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Abstract. This paper introduces a framework for managing bias in machine 
learning (ML) projects. When ML-capabilities are used for decision making, they 
frequently affect the lives of many people. However, bias can lead to low model 
performance and misguided business decisions, resulting in fatal financial, social, 
and reputational impacts. This framework provides an overview of potential 
biases and corresponding mitigation methods for each phase of the well-
established process model CRISP-DM. Eight distinct types of biases and 25 
mitigation methods were identified through a literature review and allocated to 
six phases of the reference model in a synthesized way. Furthermore, some biases 
are mitigated in different phases as they occur. Our framework helps to create 
clarity in these multiple relationships, thus assisting project managers in avoiding 
biased ML-outcomes. 

Keywords: Bias, Machine Learning, Project Management, Risk Management, 
Process Model 

1 Introduction 

Progress in artificial intelligent (AI) technologies such as machine learning (ML) lead 
to a wide implementation of intelligent systems in companies and institutions. The 
ability to learn and act autonomously makes AI different from other technologies and 
allows for automated decisions and solutions [1]. ML, as a field of AI, refers to 
algorithms that learn patterns from data without being explicitly programmed [2]. ML-
applications support or take over human tasks and decisions in many industries, 
including issuing of credit loans, determination of insurance rates or provision of health 
care [3]. Simultaneously, the potential of AI is widely recognized, but there remains a 
significant uncertainty for organizations in how to manage negative consequences and 
challenges resulting from AI [4]. Due to the increasing complexity of AI, their usage 
can lead to negative consequences such as wrong decisions, unfairness, and 
discrimination [5, 6]. If firms cannot understand the underlying mechanisms of their 
ML-models, organizations face a loss of trust in their technologies [7] leading to 
questioning of their accountability and reliability and, in the long term, impact 
investments into AI in organizations [5, 8]. Many of these obstacles can arise from bias 
incorporated in the ML developing process [9]. 
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Today, IS research provides only little theory and guidance to systematically identify 
and mitigate different forms of bias that can occur in ML-projects. There is a need for 
awareness about possible biases in the ML-project lifecycle and respective mitigation 
methods to tackle negative consequences [10]. A systematic approach for addressing 
potential biases is yet missing [11]. Therefore, the objective of this research is to 
systematically review and integrate available knowledge to improve the management 
of bias in ML-projects. To frame our research, we pose the following question: 

RQ: What types of bias emerge in machine learning projects and how can they be 
managed? 

We perform a systematic literature review to identify different types of biases and 
respective mitigation methods. We then integrate our findings into CRISP-DM, an 
established ML-project management framework. CRISP-DM is the most widely 
adopted process model [12, 13] and provides a practice-oriented and structured 
approach, including consecutive activities for developing ML-applications that are 
transferable to different industries [14].  

Our research contributes to the emerging body of literature that studies the 
implementation of ML in organizations and its intended and unintended consequences. 
First, this paper enhances clarity concerning existing biases and mitigation methods. 
Hence, a shared terminology can be achieved, which supports further development of 
solutions. Second, the holistic view of ML-model development and operation improves 
the understanding of inherent connections between ML-project and bias. Furthermore, 
temporal dependencies between bias occurrence and mitigation can be detected. Thus, 
interdependencies in ML-applications that are embedded in broader organizational 
information systems can be recognized. This makes the management of bias in ML-
projects an important aspect of IS development that differs from the development of 
deterministic software systems.  

Our framework serves practitioners as a holistic framework which can be applied to 
the specific ML-projects at hand. 

2 Theoretical Foundation 

The adoption of ML-technologies across organizations is growing rapidly and firms are 
increasingly recognizing the practical opportunities arising from their ability to perform 
human-like tasks such as learning autonomously, making decisions, or gaining valuable 
analytical insights from large datasets [1, 4]. In this context, bias describes an 
unintended or potentially harmful property of data [15] that results in a systematic 
deviation of algorithmic results [16]. In a broader sense, bias can be defined as 
unwanted effects or results which are evoked through a series of subjective choices and 
practices that the ML developing process involves [15]. 

ML-algorithms differ substantially from deterministic, rule-based algorithms that 
have been used in the past to perform decision support in organizational context. ML-
algorithms, such as Neural Networks, follow a probabilistic approach in which 
decisions are not made by following programmed rules but by learning patterns from 



historical data and applying these to new input data. The decision support from ML-
algorithms is provided in the form of probabilities, leading to different levels of 
uncertainty and therefore increased susceptibility to systematic biases. As the learned 
patterns are non-transparent to the users of the algorithms, existing bias is difficult to 
identify or mitigate and therefore requires different approaches than deterministic 
algorithms [17]. 

A series of potentially subjective choices and actions must be made in the process of 
an ML-project, any of which can introduce bias and lead to unwanted effects. If datasets 
incorporate bias, ML-applications will reflect those biases. Even if input data is 
perfectly unbiased, the decision on how to build the model can introduce bias. 
Particularly from technical considerations, design decisions must be made, such as 
which fairness definition or forms of measurement and performance metrics to use. 
Even if assuming the resulting ML-application is free from bias introduced through 
data or design decisions, an inappropriate context of use may nevertheless lead to bias 
[16, 18, 19].  

To address the problem of bias, prior work has used fairness metrics as quantification 
of unwanted bias. This raises concerns about how social goals are abstracted so that 
they can be used in a prediction task [20]. Such metrics make the implicit assumption 
that an underlying mathematical concept of fairness can be formulated and 
operationalized to create a bias-free system [21, 22]. However, there are at least 21 
different definitions of fairness [23], and different definitions lead to entirely different 
results, which makes it impossible to satisfy all fairness definitions simultaneously [24]. 
Corbett-Davies and Goel [25] and Mitchell et al. [20] demonstrate how popular classes 
of fairness definitions can, perversely, have a discriminant effect on minorities and also 
majorities. To prevent this, technical approaches should be complemented with non-
technical mitigation approaches that consider more than merely good performance 
results.  

Prior work has emphasized the importance of interpretable outcomes to increase 
fairness in ML-applications. By increasing the interpretability of outcomes, harmful 
patterns that have been learned by the ML-algorithm can be revealed and consequently 
be tackled [7]. 

IS research is starting to address the negative consequences resulting from bias but 
the literature about the origins of biases and possible mitigation methods is yet scattered 
and a systematic approach for addressing potential biases missing [11]. Few existing 
articles provide a framework with incorporated biases and mitigation methods where 
the respective terminologies differ substantially and the incorporation is not made in 
well-established ML-frameworks [15, 16, 26]. To address this, we choose CRISP-DM 
as an underlying framework for this work as it is the most widely adopted process model 
[12, 13]. It provides a practice-oriented and structured approach, including consecutive 
activities for developing ML-applications that are transferable to different industries.  

 The initial phase of CRISP-DM, Business Understanding (BU), focuses on the 
understanding of the business objective and translation into data mining goals in order 
to define the design plan and necessary resources. The Data Understanding (DU) phase 
then collects and explores initial data to gain insights into data quality and possible 
concerns. The final dataset is then created from the raw dataset through various 



activities in the Data Preparation (DP) phase, such as the selection of records and 
features or transformation and cleaning of data for the modeling tools. Several 
modeling techniques are then selected in the Modeling (MO) phase and applied to the 
prepared dataset. The model’s performance is evaluated in the Evaluation (EV) phase 
and put into the context of the business objectives. The Deployment (DE) phase then 
describes the process of implementing the model in the context of the end-user [14]. 

Overall, a systematic approach for managing potential biases with a shared 
terminology and clarity about their occurrence in ML-project lifecycles is yet missing. 
The challenge is to understand what biases potentially arise in which phase and when 
to apply which prevention or mitigation method [27]. This underlines the need for 
guidance to identify sources of harm throughout the full ML-project lifecycle. 

3 Methodology 

3.1 Research Design 

The present paper aims to examine how project managers can systematically identify 
and mitigate bias in ML-projects. To this end, we perform a systematic literature review 
to understand existing knowledge about bias through a conceptual lens (CRISP-DM) 
proposed in former research [28, 29]. This type of literature review is problem-centered 
and aims to group distinctive problem sources as well as different solution approaches 
using well-known concepts [29, 30]. First, different types of biases are identified, their 
terminologies understood and consolidated into distinct categories. Second, possible 
mitigation methods that address these biases are evaluated. Finally, the findings are 
incorporated into the CRISP-DM framework regarding their occurrence and application 
in different project steps. 

3.2 Data Collection and Analysis 

We determined a threefold data collection strategy. First, a keyword search was 
conducted considering only leading journals in the field of Information Systems (IS). 
It focused on 39 journals ranked A+, A, or B based on JourQual3 ranking that are 
represented in the databases EBSCOhost, AIS Electronic Library, ACM Digital 
Library, and ScienceDirect. We defined relevant key terms by conceptualizing the topic 
based on an initial search in IS literature and seminal publications on bias in ML. This 
resulted in the following search strings: AB (“machine bias” OR “data bias” OR 
“algorithmic bias” OR “model bias” OR “biased data” OR “biased machine*” OR 
“biased algorithm*” OR “biased model” OR “bias” or “prejudice” OR “discrimination” 
OR “stereotypes” OR “historical bias” OR “representation bias” OR “selection bias” 
OR “measurement bias” OR “aggregation bias” OR “deployment bias” AND TX 
(“Artificial Intelligence” OR “AI” OR “Algorithm*” OR “Machine Learning”)); TX 
(“machine bias” OR “data bias” OR “algorithmic bias” OR “model bias”) AND TX 
("artificial intelligence” OR "AI" OR “machine learning” OR “deep learning”). These 
search strings revealed 57 hits in total, including the initial search. We then conducted 



a practical screening with inclusion and exclusion criteria. We only considered articles 
that (i) are peer-reviewed and/or conference proceedings, (ii) define at least one 
relevant bias (iii) explain at least one relevant identification or mitigation method (iv) 
address the bias challenge in AI-, or ML-context. After applying these criteria, 22 
relevant hits remained. As a third step we performed forward and backward search on 
the relevant hits using Web of Science [31, 32]. This step added 31 articles based on 
the same inclusion/exclusion criteria. In a third step, relevant literature was exchanged 
with senior scholars in the research team [33]. In total, 55 articles were included in the 
literature review and subsequently examined full text.  

In the data analysis phase, types of biases and mitigation methods were subsequently 
extracted from the articles. Because different synonyms exist in the literature for the 
same type of bias, biases were then descriptively synthesized based on their mechanism 
[34]. This allowed us to code the biases in eight distinct categories. Based on an in-
depth understanding of the CRISP-DM project steps, the distinct biases were assigned 
to the phases by matching the mechanism that leads to a specific bias to the tasks of the 
phases of CRISP-DM. If a different process model was used in the underlying paper, 
we matched the phases with CRISP DM. We then identified 25 methods and allocated 
them to the respective bias they address regarding the methods’ mechanisms. Finally, 
the methods were incorporated into the CRISP-DM model steps according to their 
detailed specifications of where the methods can be applied in the project lifecycle. The 
allocation was independently conducted by two researchers to enhance inter-coder 
reliability [35]. 

4 Results 

4.1 Emergence of Bias in Machine Learning Projects 

Bias can occur multiple times and in any of the six phases of a ML-project lifecycle. 
The eight identified biases are located in the CRISP-DM model based on their origin 
(see Figure 1) and explained and illustrated in the following. 
 



 
Figure 1. Emergence of Bias in CRISP-DM Process Model (Chapman et al. 2000) 

Social bias occurs when available data mirrors existing biases in society at large. 
When data embodies social biases that exist independently and prior to the development 
of an ML-model, the model will most likely lead to unwanted outcomes. Even if the 
data is perfectly measured and sampled, a normative concern with the current state of 
the world may exist, that should not be reinforced by the ML-model [9, 19, 33, 36]. 

Illustration: In 2018, statistical evaluations revealed that only 5% of the Fortune 500 
companies’ CEOs were women [37]. This unequal distribution was consequently 
reflected in Google’s image search of CEOs that showed only a small fraction of 
women. Google has recently adapted the search results on images of CEOs showing a 
higher proportion of women in order not to reinforce gender inequality [15]. 

Measurement bias can be introduced by humans in the BU-phase through 
subjective choices about model design. When defining the target variable and necessary 
features for the data mining problem, they may choose imperfect proxies for the true 
underlying value or include protected attributes. Protected attributes refer to attributes 
such as race, gender, ethnicity, etc. that partition a population into different groups that 
should be treated equally. Using protected attributes as proxies for other features that 
truly carry the signal of interest may result in a discriminant or inaccurate classifier. 
But even if the protected attribute is excluded, the discriminant effect can still exist due 
to the redlining effect. The redlining effect states that protected attributes can correlate 
with non-protected attributes [9, 15, 25, 38]. Measurement bias can also occur in the 
DP-phase when features and outcome variables are created. Often, features have to be 
constructed, derived, or transformed where they may omit important factors or 
introduce additional noise. When features are inaccurate or if the decision is reduced to 
only a small number of inappropriate features, the prediction accuracy may vary across 
groups [9, 38].  



Illustration: In a crime prediction application, the feature “number of arrests” is used 
to predict future criminal activity. Assuming African American and Caucasian 
defendants commit the same number of drug sales, they have a similar true risk. But 
arrest rates are possibly recorded differently across ethnic groups, leading to differential 
predictive power of the application. In minority neighborhoods with heavier policing, 
African American defendants are likely to have more drug arrests [39]. Despite the 
similar true risk, the ML-application would consequently rate the African American a 
higher risk than the Caucasian [40]. 

Representation bias arises during collection and sampling of data. It emerges if the 
probability distribution of the development population differs from the true underlying 
distribution. The algorithm subsequently fails to make good predictions for this group 
of feature values. The over- or underrepresentation can have several reasons, including 
difficult or expensive availability of required data. Subsequently, the model will result 
in less robust outcomes for different subpopulations [9, 15, 41]. Representation bias 
can also occur when the training data is no longer representative of the data found 
present when the model is deployed. It arises when the world as it is at the time the 
application is used is inconsistent with the world as it was when the training data was 
collected [36]. 

Illustration: Data can be traumatized by one-time phenomena. An algorithm built for 
credit card applications uses historical data about the chance of default. In case of an 
unsuspected event during the collection of data, such as a natural catastrophe in a certain 
area, people might not be able to pay back their debts. Therefore, applicants from this 
area will most likely be classified as potential defaults. Thus, the one-time phenomenon 
is imprinted into the ML-application [36]. 

Label bias arises when training data is assigned to class labels in the DP-phase. Data 
scientists often face the difficulty of deciding which available label best applies to the 
present data. Due to ambiguity, cultural or individual differences, labels might 
systematically deviate. Existing class labels may also fail to precisely capture 
meaningful differences between classes [9, 36]. 

Illustration: Assuming a certain number of pictures are to be labeled as “wedding”. 
A person that is educated in the western culture, will likely only label pictures with 
brides in white dresses and grooms in dark suits as “wedding”. An Indian wedding with 
its colorful dresses and special decorations might then not be labeled as a wedding [36]. 

Algorithmic bias is introduced during the MO-phase and results from inappropriate 
technical considerations. It can emerge when formulating the optimization problem, in 
which developers make data and parameters amenable to computers [18, 21, 42]. 
Resulting ML-models may fail to treat groups fairly under given conditions. The 
probability of misclassification, i.e., false-positive and false-negative rates, should be 
equal among groups [19, 27, 38, 41]. 

Illustration: In COMPAS, a predictive policing application to assess the “risk of 
crime recidivism”, minorities exhibited a higher false-positive rate than majority groups 
[40, 43].  

Evaluation bias can occur, if the population in the benchmark set is not 
representative of the use population. An algorithmic model is trained and optimized on 
its training data but evaluated on a test-or benchmark data set in the EV-phase.  



ML-models are often tested on the same benchmark to allow for an objective 
comparison. If the benchmark itself is not representative, models could be preferred 
that perform only well on a subset of the population [15, 42]. 

Illustration: Choosing the wrong benchmark set can lead to overlooking a potential 
bias. For example, if a facial recognition algorithm is trained on a dataset with 
underrepresented dark-skinned females and is tested on a similarly unbalanced 
benchmark, the bias will remain unrecognized [15]. 

Deployment bias arises when the system is used or interpreted in inappropriate 
ways, even if none of the before-mentioned biases are present. This can occur when the 
ML-application is built and evaluated assuming it operates fully autonomous, but in 
reality, it works in a complex socio-technical environment and is followed by human 
decisions. The assumed use population may differ in a significant dimension from the 
actual use population. They may have a different knowledge base or values and 
interpret the algorithmic output according to their internalized biases [15, 27, 43].  

Illustration: Risk assessment applications are models that aim to predict the 
likelihood of someone committing a future crime. However, in practice, these models 
are often seen to be used in different contexts, such as determining the length of 
defendants sentences [44]. 

Feedback Bias can arise after the DE-phase and after project deployment. It 
emerges when the output of the ML-application influences features that are used as new 
inputs and algorithms are refined over time (e.g., through re-training). If the outcome 
of the ML-application has an influence on the training data, an initially small bias is 
potentially reinforced through a feedback loop [9, 27, 45]. 

Illustration: Once a certain content got a good ranking by a rating algorithm based 
on the number of times it has been clicked, it will affect the position and the promotion 
of this content, thus leading to even more clicks. A reinforcing feedback loop is created 
and can lead to decreased user satisfaction as not the best content is promoted to the 
web user [16, 36]. 

4.2 Managing Bias in Machine Learning Projects 

This section outlines potential mitigation methods for addressing the aforementioned 
biases and indicates their application within the CRISP-DM project phases. Figure 2 
illustrates that a single bias can be mitigated by several methods, and one method can 
mitigate multiple biases. The methods presented either support project teams in 
identifying biases or mitigate their unwanted effects. A method that is applied in one 
phase can address biases that occur in the respective phase or possibly also in later 
stages of the project. In order to optimally avoid negative consequences resulting from 
bias, a sociotechnical approach is fostered by including technical and non-technical 
methods. 



 
Figure 2. Bias Prevention and Mitigation Methods in ML-Project Phases 

In the BU-phase, the emergence of three biases can be prevented by understanding 
the business objectives and undertaking actions to ensure a precise translation into data 
mining problems. Three bias mitigation approaches are relevant in the BU-phase.  

It is advisable to start addressing bias with the awareness of the project team about 
different bias types and understand their occurrences. Acknowledging that data does 
not necessarily represent the world perfectly is helpful to reveal social bias prior to any 
development [19, 45, 46]. First, setting up diverse teams helps to mitigate 
measurement bias that would typically occur in the BU-phase, and to prevent 
representation and deployment bias from occurring in the DP- and DE-phase of the 
project. Organizations that embrace diverse teams are better capable of identifying 
potential harms by introducing different perspectives in the development process. This 
enables the team to better define the data mining problem with more appropriate target 
variables and features, specify representative populations, and anticipate different use 
contexts [46, 47]. Second, exchanging with domain experts of the specific application 
context addresses emerging measurement bias and prevents possible representation bias 
in the DP-phase. The interaction with domain experts helps the project team to design 
the model with appropriate and measurable target variables and features as well as to 
consider all possible affected populations [36, 38]. Third, it is necessary to discuss 
technical and social consequences of the use of the application in the respective real-
world context in order to prevent bias in the deployment stage. A project team should 
envision the application embedded in a social system and especially consider the 
prevailing moral values [19, 45]. If possible, multiple contexts of use can be designed. 
Otherwise, constraints on other user contexts can be articulated in this stage [25, 48]. 

To identify and prevent possible bias in the DU-phase, a good prior understanding 
of data and its underlying relationship is advisable and can be fostered by the following 
three methods.  



First, a statistical estimation of appropriate proxy variables can mitigate the 
occurrence of measurement bias in the DP-phase. Depending on the design 
specification, it is necessary to choose proxies for variables of interest in case they are 
not directly observable. Examining the underlying correlations of the proxies and the 
true variables of interest supports feature selection [25, 38]. Second, data plotting can 
reveal possible spikes (i.e., one-time phenomena) that can be carefully removed in order 
to prevent representation bias [36]. Third, exchanging with domain experts can be 
effective in the DU phase to ensure a thorough understanding of the features and data 
in question. Domain experts might better determine affected populations in the 
application context and can recommend features that should be included for model 
training to mitigate representation and measurement bias. Also, data scientists often 
face data labeling challenges in the following DP-phase. Gaining insights from experts 
can help to reduce ambiguity in this decision and consequently prevent label bias [9, 
36, 38]. 

In the DP-phase, five mitigation methods can eliminate underlying biases or mitigate 
discrimination by modifying data prior to modeling activities.  

First, data massaging can mitigate social bias by strategically relabeling data points 
near the classification margin according to a ranking of the class probabilities. By 
relabeling individuals from an unprivileged group to favorable outcomes and 
simultaneously individuals from privileged groups to unfavorable outcomes, social bias 
can be reduced while maintaining the overall class distribution. With the class 
probability ranking, individuals closest to the classification margin can be identified for 
relabeling to minimally affect the model’s accuracy [49, 50]. Second, with reweighing 
it is possible to address representation bias and social bias already present in data. 
Unrepresentative datasets are balanced out by upweighing underrepresented subgroups 
with different weights for each combination of group and label. With this approach, 
discrimination can be significantly reduced while maintaining overall positive class 
probability [49–53]. Third, targeted data augmentation reduces representation bias 
occurring in the DP-phase. It improves the sampling function by populating parts of 
the underrepresented group in the dataset [51]. Fourth, rapid prototyping is an 
effective approach for identifying different types of unintended bias. By creating a 
prototype and testing it in the field, practitioners can uncover overlooked populations 
and prevent representation bias. Furthermore, possible discriminative effects resulting 
from social bias can be revealed. Also, chosen features and target variables can be tested 
regarding their suitability to predict the outcome of interest and consequently address 
measurement bias [19].  

Fifth, preprocessing algorithms that transform data can be applied to mitigate social 
bias or discriminative effects in data. Disparate impact remover edits features and 
labels in the data by learning a probabilistic transformation and applying rank ordering 
within groups. This ensures that information of the non-protected attributes are 
preserved and the class belonging can still be correctly predicted [18]. Learning fair 
representation formulates an optimization problem of finding an intermediate 
representation of the data that encodes it well but simultaneously removes information 
about membership of a protected group. The new representation space captures true 
underlying features that differ across groups and can then be used to learn a new 



classifier in the MO-phase that does not use group belonging information [22]. 
Optimized preprocessing formulates a (quasi-) convex problem for the transformation 
and edits features and labels while complying with fairness constraints [54]. 

In the MO-phase, six model-based methods were identified which conduct 
modifications of learning algorithms to mitigate bias. Two additional approaches can 
be applied after modeling that treats the learned model as a black box. These two 
methods do not modify the training data or the algorithm. 

First, prejudice remover is an approach to introduce regularization terms or 
constraints that mitigate social bias during modeling. It considers differences in how 
the learning algorithm classifies protected non-protected groups and then penalizes the 
total loss of the loss function based on the amount of the difference [55, 56]. Second, 
adversarial debiasing learns a classifier which maximizes accuracy while 
simultaneously reduces the adversary’s ability to identify the protected attribute(s). The 
outcome is unable to carry any group discrimination information that the adversary can 
use, which helps to mitigate social bias during classifier training [57]. Third, multiple 
models is a method used for Naive Bayes Classifiers. Two separate models are learned, 
one for the protected group and one for the non-protected group. This way, the protected 
attribute, as well its proxies, no longer influence the outcomes of the separate models. 
After combining both models, probabilities are modified so that the number of positive 
labels is kept as high as in the original data set [58]. Fourth, a latent variable model 
discovers the actual class labels that a data set should contain if it was discrimination-
free. The parameters of the model are then set in a way such that the likelihood of the 
data set is maximized [50]. Fifth, the design of interpretable models fosters 
transparency and trust in algorithmic models and aids identification of biases [25, 45, 
59]. Sixth, resampling multiple training and test set splits is an important part of 
building a robust classifier and consequently mitigate algorithmic bias. It prevents 
evaluation bias in the EV-phase by improving diversity in the test set [18, 41, 60]. 

There are two post-processing methods that are applied after the algorithmic 
training. First, equalized odds mitigates social bias by accessing only aggregated data. 
It can solve a linear problem that finds probabilities with which to change and equalize 
differences in output labels [25, 61]. Second, multitask learning is an efficient 
decoupling technique that can be added on top of black-box models to learn different 
classifiers for different groups, thereby mitigating algorithmic bias. It parametrizes 
different groups differently and learns simpler, multiple functions to account for group 
differences [42, 62]. 

In the EV-phase, possible evaluation bias can be addressed by two approaches. First, 
the representativeness of a benchmark dataset should be verified regarding its 
balanced composition of all subgroups present in the model [63]. Second, the subgroup 
validity approach assures to compare performance metrics across groups instead of 
accepting an aggregated metric, revealing substantial performance gaps between 
different subgroups. Data augmentation can balance data of underrepresented 
subgroups [15, 20, 48, 51]. 

In order to prevent deployment bias and feedback bias in the DE-phase, three 
approaches can be considered. First, a monitoring plan can be introduced that accounts 
for changes in the algorithm when the context evolves [19, 25]. Second, human 



supervision in ML-application lifecycles mitigates possible occurrence of deployment 
bias and prevents feedback bias. Algorithmic recommendations cannot blindly be 
accepted because they cannot be expected to be bias-free. Including humans in the 
application loop to analyze and question the outcomes can enhance objectivity [38]. 
Third, randomness can be introduced. If the outcome of an ML-application has an 
impact on data generation or sampling distribution, randomness can prevent feedback 
bias [36]. 

5 Discussion 

The present paper addresses the emerging interest of IS research in challenges resulting 
from AI implementation in organizations and sheds light on the possible negative 
consequences of biases in ML-projects. We examined how organizations can identify 
and mitigate biases. Based on the widely adopted CRISP-DM, we demonstrated a 
systematic process to guide practitioners when identifying biases in ML-projects and 
provide a common ground for further theory development. We also presented a brief 
compilation of methods to consider what suits the specific application and the company.  

This paper contributes to theory and novel management challenges in ML-projects 
twofold: First, the paper summarizes the current state of knowledge about bias in ML-
applications in a synthesized way. Unique mitigation methods are allocated both to the 
bias(es) they address and the project phase they should be applied. The outline supports 
future researchers to clearly state the addressed problems with shared terminologies 
helps to solve problems in the analysis and design of ML-applications by highlighting 
temporal dependencies between bias occurrence and mitigation. Second, failing to 
recognize interdependencies in ML-models that are embedded (e.g., as modules) in 
broader organizational information systems can have a significant, detrimental impact 
on the acceptance and use of such systems as well. In this sense, the management of 
bias in ML-projects can become a critical aspect in IS development processes and 
differs fundamentally from, for example, software development.  

Our research also has practical implications that could help project teams to address 
bias in ML-projects. First, it serves as a communication instrument for ML-project 
teams. It appears most fruitful to create a shared understanding across industries and to 
equip teams with methods that are applicable across domains. Second, besides 
enhancing understanding of the variety of bias types, our work also provides a 
comprehensive perspective on when bias can occur and how it could be addressed. This 
allows a better planning and assessment of risks for ML-project managers. Lastly, with 
our mapping of several applicable methods to particular biases, mitigation methods can 
be selected. A bias mitigation method should stem from application-specific 
discussions about what it means to be fair in the particular application context, which 
determines the individual mix of technical and non-technical methods.  

Future research could address the limitation of our work: First, future empirical 
research could study the practices of how managers and their teams deal with bias in 
ML-projects. Such research could further substantiate and extend the work presented 
here. For instance, the interdependencies between different biases are not investigated 



in this paper. The occurrence of a certain bias may affect the probability of a different 
bias to occur. Additionally, a certain mitigation method may impact other mitigation 
methods or biases it is not designed to address. That is, executing a mitigation method 
to address a certain bias could have an impact on the effectiveness of other mitigation 
methods or on the probability of other biases to occur. Second, while many of the 
articles included in this literature review stem from computer science outlets, our 
research could be extended by further scrutinizing this body of knowledge. Finally, 
existing frameworks, including the one presented here, still do not capture the full scope 
of fairness in all situations. Existing frameworks may not deliver clear solutions to 
ethical challenges in the business and data science community.  

Managing Bias in ML-projects is closely related to Explainable Artificial 
Intelligence (XAI). That is, XAI greatly supports the detection of a ML-model’s biases 
by disclosing the inherent mechanisms that lead to a certain outcome [7, 64]. In this 
paper, XAI is included as a mitigation method (“interpretable models”). However, XAI 
is not sufficient to eliminate the risk of bias: Even if the outcomes are interpretable and 
explainable, some biases can still be introduced through activities in e.g. the DE-phase. 

The consolidation of IS research with social sciences and other fields such as law 
and ethics could provide more guidance on what it means to be fair. How can 
differences in moral values be handled? How to draw the line between an actual bias 
and a rationally based differentiation that is justifiable? Algorithms cannot judge or 
determine what fairness means. While we take serious attention to bias in system 
development, it should also be recognized that there are limits to what can be 
accomplished. Some concerns arising from biases go beyond designing and 
programming algorithms to larger societal problems. IS research could address this 
issue by encouraging the discussion about the articulation of normative goals that can 
be computationally resolved in business projects and ensure fair decision making in 
society. 

6 Conclusion 

ML-applications can incorporate inadequate properties that lead to both technically 
incorrect and socially unacceptable results. Besides performance criteria such as 
reliability, efficiency, and accuracy, freedom from bias is an integral part of the 
professional (risk) management of AI-systems. Therefore, we have proposed a 
framework based on the CRISP-DM process model that supports the identification of 
possible biases and methods for taking countermeasures in the management of ML-
projects. 

We encourage future research to address some of the limitations of our work. It could 
be insightful to illustrate the managing of biases and the application of mitigation 
methods to specific ML-projects with real data. By doing so, the contextual conditions 
under which each of the identified biases can occur are better captured. Because there 
is no one-size-fits-all solution to the diverse implementation of ML-applications, 
technical and social aspects of ML should be combined to bring context-awareness to 
research and practice.  



This paper provides a possible approach by suggesting a framework to which a large 
part of IS research, project managers, and developers can relate. It fosters the 
understanding of the occurrence of different types of biases and their possible 
interactions, which have been so far scattered in the literature and named with different 
terminologies. Furthermore, we clearly address each type of bias with possible 
mitigation methods. We demonstrate the necessity to incorporate social and technical 
aspects in bias mitigation methods that can be tailored to the individual application. 
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