
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

Wirtschaftsinformatik 2021 Proceedings Track 21: Enterprise Modelling and Information
Systems Development

Making a Case for Multi-level Reference Modeling – A Making a Case for Multi-level Reference Modeling – A

Comparison of Conventional and Multi-level Language Comparison of Conventional and Multi-level Language

Architectures for Reference Modeling Challenges Architectures for Reference Modeling Challenges

Sybren de Kinderen
Universität Duisburg-Essen

Monika Kaczmarek-Heß
Universität Duisburg-Essen

Follow this and additional works at: https://aisel.aisnet.org/wi2021

de Kinderen, Sybren and Kaczmarek-Heß, Monika, "Making a Case for Multi-level Reference Modeling – A
Comparison of Conventional and Multi-level Language Architectures for Reference Modeling Challenges"
(2021). Wirtschaftsinformatik 2021 Proceedings. 10.
https://aisel.aisnet.org/wi2021/DEnterpriseModelling21/Track21/10

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted
for inclusion in Wirtschaftsinformatik 2021 Proceedings by an authorized administrator of AIS Electronic Library
(AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/wi2021
https://aisel.aisnet.org/wi2021/DEnterpriseModelling21
https://aisel.aisnet.org/wi2021/DEnterpriseModelling21
https://aisel.aisnet.org/wi2021?utm_source=aisel.aisnet.org%2Fwi2021%2FDEnterpriseModelling21%2FTrack21%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/wi2021/DEnterpriseModelling21/Track21/10?utm_source=aisel.aisnet.org%2Fwi2021%2FDEnterpriseModelling21%2FTrack21%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

16th International Conference on Wirtschaftsinformatik,
March 2021, Essen, Germany

Making a Case for Multi-level Reference Modeling – a
Comparison of Conventional and Multi-level Language

Architectures for Reference Modeling Challenges

Sybren de Kinderen and Monika Kaczmarek-Heß

Research Group Information Systems and Enterprise Modelling,
Institute for Computer Science and Business Information Systems (ICB),

Faculty of Business Administration and Economics,
University of Duisburg-Essen, Essen, Germany

{sybren.dekinderen,monika.kaczmarek-hess}@uni-due.de

Abstract. As a continuation of our earlier work, in this paper we focus on the
suitability of multi-level modeling for the creation and use of reference models.
Specifically, we first discuss known challenges of reference modeling. Then,
using the UML (for conventional meta modeling) and the FMMLx (for multi-
level modeling) as language architectures of choice, we show how conventional
meta modeling contributes to challenges of reference modeling, and how the
added flexibility and expressiveness of multi-level modeling can address these.
We use an excerpt of NISTIR 7628, a well-established reference model for smart
grid cyber security, as an illustrative scenario.

Keywords: reference modeling, multi-level modeling, comparison

1 Introduction

Reference models, being conceptual models, abstract away from one specific
organization, and instead focus on characteristics common to many organizations,
within or across one or more industries and/or application domains [1], [2]. Reference
models are created to provide so-called best practices for particular domains/scenarios
[3], and as such hold several promises, e.g., (1) fostering reuse, cf. [1], [4], meaning
that instead developing models from scratch, one can capitalize on already encoded
expertise, and (2) fostering a shared domain understanding, cf. [1], [5], by providing a
common semantic reference system [1] to stakeholders.

Those promises express themselves in reference modeling still being a topic of active
research, e.g., [6-9], and in particular, in the design and adoption of reference models
for various domains, cf. [1]. A relatively recent example of such a domain is the
electricity sector, where reference models such as NISTIR 7628 have been proposed,
being a logical reference model for smart grid cyber security [10], [11]. Nevertheless,
there are several challenges associated with, both, the design and use of a reference
model. As we discuss in Section 2.1, these challenges include finding a balance between
generality and specificity, supporting variability, and consistent adaptation of a

reference model. As we discuss in our earlier work [12], while these challenges have
been already reported a while ago, they still play a pertinent role in recent reference
models, like the mentioned NISTIR 7628.

In this paper, we argue that the mentioned reference modeling challenges are
partially related to the characteristics of the modeling languages used to create and
disseminate reference models. Especially, we show how these challenges arise for
reference models that rely on conventional meta modeling (next to the afore- mentioned
NISTIR 7628, these include, e.g., UML-CI for critical infrastructure modeling [13],
and E-MEMO for e-commerce scenarios [14]). Conventional meta modeling, of which
UML class diagrams [15] are a prominent exemplar, has not been natively designed
with classification levels in mind [16], and (in keeping with its basis in object-
orientation) maintains a strict separation between types and instances. As such, as we
show in Section 3.2, conventional meta modeling does not naturally lends itself well to
expressing domain hierarchies with different levels of classification, while this is very
much of importance to reference modeling. While mechanisms such as
generalization/specialization, and specific to the UML, redefinition and default values,
can be partly used, still redundancies and inconsistencies of reference models remain
an issue. Also, in keeping with [16], using conventional meta modeling leads to
accidental complexity of reference models, in the sense that their complexity increases
not due to the complexity of the domain one is modeling, but rather due to the
underlying language (architecture) that is being used. Especially, this expresses itself
in the use of multiple abstraction mechanisms where one should suffice, like with the
use of generalization/specialization within the abstraction level meant for language
specification (and so, one is “overloading the level” [16]), or the use of redefinition
plus default values, where in principle instantiation can suffice.

Additionally, we argue that the application of a relatively novel language
architecture, namely a multi-level language architecture, contributes to addressing these
challenges. Multi-level modeling is an emerging trend that accounts for multiple, i.e.,
more than one, levels of classification within one single body of model content [17],
[18]. As we explain in more detail in Section 4.1, a multi-level modeling language
architecture offers expressiveness and flexibility that naturally fit with the idea of
reference models, by capitalizing on mechanisms such as a relaxed type/instance
dichotomy, or deferred instantiation [18].

As such, the purpose of this paper is to make a case for multi-level reference
modeling, with a focus on comparing a reference model as created with conventional
meta modeling, with the same reference model as created through multi-level modeling.
To this end we compare a reference model as created with conventional meta modeling
(using UML), with the same reference model created using a multi-level language
architecture (using Flexible Meta Modeling and Execution Language (FMMLx) [18]).
We perform this comparison in the light of a set of well-established reference model
challenges, as reported in [12]. As a running scenario, we use an excerpt of a smart
cyber security reference model by [10], [11], and, building on our previous work, the
multi-level cyber security reference model.

As already mentioned, this paper is a continuation of earlier work. In [12], we
discussed typical challenges regarding the creation and use of reference models, and

showed how multi-level modeling, as a language architecture, can help address these.
However, for the presented challenges a systematic comparison of multi-level modeling
to conventional meta-modeling is missing. This leads to unresolved issues like the
possibility of using subtyping, or power types, to address reference model challenges
while using conventional meta modeling. The paper at hand is meant to address this
gap.

The paper is structured as follows. In Section 2 we provide a background on
reference models, recap reference model challenges from earlier work, and introduce
the smart grid cyber security reference model that is used for illustration purposes for
the remainder of the paper. In Section 3 we subsequently discuss the extent to which
conventional meta modeling can address reference modeling challenges and discuss its
limitations. Subsequently, in Section 4, we introduce multi-level modeling, and show
how it can be used to overcome the limitations of conventional meta modeling.
Section 5 concludes with the final remarks.

2 Reference Modeling

2.1 Reference Models and Challenges in Their Creation and Usage

Although a common definition of a reference model has not been established yet, cf.
[3], [6-8], it is usually understood as a special type of an information model. From the
variety of reference model definitions, cf. [1], [5], [19], [20], in this paper we adopt the
definition from Thomas [19, p. 1]: “[r]eference models are reusable representations of
abstract know-how for a given application domain”. This definition emphasizes
(i) abstraction of a reference model, in the sense of moving beyond one particular
application context [1], as well as (ii) a reference model targeting a class of problems
in a given domain [2].

To create a reference model a modeling language is used, which provides a set of
constructs and rules that dictate how modeling concepts can be combined. Here,
typically traditional modeling languages such as Entity Relationship Model (ERM)
[21], Unified Modeling Language (UML) [15], Event-Driven Process Chain (EPC)
[22], or Business Process Model and Notation (BPMN) [23], cf. [20], are either directly
used, or extended with additional constructs to increase their expressiveness [24], [25].

Reference models come with a variety of prospective uses [6-9]. By capitalizing
upon the domain knowledge encoded in the reference model, reference models may
serve as a blueprint, e.g., for designing an information system [26], or for business
process management [5]. As such, one avoids the resource-intensive task of designing
a domain model from scratch. Thus, reference models are seen to promote knowledge
sharing, communication, and reference implementations [27].

While these are attractive prospects, as we point out in our earlier work [12],
reference modeling comes with a set of challenges, which limit its full potential. In the
following, we summarize a subset of challenges as relevant in the light of this paper.

Challenge 1: Expressing both general and specific domain information, i.e.,
addressing a conflict between reuse and productivity.

To ensure coverage of a class of problems, and thus, be applicable beyond a specific
context/organization, a reference model should offer general concepts [26], [28]. At the
same time, to meet the goals of a particular setting (e.g., for implementation purposes),
and thus, to increase model productivity, a reference model should also provide specific
concepts [28]. Therefore, a reference model needs to be detailed enough to be usable
for an organization [28]. Unfortunately, current modeling languages provide only a
limited set of mechanisms for expressing both generic and specific concepts [18], [24].
Especially for this paper, this holds for reference models based upon the UML [18]. As
we detail in Section 3.2, while mechanisms like generalization/specialization can be
used, they offer only a limited means for expressing both the generic and specific within
a reference model.

Challenge 2: Expressing variability while avoiding redundancy, i.e., providing
flexibility to users of reference models.

Partially overlapping with the call for specific concepts, reference models should
account for variability. This means that a reference model should provide coverage of
a range of specific requirements/constraints [26], e.g., to adapt a reference model to the
processes of a specific industry, as done, e.g., in [24]. Thus, it is required to distinguish
between those parts of the system that are invariant within the group of intended users,
and other parts that may need individual adaptation. At the same time, redundancy in a
reference model should typically be avoided (see, e.g., [24], who in their configurable
reference modeling approach speak of “mutually exclusive alternatives”).
Unfortunately, only a limited set of mechanisms is provided that can deal with both
variability and redundancy. These mechanisms either extend an existing modeling
language (like EPCs, as done in [24]), or, as we show specifically in section 3.2, rely
on mechanisms like the mentioned generalization/specialization, or instantiation [20].

Challenge 3: Supporting adaptation of reference models, while ensuring compliance
and integrity of the system.

The reference modeling language as well as resulting reference models need to offer
flexibility. By this we mean that reference model adaptation and extension should be
possible, since reference models cannot contain all individual requirements of all
potential users [28] (cf. also Challenge 2). While adapting a reference model to the
needs of a specific organization (e.g., for implementation purposes), and vice versa,
when adapting a reference model based upon its specific application, one should ensure
consistency of the adaptation to the reference model. In the simplest case, this implies
copying a reference model and adjusting it to the context at hand. However, in that case
redundancies may arise, and potential inconsistencies as well [2]. One can envision
adding extensions to the reference model, like in [29], but this can be cumbersome and
importantly: such extensions are often designed for a one-way adaptation only. For
instance, [29] is designed to ensure that an organization-specific model complies with
the reference model, but it is not designed to check adaptations of the reference model
itself.

2.2 A Reference Model for Smart Grid Cyber Security

The NIST reference model for cyber security, as encoded in NISTIR 7628 [10], offers
concepts, cyber security requirements, and guidelines specific to the electricity sector.
It follows that the NISTIR 7628 elements are specific for the energy sector in terms of,
e.g., considered actors, and types of IT infrastructure. For example, it distinguishes
between different equipment types like a smart meter or a customer gateway (also
referred to as a home area network gateway in NISTIR 7628 [10, p. 18]). A customer
gateway, being relevant for our running example in Sections 3.2 and 4.2, is an
(embedded) piece of equipment on the customer side, which acts as a communication
interface towards other parts of the smart grid (like the service provider), and which
can take care of computationally intensive tasks, like encrypting sensitive metering data
prior to transmission.

The NISTIR 7628 has been widely touted for providing guidance on cyber security
concerns in smart grid projects, cf. e.g., [30-33], but its adoption and maintenance is
partially hampered by the above-mentioned challenges. In particular, [32] points out a
lack of systematicy in relating the generic security requirements and guidelines to the
concerns of specific smart grid projects, stating that this relation has to be established
in an ad-hoc manner. While by no means we want to claim that these challenges are
fully due to an underlying language architecture, further in the paper we explain why a
language architecture based on conventional meta modeling does not provide a
satisfactory solution, and we illustrate the potential that multi-level modeling has in
addressing them. It is important to note that at the core of this paper stands a comparison
between conventional meta modeling and multi-level modeling. As such, we use the
NISTIR 7628 reference model only in as far as it illustrates this comparison, for which
a relatively small subset of the larger model, presented in [12], suffices.

3 Challenges of Reference Modeling with Conventional Meta
Modeling

3.1 Conventional Meta Modeling

As stated in Section 2.1, different languages, and potentially their accompanying
language architectures, can underlie a reference model. In this paper, we focus on
conventional meta modeling. We do so since, for reference models emphasizing a static
perspective on an organizational action system (as opposed to a dynamic perspective,
as done in, e.g., [5], [9], [25]), conventional meta modeling is often an underlying
language (architecture) of choice, as among others visible in (i) a reference architecture
for NISTIR 7628 [33], (ii) UML-CI, a reference model for critical infrastructure
modeling [13], or (iii) E-MEMO [14], a family of reference models for e-commerce
development.

Conventional meta modeling refers to language architectures that are based on the
Meta Object Facility (MOF [34]). In MOF, one defines the abstract syntax of a language
in terms of a meta model on the M2 level, in terms of defining the key concepts of a

language, their attributes and relations. Subsequently, this meta model can be
instantiated into models, which reside on the M1 level. In line with these two
classification levels conventional meta modeling is also referred to as two-level meta
modeling [35].

Conventional meta modeling exhibits a fundamental distinction between meta model
elements residing on the M2 level and model elements residing on the M1 level.
Instantiation is the only allowed, one-way, relation between these two levels, to
instantiate a model element from a meta model element (but not vice versa). This
distinction, also referred to as a type-instance dichotomy [16] is inherited from the
object-oriented paradigm underlying conventional meta modeling, which makes a strict
separation between classes and objects [16], [17].

As a result of the type-instance dichotomy classes cannot have a state. This is
because they reside on the M2 level, and thus, serve as language specification.
Furthermore, the type-instance dichotomy leads to a separation between language
specification and language application. Finally, in conventional meta modeling
instantiation is only possible to directly proceeding classification levels, also referred
to as “shallow instantiation” [17].

As we detail in Section 3.2, the above inherent characteristics of conventional meta
modeling, i.e., classes not having a state, a separation between language specification
and language application, and shallow instantiation, have a considerable impact on the
creation and use of reference models.

3.2 Challenges with Conventional Meta Modeling

To showcase the challenges which arise from employing conventional meta modeling,
in the following we focus on the UML, being standardized and widely used. In addition,
UML is often the language of choice for contrasting conventional meta modeling with
multi-level modeling, cf. e.g., [16], [17], hence it makes sense to proceed in a similar
spirit for reference modeling challenges specifically.

Challenge 1: Expressing both general and specific domain information. Rationale:
As stated in Section 2.1, we should be able to express both generic and specific domain
concepts, while expressing domain information as soon as it becomes known, in order
to avoid redundancy. When employing UML, we can partly deal with this challenge
through a combined use of generalization/specialization, redefinition, and default
values. Especially, generalization/specialization allows us to create abstraction
hierarchies of concepts, whereas redefinition in combination with default values
partially allows us to incorporate information in the reference model, as soon as it
becomes known.

However, this would address the challenge only partially. In particular, redefinition
in UML allows one to modify a data type and default value, while ensuring that the
redefined element “[...] shall be consistent with the RedefinableElement it redefines”
[15, p. 100]. However, while UML tracks the exact element being redefined (through a
“redefinitionContext” [15, p. 100]) what exactly “consistency” entails here, and what
kinds of specific checks are necessary, remains ambiguous. This has resulted in calls
for clear definitions of redefinition (e.g., [36], and a recently reported open issue for

UML 2.5.11), and calls for extensions, in the form of additional well-formedness rules,
which enforce a consistent redefinition, cf. e.g., [37]. As a result, the inconsistent
redefinition mechanism from UML may allow for violating monotonic model
extensions, in the sense of catering for inconsistencies of specialized classes, which
redefine attributes/association ends of their superclass. Finally, default values allow for
assigning values to attributes as soon as they become known. However, this assignment
happens on the type level, i.e., separate from the running data of the organization. So,
any updates/modifications as it pertains to attribute values from the running
organization would have to be separately mirrored in the default values. Finally, since
within the UML one is creating the reference model on the M2 level, and one uses the
abstraction mechanism generalization/specialization at the same time, one is in
principle using two abstraction mechanisms where one should suffice (in [16], this is
also referred to as “overloading the level”).

Figure 1 An excerpt from the NISTIR cyber security reference model, reconstructed with the
UML

Scenario: For our scenario, we focus on an excerpt of NISTIR 7628 dealing with
smart grid components. Specifically, in Figure 1 we see how
generalization/specialization allows us express both general and specific concepts,
starting with a general “ITComponent” whose attributes are inherited and specialized
to the class “SmartGridComponent”, and finally into the class “CustomerGateway”.
Equally, we can see how redefinition, combined with default values, allows us to assign
values to attributes from the class “CustomerGateway”, such as
“computationalComplexity” being assigned the default value “medium”, and the two
SGAM-related attributes equally being assigned relevant values.

Nevertheless, for the same scenario we can also observe limitations that
conventional meta modeling imposes, when it comes to expressing the general and
specific at the same time. Firstly, since default values exist on the type level, an update,
like the “computationalComplexity” of a “CustomerGateway” being changed to
“high”, which can be a reflection of a change in a class of technologies, needs to be
made manually. Secondly, since (a) UML does not maintain a clear hierarchy of
semantic richness among its primitive types (e.g., a Boolean type having less
permissible instantiations than a type String), and (b) the question of what type of
consistency should be kept remains at least partly open, one can in principle envision
redefining the types of the attributes “minInternalMemory”and “minStorage” from the

1 see https://issues.omg.org/issues/spec/UML/2.5#issue-47019. The issue has been

reported on 21-7-2020. This open issue provides a minor indication that redefinition is
still not well defined.

CustomerGateway

-computationalCompexity = {high,medium,low} = medium
-SGAMZone: String = Field
-SGAMDomain:String = Customer Premises

ITComponent

-applicationDomain: Domain
-computationalComplexity: {high,medium,low}
-minInternalMemory: Double
-minInternalStorage:Double
-actInternalMemory: Double
-actPersistentMemory: Double

SmartGridComponent

-SGAMZone: String
-SGAMField: String

class “ITComponent” to “String” for its subclass “SmartGridComponent”. However,
for the sake of maintaining monotonic model extensions, this is not desired.

Challenge 2: Expressing variability while avoiding redundancy. Rationale: UML
can partially ensure variability of a reference model, so that on the type level it can be
“configured” according to the needs of a (class of) scenarios. Prominently, as with
Challenge 1, the combination of generalization/specialization, redefinition and default
values allows us to express domain information on a level of abstraction suitable for a
range of application scenarios.

However, in line with core notions of conventional meta modeling, UML only
allows for instantiation to the directly proceeding classification level. As a result of this,
we cannot constrain on a high level of classification at what exact proceeding level of
classification domain information should be added. This in turn limits the ability to
account for variability.

Scenario: Consider again Figure 1. Here variability and the avoidance of redundancy
is partially supported by using generalization/specialization, e.g., to express for a range
of scenarios a generic class “ITComponent” with attributes such as
“computationalComplexity : high, medium, low”, “minInternalMemory: Double”, and
“actInternalMemory : Double”. However, importantly, we are not able to express when
these attributes should be assigned a value, since in UML – like in conventional meta
modeling – abstraction level is not a first class citizen. As such, when to assign values
to attributes (and equally: when to specify association ends) is arbitrary in the UML.
For example, using the UML in our scenario we cannot distinguish between when to
assign a value for “minInternalMemory : Double”, which for NISTIR 7628 is important
for a type of smart grid component (e.g., a “CustomerGateway”), and when to assign a
value for “actInternalMemory : Double”, which is important for a specific smart grid
component (e.g., “CustomerGateway9876”).

Challenge 3: Supporting adaptation of reference models, while ensuring
compliance. Rationale: As stated, it is desired that a reference model can be adapted,
both in the sense of adaptation to a specific context, but also so that context-specific
adaptations can become part of the reference model.

In the UML, one can adapt a reference model as follows. First, one can simply copy-
paste the reference model and adapt it for the situation at hand, but as stated in Section
2.1especially in the absence of added consistency checks, like in [29], this can be error-
prone and can lead to inconsistencies. Note that the underspecified notion of
redefinition, mentioned under Challenge 1, is also relevant here, since any adaptations
that are made through redefinition may violate monotonicity.

Second, one can instantiate the reference model, and, with the use of constraints (as
typically expressed in OCL [38]), one can check the well-formedness of any extensions.
Yet, in that case, one has to essentially “duplicate” the reference model, leading to
redundancies. Finally, power types are a candidate for model adaptation. A power type
can be defined as a model pattern whereby the instances of a certain class are subclasses
of another class [39], and has a dedicated notation in UML [40, p. 530]. As such, a
power type in principle can be used to alleviate the strict separation between type and
instance, avoiding the aforementioned duplication of model elements. Yet, power types
are conceptual only, and as a result natively lack mechanisms for consistency checks.

As such, if anything changes (in the power type class, or in either of the relevant
subclasses), there is subsequently no means to ensure consistency.

Scenario: In the scenario, for illustration purposes, we focus on power types. Figure
2 presents the use of this modeling pattern for our scenario. In this case,
“CustomerGateway” is a subclass of “SmartGridComponentType”, and at the same
time “CustomerGateway” can be considered as an instance of “SmartGrid-
Component”, since the latter is a power type. However, as stated power types are a
conceptual pattern only, meaning that consistency checks on the subclasses, which act
also as instances, are lacking.

 Figure 2 Using power types as a workaround for the type-instance dichotomy

4 Multi-level Reference Modeling

To alleviate the discussed limitations of conventional meta modeling, we now
introduce multi-level modeling (Section 4.1), and discuss its possibilities for reference
modeling using the same excerpt of the smart grid cyber security reference model
(Section 4.2).

4.1 Multi-level Modeling

Partly as a response to the limitations of conventional meta modeling [16], [17], multi-
level modeling refers to modeling approaches which share the following core ideas, cf.
[41]: (1) one can define an arbitrary number of classification levels in one and the same
body of model. This means that one can employ as many classification levels as needed
for expressing the domain knowledge at hand [16]. This is opposed to the two
classification levels (M2 and M1) from conventional meta modeling; (2) one can defer
instantiation, meaning that one can constrain the instantiation to a model element
residing at a specific classification level [18]. This is opposed to shallow instantiation
for conventional meta modeling, whereby one can instantiate only to the directly
proceeding level; (3) one can relax the strict separation between type and instance [17],
allowing one to populate and use a model with instance level data. This is again opposed
to conventional meta modeling which adheres to a strict type-instance dichotomy.

Different multi-level modeling approaches exist, such as, among others, m-objects
and m-relations [42], deep instantiation [16], and the Flexible Meta Modeling and
Execution Language (FMMLx) [18]. As an exemplary multi-level modeling approach,

for this paper we select FMMLx to show how multi-level modeling alleviates the
limitations introduced by conventional meta modeling. One of the reasons for selecting
the FMMLx is that, besides the expertise of the authors, it appears to be the only
approach with a meta modeling editor (XModeler [18]) that has an integrated language
execution engine. For future research this allows for, among others, computational
analysis of reference models.

4.2 Addressing Challenges with Multi-level Modeling

Figure 3 shows an excerpt of cyber security reference model created with FMMLx,
containing the same domain information captured earlier with UML (Section 3.2).
When it comes to expressing both the generic and specific information (Challenge 1),
with classification levels being a first class citizen in multi-level modeling, we can
naturally model the domain hierarchy, as relevant for the smart grid reference model.
Similar to the use of generalization/specialization in Section 3.2, we can thus express
domain concepts both on a high level of abstraction (e.g. an “ITComponent” and its
attributes), and on a lower level one (e.g., for “SmartGridComponent”). However, in
addition, due to having a relaxed type-instance dichotomy, multi-level modeling allows
us to express naturally domain information as soon as it is known. For example, to
assign a particular value to “minInternalMemory” for a “Customer Gateway”.
Especially of note here, is that due to the relaxed type-instance dichotomy one can keep
the attribute value up-to-date with the data of the running organization. This is in
contrast to using default values in UML, which one needs to update separately on the
type level on the basis of instance-level data. Also one can concisely express domain
information on the basis of having a relaxed type-instance dichotomy only, instead of
having to rely on two mechanisms specific to UML (default values and redefinition).

When it comes to coverage of different domain scenarios while avoiding redundancy
(Challenge 2), the above multi-level modeling characteristics are equally important. For
example, to express characteristics of different types of “IT Component” once, thus
avoiding redundancy, while covering a wide range of different domain scenarios
through the ability of expressing both the generic and the specific. However, of
additional importance for Challenge 2 is the ability of multi-level modeling to defer
instantiation of a model element to a particular level of classification. In FMMLx
deferred instantiation is expressed through intrinsicness. Intrinsicness, which in Figure
3 is depicted as a white number on a black background, expresses the classification
level one instantiates the model element to (intrinsicness is depicted for attributes
Figure 3, but equally can be used for association ends). For our scenario, this
intrinsicness allows us to constrain the initialization of values of attributes for “IT
Component”, which resides on level M3. For example, for the abstraction hierarchy of
“IT Component” we can express that “minInternalMemory : Double” shall be
instantiated on level M1, whereas “actInternalMemory : Double” is to be instantiated
on level M0. In a more general sense, this deferred instantiation through intrinsicness
allows us to constrain already on a high level of abstraction when domain information
becomes relevant. This in turn provides additional means for ensuring variability.
Finally, when it comes to the adaptation of reference models (Challenge 3), multi-level

modeling enforces a monotonic model extension [18]. As a result, extensions to a
reference model are consistent with the domain rules already encoded into the multi-
level model on a higher level of classification. So for example, arbitrarily changing the
attribute type “minInternalMemory” from a “Double” to a “String” on a lower level of
abstraction would not be allowed. As stated in Section 3.2, UML redefinition is at the
very least not clearly defined and underspecified in how it maintains consistency,
making it likely that one can violate monotonicity. In addition, as stated in Section 4.1
with multi-level modeling the different levels of classification are all part of one and
the same model – conceptually speaking at least. As a result, no matter what adaptations
are made, one is in principle adapting one and the same reference model. While this
introduces new challenges in its own right, at the very least, it means avoiding
redundancies during adaptation.

Figure 3 An excerpt from the NISTIR cyber security reference model, reconstructed with the
FMMLx

4.3 Summarizing Comparison

Table 1 provides a summarized comparison between using conventional meta modeling
and multi-level modeling, as illustrated by their respective application to the same,
smart grid cyber-security, reference model.

Table 1. Comparing UML and FMMLx for addressing reference model challenges

Lang. Challenge 1 Challenge 2 Challenge 3
UML + creating hierarchies

of concepts with
generalization
/specialization
+ assigning values
using default values
and redefinition
- modification
of default values
restricted to type level
- underspecified
semantics of
redefinition, violation
of monotonic model
extensions
- overloading
the level
+ mature tools and
mechanisms

+ covering
variability and
redundancy partly
using the abstraction
mechanism
mentioned in
Challenge 1
- “shallow
instantiation”, no
possibility to
constrain model
elements according
to their
classification level;
- same issues as
under Challenge 1,
e.g., monotonic
model extensions
are likely not
guaranteed
+ mature tools and
mechanisms

- reference model
adaptation either (1)
needs additional
consistency checking
mechanisms, when
simply duplicating it,
or (2) leads to
redundant model
elements, when
instantiating it (due
to a strict separation
between types & in-
stances), or (3) lacks
consistency checking
mechanisms when
using power types.
+ mature tools and
mechanisms

FMMLx + an arbitrary number
of classification levels
allowing to create
hierarchies of concepts
+ relaxed type-instance
dichotomy allowing to
assign state to classes
- immaturity of model
management
mechanisms

+ intrinsicness
(deferred
instantiation)
+ an arbitrary
number of
classification levels
+ relaxed type-
instance dichotomy
- immaturity of
model management
mechanisms

+ monotonic model
extensions
+ adapting one and
the same body of
model
- immaturity of
model management
mechanisms

As can be observed, UML offers several mechanisms which at least partly address
the challenges discussed so far. Especially, the combined use of
generalization/specialization, redefinition, and default values allows us to account for
both (a) general concepts and their relevant properties. For example, in our scenario an
“IT Component” and its attributes cover a wide range of specific smart grid
components, and (b) specific concepts and their properties, to cover specific scenarios.
For example, a “Customer Gateway”, as relevant for scenarios specifically involving
customer premises. This addresses partly Challenges 1 and 2, in the sense of balancing

the general and the specific, avoiding redundancy (by using
generalization/specialization), and by allowing for variability, in the sense of covering
a wide range of constraints/application scenarios. Also, while using UML we can
partially account for reference model adaptation (Challenge 3), in the three manners
summarized in Table 1.

As pointed out above, UML provides notable capabilities to satisfy our purposes. In
particular, this regards the design of domain hierarchies by using a combination of
generalization/specialization, default values, and redefinition. However, UML also
comes with a set of limitations. As we have seen these limitations are alleviated by
FMMLx mainly since, being a multi-level modeling approach, FMMLx treats
classification levels as a first-class citizen and relaxes the strict separation between
types and instances. As such, as we have illustrated with our simplified example,
FMMLx offers many features that fit naturally with the idea of reference modeling.
Especially, having (1) an arbitrary number of classification levels, as well as (2) a
relaxed type-instance dichotomy, allows one to naturally mirror hierarchies of domain
information (which is important to Challenge 1 and Challenge 2). Importantly,
compared to the UML in FMMLx such hierarchies can be created without redundancies
or inconsistencies, and can also conceptually speaking be succinctly created (e.g.,
without the need to overload the level, or having to use both redefinition and default
values as workarounds, when instantiation can suffice). In addition, the intrinsicness
offered by FMMLx specifically, and the notion of deferred instantiation generally,
allows us to specify at what level of classification a model element should be
instantiated. For example, to express that “minInternalMemory : Double” must be
instantiated on level M1, whereas “actInternalMemory : Double” must be instantiated
on level M0. This contributes to expressing variability in the reference model
(Challenge 2). In contrast, with the shallow instantiation of UML this kind of
constraining ac- cording to level of classification is simply not possible. Finally,
FMMLx lends itself naturally to model adaptations (Challenge 3), since it enforces
monotonic model extensions, and at least conceptually speaking, one makes the
adaptations in one and the same body of model.

However, while promising in terms of the underlying ideas, multi-level modeling,
being a relatively novel language architecture, introduces also several challenges.
Firstly, multi-level modeling approaches still need to mature in terms of model
management. Especially, given that adaptations are made to one and the same body of
model, additional mechanisms are needed in order to deal with the increased
complexity [43], [44]. This directly impacts Challenge 1–3: while it can naturally
mirror domain hierarchies (Challenge 1), deal with variability (Challenge 2) and can
ensure consistent model adaptation (Challenge 3), the usability of multi-level modeling
approaches in terms of typical model management mechanisms (navigating the models,
viewpoints, etc.) is, as it currently stands, limited.

For example, returning to our cyber security reference model, beyond our small
excerpt the NISTIR 7628 provides a comprehensive coverage of cyber security
concerns, which requires an equally comprehensive reference model. It can be foreseen
that managing such a comprehensive reference model is challenging to manage with
the current state of multi-level modeling approaches. Taking also into consideration the

rapid changes in the electricity sector and its according cyber security concerns, this
motivates further the mechanisms to deal with the complexity of multi-level models.

Secondly, an additional concern is that basic multi-level modeling terms have not
been properly defined, such as “level”, cf. [45]. This in turn impacts the design of multi-
level modeling features, such as deferred instantiation, being one of the unique features
of multi-level modeling. Particularly, the question emerges to what extent we can
assume levels to be absolute, or rather if they are relative to the problem at hand.

Finally, the creation of multi-level models requires a change in the users’ mindset:
they need to think in multiple levels of classification, and not only two. Assigning
concepts to multiple classification levels is not a trivial task, and currently there is lack
of guidelines and heuristics for designing such a multi-level model [44], [46].

5 Conclusions and Outlook

In this paper, we have shown how multi-level modeling provides a natural candidate
for the creation and use of reference models, compared to reference models based on
conventional meta modeling. Especially, as shown on the basis of a comparative
scenario, as a language architecture multi-level modeling is a natural fit to address
reference model challenges since (a) it treats the notion of a classification level as a
first class citizen. As opposed to conventional meta modeling, which is restricted to two
classification levels, this allows one to naturally mirror hierarchies of domain concepts
inherent to reference modeling, (b) due to relaxing the difference between types and
instances, it is easier to adapt and synchronize a reference model conformant to the data
of a running organization. Finally, please note that modeling languages not subscribing
to the MOF can also be used for the creation and use of reference models. For creating
reference models with an emphasis on a static perspective such languages include the
data modeling language ERM (as mentioned in Sect. 2.1), or the fact modeling language
Object Role Modeling (ORM, [47]). These modeling languages provide abstraction
mechanisms which differ from those in conventional meta modeling, like the different
set-based generalization/specialization mechanisms inherent to ERM [48, pp. 92-94].
Yet, importantly, even when using an alternative language, these languages still do not
treat abstraction levels as a first class citizen. And so, even while these languages may
offer additional flexibility, when it comes expressing different abstraction levels, they
are still expected to suffer similar fundamental limitations as in the MOF. Of course,
still a comparison of non-MOF based to multi-level modeling languages may be
warranted for future research.

References

1. Frank, U., Strecker, S.: Open reference models-community-driven collaboration to promote
development and dissemination of reference models. EMISA 2(2) (2007)

2. Fettke, P., Loos, P.: Perspectives on reference modeling. In Fettke, P., Loos, P., eds.:
Reference Modeling for Business Systems Analysis. (2007) 1–21

3. Thomas, O.: Understanding the term reference model in information systems research:
history, literature analysis and explanation. In: International Conference on Business
Process Management, Springer (2005) 484–496

4. Sonntag, A., Fettke, P., Loos, P.: Inductive reference modelling based on simulated social
collaboration. In: Proc. of the 2017 Wirtschaftsinformatik conference, AIS (2017)

5. Rehse, J.R., Fettke, P., Loos, P.: A graph-theoretic method for the inductive development of
reference process models. SoSyM 16(3) (2017) 833–873

6. Schütte, R.: Reference models for standard software—scientific myth instead of practical
reality? In Bergener, K., Räckers, M., Stein, A., eds.: The Art of Structuring: Bridging the
Gap Between Information Systems Research and Practice. Springer International
Publishing, Cham (2019) 125–136

7. Kraume, K., Voormanns, K., Zhong, J.: How a global customer service leader is using a
reference model to structure its transformation while remaining fast and agile. In Bergener,
K., Räckers, M., Stein, A., eds.: The Art of Structuring: Bridging the Gap Between
Information Systems Research and Practice. Springer International Publishing, Cham (2019)
101–111

8. Janiesch, C., Winkelmann, A.: The goat criteria—a structured assessment approach for
reference models. In Bergener, K., Räckers, M., Stein, A., eds.: The Art of Structuring:
Bridging the Gap Between Information Systems Research and Practice. Springer
International Publishing, Cham (2019) 63–74

9. Scholta, H., Niemann, M., Delfmann, P., Räckers, M., Becker, J.: Semi-automatic inductive
construction of reference process models that represent best practices in public
administrations: A method. Information Systems 84 (2019) 63–87

10. NIST Smart Grid Cybersecurity Panel: NISTIR 7628-guidelines for smart grid cyber
security vol. 1-3 (2010)

11. Neureiter, C., Engel, D., Uslar, M.: Domain specific and model based systems engineering
in the smart grid as prerequisite for security by design. Electronics 5(2) (2016) 24

12. de Kinderen, S., Kaczmarek-Heß, M.: Multi-level modeling as a language architecture for
reference models: On the example of the smart grid domain. In Becker, J., Novikov, D.A.,
eds.: 21st IEEE Conference on Business Informatics, CBI, Moscow, Russia, July 15-17,
Volume 1 - Research Papers, IEEE (2019) 174–183

13. Bagheri, E., Ghorbani, A.A.: UML-CI: A reference model for profiling critical infrastructure
systems. Information Systems Frontiers 12(2) (2010) 115–139

14. Frank, U., Lange, C.: E-MEMO: a method to support the development of customized
electronic commerce systems. ISeB 5(2) (2007) 93–116

15. OMG: The OMG Unified Modeling Language (OMG UML), version 2.5.1. Technical report
(2017)

16. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. SoSyM 7(3)
(2008) 345–359

17. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Proc. of the 4th Int.
Conf. on The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
London, Springer (2001) 19–33

18. Frank, U.: Multilevel modeling – toward a new paradigm of conceptual modeling and
information systems design. BISE 6(6) (2014) 319–337

19. Thomas, O.: Version management for reference models: Design and implementation. In
Becker, J., Delfmann, P., eds.: Reference Modeling: Efficient Information Systems Design
Through Reuse of Information Models. Physica-Verlag (2007) 1–26

20. vom Brocke, J.: Design principles for reference modeling: reusing information models by
means of aggregation, specialisation, instantiation, and analogy. In: Reference modeling for
business systems analysis. IGI Global (2007) 47–76

21. Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM Trans.
Database Syst. 1(1) (1976) 9–36

22. Scheer, A.W.: ARIS – Modellierungsmethoden, Metamodelle, Anwendungen. 4 edn.
Springer, Heidelberg (2001)

23. OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011)
24. Rosemann, M., van der Aalst, W.: A configurable reference modelling language.

Information Systems 32(1) (2007) 1 – 23
25. Fettke, P., Loos, P., Zwicker, J.: Business process reference models: Survey and

classification. In: International Conference on Business Process Management, Springer
(2005) 469–483

26. Frank, U.: Evaluation of reference models. In: Reference modeling for business systems
analysis. IGI Global (2007) 118–140

27. Koch, S., Strecker, S., Frank, U.: Conceptual modelling as a new entry in the bazaar: The
open model approach. In: IFIP International Conference on Open Source Systems, Springer
(2006) 9–20

28. Matook, S., Indulska, M.: Improving the quality of process reference models: A quality
function deployment-based approach. DSS 47(1) (2009) 60 – 71

29. Reinhartz-Berger, I., Soffer, P., Sturm, A.: Organisational reference models: Sup- porting
an adequate design of local business processes. International Journal of Business Process
Integration and Management 4(2) (2009) 134–149

30. Kotut, L., Wahsheh, L.A.: Survey of cyber security challenges and solutions in smart grids.
In: 2016 Cybersecurity Symposium, IEEE (2016) 32–37

31. Abercrombie, R.K., Sheldon, F.T., Hauser, K.R., Lantz, M.W., Mili, A.: Risk assessment
methodology based on the NISTIR 7628 guidelines. In: System Sciences (HICSS), 2013
46th Hawaii International Conference on, IEEE (2013) 1802–1811

32. Chan, A., Zhou, J.: On smart grid cybersecurity standardization: Issues of designing with
NISTIR 7628. IEEE Communications Magazine 51(1) (2013) 58–65

33. Neureiter, C., Uslar, M., Engel, D., Lastro, G.: A standards-based approach for domain
specific modelling of smart grid system architectures. In: System of Systems Engineering
Conference (SoSE), 2016 11th, IEEE (2016) 1–6

34. OMG: Meta Object Facility (MOF) core specification (2016) Version 2.5.1.
35. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering

environment. In: Proceedings of the 2nd International Master Class on Model- Driven
Engineering: Modeling Wizards. (2012) 1–2

36. Bildhauer, D.: On the relationships between subsetting, redefinition and association
specialization. In: 9th Conf. on Databases and Information Systems. (2010)

37. Nieto, P., Costal, D., Gmez, C.: Enhancing the semantics of UML association re- definition.
Data & Knowledge Engineering 70(2) (2011) 182 – 207

38. Warmer, J.B., Kleppe, A.G.: The object constraint language: getting your models ready for
MDA. Addison-Wesley Professional (2003)

39. Odell, J.J.: Advanced object-oriented analysis and design using UML. Volume 12.
Cambridge University Press (1998)

40. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language reference manual,
second edition. Addison-Wesley Reading (2005)

41. Neumayr, B., Schrefl, M., Thalheim, B.: Modeling techniques for multi-level abstraction. In
Kaschek, R., Delcambre, L., eds.: The Evolution of Conceptual Modeling. Springer, Berlin
(2011) 68–92

42. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with m-objects and m-
relationships. In: Proceedings of the Sixth Asia-Pacific Conference on Conceptual
Modeling-Volume 96, Australian Computer Society, Inc. (2009) 107–116

43. Töpel, D., Benner, B.: Maintenance of multi-level models – an analysis of elementary
change operations. In: MULTI@ MoDELS. (2017)

44. Kaczmarek-Heß, M., Nolte, M., Fritsch, A., Betz, S.: Practical experiences with multi-level
modeling using FMMLx: A hierarchy of domain-specific modeling languages in support of
life-cycle assessment. In Clark, T., Neumayr, B., Rutle, A., eds.: Proc. of the 5th Int.
Workshop on Multi-Level Modelling 2018. (2018)

45. Kühne, T.: A story of levels. In Hebig, R., Berger, T., eds.: Proceedings of MOD- ELS
2018 Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools,
GEMOC, MORSE, MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AMMoRe,
PAINS co-located with ACM/IEEE 21st International Con- ference on Model Driven
Engineering Languages and Systems (MODELS 2018), Copenhagen, Denmark, October,
14, 2018. Volume 2245 of CEUR Workshop Proceedings., CEUR-WS.org (2018) 673–682

46. Almeida, J.P.A., Frank, U., Kuehne, T.: Multi-level modelling (report from Dagstuhl
seminar 17492). Dagstuhl Reports 7(12) (2018) 18–49

47. Halpin, T.: ORM 2. In: OTM Confederated International Conferences „On the Move to
Meaningful Internet Systems”, Springer (2005) 676–687

48. Elmasri, R.: Fundamentals of Database Systems. Pearson Education India (2004)

	Making a Case for Multi-level Reference Modeling – A Comparison of Conventional and Multi-level Language Architectures for Reference Modeling Challenges
	

	Microsoft Word - WI2021-Formatvorlage-12

