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Abstract. As part of the data evolution, data-driven business models (DDBMs) 

have emerged as a phenomenon in great demand for academia and practice. 

Latest technological advancements such as cloud, internet of things, big data, and 

machine learning have contributed to the rise of DDBM, along with novel 

opportunities to monetize data. While enterprise architecture (EA) management 

and modeling have proven its value for IT-related projects, the support of EA for 

DDBM is a rather new and unexplored field. Building upon a grounded theory 

research approach, we shed light on the support of EA for DDBM in practice. 

We derived four approaches for DDBM design and realization and relate them to 

the support of EA modeling and management. Our study draws on 16 semi-

structured interviews with experts from consulting and industry firms. Our results 

contribute to a still sparsely researched area with empirical findings and new 

research avenues. Practitioners gain insights into reference cases and find 

opportunities to apply EA artifacts in DDBM projects.    

Keywords: Data-driven, business model, enterprise architecture. 

1 Introduction 

Data has received considerable attention from business and academia. Latest 

technological advancements such as cloud, internet of things, big data, and machine 

learning have contributed to the rise of data-driven business models (DDBM) as an 

emerging phenomenon [1]. DDBMs are characterized by data as a key resource, data 

processing as a key activity, or both [2, 3]. Novel opportunities appear for organizations 

to monetize their data. Especially incumbent companies, resting on tremendous 

amounts of data, are expected to develop new and transform existing business models. 

However, the failure rate of big data and artificial intelligence projects remains 

disturbingly high [4]. 

Considering the high dependency on big data analytics, DDBM deployment implies 

information system design and implementation, which requires different support in 

design and realization compared to offline business model innovation [5]. Introducing 



new DDBM requires deep intervention in the entire organizational structure. The 

current (as-is) architecture must be well understood and the desired target (to-be) 

architecture, embedding the DDBM, must be crucially planned. The enterprise 

architecture (EA) practice is concerned with the aforementioned. EA has proven its 

potential in many IT-related projects and is deeply rooted in the information system 

body of knowledge. By providing artifacts such as meta models, frameworks, and 

management methods, EA supports transparency building on an organization’s key 

components, from business, data, application to the technology level. Furthermore, EA 

helps to manage the architecture towards common vision [6]. 

Research on DDBMs is still in its infancy, with most contributions emerging in the 

past five years [1, 5]. Practitioners face several challenges in DDBM deployment [4, 

7], from identifying relevant opportunities, proceeding with evaluation and ultimately 

implementing the DDBM [5]. Scholars have started to combine the two lenses of EA 

and DDBM in order to support DDBM deployment [3]. However, existing literature 

has examined the intersection from a conceptual standpoint. In this paper, we question 

the underlying assumption of the existing literature about how EA can be beneficial for 

DDBM design and realization by conducting empirical research. We want to investigate 

how EA modeling and management supports DDBM design and realization in practice. 

Accordingly, our study focuses on the following research question: How does 

enterprise architecture support the design and realization of data-driven business 

models? To answer this question, we conducted 16 semi-structured interviews with 

experts from consulting and industry firms working on DDBM projects in North 

America, Europe, and the Asia Pacific. Based on these interviews and triangulation data 

from publicly available sources, we collected 19 cases. We derived four approaches for 

DDBM design and realization and present for each the support from EA modeling and 

management. 

In the next section, we provide an overview of the theoretical background and related 

work in the intersection of EA and DDBM. We then describe how we conducted the 

semi-structured interviews. The cases we gathered will be presented before describing 

the approaches for DDBM deployment and EA support along the process. Ultimately, 

we discuss our findings and conclude by discussing future research avenues.   

2 Background and Related Work 

2.1 Big Data Analytics and Data-Driven Business Models   

The research on big data is deeply rooted in the information system discipline [7–10]. 

However, the term under which it was examined has evolved in the past decades from 

business intelligence, business analytics, and big data to big data analytics (BDA) [11]. 

In this context, the potential value contribution of data has been researched in three 

major areas, namely improved decision making, enhanced products and services, and 

new business models [12]. For the latter, the latest technological advancements have 

contributed to the urge for new DDBMs. Since 2014,  a significant number of papers 

have been published dealing with the need for DDBM research [1]. Accordingly, 



several definitions of DDBM have been proposed by scholars. All point out that data 

has to be an essential component of the business model. For example, Hartmann, Zaki, 

Feldmann, and Neely [2] define DDBM as “a business model that relies on data as a 

key resource”. Bulger, Taylor, and Schroeder [13, 14] and Brownlow, Zaki, Neely, and 

Urmetzer [13, 14] similarly highlight the fundamental role of data for DDBMs. Since 

there is no clear threshold of data utilization for a DDBM, Schüritz and Satzger [15] 

argue that companies alter from a traditional business model to a DDBM, with 

increased use of data for the value proposition. In the context of our research, we 

distinguish between enhancements of existing business models and new DDBMs that 

are centered on data (data as a key resource and/or data processing as a key activity) 

[3]. Research on DDBM is thriving but still in an early stage [1]. The latest efforts in 

academia have focused on extending the most popular business model canvas 

framework to the special needs of data-driven businesses [2, 16, 17]. 

2.2 Enterprise Architecture  

Research on enterprise architecture can be traced back to the Zachman framework from 

1980, which provides an ontology for modeling the fundamental structure of an 

organization and its information systems [18]. Over the past decades, EA has become 

essential for many organizations to support technology-driven transformations as it 

helps maintain an overview of complex sociotechnical systems. The Federation of 

Enterprise Architecture Organizations defines EA as “a well-defined practice for 

conducting enterprise analysis, design, planning, and implementation, using a 

comprehensive approach at all times, for the successful development and execution of 

strategy” [19]. A more narrowed definition of EA has been provided by the Open 

Group, which is in line with the ISO/ICE/IEEE Standard 42010 of architecture 

definition, that is, “the structure of components, their inter-relationships, and the 

principles and guidelines governing their design and evolution over time” [20]. We 

acknowledge that researchers and practitioners sometimes refer to EA as the practice 

and sometimes as the actual architecture of an organization. We use the term EA for 

the practice comprising the related modeling techniques, frameworks, and management 

function within an organization (EA management). The actual architecture of an 

organization is noted as as-is architecture, while planned future states are called to-be 

architecture [3, 21]. EA has proven its potential in improving information system 

efficiency and effectiveness. It is a critical component for strategic planning, top 

management decision making, and project management [22]. EA provides artifacts, 

such as meta-models, frameworks, tools, guiding principles, and management methods 

to support the evolution of an organization towards a target state. The key components 

of an organization and their interdependencies are represented in EA models [23]. The 

models are based on meta-models and deal with either the current state (as-is) or the 

desired state (to-be) of the enterprise. The EA management function supports the 

transition from the as-is to the to-be state through several intermediate architecture 

stages [3]. 



2.3 Related Work 

To identify the potential relevant related work on the intersection of EA and big data 

analytics, we conducted a literature review [24]. We queried the following databases 

with keyword searches: AIS Electronic Library, EBSCO Host Business Source 

Complete, Google Scholar, IEEE Xplore, JSTOR, Science Direct, and Web of Science. 

We selected the keywords “enterprise architecture” and “big data”. To further extend 

the literature search, the terms “data-driven” and “analytics,” which are associated with 

“big data” were integrated into the search as well. This led to a total of three strings 

(“enterprise architecture” and “big data”, “enterprise architecture” and “data-driven”, 

“enterprise architecture” and “analytics”) for our database queries. We screened all hits 

based on their title and abstract. Though it limits reproducibility, we included the first 

100 search hits from google scholar as an additional source. After reducing irrelevant, 

duplicate, and non-peer-reviewed articles, a total of 16 articles remained, which we 

analyzed based on their full text. Additionally, we conducted a backward and forward 

search.     

Table 1. Literature Search 

Database Hits Results Relevant  

AIS  10 3 0 

EBSCO  5 0 0 

Google Scholar 100 6 0 

IEEE  35 5 2  

JSTOR 0 0 0 

Science Direct 13 1 0 

Web of Science 14 1 0 

  16 2 

 

The results of our literature review revealed a large number of contributions examining 

EA support for BDA. Scholars have investigated how EA modeling and management 

can support the design and implementation of BDA [22, 25, 26]. However, with the 

objective to identify articles focusing on EA support for DDBM, only two contributions 

remained. First, Vanauer et al. presented a methodology for DDBM design and 

realization by combining EA and business model canvas techniques. Their theoretical 

methodology comprises two phases and addresses two different approaches for DDBM 

deployment. Second, Rashed and Drews have conducted a systematic literature review 

to illustrate the potential support areas of EA for DDBMs. Furthermore, they have 

derived 42 DDBM-related EA concerns structured along the business model canvas 

fields [3]. Both contributions highlight the vast potential of interlinking the rich 

discipline of EA with the emerging demand of DDBM. However, both articles are 

purely conceptual with no empirical grounding. We address this research gap an 

examine EA modeling and management support for DDBM design and realization with 

a qualitative-empirical study. 



3 Methodology 

The goal of our study is to empirically examine the support of EA modeling and 

management for DDBM design and realization. Considering the novelty of DDBM for 

academia and practice, we planned to conduct an explorative qualitative study. Our 

approach is to derive theory by building upon the grounded theory approach proposed 

by Corbin and Strauss [27]. We conducted semi-structured interviews with experts from 

consulting and industry firms to develop explanatory theory, the second type of theory 

according to Gregor [28]. Each interviewee has a track record of data monetization 

projects. The data was analyzed as we proceeded with the data collection. We adjusted 

the interview guide based on our experience from the first interviews and once again 

after one third was conducted. Choosing a semi-structured interview approach allowed 

us to set the direction of our research as we collected the data. Drawing on the 

recommendations from Myers and Newman allowed us to foresee common pitfalls of 

qualitative interview research [29]. 

The unit of our analysis are cases of companies that design and realize DDBMs. To 

understand how EA modeling and management support DDBM design and realization, 

we structured our interview questions along two phases, namely DDBM design and 

realization. These phases have been derived from the literature on DDBM design and 

realization [30, 31]. We sharpened our questions as we proceeded. In the interviews, 

we asked the participants about the background and context of the project, the general 

support from EA, and the DDBM design and implementation phase. We documented 

their experience along with the case examples. 

Between November 2019 and May 2020, we conducted 16 semi-structured expert 

interviews. All interviews have been recorded, transcribed, and coded by the authors. 

Except for IP 5, which was a physical meeting, all remaining interviewees have been 

conducted remotely via internet communication tools. We started with an initial list of 

interviewees leveraging our professional network, who named well-fitting candidates 

enjoying expert reputation. Each interviewee has a track record of DDBM projects. 

This allowed us to get the perspectives of cultural, gender, and regional diverse set of 

practitioners. Our interviewees have extensive experience in cross-industry firms as 

well as consulting firms with different specialization. This includes candidates from 

leading consulting firms, namely McKinsey, Bain, Boston as well as big four 

companies and large IT consulting firms. We included practitioners from various levels 

but focused on senior management after the first results demonstrated their broader 

perspective on the perceived factors (less senior tend to focus on one work package). 

We acknowledged that our interviewees have different backgrounds and expertise, we 

adjusted the questions as required. For example, our interviewees had either a stronger 

business or IT view on the cases they reported. Analyzing the interviewees as we 

proceeded and asking for further interview candidates allowed us to look for specific 

experiences, which we might have missed. For example, after the eighth interview, we 

acknowledged a regional restriction having only European cases collected. We then 

specifically asked for cases outside of Europe. Similarly, we emphasized the female 

perspective after taking into account the male dominance. An overview of the 

candidates’ list is illustrated in table 2. 



The interviews were scheduled with a length of 60 minutes. Depending on the 

course, the interviewee reported from 1 or 2 cases. We asked for “success” and “failure” 

cases, referring to the DDBM design and realization. Success constitutes the delivery 

of the project within time, scope, and budget. In the beginning of each interview, we 

defined the term DDBM and elaborated on the type of cases we were looking for. At 

the end of each interview, we asked for project documentation and publicly available 

data sources for triangulation. Furthermore, we applied internet research to gather 

additional triangulation data. 

To construct a coherent theory based on our gathered data, we drew on grounded 

theory as proposed by Corbin and Strauss [27]. We applied an open coding approach 

and selected ATLAS.ti for tool support. Not having a specific framework in mind, we 

conducted the interviews openly. To uncover relationships among the categories, we 

reassembled the data that was fractured during open coding. For this, we applied axial 

coding as described by Corbin and Strauss [27]. Based on the EA support our 

interviewees described along with the case context and taken steps for DDBM design 

and realization, we further specified our questions and built theoretical constructs. 

Dimensions that reached great density within the analysis of the first data were asked 

specifically for in the following interviews. After the ninth interview, we were able to 

derive four types of approaches for the collected cases. We used the remaining 

interviews to test our case cluster with the interviewees. 

Table 2. Interview candidates  

IP Role Organization Experience  

1 Senior Manager IT Consulting + 8 years 

2 Director IT Consulting + 20 years 

3 Senior Manager IT Consulting + 10 years 

4 Director Insurance Co. + 20 years 

5 Director MBB + 12 years 

6 Senior Manager MBB + 10 y/ PhD 

7 Director MBB + 20y/ PhD 

8 Consultant IT Consulting + 4 years 

9 Director  IT Consulting + 15y/ PhD 

10 Director  IT Consulting + 20 years 

11 Director  IT Consulting + 15y/ PhD 

12 Senior Manager IT Consulting + 10y/PhD 

13 Director  Public Services + 12y/PhD 

14 Senior Manager Financial Services + 10 years 

15  Senior Manager Big four  +8 years 

16 Senior Manager Life Science + 8y/PhD 

      

We acknowledge the threats to validity. Considering the four types of validity as 

described by Maxwell [32], we put great effort to ensure our interviewees can speak 

openly and are not in a conflicting situation. The developed concepts were critically 

assessed by both authors. We triangulated the interview results with project 



documentation and publicly available data. Furthermore, we discussed our results with 

four of our interviewees in a second iteration. These interviewees were: IP4, 7, 11, and 

13, who reported voluntarily. Their feedback was used to further sharpen our derived 

design and realization approaches for DDBM. However, we received great support for 

the developed concepts from these directors and senior managers within industry and 

consulting firms. 

4 Results  

In this chapter, we will first present an overview of the cases that were discussed in the 

interviews. Second, we describe the reported approaches for DDBM design and 

realization. Third, the support of EA modeling and management is illustrated for the 

identified approaches. 

4.1 Case Overview  

Discussing the terms DDBMs and EA at the beginning of our interviews was beneficial 

for our detailed debates. Furthermore, it gave us an understanding of the divergent 

interpretation of the term DDBM by practitioners. While some share our view of 

DDBM as new business model with data as a key resource and/or data processing as a 

key activity, others interpret the gradual enhancement of the existing business model 

with data as DDBM as well. Four cases represent DDBMs in line with our 

interpretation. Our interviewees highlighted the scarcity of latter mentioned cases, as 

they require a “clear business vision, well understood data and the technological 

backbone” [IP7]. The remaining cases represent organizational endeavors to gradually 

enhance technological and analytical capabilities to build the foundation for DDBMs. 

The term EA was clear to all interviewees. However, in most interviews, we had to 

emphasize that the EA practice goes beyond the EA department established within an 

organization. This means, even without the involvement of the mentioned department, 

EA artifacts can support the DDBM design and realization. 

Table 3. Case list  

C IP Industry Reg./Glo. HQ Motivation Sponsor 

1 IP1 Insurance Local D Digital strategy CDO/CIO 

2 IP2 FS Global AUT Digital strategy CDO/CIO 

3 IP2 FS Global AUT Competitive response CDO/CIO 

4 IP3 Insurance Global D Digital strategy CDO/CIO 

5 IP4 Insurance Global CH Competitive response CDO/CIO 

6 IP5 FS Global CH BU vision Head of M&S and CDO 

7 IP5 FS Global CH BU vision Head of HR 

8 IP6 IE Global D Company vision CEO 

9 IP7 Insurance Global CHN Clear business 
opportunity 

CEO 

10 IP8 Chemicals Global D Digital strategy CDO/CIO 



    

The gathered cases reflect organizational endeavors to deploy DDBMs. The companies 

behind these endeavors are predominantly from the insurance, financial services, and 

life sciences industry. This may be due to the proximity of the core business to data 

processing [IP7,9,11]. All companies are large size global and local players with origin 

in Europe, Asia, and the North America. Two of the four DDBM cases comprise 

European firms and two Asian Pacific firms. The business unit initiating the project 

was decisive for the expected value and application of the data. For example, the R&D 

unit of a pharma company seeks maximization of data value for drug development. This 

might come from shortened clinical trial phases or identification of new drugs [IP9]. 

Independent from the initiating business unit, CEO sponsorship and support was 

reported as vital for the cases. Considering the fragmented and isolated data sources 

throughout the company, timely data access becomes crucial. The majority of the 

described cases had CEO or CEO-1 level sponsorship. The quantitative analysis as 

illustrated in figure 1. The companies behind all reported cases had an EA department 

established. However, the duties and impact varied among the companies. For 17 cases 

our interviewees mentioned that EA must play a vital role in DDBM design and 

realization. Along all cases our interviewees faced EA concerns, regarding transparency 

of the prevailing architecture, planning of the target architecture and/or managing the 

transformation from as-is to to-be state. However, for only 10 cases our interviewees 

stated that EA modeling and management techniques were instrumentalized.     

 

 

Figure 1. Key statements  

11 IP9 LS Global CH BU vision Head of R&D and CDO 

12 IP9 LS Global D BU vision Head of M&S and CDO 

13 IP10 Insurance Local US Digital strategy CDO/CIO 

14 IP11 FS Global AUS Clear business 

opportunity 

CEO 

15 IP12 Energy Local D Clear business 

opportunity 

CEO/CIO 

16 IP13 PS Local D Digital strategy CDO/CIO 

17 IP14 FS Global CH Digital strategy CDO/CIO 

18 IP15 LS Global D Digital strategy CDO/CIO 

19 IP16 LS Global UK BU vision Head of R&D and CDO 



4.2 Approaches for DDBM Design and Realization 

The support of EA depends on the company context and the approach taken towards 

DDBM design and realization. Across the 19 cases we have identified four approaches 

for DDBM deployment. The companies behind the cases, either take a gradual approach 

or a direct approach. For the first, they start building technology capabilities first or 

analyze the existing data to develop use cases for DDBMs. For the latter, they either 

integrate the new DDBM into the existing organizational structures or establish a new 

DDBM startup. All companies behind the cases had a dedicated EA management 

function established. Our interviewees commonly reported that EA must play a vital 

role for DDBM design and realization, regardless if EA fulfilled the requirements or 

not. With this critical role, EA can become a “bottleneck” for DDBM design and 

realization, and the EA management function might be actively excluded from the 

process. In the following, we will describe the EA support along with the four 

approaches for DDBM design and realization, referring to figure 2. 

 

Technology centric. Seven cases comprise companies that embark on the journey 

towards DDBM realization by developing technology capabilities first. Business 

requirements are blurry and derived from high-level use cases. The process is driven 

by the IT department and initiated with technology selection efforts. Followed by a 

proof-of-concept phase and ultimately the implementation. EA supports the technology 

selection by enabling the development of business and technology capability maps that 

allow an understanding of the required technologies. These models are used to map 

technology solutions to the target business capabilities [IP1-3, 14,15]. Furthermore, EA 

models were used to grant transparency on the prevailing data and technology 

landscape [IP1-3, 10,13]. To proceed after the proof-of-concept phase, a formal sign-

off from the architecture board is required. The proposed solution must comply with 

the prevailing EA principles and overall target architecture [IP2,3,13-15]. EA methods 

and models have been used to cascade from capability domains to technology 

requirements. The EA management function was actively engaged by providing 

transparency and guidance. EA frameworks and tools have only been partially 

mentioned. TOGAF has been used for EA documentations [IP2,3,14].    

Use case centric. Five cases represent companies that begin with the ideation, 

prioritization, and sequencing of BDA use cases. The use case development is driven 

by the business units (BUs), followed by a solution architecture development phase. 

The designed solution is then prototyped and tested via a minimum viable product 

phase, which results in an implementation in case of success. In two out of the five 

cases, the EA management function supported the use case development with models 

to provide transparency on the data and technology landscape [IP5,16]. Further EA 

services were required to get sign-offs from architecture boards to proceed with the 

implementation. EA models were developed for the solution architecture and the 

implementation roadmap. One consulting firm has applied a self-developed EA method 

to support the use case and solution architecture development [IP9]. EA frameworks 

and tools have not been perceived as mentionable.     



DDBM integration. Three cases comprise actual DDBM deployments. The 

companies behind these cases transformed their existing organizational structure to 

integrate the new DDBM. The process is initiated with a DDBM design phase, followed 

by prototyping with a minimum viable product and ultimately implementation. EA 

models are used to provide transparency over the prevailing data and technology 

landscape. The models are developed by consulting firms for specific concerns. 

Standard EA models are only used to derive own models answering the DDBM-related 

EA concerns. EA models are also developed to envision the solution architecture and 

guide the implementation. The EA management function is actively excluded from the 

DDBM design and realization process. The EA services are only required to get formal 

sign-off from the architecture boards. EA methods, frameworks, and tools have not 

been perceived as a mentionable component of the design and realization phase 

[IP6,11,12].   

DDBM startup. In contrast to the latter presented path towards DDBM design and 

realization, the establishment of DDBM through a new company requires a different 

approach. A new company must be established. The new team moves the DDBM 

design and realization in a startup way of working forward. The parental company 

provides the data. EA support is required to access the data via APIs, providing 

transparency over data and technology landscape. EA services are required to develop 

models and find solutions for data extraction. However, the EA management function 

is actively excluded and perceived as a bottleneck that slows down processes. The new 

company is staffed with technology experts, capable to design and manage the 

realization of the startup architecture. The importance of rapidly scalable architecture 

was emphasized by our interviewee [IP7]. Standard EA methods, models, and tools 

have not been perceived as mentionable along the process. 

 

 

 

Figure 2. EA support for DDBM design and realization 

 

The highest application of EA artifacts was reported in the technology centric approach 

for DDBM deployment. EA supports in its traditional role in the integration of new 

technology, both strategic planning and project realization. The use case centric 



approach requires a different EA support. The traditional EA models, framework, and 

tools are too complex, and technology-focused for business discussions in individual 

BUs [IP9,16]. However, our interviewees reported that lightweight models are 

developed, project-specific together with business users [IP5,9,16]. With the DDBM 

integration and startup approach, EA is facing new challenges. Traditional models, 

frameworks, and tools are rarely applied. The EA management function with its 

principles and standards is perceived as a bottleneck and actively excluded 

[IP6,7,11,12]. 

4.3 Support Gap of Enterprise Architecture for Data-Driven Business Models 

In the previous section, we have described how EA supports the design and realization 

of DDBMs. The illustration in Figure 2 implies a gap of support for the DDBM 

Integration and Startup approach. To demonstrate this gap, we have derived the support 

potentials of EA for DDBM from our interview results as well as from our literature 

search. Figure 3 illustrates the potential application areas of EA modeling and 

management for each of the approaches.  

EA finds a higher application in the technology centric approach since the traditional 

EA capabilities are demanded. Technology selection and implementation are driven by 

the IT department. The use case centric approach is driven by BUs and requires EA 

support for use case design and realization. For the DDBM integration approach, EA 

can be beneficial for ideation, solution sketching, and feasibility testing as well as for 

the implementation. The DDBM startup approach demands from the EA to support 

agile teams, rapidly proposing, and developing solutions. In contradiction to its 

traditional role, EA must adapt to a fail fast and learn culture.   

5 Conclusion and Future Research 

The rise of DDBMs brings unique opportunities to organizations to monetize their data. 

A considerable number of articles has addressed this topic in the literature [1]. 

However, most companies struggle to implement DDBM projects [4]. Prevailing 

methods and tools for the deployment of offline business models do not capture the 

unique perspectives of data and analytics, that DDBM endeavors require [1, 5]. Even 

though EA has proven its potential for IT-related projects, the intersection with DDBMs 

has not been extensively investigated in the literature [3, 30]. First attempts of 

combining the two lenses of EA and DDBM, imply underlying assumptions about how 

EA can be beneficial for DDBM deployment. In this study, we questioned these 

underlying assumptions and examined how EA modeling and management supports 

DDBM design and realization in practice. To contribute to research, we conducted 16 

semi-structured interviews with experts from consulting and industry firms, to 

empirically investigate the EA – DDBM intersection. We derived four approaches for 

DDBM design and realization and described for each the support of EA modeling and 

management. Our results have revealed that EA is a common practice in many 

companies. Accordingly, is the expectation of EA support for DDBM high. All our  
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interviewees have faced EA concerns along their DDBM journey. However, we found 

that regardless of the potential support opportunities, many practitioners perceive the 

EA practice as a bottleneck for innovative project setups like DDBM deployment. 

Consequently, we have found that EA was utilized high in the technology centric 

approach, which demands the traditional capabilities of EA and is driven by the IT 

department. While the more innovative settings like DDBM integration and startup 

approaches have utilized EA only very rarely. The latter approaches are driven by the 

business with support from IT. Considering the interview results and the existing 

literature on the intersection of DDBM and EA, it further comes apparent that EA is 

not leveraged to its full potential in DDBM design and realization. 

The results of our research have implications for academia and practice alike. For 

academia, our contribution is threefold. First, we have presented 19 international 

DDBM cases and derived four approaches for DDBM deployment. Along these 

approaches we demonstrated how EA modeling and management are applied in 

practice to support DDBMs. Second, we revealed the discrepancies between the 

underlying assumptions of the literature on EA support for DDBM and the practical 

manifestation. For example, Rashed and Drews [3] describe EA support along one 

approach for DDBM design and realization. Our findings demonstrate four different 

approaches with varying demand on EA support. Furthermore, the literature neglects 

the perceived value from EA by practitioners [3, 30]. Although a high value potential 

can be derived from the literature [3], it involves many underlying assumptions that 

must be questioned when looking into the practical manifestation. Third, by analyzing 

the literature and conducting empirical research, we have opened new research avenues. 

Especially for deepened research on EA capabilities to support DDBM design and 

realization, the role of architects in DDBM endeavors, as well as the perceived value 

from EA and the negative connotation of a “bottleneck”. Future research could 

investigate the conceptualization of EA as “control point” offering value. For 

practitioners, the collected cases provide valuable insights into reference projects. The 

overview of the current literature is beneficial for targeted knowledge development. 

Additionally, the presented approaches and the respective EA support can be inspiring 

for EA departments to find new support opportunities.  

Our study’s results bear some limitations. Drawing upon Maxwell [18], we structure 

the limitations of our qualitative research along the four proposed types. First, for 

evaluative limitations, we acknowledge the threat to validity based on the dependency 

on the individual interpretation of the reported events. Although we have validated the 

described facts with triangulation data, the threat cannot be completely diminished. 

Second, for theoretical limitations, we applied a semi-structured interview approach to 

collect the data open-minded. However, our research was infused by our previous 

research on the intersection of DDBM and EA. Third, interpretative limitations, the 

derived approaches are imbued with our interpretation of the data. Although both 

authors have independently processed the data and the results have been challenged 

with two directors from management consulting firms, a binding to the interpreter’s 

perspective will remain. Fourth, descriptive limitations, we acknowledge the threat to 

validity imposed in the description process. In prevention, all results have been written 

and interpreted by both authors iteratively. The working paper has been sent to two 



interviewees in order to gather additional feedback. Ultimately, we have to emphasize 

that the number of conducted interviews and collected cases are limited. However, we 

analyzed the data as we proceeded with the interviews. After the ninth interview, we 

were able to derive the approaches. The remaining interviews have been used to test 

our concepts. 

Despite the vast potential of applying EA modeling and management concepts for 

DDBM design and realization, their utilization is limited in practice. We plan to 

develop a reference model for the design and realization of DDBM under special 

consideration of the EA practice. Additionally, we opened new research avenues in the 

directions of EA capabilities to support DDBM design and realization, the role of 

architects in DDBM endeavors, as well as the perceived value from EA and the negative 

connotation of a “bottleneck”. 
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