


# Hazhunt: Augmented Reality App for Gamified Occupational Safety Hazard Training

**Muhammad Farez Said** 

Bachelor of Computer Science with Honors (Network Computing) 2020

## Hazhunt: Augmented Reality App for Gamified Occupational Safety Hazard

Training

**Muhammad Farez Said** 

A thesis submitted

In fulfillment of the requirements for the degree of Bachelor of Computer Science with

Honors

Faculty of Computer Science and Information Technology UNIVERSITI MALAYSIA SARAWAK

2020

### **DECLARATION**

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Farez

Signature

Name:

Muhammad Farez Bin Said

Matric No.: 59727

Faculty of Computer Science and Information Technology

Universiti Malaysia Sarawak

Date: 11/8/2020

### UNIVERSITI MALAYSIA SARAWAK

| THE                                                                                                                                                           | SIS STATUS ENDORSEMENT FORM                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                               | : AUGMENTED REALITY APP FOR GAMIFIED<br>JPATIONAL SAFETY HAZARD TRAINING                                                                                                                                                                                |
|                                                                                                                                                               | ACADEMIC SESSION: 2019/2020                                                                                                                                                                                                                             |
|                                                                                                                                                               | MUHAMMAD FAREZ BIN SAID<br>(CAPITAL LETTERS)                                                                                                                                                                                                            |
|                                                                                                                                                               | shall be kept at the Centre for Academic Information Services, Universiti e following terms and conditions:                                                                                                                                             |
| <ol> <li>The Centre for Acad<br/>educational purposes of</li> <li>The Centre for Acade<br/>develop local content of</li> <li>The Centre for Acader</li> </ol> | inc Information Services is given full rights to do digitization in order to<br>latabase<br>nic Information Services is given full rights to produce copies of this Thesis<br>item program between Higher Learning Institutions [ or for the purpose of |
| CONFIDENTIALRESTRICTEDUNRESTRICTED                                                                                                                            | (Contains classified information bounded by the OFFICIAL SECRETS ACT 1972)<br>(Contains restricted information as dictated by the body or organization where the research was conducted)                                                                |
|                                                                                                                                                               | Validated by                                                                                                                                                                                                                                            |
| <b>fang</b><br>(AUTHOR'S SIGNATUR<br>Permanent Address<br>NO 11 JALAN UTAMA 60<br>TAMAN JAYA UTAMA<br>TELOK PANGLIMA GARA<br>42500, SELANGOR                  |                                                                                                                                                                                                                                                         |
| Date: 11/8/2020                                                                                                                                               | Date: <u>11/8/2020</u>                                                                                                                                                                                                                                  |
| Note * Thesis refers to PhD, Maste<br>** For Confidential or Restric                                                                                          | er, and Bachelor Degree<br>ted materials, please attach relevant documents from relevant organizations / authorities                                                                                                                                    |

#### ACKNOWLEDGEMENT

I want to take the opportunity to express my sincere thanks to all the people who help me and guide me throughout this project's development. First of all, I would like to express my sincere gratitude to my final year project supervisor, Syahrul Nizam bin Junaini, who supported me with tremendous guidance and advice during the process of project development.

I am also grateful to my co-supervisor, Ahmad Alif bin Kamal, who helped me understand the concept of AR and activities that are important for our future sustainability. Furthermore, a special thank you to my family and friends who gave me continuous support throughout this project's completion. This is the culmination of many people's relentless hard work, dedication, and encouragement.

#### ABSTRACT

The purpose of this project is to develop an augmented content-based app called Hazhunt augmented reality application for the use of Occupational Safety and Health training among the organizational members, which include the students and workers. The objective of this project to use AR technology for practical on-the-spot use to prevent workplace incidents and accidents and assists the user in knowing each of the icons for hazardous material. A recent study shows that the use of augmented reality technology can increase the safety of the worker and student in a dangerous working environment and also provides information in real-time about the hazard or chemical substance. In this report, usability testing has been conducted using the pre-test and post-test and also using the Instructional material motivational survey (IMMS) method. The participants for usability tests were ten university students from non-OSHA graduates (male = 4; female = 6; mean age = 23.5). The results show that Hazhunt AR has offered an excellent way to educate and handle danger to students and to empower them. For the pre-test, the mean and standard deviations are 10.9 and 1.523. The mean and standard deviation figures for post-testing are 14.6 and 1.712. The calculation of satisfaction earned the highest average of 4.8, followed by a relevance value of 4.65, a confidence value of 4.6, and attention. An attention rating with a value of 4.55 is the lowest mean score. The highest standard deviation is a relevance value of 0.590, follow by confidence 0.520, attention 0.510, and satisfaction 0.410. Therefore, it indicates that the students are pleased with the production and use of Hazhunt AR in training and learning.

Keywords: augmented reality, occupational safety, mobile application, gamification, occupational risks, accident prevention

#### ABSTRAK

Tujuan projek ini adalah untuk mengembangkan aplikasi berasaskan kandungan tambahan yang disebut aplikasi augmented reality Hazhunt untuk penggunaan latihan Keselamatan dan Kesihatan Pekerjaan di kalangan anggota organisasi, yang merangkumi pelajar dan pekerja. Objektif projek ini untuk menggunakan teknologi AR untuk penggunaan praktikal di tempat untuk mengelakkan kejadian dan kemalangan di tempat kerja dan membantu pengguna mengetahui setiap ikon bahan berbahaya. Satu kajian baru-baru ini menunjukkan bahawa penggunaan teknologi augmented reality dapat meningkatkan keselamatan pekerja dan pelajar dalam persekitaran kerja yang berbahaya dan juga memberikan maklumat dalam masa nyata mengenai bahaya atau bahan kimia. Dalam laporan ini, ujian kebolehgunaan telah dilakukan dengan menggunakan ujian pra dan ujian pasca dan juga menggunakan kaedah tinjauan motivasi bahan Instruksional (IMMS). Peserta ujian kebolehgunaan adalah sepuluh pelajar universiti dari lulusan bukan OSHA (lelaki = 4; perempuan = 6). Hasilnya menunjukkan bahawa Hazhunt AR telah menawarkan cara yang sangat baik untuk mendidik dan menangani bahaya kepada pelajar dan memperkasakan mereka . Untuk ujian pra, min dan sisihan piawai adalah 10.9 dan 1.523. Angka min dan sisihan piawai untuk ujian pasca adalah 14.6 dan 1.712. Pengiraan kepuasan memperoleh purata tertinggi 4.8, diikuti dengan nilai relevansi 4.65, nilai keyakinan 4.6, dan perhatian. Peringkat perhatian dengan nilai 4.55 adalah skor min terendah. Sisihan piawai tertinggi adalah nilai relevansi 0,590, diikuti dengan keyakinan 0,520, perhatian 0,510, dan kepuasan 0,410. Oleh itu, menunjukkan bahawa para pelajar berpuas hati dengan penghasilan dan penggunaan Hazhunt AR dalam latihan dan pembelajaran.

Kata kunci: augmented reality, occupational safety, mobile application, gamification, occupational risks, accident prevention

## TABLE OF CONTENTS

|       |                        | Page  |
|-------|------------------------|-------|
| DECL  | ARATION                | i     |
| ACKN  | NOWLEDGEMENT           | iii   |
| ABST  | RACT                   | iv    |
| ABST  | 'RAK                   | v     |
| TABL  | LE OF CONTENTS         | vi    |
| LIST  | OF TABLES              | xiii  |
| LIST  | OF FIGURES             | XV    |
| LIST  | OF ABBREVIATIONS       | xviii |
| CHAI  | PTER 1 INTRODUCTION    | 1     |
| 1.1   | Study Background       | 1     |
| 1.2   | Problem Statement      | 2     |
| 1.3   | Research Question      | 2     |
| 1.4   | Scope                  | 3     |
| 1.5   | Aims and Objective     | 3     |
| 1.6   | Brief Methodology      | 3     |
| 1.6.1 | Requirement Analysis   | 4     |
| 1.6.2 | Design and development | 4     |

| 1.6.3  | Usability analysis                                                         | 5  |
|--------|----------------------------------------------------------------------------|----|
| 1.7    | Significance of Project                                                    | 5  |
| 1.8    | Project Schedule                                                           | 5  |
| 1.9    | Expected Outcome                                                           | 5  |
| 1.10   | Project Report Outline                                                     | 6  |
| 1.10.1 | Chapter 1: Introduction                                                    | 6  |
| 1.10.2 | Chapter 2: Literature Review                                               | 6  |
| 1.10.3 | Chapter 3: Methodology                                                     | 6  |
| 1.10.4 | Chapter 4: Development and Implementation                                  | 6  |
| 1.10.5 | Chapter 5: Testing and Evaluation                                          | 7  |
| 1.10.6 | Chapter 6: Conclusion and Future Work                                      | 7  |
| 1.11   | Conclusion                                                                 | 7  |
| СНАР   | TER 2 LITERATURE REVIEW                                                    | 8  |
| 2.1    | Overview                                                                   | 8  |
| 2.2    | Increasing of augmented reality technology in various areas                | 8  |
| 2.3    | Awareness of workers and students towards the safety of hazard environment | 12 |
| 2.4    | Hazard identification index and grading                                    | 13 |
| 2.5    | Mobile AR platform                                                         | 13 |
| 2.6    | AR for safety training                                                     | 14 |
| 2.6.1  | Benefits of AR in the safety environment                                   | 15 |

| 2.6.2                                                                                            | Challenge of AR for safety environment                                                                            | 18                                                                                 |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 2.7                                                                                              | Gamification in occupational safety training                                                                      | 19                                                                                 |
| 2.8                                                                                              | Review on related AR in occupational safety and health training                                                   | 20                                                                                 |
| 2.8.1                                                                                            | Hazard Farm                                                                                                       | 20                                                                                 |
| 2.8.2                                                                                            | Safety Compass                                                                                                    | 22                                                                                 |
| 2.8.3                                                                                            | VelocityEHS                                                                                                       | 25                                                                                 |
| 2.9                                                                                              | Comparison of AR application                                                                                      | 27                                                                                 |
| 2.9.1                                                                                            | General properties of an application                                                                              | 27                                                                                 |
| 2.10                                                                                             | Summary                                                                                                           | 30                                                                                 |
| CHAI                                                                                             | PTER 3 METHODOLOGY                                                                                                | 31                                                                                 |
|                                                                                                  |                                                                                                                   |                                                                                    |
| 3.1                                                                                              | Overview                                                                                                          | 31                                                                                 |
| <ul><li>3.1</li><li>3.2</li></ul>                                                                | Overview<br>Methodology                                                                                           | 31<br>31                                                                           |
|                                                                                                  |                                                                                                                   |                                                                                    |
| 3.2<br>3.3                                                                                       | Methodology                                                                                                       | 31                                                                                 |
| <ul><li>3.2</li><li>3.3</li><li>3.3.1</li></ul>                                                  | Methodology<br>Requirement Analysis                                                                               | 31<br>32                                                                           |
| <ul><li>3.2</li><li>3.3</li><li>3.3.1</li><li>3.3.2</li></ul>                                    | Methodology<br>Requirement Analysis<br>Hardware requirements                                                      | <ul><li>31</li><li>32</li><li>32</li></ul>                                         |
| <ul><li>3.2</li><li>3.3</li><li>3.3.1</li><li>3.3.2</li></ul>                                    | Methodology<br>Requirement Analysis<br>Hardware requirements<br>Software requirements                             | <ul><li>31</li><li>32</li><li>32</li><li>33</li></ul>                              |
| <ul> <li>3.2</li> <li>3.3</li> <li>3.3.1</li> <li>3.3.2</li> <li>3.3.3</li> </ul>                | Methodology<br>Requirement Analysis<br>Hardware requirements<br>Software requirements<br>User requirements        | <ul><li>31</li><li>32</li><li>32</li><li>33</li><li>34</li></ul>                   |
| <ul> <li>3.2</li> <li>3.3</li> <li>3.3.1</li> <li>3.3.2</li> <li>3.3.3</li> <li>3.3.4</li> </ul> | MethodologyRequirement AnalysisHardware requirementsSoftware requirementsUser requirementsFunctional requirements | <ul> <li>31</li> <li>32</li> <li>32</li> <li>33</li> <li>34</li> <li>38</li> </ul> |

| 3.4.2 | Use Case Scenario 1: Main Menu     | 40 |
|-------|------------------------------------|----|
| 3.4.3 | Use Case Scenario 2: Game          | 41 |
| 3.4.4 | Use Case Scenario 3: Scan Marker   | 42 |
| 3.4.5 | Use Case Scenario 4: View 3D image | 43 |
| 3.4.6 | Use Case Scenario 5: Marker-less   | 44 |
| 3.4.7 | Use Case Scenario 6: Quiz          | 45 |
| 3.4.8 | Use Case Scenario 7: Documentation | 47 |
| 3.5   | UML Class Diagram                  | 48 |
| 3.5.1 | Class Diagram                      | 48 |
| 3.5.2 | Class Diagram for the game section | 49 |
| 3.5.3 | Class Diagram for scan marker      | 49 |
| 3.5.4 | Class Diagram for view 3D image    | 50 |
| 3.5.5 | Class Diagram for quiz             | 50 |
| 3.5.6 | Class Diagram for marker-less      | 51 |
| 3.5.7 | Class Diagram for documentation    | 51 |
| 3.6   | Flowchart                          | 52 |
| 3.7   | Activity Diagram                   | 54 |
| 3.8   | Marker design                      | 55 |
| 3.9   | User Interface design              | 56 |
| 3.10  | Summary                            | 59 |

| CHAI  | PTER 4 DEVELOPMENT AND IMPLEMENTATION   | 60 |
|-------|-----------------------------------------|----|
| 4.1   | Overview                                | 60 |
| 4.2   | Software Installation and Configuration | 60 |
| 4.2.1 | Unity 3D                                | 60 |
| 4.2.2 | Vuforia                                 | 60 |
| 4.2.3 | Blender                                 | 61 |
| 4.2.4 | Adobe Photoshop                         | 61 |
| 4.3   | Designing a 3D model                    | 61 |
| 4.4   | Importing Sound Effect into Unity 3D    | 63 |
| 4.5   | Marker Design                           | 64 |
| 4.6   | Design User Interface (UI)              | 64 |
| 4.6.1 | Main Menu                               | 64 |
| 4.6.2 | Scan Marker                             | 67 |
| 4.6.3 | Marker-less                             | 67 |
| 4.6.4 | 3D AR Model                             | 68 |
| 4.6.5 | Quiz                                    | 70 |
| 4.6.6 | Documentation viewer                    | 73 |
| 4.6.7 | Game section                            | 73 |
| 4.7   | Conclusion                              | 76 |

| CHAI  | PTER 5 TESTING AND EVALUATION     | 77 |
|-------|-----------------------------------|----|
| 5.1   | Overview                          | 77 |
| 5.2   | Functional Testing                | 77 |
| 5.2.1 | Test Case                         | 77 |
| 5.3   | Non-functional testing            | 83 |
| 5.3.1 | Usability testing                 | 83 |
| 5.4   | User testing                      | 84 |
| 5.4.1 | Pre-test and Post-test            | 84 |
| 5.4.2 | Questionnaire                     | 85 |
| 5.5   | Lesson learned and implication    | 89 |
| 5.6   | Conclusion                        | 90 |
| CHAI  | TER 6 CONCLUSION AND FUTURE WORK  | 91 |
| 6.1   | Overview                          | 91 |
| 6.2   | Objective Achieved                | 91 |
| 6.3   | Future Work                       | 92 |
| 6.3.1 | Future app enhancement            | 92 |
| 6.3.2 | Future research proposed          | 92 |
| 6.4   | Limitation                        | 93 |
| 6.4.1 | The weakness of Augmented Reality | 93 |
|       |                                   |    |

| 6.5  | Conclusion | 94  |
|------|------------|-----|
| REFE | ERENCES    | 95  |
| APPE | ENDICES    | 101 |

## LIST OF TABLES

Page

| Table 2.1:  | Increased usage technology in various area                                                                | 10 |
|-------------|-----------------------------------------------------------------------------------------------------------|----|
| Table 2.2:  | Comparison of this study with existing work                                                               | 11 |
| Table 2.3:  | Studies on the benefits of AR implementation in a safe environment                                        | 17 |
| Table 2.4:  | Studies on the challenge of AR implementation in a safe environment                                       | 19 |
| Table 2.5:  | Comparison of general properties of an application                                                        | 27 |
| Table 3.1:  | List of hardware requirements                                                                             | 32 |
| Table 3.2:  | List of hardware for end-user                                                                             | 33 |
| Table 3.3:  | List of software requirements                                                                             | 34 |
| Table 3.4:  | Table of Respondents say that Augmented Reality able to help the Occupational Safety and Health Training. | 36 |
| Table 3.5:  | Table of Respondents says that why AR able to make the training process easier                            | 38 |
| Table 3.6:  | Scenario for the main menu use case                                                                       | 40 |
| Table 3.7:  | Scenario for the game section                                                                             | 41 |
| Table 3.8:  | Scenario for scan marker use case                                                                         | 42 |
| Table 3.9:  | Scenario for view 3D image use case                                                                       | 43 |
| Table 3.10: | Scenario for the marker-less use case                                                                     | 44 |
| Table 3.11: | Scenario for the pop quiz use case                                                                        | 45 |
| Table 3.12: | Scenario for the documentation use case                                                                   | 47 |
| Table 5.1:  | Test case 1                                                                                               | 77 |
| Table 5.2:  | Test case 2                                                                                               | 78 |
| Table 5.3:  | Test case 3                                                                                               | 79 |
| Table 5.4:  | Test case 4                                                                                               | 80 |
| Table 5.5:  | Test case 5                                                                                               | 82 |

| Table 5.6:  | Test case 6                                                         | 82 |
|-------------|---------------------------------------------------------------------|----|
| Table 5.7:  | Test case 7                                                         | 83 |
| Table 5.8:  | Information about the respondents                                   | 84 |
| Table 5.9:  | Result of pre-test and post-test                                    | 84 |
| Table 5.10: | Result for questionnaire                                            | 86 |
| Table 5.11: | Mean and standard deviation for IMMS result based on the ARCS model | 88 |
| Table 5.12: | Features that will be implemented in the next future                | 90 |
| Table 6.1:  | List of objective and achievements                                  | 91 |

## LIST OF FIGURES

|              |                                                                                                             | Page |
|--------------|-------------------------------------------------------------------------------------------------------------|------|
| Figure 1.1:  | DDR Model (adapted from Richey & Klein 2007)                                                                | 4    |
| Figure 2.1:  | Hazard Farm Main Interface                                                                                  | 21   |
| Figure 2.2:  | Camera view of Hazard Farm                                                                                  | 21   |
| Figure 2.3:  | Marker for Hazard Farm                                                                                      | 21   |
| Figure 2.4:  | Augmented Reality views with a hazard radar                                                                 | 23   |
| Figure 2.5:  | Map view with early notification of hazardous areas                                                         | 23   |
| Figure 2.6:  | View hazard detail                                                                                          | 24   |
| Figure 2.7:  | View and manage outstanding tasks                                                                           | 25   |
| Figure 2.8:  | Perform inspections and record observation                                                                  | 25   |
| Figure 2.9:  | Using the device camera to attach an image                                                                  | 26   |
| Figure 3.1:  | DDR Model (adapted from Richey & Klein 2007)                                                                | 32   |
| Figure 3.2:  | Chart of Respondents familiar with the term Augmented Reality                                               | 35   |
| Figure 3.3:  | Chart of Respondents that they heard about Augmented Reality                                                | 35   |
| Figure 3.4:  | Chart of Respondents that think the mix of Augmented Reality and gamification is interesting                | 36   |
| Figure 3.5:  | Chart of Respondents that think Augmented Reality can minimize the risk of accidents                        | 37   |
| Figure 3.6:  | Chart of Respondents that think the process of training and learning becomes easier using Augmented Reality | 38   |
| Figure 3.7:  | Use Case diagram                                                                                            | 39   |
| Figure 3.8:  | Sequence diagram for Start Application                                                                      | 40   |
| Figure 3.9:  | Sequence diagram for the game section                                                                       | 41   |
| Figure 3.10: | Sequence diagram for scan marker                                                                            | 42   |
| Figure 3.11: | Sequence diagram for view 3D image                                                                          | 44   |
| Figure 3.12: | Sequence diagram for marker-less                                                                            | 45   |

| Figure 3.13: | Sequence diagram for the quiz page         | 46 |
|--------------|--------------------------------------------|----|
| Figure 3.14: | Sequence diagram for documentation page    | 47 |
| Figure 3.15: | Full class diagram                         | 48 |
| Figure 3.16: | UML class diagram for the game             | 49 |
| Figure 3.17: | UML class diagram for scan marker class    | 49 |
| Figure 3.18: | UML class diagram for view 3D image        | 50 |
| Figure 3.19: | UML class diagram for quiz                 | 50 |
| Figure 3.20: | UML class diagram for marker-less          | 51 |
| Figure 3.21: | UML class diagram for documentation page   | 51 |
| Figure 3.22: | Flowchart of Hazhunt AR                    | 52 |
| Figure 3.23: | Activity diagram for Hazhun AR             | 54 |
| Figure 3.24: | Marker design                              | 55 |
| Figure 3.25: | Menu Page                                  | 56 |
| Figure 3.26: | Marker scan page                           | 57 |
| Figure 3.27: | Brief description page                     | 57 |
| Figure 3.28: | Documentation and marker-less page         | 58 |
| Figure 3.29: | Question page                              | 58 |
| Figure 3.30: | Interactive gaming page                    | 59 |
| Figure 4.1:  | A flame marker that uploads to Vuforia     | 61 |
| Figure 4.2:  | Press and Flame 3D model                   | 62 |
| Figure 4.3:  | Corrosive and CNC Milling machine 3D model | 62 |
| Figure 4.4:  | Particle setting                           | 63 |
| Figure 4.5:  | General setting for sound                  | 63 |
| Figure 4.6:  | The marker design                          | 64 |
| Figure 4.7:  | Splash screen design                       | 65 |
| Figure 4.8:  | Main Menu screen                           | 65 |

| Figure 4.9: Instruc  | ction screen 1                                          | 66  |
|----------------------|---------------------------------------------------------|-----|
| Figure 4.10: Instruc | ction screen 2                                          | 66  |
| Figure 4.11: Scan r  | narker screen                                           | 67  |
| Figure 4.12: Marke   | er-less screen                                          | 68  |
| Figure 4.13: Hamb    | urger menu                                              | 69  |
| Figure 4.14: AR co   | ontent for press machine marker                         | 69  |
| Figure 4.15: AR co   | ontent for flame marker                                 | 70  |
| Figure 4.16: AR co   | ontent for milling marker                               | 70  |
| Figure 4.17: Quiz s  | screen                                                  | 71  |
| Figure 4.18: Correc  | ct answer screen                                        | 71  |
| Figure 4.19: Wrong   | g answer screen                                         | 72  |
| Figure 4.20: Quiz e  | end screen                                              | 72  |
| Figure 4.21: Docur   | nentation viewer                                        | 73  |
| Figure 4.22: Startin | ng screen for the game section                          | 74  |
| Figure 4.23: Machi   | ne obstacle                                             | 74  |
| Figure 4.24: Wall of | on fire                                                 | 75  |
| Figure 4.25: Death   | menu                                                    | 75  |
| Figure 5.1: Graph    | mean and standard deviation for pre-test and post-test  | 85  |
| Figure 5.2: Result   | t of mean and standard deviation for IMMS questionnaire | 87  |
| Figure 5.3: Mean     | and standard deviation of IMMS based on the ARCS model  | 89  |
| Figure 1: Gantt      | Chart                                                   | 101 |

# LIST OF ABBREVIATIONS

| IMMS   | Instructional material motivational survey |
|--------|--------------------------------------------|
| UNIMAS | Universiti Malaysia Sarawak                |
| DDR    | Design Development Research                |
| AR     | Augmented Reality                          |
| OSH    | Occupational Safety and Health             |
| VR     | Virtual Reality                            |

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Study Background

Technologies development have evolved drastically since the 18th century. New technology has created new applications, and this new technology will be stacked together with other technology to developed into something more significant (Nasir, 2018). Among this new technology is augmented reality (AR). This technology changed our perspective in the real world by adding virtual, augmented information. It is a helpful tool to bring virtual, augmented intelligence in a better way to help the worker to understand chemical and hazardous substances (Carmigniani et al., 2011).

The usage of AR technology in safety control has provided the solution to workers and students to replicate tasks in a complex environment. The benefits of AR technology include improved safety, maintaining availability, reducing working errors, and increasing the supervision of workers who work in a dangerous situation (Alam, Katsikas, Beltramello, & Hadjiefthymiades, 2017). Information that is presented by a virtual object can help the user to collect data in performing the work-related task more accurately. With this technology, workers are more aware of the outcome.

The purpose of this project is to develop an augmented content-based app for the use of Occupational Safety and Health training among the organizational members, which include the students and workers. It will help the workers that are working in a hazardous and dangerous environment. This AR-based app will prevent the accident from occurring and giving prior knowledge to the user. Furthermore, this app will include gamification that makes it more interactive and user-friendly to ensure it provides a safer training approach and increases authentic augmented practical experiences.

#### **1.2 Problem Statement**

Nowadays, the statistic has shown the use of chemical and hazardous material very high, and their usage around the work area can potentially impact the safety of workers, also impact the environmental field. Hence, there an immediate action that needs to be taken to mitigate this problem. The steps need to be made, namely identifying the hazard, assessing the risk, and controlling the chance to ensure a safe and conducive working condition (Hamid & Singh, 2003). Hazardous material has been put on a logo or icon that not all the worker or even a student that work around the dangerous area to know or memorizing the substance and their usage. Furthermore, they are facing difficulties in understanding the details of every hazardous material without harming themselves.

The approach using a traditional method not so convenient to train the organizational members of universities, which include the worker and student, where they have to input the information manually. With this app project, the public also can know the hazard or chemical substance more accessible.

#### **1.3** Research Question

Below is the list of research question in this project:

- i. How to improve hazard identification in OSH training at the workplace?
- ii. How to measure the motivation of the AR-based app in OSH training among university organizational members, that are the students and worker group?

iii. What is the impact if the AR-based app on the motivation of the user in OSH training?

#### 1.4 Scope

This project mainly focused on developing an AR-based app called Hazhunt. The app will be used to enhance occupational safety and health (OSH) training.

#### 1.5 Aims and Objective

The main objective of this project is:

- i. To propose an AR-based app called Hazhunt to improve hazard identification in OSH training.
- ii. To measure the motivation and impact of the AR-based app in OSH training among university organizational members, that are the students and worker groups.

#### 1.6 Brief Methodology

This project will use a design and development research (DDR) method, which involves three phases, namely requirement analysis, design and development, and usability analysis. The formulated methodology was based on the purpose nature of design development research (DDR) by Richey & Klien (2007) it highlights that the method of instructional design is like processes for solving scientific problems. The three phases are detailed in the following section (Rejab, Chuprat, & Azmi, 2018).

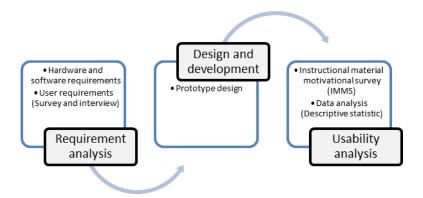



Figure 1.1: DDR Model (adapted from Richey & Klein (2007))

#### **1.6.1 Requirement Analysis**

This phase begins with understanding the concept of change management, maintenance of software and hardware, measurement of test effort, and testing of regression. An extensive literature review will be done on the topic. Important information, relevant study, and fundamental research gap and limitation are identified. The main issues that will be focused upon include challenges in OSH training, technology implemented in OSH training, essential elements in AR technology to be developed for Hazhunt, measurement tools for data collection, and suitable quantitative/qualitative analysis technique to achieve the research objective.

#### **1.6.2** Design and development

In the design and development, the making AR-based prototype app Hazhunt is carried out. Using the elements captured from a literature review conducted in the previous phase, the hazard and risk identification training will be integrated into the app. One of the essential functions that are supposed to be included in the app is the input and storing modules, which are applicable for making an authentic example before the OSH training and enabling the trainees to perform real-time hazard and risk identification exercises.