
Certitex: a Textile Certified Supply Chain
(Versão Final Após Defesa)

Miguel Alexandre Torrão Alves Brandão

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

(2º ciclo de estudos)

Orientador: Prof. Luís Filipe Barbosa de Almeida Alexandre
Co-orientador: João Alexandre Aguiar Amaral Santos

Novembro de 2020

ii

Agradecimentos

This work was carried out at SociaLab, in Universidade da Beira Interior’s informatics de-
partment, partially integrated with the SociaLab’s activies and Zirak an italian informatic
technologies company under supervision of Professor Luís Filipe Barbosa de Almeida
Alexandre, João Alexandre Aguiar Amaral Santos and Fabrizio Turco to whom I deeply
thank all the help and supervision.

iii

iv

Resumo

O aparecimento das tecnologias blockchain e o seu crescimento e desenvolvimento, têm
levado à exploração de aplicações da tecnologia em novas áreas. Inicialmente, e relativa-
mente ao temadesta tese, esta tecnologia foi explorada comoobjetivo de prover cadeias de
fornecimento alimentícias de rastreabilidade e transparência para o consumidor. Estudos
atuais têm provado que a tecnologia apresenta propriedades poderosas para promover a
rastreabilidade e não repúdio de informação. Infelizmente todas as soluções baseadas em
blockchain encontradas na fase de pesquisa são soluções desenvolvidas por entidades pri-
vadas não havendo qualquer divulgação de informação relativa ao seu desenvolvimento,
e também na maioria esmagadora dos casos sobre o seu funcionamento. Isto levou a que
esta dissertação fosse maioritariamente um trabalho de investigação da tecnologia base,
e desenvolvimento de raiz de uma solução funcional.

Os problemas das soluções tradicionais, prendem-se comouso de estratégias de registo de
informação não estandardizadas e facilidade de repúdio de informação isto porque cada
entidade por norma age independentemente das outras e apenas comunica com aquelas
que lhe estão diretamente ligadas. Adicionalmente, é comum verificar que produtos no fi-
nal da sua cadeia de produção estão danificados e de ser praticamente impossível localizar
onde na cadeia os danos ocorreram.

A ideia de adaptar a tecnologia blockchain como uma solução para a rastreabilidade de
produtos na cadeia de fornecimento apresenta alguns pontos preocupantes, pois as
blockchains são geralmente associadas a sistemas distribuídos e públicos para manter
uma dada criptomoeda. Apesar de este ser o propósito inicial para a sua criação têm vindo
a surgir outras tecnologias blockchain orientadas para o armazenamento e processamento
de dados nummodelo business to business. Estas blockchains possuem medidas de con-
trolo de acesso, e são, portanto chamadas de privadas permitindo apenas acesso por parte
de umgrupo seleto de entidades. Adicionalmente, o armazenamento de informação numa
blockchain é também muitas vezes associado a custos elevados, e quando nos referimos
a blockchains públicas como a Ethereum isto é uma realidade, mas pelo uso de soluções
privadas podemos colmatar este custo. É também uma preocupação os custos computa-
cionais associados ablockchainsde criptomoeadas comoaBitcoin eEtherum. Novamente
é possível contornar esta limitação pelo uso de soluções privativas onde podemos usar al-
goritmos mais leves, pois o ambiente em que o sistema se vai inserir, não carece de tantos
cuidados. Através do uso de blockchain para certificar a origem e percurso de produ-
tos numa cadeia de fornecimento é também interessante explorar os dados recolhidos no
processo e como estes podem ser utilizados para tornar a própria cadeia de fornecimentos
mais eficiente.

O objetivo desta dissertação é estudar como a tecnologia blockchain pode ser conjugada
com uma cadeia de fornecimento para oferecer rastreabilidade de produtos e recolha de
informação. Para alcançar este objetivo foi desenvolvido um protótipo de uma aplicação
baseada em blockchain para recolha de dados numa cadeia de fornecimento, bem como
umprotótipo de uma aplicação para a visualização e interação remota comos dados e tam-

v

bém um protótipo de ummódulo deMachine Learning capaz de fazer uso da informação
recolhida pela blockchain.

Palavras-chave

Blockchain, Armazenamento de Dados, Machine Learning, Análise de séries temporais,
Quorum

vi

Resumo alargado

O aparecimento das tecnologias blockchain e o seu crescimento e desenvolvimento, têm
levado à exploração de aplicações da tecnologia em novas áreas além da sua original, crip-
tomoeadas. Áreas como a gestão e rastreabilidade de produtos em cadeiras de fornec-
imento. Inicialmente, e relativamente ao tema desta tese, esta tecnologia foi explorada
comoobjetivo deprover cadeias de fornecimento alimentícias rastreabilidade e transparên-
cia para o consumidor. Atualmente estão a ser estudadas e desenvolvidas soluções apli-
cadas a uma maior variedade de cadeias de fornecimento. Estudos atuais têm provado
que a tecnologia apresenta propriedades poderosas para promover a rastreabilidade e não
repúdio de informação. A atual estrutura destas cadeias, várias entidades diferentes lo-
calizadas em diferentes espaços físicos, é propensa à aplicação de soluções de blockchain
pois ajusta-se também à arquitetura da tecnologia em si. Tudo isto leva a um forte inter-
esse pela aplicação da tecnologia de blockchain a cadeias de fornecimento. Infelizmente
todas as soluções baseadas em blockchain encontradas na fase de pesquisa são soluções
desenvolvidas por entidades privadas não havendo qualquer divulgação de informação
relativa ao seu desenvolvimento, e também na maioria esmagadora dos casos sobre o seu
desenvolvimento. Isto levou a que esta dissertação fosse maioritariamente um trabalho
de investigação da tecnologia base, e desenvolvimento de raiz de uma solução funcional.

Os problemas das soluções tradicionais prendem-se principalmente com o uso de estraté-
gias de registo de informação não estandardizadas e facilidade de repúdio de informação,
isto porque cada entidade por norma age independentemente das outras e apenas comu-
nica com aquelas que lhe estão diretamente ligadas. As demandas atuais dos consumi-
dores pelo conhecimento da origem dos produtos levam à exploração de novas soluções
para colmatar este problema. Adicionalmente, é comum verificar que produtos no final
da sua cadeia de produção estarem danificados e de ser praticamente impossível localizar
onde na cadeia os danos ocorreram.

A ideia de adaptar a tecnologia blockchain como uma solução para a rastreabilidade de
produtos na cadeia de fornecimento apresenta alguns pontos preocupantes, pois as blockchains
são geralmente associadas a sistemas distribuídos e públicos para manter uma dada crip-
tomoeda. Apesar de este ser o propósito inicial para a sua criação temvindo a surgir outras
tecnologias blockchain orientadas para o armazenamento de dados nummodelo business
to business. Estas blockchains possuem medidas de controlo de acesso, e são, portanto
chamadas de privadas permitindo apenas acesso por parte de um grupo seleto de enti-
dades. Adicionalmente, o armazenamento de informação numa blockchain é também
muitas vezes associado a custos elevados, e quando nos referimos a blockchains públi-
cas como a Ethereum isto é uma realidade mas pelo uso de soluções privadas podemos
colmatar este custo. É também uma preocupação os custos computacionais associados a
blockchains de criptomoeadas como aBitcoin e Etherumque são baseadas numalgoritmo
de consenso Proof of Work, que tem propriedades muito úteis no ambiente em que está
inserido, sendo, portanto redes públicas. Novamente é possível contornar esta limitação
pelo uso de soluções privativas onde podemos usar algoritmos mais leves, pois o ambi-

vii

ente em que o sistema se vai inserir, não carece de tantos cuidados, pois todos os seus
participantes serão corporações conhecidas e identificadas no sistema.
Através do uso de blockchain para certificar a origem e percurso de produtos numa cadeia
de fornecimento é também interessante explorar os dados recolhidos no processo e como
estes podem ser utilizados para tornar a própria cadeia de fornecimento mais eficiente,
através demétodos estatísticos e demachine learning, devido à inexistência de umdataset
com dados reais, foi necessário a adaptação de um dataset para este propósito. O dataset
escolhido foi o registo de viagens entre postos de um rent-a-bike para simular as viagens
entre as várias entidades na cadeia de fornecimento. No topo deste dataset tiveram que
ser gerados dados fictícios para a produção das várias entidades e as ligações entre si.
O objetivo desta dissertação é estudar como a tecnologia blockchain pode ser conjugada
com uma cadeia de fornecimento para oferecer rastreabilidade de produtos e recolha de
informação. Para alcançar este objetivo foi desenvolvido um protótipo de uma aplicação
baseada em blockchain para recolha de dados numa cadeia de fornecimento, bem como
um protótipo de uma aplicação para a visualização remota dos dados inseridos e um pro-
tótipo de um módulo de Machine Learning capaz de fazer uso da informação recolhida
pela blockchain.

viii

Abstract

The appearance of blockchain technologies and their growth and development have led to
the exploration of applications of the technology in new areas, in addition to the original,
cryptocurrencies, areas such as product management and traceability in supply chains
are being explored. Initially, this technology was explored with the aim of providing food
supply chains with traceability and transparency for the consumer. Currently, solutions
for a larger variety of supply chains are being studied and developed. Current studies
have proven that the technology has powerful properties to promote traceability and non-
repudiation of information related to products in a supply chain, as well as providing lia-
bility of entities for damages caused to products, which in the past has been notoriously
difficult. The current structure of these supply chains, several different entities located in
different physical spaces, is prone to the application of blockchain solutions as it also fits
the architecture of the technology itself. All of this leads to a strong interest in applying
blockchain technology to supply chains. Unfortunately, all the blockchain based solutions
found to solve similar problems in the research phase of this project were developed by
private entities, with little to no divulgation about their development and many times not
even about how they function. This led to this project being mainly about researching the
base technology and developing a solution from scratch.

Theproblemsof currently used traditional solutions are related to the use of non-standardized
information registration strategies and ease of repudiation of information, but current
consumer demands for knowledge of the origin of products has led to the exploration of
new solutions to overcome this. Additionally, it is common for products, at the end of their
production cycle, to be damaged and it is practically impossible to locate where the dam-
age occurred in the chain. The idea of adapting blockchain technology as a solution for
product traceability in the supply chain presents some points of concern, as blockchains
are generally associated with distributed and public systems to maintain a given cryp-
tocurrency, thus making information public. Although this is the initial purpose of its
creation, other blockchain technologies oriented to data storage in a business to business
model have emerged. These blockchains have access control measures, and are therefore
called private. Only allowing access by a select group of entities. Additionally, informa-
tion stored on a blockchain is also often associated with high costs, and when we refer
to public blockchains like Ethereum this is a reality, but by using private solutions we
can mitigate this cost. It is also often a concern the computational costs associated with
cryptocurrency blockchains like Bitcoin and Etherum. Again, it is possible to get around
this limitation by using private solutions where we can use more light weight algorithms,
because the environment in which the system will be inserted, does not benefit from the
properties of such algorithms.

With the usage of blockchain to certify and record the progress of products as they travel
through the supply chain, it is also interesting to explore the collected data, and how it
could be used to make the supply chain itself more efficient. The purpose of this dis-
sertation is to study how blockchain technology can be combined with a supply chain to

ix

offer product traceability and information collection. To achieve this goal, a prototype of
a blockchain-based application was developed to collect data in a supply chain, as well as
a prototype of an application for remote viewing of the data entered and a prototype of a
Machine Learningmodule able tomake use of the information collected by the blockchain.

Keywords

Blockchain, Data Storage, Machine Learning, Time Series Analysis, Quorum

x

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 General Concepts . 1

1.2.1 Blockchain . 1
1.2.2 Long Short-Term Memory . 2

1.3 Adopted Approach . 2
1.4 Main Objectives . 3
1.5 Main Contributions . 3
1.6 Document Organization . 4

2 Blockchain Technologies Analysis 5
2.1 Introduction . 5
2.2 Technology Analysis . 5

2.2.1 Ethereum . 5
2.2.2 Quorum . 7
2.2.3 IoTA . 8
2.2.4 HyperLedger Fabric . 10
2.2.5 HyperLedger Sawtooth . 11

2.3 Textile Industry Supply Chain . 13
2.3.1 Ethereum . 13
2.3.2 Quorum . 14
2.3.3 IOTA . 15
2.3.4 Hyperledger Fabric . 16
2.3.5 Hyperledger Sawtooth . 17

2.4 Conclusion . 18

3 Certitex Blockchain 19
3.1 Used Technologies . 19
3.2 Quorum Blockchain . 20
3.3 Certitex Blockchain . 22
3.4 Smart-Contract Implementation . 27
3.5 Certitex Performance Testing . 28
3.6 Conclusion . 29

4 Machine Learning 31
4.1 Introduction . 31
4.2 Data set . 31
4.3 Statistical Prediction of Optimal Paths . 33
4.4 Improved Real World Simulation . 34

4.4.1 Improving the simulated environment 34

xi

4.4.2 Generating Production Values . 35
4.4.3 Extrapolating results . 36
4.4.4 Machine Learning . 39

4.5 Conclusion . 42

5 Final Considerations and Future Work 45
5.1 Main Conclusions . 45
5.2 Future Work . 45

xii

List of Figures

1.1 Simplified structure of a blockchain, composed by a header and a list of
transactions (data). The blocks are linked by each block including the cryp-
tographic hash of it’s predecessor. The only exception is the first (genesis)
block, common to all clients of the network. 2

2.1 Structure of the Tangle [?] . 9
2.2 Ethereum average block time chart [?] . 13

3.1 Quorum road-map [?] . 21
3.2 APIXwill eventually receive anupdate submitted toAPIYdue to re-broadcasting 23
3.3 System communications architecture between two nodes. 24
3.4 Performance graph of the capabilities of handling write transactions by the

blockchain system. The blue bars represents the target sent transaction re-
quests per second. The red bars represents the number of transactions that
are being requested to be inserted on the blockchain system per second.
The orange bars represents the number of transactions that are inserted
into the blockchain system, and therefore, validated. 29

4.1 Time and distance analysis of 50 paths for shirt production. The X-axis
represents time in seconds and the Y-axis represents the distance in kilo-
meters. 32

4.2 Time and distance analysis of 50 paths for shirt production. X axis repre-
sents time in seconds and Y axis represents distance in kilometers. 34

4.3 Production pattern example of a real world pants manufacturing process. . 34
4.4 Generated production patterns that will be considered. 35
4.5 Small sample of production patterns. 37
4.6 Factory production variation over 10 years with one reading per day 39
4.7 Raw production values, train set/validations set predictions and test set

predictions of the neural network . 41
4.8 Final network architecture. 41

xiii

xiv

List of Tables

3.1 Structure of the data representation of each product in the system, with
detailed information on composing fields. 27

3.2 Supported operations of the system, alongwith their purpose and function-
ality. 28

4.1 Root Mean square error in the test group for neural networks trained with
a varying number of lookback in the long short-term memory layer 40

4.2 Mean square error in the test group for neural networks trainedwith a vary-
ing number of neurons in the long short-term memory layer 40

4.3 Moving averages calculated from the x previous values, x in parenthesis . 40

xv

xvi

Acronyms

BFT Byzantine Fault Tolerance

CFT Crash Fault Tolerance

ETH Ether

EVM Ethereum Virtual Machine

IoT Internet of Things

LSTM Long Short-term Memory

PoW Proof Of Work

RAFT Role, Audience, Format and Topic.

RNN Recurrent Neural Network

xvii

xviii

Chapter 1

Introduction

1.1 Problem Description

The supply chain is a complex term referring to the ecosystem of all materials, entities,
and personnel involved in the sequence of production and distribution of any goods and
services. Currently, due to the demand for production, these ecosystems are incredibly
complex. Increased globalization, shorter product life cycle, and rapid technological ad-
vancement in manufacturing processes as well as in the service industry necessitate that
companies cooperate to meet market demands. This cooperation, be it physical or vir-
tual, makes the supply chain more complex to manage[?]. Some difficulties include at-
tributing a cause to potential damage of goods throughout their manipulation flow and
transparency in product origin. As such, supply chain management is a critical part of the
supply chain and a key factor in dictating company success. One important part of supply
chain management is the traceability of goods throughout it. It is a difficult albeit neces-
sary step to localize and minimize mistakes and costs and, additionally, it is becoming a
part of legislation and customer demands [?].

1.2 General Concepts

1.2.1 Blockchain

A blockchain is a growing collection of transactions organized in blocks linked using cryp-
tography. Each block contains the cryptographic hash of its predecessor, a timestamp,
and a chunk of data. It is typically governed by a peer-to-peer network. Each of the peers
participating in the network is a node in the system and possesses a copy of the ledger.
By adhering to a protocol for inter-node communication and block validation, the nodes
in the system work together to form the blockchain network itself. Once data is inserted
into a block in the chain it can not be easily altered due to the cryptographic link existing
between blocks and its distributed nature.

1

Figure 1.1: Simplified structure of a blockchain, composed by a header and a list of transactions (data). The
blocks are linked by each block including the cryptographic hash of it’s predecessor. The only exception is

the first (genesis) block, common to all clients of the network.

Additions to the ledger are first submitted to the network, where, through a consensus
mechanism, they are included in a blockwhich is in turn distributed by thewhole network.
As such, every participant has a complete and eventually consistent copy of blocks with
each transaction in those blocks being at the moment of addition deemed valid by the
network consensus mechanism.
Someexamples of consensusmechanismswould beproof-of-work, proof-of-stake, or proof-
of-authority. For example, Proof-of-work, used in Ethereum is based on the notion that
chainswithmore effort put into them (computational power) aremore secure because any
entity attempting to overwrite them would need to produce another chain with as much
computational power invested in it as the whole Ethereum network. As such, to validate
a block, a node must verify the validity of each transaction contained within it (verifying
the digital signatures) as well as solve a complex cryptographical puzzle of finding a value
that when cryptographically hashed with the block itself results in a hash with a certain
set of properties. This facet is mostly seen in public blockchains where anyone has access
to the network and can participate in it.

1.2.2 Long Short-TermMemory

Long Short-term Memory (LSTM) is a Recurrent Neural Network (RNN) architecture
used in the field of deep learning. RNN unlike other network architectures, which are
feedforward, have feedback connections. LSTM distinguishes itself from other RNN be-
cause it solves the vanishing gradient problem through the use of LSTMunits. These units
include a memory cell that is capable of maintaining information in memory for long pe-
riods of time, as well as a set of gates that is used to control when information enters the
memory when it’s output, and when it’s forgotten.

1.3 Adopted Approach

As a beginning point, to clearly understand the main advantages and possible issues of
using a blockchain solution to perform supply chain traceability, an in-depth study of its

2

fundamental concepts and state-of-the-art of blockchain usage in the supply chain was
needed. Research began by looking into the fundamentals of blockchain, studying its im-
plementation in crypto-currencies, its main properties, and issues. After attaining a good
grasp on this, research continued by looking into previous blockchain solutions in the field
of the supply chain, more specifically into the food industry as this is where most current
solutions are centered.
After understanding the technology and studying previous implementations, of which in-
formation was scarce, the next step was to design a system that would take advantage of
the studied properties whilst minimizing its disadvantages. Meanwhile, information was
collected on several blockchain systems so that a comparative study could be conducted
when the system design was complete, we then could compare these systems in order to
choose the one that fit and enhanced the system design as much as possible.
With the system architecture and the technology to be used defined it would then be pos-
sible to develop the blockchain supply chain traceability system, conduct tests, and refine
the system into a functional prototype.
After developing a functional prototype, we looked at how we could add more function-
ality through the use of machine learning. Research on previous implementations of
blockchain and machine learning coupled together was performed. As well as the main
issues present in nowadays supply chain ecosystems.
With a problem to be tackled, it was then possible to start looking into a dataset that could
be used to represent a supply chain ecosystem, develop and train machine learning and
statistical models on it and implement it into the initial prototype.

1.4 Main Objectives

The main objective of this dissertation is to study how blockchain technologies can be
used to products through the supply chain, how they are processed and merged to pro-
duce a final product. Additionally, the result should be flexible and allow a wide range
of information that can be collected to be stored as well, so that other future projects can
easily integrate and take advantage of it. To show this after the main work is complete a
simple demonstration application where it is possible to view the items being traced will
be developed. Additionally, we will also look into integrating a machine learning module
to take advantage of the collected information.

1.5 Main Contributions

The contribution of this thesis is the study and implementation of a blockchain-based
supply chain management system that brings trust in the product origin to the consumer,
providing supply chain-wide data collection, storage, and processing as well as a machine
learning module to process that data into useful information.
The first contribution is a comprehensive review of the state-of-the-art of blockchain us-
age in private use cases, where we go over several blockchain solutions enumerating and

3

analyzing their main properties. We also compare the blockchain technologies against
our use case, a data-heavy consortium style environment.
The second contribution is the proposal and implementation of a modular and container-
ized blockchain system featuring scripting and other modules that facilitate its setup and
management processes, and a smart contract that coordinates and distributes data col-
lection and processing as products are manufactured by the supply chain.
The third contribution is a pluggable machine learning module that makes use of the data
stored in the blockchain allowing for the production patterns of the supply chain to be
analyzed in order to minimize product transportation time.
Also, a paper which is the summary of this thesis has been submitted to an international
conference.

1.6 Document Organization

The remainder of this thesis is organized as follows:

• Chapter 2 - Presents an analysis of several blockchain technologies looked at during
the researching phase of the project, with their main characteristics and a compari-
son between them with regards to our use case.

• Chapter 3 - Discusses the development of the blockchain proof of concept and all the
systems developed around it, how the blockchain technology was set up, the API’s
that work in conjunction with it, and the smart-contract developed.

• Chapter 4 - Discusses the development of the machine learning module developed
to work in tandem with Certitex.

• Chapter 5 - Presentation of the final considerations of this thesis work and sugges-
tion of possible research directions for future work.

4

Chapter 2

Blockchain Technologies Analysis

2.1 Introduction

In this chapter we will analyze a number of blockchain technologies, they will be analyzed
in the following aspects:

1. Public or private: can anyone access a shared global network or does a private one
have to be created and joined manually;

2. Permissioned: can everyone join any network and participate in it, or are they re-
quired to have proper permissions and roles;

3. Smart-Contract capability: is the technology capable of processing data, and not just
store transactions;

4. Currency based: is the network-based in a built-in currency through which every-
thing is centered around;

5. Consensus method: what or which consensus methods may be used within this net-
work;

6. Date of Launch;

7. Time per block;

8. Block size.

2.2 Technology Analysis

2.2.1 Ethereum

Blockchain Technology Ethereum

Public/Private Both

Permissioned No

Smart-Contracts Yes

Currency Based Yes

Consensus Mechanism Proof Of Work (PoW)

Date of Launch July 30, 2015

Open-Source Yes

Time per block About 15 seconds

Block size 20-30kb

5

In Ethereum [?, ?] you can use the globally available and widely used public network or
you can start your own from scratch.

The lack of a permission system is explained by the fact that Ethereum is, by design,meant
to be run in its public mode and everyone should be equally able to participate in the
network. The main focus of Ethereum is to have a fair, distributed, and public currency
that can be traded for processing capacity within the network as well as for goods outside
the network. However, if we wish to use Ethereum as a private network the lack of a
permission system does not allow us to ensure who participates in the network. This in
conjunctionwith the proof-of-work consensusmakes it vulnerable to external attacks such
as a sibyl and the 51% attack, where an attacker can gain influence disproportionate to the
rest of the network.

Ethereum has smart contract capability. This is necessary in order to process data in
a decentralized manner, as well as to establish agreements between two or more non-
trusting parties without relying on a third-party (the entire network is the third party).

Ethereum is based on a currency named Ether (ETH). This currency is central to the
network as everything either relates to or is paid by it. As such, to make a transaction in
the network you transfer ETH to another entity. These transactions have fees that have to
be paid to the network in order for it to validate the transaction. To execute a function of
a smart-contract you must pay the network for the computer resources needed to process
it. This presents advantages when we wish to mediate a public network by preventing
transaction spamming or a smart-contract that leads to an infinite loop. To counteract
such an infinite loop or over-processing of functions there is a cost limit on transactions.
As such, a transaction is terminated once it exceeds the cost limit that was set. The cost of
a transaction is calculated by adding the cost of the computer resources needed to perform
a function and the fees needed to validate it.

The PoW consensus method is Byzantine Fault Tolerant (this means that the network is
capable of continued function even if there are a certain number of malicious nodes on
the system). Using this consensus method, all users try to validate blocks by attempting
to solve a cryptographic puzzle. The first entity to solve it successfully publishes the block
in exchange for a reward. This also means that all the miners of the network are, at the
same time, solving a complex puzzle to validate the same set of transactions, resulting in
redundancy of work and high computer resource consumption. As such, this method is
characterized by high power consumption but a low rate of validated transactions over
time [?].

Ethereum is open-source software, meaning that it can be modified and adapted to fit
different needs.

The time per block and block size of Ethereum is pretty limited at the time of writing and,
with the number of transactions happening every single day, this leads to high fees in
order to add transactions to the ledger [?].

6

2.2.1.1 Example usage

Ethlance is a hiring platform for freelancers, people who have job offers can post them to
Ethlance, candidates can then apply with their hourly price and the hirers then select a
person to do the job for them, and when the job is done the hiree is paid. This exemplifies
the usage of Ethereum perfectly. Both employers and employees are protected by the
network because when a contract is made between an employer and an employee it is
registered in the blockchain and visible to everyone, if any of the parties act in a dishonest
way it is guaranteed that the original terms of the contract are not altered and that both
employer and employee can make a case against the other party. Also, the low amount of
data required to keep this application running, ensures that the fees are low.

2.2.1.2 Conclusions

Ethereum’s public variant is an extremely secure way to host decentralized applications
with low data requirements, in which neither of the involved parties trusts each other.
Ethereum’s private variant can be used to develop the backbone (storage and process-
ing) of enterprise data in a highly decentralized environment. However, the lack of a
permissioning system along with a competition-based consensus algorithm makes the
blockchain inefficient for this type of usage. This is because in a private environment
the proof-of-work consensus and the lack of permissioning allow for another entity with
large processing capabilities to overpower the network (51% attack).

2.2.2 Quorum

Blockchain Technology Quorum

Public/Private Private

Permissioned Yes

Smart-Contracts Yes

Currency Based No

Consensus Mechanism Pluggable

Date of Launch Nov 21, 2016

Open-Source Yes

Time per block 50ms

Block size configurable

Quorum is designed to be deployed as a private network. Quorum is a permissioned
blockchain, participants must be authorized to join. Also, there is a concept of both pri-
vate and public transactions. Public transactions are seen and validated by the entirety
of the network while private transactions have a key associated with them and only nodes
with this key can see the contents of the transaction. However, while private transactions
are still present in the blockchain their contents are not, they are replaced by the hash of
the encrypted payload.
Quorum has smart contract capability, based on the Ethereum Virtual Machine (EVM)
of Ethereum. However, private smart contracts also exist and work similarly to private

7

transactions, they can only be seen and processed by the nodes with the corresponding
key [?]. Quorum is not based on a currency. Quorum is distributed with the following
consensus algorithms:

• RAFT

• Istanbul Byzantine Fault Tolerance (BFT)

Raft is a non-forking Crash Fault Tolerance (CFT), as long as more than half the network
remains healthy.
Istanbul Byzantine Fault Tolerance is a non-forking CFT and BFT as long as there is a fully
synchronized network this consensus algorithm can tolerate up to (N-1)/3 Faulty nodes
where N is the total number of nodes in the network [?, ?].
Quorum is open-source software, meaning that it can be modified and adapted to fit dif-
ferent needs.
Quorum’s performance in terms of data processed per second varies according to consen-
sus mechanism used and the initial configuration of the network but overall is a scalable
network [?].

2.2.2.1 Conclusions

Quorum is a fork of the ethereum network, designed to be a consortium style network.
From the available consensus algorithms, it is possible to make a network with CFT prop-
erties or CFT and BFT properties at the cost of block time, both the consensus algorithms
used have the capability to scale into the thousands of transactions per second [?] if the
network is well designed. The network structure (authorized nodes) can be changed at
run time and the EVM is included in the project allowing for the implementation of smart-
contracts which is useful to apply business logical rules.

2.2.3 IoTA

Blockchain Technology IoTA

Public/Private Both

Permissioned No

Smart-Contracts No

Currency Based No

Consensus Mechanism IoTA consensus

Date of Launch March 5, 2019

Open-Source Yes

Time per block Not applicable

Block size Not applicable

In IoTA [?], you can use the globally available and widely used public network or you can
start your own from scratch.
Due to how consensus is achieved in IoTA’s blockchain (the Tangle) there is no permis-
sioning in the network, every node is capable of adding new transactions and every node
must confirm other transactions to issue transactions.

8

There is no Smart-Contract capability in IoTA, however, this is planned to be added in
the future. In the current state of IoTA, it is not possible due to the nonexistence of time-
stamping within the tangle.
While IoTA does have a currency, it is not central to the network. Transactions can still
be made without owning any currency. This is because transactions in IoTA are fee-less,
you pay for your transaction by confirming other pending transactions.
The consensus mechanism used in IoTA is very different from other blockchain technolo-
gies. In it all nodes are required to verify two previous transactions to issue a new one,
this new transaction is then connected to the previous two transactions.

Figure 2.1: Structure of the Tangle [?]

A fully confirmed transaction must have connections to every tip.
While time per block and block size does not apply to this network, this network has good
scaling capabilities. The more transactions being performed, the more transactions can
be processed. This is achieved by the unique consensus mechanism used.

2.2.3.1 Conclusions

IoTA appears to be a capable and scalable network however, contradicting sources make
it difficult to discern if some of the characteristics of IoTA are advantageous or disadvan-
tageous [?, ?].
Nevertheless, the lack of time-stamping capabilities along with a generalized disorder
of transactions within the tangle and the incapacity of having smart-contracts, makes
IoTA difficult to integrate into several fields. IoTA shows a lot of potential for Internet
of Things (IoT) devices because of the fee-less transactions, along with fast confirmation
rates. However, to add your transaction you must perform a PoW (in order to prevent
spam on the network) and you also have to verify two other transactions. This involves
verifying all their possible paths back to the genesis transaction, requiring large amounts
of computational resources. Also, the IoTA network relies on a centralized system called
the coordinator controlled by the IoTA Foundation itself diminishing the decentralized
nature of the network. While these issues remain the use of the public network of IoTA is
unadvised.
In a setting where there is a trustable central authority to host the central component

9

mentioned above, a private IoTA network can be advisable for IoT devices. The snap-
shot system allows periodical truncation of the tangle, which is advantageous for devices
with small storage capacity. However, not all nodes in the network need to perform the
snapshot so a full history can still be maintained.

2.2.4 HyperLedger Fabric

Blockchain Technology Hyperledger Fabric

Public/Private Private

Permissioned Yes

Smart-Contracts Yes

Currency Based No

Consensus Mechanism Pluggable

Date of Launch July 11, 2017

Open-Source Yes

Time per block configurable

Block size configurable

InHyperLedger Fabric (fromnowon referenced as Fabric) it is necessary tomaintain your
network. Fabric is not a trust-less system and there are nodes with more importance than
others.
Fabric is equipped with a feature-full permissioning system. To access the network you
must have the proper permissions and an X.509 certificate that identifies you. Besides
selective participation there is a rank-based permission system that functions within the
network, making certain actors in the network able to do things others can not, such as
creating channels. Channels are different ledgers within the same network, Fabric makes
use of this feature to allow private transactions within the same systems. For example, a
company (ORG1) running Fabric might have a channel with (ORG2) through which de-
cisions in regards to both companies, ORG1 and ORG2, are made. Moreover, ORG1 can
have a channel with ORG3 through which decisions in regards to ORG1 and ORG3 are
made, in a private manner so that it is not possible for ORG2 to know what happens in
this second channel.
Fabric allows for smart-contract capabilities which are called chaincode. Chaincode is
instantiated on each peer individually and has a list of endorsers (interested parties of a
certain contract). When chaincode is called these endorsers run the code and agree on
a final list of transactions. These agreements can be reached in several manners such as
majority endorsers agreement.
Fabric does not have a currency system.
Consensus in the Fabric environment is agreed upon on the creation of the network, and it
can be a Kafka or Role, Audience, Format and Topic. (RAFT). In both cases the consensus
is only CFT and not BFT. This means that the network will continue to operate if at least
the majority of nodes continue running. However, the system is vulnerable to malicious
nodes that intentionally attempt to cause disagreement on the network.
This technology is open-source and is built in a plug-and-play manner. There are several
systems and even versions that may be chosen to fit the needs of a certain network.

10

Both time per block and block size is configurable. As this network relies on the fact that
every node can be trusted to some degree due to having to provide its identity, it has fast
confirmation rates.

2.2.4.1 Example usage

TradeLens by IBM is a system built on top of Hyperledger Fabric. The goal is to unite the
ecosystem involved in the transportation of goods into a single platform where data may
be shared and later audited. The documents involved are standardized and, when issued,
they are stored in a cloud and the hash of the document is stored in the blockchain. This
guarantees that it cannot be altered without destroying the connection to the blockchain.
While not guaranteeing immutability, this adds a layer of protection. For example, if a
company alters a document the hashof that document and thehash stored in the blockchain
is no longer the same. Therefore, the company can be held responsible for altering the
data.

2.2.4.2 Conclusions

HyperLedger Fabric is an example of the capabilities of a permissioned network. The
features brought by it over traditional database systems are data immutability, decentral-
ization, and replication. Offering a scalable blockchain system with high throughput due
to the lightweight CFT only algorithms and ensuring the health of the system by requiring
well-identified users Fabric. However, it is a novel technology with few documentation
resources available for the developers and few systems built on top of it.

2.2.5 HyperLedger Sawtooth

Blockchain Technology HyperLedger Sawtooth

Public/Private Both

Permissioned Yes

Smart-Contracts Yes

Currency Based No

Consensus Mechanism Pluggable

Date of Launch January 30, 2018

Open-Source Yes

Time per block configurable

Block size configurable

In HyperLedger Sawtooth (from now on referenced as Sawtooth), you can design your
networks in both a private and public manner. As there is no built-in incentive system
(such as Ethereum that awards miners with ETH), additional procedures are needed to
implement a public network with Sawtooth.
In Sawtooth, there are several types of nodes:

• Transactors: nodes who can submit transactions to the network;

11

• Validators: nodeswho are allowed to establish a connection to the validator network
and decide on changes to the state of the network.

Sawtooth applies both on-chain and installed smart-contracts. On-chain contracts are
similar to Ethereum smart-contracts. There is little information available on installed
smart-contracts on Sawtooth’s documentation, resulting in the authors being unable to
explain them at the time. As such, they will not be considered.

Sawtooth features a pluggable consensus mechanism that can be changed after the net-
work has started. This means that the consensus mechanism can be chosen and altered
based on what fits the network at a certain time, without requiring a hard-fork. Sawtooth
already features some implemented consensus mechanisms:

• Proof of elapsed time CFT: consensus mechanism that offers crash fault tolerance
and scales well.

• Proof of elapsed time SGX: consensus mechanism that offers both crash fault tol-
erance and byzantine fault tolerance, however, it requires specific intel processors
that have SGX capabilities in order to be used.

As with Fabric, the time per block and block size of Sawtooth is configurable, and, as
such, confirmation times may vary. However, and similarly to Fabric, if the right consen-
susmechanism is being used in a private network environment, where validator nodes are
trusted, the network scales well. Additionally this new type of consensus algorithms called
Proof-of-Elapsed-Time promise to offer Proof-of-Work security level while maintaining
the overhead of most crash fault-tolerant consensus like RAFT. The concept behind this
innovative idea is to use a protected execution environment present in a certain set of In-
tel processors called Software Guard Extensions. With it, HyperLedger Sawtooth should
be able to run protected code that the owner of the machine can not tamper with, which
it can use to fairly determine the leader for each proposing round in a RAFT-like consen-
sus system. While HyperLedger Sawtooth appears to offer all the security of a byzantine
fault-tolerant consensus at the scalability of a crash fault-tolerant one, this comes with
some issues. Firstly the need for all validating nodes on the system to have a particular
processing unit. Additionally, there have been studies regarding the technology that point
towards some security flaws [?]

2.2.5.1 Conclusion

Much like HyperLedger Fabric, Sawtooth has the features of a capable network for both
a public and private environment, providing high throughput, smart-contract capability,
and a more comprehensive selection of consensus algorithms this time including both
CFT and BFT. However much life HyperLedger Fabric it is a novel technology lacking in
terms of documentation and resources for the developers and some issues that need to be
ironed out with the innovative consensusmechanisms this technology is trying to feature.

12

2.3 Textile Industry Supply Chain

Fundamental properties of our supply chain environment:

• Network of known and identifiable nodes;

• Average network size that may scale after system deployment;

• High flow of transactions (a large number of clothing items are being produced);

• Data integrity is a top priority and the main focus of the system;

• System should work as quickly as the production of items, and it can not be a hin-
drance to current production speeds;

2.3.1 Ethereum

Ethereum consensus (PoW) has some blatant and well-documented scalability issues in
terms of power consumption and the possibility of network forks which are undesirable
since every transaction is vital to keep the history of an item [?]. Also, the network to work
in sync, block speeds are somewhat fixed (in the case of Ethereum it is about 15 seconds
per block), this means that our network is unable to adapt to different workloads.

Figure 2.2: Ethereum average block time chart [?]

Also, the gas limit per block of Ethereum leads to blocks having amaximum size of around
30Kb.
The network can transact about 2Kb of information per second.
In the private side of Ethereum, this number can be changed but nodes will always be
competing with each other to validate blocks. This consensus works in public settings
where nodes are neither identified nor trusted, and the access to the network is public.
However, in our use case, we have a known and identifiable set of nodes and, as such, we
can make use of less demanding consensus algorithms.

2.3.1.1 Ethereum Public Analysis

Ethereum’s public network advantages:

13

• Highly reliable and used system;

• Launched and supported for several years.

Ethereum’s public network disadvantages:

• Low transaction processing speeds and concurrent users trying to transact with the
system leads to unusable speeds;

• High fee’s transaction fees.

2.3.1.2 Ethereum Private Analysis

Ethereum’s private network advantages:

• A private network means that only transactions relevant to the system are being
processed;

• Capacity to process a larger amount of data than Ethereum public.

Ethereum’s private network disadvantages:

• Does not make use of the fact that the nodes in the system are identifiable and are
working towards the same goal, leading to less efficiency;

• There is no system in place to limit access of outside nodes to the network.

2.3.2 Quorum

Quorum brings many of the qualities of Ethereum into a private setting. The EVM can be
used to run truly decentralized and complex smart-contracts that are audited by the en-
tirety of the network. Also, the IBFT consensus protocol allows users to connect directly
to the blockchain without being able to influence the network, to attest information them-
selves, without relying on a centralized system. In addition, several performance tests [?]
indicate that Quorum is capable of processing a large number of transactions per unit of
time. Quorum advantages:

• Based on Ethereum which is a proven network;

• Private and permissioned network fits our use case and offers performance through
a less demanding consensus algorithm;

• No currency;

• Transaction finality;

• Scalable.

Quorum disadvantages:

• No inherent node identification.

14

2.3.3 IOTA

In IoTA, the way of achieving consensus means that transactions are not processed in
blocks, instead, they are added to the network one by one and reference two other previ-
ous transactions [?]. This means that for every single transaction there is overhead, while
in other blockchain systems transactions are arranged into blocks significantly reducing
storage used on headers. Also block finality is probabilistic. However, it is worth men-
tioning that the fee-less transactions and the consensusmechanismmake this system very
interesting for other use cases.

2.3.3.1 IOTA Public Analysis

IOTA public network advantages:

• Fee-less transactions;

• Fast confirmation times for transactions in a public network;

• Consensus method that scales very well in terms of number of transactions.

IOTA public network disadvantages:

• Relatively new system without too much maturity;

• Huge network size growth rate;

• Incapability to process data in a decentralized manner;

• Currently reliant on a central system managed by IOTA. (security risk).

2.3.3.2 IOTA Private Analysis

IOTA private network advantages:

• A private network means that only transactions relevant to the system are being
processed;

• Consensus method that scales very well in terms of the number of transactions.

IOTA private network disadvantages:

• Does not make use of the fact that the nodes in the system are identifiable and are
working towards the same goal, leading to less efficiency;

• There is no system in place to limit access of outside nodes to the network;

• Even with the network only processing transactions related to itself, the growth rate
of the blockchain in size is still prohibitive.

15

2.3.4 Hyperledger Fabric

Hyperledger Fabric is a private network solution that relies on a set of trustable nodes and
it achieves consensus through a pluggable consensusmethod that is chosen upon network
setup, either Kafka or RAFT.

Kafka ordering [?] Relies on a central ensemble called ZooKeeper that is a distributed key-
store. It receives requests from applications and forwards them to the appropriate Kafka
cluster.

ZooKeeper is a centralized service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services. Kafka clusters are
constituted by peers and orderers:
Orderers: Nodes are responsible for keeping the immutability of the order of transac-
tions to be applied to the blockchain. They do not validate transactions, they just group
transactions in blocks of adjustable size. In a network, there is a delegated leader that is
responsible for setting the final order of all transactions in any given block, and followers
that receive and relay the information to the peers and, in case of leader failure, replace
the leader.
Peers: Peers receive transaction proposals from client applications, execute and verify (or
endorse) them. They respond to transaction proposals with the original transaction, a re-
sponse, and their endorsement for that response. Transactions are considered valid if all
the peers required by the transaction policy endorse it.
It is notoriously difficult to implement this system as pointed out in Fabric’s documenta-
tion. Also, this system is not fully decentralized due to the ZooKeeper ensemble.

RAFT Ordering works on a leader-follower basis. For every channel in the network, there
is a leader node that upon receiving a transaction replicates it to the followers. If at least
half of the ordering nodes on the network respond to the leader the change is considered
committed and will be included in the next block. In the case of leader failure, the or-
dering nodes vote amongst themselves to elect a new leader to keep the ordering service
running [?].

The Raft ordering service was implemented later into the development cycle of Fabric and
is to be the step forward fromKafka [?, ?]. It allows for a fully decentralized network and is
the first step towards having a byzantine fault tolerance consensus on the Fabric network.
However, not every use case requires BFT properties and, in such use cases, the amount of
computational work involved in BFT consensusmakes a negative impact on the network’s
performance. RAFT also massively reduces the number of healthy nodes necessary for
the network to continue operating, requiring only 2n+1 nodes to remain healthy, where n
represents the number of failing nodes. In our use case, BFT is unnecessary as we have a
set of organizations that are working towards the same goal and the nodes in the network
are well identified. As such, in case an organization attempts to harm the network, the
attack can be pinpointed back.

With the previous analysis in mind, the usage of RAFT best suits our use case.

16

2.3.4.1 Hyperledger Fabric Analysis

Hyperledger Fabric advantages:

• Private and permissioned network fits our use case and offers performance through
a less demanding consensus algorithm;

• The highly modular design of Fabric allows the choice of features needed for our use
case;

• The capacity to manage several ledgers with the same network, in case we need to
expand the system.

Hyperledger Fabric disadvantages:

• While it is ready for production this relatively new platform is still being heavily
updated;

• Impossible to make a public network, as every participant in the network must be
registered and well-identified.

2.3.5 Hyperledger Sawtooth

Hyperledger Sawtooth is a blockchain solution designed to run in both private and public
environments. The consensusmechanism is pluggable and, by default, is distributed with
the following options

• Proof of elapsed time SGX;

• Proof of elapsed time;

• Pratical byzantine fault tolerance.

Proof of elapsed time SGX relies on recent development in Intel processors, as it uses a
protected run-time environment in order to run code. In PoET consensus, when there is a
block to be added to the blockchain, all validators sleep for a random amount of time. The
first one to resume can publish the block. The problem is in guaranteeing that every val-
idator has slept for a random amount of time, this is what the Intel SGX feature attempts
to resolve. This would not only make for a very performance-oriented network but also
give it CFT and BFT properties [?]. However, some sources illustrate issues with the SGX
implementation. Briefly, an attacker would only need a small fraction of nodes under his
control in order to control the network [?]
The other Proof-of-Elapsed-Time consensus mechanism relies on a simulated environ-
ment that does not guarantee that it is secure, giving it only CFT properties, making it
work well in our use case.
Practical byzantine fault tolerance is a consensus designed for small consortiumnetworks,
when a transaction is issued the currently leading node broadcasts it to all other nodes,

17

the nodes process the transaction and reply to the client, the client must wait for at least
f+1 replies where f represents the maximum number of faulty nodes in the network (f =
T/3 where T is the total number of nodes) [?]. In PBFT the number of messages in transit
scales exponentially with the number of nodes of the network, as the network size may be
large this consensus will not be used [?].

2.3.5.1 Hyperledger Sawtooth Analysis

Hyperledger Sawtooth advantages:

• Private and permissioned network fits our use case and offers performance through
a less demanding consensus algorithm;

• Consensus can be changed at any point, even while the network is running, so in
case a new and better fitting consensus mechanism is developed it can easily be im-
plemented to the deployed system;

Hyperledger Sawtooth disadvantages:

• Relatively new platform (newer than Fabric);

• Lack of previous usages of this platform on similar use cases;

• Official documentation is far less complete than Fabric.

2.4 Conclusion

After gathering information about several blockchain systems and establishing the re-
quirements for our use case it was still hard to commit to a particular technology. It
was clear that a private network would benefit the design however there were still many
choices with different features. HyperLedger Sawtooth and Iota were discarded due to
the existence of security issues with their innovative consensus algorithms [?, ?]. Hyper-
Ledger Fabric was discarded due to the lack of developer resources when compared to
Ethereum and its child system Quorum and featuring only CFT consensus mechanisms
which would limit future design choices. Leaving us with an Ethereum private network
and Quorum, of which, Quorum was the final choice due to the available consensus algo-
rithms which made better use of the properties of our environment and would allow the
system to scale better in the future.

18

Chapter 3

Certitex Blockchain

This chapter has the main purpose of explaining how the Certitex blockchain functions.
Certitex uses Quorum’s blockchain, which is based of Ethereum and additional systems
in order to automate certain aspects of the blockchain set-up, node connection establish-
ment and blockchain interaction.
First, we introduce the Quorum blockchain, its properties and components and main
modifications to theEthereumblockchain. With this introduction, it is possible to present
Certitex mainly the modifications applied to Quorum and systems developed around it.
In this chapter, finally, we will also discuss smart-contract technology and how they were
implemented in Certitex.
The structure of this chapter is as follows: section 3.1 briefly introduces the main tech-
nologies used in the system. Section 3.2 presents a detailed explanation of the Quorum
blockchain, its software and the main features that made the author choose it as the most
fitting blockchain technology for the system at hand. Section 3.3 explains Certitex in
depth namely the configuration changes to Quorum and the systems developed around
it. Finally, section 3.4, explains the main decisions made with regards to smart-contract
implementation in Certitex.

3.1 Used Technologies

Docker is an OS-level virtualization software used to deliver software in self-sustained
packages called containers. These containers are isolated bundles of their own software,
configuration files, and libraries; They are also capable of communications through well-
defined channels. Thus they can run on any linuxmachine provided it can install docker.
Docker-compose is a tool for defining and running multi-container Docker applications
and easily running and stopping them. With the usage of docker, docker-compose, and
shell scripting we can simplify system deployment to the press of a single button, which is
an important feature for this type of distributed system where the end-user may not have
the required technological know-how. Additionally, easier system redeployment allows
for a more streamlined developing and testing process.
Istanbul-tools is a software designed to easily generate the required configuration files,
given a set of arguments, to set up a correctly configured set of Quorum nodes with IBFT
consensus. It is used to facilitate the generation of configuration files through the mul-
tiple restarts required during the process of development and debugging. The quorum
node is designed to be a lightweight modified fork of geth, some aspects such as consen-
sus mechanisms, the P2P layer, gas pricing among others have been modified in order to
cater toQuorum’s design. Quorum offers two different consensusmechanisms RAFT and

19

IBFT, muchmore suited to a private environment, in turn, the P2P layer in Ethereumwas
modified to function with either of these consensus mechanisms, gas pricing has been re-
moved from quorum, Quorum has also introduced private transactions, which are trans-
actions that can only be seen by a subset of nodes in the network but are still disseminated
throughout the entire network and made private with the usage of cryptography.

Flask is a python library used to prototype web applications, it is used to develop the APIs
required to operate and coordinate the deployed Certitex containers.

3.2 Quorum Blockchain

In Quorum’s white-paper[?], JPMorgan Chase co. explains in detail that Quorum is a
fork from the Ethereum blockchain and the main features added to it. Also it is stated
that Quorum is updated in-line with Ethereum releases.

From the previous chapter, the technologies that best fit our use case were Hyperledger
Sawtooth, Hyperledger Fabric, and Quorum, all of these technologies offer blockchain
accessibility only to a set of known nodes (a private network), and are capable of smart-
contracts. The only other constraint is high transaction throughput, which Hyperledger
Fabric [?] andQuorum [?] are capable of offering. However,Quorum has some other fea-
tures that allow it to stand out aboveHyperledger Fabric for this particular use case. It is
capable of using a Byzantine Fault Tolerant consensus, that unlike Proof ofWork does not
require solving complex cryptographic puzzles but is instead based in a democratic voting
system, which is ideal for smaller supply chain environments because themain constraint
in it is the number of voting entities. Additionally, it offers a Crash Fault Tolerant consen-
sus RAFT that can be used for larger supply chain environments. IBFT consensus offers
the blockchain capability to continue operating even in the presence of malicious nodes
(Byzantine Fault Tolerance), it can tolerate up to (N-1)/3 faulty nodes, whereN represents
the number of nodes in the system. On the other hand, RAFT consensus does not tolerate
malicious nodes but only faulty ones (nodes that have gone offline). While less resilient
than IBFT it offers a larger transaction throughput, whichmay be necessary for large sup-
ply chain environments. As such, Quorum can adapt to the environment in question if
necessary. Additionally, as Quorum is a fork from the Ethereum blockchain which is a
largely established network, there is more accurate information as well as more develop-
ment effort already in place, with that, it is possible to shorten developing time and ease
debugging.

The main goal of Quorum is to be a private and permissioned version of Ethereum that
features stronger privacy solutions as well as boasting more performance. Quorum is a
completely private network where only a set of known and identifiable nodes are capable
of participating. For a node to participate in the network it must be allowed to do so by a
majority of the existing allowed nodes, this is achieved locally on a per-node basis where
each node has recorded every other that it trusts and will communicate with. Addition-
ally, a set of validator nodes are defined in the genesis file, these are the nodes who are
permissioned to validate blocks in the chain. This list of validator nodes can be expanded

20

and reduced by majority voting of all validator nodes. However, this is not registered
on the blockchain itself but locally within each node. It is part of Quorums road-map to
have on-chain validator node voting and that would allow all participants of the network,
both initial and later ones to inspect the set of validator nodes overtime and the votings
each note partook in, this information, just like all other information contained within the
blockchain could not be tampered with.

Figure 3.1: Quorum road-map [?]

The performance increase of Quorums stems mainly from the different approach to con-
sensus mechanisms, in a private and permissioned environment, we can make use of the
IBFT consensus. It allows, for larger performance differences in a setting where there
are smaller numbers of validators. This consensus mechanism would not be efficient
in a public network where all participants would have to be validators. This is due to
how IBFT works. In a small consortium setting, where the number of validators is re-
duced, IBFT works by the set of validators multi-casting messages to each other in three
phases, known as new-round, pre-prepare, prepare and commit over a variable number
of rounds. Each round starts by a proposer node constructing a block and broadcasting
it to the set of validator nodes (new-round phase). Upon receipt of a proposed block val-
idators attest to the validity of that block, if it is valid nodes emit a ”prepare” message
(pre-prepare phase). Upon reception of majority ”pre-prepare” messages nodes emit the
”commit” message (prepare phase). And like the previous step, upon reception of major-
ity ”commit” messages, the block is added to the present validators local blockchains and
distributed through the P2P gossip mechanism present in Ethereum. Each block accep-
tance message is accompanied by a seal generated by the corresponding validator using
public-key cryptography, these seals are added to the final block and can then be audited,
guaranteeing at any point in time that a quorum for that block has been reached, ensur-
ing the properties of the PoW consensus without the costly process of validation. This
however does not scale as well with the number of validators, each validator must receive
and multi-cast messages three times to all others. This exponential growth of messages
quickly loses scalability when compared to PoW.

Finally, Quorum expands upon Ethereum by adding the concept of private transactions,
these are transactions that only affect the private state database of nodes who are allowed
to see this transaction. While this system could be useful for our use case in very large sup-
ply chain environments this was not part of the scope of this project, but can be explored
as part of future work.

21

3.3 Certitex Blockchain

In order to ease system development, deployment, and performance assessment wemade
use of docker to containerize the application in an environment where all the dependen-
cies are installed in their correct version. These can be incrementally updated after test-
ing the system again with their updated versions, making sure that Certitex does not stop
functioning through external action. Currently, each node is made up of three different
inter-connected docker instances with docker-compose. The Quorum node instance, a
master API, and a slave API. Each of these fulfills a specific role that can be logically sep-
arated, as such, if an issue arrives we can easily pin-point it to a docker instance, lowering
theworkload of debugging. TheQuorumnode instance is themain component of theQuo-
rum blockchain network and it handles everything related to blockchain node-to-node
communication, connection establishment, blockchain synchronization, block validation,
block proposing, consensus among other blockchain related operations. The master API
instance is tasked with the addition and removal of nodes to the authorized lists of the
Quorum node instance as well as updating the IPs of nodes already existent in the network
and automated voting of added nodes as validators throughRPC calls to theQuorum node
instance. Whenever one of these APIs in the network receives an update it broadcasts it
to every other master API and applies it, the other master APIs, in turn, re-broadcast the
information and applies it itself, giving the system resilience to communication failures
through redundancy, re-broadcasting will stop eventually. Once an API applies an update
to a particular node the time stamp of that update is recorded with that node. Whenever
an update request is received, if the time stamp present on it is smaller or equal to that
node’s last update timestamp the update request is discarded and is not rebroadcasted,
these updates are applied in reverse order of reception in an attempt to process the most
recent update only, thus discarding outdated updates increasing performance. This guar-
antees that every Quorum node has an updated list of nodes it is allowed to communicate
with. Even though the APIs are a fully connected network, even if the communications
are blocked temporarily the update will be applied as long as the not fully connected API
has a path of connection to all other APIs no matter the depth, as shown in figure 3.2.

Additionally, if a master API node is temporarily disabled (there is no possible path to
communicate to it) itwill eventually receive the updatewhen this connection is re-established
becauseAPIswill record the transmission failure event and re-attempt it in the future. The
entirety of this process is orchestrated by threads, each node has a thread dedicated to ap-
plying modifications to the permissioned list of Quorum, a thread for each other known
node tasked with making requests to that specific node, and a logging thread that records
all events to a file on disk for easier auditing.

The slave API or communication API is in charge of providing an interface for interacting
with the smart-contract, deploying the smart-contracts, and maintaining the link to the
smart-contract through restarts of the system. There are twominor variations of this API,
one of these variations is run by the first node to be initialized in the system or the node
generated by god.sh, if it has no recording of a deployed smart-contract it deploys it and
stores its address. The other variables are present in second-god.sh, third-god.sh and

22

Figure 3.2: API X will eventually receive an update submitted to API Y due to re-broadcasting

prophet.sh in case it does not possess the address of the smart-contract it requests it from
the communication API provided on its initialization parameters, and once it obtains it
stores it locally in case the system restarts in the future. Once the API is finished setting
up it simply waits for requests to arrive through URL, processes the requests checking
parameter correctness, if everything is correct it builds a transaction and submits it to the
Quorum node instance.
In order to automate the process of deploying a node, bash scripting was employed, in a
Quorum network running the IBFT consensus (our network) it is required that the net-
work starts with at least 3 nodes, this is the main reason for the existence of the four dif-
ferent scripts for setting up a node. god.sh generates a network with the minimal (three)
number of authorized nodes, and generates second-god.sh and third-god.sh instantia-
tion files. These later files must be moved to the computers that will be hosting the sec-
ond and third nodes of the system, and once deployed we will have a functioning Certitex
blockchain running the IBFT consensus. Lastly god.sh also generates the instantiation
files for prophet.sh. Prophet.sh is used to deploy all other nodes after the first three. As
such, with this installation setup we allow for a network to easily be set up over time de-
spite the constraints present inQuorum, with the only constraint being, the system is only
online after the deployment of all god nodes.
There are three types of installation scripts, the first one, god.sh, receives five parameters:

• RPC port: Remote Procedure Call port - this is the port through which procedures
to the Quorum instance may be called remotely;

• Geth port: This port is the main Quorum instance port - it’s the port through which
all nodes will communicate to sync blocks, validate blocks, propose blocks, etc, all
blockchain related communication happens here;

• Master API port: This port is the port that will be used by the master API for its

23

communications;

• Slave/Communications API port: this port will be used by the communications API
for all its communications;

• Name: A string that will be used by docker to name the 3 instances of this node for
easier identification.

These are the ports on the main OS, not the docker instance. let’s say that the chosen RPC
port is 8500when there is a connection to the host machine in this port, the host machine
knows that it needs to map it to the docker Quorum instance on port 8545, 8545 is the
value that all RPC ports are mapped to within docker so the mapping for this particular
case would be 8500 on the host machine, would map to the docker Quorum instance on
port 8545, this same process happens to all other ports and can be seen in the figure 3.3.

Figure 3.3: System communications architecture between two nodes.

With all the provided parameters, god.sh can instantiate this first node through the fol-
lowing steps.

1. Checking for previous installation folders of itself, and deletes them if it finds any.

2. Adds rules to the system IPtables to allow communication through all ports received
as parameters

3. Runs instanbul-tools for 3 nodes, thus generating:

• a genesis.json file that needs to be used by every node that joins the network;

• 3 folders, each containing a nodekey, these folders are named ”0”, ”1”, and ”2”
the contents of folder ”0” must be used by node 0, the contents of folder ”1”
must be used by node 1, etc;

24

• a static-nodes.json file, that is a list of all nodes each node is present in the fol-
lowing format: ”EthereumNodeId”@”ipaddress”:”port”?discport=0. Ethereum
node ID directly relates to each aforementioned nodekey, and additionally the
IP address andports aremerely placeholders thatmust be updated later (0.0.0.0:30300).

4. Edits the genesis.json file to a different chainID, this step is not necessary however it
may avoid collisions with other Quorum networks running on the default chainID.

5. Edits the static-nodes.json file to update it’s own entry, correcting the IP address
and ports with its own.

6. copies into a temporary folder all the files required for docker to initialize the node:
genesis.json, static-nodes.json, nodekey,MasterAPI’s executable, the docker-compose
file, etc.

7. It populates the other installations, the Second and Third god’s (thus allowing the 3
node network to be fully set up) as well as the Prophet installation folder that allows
the network to be expanded on demand. For all installation folders, it provides them
the edited genesis.json, the edited static-nodes.json, and specifically for the second-
god and third-god their respective nodekey.

8. Finally it runs the docker-compose file. Once this is complete the node is running.

The second type of bash script is the Second and Third god’s. They receive the same pa-
rameters as the first god (for their own set up), and the IP address and port of another
node that is already running the network (in the case of the Second god it must be the
First god’s IP and port, in the case of the Third god it can be either the First or the Second
god’s). Both these scripts execute exactly the same as the first one however steps 3,4 and
7 are skipped. and before it executes the docker-compose it produces a request to the pro-
vided node’s Master API to update its entry with the correct IP and ports, thus, making
all online nodes update their lists to include it. Note that this is not an ”addition” request
but rather an ”edition” request, since this node already exists in static-nodes.json from
Istanbul-tools it only has incorrect values for IP and Port.
The third and final type of bash script is the prophet script, this script adds a new node to
the network with the validator status, it receives the same parameters are the Second and
Third god’s:

1. Adds rules to the system’s IPtables to allow communication through all ports re-
ceived as parameters

2. runs Istanbul-tools for one node

3. copies into a temporary folder all the files required for docker to initialize the node:
genesis.json, static-nodes.json, nodekey,MasterAPI’s executable, the docker-compose
file, etc.

4. edits static-nodes.json to have it’s IP and Port corrected.

25

5. Makes a request to the provided node’s Master API to be added to the network and
voted as a validator.

6. Runs the docker-compose file. Once this is complete the node is running.

Note that after step 5, all nodes in the network now have their list updated to contain
this new node, additionally, whenever theMaster API receives an addition request (which
all nodes will due to the gossip mechanic) they also make a request to the node they are
adding to add them and broadcast it to the network. This whole process ensures that
eventually, as long as no node is completely isolated from the network all nodes will have
a consistent list containing all nodes in the network including the new node currently
being instantiated.
The docker-compose file is responsible for instantiating the three components of the Cer-
titex node, it starts by instantiating the Quorum node, to do this it begins by creating the
usual folder structure of a geth node.
mkdir -p setup/data/geth

Afterwards, it copies the files provided by it’s creator ”.sh” file
cp /datastore/0/nodekey setup/data/geth/nodekey
cp /datastore/static-nodes.json setup/data/permissioned-nodes.json
cp /datastore/static-nodes.json setup/data/static-nodes.json
cp /datastore/genesis.json setup/genesis.json

It initiates the data directory with the provided genesis files and begins running as a node.
geth –datadir setup/data init setup/genesis.json
nohup geth –datadir setup/data
–permissioned
–verbosity 5
–networkid 1337
–rpc
–nodiscover
–rpcaddr 0.0.0.0
–rpcport 8545
–rpcapi admin,db,eth,debug,miner,net,shh,txpool,personal,web3,istanbul,Quorum
–emitcheckpoints –istanbul.blockperiod 1 –mine –minerthreads 1 –syncmode full
–port 30300

Additionally, it maps out main OS ports to a fixed corresponding port within docker.
ports: - $PORT_RPC: 8545
- $PORT_GETH: 30300

The remaining two docker images follow a similar process, map the provided ports, install
dependencies, run the python web-app. All 3 images for the node are connected to the

26

same data volume, meaning they operate in the same directories as each other, this is
how the master API is capable of updating the lists used by the Quorum node.

3.4 Smart-Contract Implementation

A very large concern on this project is storage space. This concern is reflected in our im-
plementation choices when it comes to smart-contracts. Initially, the idea was to have one
contract per item, as with this approach implementation would be simpler and ownership
could easily be fine-grained. However, through testing, we quickly realized that deploying
smart-contracts is costly storage-wise. As such, our aim was directed at having a single
smart contract governing the entirety of the network.

This smart contract will define what an item is within our system, what operations can be
performed on it, and dictate the conditions that must be met for a certain operation to be
performed. This allows for complex rules and restraints to be applied. In our proof-of-
concept, the smart contract built is a simplified skeleton to demonstrate functionality. In
a production environment, a more developed version that pays attention to the specifics
of the given supply chain should be implemented.

An item within the system is represented by a set of fields that can be seen in Table 3.1:

Table 3.1: Structure of the data representation of each product in the system, with detailed information on
composing fields.

Name Variable Type Description

ProductID Integer A unique identifier of the product linking it to it’s
real world counterpart

ProductType String A short descriptor of the product (Shirt for exam-
ple)

ListHolderID Ethereum Ad-
dresses List

A list of Ethereum that identify the holders of the
product (in order) as it travels through the supply
chain

ListMessages String List A list of messages corresponding one to one with
ListHolderID for any notices related to the trans-
ferring of the product

Exists Boolean A boolean dictating whether or not the item is
still being tracked in the system (allows for soft
deletion of items)

Quantity Integer An integer counting how many products are in
this entry

isBulk Boolean A boolean dictating whether or not the item is be-
ing bulk traced

ListComponentID List of Integer A list of product ID’s that were components to the
creation of this entry enabling tracing through
product transformations

The smart contract is also able of performing operations on the items, the list of operations
can be seen in Table 3.2:

27

Table 3.2: Supported operations of the system, along with their purpose and functionality.

Name Functionality

Create Entry Creates a product entry with initial holder as the account that issued
the transaction, when executed through a slave API! (API!) (as it
should) the holder will be the node that is hosting the slave API!
that is being used.

Transfer Entry Transfers a product entry to another holder, appending to its
holder’s list and messages list.

Merge Entries to new non-
bulk Entry

Merges one or more entries into a new single traced product. [1]

Merge Entries to new bulk En-
try

Merges one or more entries into a new bulk traced product. [1]

Merge Entries to existing bulk
entry

Merges one or more entries into an existing bulk traced product. [1]

Merge bulk entries to singular Merges two bulk traced entries into one
Search for entry Searches for an entry in the list and returns it

[1] If entries being used are bulk traced, a quantity must also be provided, entries fully
used during this process are marked as deleted or have their quantities reduced.

Entry searching makes use of dictionaries to find the correct index within the full list of
entries, making its complexity O(1).
Safeguards have been implemented regarding itemmerging, ensuring that the items that
are being merged are in sufficient quantity and that they still exist within the system.
When an item is fully consumed during the merging process (quantity reduced to zero) it
is soft deleted, by making its Exists flag false.

3.5 Certitex Performance Testing

In this section, the experiments performed in order to gauge the performance and feasi-
bility of the system will be presented and discussed.
To assess the performance of the system, three main metrics must be considered: how
many transaction requests should be sent to the system, how many transaction requests
are actually sent to the system, and howmany of these transaction requests are validated.
Regarding the first metric mentioned, it is expected that a perfect system can receive and
validate any number of transaction requests received. This is difficult to implement in a
real system as several constraints limit performance, such as network costs and available
computational resources. As such, the performance of the system in a real use case is
limited and the limits of the system must be assessed in order to compensate for possible
constraints.
The testbed used in these tests consists of four machines with the same deployment of the
system in a local network, connected by a 1 Gbps switch. Each of these machines acts as
both a peer and a client in the systemand is equippedwith aCPUwith two cores at 4.2GHz
and 16 Gb of RAM, running on Debian GNU/Linux 9.11 (stretch) in x86_64 architecture
with kernel 4.9.0-8-amd64.
As can be seen in the results of the experiments in figure 3.4, the testbed is able to sup-

28

Figure 3.4: Performance graph of the capabilities of handling write transactions by the blockchain system.
The blue bars represents the target sent transaction requests per second. The red bars represents the

number of transactions that are being requested to be inserted on the blockchain system per second. The
orange bars represents the number of transactions that are inserted into the blockchain system, and

therefore, validated.

port generating approximately 315 transactions to be validated by the system per second
and supports validating approximately 300 transactions per second. The main constrain
appears to be on the testbed itself, as it is not capable of generating loads that surpass the
system capacity by a large margin, indicating that if the testbed had more computational
resources, the blockchain throughput would likely see an increase as well.

While the system is not over-capacity, transaction delay (from sent to validated) is, on
average, 515 ms as was expected with a 1 second block time. As the system gets over-
loaded and transactions are placed in a queue, delays begin increasing and get progres-
sively worse until the load becomes lower than the system capacity. However, no trans-
actions were dropped during testing.

3.6 Conclusion

In this chapter, we discussed the key aspects of the Quorum and its main advantages over
its base technology Ethereum for our use case. We also overviewed all the technologies
used in the Certitex blockchain. As well as its development process, implementation, and
design. Each node in Certitex contains three modules, the blockchain module itself pow-
ered by Quorum, where a copy of the ledger is stored and maintained. A connectivity
module that communicates with other nodes broadcasting information regarding itself
and other nodes it knows thus automating the connectivity process of the peer-to-peer
network that is a blockchain. A smart contract interface module allowing users to interact
with the smart contract that holds the logical rules required to create digital representa-
tions of products and combine, transform, and transfer them to other entities, thismodule
ensures that the smart contract is deployed and coordinates with its peers to ensure that
all participants in the system are interacting with the same smart contract. Additionally,

29

we go over the performance testing of the Certitex blockchain.

30

Chapter 4

Machine Learning

4.1 Introduction

The goal of this chapter is to explain how the machine learning module, which was devel-
oped to function in tandem with Certitex, works. The main goal of this module is to add
prediction functionality based on all the data Certitex can collect over time.
In section 4.2 we introduce the used data set and how it was initially processed.
In section 4.3 we apply some statistical-based methods in order to predict optimal paths
for products based on our initial processing of the data set. Additionally, we go over why
this approach would not work.
In section 4.4 we discuss how the data set was enhanced with additional data and further
processing in order to achieve a workingmachine learningmodule that would yield useful
information. In it, we go over improving the simulated environment with further process-
ing of the data set, generating additional data, how results were extracted, and explain the
machine learning model developed.

4.2 Data set

Name New York City Bike Share Dataset

Licensing CC BY-NC-SA 4.0

Dataset Size
126MB

735503 entries by 17 features

This dataset contains information about several trips users of a public bike renting system
in New York have taken. Because we do not possess real-life information about supply
chain logistics this was a good approximation to the transportation of goods between the
several entities involved in a supply chain. The dataset contains the following features
and in parenthesis how those features were adapted to our problem:

• Trip Duration (Time of travel for a particular transportation of goods between enti-
ties)

• Start Time (Date of the trip, used for seasonal feature extraction)

• Stop Time (discarded)

• Start Station ID (ID of the start entity in this transportation)

• Start Station Name (discarded)

31

https://creativecommons.org/licenses/by-nc-sa/4.0/

• Start Station Latitude (Latitude of this entity)

• Start Station Longitude (Longitude of this entity)

• End Station ID (ID of the end entity in this transportation)

• End Station Name (discarded)

• End Station Latitude (Latitude of this entity)

• End Station Longitude (Longitude of this entity)

• Bike ID (discarded)

• User Type (discarded)

• Birth Year (discarded)

• Gender (discarded)

• Trip_Duration_in_min (discarded)

To adapt this data set to the environment of a supply chain we made use of NetworkX to
create a directed graph. The nodes of the graph represent the several stations present in
the data set (or our entities in the supply chain) and the edges of the graph represent the
existence of at least twenty-five trips between those stations a simplified version of the
graph can be seen in Figure 4.1.

Figure 4.1: Time and distance analysis of 50 paths for shirt production. The X-axis represents time in
seconds and the Y-axis represents the distance in kilometers.

The nodes contain information relative to the station’s latitude and longitude in order to
be able to produce an accurate image where the nodes’ position and distance are accu-
rate to real life. The edges between those nodes contain a count of the number of trips

32

between them and represent the several rows of our data set. We removed all edges with
less than 25 trips, to eliminate connections that the data set has too few entries about.
Next, we attributed to each node randomly an ”entity type” from among the following:
factory, storage, and retailer. After this we calculated all simple paths, this is paths with
no repeated nodes, from possible start positions of a product or component, possible start
positions are factory or storage, to all other nodes. This is to represent as many diverse
and complex supply chain production cycles, while in some cases the production cycle
may involve only transportation between a factory and a storage facility, in other cases
these production cycles may involve many trips between different factories. To each of
these paths, a final product was randomly attributed as well. So we created a list of data
structures that look like the following:

[[StationID,StationID,...] , [Product]]

4.3 Statistical Prediction of Optimal Paths

Using the data set created in 3.2wemay begin training amodel that finds themost suitable
routes for producing any particular item. To achieve this we started analyzing this list of
paths statistically. By iterating over the path we incrementally calculate the total distance
traveled using the Haversine formula. This formula calculates the great-circle distance
between two points – that is, the shortest distance over the earth’s surface from the initial
station’s latitude and longitude to the end station’s latitude and longitude. This is a quick
approximation of the actual travel distance between the stations. Another option was
explored to give us the actual distance traveled by road.
Using google maps however this option is free of charge for only a limited number of uses.
To begin extracting useful information from the data set, a statistical analysis functionwas
built, that given a product ”X” would return a Cartesian graph where each dot represents
a path in the system to produce ”X”, the value where this dot falls in the X-axis represents
the time in seconds and the Y-axis the distance in Kilometers. A sample of this graph can
be seen in Figure 4.2.
With this initial form of data processing, we attempt to give the user of the end system a
rough answer to the question ”What is the faster way to produce product ’X’?”
However, this prediction was rather simple and did not take into account a lot of variables
present in real-world situations such as:

• Themodel only takes into account travel time between stations, it does not consider
production times as such, which makes storage facilities just an unnecessary point
in a path and mostly under-used;

• The model only considers very simple production paths, where raw material jour-
neys through a series of factories and storages until it finally reaches a retailer;

• The model does not improve over time, it only averages the times of the trips it has
records of, this means that it does not take into account important factors of cloth
production such as seasonality or even simpler things such as weekends or days off.

33

Figure 4.2: Time and distance analysis of 50 paths for shirt production. X axis represents time in seconds
and Y axis represents distance in kilometers.

4.4 Improved Real World Simulation

4.4.1 Improving the simulated environment

In order to improve on the simple model built-in section 4.3 we began by improving the
simulation to make it more similar to reality. We began by generating item production
patterns. For example, a pattern of production would be raw material ”a” in conjunction
with raw material ”b” would make finished product ”A” (mind the capitalization). These
production patterns are generated automatically and randomly, can have varying depths
and heights. A pattern with depth 2 and height 3 would look like the 4.3

Figure 4.3: Production pattern example of a real world pants manufacturing process.

While generating the production patternsmentioned previously we also determine the set
of items that we will be working with. Production patterns will repeat items to simulate
as many complex supply chain environments as possible. For example, as seen in picture
4.3, the raw material ”textile” is used in the production of pants, but it may also be used
in producing many other products.

34

We then divided factories and storages into two, the raw materials section, and the fin-
ished product section. Members of the first group will have a predisposition to work with
non-finished goods (from now on denoted with a non-capital letter) and the second group
with finished goods (denoted with capital letters). After their alignment is set we finally
attribute to each node their set of products. For storage facilities, this list will determine
the items they are capable of storing, for factory facilities it determines the items they are
capable of producing, and for retailers, the finished products it sells. Each node’s respec-
tive list varies in size and is randomly determined.
After tweaking the parameters overmultiple runs in order to reach a good balance of node
types as well as item and production pattern variety while still allowing the data set to
provide a vast amount of paths per production pattern, we ended up with a graph with the
following properties, which will be used for the rest of the explanation:

• Number of nodes: 55

• Average connections per node: 27

• Number of factories / storages / retailers: 15/32/8

• Number of raw materials/ finalized products: 4/3

In figure Figure 4.4 we can visualize the production patterns we will be working with.

Figure 4.4: Generated production patterns that will be considered.

4.4.2 Generating Production Values

Now that we added more real-world properties to how items are produced and which
node works with which product, as well as how those items are combined into finalized
products, work begun on adding realism to the nodes themselves. Each factory at any
given point will only have a certain amount of items it can produce, that will vary over
time, additionally, storage facilities will have some products already in stock throughout
the year that were produced previously and remain unused, this will solve the previously

35

mentioned problem where storages were only adding one more step to the production
chain rendering them useless.
This data is artificially generated based on realistic factors such as factory production ca-
pacity correlates with the number of nodes it is connected to. Factories have preferred
seasons and days of the week. A randommodifier is applied to each day that further adds
variability to the results and is meant to represent a good and productive day versus a bad
less productive day.
The node’s Base amount is determined via the addition of a set of numbers repeatedly
drawn from a normal distribution with a mean of 10 and standard deviation of 5, the
number of draws is based on the node’s neighboring nodes.

BaseProduction = min(
∑N

n=0N (10, 5), 10)

where N represents the number of nodes direcly connected to this one.

In addition, we add temporal variation via an extra variable ”X” that varies from 0.3 to
-0.3 based on season and day of the week. So in a given day, a factory’s production will be
determined by the following formula:

BaseAmount+N (BaseAmount ∗X,BaseAmount ∗ 0.05) +BaseAmount ∗Modifier

Generally, a factory will have a stable production throughout the year, with slight devi-
ations due to the modifier and day of the week and noticeably larger seasonal variability.
Additionally, a default value of two hundred itemswas added to each storage. This process
was applied to the graph for a large length of time (ten years) and the results were saved.
With this new and improved simulation, we have fixed many of the issues listed before as
well as addmany new features such as seasonal variability and flexible patterns of produc-
tion. With this as a base, it would now be interesting to build a model that, while based on
this semi-fictitious data, would be able to, in the future, use real data and extract useful
information. The problem to be solved was: Given any particular finalized product and
a retailing facility, what are the possible ways to get any amount of the finalized product
to this retailer with a detailed journey (all nodes and paths used and for what reason),
ranked by time.

4.4.3 Extrapolating results

In order to extrapolate useful results a prediction function that receives as input the final
product, the target node (a retailer), an amount of that product, and a snapshot of the
previously generated data was made. The algorithm looks for solutions going through
the production patterns in a reverse fashion. To exemplify this, let’s use the production
patterns for product ”A” present in Figure 4.4 and explain the algorithm step by step.
As stated before the algorithm knows that we are trying to produce ”A”, it also knows that
we have a target retailer to deliver the products to. Let’s also assume that we need to de-
liver 400 of ”A” to this target retailer. Initially, the algorithm creates a list of all production

36

patterns that allow us to produce the target item, so a) and b). As aforementioned, we iter-
ate through the production patterns in a reverse fashion so from maximal depth to depth
zero. As such, maximal depth for all production patterns is the finished product ”A”, in
this step, the algorithm tries to transport already produced ”A” that is present in storage
facilities to the target retailer. A helper graph is constructed where it’s node’s are the tar-
get node and all storage facilities that work with the product ”A”, the edges for this graph
are created if we have entries in the New York City Bike Share Data set of trips between a
storage facility and the target retailer node. In other words, the graph will be a collection
of all storage facilities of ”A” and a retailer (our target retailer) where these storage facili-
ties may or may not have an edge leading to the retailer depending on data present on our
dataset. The edges also have two additional attributes ”time” and ”distance”. The time
is the average number of time taken from all trips registered from one node to the other
target node and the distance, is the distance calculated by the Harsevenian formula of the
GPS coordinates of the two nodes. Now to calculate the results for depth zero, with this
new graph, all that we need to do is calculate the weighted paths (in this case our weight
is the time attribute), from all nodes to the target node and append each calculation to the
results in the following format:

[CapacityForThisLine, time, distance, [pathAndProduct]]

Figure 4.5: Small sample of production patterns.

With the depth zero results calculated we may move on to the more complex next step of
calculating depth one, in this depth we need to consider the fact that each product may
be the conjunction of several linear production patterns, looking at b) in Figure 4.5 this
production pattern is in reality constituted by the two simpler production patterns of:

b → A

c −→ A

37

Additionally, we must consider the fact that there may be more than one production pat-
tern per end product, this is in place to simulate the fact that some factories resulting in-
termediate products are incompatible with other factories’ manufacturing processes. For
example, a factory’s resulting intermediate product may be more processed than another
which leads to some factories being able to complete it into a finished product whilst oth-
ers can not. As such the algorithmmust, for each production pattern with the desired end
product calculate the fastest route to get the required intermediate product(s) to a factory,
this factory will transform the intermediate product(s) into the desired final product and
finally, this product must be transported to the target retailer. To exemplify this we will
use the set of production patterns present in Figure 4.5.

For final product A we begin with production pattern a), we build a graph containing all
storage facilities of product a and all factories that can transform this product into final
product A. After this we must connect all the added storage facilities to all the factories,
this is done through the dataset, if we have recordings of travels between the nodes the link
is created, it is always a one-way edge from storage to a factory, this is because this is the
only way products will flow, and each edge will have a weighting and a distance attribute
calculated from the average recordings present. Finally, the target retailer node is added
and all factories connect to this node, just like before with the same attributes through
the use of the dataset. With the completed graph we can use NetworkX to calculate the
weighted paths starting from storages of a to the retailer node. Due to how the graph was
built the results of this calculation are always valid paths, they start with intermediate
product a, transport it to a factory that is capable of transforming it into final product A
and are then transported to the desired retailer. The result of this production pattern is,
just like before:

[CapacityForThisLine, weight/time, distance, [pathAndProduct]]

This same process is repeated for production pattern b) with some key differences, in
this case, as stated before this production pattern is the union of two simpler production
patterns, each of these simpler production patterns is calculated individually yielding a
list of intermediate results. These intermediate results contain paths that only include
product c, or only product b, or both. They are thenmerged among themselves so that the
pattern is fully completed. The result must contain both intermediate products b and c,
In this merging process the time attributed to each path is the largest time out of all the
sub-products and the smallest capacity. For example, if we have these two intermediate
results being merged:

[100, 360, 200, [[[3191, 3267, 3186], [’b’]]]]
[150, 400, 250, [[[3270, 3267, 3186], [’c’]]]]

would result in the final path: [100, 400, 250, [[[3270, 3267, 3186], [’c’]], [[3191, 3267,
3186], [’b’]]]]

Telling exactly how each item should be transported, for c, from storage 3270 to factory
3267 and b from storage 3191 to the same factory 3267, where they are merged into final
product A and then finally transported to the target retailer 3186, and this process would
take (considering only transportation times) 400 seconds. It is a small value due to the

38

dataset selection that depicts travel times anywhere between 30 seconds and 10 minutes,
however, if real-world data were to be used the results would become realistic as well.

4.4.4 Machine Learning

The only part of the result that has not been explained it’s the value at index 0 of all
the shown results, ”CapacityForThisLine”. This value is the result of a machine learn-
ing model developed. In the previous section, we talked about how we generated artificial
data, where each factory would have a production capacity per day. This data is then used
to train a long short-term memory neural network to predict the production capacity for
any given day based on the generated data. Allowing us to attempt to predict the future
production capacity of all factories in the system.
In the Figure 4.6 we can see a graph where the production capacity of a factory is plotted
over time, we can also notice the seasonality trend for this particular factory, in this case
there is an increase in production during autumn:

#Items

Year

Figure 4.6: Factory production variation over 10 years with one reading per day

To train a model on this data it was first processed in order to reduce the magnitude of
variation between values. To do this we first calculate the average number of items for the
whole set and take it away from each value. after this we re-map the values into a zero to
one scale. where the largest value of the set would be one, and the smallest zero. Starting
with an initially simple 4 layer network consisting of the input layer, a long short-term
memory layer, a dense layer, and finally the output layer we began by testing different
configurations until we achieved satisfactory results.
Firstlywebeganby splitting the data into three disjoint sets, train (80%), validation (10%),

39

and test (10%) set. The training set was used to adjust the weights of the neural network,
the validation set was used to test the evolution of the network throughout its training,
and to stop training it if it constantly did not improve during twenty training epochs and
the test set was used to score the neural network’s performance at the end.
We first began by tweaking the look-back value of the LSTM layer. This change provided
the most impact on the results. If there is at least one year of data stored, the model
improves significantly. The results can be seen in Table 4.1. Nevertheless, the obtained
results were always superior to statistical approaches such as the naive approach and the
moving average approach. This comparison can be seen in Table 4.3

Table 4.1: Root Mean square error in the test group for neural networks trained with a varying number of
lookback in the long short-term memory layer

Look back Test Root Mean Square Error
7 20.33
31 18.35
62 19.59
93 15.30
186 15.69
365 9.11

Thenwe continued by tweaking the LSTM layer by changing the number of neurons, start-
ing with two, incrementing by two, and finishing at eighteen, the results can be seen in
Table 4.2, The number of present neurons did not impact the results significantly so the
layer was left with two neurons. Keeping this value lowwill significantly decrease training
times.

Table 4.2: Mean square error in the test group for neural networks trained with a varying number of
neurons in the long short-term memory layer

Neurons Test Root Mean Square Error
2 9.11
4 9.12
6 9.44
8 9.10
10 9.35
12 9.23
14 9.14
16 9.50
18 9.80

Table 4.3: Moving averages calculated from the x previous values, x in parenthesis

Ours 9.11
Naive 18.23

Moving Average(2) 24.96
Moving Average(5) 24.96
Moving Average(10) 32.54

With an optimized number of neurons and a look back for that number of neurons that
on average yields a result only nine products away from the actual value in the testing
set, we have achieved results twice as accurate as of the best statistical model. The model

40

takes on average sixty-eight seconds to train using CPU on an Intel(R) Core(TM) i7-7700
CPU @ 3.60GHz. The results of the training can be seen in Figure 4.7, and the network
architecture can be seen in Figure 4.8.

Generated production values
Predictions in training set
Predictions in test set

Generated production values
Predictions

#Items

Day

Figure 4.7: Raw production values, train set/validations set predictions and test set predictions of the
neural network

Input
Layer

...

As many as
the lookback

value

LSTM
Layer

Fully
Connected

Dense
Layer

Fully
Connected

Output
Layer

Fully
Connected

Figure 4.8: Final network architecture.

With the production capacity for each line now being predictable, the algorithm is now
capable of providing a list of production paths for each product to a specific target retailer,
ordered by the expected duration of the path as well as giving us the information as to how
many items it predicts that path will be capable of outputting at any given day. The results

41

will be exemplified in the following paragraphs for transporting a finalized product ”C”
with regards to the aforementioned production patterns in Figure 4.4.

1. [200, 232.61594989561587, [[3213, 3186], ['C']]]

2. [200, 332.4891025258255, [[3209, 3186], ['C']]]

3. [200, 393.0569482440958, [[3203, 3186], ['C']]]

4. [182.65, 1692.6125829034636, [[[3192, 3267, 3186], ['b']],
[[[3191, 3267, 3186], ['c']]]]]}

5. ...

In this case, there was only one pattern for producing item C as seen in Figure 4.4 inter-
mediate product b and c together are transformed into C. The results can be interpreted
as follows:

1. There is a possibility to transfer 200 (index 0) of product C (index 4) taking 232.6
units of time (index 1) starting from Storage facility 3213 (index 2) and ending in
retailer 3186 (the target).

2. There is a possibility to transfer 200 (index 0) of product C (index 4) taking 332.4
units of time (index 1) starting from Storage facility 3209 (index 2) and ending in
retailer 3186 (the target).

3. There is a possibility to transfer 200 (index 0) of product C (index 4) taking 393.1
units of time (index 1) starting from Storage facility 3203 (index 2) and ending in
retailer 3186 (the target).

4. This is the case where we will produce product C without directly transporting it
from storage facilities. In this suggestion, we produce it at factory 3267 which is
estimated to be able to produce 182 products at this point (index 0) based on the
aforementionedmachine learningmodel. The production path advised is to transfer
product b from storage 3192 to factory 3267 and product c from storage 3191 to
factory 3267, where it will be turned into product C and then transferred into the
target retailer

4.5 Conclusion

This chapter described the creation of a pluggable module for Certitex. From an initial
statistical prototype module based on randomized pathing to an LSTM-based machine
learning model that, with some adaptations to the data set, closely resembles a real-world
supply chain network. This was achieved through the use of the ”NewYork City Bike Share
Dataset” with some adaptations and data generation. In the end, we have a complex graph
of nodes whose connections are dictated by the data set. Nodes will have a type randomly
attributed from the set ”factory”, ”storage” and ”retailer” and a set of products that they

42

work with. Additionally, randomized production patterns are simulated that dictate how
items are merged throughout the supply chain in order to obtain finalized products. Fac-
tory nodes also have generated their daily production quantities based on factors such as
season, number of connections to other nodes, and other modifiers. Using this generated
data, the machine learning model was built. It is capable of predicting production capac-
ity for any factory on a given day, with an estimated error of about 1.63%. This machine
learning module serves to feed an algorithm capable of outputting the estimated delivery
travel of all possible paths present in the supply chain capable of producing or transport-
ing an item to a retailer based on the generated production patterns, and also the list of
products each node works with and the connections between nodes given by the data set.

43

44

Chapter 5

Final Considerations and Future Work

5.1 Main Conclusions

Recent advances in blockchain technology in recent years has led to several breakthroughs
and paradigm changes in the possible uses of the technology. Developing solutions that
allow for blockchains to bemanagedprivately are the aimof a lot of criticismdue to contra-
dicting one of the blockchains’ main design features. However, it has allowed blockchains
to serve as a middle ground between fast and secure in environments where there are
many stakeholders, such as a supply chain. To illustrate this, a blockchain-based con-
ceptual system is proposed and prototyped, and tested. Alongside this prototype, other
modules were developed to demonstrate the flexibility and capabilities of the prototype
itself. This includes a demonstration application providing an interface through which
data can be inserted, processed, and extracted from the system. Additionally, a machine
learning module was developed to demonstrate how data that could be inserted into the
system can be used to provide valuable information to the users. If a blockchain system
following the guidelines that were used to develop the proof of concept were to be intro-
duced in a real-world supply chain, it is believed that many of the issues stated in this
dissertation would be reduced or even eliminated, while providing a framework for many
other useful features to be implemented.

The main objective of this thesis was to study how to use blockchain technology in supply
chain environments, introducing the advantages commonly associated with blockchain
and to tackle the challenges associated with more traditional supply chain management
strategies. To achieve this a study on blockchain technology was conducted and thor-
oughly analyzed in order to create a conceptual system proposal. Based on this proposal,
a proof of concept prototype was developed and tested, and its performance was accessed.

The integration of This project into a real world situation is the main focus of future work
for this thesis. As such, all of the proposed objectives for this dissertation work were suc-
cessfully completed.

5.2 Future Work

To conclude this work, suggestions of research directions for future work will now be pre-
sented:

• Integration of Certitex into a large scale supply chain ecosystem study it’s impacts
and possible flaws, as well as using Certitex to collect data;

45

• Perform quality of life improvements such as migrating the API engine from its cur-
rentWerkzeugWSGI to a production-oriented variant allowing for the API’s to keep
up with the increase in data input. As well as adapt the system to any other issues
that may arise from real-world implementation;

• With the real-world data collected develop a module that would translate this data
into a format usable by themachine learningmodule into this project and access it’s
performance;

• Develop other modules that much like the machine learning module already devel-
oped, can make use of the collected information to produce meaningful output for
the user.

46

	Introduction
	Problem Description
	General Concepts
	Blockchain
	Long Short-Term Memory

	Adopted Approach
	Main Objectives
	Main Contributions
	Document Organization

	Blockchain Technologies Analysis
	Introduction
	Technology Analysis
	Ethereum
	Quorum
	IoTA
	HyperLedger Fabric
	HyperLedger Sawtooth

	Textile Industry Supply Chain
	Ethereum
	Quorum
	IOTA
	Hyperledger Fabric
	Hyperledger Sawtooth

	Conclusion

	Certitex Blockchain
	Used Technologies
	Quorum Blockchain
	Certitex Blockchain
	Smart-Contract Implementation
	Certitex Performance Testing
	Conclusion

	Machine Learning
	Introduction
	Data set
	Statistical Prediction of Optimal Paths
	Improved Real World Simulation
	Improving the simulated environment
	Generating Production Values
	Extrapolating results
	Machine Learning

	Conclusion

	Final Considerations and Future Work
	Main Conclusions
	Future Work

