
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

Wirtschaftsinformatik 2021 Proceedings Track 21: Enterprise Modelling and Information
Systems Development

Notation-agnostic Subprocess Modeling for Adaptive Case Notation-agnostic Subprocess Modeling for Adaptive Case

Management Management

Johannes Tenschert
Friedrich-Alexander-Universität Erlangen-Nürnberg

Sebastian Dunzer
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martin Matzner
Friedrich-Alexander-Universität Erlangen-Nürnberg

Follow this and additional works at: https://aisel.aisnet.org/wi2021

Tenschert, Johannes; Dunzer, Sebastian; and Matzner, Martin, "Notation-agnostic Subprocess Modeling
for Adaptive Case Management" (2021). Wirtschaftsinformatik 2021 Proceedings. 12.
https://aisel.aisnet.org/wi2021/DEnterpriseModelling21/Track21/12

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted
for inclusion in Wirtschaftsinformatik 2021 Proceedings by an authorized administrator of AIS Electronic Library
(AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/385858447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/wi2021
https://aisel.aisnet.org/wi2021/DEnterpriseModelling21
https://aisel.aisnet.org/wi2021/DEnterpriseModelling21
https://aisel.aisnet.org/wi2021?utm_source=aisel.aisnet.org%2Fwi2021%2FDEnterpriseModelling21%2FTrack21%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/wi2021/DEnterpriseModelling21/Track21/12?utm_source=aisel.aisnet.org%2Fwi2021%2FDEnterpriseModelling21%2FTrack21%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

16th	International	Conference	on	Wirtschaftsinformatik,	
March	2021,	Essen,	Germany	

Notation-agnostic Subprocess Modeling
for Adaptive Case Management

Johannes Tenschert, Sebastian Dunzer, and Martin Matzner

Chair of Digital Industrial Service Systems,
University of Erlangen-Nürnberg, Nürnberg, Germany

{johannes.tenschert,sebastian.dunzer,martin.matzner}@fau.de

Abstract. Even though knowledge work comprises tasks that cannot be modeled
a priori, some structure for routine work or an outlined course of action is often
necessary. Knowledge workers perform structured and ad-hoc activities – and a
wide range of requirements typically yields many tools. To avoid redundant and
scattered process information, a single system of record capable of consolidating
flexibility and modeling of different aspects of processes is desirable. For
knowledge-intensive processes, we outline how to combine process models for
structured routine aspects with the ad-hoc activities and flexibility of social soft-
ware in the same context. Therefore, a case comprises modeled subprocesses as
well as ad-hoc activities and artifacts. The shared context allows to transparently
combine aspects and deviate from predefined models. We prototypically imple-
ment our approach and show that ad-hoc project management and different nota-
tions can be applied within the same case.

Keywords: adaptive case management, subprocess modeling, knowledge-inten-
sive business process, process flexibility

1 Introduction

In recent years, the share of knowledge work in the workforce rapidly increased, and
knowledge-intensive processes became customary. In the US, around 50% of the work
can be attributed to knowledge work, and other countries show similar tendencies [1], [2].
Knowledge workers are responsible for their own contribution in terms of quantity and
quality [3], and they perform emergent processes [4]. Flexibility requirements often yield
multiple support systems for the same process, e. g. groupware, collaboration tools, and
business process management (BPM) systems. These need to be integrated or manually
kept consistent. Otherwise there is no clear system of record. Adaptive case management
(ACM) systems aid within this realm.

Business process modeling typically entails capturing the whole process. This ap-
proach increases efficiency for predictable and frequent processes. For knowledge-
intensive processes with a lot size of 1, and for unstructured work, this sort of process
support is detrimental. Modeling scarcely executed processes often cannot be amortized

with efficiency gains. Moreover, different processes of an organization might be appro-
priate for different modeling notations or paradigms. Current techniques only allow
mixing paradigms to some degree.

This paper introduces an approach to combine structured process models for routine
aspects of knowledge-intensive processes with ad-hoc activities and artifacts within the
same context. Our approach is notation-agnostic and thereby permits mixing modeling
languages within the same overall case. Knowledge workers can transparently deviate
from predefined models or decide to not apply them at all, e. g. by creating and adapting
tasks and other artifacts that have not been modeled in advance. The approach facilitates
creating a single system of record. We apply cases as the context for all routine and ad-
hoc work. Process models are applied as subprocess models using data from this con-
text. Subprocess models can be combined as they are initiated on demand. All related
case artifacts are stored or referenced within the same case. We prototypically imple-
ment our approach and a motivating example in the commercial ACMS Pertuniti.

The following sections introduce fundamentals in regard to ACM and process mod-
eling paradigms, and a motivating example in the context of providing a lecture. Sec-
tion 6 captures our approach on notation-agnostic subprocess modeling, and Section 7
outlines the implementation in the commercial ACMS Pertuniti. Afterwards, we dis-
cuss the approach and introduce related work. Finally, we conclude and outline further
work.

2 Fundamentals

Since we combine structured process models with flexibility of ACM, our approach has
to consider many existing techniques. Hence, we first introduce ACM and outline mod-
eling paradigms we consider as applicable for subprocess models.

2.1 Adaptive Case Management

The term adaptive case management (ACM) has been introduced in Mastering the Un-
predictable [5]. ACM systems support knowledge workers that perform emergent or
unstructured work. The actions performed in these processes are typically not known
in advance [4]. The focal point for organizing the work is the case. Typical artifacts are
ad-hoc tasks and unstructured notes or documents. As design and execution are the
same phase, an ACM system has to support knowledge workers in planning their emer-
gent processes.

In contrast to process-driven applications, support systems in case management must
consider flexibility and ad-hoc activities, the focus on documents and unstructured data,
and empowering knowledge workers to deviate from predefined models to support new
situations in emergent processes. Still, knowledge work also comprises some routine
work that our approach intends to reduce.

2.2 Process Modeling Paradigms

Today, business process models can be created in a wide range of modeling paradigms
that entail different benefits and limitations.

Declarative. Declarative process modeling became prevalent for ACM [6], [7]. It is
an approach to create flexibility in processes to support less predictable courses of ac-
tion [7], [8], [9]. Although knowledge work is inherently unpredictable, some aspects
can contain predictable dependencies. Declarative notations focus on dependen-
cies [10], [11]. Declarative models allow the execution of any modeled activity, unless
a constraint prevents it [6]. They explicitly prohibit behavior and implicitly describe
applicable paths. There is a wide range of declarative process modeling notations, e. g.
Declare [12], CMMN [13], DCR graphs [14], and DPIL [15].

Imperative. In contrast, imperative approaches describe all permitted paths [16].
They implicitly prohibit behavior [17]. Imperative models focus on describing se-
quences of actions [8]. Subsequently, they can be considered detrimental for
ACM [18]. Depending on the level of detail, such models enable process automa-
tion [16]. Even though process mining leveraged the generation of process models from
data, imperative modeling is time- and resource-intensive [19]. Routine tasks that
knowledge workers perform can be improved or even automated with imperative ap-
proaches. Prominent examples of imperative process modeling languages comprise
BPMN [20], Petri nets [21], and eEPC [22].

Hybrid. Additionally, there are process modeling notations that combine imperative
and declarative modeling [11]. While BPMN 2.0 allows modeling ad-hoc subpro-
cesses [20], BPMN-D facilitates declarative sections in imperative BPMN models [10].
Van der Aalst suggests that accepting Petri nets [21] can include declarative semantics
as well. The workflow engine Camunda facilitates interchangeability between CMMN,
DMN and BPMN.1

3 Related Work

We classify our approach as a workflow execution system specifically designed for
flexible processes which allows for modeling routine tasks as subprocesses and delivers
a shared context for case data management. In the following, we distinguish our ap-
proach from existing ACMS, and BPMS which support knowledge work and routine
tasks at the same time. For the identification of related work, we conducted a literature
search on Google Scholar and examined pertinent conference proceedings, i. e. BPM,
CAiSE, ECIS, ICIS, and WI.

Künzle & Reichert introduced PHILharmonicFlows [23], [24] as an object-aware
process management framework that focuses on the data object as their primary process
element. For example, HR processes have an open position and several applicants. Tra-
ditional BPM approaches typically have to focus on either the position or the applicant
as the process instance, i. e. the primary focus. Here, each data object has its own state.
PHILharmonicFlows differentiates micro and macro processes for object behavior and

1 https://www.camunda.com (visited on 2020-05-31)

object interactions [25], [23]. For ad-hoc activities in knowledge work, process support
is restricted to predefined (note) attributes to be filled with arbitrary values. Our ap-
proach is similar in regard to allowing to manage different subprocess instances that
have their own state and can focus on different data objects – or stakeholders in the
context of HR. In addition, we allow combining subprocesses with ad-hoc activities
and subprocess models for different aspects of the work. Furthermore, we expect that
knowledge workers may create their own subprocess models as they can capture single
aspects of the work, i. e. they do not need to model the whole process.

Fragment-based production case management [26], [27] divides complex processes
with many possible execution paths into shorter process fragments. These describe one
particular aspect of the process and are linked with data objects and common activities.
Pre and post conditions of activities describe the data flow of a process. The approach
allows modeling the happy path, exceptions, and global procedures as individual frag-
ments of a process. Users may choose different variants of fragments, e. g. in contract
management, either pre-approved contracts can be applied, or new contracts have to be
reviewed. The result of both fragments is an accepted contract that can be a precondi-
tion for other fragments. Even though individual fragments can be kept small, modelers
have to consider the whole process, and ad-hoc activities and artifacts are not consid-
ered in the model. Unlike PHILharmonicFlows, “fragment instances” cannot focus on
different data objects, at least not in the sense of multiple data objects of the same type.
However, fragment-based modeling can be imported into our approach both as running
subprocess instances, but also in regard to dependencies between subprocess instances.

Van der Aalst et al. [28] introduced Proclets, a framework for lightweight speech-
act-based interacting workflow processes based on Petri nets. Proclets are Petri nets
that are connected via ports and corresponding annotations in regard to cardinality and
multiplicity. Individual proclets describe the life cycle of an instance. For the connec-
tion, they exchange performatives over channels like email that are stored in a traceable
knowledge base. Similar to our approach, individual proclets can capture a different
focus on entities as subprocess instances, e. g. for HR. However, all activities for a par-
ticular instance are modeled within the Proclet, i. e. it is not intended to further divide
the process into smaller aspects of the work. Proclets could also be imported into our
approach as a single notation for subprocess instances.

4 Methods

We intend to open adaptive case management to knowledge-intensive processes con-
sisting of structured, semi-structured, and completely ad-hoc activities. Therefore, our
approach revolves around two hypotheses:

H1 No predefined process schema is necessary to support traceability in knowledge
work.

H2 Routine and ad-hoc activities that share the same context can be supported within
the same system of record.

With a speech-act-based approach, Hypothesis H1 has already been investi-
gated [29], and yielded the prototype Agora [30] as well as the spin-off Pertuniti [31],
[32]. For Hypothesis H2, a focus on speech acts yielded first results that depend on
explicit and implicit (e. g. annotations in process models) documentation of interac-
tions. Here, we focus on H2 without requiring additional annotations. From H2, we can
directly derive two research questions:

RQ1 Can routine and ad-hoc activities that share the same context be performed
within the same system?

RQ2 Can different execution semantics of routine work be performed within the same
system?

For communication-centric knowledge-intensive work, RQ1 can already be affirmed
by the prototype Agora [30]. To derive a general answer, we want to extend an approach
for process support for completely ad-hoc activities with process support for routine
work. In the commercial ACMS Pertuniti2, no process schema is necessary to perform
collaborative work in a traceable way. Prior to our extensions, Pertuniti did not include
any workflow engine, and automation was restricted to document generation as well as
a REST interface to attach web services to. First, we extend Pertuniti with a workflow
engine for a subset of BPMN that performs subprocesses within the same case as ad-
hoc activities.

For RQ2, we add additional workflow engines and abstract execution commonalities
and differences (see Section 6.5). We affirm RQ2 by providing a case and subprocess
model that is not tailored to a specific process modeling notation, and that allows per-
forming subprocess instances of different process modeling notations and execution
semantics within the same shared context, i. e. in the same case.

We further evaluate RQ1 and RQ2 by applying this approach in the ACMS Pertuniti,
and by demonstrating that it can fulfill the requirements of the following motivating
example.

5 Motivating Example

We motivate subprocess modelling in ACM by applying the lecture module Process
Analytics (PA) as a case, or rather, a set of cases. We consider every term of the lecture
PA as one case. It shares a common context and consists of weekly lectures, an excur-
sion, a project, a written examination and other ad-hoc tasks. Although the project dif-
fers every year, it comprises a mandatory excursion to an industry partner. The lecture-
unit preparation is knowledge-intensive. Some lecture units require revision for the new
term. Other units, such as fundamentals, might remain similar for years. Holding lec-
tures is predictable up to a certain degree, but may vary depending on the students’
number and participation. For these reasons, it seems unsuitable to model designing
and holding lectures.

2 https://www.pertuniti.com (visited on 2020-11-30)

Figure 1. DCR graph: exam preparation

In contrast, exam preparations do not change over the years. They mainly rely on
dependency-related information, i. e. we apply declarative modeling. Hence, we imple-
mented a DCR graph to prepare exams (cf. Figure 1). Examiners may decide to conduct
the examination orally. In this case, they do not initiate the model. After an examiner
has created an exam, it needs a review by a colleague. In declarative notations, case
workers can execute activities multiple times when there is no related constraint. In
most cases, the examiner creates more than one version of an exam. Before conducting
the examination, the examiner must create a grade table. After the examination, the
examiner, colleagues, and assistants correct the exams. Thereafter, the examiner enters
the grade for each student. Last, examiners must host a post-exam review. The examiner
has one decision of whether s/he conducts an electronic or written examination. While
electronic exams must include the sample solution, written exams require printing prior
to the examination. The single system of record aids in creating the sample solutions,
since all lecture slides and transcripts are immediately available.

Planning an excursion is a predictable process. Thus, we modeled organizing it in
BPMN (cf. Figure 2). Depending on the industry partner, the responsible needs to enter
the date and target location of the excursion in a form. Afterwards, the approval from
the central university must be retrieved. If the trip is approved, all students in the project
are automatically registered for the excursion. Meanwhile, the organizer compares
travel options. If the excursion takes more than a day, the organizer has to search for
accommodation. Capturing these options may result in unstructured documents. After
the trip, all invoices and bills need to be captured to settle payment.

As we show with the lecture module, one case can comprise structured, semi-
structured, and ad-hoc work. Hence, ACM can still benefit from modeled sub processes
for routine aspects. We applied notations for routine work based on the process to be
supported, which is not supported in available ACM systems.

Create Exam

EXAMINER

Check Exam

COLLEAGUE

Create Grade
Table

EXAMINER

Print Exam

EXAMINER

Conduct
Examination

!
EXAMINER

Grade Student

EXAMINER

Correct Exams

Host Post Exam
Review

EXAMINER

Create Sample
Solution

EXAMINER

Decision
Electronic Exam

!
EXAMINER

Decision Written
Exam

!
EXAMINER

�
�

�

�

�

�

�

�

�
�

�

� �

%�

%�

��

��

��

��

%�

%

�

��

��

Figure 2. BPMN model: lecture excursion

While the motivating example is academic, this mode of work can be found in
many – maybe unexpected – areas: In regulated domains, e. g. medical quality manage-
ment, core processes have to be documented in advance, and traceability of process
instances is mandatory.

6 Notation-agnostic Subprocess Modeling

Our approach to process support enables combining complete ad-hoc activities and
modeled processes within the same context, a case. Our approach comprises a case
model, dynamic case and process states, and a data dependency model. Furthermore,
we outline how an ACMS could handle common and differentiating execution seman-
tics.

6.1 Case Model

Since knowledge-intensive processes consist of ad-hoc and routine fragments, one pro-
cess model typically cannot capture them. Nonetheless, they should be performed
within one traceable context. While concrete artifacts may vary between domains, this
section introduces a case model that allows execution of modeled routine subprocesses
as well as ad-hoc activities.

Definition 1 (Case Instance). A case instance c = 〈s, A, D, I, Σ〉 consists of a state s ∈ S
of state types S, a set of master data attributes A ∈ K × V as key-value pairs with unique
keys, a set of arbitrary artifact data D, a set of subprocess instances I, and a set of
performed activities, i. e. an event log Σ.

Optionally, a case should also contain an unique identifier, and depending on the
domain, it may contain a case type of some sort. The set of arbitrary artifact data D
substantially simplifies actual case management systems. In reality, D may contain ar-
tifacts of arbitrary types that are supported in different ways, e. g. a calendar for events,
a Kanban board for task lists, or some file hierarchy for documents. As many case man-
agement systems provide functions to manage case master data, we apply key-value
pairs. These can be further specified with e. g. case types. Σ is a consolidated event log
of all modeled and ad-hoc activities performed within the case instance.

Definition 2 (Subprocess Instance). A subprocess instance i = 〈ℳ, s, A, 𝜓𝒩, Σi〉
consists of a reference to a specific process model ℳ of modeling notation 𝒩, a state
s ∈ Sℳ, i. e. states that are applicable to process model ℳ, arbitrary attrib-
utes A ∈ K × V for an internal variable scope if necessary, a notation-specific execution
state 𝜓𝒩, and an instance-specific event log Σi.

This definition contains three representations of states to capture a variety of require-
ments. Process states s ∈ Sℳmight be useful to derive the success of subprocess in-
stances, e. g. labels on BPMN end events. Knowledge workers may derive the course
of action based on states of past subprocess instances, i. e. ACM systems should depict
this state prominently. As execution semantics of different notations require different
data models, 𝜓𝒩 can capture notation-specific execution states, e. g. tokens or included
activities. Some arbitrary attributes s ∈ A might be adaptable by end users, otherwise
they could also be stored in 𝜓𝒩.

A subprocess model may reference and adapt not only their instance state, but also
the case state, e. g. for creating case artifacts or to use case master data at decision
points. Hence, subprocess models could be applied as case templates.

6.2 Sketch

Based on the running example, the difference in the context of ACM becomes apparent.
Figure 3 depicts the ad-hoc and routine activities involved in giving a lecture on process
mining. The case contains many documents and groupware artifacts, e. g. lecture notes
and test data, exercises, a course-specific calendar of the lecturer, ad-hoc tasks to im-
prove the lecture over time, and important interactions with stakeholders. The tasks are
not modeled in advance as in this case, planning is clearly part of the work and tasks of
this granularity are performed once.

Figure 3. Sketch of motivating example with subprocess instances

this state prominently. As execution semantics of different notations require different
data models, N can capture notation-specific execution states, e. g. tokens or included
activities. Some arbitrary attributes a 2 A might be adaptable by end users, otherwise
they could also be stored in N .

A subprocess model may reference and adapt not only their instance state, but also
the case state, e. g. for creating case artifacts or to use case master data at decision points.
Hence, subprocess models could be applied as case templates.

6.2 Sketch

Based on the running example, the difference in the context of ACM becomes apparent.
Figure 3 depicts the ad-hoc and routine activities involved in giving a lecture on process
mining. The case contains many documents and groupware artifacts, e. g. lecture notes
and test data, exercises, a course-specific calendar of the lecturer, ad-hoc tasks to improve
the lecture over time, and important interactions with stakeholders. The tasks are not
modeled in advance as in this case, planning is clearly part of the work and tasks of this
granularity are performed once.

Each semester, and not only for this course, students attend excursions to partners
of the chair for a guest lecture. Since this aspect is performed sufficiently often, it can
be modeled as a structured subprocess model (cf. Figure 2) to facilitate coordination
and applying best practices. The same is true for preparing an exam (cf. Figure 1).
Processes for feedback and handling objections could also be automated in regard to
their documentation and to trigger manual tasks.

The case provides a shared context for the whole lecture. Each modeled process ac-
tually is a subprocess, and no redundant data entry for capturing the context is necessary.
If one subprocess instance finishes, the whole course may continue until the lecturer no
longer expects feedback and objections. Moreover, models for excursions and feedback
might be shared with case types for seminars, colloquia, or projects.

Case #42: Course on Process Mining

Ad-hoc

- Current lecture notes
- Event logs (test data)
- Calendar (lectures,
meetings)

- Tasks for improving
the course

- Interactions with
students, colleagues,
administration

#1: Excursion

Set Date and
Location

Retrieve
Excursion
Approval

Trip approved?

Excursion
Cancelled

Register
Students

Compare
Options

duration > 1d ?

Get
Accommodation

Offers

Book Excursion Travel
Generate
Excursion
SettlementYes

No

Ye
s

N
o

#2: Exam

Create Exam

EXAMINER

Check Exam

COLLEAGUE

Create Grade
Table

EXAMINER

Print Exam

EXAMINER

Conduct
Examination

!
EXAMINER

Grade Student

EXAMINER

Correct Exams

Host Post Exam
Review

EXAMINER

Create Sample
Solution

EXAMINER

Decision
Electronic Exam

!
EXAMINER

Decision Written
Exam

!
EXAMINER

�

�

�

�

�

�

�

�

�
�

�

� �

%�

%�

��

��

��

��

%�

%

�

��

��

#3-5: Feedback

Derive need for
action

Communicate
changes

Student feedback Feedback
captured

#6-8: Objection

Notation-agnostic subprocess modeling for case management 11

p0 p1

p2

p3

p4

p5
p6

receive
objection

check
situation

check student
solution

consider
situation

dismiss

correct
exam

Fig. 5: Objections as accepting petri nets

6 Discussion

Superficially, our approach of combining structured process models with adaptive
case management directly contradicts the position paper of Swenson [15] who
deems BPMN and BPMN-like languages incompatible with ACM. Moreover,
“any work support system that depends upon processes designed with BPMN (or
BPMN-like languages) cannot be considered an ACM system” [15]. While his
statements and the title of the position paper are intentionally bold to raise
discussions, we can show that we do not contradict his argumentation and still
make BPMN and BPMN-like languages compatible with ACM.

First of all, our approach does not depend on structured processes, and no
process schema is necessary to perform work. As shown in Pertuniti (cf. Sec-
tion 5) and the speech-act-based prototype Agora [18, 19], not requiring any
process model but still providing known routine fragments of a process can be
applied in actual adaptive case management systems. In fact, both applications
started with completely ad-hoc case management and later introduced more
structure that can be imported on demand. Deviations are always allowed and
made transparent as knowledge workers are responsible for the process instances,
not a BPMS. Here, subprocess models are explicitly started by the knowledge
worker. S/he can decide whether additional tasks are necessary or if a predefined
model should be used at all. All case artifacts can be created manually, and a
subprocess model just reduces manual work and making decisions that are al-
ready known in advance. Hence, both work support systems do not depend upon
processes designed with BPMN or BPMN-like languages.

Swenson also argues in regard to the setting of modeling processes and use
of the language. For the setting, he concludes that processes are always designed
by some sort of developer due to 1) abstract thinking, 2) skills required, and 3)
tacit knowledge in models. For use of the language, he derives requirements for
ACM: 4) Ability to design a basic process quickly with very little investment, 5)
process design must not require a skill beyond what business users possess, 6)
for modifying process definitions, there must be no hidden assumptions.

Figure 3. Sketch of Motivating Example with Subprocess Instances

Each semester, and not only for this course, students attend excursions to partners of
the chair for a guest lecture. Since this aspect is performed sufficiently often, it can be
modeled as a structured subprocess model (cf. Figure 2) to facilitate coordination and
applying best practices. The same is true for preparing an exam (cf. Figure 1). Processes
for feedback and handling objections could also be automated in regard to their docu-
mentation and to trigger manual tasks.

The case provides a shared context for the whole lecture. Each modeled process ac-
tually is a subprocess, and no redundant data entry for capturing the context is neces-
sary. If one subprocess instance finishes, the whole course may continue until the lec-
turer no longer expects feedback and objections. Moreover, models for excursions and
feedback might be shared with case types for seminars, colloquia, or projects.

6.3 Case and Process State

For ACM, case state primarily coordinates knowledge workers, not workflow engines.
Therefore, the typical distinction into [active, finished, aborted] [26], or synonyms
like [running, closed, canceled] is neither necessary nor sufficient. Similar to BPMN,
knowledge workers may require specific end states where the classification into regu-
larly closing a case and canceling one is not always possible, and maybe additional
active states for routing and prioritizing as well. Hence, in [29] and in Pertuniti, these
are configurable and can be used for filtering.

Figure 4. Execution lifecycle of a subprocess instance

Process state coordinates both knowledge workers and workflow engines. Hence,
the execution lifecycle is similar to process fragments in Chimera [26], as depicted in
Figure 4. If the applied modeling notation provides some sort of end state, e. g. BPMN
end events or accepting nodes in Petri nets, the subprocess instance is annotated with
this end state as well.

6.4 Data Dependencies

As introduced in Definition 1, the case contains all resulting data artifacts. A subprocess
instance should reference external artifacts it depends on either in its attributes A, i. e. V
may include reference types, or in the execution state 𝜓𝒩. If artifacts are stored within
the same context, other subprocess instances may use them. For example, in regulated
branches, creating a document may trigger reviewing and approving it. In a shared con-
text, the subprocess model does not necessarily have to know the reviewing process,
i. e. this approach facilitates loose coupling.

6.3 Case and Process State

For ACM, case state primarily coordinates knowledge workers, not workflow engines.
Therefore, the typical distinction into [active, finished, aborted] [26], or synonyms
like [running, closed, canceled] is neither necessary nor sufficient. Similar to BPMN,
knowledge workers may require specific end states where the classification into regularly
closing a case and canceling one is not always possible, and maybe additional active
states for routing and prioritizing as well. Hence, in [29] and in Pertuniti, these are
configurable and can be used for filtering.

initial enabled

enable

disable
running

initiate

cancelled
abort

completed

terminate

Figure 4. Execution Lifecycle of a Subprocess instance

Process state coordinates both knowledge workers and workflow engines. Hence,
the execution lifecycle is similar to process fragments in Chimera [26], as depicted in
Figure 4. If the applied modeling notation provides some sort of end state, e. g. BPMN
end events or accepting nodes in Petri nets, the subprocess instance is annotated with
this end state as well.

6.4 Data Dependencies

As introduced in Definition 1, the case contains all resulting data artifacts. A subprocess
instance should reference external artifacts it depends on either in its attributes A, i. e. V
may include reference types, or in the execution state N . If artifacts are stored within
the same context, other subprocess instances may use them. For example, in regulated
branches, creating a document may trigger reviewing and approving it. In a shared
context, the subprocess model does not necessarily have to know the reviewing process,
i. e. this approach facilitates loose coupling.

If subprocess models of the same overall case do not know each other, they might im-
pose redundant data entry on knowledge workers. For loose coupling, we can formulate
user tasks that optionally request information if necessary: require(type, scope, name),
e. g. require(“text”, case, “location”). Types can be attributes or other artifacts available
at the selected scope.

6.5 Common and Differentiating Execution Semantics

While implementing the approach, commonalities and differences between execution
semantics become apparent. For typical paradigms, a workflow engine can provide
an event log of all activities performed within the instance. Regardless of notation, a
workflow engine can derive applicable next activities, e. g. current tokens in BPMN,

If subprocess models of the same overall case do not know each other, they might
impose redundant data entry on knowledge workers. For loose coupling, we can for-
mulate user tasks that optionally request information if necessary: require(type, scope,
name), e. g. require(“text”, case, “location”). Types can be attributes or other artifacts
available at the selected scope.

6.5 Common and Differentiating Execution Semantics

While implementing the approach, commonalities and differences between execution
semantics become apparent. For typical paradigms, a workflow engine can provide an
event log of all activities performed within the instance. Regardless of notation, a work-
flow engine can derive applicable next activities, e. g. current tokens in BPMN, availa-
ble tasks in DCR graphs based on markings, and applicable transitions in Petri nets.
Depending on the notation, some decisions are performed by the user, some by a work-
flow engine. Activities can be manual, i. e. the model supports in regard to coordination,
or automated.

Differences arise in regard to decisions: Some notations entail that automated activ-
ities can be triggered without supervision, some notations require user input as deci-
sions are non-deterministic. Obviously, declarative notations require more sophisti-
cated internal states to capture intermediate results for dependencies. Even token-based
notations can be implemented differently, as in BPMN it is relevant which incoming
sequence flow has been passed by a token, while e. g. in Petri nets, the amount of tokens
suffices. Obviously, these characteristics can be translated to some degree with addi-
tional nodes. All notations that we apply in Section 7 require different internal states
for execution.

7 Demonstration: Lecture “Process Analytics”

We prototypically implemented the processes outlined in Section 5 and extended the
ACMS Pertuniti in regard to offering subprocess workflow engines and enabling exe-
cution of multiple subprocesses of different notations. Pertuniti [31], [32] is an aca-
demic spin-off and the results of this paper were designed and implemented in close
collaboration. It targets knowledge-intensive processes with an emphasis on ad-hoc
processes, i. e. when the actual process unfolds as it is performed. No defined process
model is the expected default. Pertuniti shows characteristics of groupware and social
software, and implements process management as project and knowledge management.

Still, knowledge workers also perform routine work to some degree, and organiza-
tions of regulated domains, like healthcare, have to model some processes or aspects in
advance. Process models in Pertuniti are implemented according to the outlined ap-
proach to combine flexibility of ACM with structure and automation. Processes can be
modeled as a subset of BPMN, DCR graphs, and accepting Petri nets. While BPMN
and DCR graphs are expected to be applied by customers, accepting Petri nets are pri-
marily intended to show that the approach allows different types of imperative and de-
clarative notations.

Figure 5. Objections as accepting Petri nets

In Pertuniti, the whole sketch of Figure 3 can be performed in practice. For ad-hoc
activities, document management is available for current lecture notes, test data, or
other files, and it does not require predefined process models. The course schedule and
individual meetings with students and research assistants can be managed in a calendar.
Ad-hoc tasks can be managed in categorized lists and a Kanban board. Similar to cus-
tomer relationship management systems, all additional important communication, e. g.
notes on conversations with the exam office or questions that might be good candidates
for the exam, can be captured as typed interactions. As all case artifacts are stored
within the same system of record, they can easily be directly referenced and com-
mented. Each case and artifact can be annotated with arbitrary attributes in an EAV
schema. All activities performed within a case are captured within an “activity stream”,
i. e. an event log that is displayed to knowledge workers. Activity streams are available
on case, subprocess and case artifact level to support traceability and coordination of
case workers involved.

Figure 1 for conducting exams can be applied without any adaptations. It is primarily
intended for coordination, i. e. the steps are not automated. The service task “Generate
Excursion Settlement” of Figure 2 has to be annotated with the appropriate document
template and a variable mapping. Register students is currently a manual task. Figure 5
provides an example for an accepting Petri net for objections after the exam. It requires
that objections that are dismissed are checked in regard to the situation and solution.
For acceptable objections, checking what has been objected to suffices.

Figure 6. Running subprocess instances in Pertuniti

available tasks in DCR graphs based on markings, and applicable transitions in Petri
nets. Depending on the notation, some decisions are performed by the user, some by
a workflow engine. Activities can be manual, i. e. the model supports in regard to
coordination, or automated.

Differences arise in regard to decisions: Some notations entail that automated activi-
ties can be triggered without supervision, some notations require user input as decisions
are non-deterministic. Obviously, declarative notations require more sophisticated inter-
nal states to capture intermediate results for dependencies. Even token-based notations
can be implemented differently, as in BPMN it is relevant which incoming sequence
flow has been passed by a token, while e. g. in Petri nets, the amount of tokens suffices.
Obviously, these characteristics can be translated to some degree with additional nodes.
All notations that we apply in Section 7 require different internal states for execution.

7 Demonstration: Lecture “Process Analytics”

We prototypically implemented the processes outlined in Section 5 and extended the
ACMS Pertuniti in regard to offering subprocess workflow engines and enabling execu-
tion of multiple subprocesses of different notations. Pertuniti [31], [32] is an academic
spin-off and the results of this paper were designed and implemented in close collabo-
ration. It targets knowledge-intensive processes with an emphasis on ad-hoc processes,
i. e. when the actual process unfolds as it is performed. No defined process model is the
expected default. Pertuniti shows characteristics of groupware and social software, and
implements process management as project and knowledge management.

Still, knowledge workers also perform routine work to some degree, and organiza-
tions of regulated domains, like healthcare, have to model some processes or aspects
in advance. Process models in Pertuniti are implemented according to the outlined ap-
proach to combine flexibility of ACM with structure and automation. Processes can be
modeled as a subset of BPMN, DCR graphs, and accepting Petri nets. While BPMN and
DCR graphs are expected to be applied by customers, accepting Petri nets are primarily
intended to show that the approach allows different types of imperative and declarative
notations.

In Pertuniti, the whole sketch of Figure 3 can be performed in practice. For ad-hoc
activities, document management is available for current lecture notes, test data, or

p0 p1

p2

p3

p4

p5
p6receive

objection

check
situation

check student
solution

consider
situation

dismiss

correct
exam

Figure 5. Objections as accepting Petri nets

All these process models of different notations can be applied as subprocesses within
the same context. Figure 6 depicts how these subprocesses are integrated into a case:
Each case has a list of subprocess instances. From this list, subprocess models can be
initiated, and manual activities and decisions applicable for running instances can be
performed. An instance overview depicts the corresponding model and provides an in-
stance-level activity stream.

8 Discussion

We discuss our approach in regard to notions of the term adaptive case management,
applicability of different modeling notations within the same system, roles and impact
on execution semantics, a case as the shared context of all corresponding activities, and
in regard to process mining techniques.

8.1 Adaptive Case Management

Due to the prevalence of model-based ACM systems, Keith Swenson wrote a position
paper that postulated “any work support system that depends upon processes designed
with BPMN (or BPMN-like languages) cannot be considered an ACM system” [18].
While his statement is intended to raise discussions, we need to show that our approach
that combines ACM with BPMN-like languages can still be considered ACM. This
question should first be divided into 1) what can be considered as adaptive case man-
agement, and 2) whether our approach still fits the definition.

To resolve 1), there are different opinions: CMMN [13] introduces the general con-
cepts with “Any individual Case may be resolved in a completely ad-hoc manner, but
as experience grows in resolving similar Cases over time, a set of common practices
and responses can be defined for managing Cases in a more rigorous and repeatable
manner. This becomes the practice of Case management [...]” [13, p. 5], i. e. that case
work can be performed completely ad-hoc, but that they see case management only
after introducing cases in a more rigorous and repeatable manner, or rather by being
modeled. They emphasize this point with “A Case has two distinct phases, the design-
time phase and the run-time phase” [13, p. 6]. For adaptive case management, even the
actions to be performed in a case are typically not known in advance [4]. An ACMS
has to support knowledge workers in planning their course of action, but also in chang-
ing the plan [4], and knowledge work unfolds [5]. In knowledge work, planning and
performing work converge, i. e. the two distinct phases of design-time and run-time
should no longer be distinct for adaptive case management.

Correspondingly, we apply the term “ad-hoc activity” as actually not being known
in advance, even though notations like BPMN contain abstract “ad-hoc tasks”. Analo-
gous, modeled process fragments are either structured or semi-structured, but not un-
structured work, i. e. we apply “unstructured” similar to “not (yet) modeled”. By sup-
porting unstructured work with these definitions, ACM systems could be interesting in
project management situations as well.

To answer part 2), our approach does not rely on structured processes, and no process
schema is necessary to perform work. Knowledge workers decide whether to apply a
process model or perform activities manually. Our approach allows for user-defined
routine subprocesses that do not need to be designed by experts, can initially be imple-
mented with little investment and a varying degree of BPM experience, and the concrete
implementation facilitates reducing tacit knowledge in process models. Subprocess
models act as a support mechanism to reduce manual work and decision making. Work
support systems may include means to simplify routine work, even in ACM. As Per-
tuniti (cf. Section 7) and Agora [29], [30] show, ACM systems can provide structured
routine fragments of processes alongside ad-hoc activities.

8.2 Notation-agnostic Process Modeling

Typically, deciding on which modeling notation to use, and whether to apply an imper-
ative or declarative paradigm, entails the choice of the process support system. The
appropriate notation highly depends on the process to be supported, and on previous
experience of the modeler. Currently, we cannot identify a modeling notation or para-
digm that fits every situation or requirement, and most likely, there is none. A notation-
agnostic approach of subprocess models with a shared context facilitates modelers to
apply the notation they know and want to use. Declarative and imperative paradigms
and notations can be combined within the same process support system.

If knowledge workers want to use a subprocess model, they must explicitly invoke
it. The knowledge worker decides which activities are necessary or whether a model
should be used at all. Changes of the process do not require changing the model as
knowledge workers can transparently deviate from it. Changing the model can be per-
formed as soon as the manual effort of deviating from it would be more expensive.
Further, in regulated domains, e. g. healthcare, certain processes must be modeled in
advance [31]. Such models can be used as subprocess models in our approach.
Knowledge workers can then invoke the model to automate particular activities, e. g.
generating documents or entering attributes.

Our approach does not require modeling full processes: Routine aspects or fragments
suffice to facilitate automation and traceability. By not requiring models for a complete
process with all edge cases, end users are enabled to model small routine aspects of
their work themselves, and can still continue to manually perform work in the same
context. Routine fragments of different types of processes can be combined, e. g. ap-
proving and booking travel expenses. Fragments may range from document templates
or forms to full process models. Additionally, we prevent modeling processes that may
not be reasonable or even feasible for a lot size of 1. A first iteration of support, subse-
quently, requires only very little investment. As knowledge workers can instantly apply
subprocesses, we facilitate them gaining experience and confidence in BPM, which
yields better models with less effort.

8.3 Roles and Execution Semantics

Roles in actual knowledge-intensive processes are often fluid. Explicitly capturing
them may only be necessary if projects become larger, or in regulated domains. In our
approach, roles can be assigned on demand. For example, roles annotated in DCR
graphs or BPMN swimlanes can be interpreted as a requirement to be filled. If no user
is available for the role, the engine can ask which user should assume it. If knowledge
workers want to perform a certain task with an annotated role, the engine can document
assuming that role. Once a role is assigned, it is available for other subprocesses as
well.

8.4 The Case as Shared Context

A case as the shared context of routine and ad-hoc activities allows reducing manual
data entry since subprocess instances may use the same master data and case artifacts.
For example, the location of participating at a conference, approving travel expenses
and actually booking the trip is the same. Subprocesses may apply data of an instance
scope, a case scope, or case artifacts, i. e. not all context is based on global variables.
Still, capturing dependencies between context data and subprocesses is an open prob-
lem that, with current techniques, does require “programmer-like skills” to fully under-
stand them. Solutions need to find an appropriate compromise that concerns ontologies
for coordination, aspects of compiler construction and encapsulation for defining
scopes, and a sensible effort for defining and modeling the scope appropriate to non-
programming domain experts.

Dependencies between different process models might also become desirable, as
subprocesses still are aspects of an overall process. As subprocess modeling allows for
loose coupling between aspects, capturing dependencies between tasks and subpro-
cesses could be extended to stay loose coupling for concrete artifacts. The speech-act-
based approach of Agora [29], [33] is intended to allow just that by deriving inferences
and applying rules based on interactions. For dependencies of activities of the same
knowledge worker that do not require interactions, approaches like Chimera [26] could
be generalized to our approach. This way, one could derive “aspect-oriented BPM”
similar to aspect-oriented programming.

8.5 Towards Adaptive Case Mining

Finally, making activity streams explicit on different granularities could facilitate pro-
cess mining techniques for routine aspects of a case. Currently, a happy path for ACM
case instances is not very sensible as knowledge workers can assume a lot size of 1.
However, discovery, conformance checking, and enhancement [34] of routine frag-
ments of a case could facilitate automation and execution. For that, process mining
techniques might need to be adapted in regard to record linkage and to better correlate
and ignore ad-hoc activities and artifacts. Currently, the granularity of subprocess in-
stance event logs allows applying process mining techniques, but not yet in the context
of the whole case.

9 Conclusion

We introduced an approach to combine ad-hoc activities and automation in ACM via
subprocess modeling. A case serves as the shared context all activities are performed
in, and contains all routine and ad-hoc case artifacts. Knowledge workers can transpar-
ently deviate from predefined subprocess models. They may add additional tasks in a
case, change any case artifacts or deciding if and which subprocess models to invoke.
The support system implementing our approach serves as a system of record for the
whole case.

We implemented the lecture module process analytics in the ACMS Pertuniti that
applies our approach and enables executing subprocesses of cases modeled in BPMN,
DCR graphs, and accepting Petri nets. Our motivating example uses all three notations
and requires ad-hoc activities as well. The approach makes all ad-hoc and routine ac-
tivities transparent by providing activity streams on case, subprocess instance, and case
artifact level.

Still, some challenges remain. First of all, we plan to conduct an in-depth empirical
evaluation of our approach. As it is prototypically implemented in the commercial
ACMS Pertuniti, we are going to assess the quality of our approach in a real-world
setting. Further topics are open for future research from a technical point of view. Due
to the isolation of subprocess instances, dependencies between instances are only cap-
tured by the shared context. To remain loosely coupled, solutions might consider fur-
ther abstractions of goals and tasks. Moreover, data dependencies between models cur-
rently are solved similar to global variables in programming languages, and do not con-
sider ontologies and more sophisticated encapsulation. Finally, our focus on event logs
of different granularity unveils that process mining for routine aspects of knowledge-
intensive processes might become a viable option. Process mining techniques need to
be adapted in regard record linkage and correlating ad-hoc artifacts to really make pro-
cess mining a viable option in ACM.

References

1. Lund, S., Manyika, J., Ramaswamy, S.: Preparing for a new era of knowledge work. McKin-
sey Quarterly 4, 103–110 (2012)

2. Swenson, K.D.: Robots don’t innovate - innovation vs automation in BPM (May 2015)
3. Drucker, P.F.: Knowledge-worker productivity: The biggest challenge. California Manage-

ment Review 41(2), 79–94 (1999)
4. Swenson, K.D.: Innovative organizations act like systems, not machines. In: Fischer, L. (ed.)

Empowering Knowledge Workers: New Ways to Leverage Case Management, pp. 31–42.
Future Strategies Inc. (2014)

5. Swenson, K.D.: The nature of knowledge work. In: Mastering The Unpredictable: How
Adaptive Case Management Will Revolutionize The Way That Knowledge Workers Get
Things Done. Meghan-Kiffer Press (2010)

6. Hildebrandt, T., Marquard, M., Mukkamala, R.R., Slaats, T.: Dynamic condition response
graphs for trustworthy adaptive case management. In: LNCS. vol. 8186, pp. 166–171 (2013)

7. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. Business Process Management Workshops pp. 169 – 180 (2006)

8. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J., Weber,
B.: Understanding Declare models: strategies, pitfalls, empirical results. Software & Sys-
tems Modeling 15(2), 325–352 (2016)

9. Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating ex-
pressiveness and understandability of hierarchy in declarative business process models.
Software & Systems Modeling 14(3), 1081–1103 (2015)

10. de Giacomo, G., Dumas, M., Maggi, F.M., Montali, M.: Declarative process modeling in
BPMN. In: LNCS. vol. 9097, pp. 84–100 (2015)

11. Schönig, S., Jablonski, S.: Comparing Declarative Process Modelling Languages from the
Organisational Perspective. In: International Conference on Business Process Management,
pp. 17–29 (2016)

12. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science-Research and Development 23(2), 99–113
(2009)

13. Object Management Group: Case Management Model and Notation (CMMN). Tech. rep.
(2016), https://www.omg.org/spec/CMMN/1.1/PDF

14. Mukkamala, R.R.: A Formal Model For Declarative Workflows. Phd, IT University of Co-
penhagen (2012)

15. Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support of rou-
tine and agile business processes. In: International Conference on Collaborative Computing:
Networking, Applications and Worksharing, pp. 94–103 (2014)

16. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning event logs and declarative pro-
cess models for conformance checking. In: LNCS. vol. 7481, pp. 82–97 (2012)

17. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal, S.: De-
clarative versus Imperative Process Modeling Languages: The Issue of Understandability.
In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.)
Enterprise, Business-Process and Information Systems Modeling. Springer Berlin Heidel-
berg (2009)

18. Swenson, K.D.: Position: BPMN is incompatible with ACM. In: Rosa, M., Soffer, P. (eds.)
Business Process Management Workshops: BPM 2012 International Workshops, Tallinn,
Estonia, September 3, 2012. Revised Papers, pp. 55–58. Springer Berlin Heidelberg (2013)

19. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer Berlin Heidelberg,
Berlin, Heidelberg, Second Edition (2016)

20. Object Management Group: Business Process Model and Notation (BPMN) (2011),
http://www.omg.org/spec/BPMN/2.0

21. van der Aalst, W.M.P.: Everything You Always Wanted to Know About Petri Nets, but
Were Afraid to Ask. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J.
(eds.) Business Process Management. pp. 3–9. Springer International Publishing (2019)

22. Scheer, A.W.: ARIS—vom Geschäftsprozess zum Anwendungssystem. Springer-Verlag
(2013)

23. Künzle, V., Reichert, M.: Philharmonicflows: towards a framework for object-aware process
management. Journal of Software Maintenance and Evolution: Research and Practice 23(4),
205–244 (2011)

24. Künzle, V., Reichert, M.: Philharmonicflows: research and design methodology. Universität
Ulm (2012)

25. Künzle, V., Reichert, M.: A modeling paradigm for integrating processes and data at the
micro level pp. 201–215 (2011)

26. Hewelt, M., Weske, M.: A hybrid approach for flexible case modeling and execution. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) Business Process Management Forum: BPM Forum
2016, Rio de Janeiro, Brazil, September 18-22, 2016, Proceedings. pp. 38–54. Springer In-
ternational Publishing, Cham (2016)

27. Meyer, A., Herzberg, N., Puhlmann, F., Weske, M.: Implementation framework for produc-
tion case management: Modeling and execution. In: Enterprise Distributed Object Compu-
ting Conference (EDOC). pp. 190–199 (9 2014)

28. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for
lightweight interacting workflow processes. International Journal of Cooperative Infor-
mation Systems 10(04), 443–481 (2001)

29. Tenschert, J.: Speech-Act-Based Adaptive Case Management. Ph.D. thesis, Friedrich-Alex-
ander-Universität Erlangen-Nürnberg, Erlangen (2019)

30. Tenschert, J., Lenz, R.: Agora - speech-act-based adaptive case management. In: Azevedo,
L., Cabanillas, C. (eds.) Proceedings of the BPM Demo Track 2016 Co-located with the 14th
International Conference on Business Process Management (BPM 2016), Rio de Janeiro,
Brazil, September 21, 2016. CEUR Workshop Proceedings, vol. 1789, pp. 61–66 (2016)

31. Tenschert, J., Hormesch, M.: Flexibility, adherence, and guidance for regulated processes
with case management. In: BPM 2020 Industry Forum, CEUR Workshop Proceedings
(2020)

32. Tenschert, J., Marmaridis, S.: Pertuniti: Subprocess modeling and hierarchic case manage-
ment. In: BPM 2020 Demo Track, CEUR Workshop Proceedings (2020)

33. Tenschert, J.C., Lenz, R.: Towards speech-act-based adaptive case management. In: Adap-
tiveCM 2016–5th International Workshop on Adaptive Case Management and other non-
workflow approaches to BPM (2016)

34. van der Aalst, W.M.P., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T., et al.:
Process mining manifesto. In: Business Process Management Workshops. pp. 169–194.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

	Notation-agnostic Subprocess Modeling for Adaptive Case Management
	

	Microsoft Word - Camera Ready.docx

