
RESEARCH NOTE

A Case for a New IT Ecosystem: On-The-Fly Computing

Holger Karl • Dennis Kundisch • Friedhelm Meyer auf

der Heide • Heike Wehrheim

Received: 18 April 2019 / Accepted: 10 October 2019 / Published online: 9 December 2019

� Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Abstract The complexity of development and deployment

in today’s IT world is enormous. Despite the existence of

so many pre-fabricated components, frameworks, cloud

providers, etc., building IT systems still remains a major

challenge and most likely overtaxes even a single ambi-

tious developer. This results in spreading such develop-

ment and deployment tasks over different team members

with their own specialization. Nevertheless, not even

highly competent IT personnel can easily succeed in

developing and deploying a nontrivial application that

comprises a multitude of different components running on

different platforms (from frontend to backend). Current

industry trends such as DevOps strive to keep development

and deployment tasks tightly integrated. This, however,

only partially addresses the underlying complexity of either

of these two tasks. But would it not be desirable to simplify

these tasks in the first place, enabling one person – maybe

even a non-expert – to deal with all of them? Today’s

approaches to the development and deployment of complex

IT applications are not up to this challenge. ‘‘On-The-Fly

Computing’’ offers an approach to tackle this challenge by

providing complex IT services through largely automated

configuration and execution. The configuration of such

services is based on simple, flexibly combinable services

that are provided by different software providers and traded

in a market. This constitutes a highly relevant challenge for

research in many branches of computer science, informa-

tion systems, business administration, and economics. In

this research note, it is analyzed which pieces of this new

‘‘On-The-Fly Computing’’ ecosystem already exist and

where additional, often significant research efforts are

necessary.

Keywords IT ecosystem � Multi-sided market �
Automation � Orchestration � Service-oriented

architectures � Configuration � Deployment

1 Introduction1

Are you an IT developer who recently spent days searching

for appropriate libraries reusable for your new application?

Or are you a knowledgeable IT user who wanted to build a

web application for your sports team, but gave up soon?

Then you are one of many who have experienced the

Accepted after two revisions by Martin Bichler.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s12599-019-00627-x) contains sup-
plementary material, which is available to authorized users.

H. Karl � F. Meyer auf der Heide � H. Wehrheim

Department of Computer Science, Paderborn University,

Warburger Str. 100, 33098 Paderborn, Germany

e-mail: holger.karl@upb.de

F. Meyer auf der Heide

e-mail: fmadh@upb.de

H. Wehrheim

e-mail: wehrheim@upb.de

D. Kundisch (&)

Department of Business Information Systems, Paderborn

University, Warburger Str. 100, 33098 Paderborn, Germany

e-mail: dennis.kundisch@upb.de

1 Three related overview papers (Happe et al. 2013; Petrlic et al.

2014; Szopinski et al. 2017) are also concerned with On-The-Fly

Computing. Despite some overlap, these contributions differ in their

scope, each addressing different aspects of On-The-Fly Computing.

123

Bus Inf Syst Eng 62(6):467–481 (2020)

https://doi.org/10.1007/s12599-019-00627-x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/385858235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s12599-019-00627-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-019-00627-x&domain=pdf
https://doi.org/10.1007/s12599-019-00627-x

complexity of development and deployment in today’s IT

world: Despite the existence of so many pre-fabricated

components, frameworks, cloud providers, etc., building IT

systems still remains a major challenge.

When developing applications, a developer should be

familiar with a vast range of libraries, frameworks and

environments: Application libraries constituting user fron-

tends running directly on smartphones differ from fron-

tends running inside a web browser. Application

components that implement an application’s business logic

might run inside a web framework on a server, requiring

access to different kinds of databases or event processing

frameworks. A backend application component might do

complex machine-learning tasks, which require yet another

set of frameworks. When deploying an application, a

similar confusion is encountered: Preparing for deploying

on smartphones, web browsers, cloud environments or bare

metal setups is all very different, each with its own unique

set of challenges. Knowing all this likely overtaxes even an

ambitious developer. Today, this results in spreading such

tasks over different team members, each with their own

specialization. Nevertheless, not even highly competent IT

personnel can easily succeed in developing and deploying a

nontrivial application that comprises a multitude of dif-

ferent components running on different platforms (from

frontend to backend).

Current industry trends such as DevOps strive to keep

development and deployment tasks tightly integrated.

This, however, only partially addresses the underlying

complexity of either of these two tasks. But would it not

be desirable to simplify these tasks in the first place,

enabling one person – maybe even a non-expert – to deal

with them?

Today’s approaches to the development and deployment

of complex IT applications are not up to this challenge. To

put such an approach into effect, the selection of frame-

works, choice of suitable libraries, acquisition of compo-

nents, generation of code, and production of executable and

deployable artifacts (‘‘software’’) must all be much more

automated than what is feasible today. With proper

automation, it should even become possible to generate,

deploy, and execute software on suitable hardware on very

short term, possibly even on-the-fly, when the need for a

particular new piece of software arises. We stipulate that

this is a highly relevant challenge for research in many

branches of computer science and adjacent disciplines such

as information systems, business administration, and eco-

nomics. This challenge is clearly formidable yet it also

does not appear to be hopeless. In this research note, we

analyze which pieces of this new ‘‘On-The-Fly Comput-

ing’’ (OTF Computing) ecosystem are in place and where

additional, often significant research efforts are necessary.

Addressing the arising multiple engineering challenges –

software, infrastructure, and market engineering challenges

– would contribute to accomplishing the grand challenge of

information systems ‘‘developing model-driven methods

and tools for the full-scale automated generation of

implementation-ready IS’’ formulated in Becker et al.

(2015) and it would partly contribute to accomplish the

grand challenge ‘‘enhancing reliability of software’’ pro-

posed by the German Informatics Society (Eymann et al.

2015).

2 Use Cases, Roles, and Definition

We use three example use cases to illustrate the concept of

OTF computing. They cover typical on-the-fly scenarios,

ranging from straightforward to forward-looking. This

description will introduce a number of roles (see also

Appendix A available online via http://link.springer.com)

as well as some concepts and artifacts (see also Appendix

B) and relationships between them.

2.1 Example Use Cases

2.1.1 Conventional Web Applications

Let us consider a typical web application, geared to serve

many users – think of an online map application or a hotel

booking website. In this use case, the idea for such an

application was conceived and implemented by an indi-

vidual or a company; they requested the creation of this

web application in a more or less implicit form (as today,

OTF Computing is not explicitly developed). Such a re-

quester would (today) specify that its application consists

of a couple of components, such as a web framework or a

database. These components are made available from

different sources, e.g., open-source initiatives or compa-

nies, which all assume the role of a component provider.

In addition, the code that represents the actual application

semantics had to be developed; this forms yet another

component to be run, e.g., as code inside a web

framework.

Once all components are available, they can be run

either as a single service or as a collection of interacting

microservices (Sill 2016). In case some of the components

are not available as (source or binary) code, they might still

be available as a service. One example is a payment service

made available via a REST interface by a service provider

– PayPal is the canonical example here; mapping and

weather forecast services are other typical examples. In

summary, an application itself is a service, composed of

other services that are either already running and accessed

or are started as an inherent part of the application.

123

468 H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020)

http://link.springer.com

Such an application is typically executed on different

infrastructures, such as users’ smartphones, and on servers

in a cloud system. These infrastructures are made available,

explicitly or implicitly, by infrastructure providers: say, an

Amazon web service for the web servers and the users

when running frontend code in their web browser.

In this simple, well-known use case, there are two steps

involved that, today, are highly labour- and knowledge-

intensive: (1) the composition of an application out of

simpler components, along with additional code for

application semantics (today typically provided by the

developer); (2) identifying options for executing an appli-

cation’s components (or accessing constituting services) on

suitable infrastructures. In the following sections we shall

investigate how OTF Computing would make these steps

more efficient. But before, let us consider two more com-

plex use cases.

2.1.2 Big-Data Applications in Backend Systems

Consider a machine-learning application analyzing large

amounts of data in a commercial context where data sci-

entists assist an expert from an application domain. Often,

such applications change frequently and are composed of

more or less simple components (e.g., database access, data

preprocessing, graph extraction, clustering, various learn-

ing schemes, classification, or regression algorithms). Such

machine-learning libraries exist https://spark.apache.org/

docs/latest/ml-guide.html and their components can be

combined, today albeit with nontrivial manual effort. In

OTF Computing, this effort should be substantially

reduced.

In this use case, the domain expert would be the user;

the data scientist assumes the role of the requester on

behalf of the user. Components such as Spark (Zaharia

et al. 2016) are provided by corresponding component

providers (here, the Apache consortium); services such as

data visualization (e.g., Plotly) are provided by the corre-

sponding service provider (plot.ly). Some of the infras-

tructure to run data analysis could be hosted by the data

scientist’s company, taking care of the infrastructure pro-

vider role as well.

The data scientist provides additional expertise here,

which is a key contribution to the application: which

components should be meaningfully composed into a big-

data analysis application? It is a typical activity, compos-

ing components and services to form a new, useful com-

ponent (or application), based on a semantic, domain-

specific understanding of the problem at hand. Moreover, it

could be necessary to orchestrate the execution of an

application on one or multiple infrastructures, catering to

the particular needs of the various services.

In today’s software engineering approaches, this role is

not explicitly visible; we do believe, however, that it is a

key aspect for future development approaches. We hence

highlight it explicitly and name it broker to point out its

role between different other roles: The broker needs to

understand requesters (and, implicitly, users) as well as the

offer of component/service providers and infrastructure

providers. It needs to be able to create a new component

out of existing pieces plus, potentially, generate additional

glue code between those pieces. This is a considerable

challenge to be pursued and is, in fact, a key contribution of

OTF computing: Rather than attempting to mandate (yet

another) new API for composed services (a futile endeavor

bound to fail), we adapt existing APIs, with their syntactic

and partially semantic abilities, to integrate individual

services into a new, composed service (or recursively fur-

ther composing already composed services). For the

example of microservices, we can generate glue code that,

e.g., bridges the gap between a service intended to be used

in a microservice pipeline and another one in a client-

server-style orchestrated microservice.

2.1.3 User-Triggered Smartphone Application Generation

In the most forward-looking application, the role of the

broker becomes even more important. Let us imagine that a

broker is able to understand the needs of a user very well

and can create an application to be executed on the user’s

smartphone directly, on-the-fly, as a user expressed his or

her idea. This will require considerable understanding of

ill-expressed, informal requests. It is far beyond today’s

capabilities in natural language understanding and software

synthesis but serves as an interesting target scenario.

In particular, in this scenario, another issue becomes

apparent: Even assuming that a broker were capable of all

this semantic understanding, it is not obvious where such a

broker should search for components or services to be used

in generating such an application. Nor is it apparent where

such services could be offered in the first place. Hence, we

identify a last role necessary to implement OTF Comput-

ing: A market provider that creates a marketplace, operates

it, and mandates and polices rules of who is allowed to

offer and request what (components, services, infrastruc-

ture, ...) under which kinds of licences, etc. Again, this role

is in place only for some kinds of IT systems today; for

example, Apple or Google are market providers by means

of their app stores. But these stores fall short of supporting

the search functionality of components. Today, this role

exists only in a rudimentary, highly manual form; it is

shared over code websites such as GitHub, cloud providers

such as Amazon or cloud consolidators such as HashiCorp.

We expect an OTF computing ecosystem to be able to

support single or multiple market providers and brokers,

123

H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020) 469

https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/latest/ml-guide.html

having access to automatically searchable component and

service repositories.

2.2 Roles in an OTF World

In summary, OTF Computing comprises a number of

familiar roles; it also points out the significance of a couple

of roles that are present today, but are only filled implicitly

or with a limited scope in comparison to an OTF imple-

mentation. First and most important among those is the

broker role. This role will be crucial to create new com-

ponents, services and applications and orchestrates the

development of newly required functionalities. Second, the

market provider will provide the organizational, economic,

contractual and possibly legal framework in which an OTF

economy can develop and flourish.

The key relationships of these roles is summarized in

Fig. 1. It shows only the most important interactions

between roles. We would like to emphasize that a partici-

pant on an OTF marketplace can assume several roles

simultaneously (e.g., a developer might take on the roles of

a service provider and a component provider at the same

time) and that a role can be jointly assumed by several

entities (e.g., all developers individually assuming the role

of a component provider jointly assume the role of the

market provider). Hence, OTF Computing is not limited to

specific (centralized) market structures but also allows for a

broad range of diverse market structures including decen-

tralized settings (e.g., peer-to-peer).

2.3 Definition and Description of OTF Computing

OTF Computing refers to the approach of providing com-

plex IT services through largely automated configuration

and execution. The configuration of such services is based

on simple, flexibly combinable services that are provided

by different software providers and traded in a market.

Several compute centers compete for execution. They have

the know-how and technical prerequisites to efficiently

execute composed services. In order to make this OTF

Computing attractive for customers and providers, a variety

of tasks must be performed. Examples are the user-friendly

description of requested IT services, assurance of the

quality of provided services, targeted further development

of the underlying markets from customers and providers,

protection of the market participants as well as the support

of interaction in these dynamically changing markets. OTF

Computing is characterized by the fact that the user need

not create or configure the service, and this composed

service is nevertheless made available promptly. Moreover,

such composed services are adaptive and can be improved

at runtime on the basis of explicit or implicit feedback.

Fig. 1 Roles and their relationships in OTF computing

123

470 H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020)

They adapt to a changing software landscape, for example

through the availability of new components.2

Thus, the major innovation of OTF Computing is the

integration of a variety of disciplines from computer sci-

ence, information systems, business administration, and

economics, rather than its contributions to its ingredients

such as cloud computing, service-oriented architectures

(SOA) or virtualization, for example.

3 Software Engineering Techniques for OTF

OTF Computing provides complex IT services through

largely automated configuration and execution. For soft-

ware engineering, OTF Computing poses three key chal-

lenges, primarily related to the development of high quality

applications and the interaction of requester and user with

the OTF ecosystem as a whole.

Description How to tell the broker what is to be

generated or executed? And, equally

important, how to describe what is

available (components, services,

infrastructure) and thus usable by the

broker? The options range from natural

language descriptions to full formal

specifications.

Configuration How to assemble which components and

services? Where to deploy them? On an

abstract level, this is a planning or

optimization problem; for the final

execution, this is a question of interfaces,

platforms, technology standards and

hardware.

Quality

assurance

How to ensure high quality? Current

software engineering methods for quality

assurance (e.g., testing, analysis,

monitoring, certification) can be

leveraged, but need to be adapted to the

OTF Computing context.

The challenges and hence the methods to tackle them are

closely interconnected. We discuss them in more detail and

explain, in particular, which roles face which challenge(s).

3.1 Description

Within the OTF ecosystem, three roles need languages for

describing requirements (on applications to be built and on

single components or services to be found in the market) or

guarantees (of the specific infrastructure provided): The

first is the requester. Preferably, she would not be required

to learn a specific language for writing requirements.

Rather, she would like to fill in a form or directly write her

requirements in her own mother tongue. The second role is

the broker. For his task, he needs languages for directly

asking providers or querying the market for a specific

entity. The third sort of role is taken by all providers (of

services, components or infrastructure). They need to pre-

cisely formulate the guarantees provided by their entities.

For all of these tasks, domain-specific languages could be

envisaged, but also general-purpose languages adequate for

specifying all aspects of services, components and

infrastructure.

3.1.1 Existing Approaches

Semantic descriptions of services are primarily employed

in the area of web services. Such descriptions use stan-

dardized languages (e.g., WSDL or OWL-S standardized

by W3C) for defining types, interfaces or formats for

message exchange; some formalisms (e.g., WSRF) also

give semantics about stateful vs. stateless components of a

service that can be used to drive execution decisions.

Ontologies serve as a way of formalizing web service

descriptions in general and stating the concepts of an

application domain and their relationships (Gruber 1993;

Oberle et al. 2006). Based on these formalizations, (de-

scription) logics can be used to reason about service

descriptions, e.g., when matching offered and requested

services (Paolucci et al. 2002). While ontology-based

approaches restrict such reasoning to concepts and their

relationships, formal methods such as Z (for stating types

and operations) or the process algebra CSP (for describing

workflows) offer an even higher degree of precision by

giving a semantics to concepts themselves. This allows for

a formal proof of the matching between two given services

or of the correctness of a service with respect to its stated

interface. With respect to the formulation of natural lan-

guage requirements, we currently see the rise of systems

communicating with humans in natural language (Serban

et al. 2016; Masche and Le 2018) (virtual assistants such as

Apple’s Siri or Amazon’s Alexa). They (seem to) under-

stand questions and can provide answers.

While all these approaches have brought considerable

progress in describing services – also in an OTF context –

the challenges in the area of description imposed by OTF

Computing are still not fully solved. On the side of the

2 A similar definition and description of OTF Computing can be

found in, e.g., (Happe et al. 2013). We note that realizing the OTF

Computing vision can be interpreted as the development of a novel

and special type of service system contributing to the stream of

research on service systems engineering (Böhmann et al. 2014) with a

focus on the engineering services architectures.

123

H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020) 471

human requester, current approaches fall short in flexibil-

ity: natural language queries about unknown entities (i.e.,

not yet assembled service compositions) cannot be looked

up in the database and today’s virtual assistants will not

engage in interactions with requesters to make non-un-

derstood queries more precise. OTF Computing needs

content-wise enquiries to close gaps in the knowledge,

learn new knowledge and suggest alternatives when no

direct answer is available (Geierhos and Bäumer 2017).

For the communication between broker and providers,

the difficulties lie in (1) existing description languages not

being used at all (lots of libraries describe their offered

services simply in English), (2) non-standardized lan-

guages or languages without a formal semantics being

used, and (3) a missing agreement on a single language –

even in one application area. As a consequence of the lack

of a universal, standardized description language, the

challenge lies in matching requests and guarantees given in

completely different languages against each other (Plate-

nius et al. 2017).

3.1.2 Research Required

To achieve true OTF Computing systems, novel techniques

for natural language processing, building dialogs with users

and learning from past dialogs are required. On the spec-

ification language side, our prediction is that no universal

language will emerge, but rather many domain-specific

languages. The key requirement in all these areas is,

however, not language design but willingness to converge,

standardize and use a small set of languages.

3.2 Configuration

In OTF Computing, configuration means assembling an

application that meets the requester’s requirements. In

addition, selected services might need to be configured (in

the sense of setting a service’s parameters). Both is the task

of the broker.

3.2.1 Existing Approaches

A prerequisite for configuration is first of all the existence

of services that can be freely combined into larger soft-

ware. This idea of software composition has long been

advocated by work on SOA (Erl 2005) and, more recently,

on microservices (Shadija et al. 2017). A major number of

works in these areas target (a) design principles of services

and (b) technological concepts that allow the use and

combination of services in SOA or a microservice archi-

tecture. For the design, issues such as abstraction, com-

posability, isolation, reusability and, in general, separation

of concerns play a major role. On the technological side,

various protocols, interface description languages and

container concepts have been developed (REST, Docker

container, to name just a few).

Contrary to that, configuration in OTF Computing refers

to the conceptual task of selecting and assembling a

number of existing services into a more complex compo-

sition. Techniques such as microservices thus ideally

complement the configuration process in OTF Computing.

Current approaches to automated software and service

composition (Mohr 2016) typically adopt one of the fol-

lowing forms: Template-based approaches assume the

structure of the service composition to be given a priori and

configuration consists of instantiating placeholders, setting

parameters, or customizing variants (e.g., Berardi et al.

2005; Nair et al. 2018). These approaches are applied in

web service composition, for software product lines or

simply for configuring software. They often amount to

solving an optimization problem, e.g., finding an optimal

configuration taking preferences of the requester into

account (Lamparter et al. 2007). Free configuration on the

other hand builds on no such assumptions. The construc-

tion of the overall structure is part of the configuration

process itself. Such approaches require formal specifica-

tions of both the requirements and the services [in propo-

sitional or first-order logic, e.g., (Hoffmann et al. 2008)].

Free configuration approaches rely on AI planning in one

form or another.

While the drawback of template-based approaches is the

necessity of knowing the template beforehand, the diffi-

culty for free configuration lies in requiring formally

specified services. Again, it has to be stated that such

specifications are often not available. As another drawback

of free configurations, planning often builds only sequen-

tial compositions of services/components: i.e., it only finds

a very limited structure. As a consequence, neither tem-

plate nor free techniques are applied on a wide scale today.

An exception to this are domain-specific configurations, an

example being automatic assembly of machine-learning

applications (AutoML, e.g., Thornton et al. 2013).

Domain-specific approaches can typically go beyond gen-

eral approaches by leveraging expert knowledge on the

application domain and its structure, and thus achieve a

higher degree of automation.

3.2.2 Research Required

The template-based configuration approach needs more

general ways of describing templates; free configuration

needs techniques for building more complex structures.

There are, however, also general limits to any progress in

this area, due to composition (depending on the exact

setting) being an NP-hard or even undecidable problem.

The future might thus lie in numerous domain-specific

123

472 H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020)

techniques where generalization across application

domains can only be achieved by setting up an abstract

framework for configuration which needs to be instantiated

to domains.

3.3 Quality Assurance

Quality assurance refers to achieving high-quality appli-

cations, with respect to functional as well as non-functional

properties. Three roles are responsible for or may influence

the quality of a service composition. The first is the service

or component provider, whose interest may, however, just

be in achieving a high price for his service/component or

high sales figures (Sect. 5). The second role is the broker

system. As it has only limited influence on the entities

plugged into an application (it selects components/services,

but cannot influence their internal operation), it either

needs to be supplied with techniques for checking ser-

vice/component properties or has to rely on user reviews or

ratings. The third role is the infrastructure provider

responsible for meeting service-level agreements; this is

discussed in Sect. 4.

3.3.1 Existing Approaches

Numerous software analysis and testing methods exist for

ensuring the safety and security of services and software

(see e.g., Dwyer et al. 2007; Orso and Rothermel 2014 for

overviews). The drawback of these techniques in an OTF

context is the fact that they are typically not aligned to an

‘‘on-the-fly’’ usage. Notable exceptions are specific certi-

fication techniques that target safety properties (Necula

1997; Shao 2010; Jakobs and Wehrheim 2014; Beyer et al.

2015). Software certification attaches correctness proofs to

software and builds proof checkers inspecting the validity

of proofs. Such approaches already work towards the

concept of ‘‘on-the-fly’’ quality checking as proof checking

is typically faster than proof construction.

For the second role (the broker relying on user ratings)

the key challenge is the fact that applications are rated by

users as a whole; in fact, it is the application execution

which is typically rated. The broker cannot easily see

which parts of an application are the cause of a bad or good

rating; it might rest in some application component or in an

unsuitable infrastructure. This question is known as the

disaggregation problem (which is also broached in

Sect. 5).

3.3.2 Research Required

A truly ‘‘on-the-fly’’ quality assurance requires major

improvements in the speed of software analysis techniques,

whether they involve certification or not. For certification,

more analysis approaches need to be able to construct

‘‘proofs’’ and be supplied with proof validators. Disag-

gregation techniques for user ratings must be developed

and put into practice.

4 IT Infrastructure for OTF

Obviously, an application becomes useful only once it is

executed. To execute it, some form of execution machinery

is necessary – we summarized this under the umbrella term

of infrastructure. The question here is to deal with the

infrastructure as such as well as with the mapping (or

scheduling) of components to specific instances of the

infrastructure for execution.

For infrastructures and for executing components on top

of them, OTF computing builds upon well established

approaches from (distributed) cloud and grid computing

(e.g., virtualization, infrastructure as a service/infrastruc-

ture-as-code Morris 2016, scaling in/out as well as

up/down, continuous integration, delivery and deployment

of microservices-based applications as well as their

infrastructure Shahin et al. 2017; Chen 2015). As pointed

out above, a significant contribution of OTF Computing is

how these microservices are produced and annotated with

additional information (about performance aspects, etc.).

Leveraging such information for execution of OTF services

provides challenges in the same three categories (De-

scription, Configuration, and Quality Assurance) as dis-

cussed in Sect. 3. We discuss these challenges in turn.

4.1 Description

4.1.1 Existing Approaches

As already pointed out in Sect. 3, a description of the

capabilities of an infrastructure is an essential precondition.

Foundations for that are currently being laid by data center

description languages such as the Data Center Markup

Language (DCML, dcml.org), hopefully resulting in stan-

dard interfaces for data centers in the sense of the Soft-

ware-Defined Data Center concept. Obviously, this goes

along with virtualization of the infrastructure, putting data

centers under the control of cluster management systems

(e.g., Mesos, mesos.apache.org) along with suitable inter-

faces. The idiosyncrasies of different infrastructure provi-

ders – today, usually synonymous with cloud providers –

can be hidden by abstract layers such as the one provided

by Terraform, terraform.io. Nonetheless, standardized

description languages with clear semantics are still largely

absent.

More generally, the notion of infrastructure as code is

currently gaining momentum: It allows to describe an

123

H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020) 473

application’s specific needs and to provision it on-the-fly,

when an application starts up. This includes, for example,

provisioning a suitable number of (usually virtual) servers

along with a required operating system, library, and net-

work/storage setup.

While infrastructure as code does constitute an excellent

basis for OTF Computing, it is nevertheless insufficient.

For example, the current focus of data-center-oriented

descriptions is understandable given the economic drive of

cloud computing and large setups. But it does not do justice

to the needs of OTF Computing where we foresee a much

wider range and much a richer versatility of infrastructure.

In practice, there is currently no consistent approach to

describe execution options for a given application that

might be run on either a smartphone or a backend system

(or where functionality might even be dynamically dis-

tributed between these two execution environments). As

another example, an application might be runnable on a

standard CPU architecture or on a General Purpose Com-

putation on Graphics Processing Unit (GPGPU) or a Field-

Programmable Gate Array (FPGA) (with different binaries

included in the application description, of course). This

requires a description of the corresponding capabilities of

real systems, bypassing many virtualization layers that

explicitly try to abstract away such differences. Also, for

large applications with a geographically distributed user

base, a single data center might not be the right solution –

distributed cloud computing might rather be preferable.

This necessitates knowledge about multiple data centers

and their interconnectivity.

4.1.2 Research Required

To address these scenarios and needs, our description

techniques need to support infrastructure polymorphism:

vastly heterogeneous and vastly distributed infrastructures.

While a lot of such information is available in more or less

implicit form (e.g., geographic distribution of data centers),

none of that is available in a formalized, machine-readable,

standardized way.

This leads to the second issue: Which infrastructures are at

hand? Today, the choice where to execute a service is

extremely limited as no consistent description is available,

nor is there any standardized way of finding such informa-

tion. We need an infrastructure discovery mechanism that

can provide opportunities from the small to the very big.

The ensuing question is what to include in these

descriptions. Obviously, quantitative descriptions of capa-

bilities are relevant, but also cost information, offered

service level agreements (SLAs), etc. Without that, map-

ping components to infrastructure would boil down to

guesswork as is done today when little guidance exists on

which cloud provider to use. Ideas in this context are

legion, usually tracing back to the rich literature on SLAs,

but also on grid computing. OTF Computing goes beyond

that by requiring a good understanding of load: Some types

of OTF applications will be characterized by large user

populations, distributed world-wide, with possibly widely

differing requests (think of a next-generation, video-on-

demand streaming provider).

To address these needs, existing formalisms [e.g., ETSI’s

NFV description formalisms (ETSI NFV ISG 2014)] need

to be formalized towards geographically distributed load

profiles, constituting a rich research field, in particular when

incorporating time-varying load predictions.

Obviously, all these description approaches need proper

standardization and sufficient buy-in to get an OTF ecosys-

tem started. This is discussed in more detail in Sect. 5.

4.2 Configuration

4.2.1 Existing Approaches

With proper qualitative and quantitative descriptions of both

infrastructure and applications available, the task at hand is

configuration. In this context, that means figuring out which

particular version of an application (or a service) to deploy,

possibly choosing not only which but also which kind of

infrastructure, where to serve which particular demands, and

how many resources to assign. Typically, this boils down to

rather complex optimization problems, often to be solved

with real-time constraints or in an online setting.

For relatively simple applications, the closest research

fields here are Distributed Cloud Computing and Network

Function Virtualization. Both concern themselves with

such placement and automatic scaling problems, along with

lifecycle management of such composed applications. This

work is typically focused on wide-area infrastructures and

ignores internal organization of ‘‘compute nodes’’, which

might in turn be entire data centers. Inside data centers, on

the other hand, very little explicit information about an

application is taken into account. A first example in this

direction, focused on data-parallel applications such as

Map/Reduce jobs, is the notion of a coflow (Chowdhury

and Stoica 2012), where flows of a single application are

synchronized. However, there is very little support avail-

able for scheduling such applications according to complex

SLA requirements.

4.2.2 Research Required

There is a large range of research that is needed here. Even

assuming that all information about infrastructure would be

available, there is still a wide range of resulting opti-

mization issues. We do need fast yet reasonably precise

heuristics or, ideally, approximations for complex

123

474 H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020)

scheduling, scaling, and placement problems, especially

across heterogeneous infrastructures for versatile services,

capable of running on different execution environments.

Inside data centers, this problem is aggravated by the many

system layers and the resource competitions among appli-

cations; on the other hand, it is simplified by the complete

control over all these layers. In wide-area networks, many

simplifications that are acceptable in data centers no longer

work (e.g., equal delay along all paths), but application

structure is typically much simpler than in complex data-

parallel applications.

In total, configuring complex applications and a multi-

tiered, heterogeneous infrastructure will stay a considerable

challenge for the foreseeable future.

4.3 Quality Assurance

4.3.1 Existing Approaches

With respect to execution, OTF Computing shares many of

the challenges of generic cloud/grid computing: Policing

SLAs, ensuring privacy of execution, and making cost

claims transparent are all issues shared across many

approaches. The OTF Computing case, however, has some

additional challenges: attributing any violations of an SLA

to the right instance. In both conventional and OTF

Computing, a data center might have failed to live up to its

promises, or the software was not up to the task.

4.3.2 Research Required

Quality assurance for distributed computing has a long

history. The composed nature of typical OTF software and

the role of the broker add another level of complexity here.

As the software engineering Sect. 3 already outlined, a

mechanism for disaggregation of responsibility is needed.

5 Markets for OTF

‘‘A market is a set of humanly devised rules that structure

the interaction and exchange of information by self-inter-

ested participants in order to carry out exchange transac-

tions at a relatively low cost.’’ (Gimpel et al. 2008). To

refer to the app store example (see 2.1), the app store

provider (i.e., the market provider) must define who is

allowed to participate, who may offer an app, if there is a

commission to be paid to the market provider for every

sold app, and so on. A successful marketplace is organized

in a way that the marketplace grows and increases the

shareholder value of the owner(s) of the marketplace.

Apparently, even if all previously described technolog-

ical challenges (see Sects. 3 and 4) were mastered, an OTF

marketplace’s chances of success are not only determined

by technical aspects; they also hinge on these rules from a

business perspective and on applying legal constraints.

Hence, there is a need to structurally think about and

develop such a marketplace, otherwise the likelihood of

wasting invested resources is high. This includes, amongst

others, setting the right incentives for all the different

groups of participants to join and haunt the marketplace as

well as aligning these rules on the business layer with the

implementation of these rules on the application and

infrastructure layer of the marketplace itself. Hence, not

only must who may offer something in the marketplace be

defined, the actual processes also have to be implemented

to materialize this offer in the marketplace – and these

implemented processes must run on some suitable infras-

tructure. OTF Computing poses challenges not just for

software engineers or researchers focusing on the necessary

infrastructure but also for the agents setting the rules of

such a socio-technical system.

This interdisciplinary challenge of designing an elec-

tronic marketplace is not new as reflected, for instance, in

the reference model for electronic markets (see, e.g.,

Schmid and Lindemann 1998) developed in the 1990s or in

contributions in the discipline of market engineering (see,

e.g., Weinhardt et al. 2003; Neumann 2004; Gimpel et al.

2008) including the efforts of the grid economics com-

munity (as manifested in the annual GECON conferences

since 2004, http://www.gecon-conference.org). In the

CATNET project, for instance, an economic self-organi-

zation approach for electronic services brokerage, which

can be implemented for realizing service markets within

service-oriented grid computing infrastructures – markets

that are similar to OTF markets – is proposed and analyzed

(Eymann et al. 2003, 2007). This approach is a feasible

solution to the service allocation problem. Likewise, the

importance and impact of electronic markets and electronic

marketplaces has been discussed intensely in the informa-

tion systems literature since the end of the 1980s (see, e.g.,

Malone et al. 1987; Bakos 1991).

Despite these extensive efforts, there is still a lot to dis-

cover (see, e.g., de Reuver et al. 2018 for a research agenda

on digital platforms in general). With respect to designing

markets for OTF Computing there remain at least three key

challenges that relate to the information asymmetry, the

multi-sidedness, and the enterprise architecture.

Information

asymmetry

How to avoid an OTF marketplace from

failing from a business perspective

given the manifold information

asymmetries present between the many

market participants with respect to

individual behavior and the actual

quality of services and applications?

123

H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020) 475

http://www.gecon-conference.org

Multi-sidedness How to best exploit the strong cross-

side network effects in an OTF

marketplace? How to overcome the

mutual baiting problem?

Architecture How to best support the build-up of an

OTF marketplace spanning all three

layers: business, application, and

infrastructure? And how to cope with

the fundamental dynamics of an OTF

marketplace and its necessary iterative

development?

We will discuss these challenges in turn.

5.1 Information Asymmetry

Developing a ‘‘good’’ set of rules is not easy, due to the

presence of information asymmetries between the involved

parties. In comparison to the requester, let alone the user, a

broker in an OTF marketplace, for instance, has a lot more

information about the available services and their respec-

tive quality that may be used to compose an application.

Ever since the seminal contribution by Akerlof (1970) it is

established in the literature that in the presence of infor-

mation asymmetry between buyers and sellers, an adverse

selection problem may emerge that drives higher quality

out of the market and may even lead to a market collapse.

The traded objects in an OTF market are unique, user-

specific – or, strictly speaking, requester-specific – service

compositions. Hence, they are dominated by experience

(Nelson 1970) and credence attributes (Darby and Karni

1973). Experience attributes can be known only after using

a product/service, while credence attributes cannot be

evaluated by a consumer even after consumption but have a

perceived value. For decades a doctor’s visit has been a

typical example of a service that is dominated by credence

attributes. Today, many complex digital service composi-

tions share this characteristic, for instance in the area of

machine learning. Obviously, this makes a quality infer-

ence extremely difficult ex ante for the user. At the same

time, the broker and all further participants on the supply

side of the marketplace have a hard time figuring out the

user’s actual willingness to pay if it is not already provided

in the request.

5.1.1 Existing Approaches

One promising way to solve this problem of information

asymmetry lies in designing incentive compatible mecha-

nisms. In the market engineering literature there exist

already a couple of very valuable mechanisms to coordi-

nate distributed activities via multidimensional auctions in

so-called Service Value Networks (see, e.g., Blau et al.

2009, 2010). Service Value Networks constitute a more

general class of markets where complex services – also

referred to as on-demand services (Blau et al. 2010) – that

are composed of single services are traded. An OTF mar-

ketplace is special case of such a Service Value Network.

Due to the complexity of the composed services and the

(potentially) high number of involved parties in composing

these services as well as the fact that several brokers may

compete for a requester’s order, the necessary mechanism

may not completely solve the problem of information

asymmetry in an OTF marketplace. In addition, it is not

clear whether such necessarily complex mechanisms will

be accepted by the market participants.

Complementing these already existing auction mecha-

nisms, two very generic means can be used to mitigate

information asymmetries (Riley 2001): signaling (e.g.,

advertising, granting warranties) and screening (e.g.,

performing market research, imitating reference cus-

tomers). The literature already provides valuable insights

into the mechanisms to mitigate information asymmetries,

for instance, by soliciting electronic word-of-mouth

communication in the form of online reviews (Burtch

et al. 2017) and learning about the product quality from

these reviews (Kwark et al. 2014; Zimmermann et al.

2018). The current state of knowledge about online

reviews has already been synthesized regarding three

aspects: first, the impact of these reviews on economic

outcomes such as prices and sales (see, e.g., Cheung and

Thadani 2012; Babić Rosario et al. 2016), second, the

factors that drive review generation such as reviewing

motivation or reviewer self-selection (see, e.g., De Matos

and Rossi 2008; Hong et al. 2017), and, third, the mod-

erating effect of review system design (Gutt et al. 2019).

Almost all of the extant research in this area is conducted

in a ‘‘classical’’ B2C setting with stationary devices being

used to write and read reviews (Gutt et al. 2019). The

distinct features of OTF marketplaces (i.e., unique service

compositions, a vast amount of possible service compo-

sitions for a specific request, and low or even negligible

marginal costs of producing and distributing a service

composition, not necessarily a B2C setting) require fur-

ther research in this area.

5.1.2 Research Required

Complementing the signaling capacity of software certifi-

cation (see Sect. 3: Quality Assurance), new efficient and

effective signaling and screening mechanisms on the

business layer must be developed that mitigate existing

information asymmetries on an OTF marketplace. It seems

promising to expand research on electronic word-of-mouth

communication in general and online reviews in particular,

as they have become the de facto standard of reputation

123

476 H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020)

systems on virtually any platform market. Important

aspects here are to extend the existing knowledge by

focusing on the moderating effects of specific design fea-

tures of reputation systems, varying business environments

(e.g., B2B, multi-sided reviewing), diverse devices (e.g.,

mobile phone) by writers and readers of online ratings

(Gutt et al. 2019), and the challenge of disaggregation (see

Sect. 3: Quality Assurance).

5.2 Multi-sidedness

Developing a ‘‘good’’ set of rules is not easy, because an

OTF marketplace is a multi-sided platform market (Parker

et al. 2016). Multi-sided platform markets are economic

platforms that have two or more distinct groups of partic-

ipants (for an illustrative example see Fig. 1) that provide

each other with network benefits (referred to as two-sided

markets if there are exactly two groups of participants).

Network effects can emerge on one side of the platform

and across sides. Cross-side network effects give rise to the

chicken-and-egg dilemma (also referred to as the mutual

baiting problem) of early-stage, multi-sided platform

markets (Stummer et al. 2018). This dilemma describes the

need for a critical number of participants (e.g., service

providers) on one side of the marketplace to attract par-

ticipants on another side (e.g., requesters); however, ser-

vice providers will adopt the marketplace and only invest if

they observe a sufficient number of requesters on the other

side – or at least expect them to join. Once a multi-sided

platform market reaches the critical user mass on each side,

network externalities stimulate self-reinforced platform

growth.

5.2.1 Existing Approaches

Network effects put a much stronger focus on dynamic

aspects of economic interactions. Hence, it is not enough to

design a ‘‘good’’ set of rules; these rules must be modified

on an ongoing basis by the platform owner (in our case the

market provider), depending on the market environment.

Research has just begun to understand the dynamics and

consequences of the presence of strong network effects on

aspects such as the price setting, platform growth and

competition of multi-sided platform markets. A couple of

platform launch strategies have already been proposed (see,

e.g., Parker et al. 2016; Stummer et al. 2018; Evans and

Schmalensee 2010; Veiga et al. 2017), but these strategies

so far focus almost exclusively on two-sided settings. An

OTF marketplace, in contrast, may have up to six distinct

groups of participants (see Fig. 1).

5.2.2 Research Required

The scope of the analysis of two-sided platform markets

has to be extended to cover multi-sided platform markets

with three and more distinct groups of participants. Ana-

lytical modeling will be one method of choice here and the

necessary extensions are straightforward, but the models

are getting intractable rather quickly and interpretation of

closed-form results is getting increasingly difficult. Simu-

lating the establishment of an OTF marketplace that

employs some launching strategy (or a combination of

several launching strategies) therefore also seems to be a

promising approach as demonstrated, e.g., in Ruutu et al.

(2017); Stummer and Haurand (2018).

5.3 Architecture

To build up an OTF marketplace, system architects – the

person ‘‘responsible for the whole-system view’’ (Mills

1985) – apply an integrated view spanning three layers:

business, application and infrastructure. Ever since the

seminal contribution by John Zachman in 1987 (Zachman

1987), enterprise architectures have been in the focus of

research and business practice alike. Despite recent

advances, comparably little design knowledge is available

when it comes to the design of digital marketplaces instead

of enterprises – a notable exception is the contributions by

the market engineering community. In fact this makes a

huge difference, as the focus of enterprises is more on

organizing the production of the service or good within the

supply chain, while the focus of marketplaces is on facil-

itating economic interaction between market participants.

Hence, the incentives of individuals or firms to participate

in the marketplace must be taken into account when

designing the marketplace on a much broader scale. In

addition, one should note that there are many flavors or

variants of an OTF marketplace. An OTF marketplace

could take the form of a public marketplace across firms or

an ‘‘in-house’’ marketplace within a firm, as a domain-

specific (e.g., machine-learning applications, office appli-

cations) or a domain-independent marketplace, as a B2B or

B2C marketplace, as a marketplace with competing brokers

or just one broker, and so on. Consequently, for each

variant a specific set of rules as part of the business

architecture has to be found that make this OTF market-

place successful. And these rules then must be translated

into requirements for the application and the infrastructure

layers.

5.3.1 Existing Approaches

Designing an OTF marketplace is a domain-specific engi-

neering activity that is an instance of a more generic

123

H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020) 477

activity of market engineering. Market engineering is

defined as the use of legal frameworks, economic mecha-

nisms, management science models, and information and

communication technologies for the purpose of designing

and constructing places where goods and services can be

bought and sold and providing services associated with

buying and selling (Gimpel et al. 2008). In this discipline a

(generic) process that structures the procedure of engi-

neering a market institution has been suggested (see, e.g.,

Gimpel et al. 2008; Weinhardt et al. 2003; Neumann 2004)

that already covers many relevant aspects (including sug-

gested tool support for some activities) for designing an

OTF marketplace.

Designing an OTF marketplace also includes designing

the business architecture, which involves designing the

business strategy, governance, organization, and business

processes. When it comes to the governance, organization,

and especially business processes, there is both ample

modeling support and design knowledge available,

including, for instance, reference process libraries (e.g.,

Becker et al. 2013; Scheer and Nüttgens 2000). Developing

a business strategy and – as a pivotal part of that – a viable

business model are, however, clearly underdeveloped in

terms of design knowledge, process, tool support, and

modeling support. A business model describes the mech-

anisms of how a firm creates, delivers and captures value

(Teece 2010), and as such can be understood as a detailed

description of a firm’s strategy (Casadesus-Masanell and

Ricart 2010). Business models are important because firm

performance depends not only on the characteristics of the

products or services a firm offers, but also on the business

model employed for commercializing these products. Akin

to process modeling, creating and innovating a business

model is a creative and collaborative process. As with

many creative processes, the outcome of this process

cannot be definitely judged with respect to the quality

upfront (i.e., ‘‘Will this business model be successful?’’); it

has to be tested and typically adapted in an iterative fashion

(applying, for instance, the so-called ‘‘build-measure-learn

feedback loop’’ Ries 2011)3. Due to the existing informa-

tion asymmetries and the multi-sidedness of an OTF mar-

ket, the iterative and dynamic fashion of an OTF business

model development is especially pronounced. Integrated

multi-level modeling spanning the business, application

and infrastructure layer of an OTF market is already a

challenge if the business model is rather stable. The Open

Group Architecture Framework (TOGAF) could be used as

a starting point for this endeavor as it is the de facto

industry standard for designing, planning, implementing,

and governing an enterprise information technology

architecture.

5.3.2 Research Required

A meta-model for OTF markets – or, on an even broader

scale, for IT service markets – has to be developed

including a domain-specific language, a variability model

to account for the different variants of an OTF market-

place, a method to build up an OTF marketplace and a

governance framework comprising conformance checks.

Such a meta-model would help in designing a specific OTF

marketplace much faster and in higher quality. Special

emphasis should be put on: (a) the method that should

allow for a hypothesis-driven dynamic development of the

market and (b) the impact of these dynamics on the

application and infrastructure layers, both in terms of

modeling (one might even refer to it as on-the-fly model-

ing) and (on-the-fly) implementation.

6 Conclusions

Even in today’s IT world with numerous sophisticated

frameworks, libraries and environments, developing and

deploying IT applications remains a challenge. This article

has advocated OTF Computing as a novel IT ecosystem,

foreseeing a great deal of automization in configuration and

deployment as the key driver towards solving this chal-

lenge. This article has furthermore identified the organi-

zation of markets as the core ingredient of successful OTF

Computing, to give incentives to all stakeholders in OTF

Computing and to achieve alignment of technical and

business needs. Though much research is still required for

this vision, we already see aspects of OTF Computing

being existent or coming into existence today within

specific application areas (see for example https://sfb901.

upb.de/poc). This makes us confident that OTF Computing

is not a mere research idea – it is a vision that is soon to

become reality.

As with all research, this research note has limitations.

First, one may argue that the OTF Computing vision comes

with a limited novelty and originality as there have been

substantial advancements in recent years in most of the

concepts (e.g, cloud computing, grid computing, continu-

ous delivery, market engineering, etc.) that form the basis

for OTF Computing. We argue that the OTF Computing

vision centers on fundamentally interdisciplinary chal-

lenges that must be overcome. This results in (a) the need

for interdisciplinary collaboration spanning at least

3 In the same vein (Weinhardt and Gimpel 2007) note for Internet

market platforms, such as eBay, Amazon or Google: ‘‘after the initial

introduction of the electronic market platform, there is no clear cut

distinction between design-time and runtime any more. [...] These

service operators can continuously experiment with subsets of their

user groups [...] and the real-time feedback allows continuous

improvement in the design of their online businesses.’’

123

478 H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020)

https://sfb901.upb.de/poc
https://sfb901.upb.de/poc

computer science, information systems, economics, and

business administration, with BISE researchers being in the

excellent position of acting as boundary spanners and

(b) different research questions and outcomes in compar-

ison to concept- or domain-specific research endeavors.

Second, the selection of key domains (software engineer-

ing, IT infrastructure, and markets) in general and of key

challenges within these domains in particular to structure

this research note is to a certain degree subjective. The

OTF Computing paradigm is a vast concept that spans

several disciplines. In fact, within the scope of one research

note it is not possible to deal with – let alone compre-

hensively – all relevant topics that must be researched for

this vision to become true. Hence, we had to make deci-

sions based not only on the existing literature but also on

discussions with other scholars and own experience.

Obvious candidates for facets that have not been covered

extensively here include semantic matching or security.

Reasons include, amongst others, already existing contri-

butions such as Mohr et al. (2018); Huma et al. (2015);

Petrlic et al. (2014) which already deal with these aspects.

Acknowledgements We thank the German Research Council (DFG)

for generously funding our research within the collaborative research

center SFB 901 ‘‘On-The-Fly Computing – Individualized IT-services

in dynamic markets’’. We also deeply thank all colleagues, research

assistants, all students and the administrative staff of the SFB 901 for

making OTF ‘‘fly’’.

References

Akerlof GA (1970) The market for ‘‘lemons’’: quality uncertainty and

the market mechanism. The Q J Econ 84(3):488–500

Babić Rosario A, Sotgiu F, De Valck K, Bijmolt TH (2016) The effect

of electronic word of mouth on sales: a meta-analytic review of

platform, product, and metric factors. J Mark Res 53(3):297–318

Bakos JY (1991) A strategic analysis of electronic marketplaces. MIS

Q 15(3):295–310

Becker J, Kugeler M, Rosemann M (2013) Process management: a

guide for the design of business processes. Springer, Heidelberg

Becker J, vom Brocke J, Heddier M, Seidel S (2015) In search of

information systems (grand) challenges. Bus Inf Syst Eng

57(6):377–390

Berardi D, Calvanese D, De Giacomo G, Lenzerini M, Mecella M

(2005) Automatic service composition based on behavioral

descriptions. Int J Coop Inf Syst 14(4):333–376

Beyer D, Dangl M, Dietsch D, Heizmann M, Stahlbauer A (2015)

Witness validation and stepwise testification across software

verifiers. In: Nitto ED, Harman M, Heymans P (eds) Proceedings

of the 2015 10th joint meeting on foundations of software

engineering, ESEC/FSE 2015. ACM, Bergamo, pp 721–733

Blau B, van Dinther C, Conte T, Xu Y, Weinhardt C (2009) How to

coordinate value generation in service networks. Bus Inf Syst

Eng 1(5):343

Blau B, Conte T, van Dinther C (2010) A multidimensional

procurement auction for trading composite services. Electron

Commer Res Appl 9(5):460–472

Böhmann T, Leimeister JM, Möslein K (2014) Service systems

engineering. Bus Inf Syst Eng 6(2):73–79

Burtch G, Hong Y, Bapna R, Griskevicius V (2017) Stimulating

online reviews by combining financial incentives and social

norms. Manag Sci 64(5):2065–2082

Casadesus-Masanell R, Ricart JE (2010) From strategy to business

models and onto tactics. Long Range Plan 43(2):195–215

Chen L (2015) Continuous delivery: huge benefits, but challenges too.

IEEE Softw 32(2):50–54

Cheung CM, Thadani DR (2012) The impact of electronic word-of-

mouth communication: a literature analysis and integrative

model. Decis Support Syst 54(1):461–470

Chowdhury M, Stoica I (2012) Coflow: a networking abstraction for

cluster applications. In: Proceedings of the 11th ACM workshop

on hot topics in networks, HotNets-XI. ACM, New York,

pp 31–36

Darby MR, Karni E (1973) Free competition and the optimal amount

of fraud. J Law Econ 16(1):67–88

De Matos CA, Rossi CAV (2008) Word-of-mouth communications in

marketing: a meta-analytic review of the antecedents and

moderators. J Acad Mark Sci 36(4):578–596

de Reuver M, Sørensen C, Basole RC (2018) The digital platform: a

research agenda. J Inf Technol 33(2):124–135

Dwyer M. B, Robby J. Hatcliff, Pasareanu C. S, Visser W (2007)

Formal software analysis emerging trends in software model

checking. In: Briand LC, Wolf AL (eds) International conference

on software engineering, ISCE 2007, Workshop on the future of

software engineering, FOSE 2007, May 23–25, 2007. IEEE

Computer Society, Minneapolis, pp 120–136

Erl T (2005) Service-oriented architecture: concepts, technology, and

design. Prentice Hall PTR, Upper Saddle River

ETSI NFV ISG (2014) Network functions virtualisation (nfv):

management and orchestration. Group Specification ETSI GS

NFV-MAN 001 V1.1.1, ETSI

Evans DS, Schmalensee R (2010) Failure to launch: critical mass in

platform businesses. Rev Netw Econ. https://doi.org/10.2202/

1446-9022.1256

Eymann T, Legner C, Prenzel M, Krcmar H, Müller G, Liggesmeyer

P (2015) Addressing grand challenges. Bus Inf Syst Eng

57(6):409–416

Eymann T, Reinicke M, Ardaiz O, Artigas P, de Cerio L. D, Freitag F,

Messeguer R, Navarro L, Royo D, Sanjeevan K (2003)

Decentralized vs. centralized economic coordination of resource

allocation in grids. In: European across grids conference,

Springer, pp 9–16

Eymann T, Streitberger W, Hudert S (2007) Catnets–open market

approaches for self-organizing grid resource allocation. In:

International workshop on grid economics and business models,

Springer, pp 176–181

Geierhos M, Bäumer FS (2017) Guesswork? Resolving vagueness in

user-generated software requirements. Cambridge Scholars

Publishing, Berlin, pp 65–107

Gimpel H, Jennings NR, Kersten GE, Ockenfels A, Weinhardt C

(2008) Market engineering: a research agenda. In: Gimpel H et al

(ed) Negotiation, auctions, and market engineering, Springer,

Heidelberg, pp 1–15

Gruber TR (1993) A translation approach to portable ontology

specifications. Knowl Acquis 5(2):199–220

Gutt D, Neumann J, Zimmermann S, Kundisch D, Chen J (2019)

Design of review systems: a strategic instrument to shape online

reviewing behavior and economic outcomes. J Strateg Inf Syst

28(2):104–117

Happe M, Meyer F, der Heide auf auf, Kling P, Platzner M, Plessl C

(2013) On-the-fly computing: a novel paradigm for individual-

ized it services. In: 2013 IEEE 16th international symposium on

123

H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020) 479

https://doi.org/10.2202/1446-9022.1256
https://doi.org/10.2202/1446-9022.1256

object/component/service-oriented real-time distributed comput-

ing (ISORC), IEEE, pp 1–10

Hoffmann J, Weber I, Scicluna J, Kaczmarek T, Ankolekar A (2008)

Combining scalability and expressivity in the automatic compo-

sition of semantic web services. In: Schwabe D, Curbera F,

Dantzig P (eds) Proceedings of the eighth international confer-

ence on web engineering, ICWE, IEEE Computer Society,

pp 98–107

Hong H, Xu D, Wang GA, Fan W (2017) Understanding the

determinants of online review helpfulness: a meta-analytic

investigation. Decis Support Syst 102:1–11

Huma Z, Gerth C, Engels G (2015) On-the-fly computing: automatic

service discovery and composition in heterogeneous domains.

Comput Sci Res Dev 30(3–4):333–361

Jakobs M, Wehrheim H (2014) Certification for configurable program

analysis. In: Rungta N, Tkachuk O (eds) International sympo-

sium on model checking of software, SPIN, ACM, pp 30–39

Kwark Y, Chen J, Raghunathan S (2014) Online product reviews:

implications for retailers and competing manufacturers. Inf Syst

Res 25(1):93–110

Lamparter S, Ankolekar A, Studer R, Grimm S (2007) Preference-

based selection of highly configurable web services. In:

Williamson CL, Zurko ME, Patel-Schneider PF, Shenoy PJ

(eds) Proceedings of the 16th international conference on world

wide web, WWW 2007. ACM, Banff, pp 1013–1022

Malone TW, Yates J, Benjamin RI (1987) Electronic markets and

electronic hierarchies. Commun ACM 30(6):484–497

Masche J, Le N-T (2018) A review of technologies for conversational

systems. In: Le N-T, van Do T, Nguyen NT, Thie HAL (eds)

Advanced computational methods for knowledge engineering:

proceedings of the 5th international conference on computer

science, applied mathematics and applications, ICCSAMA 2017,

Springer, Cham, pp 212–225

Mills JA (1985) A pragmatic view of the system architect. Commun

ACM 28(7):708–717

Machine learning library (mllib) guide. https://spark.apache.org/docs/

latest/ml-guide.html. Accessed August 2019

Mohr F (2016) Automated software and service composition: a survey

and evaluating review. Springer briefs in computer science.

Springer, Heidelberg

Mohr F, Wever M, Hüllermeier E (2018) On-the-fly service

construction with prototypes. In: 2018 IEEE international

conference on services computing (SCC), IEEE, pp 225–232

Morris K (2016) Infrastructure as code: managing servers in the

cloud. O’Reilly, Sebastopol

Nair V, Menzies T, Siegmund N, Apel S (2018) Faster discovery of

faster system configurations with spectral learning. Autom Softw

Eng 25(2):247–277

Necula G. C (1997) Proof-carrying code. In: Lee P, Henglein F, Jones

ND (eds) Conference record of POPL’97: the 24th ACM

SIGPLAN-SIGACT symposium on principles of programming

languages, ACM Press, pp 106–119

Nelson P (1970) Information and consumer behavior. J Political Econ

78(2):311–329

Neumann DG (2004) Market engineering: a structured design process

for electronic markets. Univ.-Verlag Karlsruhe, Düsseldorf

Oberle D, Lamparter S, Grimm S, Vrandecic D, Staab S, Gangemi A

(2006) Towards ontologies for formalizing modularization and

communication in large software systems. Appl Ontol

1(2):163–202

Orso A, Rothermel G (2014) Software testing: a research travelogue

(2000–2014). In: Herbsleb JD, Dwyer MB (eds) Proceedings of

the international conference of software engineering, ACM,

pp 117–132

Paolucci M, Kawamura T, Payne TR, Sycara KP (2002) Semantic

matching of web services capabilities. In: Horrocks I, Hendler

JA (eds) The semantic web - ISWC 2002, first international

semantic web conference. Springer, Sardinia, pp 333–347

Parker GG, Van Alstyne MW, Choudary SP (2016) Platform

revolution: how networke markets are transforming the econ-

omy-and how to make them work for you. Norton, New York

Petrlic R, Jungmann A, Platenius M. C, Schäfer W, Sorge C (2014)

Security and privacy challenges in on-the-fly computing. In:

Tagungsband der 4. Konferenz Software-Technologien und -

Prozesse (STeP 2014), pp 131–142

Platenius MC, Shaker A, Becker M, Hüllermeier E, Schäfer W (2017)

Imprecise matching of requirements specifications for software

services using fuzzy logic. IEEE Trans Softw Eng

43(8):739–759

Ries E (2011) The lean startup: how today’s entrepreneurs use

continuous innovation to create radically successful businesses.

Crown, New York

Riley JG (2001) Silver signals: twenty-five years of screening and

signaling. J Econ Lit 39(2):432–478

Ruutu S, Casey T, Kotovirta V (2017) Development and competition

of digital service platforms: A system dynamics approach.

Technol Forecast Soc Change 117:119–130

Scheer A-W, Nüttgens M (2000) ARIS architecture and reference

models for business process management. In: van der Aalst W

et al (eds) Business process management. Springer, Heidelberg,

pp 301–304

Schmid BF, Lindemann MA (1998) Elements of a reference model

for electronic markets. In: Proceedings of the thirty-first Hawaii

international conference on system sciences, vol 4, IEEE,

pp 193–201

Serban IV, Sordoni A, Bengio Y, Courville AC, Pineau J (2016)

Building end-to-end dialogue systems using generative hierar-

chical neural network models. In: Schuurmans D, Wellman MP

(eds) 30th conference on artificial intelligence, AAAI,

pp 3776–3784

Shadija D, Rezai M, Hill R (2017) Microservices: Granularity vs.

performance. In: Companion proceedings of the 10th interna-

tional conference on utility and cloud computing, UCC ’17

Companion. ACM, New York, pp 215–220

Shahin M, Babar MA, Zhu L (2017) Continuous integration, delivery

and deployment: a systematic review on approaches, tools,

challenges and practices. IEEE Access 5:3909–3943

Shao Z (2010) Certified software. Commun ACM 53(12):56–66

Sill A (2016) The design and architecture of microservices. IEEE

Cloud Comput 3(5):76–80

Stummer C, Haurand M. D (2018) The early-stage development of

two-sided digital platforms: a simulation approach. In: Proceed-

ings of the European conference on information systems (ECIS

2018)

Stummer C, Kundisch D, Decker R (2018) Platform launch strategies.

Bus Inf Syst Eng 60(2):167–173

Szopinski D, Jazayeri B, Engels G, Kundisch D (2017) On-the-fly

computing. Informatik 2017

Teece DJ (2010) Business models, business strategy and innovation.

Long Range Plan 43(2):172–194

Thornton C, Hutter F, Hoos H. H, Leyton-Brown K (2013) Auto-

WEKA: combined selection and hyperparameter optimization of

classification algorithms. In: Dhillon IS, Koren Y, Ghani R,

Senator TE, Bradley P, Parekh R, He J, Grossman RL,

Uthurusamy R (eds) The 19th ACM SIGKDD international

conference on knowledge discovery and data mining, KDD,

ACM, pp 847–855

Veiga A, Weyl EG, White A (2017) Multidimensional platform

design. Am Econ Rev 107(5):191–95

Weinhardt C, Gimpel H (2007) Market engineering: an interdisci-

plinary research challenge. In: Dagstuhl seminar proceedings,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik

123

480 H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020)

https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/latest/ml-guide.html

Weinhardt C, Holtmann C, Neumann D (2003) Market-engineering.

Wirtschaftsinformatik 45(6):635–640

Zachman JA (1987) A framework for information systems architec-

ture. IBM Syst J 26(3):276–292

Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng

X, Rosen J, Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez

J, Shenker S, Stoica I (2016) Apache spark: a unified engine for

big data processing. Commun ACM 59(11):56–65

Zimmermann S, Herrmann P, Kundisch D, Nault BR (2018)

Decomposing the variance of consumer ratings and the impact

on price and demand. Inf Syst Res 29(4):984–1002

123

H. Karl et al.: On-The-Fly Computing, Bus Inf Syst Eng 62(6):467–481 (2020) 481

	A Case for a New IT Ecosystem: On-The-Fly Computing
	Abstract
	Introduction
	Use Cases, Roles, and Definition
	Example Use Cases
	Conventional Web Applications
	Big-Data Applications in Backend Systems
	User-Triggered Smartphone Application Generation

	Roles in an OTF World
	Definition and Description of OTF Computing

	Software Engineering Techniques for OTF
	Description
	Existing Approaches
	Research Required

	Configuration
	Existing Approaches
	Research Required

	Quality Assurance
	Existing Approaches
	Research Required

	IT Infrastructure for OTF
	Description
	Existing Approaches
	Research Required

	Configuration
	Existing Approaches
	Research Required

	Quality Assurance
	Existing Approaches
	Research Required

	Markets for OTF
	Information Asymmetry
	Existing Approaches
	Research Required

	Multi-sidedness
	Existing Approaches
	Research Required

	Architecture
	Existing Approaches
	Research Required

	Conclusions
	Acknowledgements
	References

