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Abstract. As a continuation of our earlier work, in this paper we focus on the 
suitability of multi-level modeling for the creation and use of reference models. 
Specifically, we first discuss known challenges of reference modeling. Then, 
using the UML (for conventional meta modeling) and the FMMLx (for multi-
level modeling) as language architectures of choice, we show how conventional 
meta modeling contributes to challenges of reference modeling, and how the 
added flexibility and expressiveness of multi-level modeling can address these. 
We use an excerpt of NISTIR 7628, a well-established reference model for smart 
grid cyber security, as an illustrative scenario. 

Keywords: reference modeling, multi-level modeling, comparison 

1 Introduction 

Reference models, being conceptual models, abstract away from one specific 
organization, and instead focus on characteristics common to many organizations, 
within or across one or more industries and/or application domains [1], [2]. Reference 
models are created to provide so-called best practices for particular domains/scenarios  
[3], and as such hold several promises, e.g., (1) fostering reuse, cf. [1], [4], meaning 
that instead developing models from scratch, one can capitalize on already encoded 
expertise, and (2) fostering a shared domain understanding, cf. [1], [5], by providing a 
common semantic reference system [1] to stakeholders. 

Those promises express themselves in reference modeling still being a topic of active 
research, e.g., [6-9], and in particular, in the design and adoption of reference models 
for various domains, cf. [1]. A relatively recent example of such a domain is the 
electricity sector, where reference models such as NISTIR 7628 have been proposed, 
being a logical reference model for smart grid cyber security [10], [11]. Nevertheless, 
there are several challenges associated with, both, the design and use of a reference 
model. As we discuss in Section 2.1, these challenges include finding a balance between 
generality and specificity, supporting variability, and consistent adaptation of a 



 

 

reference model. As we discuss in our earlier work [12], while these challenges have 
been already reported a while ago, they still play a pertinent role in recent reference 
models, like the mentioned NISTIR 7628. 

In this paper, we argue that the mentioned reference modeling challenges are 
partially related to the characteristics of the modeling languages used to create and 
disseminate reference models. Especially, we show how these challenges arise for 
reference models that rely on conventional meta modeling (next to the afore- mentioned 
NISTIR 7628, these include, e.g., UML-CI for critical infrastructure modeling [13], 
and E-MEMO for e-commerce scenarios [14]). Conventional meta modeling, of which 
UML class diagrams [15] are a prominent exemplar, has not been natively designed 
with classification levels in mind [16], and (in keeping with its basis in object-
orientation) maintains a strict separation between types and instances. As such, as we 
show in Section 3.2, conventional meta modeling does not naturally lends itself well to 
expressing domain hierarchies with different levels of classification, while this is very 
much of importance to reference modeling. While mechanisms such as 
generalization/specialization, and specific to the UML, redefinition and default values, 
can be partly used, still redundancies and inconsistencies of reference models remain 
an issue. Also, in keeping with [16], using conventional meta modeling leads to 
accidental complexity of reference models, in the sense that their complexity increases 
not due to the complexity of the domain one is modeling, but rather due to the 
underlying language (architecture) that is being used. Especially, this expresses itself 
in the use of multiple abstraction mechanisms where one should suffice, like with the 
use of generalization/specialization within the abstraction level meant for language 
specification (and so, one is “overloading the level” [16]), or the use of redefinition 
plus default values, where in principle instantiation can suffice. 

Additionally, we argue that the application of a relatively novel language 
architecture, namely a multi-level language architecture, contributes to addressing these 
challenges. Multi-level modeling is an emerging trend that accounts for multiple, i.e., 
more than one, levels of classification within one single body of model content [17], 
[18]. As we explain in more detail in Section 4.1, a multi-level modeling language 
architecture offers expressiveness and flexibility that naturally fit with the idea of 
reference models, by capitalizing on mechanisms such as a relaxed type/instance 
dichotomy, or deferred instantiation [18].  

As such, the purpose of this paper is to make a case for multi-level reference 
modeling, with a focus on comparing a reference model as created with conventional 
meta modeling, with the same reference model as created through multi-level modeling. 
To this end we compare a reference model as created with conventional meta modeling 
(using UML), with the same reference model created using a multi-level language 
architecture (using Flexible Meta Modeling and Execution Language (FMMLx) [18]). 
We perform this comparison in the light of a set of well-established reference model 
challenges, as reported in [12]. As a running scenario, we use an excerpt of a smart 
cyber security reference model by [10], [11], and, building on our previous work, the 
multi-level cyber security reference model. 

As already mentioned, this paper is a continuation of earlier work. In [12], we 
discussed typical challenges regarding the creation and use of reference models, and 



 

 

showed how multi-level modeling, as a language architecture, can help address these. 
However, for the presented challenges a systematic comparison of multi-level modeling 
to conventional meta-modeling is missing. This leads to unresolved issues like the 
possibility of using subtyping, or power types, to address reference model challenges 
while using conventional meta modeling. The paper at hand is meant to address this 
gap. 

The paper is structured as follows. In Section 2 we provide a background on 
reference models, recap reference model challenges from earlier work, and introduce 
the smart grid cyber security reference model that is used for illustration purposes for 
the remainder of the paper. In Section 3 we subsequently discuss the extent to which 
conventional meta modeling can address reference modeling challenges and discuss its 
limitations. Subsequently, in Section 4, we introduce multi-level modeling, and show 
how it can be used to overcome the limitations of conventional meta modeling. 
Section 5 concludes with the final remarks. 

2 Reference Modeling 

2.1 Reference Models and Challenges in Their Creation and Usage 

Although a common definition of a reference model has not been established yet, cf. 
[3], [6-8], it is usually understood as a special type of an information model. From the 
variety of reference model definitions, cf. [1], [5], [19], [20], in this paper we adopt the 
definition from Thomas [19, p. 1]: “[r]eference models are reusable representations of 
abstract know-how for a given application domain”. This definition emphasizes 
(i) abstraction of a reference model, in the sense of moving beyond one particular 
application context [1], as well as (ii) a reference model targeting a class of problems 
in a given domain [2].  

To create a reference model a modeling language is used, which provides a set of 
constructs and rules that dictate how modeling concepts can be combined. Here, 
typically traditional modeling languages such as Entity Relationship Model (ERM) 
[21], Unified Modeling Language (UML) [15], Event-Driven Process Chain (EPC) 
[22], or Business Process Model and Notation (BPMN) [23], cf. [20], are either directly 
used, or extended with additional constructs to increase their expressiveness [24], [25].  

Reference models come with a variety of prospective uses [6-9]. By capitalizing 
upon the domain knowledge encoded in the reference model, reference models may 
serve as a blueprint, e.g., for designing an information system [26], or for business 
process management [5]. As such, one avoids the resource-intensive task of designing 
a domain model from scratch. Thus, reference models are seen to promote knowledge 
sharing, communication, and reference implementations [27].  

While these are attractive prospects, as we point out in our earlier work [12], 
reference modeling comes with a set of challenges, which limit its full potential. In the 
following, we summarize a subset of challenges as relevant in the light of this paper. 

Challenge 1: Expressing both general and specific domain information, i.e., 
addressing a conflict between reuse and productivity. 



 

 

To ensure coverage of a class of problems, and thus, be applicable beyond a specific 
context/organization, a reference model should offer general concepts [26], [28]. At the 
same time, to meet the goals of a particular setting (e.g., for implementation purposes), 
and thus, to increase model productivity, a reference model should also provide specific 
concepts [28]. Therefore, a reference model needs to be detailed enough to be usable 
for an organization [28]. Unfortunately, current modeling languages provide only a 
limited set of mechanisms for expressing both generic and specific concepts [18], [24]. 
Especially for this paper, this holds for reference models based upon the UML [18]. As 
we detail in Section 3.2, while mechanisms like generalization/specialization can be 
used, they offer only a limited means for expressing both the generic and specific within 
a reference model. 

Challenge 2: Expressing variability while avoiding redundancy, i.e., providing 
flexibility to users of reference models. 

Partially overlapping with the call for specific concepts, reference models should 
account for variability. This means that a reference model should provide coverage of 
a range of specific requirements/constraints [26], e.g., to adapt a reference model to the 
processes of a specific industry, as done, e.g., in [24]. Thus, it is required to distinguish 
between those parts of the system that are invariant within the group of intended users, 
and other parts that may need individual adaptation. At the same time, redundancy in a 
reference model should typically be avoided (see, e.g., [24], who in their configurable 
reference modeling approach speak of “mutually exclusive alternatives”). 
Unfortunately, only a limited set of mechanisms is provided that can deal with both 
variability and redundancy. These mechanisms either extend an existing modeling 
language (like EPCs, as done in [24]), or, as we show specifically in section 3.2, rely 
on mechanisms like the mentioned generalization/specialization, or instantiation [20]. 

Challenge 3: Supporting adaptation of reference models, while ensuring compliance 
and integrity of the system. 

The reference modeling language as well as resulting reference models need to offer 
flexibility. By this we mean that reference model adaptation and extension should be 
possible, since reference models cannot contain all individual requirements of all 
potential users [28] (cf. also Challenge 2). While adapting a reference model to the 
needs of a specific organization (e.g., for implementation purposes), and vice versa, 
when adapting a reference model based upon its specific application, one should ensure 
consistency of the adaptation to the reference model. In the simplest case, this implies 
copying a reference model and adjusting it to the context at hand. However, in that case 
redundancies may arise, and potential inconsistencies as well [2]. One can envision 
adding extensions to the reference model, like in [29], but this can be cumbersome and 
importantly: such extensions are often designed for a one-way adaptation only. For 
instance, [29] is designed to ensure that an organization-specific model complies with 
the reference model, but it is not designed to check adaptations of the reference model 
itself. 



 

 

2.2 A Reference Model for Smart Grid Cyber Security 

The NIST reference model for cyber security, as encoded in NISTIR 7628 [10], offers 
concepts, cyber security requirements, and guidelines specific to the electricity sector. 
It follows that the NISTIR 7628 elements are specific for the energy sector in terms of, 
e.g., considered actors, and types of IT infrastructure. For example, it distinguishes 
between different equipment types like a smart meter or a customer gateway (also 
referred to as a home area network gateway in NISTIR 7628 [10, p. 18]). A customer 
gateway, being relevant for our running example in Sections 3.2 and 4.2, is an 
(embedded) piece of equipment on the customer side, which acts as a communication 
interface towards other parts of the smart grid (like the service provider), and which 
can take care of computationally intensive tasks, like encrypting sensitive metering data 
prior to transmission. 

The NISTIR 7628 has been widely touted for providing guidance on cyber security 
concerns in smart grid projects, cf. e.g., [30-33], but its adoption and maintenance is 
partially hampered by the above-mentioned challenges. In particular, [32] points out a 
lack of systematicy in relating the generic security requirements and guidelines to the 
concerns of specific smart grid projects, stating that this relation has to be established 
in an ad-hoc manner. While by no means we want to claim that these challenges are 
fully due to an underlying language architecture, further in the paper we explain why a 
language architecture based on conventional meta modeling does not provide a 
satisfactory solution, and we illustrate the potential that multi-level modeling has in 
addressing them. It is important to note that at the core of this paper stands a comparison 
between conventional meta modeling and multi-level modeling. As such, we use the 
NISTIR 7628 reference model only in as far as it illustrates this comparison, for which 
a relatively small subset of the larger model, presented in [12], suffices. 

3 Challenges of Reference Modeling with Conventional Meta 
Modeling 

3.1 Conventional Meta Modeling 

As stated in Section 2.1, different languages, and potentially their accompanying 
language architectures, can underlie a reference model. In this paper, we focus on 
conventional meta modeling. We do so since, for reference models emphasizing a static 
perspective on an organizational action system (as opposed to a dynamic perspective, 
as done in, e.g., [5], [9], [25]), conventional meta modeling is often an underlying 
language (architecture) of choice, as among others visible in (i) a reference architecture 
for NISTIR 7628 [33], (ii) UML-CI, a reference model for critical infrastructure 
modeling [13], or (iii) E-MEMO [14], a family of reference models for e-commerce 
development. 

Conventional meta modeling refers to language architectures that are based on the 
Meta Object Facility (MOF [34]). In MOF, one defines the abstract syntax of a language 
in terms of a meta model on the M2 level, in terms of defining the key concepts of a 



 

 

language, their attributes and relations. Subsequently, this meta model can be 
instantiated into models, which reside on the M1 level. In line with these two 
classification levels conventional meta modeling is also referred to as two-level meta 
modeling [35].  

Conventional meta modeling exhibits a fundamental distinction between meta model 
elements residing on the M2 level and model elements residing on the M1 level. 
Instantiation is the only allowed, one-way, relation between these two levels, to 
instantiate a model element from a meta model element (but not vice versa). This 
distinction, also referred to as a type-instance dichotomy [16] is inherited from the 
object-oriented paradigm underlying conventional meta modeling, which makes a strict 
separation between classes and objects [16], [17].  

As a result of the type-instance dichotomy classes cannot have a state. This is 
because they reside on the M2 level, and thus, serve as language specification. 
Furthermore, the type-instance dichotomy leads to a separation between language 
specification and language application. Finally, in conventional meta modeling 
instantiation is only possible to directly proceeding classification levels, also referred 
to as “shallow instantiation” [17]. 

As we detail in Section 3.2, the above inherent characteristics of conventional meta 
modeling, i.e., classes not having a state, a separation between language specification 
and language application, and shallow instantiation, have a considerable impact on the 
creation and use of reference models. 

3.2 Challenges with Conventional Meta Modeling 

To showcase the challenges which arise from employing conventional meta modeling, 
in the following we focus on the UML, being standardized and widely used. In addition, 
UML is often the language of choice for contrasting conventional meta modeling with 
multi-level modeling, cf. e.g., [16], [17], hence it makes sense to proceed in a similar 
spirit for reference modeling challenges specifically. 

Challenge 1: Expressing both general and specific domain information. Rationale: 
As stated in Section 2.1, we should be able to express both generic and specific domain 
concepts, while expressing domain information as soon as it becomes known, in order 
to avoid redundancy. When employing UML, we can partly deal with this challenge 
through a combined use of generalization/specialization, redefinition, and default 
values. Especially, generalization/specialization allows us to create abstraction 
hierarchies of concepts, whereas redefinition in combination with default values 
partially allows us to incorporate information in the reference model, as soon as it 
becomes known. 

However, this would address the challenge only partially. In particular, redefinition 
in UML allows one to modify a data type and default value, while ensuring that the 
redefined element “[...] shall be consistent with the RedefinableElement it redefines” 
[15, p. 100]. However, while UML tracks the exact element being redefined (through a 
“redefinitionContext” [15, p. 100]) what exactly “consistency” entails here, and what 
kinds of specific checks are necessary, remains ambiguous. This has resulted in calls 
for clear definitions of redefinition (e.g., [36], and a recently reported open issue for 



 

 

UML 2.5.11), and calls for extensions, in the form of additional well-formedness rules, 
which enforce a consistent redefinition, cf. e.g., [37]. As a result, the inconsistent 
redefinition mechanism from UML may allow for violating monotonic model 
extensions, in the sense of catering for inconsistencies of specialized classes, which 
redefine attributes/association ends of their superclass. Finally, default values allow for 
assigning values to attributes as soon as they become known. However, this assignment 
happens on the type level, i.e., separate from the running data of the organization. So, 
any updates/modifications as it pertains to attribute values from the running 
organization would have to be separately mirrored in the default values. Finally, since 
within the UML one is creating the reference model on the M2 level, and one uses the 
abstraction mechanism generalization/specialization at the same time, one is in 
principle using two abstraction mechanisms where one should suffice (in [16], this is 
also referred to as “overloading the level”). 

 

Figure 1 An excerpt from the NISTIR cyber security reference model, reconstructed with the 
UML 

Scenario: For our scenario, we focus on an excerpt of NISTIR 7628 dealing with 
smart grid components. Specifically, in Figure 1 we see how 
generalization/specialization allows us express both general and specific concepts, 
starting with a general “ITComponent” whose attributes are inherited and specialized 
to the class “SmartGridComponent”, and finally into the class “CustomerGateway”. 
Equally, we can see how redefinition, combined with default values, allows us to assign 
values to attributes from the class “CustomerGateway”, such as 
“computationalComplexity” being assigned the default value “medium”, and the two 
SGAM-related attributes equally being assigned relevant values. 

Nevertheless, for the same scenario we can also observe limitations that 
conventional meta modeling imposes, when it comes to expressing the general and 
specific at the same time. Firstly, since default values exist on the type level, an update, 
like the “computationalComplexity” of a “CustomerGateway” being changed to 
“high”, which can be a reflection of a change in a class of technologies, needs to be 
made manually. Secondly, since (a) UML does not maintain a clear hierarchy of 
semantic richness among its primitive types (e.g., a Boolean type having less 
permissible instantiations than a type String), and (b) the question of what type of 
consistency should be kept remains at least partly open, one can in principle envision 
redefining the types of the attributes “minInternalMemory”and “minStorage” from the 

                                                           
1  see https://issues.omg.org/issues/spec/UML/2.5#issue-47019. The issue has been 

reported on 21-7-2020. This open issue provides a minor indication that redefinition is 
still not well defined. 

CustomerGateway

-computationalCompexity = {high,medium,low} = medium
-SGAMZone: String = Field
-SGAMDomain:String = Customer Premises

ITComponent

-applicationDomain: Domain
-computationalComplexity: {high,medium,low}
-minInternalMemory: Double
-minInternalStorage:Double
-actInternalMemory: Double
-actPersistentMemory: Double

SmartGridComponent

-SGAMZone: String
-SGAMField: String



 

 

class “ITComponent” to “String” for its subclass “SmartGridComponent”. However, 
for the sake of maintaining monotonic model extensions, this is not desired. 

Challenge 2: Expressing variability while avoiding redundancy. Rationale: UML 
can partially ensure variability of a reference model, so that on the type level it can be 
“configured” according to the needs of a (class of) scenarios. Prominently, as with 
Challenge 1, the combination of generalization/specialization, redefinition and default 
values allows us to express domain information on a level of abstraction suitable for a 
range of application scenarios. 

However, in line with core notions of conventional meta modeling, UML only 
allows for instantiation to the directly proceeding classification level. As a result of this, 
we cannot constrain on a high level of classification at what exact proceeding level of 
classification domain information should be added. This in turn limits the ability to 
account for variability. 

Scenario: Consider again Figure 1. Here variability and the avoidance of redundancy 
is partially supported by using generalization/specialization, e.g., to express for a range 
of scenarios a generic class “ITComponent” with attributes such as 
“computationalComplexity : high, medium, low”, “minInternalMemory: Double”, and 
“actInternalMemory : Double”. However, importantly, we are not able to express when 
these attributes should be assigned a value, since in UML – like in conventional meta 
modeling – abstraction level is not a first class citizen. As such, when to assign values 
to attributes (and equally: when to specify association ends) is arbitrary in the UML. 
For example, using the UML in our scenario we cannot distinguish between when to 
assign a value for “minInternalMemory : Double”, which for NISTIR 7628 is important 
for a type of smart grid component (e.g., a “CustomerGateway”), and when to assign a  
value for “actInternalMemory : Double”, which is important for a specific smart grid 
component (e.g., “CustomerGateway9876”). 

Challenge 3: Supporting adaptation of reference models, while ensuring 
compliance. Rationale: As stated, it is desired that a reference model can be adapted, 
both in the sense of adaptation to a specific context, but also so that context-specific 
adaptations can become part of the reference model. 

In the UML, one can adapt a reference model as follows. First, one can simply copy-
paste the reference model and adapt it for the situation at hand, but as stated in Section 
2.1especially in the absence of added consistency checks, like in [29], this can be error-
prone and can lead to inconsistencies. Note that the underspecified notion of 
redefinition, mentioned under Challenge 1, is also relevant here, since any adaptations 
that are made through redefinition may violate monotonicity. 

Second, one can instantiate the reference model, and, with the use of constraints (as 
typically expressed in OCL [38]), one can check the well-formedness of any extensions. 
Yet, in that case, one has to essentially “duplicate” the reference model, leading to 
redundancies. Finally, power types are a candidate for model adaptation. A power type 
can be defined as a model pattern whereby the instances of a certain class are subclasses 
of another class [39], and has a dedicated notation in UML [40, p. 530]. As such, a 
power type in principle can be used to alleviate the strict separation between type and 
instance, avoiding the aforementioned duplication of model elements. Yet, power types 
are conceptual only, and as a result natively lack mechanisms for consistency checks. 



 

 

As such, if anything changes (in the power type class, or in either of the relevant 
subclasses), there is subsequently no means to ensure consistency. 

Scenario: In the scenario, for illustration purposes, we focus on power types.  Figure 
2 presents the use of this modeling pattern for our scenario. In this case, 
“CustomerGateway” is a subclass of “SmartGridComponentType”, and at the same 
time “CustomerGateway” can be considered as an instance of “SmartGrid- 
Component”, since the latter is a power type. However, as stated power types are a 
conceptual pattern only, meaning that consistency checks on the subclasses, which act 
also as instances, are lacking. 

 

 Figure 2 Using power types as a workaround for the type-instance dichotomy 

4 Multi-level Reference Modeling 

To alleviate the discussed limitations of conventional meta modeling, we now  
introduce multi-level modeling (Section 4.1), and discuss its possibilities for reference 
modeling using the same excerpt of the smart grid cyber security reference model 
(Section 4.2).  

4.1 Multi-level Modeling 

Partly as a response to the limitations of conventional meta modeling [16], [17], multi-
level modeling refers to modeling approaches which share the following core ideas, cf. 
[41]: (1) one can define an arbitrary number of classification levels in one and the same 
body of model. This means that one can employ as many classification levels as needed 
for expressing the domain knowledge at hand [16]. This is opposed to the two 
classification levels (M2 and M1) from conventional meta modeling; (2) one can defer 
instantiation, meaning that one can constrain the instantiation to a model element 
residing at a specific classification level [18]. This is opposed to shallow instantiation 
for conventional meta modeling, whereby one can instantiate only to the directly 
proceeding level; (3) one can relax the strict separation between type and instance [17], 
allowing one to populate and use a model with instance level data. This is again opposed 
to conventional meta modeling which adheres to a strict type-instance dichotomy. 

Different multi-level modeling approaches exist, such as, among others, m-objects 
and m-relations [42], deep instantiation [16], and the Flexible Meta Modeling and 
Execution Language (FMMLx) [18]. As an exemplary multi-level modeling approach, 



 

 

for this paper we select FMMLx to show how multi-level modeling alleviates the 
limitations introduced by conventional meta modeling. One of the reasons for selecting 
the FMMLx is that, besides the expertise of the authors, it appears to be the only 
approach with a meta modeling editor (XModeler [18]) that has an integrated language 
execution engine. For future research this allows for, among others, computational 
analysis of reference models. 

4.2 Addressing Challenges with Multi-level Modeling 

Figure 3 shows an excerpt of cyber security reference model created with FMMLx, 
containing the same domain information captured earlier with UML (Section 3.2). 
When it comes to expressing both the generic and specific information (Challenge 1), 
with classification levels being a first class citizen in multi-level modeling, we can 
naturally model the domain hierarchy, as relevant for the smart grid reference model. 
Similar to the use of generalization/specialization in Section 3.2, we can thus express 
domain concepts both on a high level of abstraction (e.g. an “ITComponent” and its 
attributes), and on a lower level one (e.g., for “SmartGridComponent”). However, in 
addition, due to having a relaxed type-instance dichotomy, multi-level modeling allows 
us to express naturally domain information as soon as it is known. For example, to 
assign a particular value to “minInternalMemory” for a “Customer Gateway”. 
Especially of note here, is that due to the relaxed type-instance dichotomy one can keep 
the attribute value up-to-date with the data of the running organization. This is in 
contrast to using default values in UML, which one needs to update separately on the 
type level on the basis of instance-level data. Also one can concisely express domain 
information on the basis of having a relaxed type-instance dichotomy only, instead of 
having to rely on two mechanisms specific to UML (default values and redefinition). 

When it comes to coverage of different domain scenarios while avoiding redundancy 
(Challenge 2), the above multi-level modeling characteristics are equally important. For 
example, to express characteristics of different types of “IT Component” once, thus 
avoiding redundancy, while covering a wide range of different domain scenarios 
through the ability of expressing both the generic and the specific. However, of 
additional importance for Challenge 2 is the ability of multi-level modeling to defer 
instantiation of a model element to a particular level of classification. In FMMLx 
deferred instantiation is expressed through intrinsicness. Intrinsicness, which in Figure 
3 is depicted as a white number on a black background, expresses the classification 
level one instantiates the model element to (intrinsicness is depicted for attributes 
Figure 3, but equally can be used for association ends). For our scenario, this 
intrinsicness allows us to constrain the initialization of values of attributes for “IT 
Component”, which resides on level M3. For example, for the abstraction hierarchy of 
“IT Component” we can express that “minInternalMemory : Double” shall be 
instantiated on level M1, whereas “actInternalMemory : Double” is to be instantiated 
on level M0. In a more general sense, this deferred instantiation through intrinsicness 
allows us to constrain already on a high level of abstraction when domain information 
becomes relevant. This in turn provides additional means for ensuring variability. 
Finally, when it comes to the adaptation of reference models (Challenge 3), multi-level 



 

 

modeling enforces a monotonic model extension [18]. As a result, extensions to a 
reference model are consistent with the domain rules already encoded into the multi-
level model on a higher level of classification. So for example, arbitrarily changing the 
attribute type “minInternalMemory” from a “Double” to a “String” on a lower level of 
abstraction would not be allowed. As stated in Section 3.2, UML redefinition is at the 
very least not clearly defined and underspecified in how it maintains consistency, 
making it likely that one can violate monotonicity. In addition, as stated in Section 4.1 
with multi-level modeling the different levels of classification are all part of one and 
the same model – conceptually speaking at least. As a result, no matter what adaptations 
are made, one is in principle adapting one and the same reference model. While this 
introduces new challenges in its own right, at the very least, it means avoiding 
redundancies during adaptation. 

 

Figure 3 An excerpt from the NISTIR cyber security reference model, reconstructed with the 
FMMLx 

4.3 Summarizing Comparison 

Table 1 provides a summarized comparison between using conventional meta modeling 
and multi-level modeling, as illustrated by their respective application to the same, 
smart grid cyber-security, reference model. 



 

 

Table 1. Comparing UML and FMMLx for addressing reference model challenges  

Lang. Challenge 1 Challenge 2 Challenge 3 
UML + creating hierarchies 

of concepts with 
generalization 
/specialization  
+ assigning values 
using default values 
and redefinition  
- modification 
of default values 
restricted to type level 
- underspecified 
semantics of 
redefinition, violation 
of monotonic model 
extensions  
- overloading 
the level 
+ mature tools and 
mechanisms 

+ covering 
variability and 
redundancy partly 
using the abstraction 
mechanism 
mentioned in 
Challenge 1 
- “shallow 
instantiation”, no 
possibility to 
constrain model 
elements according 
to their 
classification level; 
- same issues as 
under Challenge 1, 
e.g., monotonic 
model extensions 
are likely not 
guaranteed 
+ mature tools and 
mechanisms

- reference model 
adaptation either (1) 
needs additional 
consistency checking 
mechanisms, when 
simply duplicating it, 
or (2) leads to 
redundant model 
elements, when 
instantiating it (due 
to a strict separation 
between types & in- 
stances), or (3) lacks 
consistency checking 
mechanisms when 
using power types. 
+ mature tools and 
mechanisms 

FMMLx + an arbitrary number 
of classification levels 
allowing to create 
hierarchies of concepts 
+ relaxed type-instance 
dichotomy allowing to 
assign state to classes 
- immaturity of model 
management 
mechanisms 

+ intrinsicness 
(deferred 
instantiation) 
+ an arbitrary 
number of 
classification levels 
+ relaxed type-
instance dichotomy 
- immaturity of 
model management 
mechanisms 

+ monotonic model 
extensions 
+ adapting one and 
the same body of 
model 
- immaturity of 
model management 
mechanisms 

As can be observed, UML offers several mechanisms which at least partly address 
the challenges discussed so far. Especially, the combined use of 
generalization/specialization, redefinition, and default values allows us to account for 
both (a) general concepts and their relevant properties. For example, in our scenario an 
“IT Component” and its attributes cover a wide range of specific smart grid 
components, and (b) specific concepts and their properties, to cover specific scenarios. 
For example, a “Customer Gateway”, as relevant for scenarios specifically involving 
customer premises. This addresses partly Challenges 1 and 2, in the sense of balancing 



 

 

the general and the specific, avoiding redundancy (by using 
generalization/specialization), and by allowing for variability, in the sense of covering 
a wide range of constraints/application scenarios. Also, while using UML we can 
partially account for reference model adaptation (Challenge 3), in the three manners 
summarized in Table 1. 

As pointed out above, UML provides notable capabilities to satisfy our purposes. In 
particular, this regards the design of domain hierarchies by using a combination of 
generalization/specialization, default values, and redefinition. However, UML also 
comes with a set of limitations. As we have seen these limitations are alleviated by 
FMMLx mainly since, being a multi-level modeling approach, FMMLx treats 
classification levels as a first-class citizen and relaxes the strict separation between 
types and instances. As such, as we have illustrated with our simplified example, 
FMMLx offers many features that fit naturally with the idea of reference modeling. 
Especially, having (1) an arbitrary number of classification levels, as well as (2) a 
relaxed type-instance dichotomy, allows one to naturally mirror hierarchies of domain 
information (which is important to Challenge 1 and Challenge 2). Importantly, 
compared to the UML in FMMLx such hierarchies can be created without redundancies 
or inconsistencies, and can also conceptually speaking be succinctly created (e.g., 
without the need to overload the level, or having to use both redefinition and default 
values as workarounds, when instantiation can suffice). In addition, the intrinsicness 
offered by FMMLx specifically, and the notion of deferred instantiation generally, 
allows us to specify at what level of classification a model element should be 
instantiated. For example, to express that “minInternalMemory : Double” must be 
instantiated on level M1, whereas “actInternalMemory : Double” must be instantiated 
on level M0. This contributes to expressing variability in the reference model 
(Challenge 2). In contrast, with the shallow instantiation of UML this kind of 
constraining ac- cording to level of classification is simply not possible. Finally, 
FMMLx lends itself naturally to model adaptations (Challenge 3), since it enforces 
monotonic model extensions, and at least conceptually speaking, one makes the 
adaptations in one and the same body of model. 

However, while promising in terms of the underlying ideas, multi-level modeling, 
being a relatively novel language architecture, introduces also several challenges. 
Firstly, multi-level modeling approaches still need to mature in terms of model 
management. Especially, given that adaptations are made to one and the same body of 
model, additional mechanisms are needed in order to deal with the increased 
complexity [43], [44]. This directly impacts Challenge 1–3: while it can naturally 
mirror domain hierarchies (Challenge 1), deal with variability (Challenge 2) and can 
ensure consistent model adaptation (Challenge 3), the usability of multi-level modeling 
approaches in terms of typical model management mechanisms (navigating the models, 
viewpoints, etc.) is, as it currently stands, limited. 

For example, returning to our cyber security reference model, beyond our small 
excerpt the NISTIR 7628 provides a comprehensive coverage of cyber security 
concerns, which requires an equally comprehensive reference model. It can be foreseen 
that managing such a comprehensive reference model is challenging to manage with 
the current state of multi-level modeling approaches. Taking also into consideration the 



 

 

rapid changes in the electricity sector and its according cyber security concerns, this 
motivates further the mechanisms to deal with the complexity of multi-level models. 

Secondly, an additional concern is that basic multi-level modeling terms have not 
been properly defined, such as “level”, cf. [45]. This in turn impacts the design of multi-
level modeling features, such as deferred instantiation, being one of the unique features 
of multi-level modeling. Particularly, the question emerges to what extent we can 
assume levels to be absolute, or rather if they are relative to the problem at hand. 

Finally, the creation of multi-level models requires a change in the users’ mindset: 
they need to think in multiple levels of classification, and not only two. Assigning 
concepts to multiple classification levels is not a trivial task, and currently there is lack 
of guidelines and heuristics for designing such a multi-level model [44], [46].  

5 Conclusions and Outlook 

In this paper, we have shown how multi-level modeling provides a natural candidate 
for the creation and use of reference models, compared to reference models based on 
conventional meta modeling. Especially, as shown on the basis of a comparative 
scenario, as a language architecture multi-level modeling is a natural fit to address 
reference model challenges since (a) it treats the notion of a classification level as a 
first class citizen. As opposed to conventional meta modeling, which is restricted to two 
classification levels, this allows one to naturally mirror hierarchies of domain concepts 
inherent to reference modeling, (b) due to relaxing the difference between types and 
instances, it is easier to adapt and synchronize a reference model conformant to the data 
of a running organization. Finally, please note that modeling languages not subscribing 
to the MOF can also be used for the creation and use of reference models. For creating 
reference models with an emphasis on a static perspective such languages include the 
data modeling language ERM (as mentioned in Sect. 2.1), or the fact modeling language 
Object Role Modeling (ORM, [47]). These modeling languages provide abstraction 
mechanisms which differ from those in conventional meta modeling, like the different 
set-based generalization/specialization mechanisms inherent to ERM [48, pp. 92-94]. 
Yet, importantly, even when using an alternative language, these languages still do not 
treat abstraction levels as a first class citizen. And so, even while these languages may 
offer additional flexibility, when it comes expressing different abstraction levels, they 
are still expected to suffer similar fundamental limitations as in the MOF. Of course, 
still a comparison of non-MOF based to multi-level modeling languages may be 
warranted for future research. 
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