participants. Defensive challenges are challenges that help the
players write code that has no (known) vulnerabilities and adheres to secure coding
guidelines.

The Capture-the-Flag genre was the original inspiration for the game. Capture the-
Flag (CTFs) are associated with offensive skills, e.g., system penetration, and reverse
engineering, and they can often last hours or even days [23]. Unlike CTF games, which
teach the participants to attack and break into systems, CSC focus on improving skills
to write and develop secure code. These games thus have no intention to cause any
harm or inspire unlawful actions – they are about “defensive” skills. The challenges are
composed of C, C++, Java, and Web exercises. The focus on these programming

languages and genre inspiration is rooted in internal demand for training and internal
decisions taken in the company where CSC is developed. Thus, the games are designed
to match software developers’ interests and organizations’ needs for developer training.
This interest can be motivated by several factors, e.g., the need to show due diligence
and certification purposes.

The CSC event is delivered as a single event (Standalone type) or after a workshop
on secure coding (Workshop type). In both cases, the duration of the event is designed
to fit a single working day. During the game, the participants solve secure coding
challenges related to secure coding guidelines, either individually or as part of a team.
Although the challenges can include an offensive part (e.g., on how malicious parties
exploit systems), the main focus and emphasis of the challenges is on developing secure
software, i.e., on the defensive perspective. For each solved challenge, points are
awarded, and the winner of the game is the one with the highest number of points.
Participants to the event can have either a background in a single programming
language or be mixed, e.g., both C and Web developers.

3 Related Work

Although several methods exist to deal with software vulnerabilities, e.g., requirements
engineering and code reviews, we focus on awareness training for software developers.
Several previous studies indicate that software developers lack secure programming
awareness and skills [2,26,31]. In 2020, Bruce Schneier, a well-known security
researcher, and evangelist stated that “more than 50% of software developers cannot
spot security vulnerabilities in software” [29]. His comment adds to a discussion on
secure coding skills: In 2011, Xie et al. [32] did an interview study with 15 senior
professional software developers in the industry with an average of 12 years of
experience. Their study has shown a disconnect between “software developers’
understanding of security concepts and their attitudes in their jobs”. Awareness training
on information security is addressed in McIlwraith [22], which looks at employee
behavior and provides a systematic methodology and a baseline on implementing
awareness training. In their work, Stewart et al. [30] argue that communicators, e.g.,
trainers, must understand the audiences’ constraints and supporting beliefs to provide
an effective awareness program.

There is a stream of literature on compliance with security policies, which deals
with employees in general and not with software developers specifically. This stream
of literature explores many reasons why people do not comply with IT-security policies.
The unified framework by Moody et al. [24] summarizes the academic discussion on
compliance with IT-security policies. Empirical findings include that neither deterrence
nor punishment such as e.g., public blame, works to increase compliance. However,
increasing IT-security awareness increases the level of compliance [30]. In their
seminal review article, Hänsch et al. [20] define IT-security awareness in the three
dimensions: Perception, Protection, and Behavior. The concept of IT-security
awareness is typically used in IT security management contexts, and we use this

concept to evaluate our work. While these findings are for the compliance of employees
with IT-security policies and awareness of IT security, little empirical research is done
on IT-security awareness in software development and what makes software developers
comply with security policies in software development.

Graziotin et al. [19] show that happy developers are better coders, i.e., produce
higher quality code and software. Their work suggests that by keeping developers
happy, we can expect that the code they write has a better quality and, by implication,
be more secure. Davis et al. [7] show that cybersecurity games have the potential to
increase the overall happiness of software developers. Their conclusions support our
approach to use a serious game approach to train software developers in secure coding.
Awareness games are a well-established instrument in information security and are
discussed in defacto standards as the BSI Grundschutz-Katalog [5] (M 3.47, Planspiele)
as one means to raise awareness and increase the level of security. Frey et al. [10] show
both the potential impact of playing cybersecurity games on the participants and show
the importance of playing games as a means of cybersecurity awareness. They conclude
that cybersecurity games can be a useful means to build a common understanding of
security issues. Rieb et al. [27] provide a review of serious games in cybersecurity and
conclude that there are many approaches. However, only a few have an evaluation of
their usefulness and are available beyond the immediate context of a consulting or
cyber-security company. The games listed mainly address information security rather
than secure coding. Documented and evaluated games are [4] and [27].

Capture-the-flag is one particular genre of serious games in the domain of
Cybersecurity [7]. Game participants win flags when they manage to solve a task.
Forensics, cryptography, and penetration testing are skills necessary for solving tasks
and capturing flags. They are considered fun, but there are hardly any empirical results
on these games’ effects on participants’ skill levels. The present work uses serious
games to achieve the goal of raising secure coding awareness of software developers
in the industry. Previous work on selected design aspects and a smaller empirical basis
on the CSC includes [11–18].

4 Method

The design science paradigm, according to Hevner [21], Baskerville and Heje [3]
guides our research in the industry. Design and evaluation of designs in iterative
approaches are an integral part of design research: this article presents our design after
13 CSC events and the evaluation of the design. The events took place from 2017 to
2020, with more than 200 game participants.

Table 1 summarizes the CSC events. CSC games were designed in three design
cycles: 1) Initial Design (events 1-5), 2) Refinement (events 6-9) and 3) Sifu/Online
(events 10-13).

The CSC events participants were all software developers specializing in web
technologies and the C/C++ programming language. The events took place mostly in
Germany but also in China and Turkey. The players’ age ranged from 25 to 60, the
background industry of the participants was critical infrastructures, in particular,
industry automation (50.85%), energy (37.29%), and healthcare (11.86%), the overall
number of years of work experience was as follows: one year (13.7%), two years
(11.0%), three years (19.2%), four years (6.8%) and five or more years (49.3%).
Regarding the average number of security training over the previous five years, the
results are as follows: Germany – 3.57, China 2.10, and Turkey 1.50.

According to the first and second design cycles, the evaluation of these CSC events
is structured according to the following research questions. For analysis of the survey
results concerning the Sifu platform, we refer the reader to [15].

- RQ1: To what extent are CSC adequate to raise awareness about secure coding?
- RQ2: What is the impact that CSC workshops have on the participants?
- RQ3: Which factors are considered essential for a successful CSC event?

To address these research questions, the authors have conducted semi structured

interviews (SSI) [1] and developed a small survey. The semi-structured interview
questions were asked to the participants, one after another in a round-the-table. The
participants’ answers were recorded on paper. The semi-structured interviews were
performed during the first design cycle and were part of the feedback round after the
CSC event. They were based on the following questions: a) “what went well, and you
would you like to keep” and b) “what did not go well and would you like to change”.
These questions gave a good insight and allowed us to improve later versions of the
game. They were also fundamental for requirements elicitation (see [11]).

The survey was administered to the CSC participants, in the refinement cycle, after
completion of the event. The survey consisted of an online survey. Participation in the
SSI and the survey was opt-in. Furthermore, all participants consented to participate in
research, and the collected data was anonymized. We have used a more formal survey

methodology to evaluate the game’s usefulness concerning the level of awareness and
the skills in secure coding. Table 2 shows the questions that were asked in the survey
and the related research questions. The survey used a five-point Likert scale of
agreement with the following mapping: strongly disagree (1), disagree (2), neutral (3),
agree (4), and strongly agree (5). RQ1 addresses the aspect of the usefulness of the CSC
artifact, and the corresponding survey questions are based and adapted from the three
dimensions of awareness, as defined by Hänsch et al. [20]: Perception (PE – knowing
existing software vulnerabilities), Protection (PR – knowing how to write secure
software) and Behavior (BE – actual behavior of software developer) (cf. Sec. Related
Work). The questions for RQ2 focus on clarity of the description of the challenges, the
coaches’ role during the game, and the general motivation of training secure coding.
These questions address the design of CSC games and events. RQ3 questions address
the challenges and their relation to software developers’ everyday work practices in the
industry. The survey questions for RQ2 and RQ3 are based on the authors’ experience
in industrial software engineering, feedback from CSC evaluations of events 1 to 5, and
various discussions with colleagues. All the collected data were processed using the
statistics package RStudio 1.2.5019. Availability of the gathered data is provided in the
same authors’ included references and on a forthcoming publication.

5 Design of the CyberSecurity Challenges

In this section, we present the design of the CyberSecurity Challenges for industrial
software developers. The sub-sections provide a detailed overview of the architecture,
the schedule, and the design of challenges. The results presented in this section distill

the experience obtained through the three design cycles of the CSC games, i.e., of the
thirteen CSC events.

5.1 Architecture

Figure 1 shows the architecture of the CSC infrastructure. Each participant, either
individually or after forming a team, accesses the challenges through a computer. A
server hosts the applications that run the game logic, a “countdown” clock, and a
dashboard that records individual players and teams’ progress. The dashboard uses the
open-source CTFd [6] project. A description of the challenges will be given in the
following.

5.2 CSC Time Schedule

Table 3 shows a typical time-plan for the one-day CSC event consisting of seven
blocks: 1) welcome, 2) team building, 3) introduction, 4) main event, 5) winner
announcement, 6) feedback and 7) walk-through. The last block, the walk-through, was
not initially planned and is the direct result of players feedback — the participants

preferred to dedicate one hour of the main event to provide final explanations and
closure on selected exercises. The authors decided to place the feedback and survey
before the walk-through to increase the chance of collecting feedback from the
participants.

The duration of similar training events ranges from several days [23] (less common) to
a single day [28] (more common). Note that the first CTF is done in academia, while a
commercial provider does the latter. Additionally, a difference to typical Capture-the-
Flag events are the two agenda items Introduction and Walk-through.

5.3 Defensive Challenges

The primary focus of the CSC game’s challenges are Web and C/C++. In contrast to
C/C++, for the web challenges, it was decided not to focus on a single programming
language or framework since many of these programming languages and frameworks
are in everyday use in the company where the CSC game was developed. In this case,
we chose a generic approach based on the Open Web Application Security Project –
OWASP [25]. The challenges’ design took two approaches: 1) based on open-source
components and 2) design of own challenges. The first approach was used in the
Refinement design cycle, while the second approach in the Sifu/Online design cycle. A
common approach to the design of the challenges is given in [16]. Each challenge is
presented to the participants according to the following phases: Phase 1 - introduction,
Phase 2 - challenge, and Phase 3 - conclusion. The types of challenges are: Single
Choice Questions (SCQ), Multiple-Choice Questions (MCQ), Text-Entry Questions
(TEQ), Associate-Left-Right (ALR), Code-Snippet Challenge (CsC), and Code-Entry
Challenge (CEC). Second, Phase 1 presents an introduction to the challenge and sets
up the scenario; the main part of the challenge is phase 2; phase 3 concludes the
challenge by adding additional text related to secure coding guidelines or additional
questions related to phase 2.

Challenges using Open-Source Components Challenges on secure coding for
software developers can be implemented by using and adapting existing open-source
components. Since most of the available projects focus on the offensive perspective,
the following adaptations are suggested: 1) include an incomplete description on how
to solve the challenge, and 2) provide follow-up questions related to secure coding
guidelines. Fig. 2-4 shows an example of a challenge for Web developers using
OWASP JuiceShop. This challenge’s learning goal is to understand what SQL
injections are and how to identify an SQL injection quickly. Phase 1 sets the stage for
the challenge (Fig. 2). In Phase 2, the player is assisted with how to find the
vulnerability, through the textual description, as in Fig 3, or also directed by the game
coaches. The last phase consists of an additional question related to the exercise, as
shown in Fig. 4, which directs the player to secure coding guidelines. Table 4 shows
the open-source projects and components in which have been used to design CSC
challenges for Web and for C/C++, along with the expected effort required to modify
them. Note that the design of these challenges is based on open-source components that

include an offensive perspective. Therefore, after the components’ adaptation, these
types of challenges are described as being defensive/offensive.

Defensive Challenges using Sifu Platform The Sifu platform hosts code projects
containing vulnerabilities in a web application. The reason to choose a web interface is
to avoid that the players need to install any software on their machine, which might be
difficult in an industrial setting. The players’ task is to fix the project’s source code to
bring it to an acceptable solution (therefore focusing on the defensive perspective). An
acceptable solution is a solution where the source code is compliant to secure coding

guidelines and does not have known vulnerabilities. The Sifu platform contains two
main components: 1) challenge assessment and 2) an automatic coach. The challenge
assessment component analyses the proposed solution submitted by a player and
determines if it is acceptable. Analysis is based on several tools, e.g., compiler output,
static code analysis, and dynamic code analysis. The automatic coach component is
implemented through an artificial intelligence technique that provides hints to the
participant when the solution is not acceptable, with the intent to guide the participant
to an acceptable solution. Figure 5 shows the Sifu platform. Note that only phase 2 is
shown in the figure. The player can browse the different files of the project. All the hints
issued by the automatic coach are available on the right-hand side. If the player
experiences errors when using the platform, these can be reported for later analysis and
improvement. The Sifu platform’s main advantage is that the participants do not need
to install any software in their machine - a browser with internet or intranet access is
sufficient. However, since untrusted and potentially malicious code will be executed in
the platform during the analysis stage, several security mechanisms need to be
implemented to guarantee that the players cannot hack it. These challenges were
developed in the Sifu/Online design cycle, and further and detailed information on the
implementation is available in [15]. For more information about the Sifu platform we
also refer the reader to [14]. The Sifu platform is available for download as an open-
source platform under the MIT license in [18].

6 Results

This section presents a quantitative analysis of the CSC artifact based on the semi-
structured interviews and online survey collected during the design cycles Initial
Design and Refinement.

6.1 Initial Design Cycle ––– CSC 1 to 5

As discussed in section 4, in this design cycle, the participants were asked to provide
feedback on what should be kept and what should be changed in the CSC event. The
participants were encouraged to discuss openly what they felt was important. These
discussions were used to inform the design of future CSC events. In this cycle,
requirements were collected on traits that serious games for software developers in the
industry should have. A summary of the findings is as follows: 1) challenges should
focus on the defensive perspective, 2) challenges should reflect real-world examples, 3)
challenges should be aligned with the work environment, 4) careful planning in terms
of duration should be performed, and 5) participants should be able to solve challenges
without knowledge of extra tools. A more in-depth analysis of the feedback and
resulting requirements is available in [11].

6.2 Artifact Refinement Cycle ––– CSC 6 to 9

Figure 6 shows the overall results of the answers to the survey. The research questions
are used to group the results. We observe an overall agreement on all the survey
questions. In particular, considering negative answers (-), neutral answers (N) and
positive answers (+), this table shows the following overall results for each research
question: RQ1− = 7.89%, RQ1N = 16.13%, RQ1+ = 75.99%, RQ2− = 4.82%, RQ2N =
12.05%, RQ2+ = 83.13%, RQ3− = 4.19%, RQ3N = 12.56%, and RQ3+ = 83.26%.

These results give a good indication that CSC games are suitable as a means to train

software developers in secure coding guidelines, as the factors on awareness (RQ1) and
impact on participants (RQ2) have high levels of agreement (i.e., higher than 75%.
However, we observe the difficulty in making every participant happy, in particular,
due to the residual values on negative and neutral answers. Further analysis is required
to understand this. Based on our experience, we believe that this fact might be
correlated with the participants’ previous experience.

Table 5 shows a ranking of the different survey questions, grouped by research
question. The ranking is performed by sorting the questions based on the average
agreement value. In terms of adequacy (RQ1), and impact on the participants (RQ2),
the two highest-ranking answers are: to understand the importance of SDLC (Q10) and
understand consequences of a breach (Q2) for RQ1, and help from coaches (Q13), and

understand the need to develop secure software (Q12) respectively. The lowest-ranked
factors for RQ1 are “find more information” (Q9) and “prepared to handle secure
coding issues at work” (Q3). Although the rank is low, the average agreement is
positive. The surprising result obtained for Q3 is likely related to the large number of
neutral answers. Further investigations are required to determine the root cause of this
observation.

The collected results for RQ3 serve to inform practitioners who wish to design such
games for an industrial context. It provides a ranked list of factors that participants
consider having a positive impact on CSC games. The three top factors that contribute
to the success of a CSC game that should be considered by practitioners who wish refine
the CSC game are the following: different kinds of challenges (Q17), based on real-life
examples (Q20), and participants should work in teams rather and individually (Q16).

In terms of awareness, taking into consideration negative answers (-), neutral
answers (N), and positive answers (+), the perception (PE), behavior (BE), and
protection (PR) show the following results: PE− = 8.04%, PEN = 7.14%, PE+ =
84.82%, BE− = 7.89%, BEN = 20.79%, BE+ = 71.33%, PR− = 7.78%, PRN = 14.37%,
PR+ = 77.84%. These results show similar values for the negative answers (around
8%), which might be related to the players’ background. The highest result is related to
perception, which also has the least number of neutral answers. While we observe
strong agreement on the behavior and protection constructs (more than 70%), there are
still many neutral answers. We believe that the large number of neutral answers is also
related to player background and the fact that the challenge type is not purely defensive,
i.e., it is defensive/offensive, as discussed in section 5. The reasoning for this is based
on the better results obtained in the study of the Sifu platform (see [15]).

6.3 Sifu/Online Cycle ––– CSC 10 to 13

In this design cycle, the CSC challenges were further developed as the Sifu platform
[15]. The participants were asked to evaluate the platform through 5point Likert scale
questions. Survey questions were based on the Awareness [20], and Happiness [19]
dimensions. The following is a summary of the results, in terms of the three awareness
dimensions: perception (PE), behavior (BE), and protection (PR); and in terms of
happiness (HP). PE− = 2.22%, PEN = 8.89%, PE+ = 88.89%, BE− = 0.0%, BEN =
8.06%, BE+ = 91.94%, PR− = 6.67%, PRN = 11.11%, PR+ = 82.22%, HP− = 8.22%,
HPN = 10.27%, HP+ = 81.51%. The negative results (-) correspond to strongly disagree
and disagree, neutral (N) to neutral answers, and positive results (+) correspond to agree
and strongly agree. A more in-depth analysis of these results, along with the Sifu
platform’s design, and the survey questions, can be found in [14]. The collected answers
again indicate an agreement with the awareness theory, in the following sequence:
behavior, perception, and finally, protection. Also, the participants report having fun
and being happy while playing challenges in the Sifu platform.

The Hellinger distance is used to measure the distance between two probability
mass functions (PMF). The distance between the PMF of the three awareness constructs
was computed to compare the results obtained in the second (refinement) and third

cycle (Sifu/Online). The obtained results are as follows (from higher distance value to
smaller distance value): behavior (d = 0.25), perception (d = 0.10), and protection (d =
0.04). These results show that using the Sifu platform results in the most significant
improvement in agreement on the behavior construct. Although both cycles indicate
positive results, the participants have a more substantial agreement that solving the Sifu
platform’s challenges helps in actual behavior (i.e., using defensive challenges), than
using defensive/offensive challenges. In terms of protection, the distance between the
PMF is low (0.04), indicating that the agreement level is similar for the protection
construct for both the defensive/offensive and the defensive challenges. These results
were as expected since the improvements to the challenges and the corresponding
design cycles performed in the Sifu platform increase the adequacy to improve software
developer awareness in terms of behavior.

6.4 Discussions

In this work, we have presented and evaluated an awareness training program for
software developers in the industry, which was designed through three design cycles
[21]. The types of CSC challenges for each design cycle were as follows: offensive,
defensive/offensive, and defensive. The initial design cycle was mostly used for
requirements elicitation to further develop and refine the CyberSecurity Challenges for
software developers in the industry. In the second design cycle, defensive/offensive
challenges were introduced. These challenges adapt existing open-source projects to
adopt a defensive perspective. Finally, in the third design cycle, defensive challenges
are introduced using the Sifu platform. Our experience has shown that software
developers highly appreciate playing CSC games based on direct feedback from
participants. It was also observed that playing CSC games can be done as either a
standalone event or after a secure coding training. Furthermore, the participants have
claimed that the challenges have helped solidify, understand, and practice secure coding
in real scenarios, the concepts discussed during training. While the challenges, as
described for the second and third design cycle, seem to address software developers
and management’s needs adequately, the third design cycle was shown to result in a
higher agreement in terms of the behavior (BE) awareness construct.

Participants report on the happiness and fun in participating in these events.
However, a long-term study on the impact of CSC events on software quality is not
possible. The reason for this is related to the large number of factors that hinder this
study, which include, among others: job rotation, changing and evolving IT security
technologies, discovery of new attack vectors, and evolving programming languages
and programming language standards. Therefore, we need to suffice with the fact that
these events are both welcome by software developers and, with the fact that CSC has
had continuous management approval throughout the years, and also the fact that it has
been introduced in the standard teaching curriculum in the company where it was
developed.

While previous work such as McIlwraith [22] provides a generic approach for
awareness training, we show a method that explicitly addresses software developers in

the industry and is based on a serious game inspired by the Capture-the-Flag format.
Nevertheless, some of the traits introduced by McIlwraith are also common with our
artifact, e.g., the usage of web-based media and web-based text. While the CSC artifact
was designed for Web and C/C++ challenges, we think our approach can be generalized
to other programming languages. Other possible usages of our artifact include a
refresher on previously acquired knowledge, a self-evaluation tool for individuals, and
a recruiting tool used by human resources. However, further work might be required
either for non-industrial environments or participants with different backgrounds, e.g.,
management or human resources.

6.5 Threats to Validity

There are threats to the validity of or findings - threats as they are typical or inherent to
design research. Both the evaluation of the game in a survey and in the mixed workshop
might lead to socially desired bias. Moreover, participants might evaluate the game
positively in order to be able to get the awareness training done as it is a task that is
mandated to them by management. The authors cannot control the types of workshops
and the participants; however, we think that the conclusions are valid as they
contributed to improving the serious game over time.

The authors claim that the game has a positive impact on IT security awareness. The
path from awareness training to secure products and services is long and potentially
tedious, and other kind of research would be needed to evaluate whether such a game
has an impact on the quality of code. Due to the large number of factors that affect code
quality, this is, in practice, not possible. Nevertheless, awareness is a well-established
endpoint in IT security research.

As in any design research, we cannot argue that our solution is the best, and we need
to suffice with the argument that our artifact and outcome of research is useful, both in
terms of developers’ happiness and management approval. There are several external
variables that we cannot control in an industrial setting that can limit our evaluations’
validity. Although we have explicitly mentioned to the participants that the survey
questions refer to the CSC event, we cannot exclude questions’ misinterpretation due
to the participants’ different cultural and language backgrounds.

Also, we cannot exclude a bias for socially desired answers and positive bias with
the game setting. However, for the validity of our findings, we refer to the fact that all
game participants were industrial software engineers, and participation in the survey
was not mandatory. Our results demonstrate that these are a viable method for
awareness training on secure coding in the industry in terms of the CSC game’s
usefulness. We base this observation on the fact that it is approved by management, has
high internal demand, and is liked and enjoyed by most participants.

7 Conclusions and Further Work

In this work, we provide an overview of the design and implementation of
CyberSecurity Challenges - a serious game to raise awareness on secure coding for

software developers in the industry. The CyberSecurity Challenges have been
developed following a design science research design structured in three design cycles:
Initial Design, Refinement, and Sifu/Online. The design cycles extended from 2017
until 2020 and consisted of thirteen events where more than 200 software developers
participated. Our contribution addresses practitioners who wish to develop or refine a
software developer awareness training for the industry and the research community by
understanding the usage of serious games targeting software developers in the industry.

This paper consists of two main parts: 1) an overview of the design of the
CyberSecurity Challenges and 2) an evaluation of the CyberSecurity Challenge game
and events, including the usefulness of CyberSecurity Challenges. In the first part, we
presented a consolidated view of CyberSecurity Challenges. This consolidated view is
the result of all the lessons learned throughout the three design cycles. We provide an
analysis and report of the main results that practitioners can use to design a similar
awareness training program. We also discuss the differences and similarities to other
existing awareness training programs. In the second part, we analyze results from semi-
structured interviews from the first design cycle and a survey collected during the
second design cycle. Overall, software developers enjoy playing CyberSecurity
challenges, either as a standalone event or together with a training workshop on secure
programming. Furthermore, we present results on the impact that the game has on the
participants and discuss essential factors for successful awareness training. Our positive
results, continuous management endorsement, and the fact that these games have been
introduced as a standard part of the company’s teaching curricula validate our design
approach. Additionally, our results show that CyberSecurity challenges are a viable
approach for awareness training on secure coding.

As further steps, the authors would like to design a systematic approach to identify
topics for challenges and assessing these challenges for relevance. Towards this, more
empirical analyses are required. Thus, parallel and next steps include an empirical study
on the awareness of various secure coding topics to tailor the challenges to different
software developer groups’ needs. Also, as the COVID-19 crises limits travel and
physical presence, we will continue to enhance the online version of the game. We also
plan to enrich the scope of defensive challenges.

Acknowledgements

The authors would like to thank the participants of the CyberSecurity Challenges for
their time and their valuable answers and comments. Also, the authors would also like
to thank Kristian Beckers and Thomas Diefenbach for their helpful, insightful, and
constructive comments and discussions.

This work is financed by national funds through FCT - Fundação para a Ciência e
Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and UIDP/04466/2020.
Furthermore, the third author thanks the Instituto Universitário de Lisboa and ISTAR,
for their support.

References

1. Adams, W.: Conducting Semi-Structured Interviews. In: Newcomer, K., Hatry, H., Wholey,
J. (eds.) Handbook of Practical Program Evaluation, chap. 19, pp. 492–505. Wiley Online
Library (2017)

2. Assal, H., Chiasson, S.: ‘Think secure from the beginning’ A Survey with Software
Developers. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. pp. 1–13. CHI’19, Association for Computing Machinery, New York, NY, USA
(2019)

3. Baskerville, R., Pries-Heje, J.: Explanatory design theory. Business & Information Systems
Engineering 2(5), 271–282 (2010)

4. Beckers, K., Pape, S.: A Serious Game for Eliciting Social Engineering Security
Requirements. In: 2016 IEEE 24th International Requirements Engineering Conference
(RE). IEEE (08 2016)

5. Bundesamt für Sicherheit in der Informationstechnik: BSI IT-Grundschutz-Katalog, 2016,
15. ed. (2016), https://tinyurl.com/zkbmfb6

6. Chung, K.: CTFd : The Easiest Capture The Flag Framework, https://ctfd.io/
7. Davis, A., Leek, T., Zhivich, M., Gwinnup, K., Leonard, W.: The fun and future of CTF.

2014 USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE
14) pp. 1–9 (2014), https://tinyurl.com/y97enbtr

8. Department of Homeland Security: Industrial Control Systems - Computer Emergency
Response Team. https://us-cert.cisa.gov/ics, accessed: 2020-08-26

9. Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J.: Serious Games: Foundations, Concepts
and Practice. Springer International Publishing, 1. Ed, Switzerland (2016).
https://doi.org/10.1007/978-3-319-40612-1

10. Frey, S., Rashid, A., Anthonysamy, P., Pinto-Albuquerque, M., Naqvi, S.A.: The Good, the
Bad and the Ugly: A Study of Security Decisions in a Cyber-Physical Systems Game. IEEE
Transactions on Software Engineering 45(5), 521–536 (2019)

11. Gasiba, T., Beckers, K., Suppan, S., Rezabek, F.: On the Requirements for Serious Games
Geared Towards Software Developers in the Industry. In: Damian, D.E., Perini, A., Lee, S.
(eds.) Conference on Requirements Engineering Conference. pp. 286–296. IEEE, Jeju,
South Korea (09 2019). https://doi.org/10.1109/re.2019.00038

12. Gasiba, T., Lechner, U., Cuellar, J., Zouitni, A.: Ranking Secure Coding Guidelines for
Software Developer Awareness Training in the Industry. In: Queirós, R., Portela, F., Pinto,
M., Simões, A. (eds.) First International Computer Programming Education Conference
(ICPEC 2020). OpenAccess Series in Informatics (OASIcs), vol. 81, pp. 11:1–11:11.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020)

13. Gasiba, T., Lechner, U., Pinto-Albuquerque, M.: Awareness of Secure Coding Guidelines
in the Industry - A first data analysis. In: The 19th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications. IEEE, Online (12 2020)

14. Gasiba, T., Lechner, U., Pinto-Albuquerque, M.: Sifu - A CyberSecurity Awareness
Platform with Challenge Assessment and Intelligent Coach. In: Special Issue on Cyber-
Physical System Security of the Cybersecurity Journal. SpringerOpen (12 2020)

15. Gasiba, T., Lechner, U., Pinto-Albuquerque, M., Porwal, A.: Cybersecurity Awareness
Platform with Virtual Coach and Automated Challenge Assessment. In: 6th Workshop On
The Security Of Industrial Control Systems & Of Cyber-Physical Systems. Springer, Online
(09 2020)

16. Gasiba, T., Lechner, U., Pinto-Albuquerque, M., Zouitni, A.: Design of Secure Coding
Challenges for Cybersecurity Education in the Industry. In: 13th International Conference
on the Quality of Information and Communications Technology. Springer, Online (09 2020)

17. Gasiba, T., Lechner, U., Rezabek, F., Pinto-Albuquerque, M.: Cybersecurity Games for
Secure Programming Education in the Industry: Gameplay Analysis. In: Queirós, R.,
Portela, F., Pinto, M., Simões, A. (eds.) First International Computer Programming
Education Conference (ICPEC 2020). OpenAccess Series in Informatics (OASIcs), vol. 81,
pp. 10:1–10:11. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2020)

18. Gasiba, T. Sifu Platform, https://github.com/saucec0de/sifu (2020)
19. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when software

developers are (un)happy. Journal of Systems and Software 140, 32–47 (2018)
20. Hänsch, N., Benenson, Z.: Specifying IT security awareness. In: 25th International

Workshop on Database and Expert Systems Applications, Munich, Germany. pp. 326–330.
IEEE, Munich, Germany (Sep 2014). https://doi.org/10.1109/DEXA.2014.71

21. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems
Research. MIS Q. 28(1) (03 2004)

22. McIlwraith, A.: Information Security and Employee Behavior: How to Reduce Risk
Through Employee Education, Training and Awareness. Gower Publishing, Ltd. (2006)

23. Mirkovic, J., Peterson, P.A.: Class Capture-the-Flag exercises. In: 2014 {USENIX} Summit
on Gaming, Games, and Gamification in Security Education (3GSE 14) (2014)

24. Moody, G.D., Siponen, M., Pahnila, S.: Toward a Unified Model of Information Security
Policy Compliance. MIS quarterly 42(1), 1–50 (2018)

25. OWASP Foundation: Open Web Application Security Project, https://owasp.org/
26. Patel, S.: 2019 Global Developer Report: DevSecOps finds security roadblocks divide teams

(July 2020), https://about.gitlab.com/blog/2019/07/15/globaldeveloper-report/, [Online;
posted on July 15, 2019]

27. Rieb, A.: IT-Security Awareness mit Operation Digitales Chamäleon. Ph.D. thesis,
Universität der Bundeswehr München, Neubiberg (2018)

28. SANS Institute: SEC642: Advanced Web App Penetration Testing, Ethical Hacking, and
Exploitation Techniques, https://tinyurl.com/yytoawyn, online, Visited Nov 2020

29. Schneier, B.: Software Developers and Security. Online (July 2020),
https://www.schneier.com/blog/archives/2019/07/software develo.html

30. Stewart, G., Lacey, D.: Death by a Thousand Facts: Criticizing the Technocratic Approach
to Information Security Awareness. Information Management & Computer Security 20(1),
29–38 (2012)

31. Tahaei, M., Vaniea, K.: A Survey on Developer-Centered Security. In: 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). pp. 129–138. IEEE (2019)

32. Xie, J., Lipford, H.R., Chu, B.: Why do Programmers Make Security Errors? 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) pp. 161–164
(09 2011). https://doi.org/10.1109/VLHCC.2011.6070393

	CyberSecurity Challenges for Software Developer Awareness Training in Industrial Environments
	

	tmp.1613606066.pdf.719aC

