UNIVERSIDADE
BEIRA INTERIOR

i

Artificial Vision for Humans

Joao Gaspar Ramoa Gomes

Dissertacao para obtencao do Grau de Mestre em

Engenharia Informatica
(29 ciclo de estudos)

Orientador: Prof. Doutor Luis Filipe Barbosa de Almeida Alexandre
Co-orientador: Prof. Doutor Sandra Isabel Pinto Mogo

junho de 2020

il

Dedicatoria

Dedico esta dissertacao a todos os invisuais, para que a sociedade inclusiva seja, cada vez
mais, uma realidade flagrante.

iii

v

Agradecimentos

A conclusio e realizacao desta dissertagao de mestrado contou com inimeros incentivos
e encorajamentos que, sem os quais, a realizacdo da mesma seria impossivel.

Em primento lugar, agradeco ao Professor Doutor Luis Alexandre por todos os con-
tributos que fizeram com que este trabalho fosse possivel. Agradeco, também, cada uma
das suas palavras, carregadas de conhecimento, pois, ndo s6 me ajudaram no trabalho,
como também contribuiram para o meu crescimento pessoal. Sem o Professor, jamais
este projeto teria sido possivel. Obrigado Professor Luis Alexandre por fazer parte do
meu trabalho e por ter contribuido para a minha evolu¢ao como ser humano. Estar-lhe-ei
eternamente grato.

Imprescindivel também é o agradecimento a minha co-orientadora Professora Doutora
Sandra Mogo, pelo seu estimulo e pelos contributos que fizeram toda a diferenca neste
trabalho. Obrigado por me ajudar a compreender que o conhecimento é resultado de
varias interfaces e nunca é estanque. Bem-haja Professora Doutora Sandra Mogo.

Aos meus colegas do SOCIA-LAB por todo o apoio que me deram no meu trabalho e por
criarem um ambiente proporcionador de golpes de asa. Sao eles, por ordem alfabética, ja
que por outra nao fazia sentido: Abel Zacarias, André Correia, Anténio Gaspar, Bruno
Degardin, Bruno Silva, Ehsan Yaghoubi, Nuno Pereira, Nzakiese Mbomgo, Saeid Alireza-
zadeh e Sérgio Goncalves.

Um agradecimento muito especial ao Vasco Lopes pelo apoio e motivac¢ao constantes.

Agradeco a todos os meus amigos por compreenderem que nem sempre foi possivel
estar com eles e, mesmo assim, nunca deixaram de me chamar, tendo-me dado sempre
alento para continuar.

Aos meus pais, Joao Castro Gomes e Monica Ramoa. A minha irm3, Antonieta. Por
todos os dias que cheguei tarde a casa, por todas as refeicoes fora de horas e por todo o
tempo que nao pude estar convosco. Muito obrigado pelo vosso apoio e por terem acre-
ditado sempre em mim.

Resumo

De acordo com a Organizacdo Mundial da Satide e A Agéncia Internacional para a Pre-
vencdo da Cegueira 253 milhdes de pessoas sdo cegas ou tém problemas de visdo (2015).
117 milhGes tém uma deficiéncia visual moderada ou grave a distancia e 36 milhoes sao to-
talmente cegas. Ao longo dos anos, sistemas de navegacao portateis foram desenvolvidos
para ajudar pessoas com deficiéncia visual a navegar no mundo. O sistema de navegacao
portétil que mais se destacou foi a white-cane. Este ainda é o sistema portatil mais usado
por pessoas com deficiéncia visual, uma vez que é bastante acessivel monetariamente e é
solido. A desvantagem é que fornece apenas informacoes sobre obsticulos ao nivel dos
pés e também nao é um sistema hands-free. Inicialmente, os sistemas portateis que es-
tavam a ser desenvolvidos focavam-se em ajudar a evitar obsticulos, mas atualmente ja
nao estao limitados a isso. Com o avanco da visao computacional e da inteligéncia arti-
ficial, estes sistemas nao sdo mais restritos a prevencao de obstaculos e sdo capazes de
descrever o mundo, fazer reconhecimento de texto e até mesmo reconhecimento facial.
Atualmente, os sistemas de navegacgao portateis mais notaveis deste tipo sdo o Brain Port
Pro Vision e o Orcam MyEye system. Ambos sao sistemas hands-free. Estes sistemas
podem realmente melhorar a qualidade de vida das pessoas com deficiéncia visual, mas
nao sao acessiveis para todos. Cerca de 89% das pessoas com deficiéncia visual vivem em
paises de baixo e médio rendimento. Mesmo a maior parte dos 11% que nao vive nestes
paises nao tem acesso a estes sistema de navegacao portatil mais recentes.

O objetivo desta dissertacao é desenvolver um sistema de navegacao portatil que através
de algoritmos de visao computacional e processamento de imagem possa ajudar pessoas
com deficiéncia visual a navegar no mundo. Este sistema portatil possui 2 modos, um
para solucionar problemas especificos de pessoas com deficiéncia visual e outro genérico
para evitar colisdes com obstaculos. Também era um objetivo deste projeto melhorar
continuamente este sistema com base em feedback de utilizadores reais, mas devido a
pandemia do COVID-19, ndo consegui entregar o meu sistema a nenhum utilizador alvo.
O problema especifico mais trabalhado nesta dissertacao foi o Problema da Porta, ou em
inglés, The Door Problem. Este é, de acordo com as pessoas com deficiéncia visual e cegas,
um problema frequente que geralmente ocorre em ambientes internos onde vivem outras
pessoas para além do cego. Outro problema das pessoas com deficiéncia visual também
abordado neste trabalho foi o Problema nas escadas, mas devido a raridade da sua ocur-
réncia, foquei-me mais em resolver o problema anterior. Ao fazer uma extensa revisao
dos métodos que os sistemas portateis de navegacao mais recentes usam, descobri que os
mesmos baseiam-se em algoritmos de visdo computacional e processamento de imagem
para fornecer ao utilizador informacées descritivas acerca do mundo. Também estudei
o trabalho do Ricardo Domingos, aluno de licenciatura da UBI, sobre, como resolver o
Problema da Porta num computador desktop. Este trabalho contribuiu como uma linha
de base para a realizacdo desta dissertacao.

vii

Nesta dissertacao desenvolvi dois sistemas portateis de navegacao para ajudar pessoas
com deficiéncia visual a navegar. Um é baseado no sistema Raspberry Pi 3 B + e o outro
usa o Jetson Nano da Nvidia. O primeiro sistema foi usado para colectar dados e o outro é
o sistema prototipo final que proponho neste trabalho. Este sistema é hands-free, nao so-
breaquece, é leve e pode ser transportado numa simples mochila ou mala. Este prototipo
tem dois modos, um que funciona como um sistema de sensor de estacionamento, cujo
objectivo é evitar obstaculos e o outro modo foi desenvolvido para resolver o Problema da
Porta, fornecendo ao utilizador informacoes sobre o estado da porta (aberta, semi-aberta
ou fechada). Neste documento, propus trés métodos diferentes para resolver o Problema
da Porta. Estes métodos usam algoritmos de visdo computacional e funcionam no pro-
tétipo. O primeiro é baseado em segmentacao semantica 2D e classificagdo de objetos
3D, e consegue detectar a porta e classifica-la. Este método funciona a 3 FPS. O segundo
método é uma versio reduzida do anterior. E baseado somente na classificacio de obje-
tos 3D e consegue funcionar entre 5 a 6 FPS. O tltimo método é baseado em segmentacao
semantica, deteccao de objeto 2D e classificacdo de imagem 2D. Este método consegue
detectar a porta e classifica-la. Funciona entre 1 a 2 FPS, mas é o melhor método em ter-
mos de precisao da classificacdo da porta. Também proponho nesta dissertacdo uma base
de dados de Portas e Escadas que possui informacoes 3D e 2D. Este conjunto de dados foi
usado para treinar os algoritmos de visao computacional usados nos métodos anteriores
propostos para resolver o Problema da Porta. Este conjunto de dados esta disponivel
gratuitamente online, com as informacoes dos conjuntos de treino, teste e validacao para
fins cientificos. Todos os métodos funcionam no prototipo final do sistema portatil em
tempo real. O sistema desenvolvido é uma abordagem mais barata para as pessoas com
deficiéncia visual que nao tém condi¢oes para adquirir os sistemas de navegacao portateis
mais atuais. As contribuicoes deste trabalho sao: os dois sistemas de navegagao portateis
desenvolvidos, os trés métodos desenvolvidos para resolver o Problema da Porta e o con-
junto de dados criado para o treino dos algoritmos de visdao computacional. Este trabalho
também pode ser escalado para outras areas. Os métodos desenvolvidos para detecgao e
classificacao de portas podem ser usados por um robo portatil que trabalha em ambientes
internos. O conjunto de dados pode ser usado para comparar resultados e treinar outros
modelos de redes neuronais para outras tarefas e sistemas.

Palavras-chave visio computacional, Classificacao de objetos 3D e 2D, Seg-
mentacao semantica, Pessoas com deficiéncia visual, Detecao e Classificacao de portas,
Camera 3D, Sistema portatil, Detecao de objetos 2D, Conjunto de dados de imagens 3D e
2D, sistemas de baixo consumo energético, tempo real.

viii

Resumo alargado

De acordo com a Organizag¢dao Mundial da Satide e A Agéncia Internacional para a Pre-
vencdo da Cegueira 253 milhGes de pessoas sao cegas ou tém problemas de visao (2015).
117 milhGes tém uma deficiéncia visual moderada ou grave a distancia e 36 milhoes sao to-
talmente cegas. Ao longo dos anos, sistemas de navegacao portateis foram desenvolvidos
para ajudar pessoas com deficiéncia visual a navegar no mundo. O sistema de navegacao
portatil que mais se destacou foi a white-cane. Este ainda é o sistema portatil mais usado
por pessoas com deficiéncia visual, uma vez que é bastante acessivel monetariamente e é
solido. A desvantagem é que fornece apenas informacoes sobre obstaculos ao nivel dos
pés e também nao é um sistema hands-free. Inicialmente, os sistemas portateis que es-
tavam a ser desenvolvidos focavam-se em ajudar a evitar obstaculos, mas atualmente ja
nao estdo limitados a isso. Com o avango da visao computacional e da inteligéncia arti-
ficial, estes sistemas nao sao mais restritos a prevencao de obstaculos e sao capazes de
descrever o mundo, fazer reconhecimento de texto e até mesmo reconhecimento facial.
Atualmente, os sistemas de navegacao portateis mais notaveis deste tipo sao o Brain Port
Pro Vision e o Orcam MyEye system. Ambos sao sistemas hands-free. Estes sistemas
podem realmente melhorar a qualidade de vida das pessoas com deficiéncia visual, mas
nao sao acessiveis para todos. Cerca de 89% das pessoas com deficiéncia visual vivem em
paises de baixo e médio rendimento. Mesmo a maior parte dos 11% que nao vive nestes
paises ndo tem acesso a estes sistema de navegacao portatil mais recentes.

O objetivo desta dissertagao é desenvolver um sistema de navegacao portatil que através
de algoritmos de visao computacional e processamento de imagem possa ajudar pessoas
com deficiéncia visual a navegar no mundo. Este sistema portatil possui 2 modos, Generic
Obstacle Mode e Door Problem Mode. O primeiro serve para evitar colisoes com obstacu-
los e 0 segundo para solucionar problemas especificos de pessoas com deficiéncia visual
como o Problem da Porta. Também era um objetivo deste projeto melhorar continua-
mente este sistema com base em feedback de utilizadores reais, mas devido a pandemia
do COVID-19, ndo consegui entregar o meu sistema a nenhum utilizador alvo. O prob-
lema especifico mais trabalhado nesta dissertacao foi o ja referido Problema da Porta,
ou em inglés, The Door Problem. Este é, de acordo com as pessoas com deficiéncia vi-
sual e cegas, um dos problemas mais frequentes que geralmente ocorre em ambientes
internos onde vivem outras pessoas para além do cego. As pessoas com deficiéncia vi-
sual batem com a testa na esquina da porta se a mesma for deixada entreaberta. Com
portas fechadas ou totalmente abertas ndo ha problema mas com portas entre-abertas as
pessoas antes de chegarem ao manipulo da porta batem contra a mesma com a cabeca.
Outro problema das pessoas com deficiéncia visual também abordado neste trabalho foi
o Problema nas escadas, mas devido a raridade da sua ocurréncia, foquei-me mais em
resolver o problema anterior. Este problema é raro de ocorrer porque s6 acontece em
ambientes desconhecidos e geralmente nestes ambientes os cegos andam acompanhados
com as suas white-cane e entao facilmente poderao detetar escadas, sejam elas a descer

X

ou a subir a sua frente.

Ao fazer uma revisao dos métodos que os sistemas portateis de navegacao mais re-
centes usam, descobri que os mesmos se baseiam em algoritmos de visao computacional
e processamento de imagem para fornecer ao utilizador informacoes descritivas acerca do
mundo. Também estudei o trabalho do Ricardo Domingos, aluno de licenciatura da UBI,
sobre, como resolver o Problema da Porta num computador desktop. Este trabalho con-
tribuiu como uma linha de base para a realizacao desta dissertacao e foi nele que comegei
a trabalhar.

Esta dissertacao esta organizada em 5 capitulos.

O primeiro capitulo diz respeito a introducao da dissertagdo, bem como a contextualiza-
¢ao, objectivos e motivacoes da mesma. Sao descritos dois problemas tipicos das pessoas
invisuais que ja foram referidos, o problema das portas e o das escadas. Em cada proble-
ma sdo descritas e apresentadas as situacoes de perigo e as situacdes sem riscos. E neste
capitulo que esta descrita a organizacao deste documento.

O segundo capitulo é dedicado a conceitos fundamentais utilizados neste projeto e ao
estudo de trabalhos relacionados com este. Sdo descritos algoritmos de visdo computa-
cional utilizados nesta dissertacao, tais como, segmentacao semantica, detecao de objetos,
classificacao de imagens 2D e 3D. Existem 3 tipos de estudo relacionado com o meu tra-
balho. O primeiro diz respeito aos sistemas de navegacao para pessoas com deficiéncia
visual. O segundo diz respeito a todos os métodos para detecdo e classificacdo de portas.
O terceiro é o trabalho do Ricardo Domingos que como ja foi dito, funcionou como um
ponto de partida para o meu trabalho.

O terceiro capitulo descreve todo o material utilizado neste projeto, tanto a nivel de
hardware como de software, visto que este trabalho envolveu estas duas vertentes. E des-
crito o computador de secretaria que utilizei para treinar e testar os métodos de visao com-
putacional assim como os computadores de placa inica que utilizei para construir os dois
prototipos do sistema portatil. Os computadores que utilizei foram o Raspberry Pi 3 B+ e
o Jetson Nano. Sao também descritos outros componentes dos sistemas portateis, como
a camara que utilizei para capturar as imagens e a powerbank. Por tltimo, sao descritos
os dois sistemas de navegacao (versao 1 e 2) que desenvolvi assim como o funcionamento
do interface de utilizador de cada um.

O quarto capitulo descreve a base de dados criada para treinar os algoritmos de visdo
computacional para serem usados pelo sistema portatil. E descrito o programa que criei
para guardar imagens através do sistema portatil versao 1.0 assim como alguns detalhes
do posicionamento da camara. A Base de dados esta dividida em 2 grandes grupos, uma
parte com imagens 2d e 3d de portas e a outra parte com imagens de escadas. Para além

X

disso, a base de dados das portas, como foi mais trabalhada tém ainda sub-divisdes de-
pendendo da entrada algoritmo de visao computacional que se quer usar: classificacao
de imagens 2d e 3d, detecdo de objetos e segmentacio semantica. E também feita uma
comparacao da base de dados com conjunto de dados utilizados e desenvolvidos noutros
trabalhos relacionados em relacao ao nimero de amostras e ao tipo de dados (2d ou 3d).

O quinto capitulo diz respeito a todo o trabalho experimental e testes que fui fazendo
aos sistemas portateis e aos métodos de detecao e classificacao de portas para resolver o
problema da porta. Primeiro descrevo a minha implementacao do trabalho do Ricardo
Domingos assim como as suas vantagens e desvantagens. De seguida descrevo os algo-
ritmos que comecei a utilizar para desenvolver o primeiro método para o problema das
portas. Todos os problemas e dificuldades porque passei até chegar a proposta dos dois
primeiros métodos para resolucio do problema das portas sio descritos neste capitulo. E
descrita a montagem do protétipo do sistema portatil final assim como as instalagdes de
software que precisaram de ser feitas e os sistemas operativos utilizados. Sao descritos e
comparados os 3 métodos que desenvolvi para classificacio e detecao de portas.

O ultimo capitulo descreve as contribuicoes cientificas deste trabalho e faz uma analise
geral dos 3 métodos desenvolvidos para abordar o problema das portas. As contribuicoes
de cada método e suas vantagens e desvantagens sao descritas neste ultimo capitulo. No
fim deste capitulo faz-se também uma perspectiva do que ficou por fazer e do trabalho
futuro.

xi

Xii

Abstract

According to the World Health Organization and the The International Agency for the
Prevention of Blindness, 253 million people are blind or vision impaired (2015). One
hundred seventeen million have moderate or severe distance vision impairment, and 36
million are blind. Over the years, portable navigation systems have been developed to help
visually impaired people to navigate. The first primary mobile navigation system was the
white-cane. This is still the most common mobile system used by visually impaired people
since it is cheap and reliable. The disadvantage is it just provides obstacle information at
the feet-level, and it isn’t hands-free. Initially, the portable systems being developed were
focused in obstacle avoiding, but these days they are not limited to that. With the advances
of computer vision and artificial intelligence, these systems aren’t restricted to obstacle
avoidance anymore and are capable of describing the world, text recognition and even
face recognition. The most notable portable navigation systems of this type nowadays are
the Brain Port Pro Vision and the Orcam MyEye system and both of them are hands-free
systems. These systems can improve visually impaired people’s life quality, but they are
not accessible by everyone. About 89% of vision impaired people live in low and middle-
income countries, and the most of the 11% that don’t live in these countries don’t have
access to a portable navigation system like the previous ones.

The goal of this project was to develop a portable navigation system that uses computer
vision and image processing algorithms to help visually impaired people to navigate. This
compact system has two modes, one for solving specific visually impaired people’s prob-
lems and the other for generic obstacle avoidance. It was also a goal of this project to
continuously improve this system based on the feedback of real users, but due to the pan-
demic of SARS-CoV-2 Virus I couldn’t achieve this objective of this work. The specific
problem that was more studied in this work was the Door Problem. This is, according to
visually impaired and blind people, a typical problem that usually occurs in indoor envi-
ronments shared with other people. Another visually impaired people’s problem that was
also studied was the Stairs Problem but due to its rarity, I focused more on the previous
one. By doing an extensive overview of the methods that the newest navigation portable
systems were using, I found that they were using computer vision and image processing
algorithms to provide descriptive information about the world. I also overview Ricardo
Domingos’s work about solving the Door Problem in a desktop computer, that served as
a baseline for this work.

I built two portable navigation systems to help visually impaired people to navigate. One
is based on the Raspberry Pi 3 B+ system and the other uses the Nvidia Jetson Nano. The
first system was used for collecting data, and the other was the final prototype system that
I propose in this work. This system is hands-free, it doesn’t overheat, is light and can be
carried in a simple backpack or suitcase. This prototype system has two modes, one that
works as a car parking sensor system which is used for obstacle avoidance and the other is

xiii

used to solve the Door Problem by providing information about the state of the door (open,
semi-open or closed door). So, in this document, I proposed three different methods to
solve the Door Problem, that use computer vision algorithms and work in the prototype
system. The first one is based on 2D semantic segmentation and 3D object classification,
it can detect the door and classify it. This method works at 3 FPS. The second method is
a small version of the previous one. It is based on 3D object classification, but it works
at 5 to 6 FPS. The latter method is based on 2d semantic segmentation, object detection
and 2d image classification. It can detect the door, and classify it. This method works at
1to 2 FPS, but it is the best in terms of door classification accuracy. I also propose a Door
dataset and a Stairs dataset that has 3D information and 2d information. This dataset
was used to train the computer vision algorithms used in the proposed methods to solve
the Door Problem. This dataset is freely available online for scientific proposes along
with the information of the train, validation, and test sets. All methods work in the final
prototype portable system in real-time. The developed system it’s a cheaper approach
for the visually impaired people that cannot afford the most current portable navigation
systems. The contributions of this work are, the two develop mobile navigation systems,
the three methods produce for solving the Door Problem and the dataset built for training
the computer vision algorithms. This work can also be scaled to other areas. The methods
developed for door detection and classification can be used by a portable robot that works
in indoor environments. The dataset can be used to compare results and to train other
neural network models for different tasks and systems.

Keywords

Computer vision, Visually impaired people, 3D object classification, Semantic segmenta-
tion, Object classification, Door detection and classification, Object detection, 3D camera,
Portable system, 3D image dataset, real-time, low powered devices.

Xiv

Contents

it Introduction

L1 FrameworK e
.......................................
1.3 MOLVAtIONS v v o e e e e e e e e e
1.4 Visually impaired people indoor problems

1.4.1 DoorProblem,

1.4.2 Stairs Probleni
1.5 Document Organization v v v v v it e

2 Fundamental Concepts

and Related Work

p.1 Computer vision concepts used in this projectf
p.a.a PointCloud
p.1.2 _Algorithms used for the Door/Stairs Problemy

.2 RelatedWork e

p.2.1 Navigation sys

tems for visually impaired peopld

p.2.2 Related work (Door classification and detection) Door Probleni . .

p.2.2 Ricardo Domingos’s work - Door Problem method

i3 Project Material

B.1 Lab Desktop Computer]
B.1.1 _ Description and characteristicy
B.2 RaspberryPi3BH e
B.2.1 Descriptions and characteristic§
B.3 JetsonNanoNvidid
B.3.1 _Descriptions and characteristie§
B.3.2 Installation
B.3.3 Python libraries version for Jetpack 4.3
B.3.4 Python libraries version for Jetpack4.4
B.4 RealSense 3D Camera v v v v it e e
B.5 Powerbank20000mAh
B.6 Portable System 1.0
B.7 Portable System2.0
B.7.1 System characteristicS v v v it

B.7.2 System Modes
B.7.3 User-interfacd

k.1 System to capture dat

a for buildingthe Dataseti

k.1.1 Python script
h.1.2 Camera Detail

A W M NN R = =

N O o G

o
o O»

21
21
21
21
22
22
23
23
24
25
26
27
27
29
29
31
33

k.1.3 After Process-Datasefl0 .o...u.... 37

bh.1.4 Errorsinthe 3D information 38
k.2 System to label semantic segmentation and object detection datasets (CVAT) 39
4.3 Door Dataset - VErsion 1.0 v v v v vt vt e e 40
4.3.1 Door Classification (3D and RGB) sub-dataset 41
4.3.2 Door Semantic Segmentation sub-dataset 42
4.3.3 Door Object Detection sub-dataset 43
k.3.4 List of Neural Network Models that used this datasef 43
U.4 Stairs Dataset-Version 1.0 v vt vttt e e 44
k.5 DataSet Comparison with Related Work 44
Tests and Experiments 45
5.1 Ricardo’swork 45
5.1.1 _ Ricardo’sworkproblemd 45
5.1.2 Implementation of Ricardo'swork 45
5.1.3 Semantic Segmentation - Context-Encoding PyTorchl 47
B.1.4 Conclusiono it e e 47
5.2 Use of 3D object classification models to solve the Door Problem 47
5.2.1 Mini-DataSell 48
5.2.2 PointNell e 48
5.2.3 DatasetforPointNetl. 49
5.2.4 Data augmentation for dataset for PointNett 52
5.2.5 PointNet implementationresultd. 54
5.3 First proposal to solve The Door Problem 56
5.3.1 Problems withthedatasetl 57
5.3.2 Problems with the semantic segmentationy 57
5.4 FastFCN semantic segmentation) o v v v v v v i v i e 58
5.4.1 Training FastFCN for semantic segmentation with doorframe and
............................... 59
5.4.2 Training the FastFCN EncNet with only 2 classes, doorframe and
.................................. 61
5.4.3 Improve in the dataset for the first Proposal to solve the Door Problem 61
5.5 Door 2D Semantic Segmentation 62
5.5.1 _Using only doorframe class in semantic segmentation. 62
5.5.2 Using doorframe and door class in semantic segmentation| 63
5.5.3 Evaluation of the possible semantic segmentation strategied 63
5.6 PointNet - (3D Object Classification) 65
5.7 Prototype Programl. i i e 66
5.7.1 _ Problem-Real-Timeg eeeni... 66
5.8 PointNet Tests without Semantic Segmentation 67
5.8.1 PointNet with original size pointclouds 67
5.8.2 PointNet with voxelized grid original sized pointcloudd 69
5.8.3 Train Pointnet with cropped pointecloudd 71

xvi

5.8.4 Mergeofalltheapproaches. 72

5.0 TestinginJetson Nang v v v vt v vt i ettt e e 73
5.9.1 Installations e 73
5.10 Testing the program between different versions of Jetpack 74
5.11_First prototype portable system forreal-useff 76
5.11.1 Speed up the Jetson Nanostartup 76
5.11.2 Auto start Program afterboot 76
5.11.3 Improved approach - Semi-openclasg 76
5.11.4 AddSound 77
5.11.5 Building of the prototype portable system version2.0 77
5.12 Generic Obstacle AvoidingMode v v i i i i i e 79
5.13 Power BankIssued 81
5.14 Method Aand B-Door Problem 83
5.14.1 Method A - 2D Semantic Segmentation and 3D Object Classification 83
5.14.2 Method B - 3D Object Classification 84
5.15 Method C - Door Probleni. @i, 87
5.15.1 Jetson inference repository e i e e . 88
5.15.2 Object detection with DetectNet, 88
5.15.3 Image classification with AlexNet and GoogleNeff 91
5.15.4 Development of Methodd u.o... 93
5.15.5 Speed Evaluation of Method(d 93
5.15.6 Power-bank Durationin Methodd. 94
5.16 Temperature Experiments in Methodd 95
5.16.1 Experiment1-OpenBox 95
5.16.2 Experiment2-ClosedBox 96
5.16.3 Experiment 3 - Decrease Box Temperature 97
5.16.4 Experiment4-Addafan 100
5.16.5 Resumeofall experiments 102
5.17 Improve Door Detection/Segmentation for Methodd 102
5.17.1_Improve DetectNetl v vt 102
5.17.2 Object Detection limitations in jetson-inferencd 104
5.17.3 Semantic Segmentation in jetson-inferencd 104
5.17.4 Convert modelsto TensorRT] v v v v i i .. 105
5.17.5 Semantic Segmentation - TorchSeq 106
5.17.6 Torchto TensorRT[. 106
5.17.7 TensorRT inJetsonNand. v v i v i v v ... 109
5.17.8 Training and Evaluating of the BiSeNet mode] 109
5.17.9 Testing all approaches for Door Detection/Segmentation 111
Conclusion 115
6.1 Scientific Contribution 115
6.2 Door ProblemMethods 115
6.3 Futurework e 117

119

xviii

List of Figures

1.1 Door Problem - dangerous and non-dangerous situations]

.2 Stairs Problem - dangerous situations) 3

p.1 Computer Vision algorithms architectures used in this project with inputg

and outputs (Examples of Door Problem) | 6
.2 White-Cang e e e 8
p.3 Electrical obstacle detection devices (1-Bat K Sonar Cane, 2-UltraCane, 3

.................................... 8
p.4 Electrical obstacle detection devices that use ultrasound (1-NavBelt, 2-GuideCand 9
p.5 UCSB Personal Guidance System] 9
.6 Daniel Kish o e e e e 10
p.7 ENVSProjectsystem, 11
2.8 NavCog applicationsystem| 11
2.9 HamsaToush applicationsystem 12
2.10 Smartphone applications based in Computer Vision (1-TapTapSee and 2-

.................................... 13
P11 TYfloSSYStEI v v v e e e e e e e e e e e e 14
p.12 BrainPort Vision Prosystem| o o i i i 14
.13 Orcam MyEyesystem v v i i e e e e e e 15
p.14 Ricardo’s proposal to solve the Door Problem|. 18
B.1 Jetson Nano (Left side) and Raspberry Pi 3 Model B+ (right side) 22
B.2 3D Realsense cameraModel D435). 26
B.3 Portable System 1.0 e 28
B.4 Portable System 2.0 30
B.5 Portable System’s Limitationsttt 30
B.6 Portable System Simplicity, 1 corresponds to Power on/off button and 2|

corresponds to the micro USB port for charging the power bank 31
B.7 Original 3D Realsense camera D435 at the left side and GO PRO system

with Realsense camera D435 mounted on the backpack’s should tap] . .. 32

k.1 Difference between using the 3D Realsense camera in the original position|

and 9o degreesrotated) 37
k.2 Example of CVAT using the box as the annotationtool] 39
4.3 Door Classification (3D and RGB) sub-dataset with original and cropped

..................................... 41
k4.4 Door Sem. Seg. Dataset-version 1.0 with original and labelled images . . . 42
5.1 Problem in Ricardo’s proposal for solving the Door Problem) 46
5.2 First proposal to solve the Door Problerd 56

Xix

5.3 Semantic Segmentation problem in the first proposal. (1-Represents the

image captured by the camera, 2-Semantic Segmentation output and 3-

[Expected Semantic Segmentationoutput) 57
5.4 Prediction of FastFCN in 1 image of the test set from the ADE20K datasel

using only 2 classes, doorframe and stairs) 60
5.5 Prediction of FastFCN in 1 image of the test set from the ADE20K datasel

using 3 classes, doorframe, stairs and no-clasy 60

k5.6 Semantic Segmentation problem of using just the doorframe class. (1-Represents

the input image, 2-Semantic Segmentation output prediction, 3-Expected

Semantic Segmentation output) 62

5.7 Jetson Nano top view from [Nvi19]) 78

5.8 Operation of Generic Obstacle Avoiding Mode - Depth image is divided in

columns and for each column the mean depth value is calculated] 79
5.9 Advantage of using the Generic Obstacle Avoiding Mode(On the middle
image the user collides with the fallen tree since the white-cane doesn’{

work at the head-level. On the right image, the user uses the portable sys

tem and the same informs him about the nearby obstacle)] 80
5.10 Algorithm of Method A (2D semantic segmentation and 3D object classifi

...................................... 83
5.11 Algorithm of Method B (only 3D object classification) 84
5.12 Algorithm of Method C (2D Object Detection and 2D Image Classification)| 87
5.13 Temperature experiment 1, portable system with box cover open) 96
5.14 Temperature experiment 2, portable system with box cover closed] 096
5.15 Temperature variation over 1 hour in experiment 3, portable system with

boxcoverclosed) 97
5.16 Difference between the portable system’s original box cover (left side) and

the portable system’s new box cover (rightside)] 98
5.17 Temperature variation over 1 hour with the original portable system’s box

cover and with the new portable system’s boxcover] 98
5.18 Difference between the mobile system box before this experiment (left side)

and during this experiment, with new 16 holes (right side)) 99
5.19 Temperature variation over 1 hour with the 20-holes mobile system version

and with the 36-holesversion] 100
5.20 Mounted fan in the portable systembox| 101
5.21 Temperature variation over 1 hour with and without the fan on the portabld

...................................... 101
5.22 Example of False Positive, False Negative and True Positive in DetectNet.(GT]|

stands for Ground True) i i i e 103
5.23 Difference between the original input image and the output of SegNet trained

in Door Sem. Seg Dataset(Version1)) 105
5.24 Outputs of both Torch and TensorRT BiSeNet models with the same input

door image. Torch on the left side and TensorRT on the right side] 108

XX

5.25 Tested methods to convert a Torch model to a TensorRT model. Arrows
represent conversions. Text above the arrow refers to the conversion method
and text below the arrow refers where the conversion was done] 108
5.26 Mean train and validation intersection over union during 400 training epochs)110

5.27 Mean train and validation intersection over union during 1000 training|
...................................... 110

5.28 Difference in operations and filters between using the semantic segmen-
tation BiSeNet and the object detection DetectNet in the process of dooi
detection/segmentation in MethodCJ 112

XX1

xxii

List of Tables

p.1 Related work comparison (door detection)) 17
k.1 Door Dataset - version 1.0 comparison with relatedwork] 44
5.1 Evaluation results on 5 models from Pointnet trained in my own PointNef]
...................................... 55
5.2 Evaluation results on EncNet FastFCN with 3 different strategies 64
5.3 Corrected cropped images on EncNet FastFCN with 3 different strategies| 64

5.4

Mean script inference times(MSI time) per frame and in frame per second

in the desktop computer after all the modifications in the prototype pro-

...................................... 67

5.5 Resultsin training and testing the PointNet with the Custom Filtered Dataset|
with the original sized images) 68
5.6 Results in testing the PointNet with the Custom Filtered Dataset with the
voxel down-sampled, original-sized pointclouds). 69
5.7 Mean loss, accuracy and iteration time values between using the Point

net with the original sized point cloud and with voxel down-sampled poinf]

clouds. IT stands foriterationtime) 70

5.8

Mean results of using the best model of each iteration between using the

Pointnet with the original sized point cloud and using voxel down-sampled

point clouds. IT stands for iterationtime) 70

5.9

Results of using the best model of each iteration using the Pointnet with|

cropped pointclouds 71

5.10

Summary of all the best models results in each approach for the Pointnef

Bd object classification|. 72

5.11

Results in testing two different Jetpack versions in two programs with and

without fan in terms of time per frame prediction.(Program version A uses

Semantic segmentation and Pointnet and version B only uses the Pointnet

opredict) e 75

5.12

Voltage, current and power measurements provided to Jetson Nano from

different power supplies with and without the script running) 81

5.13

Comparison between using the FastFCN and the FC-HarDNet algorithmg

in Method A for Door Detection) 85

5.14

Evaluation of Method B with the original size point clouds in PointNet and

psing downsampled pointclouds) 86

5.15

Comparison of the methods assuming that the semantic seementation mod-

ple is returning the correctoutput] 87

5.16

Comparison of object detection experiments in DIGITS in terms of data

Augmentation, training set size, validation precision, validation recall and

raining time] e e e e e e e e e e e e 90

5.17 Comparison of image classification experiments in DIGITS in terms of neu-

ral network used, batch size, input images size, best validation precision)

validation loss, train loss and training time)]
5.18 Jetson Nano inference time in 5 and 10 watts mode of Method C|
5.19 Comparison of the portable system temperature (GPU, CPU and Box) val{
ues after the script of method C been running for 1 hour with the state evo-

lution of the portable system (With or without box cover, fan and numbe
of holes on the portable system))
5.20 Comparison of the DetectNet model with the annotations of the class “dont

care” and without them in terms of Precision, Recall and Training time)|

5.21 Evaluation and Comparison of DetecNet, SegNet and BiSeNet on Door De-

tection/Segmentation in terms of number of True Positives, number of False

[Positives, mean inference, post inference and total time in seconds in Jet-

SON NANO, o e e e e e e e e e e e e e e e e

6.1 Comparison of all the Methods for the Door Problem)

XX1iv

104

Acronyms

ATl Artificial Intelligence

API Application Programming Interface
AGI Artificial General Intelligence

ML Machine Learning

GPU Graphics Processing Unit

NN Neural Network

CNN Convolutional Neural Network
PCL Point Cloud Library

PCD Point Cloud Data

IoU Intersection over Union

mlIoU Mean Interface over Union

LR Learning Rate

BS Batch Size

CVAT Computer Vision Annotation Tool
RGB Red Green Blue

SDK Software development kit

ROI Region of interest

FOV Field of view

FPS Frames per second

Chapter 1

Introduction

In this chapter, a framework is made about visually impaired people in the entire globe.
It’s also presented the motivations and the goal of this project. Through feedback from
identical plans, it’s given the typical two problems that visually impaired people usually
have in indoor environments.

1.1 Framework

Globally, it is estimated that around 285 million people are visually impaired, and 39
million of those people are blind. This means that 0.5 % of the entire world population is
blind, and 4.2 % are visually impaired people. The majority of visually impaired people
(more than 80 %) are over the age of 50

According to the World Health Organization, visually impaired people are three times
more likely to be unemployed, suffer from depression, be involved in a motor vehicle ac-
cident and two times more likely to fall.

Most visually impaired people walk and navigate with what’s called a white cane.
There are several variants of it, but basically, a white cane is a device that is used to scan
the surroundings for obstacles or orientations marks at the feet level. Unfortunately, this
is the only device that visually impaired people typically have to help them navigate but,
thanks to computer vision and artificial intelligence, several portable systems were built
that help people with this kind of disability to navigate in indoor and outdoor environ-
ments.

1.2 Goals

Visually impaired people have several problems navigating in indoor spaces, even in their
own homes, where they usually don’t also use their white-cane. With the advance of com-
puter vision is possible to increase the life quality of these people, and that is where the
objective of this project is inserted.

The goal of this project is to build a portable system that integrates computer vision
algorithms as semantic segmentation, object detection, and image classification to help
visually impaired people navigate safely in indoor environments. This mobile system has
two modes, one for solving specific visually impaired people’s problems and the other is a

1

generic obstacle avoiding system. It’s also a goal of this project to continuously improve
this system based on the feedback of real users.

1.3 Motivations

The motivation of this project is to improve visually impaired people life quality by build-
ing this portable system. To help to create an inclusive and democratic society where
everyone, regardless of their physical and mental condition, can have access to a good
quality of life. It’s to enhance equality and freedom for all people, including the blind.

1.4 Visually impaired people indoor problems

Through the UBI Optics Center and previous projects of the same nature as this project,
we know that visually impaired people have two major problems in indoor environments.
The Door Problem and the Stairs Problem. Each of the problems will be explained in
the following subsections as well as in which conditions each of the problems happen and
why.

1.4.1 Door Problem

The Door Problem, as the name itself implies, is related to doors in indoor environ-
ments. Visually impaired people don’t have problems with totally closed or open doors
but have with semi-open doors, especially with semi-open doors that open inwards. Vi-
sually impaired people tend to hit with their heads in the edge of the door when the same
is semi-open, and that’s the Door Problem. Figure [.] represents the dangerous and not
dangerous cases for the Door Problem.

Figure 1.1: Door Problem - dangerous and non-dangerous situations.

But why this happens? Doesn’t the most of visually impaired people use a white cane?
Yes, most of the visually impaired use a white cane in outdoor environments but usu-
ally they don’t use it in their homes, and because of that, they cannot use it to prevent

2

these accidents. If this problem happens in their homes, it has an easy solution, the vi-
sually impaired people just need to always leave the door open or closed it. That would
be the solution if visually impaired people lived alone, which is not the case for most of
these people. They don’t live alone and can even live in an elderly home and the other peo-
ple without noticing and being on purpose leave the door semi-open, and the accidents
happen.

Summing up, the Door Problem usually happens in the visually impaired people house
or elderly house and the reasons are the absence of the white cane and because they don’t
live alone. Even for the visually impaired people who use the white cane, if they just had a
portable system that would inform then about the door being semi-open, they could avoid
the problem like they would be able to avoid with the white cane, but they keep their hands
free.

This was the problem that was most worked on in this project. A big Door dataset and
three different methods were developed for approaching this problem. The dataset and
the methods built will be explained in later chapters of this thesis.

1.4.2 Stairs Problem

The other problem that was informed to me through feedback that visually impaired peo-
ple usually have in indoor spaces is the Stairs Problem. These problems as the name
implies, are related to stairs in indoor spaces. When compared with the previous issue, the
Stairs Problem is more dangerous, but it is also less frequent. Both upstairs and down-
stairs are dangerous, as figure 1.2 shows.

Figure 1.2: Stairs Problem - dangerous situations.

This problem happens in unknown places of visually impaired people when they are
not familiar with the space where they are. Unlike the previous case, this problem doesn’t
occur in their home because they know every detail of it, so they know the locations of the

3

stairs if there are any of them in their home. This problem happens because, for some
reason, the visually impaired people aren’t using their white cane and so they aren’t able
to avoid this accident, but even with the white cane this accident can happen if they were
in a hurry.

1.5 Document Organization

This report is organised in the following way:

« Fundamental Concepts and Related Work - In this section are addressed fun-
damental concepts of computer vision and artificial intelligence that were used in
this project as well as several related works.

« Project Material - This section treats all the equipment that were used for this
project as well as the portable systems.

« Database - In this section are described the datasets built to help to solve visually
impaired people’s problems and how they were built.

« Experiments and Discussion - This section treats all the results and experi-
ments done in this project as well as all the problems that I had for building the
final prototype portable system.

Chapter 2

Fundamental Concepts and Related Work

In this chapter will be described several fundamental computer vision concepts that were
used in this project such as, 2D semantic segmentation, 2D object detection, 3D and 2D
object classification, point clouds and others. All related works and systems that I studied
in this project will also be covered in this chapter, divided into three sub-sections. One
for the already built system that helps visually impaired people to navigate, other for the
Door Problem approach related works and another for Ricardo’s work.

2.1 Computer vision concepts used in this project

This section will cover all the computer vision concepts that were used for the software
part of the portable system for visually impaired people.

2.1.1 Point Cloud

In this project, I used a 3D camera, (Realsense Model D435) which will be described in
the next chapter, and so, 3D information was used in the methods for solving the visually
impaired people problems. The camera can capture RGB and 3D information (depth) and
returns this 3D data in the form of a 2D grey-scaled image (e.g. 640 x 480). This image has
in total 307200 pixels (640 x 480 = 307200), and each of these pixels has its depth value
which corresponds to the grey-scaled value.

This 3D information, instead of the grey-scaled image, can be represented in a point
cloud. A point cloud is a set of points expressed in a three-dimensional coordinate sys-
tem. For the previous example, this point cloud would have 307200 points. Each of the
points can be represented by X, Y and Z coordinates if we are talking an about a no-colour
point cloud, but if the point cloud has colour, each point gets more three coordinates, R,
G and B which correspond to the RGB colours. For this project, It was only used point
clouds with no colour, where the X and Y correspond to the location of the pixel in the
2D grey-scaled image and the Z coordinate corresponds to the depth value. The colour
information was also used, not in a point cloud but the form of a 2D image, for semantic
segmentation, object detection and the image classification method.

2.1.2 Algorithms used for the Door/Stairs Problem

Figure b.1represents the base architecture for all the computer vision algorithms that were
used on the methods that approached the Door and Stairs Problem. For every algorithm,
it’s represented its output and input. These concepts are essential to understand each
technique that was developed for the visually impaired portable system.

PointNet

input =[3 D ObJect output SCO re
3D image lCIassification [open, close, semi-open]

AlexNet, GoogleNet

input =[2D Object output Score
2D image lCIassification [open, close, semi-open]

FastFCN, FC_HarDNet, BiSeNet

input =r 2D Semantic] —
2D image lSegmentation]

DetectNet, Yolov3

J-rrput _—___[ZD ObJeCt] output
2D image l Detection

Figure 2.1: Computer Vision algorithms architectures used in this project with inputs and outputs
(Examples of Door Problem) .

Starting with the first computer vision algorithm in figure .1, we have the 3D Object
Classification. As can be seen, the input of this algorithm is a 3D image, which can be
represented in a 2D grey-scaled image or a point cloud as it was explained in the previous
section. This algorithm receives this 3D image and returns the score value for each class
of the problem. For the Door Problem, which is the example of the figure, it returns three
values between 0 and 1. Each of these values corresponds to the model confidence value
of each class, open, close or semi-open. The 3D Object Classification models can use RGB
information or not. In the case of this project, it was just used the PointNet, [QSMG16]
which doesn’t use RGB information, it only uses a point cloud with no-colour.

In the second column of figure .1, we have the 2D Object Classification. As the
name itself implies, it’s very similar to the previous algorithm with only the difference in
theinput. Instead of using a 3D image, these algorithms use 2D normal images (RGB). The
type of output is the same, a score with three values because it’s approaching a problem
with three classes. The algorithms of 2D Object Classification used in this project were
the GoogleNet, [SLI"14] and AlexNet, [KSH12].

6

The third algorithm in figure 2.1 is the 2D Semantic Segmentation. This algorithm
has the same input as the previous one, a 2D RGB Image. This algorithm was used to
detect/segment the door, to know its location on the original image which is provided by
the camera. The output of these models is a 2D grey-scaled image with the same size as the
input image. In the figure the output image is represented in RGB just to be more clear,
but the output image is normally a 2D grey-scaled image. For these algorithms, for the
Door Problem, we have two classes, one corresponds to the door and doorframe, and the
other corresponds to all the other objects. The model returns each prediction, and in the
output image, the black pixels (value = 0) correspond to ”all the other objects” class and
the green ones (value = 1 in grey-scaled) corresponds to the pixels of "door-doorframe”
class. The algorithms of 2D Semantic Segmentation used in this project were the FastFCN,
[WZH"19] the FC-HarDNet,[CKR"19] and the BiSeNet,[YWP18].

The last computer vision algorithm in figure p.1 is the 2D Object Detection. This
algorithm is very similar to the 2D Semantic Segmentation because both of them want to
get information about the location of the object, in this case of the door. The 2D Object
Detection uses a 2D image as input and returns all the bounding boxes (red rectangle in
the figure), and it’s confidence value for each object detected in the image. Normally it
just shows the object values with a confidence value superior to 0.7. The bounding box is
returned in the form of 4 values, which correspond to the top-left and bottom-right pixels
coordinates. The algorithm of 2D Object Detection used in this thesis were the DetectNet,
[[ATS16] and the YoloV3, [RF18].

2.2 Related Work

This section describes all the related work of this project. The related work is divided into
three big categories, navigation system for visually impaired people, algorithms for door
detection and classification, and a particular UBI student’s work.

2.2.1 Navigation systems for visually impaired people

Nowadays, there are already several systems to help visually impaired people to navi-
gate. Some use ultrasonic sensors, and older technologies and others use more current
methods, as computer vision algorithms and artificial intelligence. This sub-section will
approach each navigation system studied for this project in order from the oldest to the
most modern one.

White-Cane (1921)
The most common navigation system that visually impaired people use is the white-
cane, as it was already mentioned in this report. This tool was invented in 1921 by James
Biggs. This cane is white for two reasons, to be more visible and to have more impact on
other people so they can easily associate that the person that is using it is blind or visually
impaired. The advantage of this tool is that it is a simple tool that everyone can afford,

7

and it is reliable at finding obstacles and possible dangers at the foot level. The disadvan-
tage of the white-cane is that the foot-level is not enough to avoid all the obstacles. For
example the barriers at the head-level which aren’t at the foot-level, like a tree branch or
a hanging sign.

Figure 2.2: White-Cane

Electronic Travel Aids - ETA

The Electronic Travel Aid is an electrical obstacle detection device and a form of as-
sisted technology to help visually impaired people to navigate. These devices are more
focused on providing obstacle avoidance support than information about the world. Sev-
eral devices were developed over the years. One example of a sonar-based ETA is the Bat
K Cane, [HWo08]. This unit fits into a standard white cane and radiates ultrasonic waves.
The echos from the objects return to the sonar unit and then are converted into a unique
sound-based image of the landscaped that gets transmitted to a set of headphones. Other
similar examples are the UltraCane and the MiniGuide. The UltraCane is a modified
built-in sonar cane and the MiniGuide is a hand-held device which makes use of vibra-
tions to provide the visually impaired person with information.

Figure 2.3: Electrical obstacle detection devices (1-Bat K Sonar Cane, 2-UltraCane, 3-MiniGuide)

8

There were also developed systems that made use not just of ultrasound but position to
guide blind and visually impaired people to a nearby destination with obstacle avoidance
such as the GuideCane and the NavBelt.

Figure 2.4: Electrical obstacle detection devices that use ultrasound (1-NavBelt, 2-GuideCane

With the arrival of global navigation satellite systems, specifically, the GPS (Global Po-
sitioning System) new devices that use this system developed such as the UCSB Personal
Guidance System. This system is a GPS-based portable device, which can lead the user
on an outdoor route. This system doesn’t provide any obstacle avoidance support, but it
was developed to be used as a complement to the white cane where this already support
obstacle avoidance.

Figure 2.5: UCSB Personal Guidance System

Sonar sounds (2000)

Daniel Kish, [TRZ*17], the president of the Visioneers which is a Division of World Access
For The Blind, and a visually impaired person, uses sonar sounds to navigate in the
world. This person makes clicks with his tongue, which are flashes of sound that go out
and reflect from surfaces all around him. It works just like a bat sonar. The sounds return
to him with patterns and pieces of information. Almost every visually impaired person can
use this method, but it requires training. The significant advantages of that this method
is that, combined with the white-cane it can be beneficial for visually impaired people to
obstacle avoiding because it covers bot feet and head-levels.

St

Figure 2.6: Daniel Kish

Systems that use 3D information(2004)
One of the first system to help visually impaired people navigate that used 3D informa-
tion was the ENVS project. This system, instead of using sound to give information about
obstacle avoiding it uses haptics sensors, more precisely, special gloves fitted with elec-
trodes for delivering electrical pulses to the fingers. In this project, they make use of a pair
of cameras to get the 3D information and present that information to the user through the
electrical pulses. The disadvantage is that several persons aren’t willing to wear gloves.

10

Figure 2.7: ENVS Project system

Smartphones applications

With more and more powerful mobile phones and better cameras, new applications for vi-
sually impaired people were developing for these devices. One example of these systems is
the NavCog smartphone application. This app was built to establish for indoor navigation
for visually impaired people. Still, it can also be used by people who are in an unknown
complex indoor place such as a university or an airport. This user interface of this applica-
tion is 100% sound interface, where the visually impaired select the destination by using
voice search, and the app provides turn-by-turn audio feedback.

1:24 PM

Hgiredi

Information 8

Figure 2.8: NavCog application system

11

Another smartphone application that was developed to help visually impaired people
navigate was the HamsaTouch application. The HamsaTouch is a novel tactile vision
substitution system which is composed of a smartphone, photo-transistors and an electro
tactile display. The smartphone extracts the edges, and the information is converted into
a tactile pattern.

_..J

Figure 2.9: HamsaToush application system

12

Systems based on Image Processing (AI)
The most current systems use artificial intelligence and computer vision to help visually
impaired people to navigate. There are two types of systems that use Al, portable sys-
tems(wearable) and smartphones applications.

For the smartphone applications there is the Seeing AI and the TapTapSee. These ap-
plications describe images from the real world through an audible interface by making
use of remote processing resources in a cloud computing server. The Seeing AI was de-
veloped by Microsoft and in addition to image descriptions, it can recognise text, products
and persons. The TapTapSee is more focused on describing images, but, it is also able to
describe small videos.

.r-"'.
]

Figure 2.10: Smartphone applications based in Computer Vision (1-TapTapSee and 2-Seeing AI)

The other systems that use Al to help navigate visually impaired people are the wearable
portable systems. The big advantages of using these systems are the wider sensors field-
of-view, discreet system and hands-free solution. Examples of these kind of system are,
the Tyflos, Orcam MyEye and BrainPort Vision systems.

13

The Tyflos systems is constituted by a pair of sunglasses with two tine cameras mounted
on it, a range sensor, a GPS device, an RFID reader, a microphone, an ear-speaker, a
portable computer and a vibration array vest. This device is used to read a text and for

navigation purposes.

Figure 2.11: Tyflos system

The BrainPort Vision is constituted by a small camera, a pair of sunglasses, a controller
box that converts the video signal of the camera into an electro tactile signal. These signals
stimulation patterns on the surface of the tongue like moving "bubble-like patterns” as the
users of this system described.

Figure 2.12: BrainPort Vision Pro system

14

The Orcam MyEye system was created in 2015 and its most recent version in 2017.
This last version is capable of text reading, face recognition and product recognition with
a user-interface base on hands movements and gestures. One of the most significant ad-
vantages of using this system is that it is very portable and can be mounted in a regular
pair of glasses.

Figure 2.13: Orcam MyEye system

The advantage of using systems based on Image Processing and Artificial Intelligence
is that they can provide not only obstacle avoiding information but information about the
world. These systems are capable of describing the world and providing that information
to the visually impaired person.

2.2.2 Related work (Door classification and detection) Door Problem

There are already a vast number of studies that used door detection and classification
for robot navigation tasks as moving between rooms, robotic handle grasping and oth-
ers. Some have used sonar sensors with visual information, [MLRS02], others used only
colour and shape information, [CDD03], some have used simple feature extractors, such
as [KAY11], [ZBo8] and others have used more modern methods like CNN (Convolu-
tional neural networks), [LRA17] and the use of 3D information, [YHZH15], [QPAB16],
[MSZW14] and [QGPAB18]. Of course that the most of these studies and systems can
be used to help visually impaired people to navigate but since there were no articles that
would do door classification and detection with the propose to help visually impaired peo-
ple I focused on studying the robotic application methods for door detection and classifi-

cation.

Using visual information and ultrasonic sensors to traverse doors was an approach used
in [MLRSo02]. The goal was to cross an open door with a certain opening angle using a B21
mobile robot equipped with a CCD camera sensor and 24 sonar sensors. The door traverse

15

was divided into two sub-tasks, the door identification and the door crossing. The door
identification, which was the sub-task of interest for this work, used a vertical Sobel filter
applied to the grey-scaled image. If there were a column more extensive than 35 pixels in
the filtered image, it would mean that the door was in the picture. The sonar sensors were
used when the robot approached the door at a distance of 1 meter to confirm if it was a
door or not.

In [KAY11], an integrated solution to recognise a door and its knob in an office environ-
ment using a humanoid platform is proposed. The goal is for the humanoid to recognise
a closed-door and its knob, open the same door and pass through it. To recognise a door,
they match the features of the input image with the features of a reference image using the
STAR Detector [SDor] as the feature extractor and an on-line randomised tree classifier
to match the feature points. If the door is in the scene, the matched feature 3D points are
computed and used so that the robot walks towards the door.

The use of colour and shape information can be sufficient for identifying features to
detect doors efficiently. The approach in [CDDo03] used two neural networks classifiers
for recognising specific components of the door. One was trained for recognising the top,
left, and the right bar of the door and the other was trained for detecting the corners of
the door. A door is detected if at least 3 of these components are recognised and have the
proper geometric configuration.

In [LRA17], a method is implemented for detecting doors/cabinets and its knobs for
robotic grasping using a 3D Kinect camera. It uses CNN to recognise, identify and segment
the region of interest in the image. The CNN used was the YOLO Detection System trained
with 510 images of doors and 420 of cabinets from the ImageNet dataset. After obtaining
the Region of interest (ROI), the depth information from the 3D camera is used to get
handle point clouds for robot grasping.

Like the previous approach, in [YHZH15], a Kinect sensor is used for door detecting,
but, this method uses only depth information. The camera sometimes produces missing
pointsin the depth image, and the algorithm is based in the largest cluster of missing pixels
in the depth image. The total number of holes indicates the status of the door (open or
semi-open). The main advantage of this method is that it works with low-resolution depth
images.

There are methods developed under a 6D-space framework, like [QPAB16], that use
both colour (RGB) and geometric information (XYZ) for door detection. For detecting
open doors, they identify rectangular point cloud data gaps in the wall planes. The detec-
tion of closed doors is based in the discontinuities in the colour domain and in the depth
dimension. It also does door classification between open and closed doors. The improved
version of this algorithm, [QGPAB18], can even distinguish semi-open doors using the

16

set of points next to the door to calculate the opening angle. Another improvement in
[QGPAB18] was in the dataset, which is larger in size, complexity and variety.

In [MSZW14], a method is proposed that uses 3D information for door detection with-
out using a dependent training-set detection algorithm. Initially, the point cloud contain-
ing all the scene, including the door, is pre-possessed using a voxel-grid filter to reduce its
density and its normal vectors are calculated. A region growing algorithm based on the
pre-calculated normals is used to separate the door plane from the rest of the point cloud,
and after that, feature extraction is used to get the edges of the door and the doorknob.

To detect doors 3D cameras or sonar sensors are not required, a simple RGB camera
can do the job as in [ZB08], focusing on real-time, low-cost and low-power systems. This
work used the Adaboost algorithm to combine multiple weak classifiers into a robust clas-
sifier. The weak classifiers were based in features such as detecting pairs of vertical lines,
detecting the concavity between the wall and the doorframe, texture and colour and oth-
ers. They built a dataset with 309 door RGB images, 100 for training their algorithm and
the rest for testing.

Table .1 summarises the previous approaches and related work to detect and classify
doors in indoor spaces, categorising each method studied. Although most of the strategies
just do door detection and not classification, as I did for the Door Problem in this work,
they have a similar goal, to provide the robot with the necessary information to move be-
tween rooms, and that is the reason why I included them in this work. The first column
states whether the method uses 3D information or not. The following three columns indi-
cates the applicability of the method (closed, open or semi-open doors). The last column
focus on whether the method works in real-time or not, based on the experimental results
of each technique. Four of the methods do not present information regarding their speed

» 9

and are marked with a ”-”.

Table 2.1: Related work comparison (door detection).

Closed Open Semi-open

Method Real-time

doors doors doors
v

Monasterio [MLRS02]
Cicirelli [CDDo3]

Kwak [KAY11], Chen, [ZBo8]
Llopart [LRA17]

Yuan [YHZH15]

Quintana [QPAB16]

Borgsen [MSZW14]

Quintana [QGPAB18]
Method A - Door Problem
Method B - Door Problem
Method C - Door Problem

X
X
1

<A X

X NN N NS A A X XX

N N N N SR NIENIEN

AN N N NI N

AN N N S NEPEEN
X

ANIENEN

-
N

2.2.3 Ricardo Domingos’s work - Door Problem method

Bachelor final project of Ricardo Domingos was Artificial Vision for Blind People.
His work was also to build a portable system that helps impaired visually people day by
day, using semantic segmentation and computing vision algorithms. Ricardo’s work was
important in this project because it had the roots for the construction of the portable sys-
tem, and it also had information about all the computer vision algorithms that he used.
The report also has all the difficulties that he went through and the main problems that
visually impaired people have in indoor spaces, Door Problem and Stairs Problem.

Ricardo’s work was focused on solving the Door Problem for visually impaired people.
Although the goal of his project was to build a prototype system, he didn’t build it and
simply used a portable computer with a 3D camera. The following figure shows Ricardo’s
proposal to solve the Door Problem.

=il l

—ld

Image RGB
i

00
door closed

0° - 1800
door open

Semantic
Segmentation

Figure 2.14: Ricardo’s proposal to solve the Door Problem

According to his proposal, the first step was to get the RGB and Depth image from the 3D
camera. The next step was to use semantic segmentation algorithms of 4 different classes,
“floor”, "wall”, door” and everything else. He was only using these four classes because
they are enough for the system to classify if the door is open or closed. Ricardo changed
the original colour palette of the ADE20k pre-trained model for semantic segmentation
with 150 classes to a palette with only four classes. For the semantic segmentation, it was
used the method “context encoding” which has an implementation in PyTorch. After the
semantic segmentation, the system would calculate the biggest area for the "wall”, door”
and “floor” classes and store the bounding box of those areas. The most significant area

in this context its the biggest cluster of pixels of each class. After that, the RGB and depth

18

images were cropped for each class according to the bounding box. Then, the point clouds
are built using the cropped depth and RGB images. For each class, we have a point cloud.
To classify if the door is open or closed it was calculated the plan of each point cloud,
and after that, it was estimated the angle between the plane of the wall and the plane of
the door. If the angle between those two planes were 0° degrees or near that, the system
would classify the door as closed. If the angle were bigger than 0° degrees, the system
would classify the door as open.

Further details of Ricardo Domingos’s work will be addressed in later sections of this
thesis as well as how I used his work as a baseline for this project.

19

20

Chapter 3
Project Material

In this chapter is described all the hardware and material used indirectly and directly for
this project. Each section of this chapter corresponds to specific project material. The
equipment for this project was financed by the optic centre and Socia lab.

3.1 Lab Desktop Computer

The central computer that was used to perform and run neural networks and computer
vision algorithms was the lab desktop computer. This computer was used not just to train
the computer vision algorithms but to test them as well to later migrate those algorithms to
Jetson Nano since the goal of this project is to perform these algorithms in a low powered
and easy to transport device. Several neural networks models were trained and validated
in this computer, and if they couldn’t make inference in real-time on the desktop computer
for sure, they wouldn’t run in real-time in Jetson Nano.

3.1.1 Description and characteristics

The desktop computer has Pop! OS 18.04 LTS (Linux) installed with 15,7 GiB RAM, Pro-
cessor AMD Ryzen 7 2700 eight-core processor * 16 and Graphics GeForce GTX 1080 ti
(11175 MiB). It has two disks, an SSD Disk with 487 GiB and an HHD Disk with 3.0 TiB
to store the dataset and other files.

3.2 Raspberry Pi 3B+

The first single-board computer used in this project was the Raspberry Pi 3 model B+.
This device was used in the first portable system to help visually impaired people to nav-
igate. It was the most powerful single board computer that we had in the lab at the start
of this project. This device had the characteristics to be used in the portable system since
it was compact and lightweight.

Later this device was replaced by Jetson Nano which will be described in the next sec-
tion. This computer was never used to run neural networks or computer vision algorithms
despite belonging to the portable system version 1.0. It was used instead to build the
datasets that were used to train, validate and test the neural networks models and all the
computer vision algorithms used in this project.

21

Figure 3.1: Jetson Nano (Left side) and Raspberry Pi 3 Model B+ (right side).

3.2.1 Descriptions and characteristics

The Raspberry Pi 3 Model B+, 5.1, has a RAM 1GB LPDDR2 SDRAM, 1.4GHz 64-bit quad-
core processor, a Broadcom BCM2837Bo, Cortex-A53 (ARMVS8) 64-bit SoC @ 1.4GHz and
a 5V/2.5A DC power input.

It was used a 16 GiB Micro SDCard XC with the Raspberry Pi OS as the operating sys-
tem.

3.3 Jetson Nano Nvidia

The main single-board computer that was used in this project and in the final version (2.0)
prototype portable system was the Jetson Nano from Nvidia. The big difference between
Jetson Nano and Raspberry Pi is that Jetson has as embedded GPU to run computer
vision algorithms and neural networks faster. The main disadvantages of this device is
that it is a little heavier and bigger in height when compared with the Raspberry Pi 3
Model B+.

At the time Socia lab received the Jetson Nano it also receive the new version of Rasp-
berry Pi, the Raspberry Pi 4 Model B. The big reason why I didn’t stick with the Raspberry
Pi franchise and switch to the Jetson franchise was because of the embedded GPU of Jet-
son Nano. The Raspberry Pi 4 also doesn’t come with a GPU, and the only way to have
one was to use a USB Coral Pen or something similar, but it was more comfortable and
more intuitive just to use Jetson Nano.

Two Jetson Nano were used in this project. One was used to test all the computer vision
algorithms in the lab, while the other was used to build the portable system and later to
get feedback from a real-user, a visually impaired person.

22

3.3.1 Descriptions and characteristics

Jetson Nano, B.1 is equipped with a CPU, Quad-core ARM A57 @ 1.43 GHz. It has 4
GiB 64-bit LPDDR4 25.6 GB/s of RAM memory and a 128-core Maxwell GPU. For energy
supply, it has a USB 2.0 Micro-B and a Barrel Jack port. One of the most outstanding
components is Jetson Nano’s heatsink. One of the biggest problems of Jetson Nano is
that it easily overheats when running neural networks models and using a big percentage
of GPU/CPU memory. Later in this report, I will approach this problem and how it was
solved (fan installation).

This portable system works in two modes, 5 watts and 10 watts. The default mode is 10
watts, and almost all of the algorithms were tested in this method. In this report, if the
Jetson mode isn’t referred in a specific experiment, it means that the research was tested
in Jetson 10 watts mode.

For the two Jetson Nanos it were used two 64 GiB Micro SDCard XC with the Jetpack
as the operating system. Initially, both had the Jetpack version 4.2, which was the most
recent when I first work with these devices. Then Jetpack version 4.3 came in, and I in-
stalled in one of the Jetson this version. Even later in this project, in April, Jetpack version
4.4 was released, with a new version of TensorRT and this Jetpack was installed in the Jet-
son with the Jetpack version 4.2. TensorRT will be explained later in this project, but it
stands for Tensor Real-Time, and it’s a technology that allows running neural networks
faster without losing too much precision in the model’s output.

3.3.2 Installation

It was developed a Git repository with the big part of the installations in Jetson Nano as
well as a guide to those installations and the possible errors. This repository was created
with the intention of serving as a backup if I need to install the Jetpack OS again or some
components, but it also can be used as a guide to new users of Jetson Nano. The link to
the repository is the following:
https://github.com/gasparramoa/JetsonNano-CompVision

This repository isn’t restricted to Jetson installations guides, and it also has installations
guides for the desktop computer of tools that are used for Jetson as the tool DIGITS. This
tool will be explained in more detail in the next chapters of the report but is a graphic
user interface to train and validate neural network models which, in turn, will be used in
Jetson Nano. The repository is also one of the ways I used to move files from the desktop
computer to Jetson Nano and it has all the implementations and methods I develop that
worked on Jetson Nano.

After installing the specific Jetpack versions for both Jetson Nanos, I did several steps
and commands (the recommended ones) to prepare Jetson Nano to run computer vision
algorithms.

23

https://github.com/gasparramoa/JetsonNano-CompVision

First, I increased the swap memory by 4 GB. This was done because Jetson Nano only
has 4GB of RAM and neural network models quickly fill up these 4GB of memory.
Several dependencies of deep learning frameworks and libraries were installed:

. git

« cmake

« libatlas-base-dev

« gfortran

» python3-dev

» python3-pip

« libhdfs-serial-dev

« hdfs-tools

« numpy

« matplotlib

« opencv

» open3sd

« torch

« torch-vision

« setuptools
It was also necessary to install the Realsense tools to work with the 3D Realsense camera,
D435 which will be explained later in this chapter.
To decrease the memory used for the graphic user interface and since this one would be
used for the visually impaired people, the i3 was installed in Jetson Nano. The i3 is a non-
graphic interface, and with it, we are able to load bigger images or have a bigger batch size
in the memory.
A big part of the unnecessary start-up programs was removed and disable to increase the
seep up of Jetson Nano’s startup. As I increased the speed up of Jetson’s startup, I also

added the python-script to the bashrec. This allowed the program to start after Jetson
Nano startup without the need to perform any command or action.

3.3.3 Python libraries version for Jetpack 4.3

This subsection treats the most important pythong libraries that were installed and used
in Jetpack version 4.3 for several computer vision algorithms that I tested for Jetson Nano.
This information is useful if someone would like to replicate this work or any of the meth-
ods I develop with the exact same results. The libraries installed and its versions for the
Jetpack 4.3 were the following;:

« torch - version 1.0.0

24

+ torch-vision - version 0.2.2

+ torch-encoding - version 1.0.2
« scipy - version 1.4.1

« numpy - version 1.18.0

+ open3d - version 0.9.0.0

« matplotlib - version 2.1.0

+ jetson-states - version 1.7.8

« CUDA - version 10.0.326

» TensorRT - version 6.0.1.10

« cuDNN - version 7.6.3.28

« VisionWorks - version 1.6.0.500n

« OpenCV - version 4.1.1.

3.3.4 Python libraries version for Jetpack 4.4

This subsection, as the previous one, treats the most important pythongs libraries that
were installed and used in Jetpack version 4.4 for several computer vision algorithms that
I tested for Jetson Nano. The libraries installed and its versions for the Jetpack 4.4 were
the following:

« torch - version 1.5.0

+ torch-vision - version 0.2.2

« scipy - version 0.19.1

* numpy - version 1.13.3
 jetson-states - version 2.0.4

« CUDA - version 10.2.89

« TensorRT - version 7.1.0.16

« cuDNN - version 8.0.0.145

« VisionWorks - version 1.6.0.501

« OpenCV - version 4.1.1

25

3.4 RealSense 3D camera

The camera used in this project was the Realsense camera model D435. This camera is
able to capture RGB and depth images. The depth channel with a range up to 10 m. This
camera is up to 1280 x 720 active stereo depth resolution and up to 30 fps in the lowest
resolutions. The depth channel can go even further and reach 9o fps. It has the dimen-
sions, 90 mm (length), 25 mm (depth), 25 mm (height). It has a USBLIC* 3.1 connector,
that can also work in 2.0 USB but with limited fps and resolutions as it was used in the
Raspberry Pi 3 Model B+.

For the develop dataset and for the visually impaired people, we used the resolution
640 x 480 because it was the most significant resolution that the camera could provide
at 30 fps using a 2.0 USB port. The other factor was that if I increased the resolution,
the neural network methods inference time would also increase. It’s better sometimes to
work on lower resolutions but get our methods working in real-time.

This camera was used in the two prototypes portable system that was built for this
project, and it was also used to construct the dataset that would train and validate the
models for improving the mobile system.

Figure 3.2: 3D Realsense camera Model D435.

The depth channel it reproduces is 2D grey-scaled images with a depth scale equal to
1/16. The RGB image resolution used was 640(width)x480(height) and the depth scale
has precisely the same resolution. The depth Field of view (FOV) is 87°+3° x 58°+1° x
95°+3°. The depth channel distance ranges from 0.105 m to 10m.

Using the realsense-viewer, which is available by installing the pyrealsense library and
its dependencies, I can provide further details and information about the camera. For the
Stereo Module, several parameters can be changed, such as:

26

Resolution (From 256 x 144 to 1280 x 800)

Frame Rate (From 6 to 90)

Available Streams (Depth, infrared 1 and 2)

« Controls such as Exposure, Gain and Laser Power.

Depth units
+ Post-Processing such as Magnitude and Threshold Filters.
For the RGB Module, there are also parameters that can be changed, such as:

« Resolution (From 320 x 180 to 1920 x 1080)

Frame Rate (From 6 to 60)

Color Stream (RGBS, BGRS, Y16)

Controls such as Brightness, Contrast, Exposure, Saturation and others.

 Post-Processing such as Decimation Filter.

3.5 Power bank 20000 mAh

The power bank used in this project was a dual USB TECHLINK Recharge power bank
with 20000 mAh. This power bank has one USB Fast-charging capable of enabling a
current with 2.4 A. With a voltage of 5V, with this current, this power bank could provide
a power of 12 W, which was more than enough to power up Jetson Nano in 10 W mode.

The dimensions of this power bank are (W) 82 mm (D) 22 mm (H) 160 mm although,
this power bank was unmounted for the portable system and its dimensions reduced a
little bit in every axis.

3.6 Portable System 1.0

I built two portable systems for helping navigate visually impaired people in indoor envi-
ronments, version 1.0 and 2.0. The portable system 1.0 its constituted by:

« Raspberry Pi 3 B+ (Single board computer).
« 3D Realsense camera Model D435.

« Power bank TECHLINK Recharge 20000 mAh (power source).

Smartphone (User-interface).

« In-Ear phones (User-interface).

27

This portable system was used to build the datasets for the Door and Stairs Problem. It
was used to construct an image dataset, but it can also save videos. Initial this system was
built to be used for the visually impaired people, but as Jetson Nano came in this system
was remodelled.

Figure 3.3: Portable System 1.0

For the user-interface, I used a Smartphone which has a hotspot. The Raspberry Pi after
the startup it automatically connects to this hotspot. Then, using an SSH application in
the Smartphone, the user can communicate with the system. That was how I built the
dataset by running the program using SSH communication.

I had a lot of difficulties installing pyrealsense(Cross-platform ctypes/Cython wrap-
per to the librealsense library) on raspberry PI. This library was necessary to use the re-
alsense camera pipeline and get the frames of it through a python script. Unlike the lab
desktop computer, I had to install this library manually through the link, github.com/
IntelRealSense/librealsense/blob/master/doc/RaspberryPi3.md. This last URL is
a website specific to install the librealsense in the Raspberry Pi, but it had some errors in
it. After several researches, I found the following tutorial, github.com/IntelRealSense/

librealsense/blob/master/doc/installation_raspbian.md.

One of the dependencies of the librealsense is the opencv library. The installation of this
last library is also different in the Raspberry Pi, https://www.pyimagesearch.com/2017/
09/04/raspbian-stretch-install-opencv-3-python-on-your-raspberry-pi/.
Another dependency that was also installed differently than the lab computer was the
protocol-buffer library:

28

github.com/IntelRealSense/librealsense/blob/master/doc/RaspberryPi3.md
github.com/IntelRealSense/librealsense/blob/master/doc/RaspberryPi3.md
github.com/IntelRealSense/librealsense/blob/master/doc/installation_raspbian.md
github.com/IntelRealSense/librealsense/blob/master/doc/installation_raspbian.md
https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-opencv-3-python-on-your-raspberry-pi/
https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-opencv-3-python-on-your-raspberry-pi/

osdevlab.blogspot/how-to-install-google-protocol-buffers.

If we want to use the librealsense it’s necessary, in the Raspberry Pi system, to have the
python executable program in the same directory where is located the realsense.so to be
able to import this directory.

It’s important to say that the Raspberry Pi 3 B+ is not going to be the final single-
board computer to be used in the portable system. After installing all the libraries and
its dependencies, the system stayed with only 2.5Gb free disk space. It’s still necessary
to install several neural network benchmarks and implementations via Tensorflow or Py-
Torch. The system must have also some free disk space available to store the RGB and
depth information. One solution to this problem would be just to use a bigger SD-Card
but them Jetson Nano came in and so, a new version of this system was built taking into
account all of the previous problems.

3.7 Portable System 2.0

In the second version of the portable system, several things changed. This system is now
constituted by the following components:

« Jetson Nano (Single board computer)-

« 3D Realsense camera model D435

« Power bank TECHLINK Recharge 20000 mAh (power source).
« Hand (User-interface).

« In-Ear phones (User-interface).

Box that contains all of these components.

3.7.1 System characteristics

The version of this system was built focusing more on the user-interface with the visu-
ally impaired people and on the methods to help their navigation in indoor spaces. This
portable system, unlike the previous, has several characteristics that are fundamental so
it can be used by visually impaired people everywhere. It must have a long-lasting battery
to last at least one full day in operation. It must be light and small to be carried every-
where. And finally, it must not overheat. To solve this problem, this system also has a
fan installed in the box cover of the portable system, but further details about this will be
discussed in the next sections.

29

osdevlab.blogspot/how-to-install-google-protocol-buffers

Figure 3.4: Portable System 2.0

:D‘ '@2" 4 ILL A
A 4 LWA N SA

Figure 3.5: Portable System’s Limitations

In addition to these features, this version of the system, unlike the previous one, is easier
to use by a visually impaired system. As it can be seen in figure 3.6, the box of the portable
system only has two components outside, in the surface of the box, a power on/off button
and a micro USB port to charge the power bank.

With this just two components, this system is much easier to be used by visually im-
paired people and beyond that, it is easily transportable because of its weight and size.
For example, this system can be transported by using a normal backpack. The camera is
also easily mounted in a backpack thanks to the new mount system based on the GO PRO
cameras system. The Realsense 3D camera has a universal screw hole that also works in
the GO PRO camera accessories. I mount a small system GO PRO accessory that allows
the camera to be in the correct rotation position and it can be mounted on the shoulder
strap of a backpack.

30

Figure 3.6: Portable System Simplicity, 1 corresponds to Power on/off button and 2 corresponds to the
micro USB port for charging the power bank

Initially, the power bank was providing power to the Jetson Nano via micro USB, but
due to energy and current problems, which will be addressed later in this project, now the
power bank is connected via the barrel jack of Jetson Nano after some modifications and
welds.

3.7.2 System Modes

This portable system has 2 modes, the Generic Obstacle Avoiding mode and the Door
Problem mode.

Generic Obstacle Avoiding Mode
The goal of this mode is to help the user avoid obstacles at the head and trunk level in
indoor but also outdoor environments.

The Generic Obstacle Avoiding mode, as the name implies, it’s a more generic mode
which simply does obstacle avoiding. The goal of this mode is to help the user avoid obsta-
cles at the head and trunk level in the street and unknown places. It’s also the mode where
the Stairs Problem approach will be implemented. It uses the 3D information of the Re-
alsense camera and depending on the distance of the nearest obstacle, it reproduces a beep
sound. This mode works in a very similar way as the car parking sensor system when the

31

Figure 3.7: Original 3D Realsense camera D435 at the left side and GO PRO system with Realsense camera
D435 mounted on the backpack’s should tap.

user has an obstacle at his left side, a beep sound will be produced in the left in-ear phone,
and the same happens on the opposite side.

Initially, I built a prototype method for this mode that uses the z-axis from the 3D cam-
era to produce a specific sound. The smallest the distance between the user and the obsta-
cle, the louder the sound the system produces. This method uses multi-threads to divide
the 3D data of the camera into left and right zone of the image with the objective to work
in stereo. If an object is positioned farther to the left, the system will reproduce the sound
louder on the left headphone.

From this point, Sérgio Goncalves, finalist student of computer engineering, is going
to improve this system by reproducing sounds in the 3D matrix that represents the depth
data from the 3D camera. The prototype system that I built for this mode will also be
further explained later on this project since this chapter is more focused on hardware
components and not in software.

Door Problem Mode
This is the mode where I invested more time and, as the name implies is a mode-specific
for solving the Door Problem. Three different methods were developed for solving the
Door Problem, method A, B and C. Method A uses 2D Semantic Segmentation and 3D
Object Classification. Method B just uses 3D Object Classification and Method C uses 2D
Object Detection / Semantic Segmentation and 2D Object Classification. This 3 methods
will be approached later on this project.

This mode also uses sound to give information to the visually impaired person. After
each frame that is processed by each method, a sound is played to inform if the door is
open, closed or semi-open. This will also be explained later on this project.

32

3.7.3 User-interface

The user-interface of this portable system is different from the previous portable system
version. It’s simpler and easier because the user doesn’t need to use the smartphone it just
needs to use his hands. To power on the system, the user must simply press the power on
the button placed in the portable system box. A beep sound is reproduced so the visually
impaired person can know that it successfully turned on the system. This also happens
when the user turns off the system for the same reasons. The default mode that is started
when Jetson turns on is the Generic Obstacle Avoiding Mode. This mode has its own
sounds to guide the visually impaired people as it was already said previously. To switch
to the other mode, the visually impaired people simply need to put his hand in front of the
camera during 1 second, and it will automatically change to the Door Problem Mode.
A sound is also played when the user switches between modes. To switch back to the first
mode, the user will just need to put his head again in front of the camera.

33

34

Chapter 4

DataSet

In this chapter are described the datasets created for this project and how they were built.
Two different datasets/databases were created, each one for help solving one type of prob-
lem, Door Problem and Stairs Problem. These datasets were build to be used in computer
vision algorithms and to train neural network models. In its turn, the neural network
models were then used to solve the Door and Stairs Problem.

Several images of doors and stairs and its surroundings were captured with different
textures and sizes. Some of these images have obstacles that obstruct and hide part of the
door and stairs such as, chairs, tables, furniture and even persons. The goal was to create
a more generic and realistic real-world dataset. I also changed the pose to get different
perspectives of the same door and stairs. The images captured are from Universidade da
Beira Interior (UBI), public places (Piscina Municipal da Covilha) and people’s houses.

This chapter is organised as follows:

» System to capture data for building the Dataset - In this section is explained
the script used to capture the images to build the dataset as well as some camera de-
tails, the after process and the errors that I got in the process of the dataset creation.

« System to build semantic segmentation and object detection datasets
(CVAT) - In this section is explained the system used to create the semantic seg-
mentation and the object detection versions datasets by using the original datasets.

« Door Dataset - In this section has described the dataset built for the Door Prob-
lem as well as its sub-datasets and the list of neural networks models that used this
dataset.

« Stairs Dataset - In this section has described the dataset built for the Stairs Prob-
lem.

+ Dataset Comparison with Related Work - In this section, I compare the Door
dataset with the related work datasets in terms of RGB/3D Coverage and in the num-
ber of samples.

35

4.1 System to capture data for building the Dataset

The system used to build the datasets of this project was the Prototype System 1.0. The
main component of this system, as it was already referenced, is the single board computer
Raspberry Pi 3 Model B+. The only reason why Jetson Nano wasn’t used here instead of
the Raspberry was because Jetson didn’t have arrived at the lab at the time I started to
build the Door and Stairs datasets.

It was develop a Python (2.6 version) script that would save information from the 3D
Realsense camera, "save_img.py”. The python libraries used for this program were, the
pyrealsense2, numpy, opencv and time library.

4.1.1 Python script

First, it was created the realsense pipeline and configuration where it was set to enable
the camera to stream image with 640(height)*480(width) in colour (BGR) channel and in
the depth channel. In the configuration, it was also configured the depth channel to have
a depth scale equal to 1/16. The depth image is 2D grey-scaled image with the same size as
the colour channel images, but each pixel value corresponds to the distance between the
object in that pixel and the camera. The depth scale equal to 1/16 means that one meter in
real-life is 16 (pixel value) in the depth image. For example, if a pixel in the depth image
has a value equal to 32, it means that the object of that pixel is (32/16 = 2) 2 m away from
the camera. After the configuration of the realsense camera channels, it was configured
the files to write the images (colour and depth). Every time the program captures a frame,
that frame is divided in depth and colour channels, and each channel is converted to a
numpy array. For the depth image it was also used the colormap COLORMAP_JET from
OpenCV with a alpha equal to 0.03. These values were chosen because they were the
default values for getting the depth channel with this colourmap.

To save the image, the user simply would need to press a key in the keyboard to save the
current frame in the realsense pipeline. Later, as the I built the prototype system version
1.0, instead of the keyboard, I used the smartphone communicated via SSH to Raspberry
Pi. With the smartphone, I could simulate the input of the keyboard to save the images,
and it was more practical as well since I didn’t have to transport a keyboard to save images.

Later on, the script “save_img.py” was modified, specifically in the input to save the
images. Instead of having just one input, it was added 5 types of input with the goal to
label the images by saving them to a specific folder (open-doors, closed-doors, semi-open-
doors, up-stairs and down-stairs).

« input key o: Open door folder.
« input key ¢: Closed door folder.

« input key s: Semi-Open door folder.

36

« input key u: Up stairs folder.
« input key d: Down stairs door folder.
« input key n: Normal image folder.

Each folder (each class) was also divided into two folders, color and depth, where the
colour channel and depth channel images were saved respectively. The colour and depth
channel images have the same name, which is the time and date the images were taken.
Later on, this project, the name of these images was changed, and the images were sorted
with the goal to start building the test, validation and training sub-sets.

4.1.2 Camera Detail

The camera used to capture the frames was a 3D Realsense camera. This camera has a
horizontal viewing angle (86 degrees) higher than the vertical viewing angle (57 degrees).
We rotated the camera 90 degrees to switch the angles with the purpose of including all
the door area and the stairs area in the image, 4.1. The camera was placed 135cm above
the floor.

Figure 4.1: Difference between using the 3D Realsense camera in the original position and 90 degrees
rotated.

The input image size defined in the Realsense configuration in the previous script is
640(width) * 480(height). But, as the camera was rotated 9o degrees, the images were
rotated and have now the dimensions 480(width) * 640(height).

4.1.3 After Process - Dataset

With the system to capture the frames of the Realsense and saved the 2D and 3D images
in folders according to the class of the folders what’s left to do is to organise those images
and apply filters to those images.

37

I created a folder in my desktop computer where I saved all the data and images of the
dataset. The folder was first divided into Door and Stairs Problem. In the Door Problem
I have three folders, one for each class, open, closed and semi-open and in the Stairs
Problem I have two folders, up-stairs and down-stairs). En each folder, I have two folders,
one for colour images and the other for depth images. For the 2D Image classification
model the only thing left to do is to just use the colour images and ignore the depth images
but to use the 3D Object Classification PointNet [QSMG16] there is another process that
is needed to be done.

The input of the PointNet model are points sets which are represented in .pts files. Each
file corresponds to a 3D image or Point cloud, and each row of the file corresponds to a
point. Each row has three values (columns) which correspond to the three axes, x, y and
z in the 3D space.

I developed a small script that cycle through all depth images and using the Open3D
library, [ZPK18], I convert the 3D grey-scaled image into a point cloud data image.
With this format we can view point clouds by using the Open3D library or the PCL, Point
Cloud Library viewer tool, [RC11]. After I got the ”.pcd” (point cloud data) files, I used the
Open3D library again to cycle every point of the point cloud and wrote the points in the
”.pts” file.

4.1.4 Errors in the 3D information

Later on this project, after training the PointNet with this dataset I didn’t get any great
results, the mean test accuracy was very near 0.33 (around 0.37) which means that the
network model wasn’t learning at all. Even after trying different parameters, the results
were always weak, and because of that, I decided to verify if all the images were well la-
belled and if there was no problem with them.

I developed a script that would cycle through all images and using the Opencuv library,
[Braoo], and the Open3D library, I was able to reproduce and view the point cloud of
each image. After using this script, I came to the conclusion that several 3D images (point
clouds) were damaged probably due to the camera lens being dirty or something similar.
As it was said previously, the size of the images is 480(width) * 640(height), this means
that each image has 307200 pixels (640%480), so each point cloud has 307200 points
because each pixel corresponds to a point in the point cloud. The problem was that of
some the point clouds (3D images) didn’t have 307200 points but had only 1000 points,
and that was what was wrong and incorrect. These images were excluded from the dataset,
and the results increased.

38

4.2 System to label semantic segmentation and object de-

tection datasets (CVAT)

The previous system was the system built to save and capture images and data for building
the dataset using the 3D Realsense camera and the Raspberry Pi but these systems only
allowed to label images for tasks as 2D and 3D Image/Object Classification. It was used
other computer vision algorithms in addition to the previous ones to solve and approach
the Door and Stairs Problem as the 2D semantic segmentation and 2D object detection.

DOOR 23 [Objects Labels

Figure 4.2: Example of CVAT using the box as the annotation tool.

To label the dataset for this computer vision algorithms, I used the CVAT, [opeon],
which stands for Computer Vision Annotation Tool. This tool is built from the OpenCV
library, and it allows to label semantic segmentation datasets by using polygons and poly-
lines, but it can also be used to label object detection datasets by using boxes. One of the
big advantages of using this tool is that it can export to several formats:

¢« CVAT XML 1.1 for videos

CVAT XML 1.1 for images

PASCAL VOCZIP 1.0

YOLO ZIP 1.0

COCO JSON 1.0

MASKZIP 1.0

TFRecord ZIP 1.0

39

The format that was used to export the labelled datasets was the MASK format because
in this format we get a mask of the semantic segmentation with the same size as the orig-
inal image. For object detection, the format used was the YOLO format, because, several
object detection methods that were studied and tested in this project used this format.
This tool was installed using its repository, https://github.com/opencv/cvat and it runs
in the localhost, port 8080. To start annotating, a job needs to be created. I created two
jobs, one for the validation set and the other for the train set of the semantic segmentation
and object detection dataset. For object detection, the tool used to annotate was the Box
and in the semantic segmentation, the tool used was the Polygon. Figure [4.2 represents
an example of using the CVAT and using the box as the annotation tool to label an image
for an object detection algorithm.

4.3 Door Dataset - Version 1.0

This dataset was built using a 3D Realsense camera with the portable system which allows
me to save images from several places as it was mentioned before. The places where the
samples were taken from are the following:

» Universidade da Beira Interior (UBI)

Canteen

Laboratory

Corridors

Classrooms

« Three private houses

« Piscina Municipal da Covilha

The Door Dataset - Version 1.0 is divided in 3 sub-datasets. Each sub-dataset is speci-
fied for one computer vision task. Those tasks are Image classification, semantic segmen-
tation and object detection. In the following sub-sections, the motivations, specifications
and characteristics of each sub-dataset are described. After the description of each part of
the Door dataset, it’s listed all the neural network models that used this dataset and which
part of it was used.

This dataset is freely available online through the link,
https://github.com/gasparramoa/DoorDetect-Class-Dataset. In this link, the user
can view a simple description of the dataset as well as the descriptions of each sub-dataset.
I provide the Intrinsic matrix (pixels) values of the camera that were used to capture the
images, and it is also provided how the dataset is structured and organised.

40

https://github.com/gasparramoa/DoorDetect-Class-Dataset

4.3.1 Door Classification (3D and RGB) sub-dataset

This is the original dataset built for solving the Door Problem. The motivation was to use
the 3D and RGB information to create point clouds or point sets, which, in turn, would
be used in the 3D object classification PointNet. The 3D parcel of this sub-dataset was
used in the first two methods for solving the Door Problem but it wasn’t used in the third
method, Method C. This last method just uses the RGB / 2D information.

This dataset has 1206 2D(RGB) doorimages. 588 open doors, 468 closed doors and 150
semi-open doors. It also has the corresponding 3D component of these images; in other
words, this dataset also has 1206 3D door images which correspond to the 3D component
of the RGB image.

The test (60 samples) and validation (60 samples) set contain each by 20 samples of each
class (open, closed and semi-open doors). The training set(1086 samples) is constituted
by the remaining images (110 semi-open, 548 open and 428 closed doors).

The image size is equal to 480(width) * 640(height) pixels. Both the 2D and the depth
images have this size, but the depth images are in grayscale with a depth scale equal to
1/16. For example, if one pixel has the value 16, it is 1 meter away from the camera.

There is also a “cropped” version of this sub-dataset. This version is exactly equal to the
previous one with the exception that the images are cropped according to the door and
door frame localisation. This is to simulate the result obtain if it was using a door object
detection method or semantic segmentation in the original images.

Figure 4.3: Door Classification (3D and RGB) sub-dataset with original and cropped versions.

The biggest problem of this dataset is the fact that it is not stratified. The difference
between the number of samples in each class is not small. The test and validation set is
stratified but as if was said previous the train set isn’t. There are more closed and open
doors than semi-open doors.

41

Although there were older versions of this dataset, from now on this project, this sub-
dataset will be called Door Class. 3D-RGB Dataset-version 1.0.

4.3.2 Door Semantic Segmentation sub-dataset

The motivation to built this dataset was to use it for training semantic segmentation mod-
els to segment doors and door frames in Method A and Method C for the Door Problem
which will be described later.

This sub-dataset has 240 labelled door images for semantic segmentation and the cor-
responding 240 original RGB door images. The RGB door images of this sub-dataset came
from the previous sub-dataset. The labelled images were annotated using the Computer
Vision Annotation Tool (CVAT).

The images are divided into a test set (40 samples) and in train set (200 samples). The
image size is equal to 480(width)*640(height). The labelled images are in grey-scale,
where the pixel values vary from 1 to 2. If the pixel value is 1, it means that the pixel
corresponds to the class "don’t care” and if the pixel value is 2, the pixel corresponds to
the class "door” and "doorframe”.

The weakest point of this dataset is its size due to the time it takes to annotate the im-
ages. Even if I used a tool to annotate the images, as it was used the CVAT, I have to draw
several polygons for each image, and it’s a tiresome and repetitive task.

Although there were older versions of this dataset, from now on this project, this sub-
dataset will be denoted as Door Sem. Seg. Dataset-version 1.0.

Figure 4.4: Door Sem. Seg. Dataset-version 1.0 with original and labelled images

42

4.3.3 Door Object Detection sub-dataset

This sub-dataset was built to detect door and doorframes on 2D images in Method C for
the Door Problem which will be described and explained in a later section of this report.

It is composed by 120 annotated door and door frames images from the Door Class.(3D-
RGB) Dataset-version 1.0, 149 annotated door and doorframes images from the DoorDe-
tect Dataset and 144 images without doors from the COCO Dataset. The images without
doors are used to count the number of False Positives in each method tested. Further
details will be explained later in this report.

The test set has 60 images, and the training set has 353 images. The image size is equal
to 480 * 640, and they are RGB images. The annotation files have four numbers which are
the x and y coordinates of the top-left corner and the bottom-right corner of the bounding
boxes. The images were annotated using the Computer Vision Annotation Tool.

The weakest point of this dataset is also its size due to the time it takes to annotate the
images exactly for the same reason as the previous sub-dataset.

Although there were older versions of this dataset, from now on this project, this sub-
dataset will be denoted as Door Detection Dataset-version 1.0.

4.3.4 List of Neural Network Models that used this dataset

Door Class. 3D-RGB Dataset-version 1.0
o PointNet (Method A & B)
» GoogleNet (Method C)
o AlexNet (Method C)

Door Sem. Seg. Dataset-version 1.0

FC-HarDNet (Method A)

FastFCN (Method A)

SegNet (Method C)

BiSeNet (Method C)
Door Detection Dataset-version 1.0
o DetectNet (Method C)

43

4.4 Stairs Dataset - Version 1.0

There was also built a dataset to approach the Stairs Problem, which wasn’t the real fo-
cus of this project. The focus of this project was to solve the Door Problem since it hap-
pens more often to visually impaired people. The reason for the Door Problem happening
more than the Stairs Problem is because the Stairs Problem only happens when visually
impaired people are in unknown indoor places without their white canes which are a rare
case, but it happens. The Door Problem happens when the visually impaired people are
in their houses but, because they live together, the other people can without any intention
leave the door semi-open and then the accident happens.

Either way, the Stairs dataset was built but, unlike the Door Dataset, it doesn’t have sub-
datasets to specific computer vision tasks as the semantic segmentation and the object
detection tasks.

This dataset has 48 2D-RGB labelled images of stairs from our University, Universidade
da Beira Interior. As the Door Dataset, it also has the 3D component of these 48 images
in 48 grey-scaled images with the same size, 480(width) and 640(height). The images are
annotated into two classes, Stair-up and Stair-down. It has 17 images of downstairs and
31 images of upstairs.

4.5 DataSet Comparison with Related Work

The Door Dataset - Version 1.0 was compared with the related work, specifically with
the door classification/detection related work methods. The sub-dataset that was com-
pared was the 2D-3D Door classification.

Table 4.1: Door Dataset - version 1.0 comparison with related work.

DataSet 3D RGB Number of samples
Chen [ZBo8] X v 309
Llopart [LRA17] X v 510
Quintana [QGPAB18] v X 35

Ours v v 1206

Table l4.1 compares the Door Dataset - version 1.0 with the datasets built-in related
works. From table l4.] we can conclude that Door Dataset - version 1.0 has more sam-
ples than the other datasets and has RGB and Depth images which none of the related
work databases has.

The dataset develop isn’t just bigger than the related work datasets. It has several doors
from at least six different locations. While the others 3 datasets have doors in a very con-
trolled environment except for the Llopart dataset, [LRA17], which used the ImageNet
dataset.

44

Chapter 5
Tests and Experiments

This chapter will address all the experiments and tests that I did to build a portable system
(software and hardware). It will also discuss all the problems that I had in each process
and how I solved them.

5.1 Ricardo’s work

I started to read and implement Ricardo Domingos’s bachelor final project method to
solve the Door Problem. Ricardo’s work was like a baseline to my project, and that’s
the reason why I started to study his work, his problems and implement it.

5.1.1 Ricardo’s work problems

Ricardo was having problems with noisy point clouds and with double doors. The point
clouds captured by the 3D camera Realsense D435 were noisy. To solve this problem,
Ricardo tried to get the depth information from other 3D cameras, like the Kinnect from
Microsoft XBOX, but the problem remained. Because of the noise, the point clouds had
swings that interfered with the calculations of the planes of the point clouds, and the ob-
tained angle between the two planes wouldn’t be the real angle between the door and the
wall. The second biggest problem that Ricardo had was getting the correct crop image in
double doors. As he was calculating the biggest area of each class in the semantic segmen-
tation output, if we have a double door, where one door is open, and the other is closed,
we should say that the path is clear for the visually impaired people to walk by because
one door is open, but the system would say that the door was closed. This was happening
because the biggest area calculated of the class door would be the closed door and not the
open door.

5.1.2 Implementation of Ricardo’s work

As an initial goal, I try to replicate his work in the lab computer. I implemented the same
semantic segmentation algorithm Context Encoding, [ZDS"18], to detect the door in the
input RGB image, using the same model pre-trained in the ade20k dataset. This model
was the fully convolutional network EncNet, with ResNet 101 as the backbone network.
I used the benchmark Context Encoding, implemented in PyTorch for the semantic seg-
mentation. I worked with Ricardo’s code so I could see if the camera Realsense was work-
ing correctly and also if I was getting the same results as his.

45

I implemented Ricardo’s work until the calculation of the point cloud planes because I
notice one big problem that his proposal had to solve the Door Problem. In most cases,
using the angle between the door and the wall to determine if the door was closed or open
works, but there are cases that it doesn’t work, the corner cases. For better understating
of this problem, the following figure is presented.

Qo

Door is open

900

Dooris closed Door is closed

Figure 5.1: Problem in Ricardo’s proposal for solving the Door Problem.

As we can see in the figure, the two pictures in the left represent the standard cases.
When the angle between the wall and the door is 90 degrees, it means that the door is
open and when that angle is 0 degrees, it means that it’s closed. But on the right side
of the figure, it’s represented the corner situation where the scene is constituted by two
walls and one door. The green wall represents the biggest area calculated in the semantic
segmentation of the class wall, which means that the angle calculated will be between
the door plane and the green wall plane. In the right top figure, for example, the angle
between the wall and the door is 0 degrees which, according to Ricardo’s proposal would
mean that the door was closed, but we can see clearly that it isn’t. The inverse situation
happens in the right bottom figure, where the door is clearly opened, but, according to
Ricardo’s method, it would say that it was closed.

Another big problem of Ricardo’s work for solving the Door Problem wasn’t in the
method itself but in his view of the Door Problem. As it was already said previously in this
report, visually impaired people don’t have problems either with open doors not closed
door but with semi-open doors. The method for solving the Door Problem shouldn’t be
monitoring whether the door is open or closed but rather if the door is semi-open or not.
Initially, I was approaching the Door Problem in the same way as Ricardo, where I just
concerned if the door was closed or not, but later I changed my approach. I started to
divide the detect door into three classes, open, semi-open and closed, and I stick in this
approach for the rest of this project.

46

5.1.3 Semantic Segmentation - Context-Encoding PyTorch

I begin with the algorithm for the 2D semantic segmentation. I started to explore the
benchmark that Ricardo used in his project, the PyTorch Context Encoding. Firstly, I in-
stalled this benchmark and all its dependencies in the lab desktop computer manually.
An important detail was that the version of Torch that it was required, was the version
1.0.0 and only that version worked for this benchmark. I follow the following tutorial,
hangzhang/PyTorch-Encoding/experiments/segmentation. I ran the script to build the
dataset ADE20K, [ZZP"17], which was the same dataset that Ricardo used for the pre-
trained model in the semantic segmentation. As I mentioned previously, I used the net-
work EncNet, with the backbone ResNet101 and the weights pre-trained on the ADE20K
dataset. I tested the demo.py script, and everything ran fine, without any problems and
€errors.

5.1.4 Conclusion

In the final version of Ricardo’s Door Problem method, the depth information wasn’t used,
derived from the problems that Ricardo had with the point clouds. Following all these
problems, I understand that Ricardo’s proposal couldn’t solve 100% the Door Problem
but it was the baseline and the roots for my proposal. Summing up, I implemented the
use of semantic segmentation to calculate the biggest area of each class, and I also im-
plemented the crop of both RGB and depth image and the creation of the point clouds of
each class using the PCL toolkit, png2pcd. The PCL, which stands for Point Cloud Library
is a framework for 2D/3D Image and point cloud processing. This framework is open-
source software, and it contains numerous state-of-the-art algorithms, including surface
reconstruction, filtering, registration, model fitting, segmentation, and others. After im-
plementing Ricardo’s work in the lab desktop computer, the next step was to implement
it in a portable system for visually impaired people and also start to explore some related
works to find other approaches and methods to solve the Door Problem.

5.2 Use of 3D object classification models to solve the Door
Problem

As mentioned before, Ricardo’s proposal couldn’t solve Door Problem because of all the
problems previously mentioned. My initial proposal was, instead of comparing the plane
between the biggest area of the door and the wall, I used neural networks to do the classi-
fication. Since I have access to both RGB and depth information, the idea is to use neural
networks that use this type of information and not just RGB images as the typical neural
networks do. Before I started to explore 3D object classification models and algorithms,
I built a mini dataset to then test these models.

47

hangzhang/PyTorch-Encoding/experiments/segmentation

5.2.1 Mini-DataSet

I started by creating a small/prototype dataset using the prototype portable system
version 1.0(Raspberry PI Model 3B+). Once again, it’s important to refer that these
datasets had just two classes, open and close doors. This was my first approach to the
Door Problem. Only later in this project, I realised that I should use another class.

I went to several places to take photos of doors in indoor spaces. If the door was open
and one human could fit in that door, assuming he would walk in a straight line, that
would mean that the door was open. If the person couldn’t fit the door, even if it was
semi-open, I would assume that the door was closed. The main objective in the Door
Problem isn’t to see if the door is open or closed, but to see if we can pass through it or not.
In the middle term situation, when the door is half-open(semi-open), for us, not visually
impaired people, the door is open, but for the visually impaired, the door is closed. The
door is closed for visually impaired people because it is still an obstacle and they will get
hit if they walk in a straight line. Once again, this approach was changed later to just had
one class for semi-open doors.

I saved not only the traditional RGB image but its depth(3D) component. Every photo
taken has one RGB image and one depth image. This way, I can use both pieces of in-
formation for object classification and could try different computer vision algorithms to
solve this problem.

This Mini-Dataset was the beginning of Door Classification (3D and RGB) sub-dataset -
Version 1.0. Of course that the labels of this mini-dataset were just open and close doors,
but they were later changed to 3 classes, open, semi-open, and close doors.

5.2.2 PointNet

The first 3D object classification neural network that I started exploring was the PointNet.
The goal was to use a method that uses both RGB plus depth information to classify if
the door is open or closed or if the stair is up or down and other problems that visually
impaired people have. I studied the PointNet because it is a foundation network that uses
depth information as input and several networks derive from it. The original PointNet
doesn’t use RGB information for object classification. The original model is also capable
of 3D part semantic and 3D semantic segmentation, but these approaches weren’t used
since they weren’t in real-time. It uses only depth information, namely, an array that
represents the coordinates of all points in one point cloud without RGB information. The
number of rows in this array is the number of points of the input point cloud, and it always
has three columns that represent the three coordinates of the 3D space, the x-axis, the y-
axis, and the z-axis as it was already explained in the Dataset chapter, |, of this report.

48

The PointNet was one of the first neural networks that used point clouds as input. They
can be used to object classification, semantic segmentation, part object segmentation, and
others. The main advantage of this network is that they don’t need any type of voxelisation
of the input point cloud. This will decrease the time of training the train set because the
data is not so bulky as it would be if the point cloud was converted to a 3D voxel grid.

To implement and explore the PointNet, I used the following repository, github. com/
fxia22/pointnet.pytorch, that is an implementation of PointNet in PyTorch. I tested
with the same dataset that they used in the paper, the ShapeNet, [CFG"15] dataset, and
everything was working correctly except for the Test and Val set. They were using the Test
set during the training of the network when they should be using the Val set. I change this
mistake simply using the value set in during the training and only using the test set after
training the network as it should be.

With the prototype dataset that I built earlier(Mini-Dataset), I could now use it in this
network to test both the network and the dataset. I needed to convert the depth image to a
Numpy array with the file format .pts which represents the coordinates of the points in the
point cloud. This was the file format used by PointNet and is just another representation
of 3 data. These files needed to be placed in different folders dependently on their class,
in my case, two classes, two folders, (open and closed).

It was also necessary to create the .seg files although these didn’t need to be used in the
object classification task and only in the object segmentation task, which I didn’t use in
this project. These files represent the sub-3D parts of an object in the input point cloud.
In other words, they are a complementing file to the .pts files. Each point set or point
cloud belongs to a class, but that class can be divided into sub-class. For example, the
door can have the sub-classes, doorframe, door handle, and the rest of the door. The seg
files have information about the sub-classes, which pixel belongs to each sub-class. These
files aren’t needed for the 3D object classification, but in this implementation of PointNet,
they are required anyway due to some malfunction error in the code. The objects in the
mini-dataset weren’t divided into subparts, so I simply stipulated that there was only, for
each object, one subpart of the same.

5.2.3 Dataset for PointNet

After getting an acceptable quantity of samples from the camera, I started to organise the
dataset in the same format as the ShapeNet dataset. I did this because it was necessary if
I wanted to use my Mini-dataset in the implementation of PointNet in PyTorch.

49

github.com/fxia22/pointnet.pytorch
github.com/fxia22/pointnet.pytorch

The following list is the structure of the dataset directory without any filtering and data
augmentation.

/DataSet
« open

— color (157 samples)

— depth (157 samples)
« closed

— color (7731 samples)

— depth (731 samples)

I was comparing my prototype dataset with ShapeNet dataset. One point cloud of the
mini-dataset was much larger (307200 points) than the samples of the ShapeNet dataset
(mean 2000 points).

One solution to this problem was to, instead of using the entire point cloud (307200
points) I only used the point cloud interest zone to classify if the door was open or closed.
Basically, the point cloud interest zone is all the pixels that belong to the door itself in
the original image. If I use only the points of the interest zone, the point cloud size will
decrease.

But how did I got the interest zone of the point cloud? For that, I use 2D Semantic
Segmentation (Context-Encoding). The advantage is that I will reduce the size of my
samples that will enter as input to PointNet without losing any important information
to distinguish between the open and closed doors. I only need to show the region around
the door(door and doorframe) instead of showing all the regions that the camera 3D Re-
alsense captured. I used the benchmark Context-Encoding in PyTorch, the same that
Ricardo used in his work for the 2D semantic segmentation. I used the EncNet with the
network backbone Resnet101 pre-trained in the ADE20K dataset. For each RGB image,
I generated a semantic segmentation image where I was only looking at the door class.
The result of the 2D semantic segmentation was stored in the DataSeg directory with the
following structure:

/DataSeg
« open (157 samples)

« closed (731 samples)

The DataSet directory is similar to the Mini-Dataset, the only different is that it only
contains RGB images and those images are the output of the semantic segmentation Con-
text Encoding previously mentioned.

50

Using the output of the 2D semantic segmentation, I built the "DataSet-Slim”. This
dataset is equal to the original DataSet, but the RGB and depth images are cropped ac-
cording to the result of the semantic segmentation.

One problem was that the semantic segmentation didn’t work for all the samples, and
because of that, several images in the DataSet-Slim weren’t properly cropped or weren’t
cropped at all.

To solve this problem, I built a simple script to filter all the images in the DataSet-Slim
directory. For example, if the door wasn’t visible in the cropped region, that sample would
be discarded and not used. This script requires a real user to filter all the images. It was
built because it makes the process of filtering more efficient and we don’t have the problem
of eliminating the wrong RGB image, or it’s depth component.

There was also develop another filtering script that, without the need of a real user,
would filter the images for other situations. These situations were the situations where
the crop of the image was too small. In other words, the semantic segmentation didn’t
almost detect any door object in the image. In this case, the sample wasn’t used, and it
was discarded. Another filter of this script that was used was in the height and width
correlation of the image. If the height of the cropped image was smaller than the width,
that image would be discarded because the height of the doors is bigger than the width.
After applying all the filters, the structure of the DataSet-Slim was the following:

/DataSet-Slim
+ open
— colour (59 samples)
— depth (59 samples)
« closed

— colour (495 samples)

— depth (495 samples)

If this dataset is compared with the Mini-DataSet for PointNet, after filtering the im-
ages, the dataset lost (157 — 59 = 98) 98 images of open doors and (731 — 495 = 236) 236
closed doors images. In total, the DataSet-Slim has 334 less images them the original one
for PointNet, Mini-DataSet.

It was necessary to separate each class set in train, test, and Val sets. To do that I used
the library split_folders (Python 3) which already does the data division. This library is
also capable of using oversampling to one class if the dataset isn’t stratified, which was
the case. After applying all the filters previously mentioned I had almost 10 times more

51

samples of the "closed class” than “open class”. For each class I used 10 samples for test-
ing, 10 samples for validation and the rest(475 samples) for training. Only the training set
data has suffered oversampling. The oversampling is simply the creation of others copies
in the class set that has less samples. It wasn’t data augmentation. I created two new
dataset directories one related to the other, DataRGB3 and DataDepth3. The first one
is the division of train, test and val of the RGB images of the dataset, with the following

structure:

/DataRGB3
o test

— closed (10 samples)

— open (10 samples)
« train

— closed (475 samples)

— open (475 samples)
« val

— closed (10 samples)

— open (10 samples)

The second has the same structure, but instead of having the RGB images, it has its
depth component.

5.2.4 Data augmentation for dataset for PointNet

All these sub-datasets that are being referred weren’t used in the final version of the
dataset as the same was already described in the Dataset chapter. It’s true that these
datasets are the prototype of the final version since several images of them were used to
build this last version. It’s important to say that none of the sub-datasets of the final ver-
sion doesn’t have data augmentation. It is up to the user to use data augmentation or

not.

I did data augmentation after I generated the dataset DataRGB3 with these three par-
titions, train, test, and Val. The test dataset didn’t suffer data augmentation because I
wanted to use real images and real-life scenarios.

52

At this moment, I used 2 data augmentation techniques. First I used Horizontal flip,
that increased by two times the validation set size (10 * 2 = 20) and the train set size
(475 % 2 = 950). After flipping the images I used an angle rotation between -25 and 25 de-
grees every 5 degrees (—25, —20, —15, —10, —5, 0, 5, 10, 15, 20, 25). This increased by eleven
times the size of the validation set (20 * 11 = 220) and the size of the train set(950 * 11 =
10450).

After getting a bigger dataset thanks to data augmentation I converted the RGB images
with the depth images into point cloud data(.pcd) using the PCL tool, png2pcd. Once I got
all the .pcd files I convert this into .pts which was the format required to use the imple-
mentation of the PointNet. The .seg files aforementioned were also created although they
are not needed in the object classification task as it was already said. The only parame-
ter still missing was the .json files. These were the files that contained the information
about the sets (train, test, Val) that each sample belongs to. After all these processes, the
structure of the dataset I built for PointNet was the following;:

/Dataset-PointNet
+ closed

— points (10680 samples)

— points_label (10680 samples)
« open

— points (10680 samples)

— points_label (10680 samples)
« train_test_split

— shuffled_test_file_list.json
— shuffled_train_file_list.json

— shuffled_val_file_list.json

10680 samples because it aggregates all the 3 sets, train, test and val (10450+220+10 =
10680).

53

5.2.5 PointNet implementation results

After building my own prototype dataset with only images and depth information of closed
and open doors I started to test the PointNet. I run the script for training the network to
distinguish between ”open-door” and “closed-door” with the following parameters:

« batch size = 20
« number of epoch =7
« number of points = 2500

« learning rate = 0.001

After training the model, I tested it with the evaluation script, and the accuracy was
only 0.55, which means the network nearly learned anything about distinguish the two
classes. The value 0.55 means that the network classified well 11 samples in 20 samples
in the test set, which could easily be pure luck since there are only two classes (0.5).

I researched a little more about the implementation of PointNet and how the training
was being done, and I found out that the problem was in the number of points used to
training and testing. The parameter, number of points, defines the number of points
that will be randomly selected in each sample to train the model. The default value for this
parameter is 2500, which in the case of the ShapeNet makes sense since the point cloud
samples have on average 2000 points. In the dataset that I built, the point cloud samples
have 100000 points and the standard deviation can go between 500 points to 200000
points. Taking into account this, I trained the model with the number of points parameter
equal to 10000. The ideal case would be to use 100000 points or even 300000 points,
but the memory capacity of the GPU couldn’t take it, so I used only 10000 points.

This time, the parameter for training were:

« batch size = 20

number of epoch = 5
« number of points = 10000

« learning rate = 0.001

I saved the weights of the network (model) in every epoch so I could evaluate each model
and see if the network learned anything epoch by epoch. In the evaluation, I used the same
batch size and the same number of points. I only evaluate the models after the training.
The following table shows the results that I got for evaluating each model. I evaluated five
times each model and then calculated the mean and standard deviation for both the loss
and the accuracy value.

54

Evaluation | Mean accuracy Mean loss
1 Epoch 0.6940.02 0.6945+0.007
2 Epoch 0.75+0 0.6161+0.006
3 Epoch 0.7240.02 0.63984-0.007
4 Epoch 0.794+0.02 0.5728+0.007
5 Epoch 0.80+0 0.588440.012

Table 5.1: Evaluation results on 5 models from Pointnet trained in my own PointNet dataset

I can conclude that the number of points greatly influences the results of the evaluation
of the network. The dataset that I built has a lot of points (100000 on average), and it’s
important to use more points for training the network. Recalling that each point cloud has
100000 points in average and not 307200 because it was cropped according to the result
of the semantic segmentation method previously mentioned. With only 2500 points, the
network couldn’t learn anything because they only represented on average 2% of the entire

point cloud.

55

5.3 First proposal to solve The Door Problem

From the previous section, I merged all the main steps and built my first proposal to solve
The Door Problem. This proposal was proposed in the prototype portable system version
1.0, and it’s based on 2D Semantic Segmentation and 3D object classification. First, the
camera gets the 2D and 3D images/frames. The second step is to use 2D semantic seg-
mentation. In this case, it was used the Context-Encoding benchmark with the EncNet.
Then, the biggest door area in the image was calculated using the same approach as Ri-
cardo Domingos used in his method. This method was to use the function FindContours
of opencv library using a masking threshold between the RGB values of the door in the
semantic segmentation output. Then I got the bounding box in the output of FindCoun-
tours using the function boundingRect of opencv. The original depth image was cropped
based on this bounding box. The cropped depth image was then converted into a .pts file,
which is the input of the PointNet and them the PointNet returns the score value which
consists of three values(one for each class) between o and 1.

The red rectangle boxes represent parts of this proposal that could be improved. For
the Semantic Segmentation I could use another algorithm or neural network to do it. The
same goes for the PointNet rectangle, I could use other 3D Object Classification model
instead of the PointNet. Figure 5.2 represents the proposal previously described.

Images RGB and Depth

Crop Images and Depth

I

Semantic Segmentation

closed closed

Figure 5.2: First proposal to solve the Door Problem

This proposal is very similar to the first method for solving the Door Problem that I
develop (Method A). This method will be covered later in this report. The main difference
is in the semantic segmentation model used and in the labelling of the dataset. This first
proposal just uses two classes(open and closed), and Method A uses 3 (open, closed, and
semi-open door).

56

5.3.1 Problems with the dataset

The dataset I built for solving the Door Problem for visually impaired people is still in-
complete and has several problems. It contains point clouds with a lot of difference in
terms of the number of points. There are point clouds with almost no information, and so
they are useless to the model. There are also point clouds with extra information that will
make the system slow, and that extra information isn’t necessary to distinguish between
the closed and open doors. Although the dataset already has 10.000 samples with data
augmentation, it’s still not enough because it needs more different kinds of doors so the
model can generalise better.

5.3.2 Problems with the semantic segmentation

The problems with this proposal are not only due to the database. There were several
samples that were being wasted because of the semantic segmentation. The problem was
with the cases when the door was open. In these situations, the 2D semantic segmenta-
tion couldn’t segment/detect very well the door jamb. One idea was to use the semantic
segmentation algorithm to detect the door frame and not the door. There are cases when
the door is wide open, 180 degrees, and the segmentation result instead of being the door
and the door frame, is just the door itself which is open of course, but with that context,
it looks like its closed, and it will induce errors to the network. The following picture .3
represents the previous situation:

Figure 5.3: Semantic Segmentation problem in the first proposal. (1-Represents the image captured by the
camera, 2-Semantic Segmentation output and 3-Expected Semantic Segmentation output)

The ADE20K dataset has several classes and one of them is the doorframe or doorcase
which is the ideal class to use in this proposal. The problem is that the doorframe is not
actually a class but a sub-class and the model that I was using for the semantic segmen-
tation, the Context Encoding, uses only the 150 main classes of ADE20K (in the default
ADE20K data-loader of the semantic segmentation model) and doorframe isn’t included.
Another problem with the repository of the implementation of the Context Encoding is
that the training of the model is restricted to multi-GPU. The lab computer that I am us-
ing has only one GPU so I couldn’t train the model and change it.

57

5.4 FastFCN semantic segmentation

AsIcouldn’t train the model, I decided to explore other semantic segmentation algorithms
with the conditions of having a ADE20K data-loader and single GPU training. The best
three methods for the semantic segmentation in the ADE20K at the moment were the
PSPNet, [ZSQ™16], the Context Encoding and the FastFCN, [WZH " 19] which also uses
the EncNet just as the Context Encoding method uses. In these three methods, the only
implementation that allowed single-GPU training was the FastFCN. The FastFCN method
was a good choice because it’s a modification of the previous method that I was working
with, the Context Encoding, so it’s implementation was similar and simple.

Unfortunately this method also only uses the 150 main classes of the ADE20K dataset
so I couldn’t simply use the class doorframe because it wasn’t labelled. In fact, the im-
plementations of the best three methods for the semantic segmentation in the ADE20K
dataset only use the 150 main classes in the ADE20K dataset.

I downloaded the entire ADE20K dataset, with all the classes and sub-classes and I
filtered it so it would only have the images with doorframes and stairs. I used the class
stairs because of the other problem that I got information that visually impaired people
usually have, the Stairs Problem. The annotations in the original ADE20K dataset didn’t
bring any information about which value corresponds to which class. I had to use a spe-
cific mask that the ADE20K used for the annotations, and after that, by trial and error, I
discover which value in the mask corresponded to the class/sub-class doorframe and to
the class stair.

Instead of having one dataset with images and annotations of 150 classes, I have now
one dataset for the semantic segmentation with only two classes. The annotations are
grayscale images where the value of the pixel match to one of these two classes (doorframe
and stair) or no-class(everything else).

« class "doorframe” - value 1
« class "stairs” - value 2
« no-class - value 0
After filtering the original dataset ADE20K, the dataset became with 132 samples in
the validation set and 1133 samples in the train set. It was also necessary to make some

change some in the files, ade20k.py, option.py, so the new dataset could work, and the
network could start training.

58

The resulting dataset had the following structure:

/ADE20K-Modified-DoorFrame-Stairs

« annotations

— training (1133 samples)

— validation (132 samples)
» images

— training (1133 samples)

— validation (132 samples)

objectInfo150.txt

» sceneCategories.txt

In the training set (1133 samples), there were 255 samples for the class door(and door-
frame) and 878 samples for the class stairs. In the validation set (132 samples), there
were 30 samples for the class door/doorframe and 102 samples for the class stairs.

5.4.1 Training FastFCN for semantic segmentation with doorframe
and stair classes

With the resulting dataset, I started to train the FastFCN Semantic Segmentation mode
for just the two classes that needed to be segmented for the Door Problem and Stairs
Problem. 1 trained the FastFCN (EncNet) during 50 epochs, with batch size equal to 6
and the backbone used was the ResNet101. At the end of training, the validation pixel
accuracy was equal to 0.984 and the mean intersection over union(ZloU) was 0.962. I
used the pixel accuracy and the intersection over union (IoU) as the evaluation metrics.
The intersection over union is the area of superposition between the predicted segmen-
tation and the ground truth divided by the area of the union of these last two. The mean
IoU is to the mean of the Intersection over union for each class. The pixel accuracy is the
per cent of pixels in the input image that are classified correctly. The results looked good,
but when I tested in the test set, I could see that there was something that wasn’t working
correctly.

In figure f.4, in the prediction(right side), the blue value is correlated with the class
doorframe and the green value with the class stairs. The network almost didn’t learn
anything and the problem, in my opinion, might be because there are two classes, but the
prediction should predict three different values, 1 if is a doorframe, 2 if is a stair and 3
if is neither of them. The strategy here was to add one more class that I called no-class,
and it will have assigned the value 3 instead of the value 0, which was mentioned earlier.
I did this because I noticed that every annotation done previously by the authors of the
repository had one class value to each pixel. I thought that the value 0 was for class no-
class but I was wrong, in fact, the value 0 wasn’t assigned to any pixel in any annotation.

59

Figure 5.4: Prediction of FastFCN in 1 image of the test set from the ADE20K dataset using only 2 classes,
doorframe and stairs.

After this modification, I trained the model again, with the same arguments, the only
thing different was this last modification. At the end of the training, the validation pixel
accuracy was 0.970, and the mean intersection over union was 0.556. It may seem that
the IoU was worse, but in this problem, I had three classes, being the last one assigned
to everything that wasn’t a door or stair. In the previous training, I had only two classes,
where the pixels that didn’t belong to nether this two classes had the value 0 assigns and
the IoU wasn’t calculate taking into account the pixels with the value 0, and that’s why it’s
value was bigger in the previous case. The results are a little better but are far from good.
In the most part of the images, the class 3, no-class, is predicted in almost every pixel by
the model.

Figure 5.5: Prediction of FastFCN in 1 image of the test set from the ADE20K dataset using 3 classes,
doorframe, stairs and no-class

In figure f.g, in the prediction, the blue value is correlated with the class doorframe, the
green value with the class stairs and the black value with the class no class. The problem
is that some images and annotations are too complex, especially in samples with stairs.
Some of these complex cases in the portable system for visually people will never occur
so, I deleted all the samples that contained the class stairs and start to focus only on the
Door Problem.

60

5.4.2 Training the FastFCN EncNet with only 2 classes, doorframe
and no-class

I trained the FastFCN EncNet with 2 classes, doorframe and no-class instead of the pre-
vious 3 classes. This way, I was removing the complex cases(stairs samples), and I fo-
cused first on solving the Door Problem for visually impaired people. After removing
these cases, my dataset had 255 samples in the training set and 30 samples in the valida-
tion set. In the best epoch I got a validation pixel accuracy equal to 0.960 and the mean
IoU was 0.702 when in the previous test it was just 0.556.

5.4.3 Improve in the dataset for the first Proposal to solve the Door
Problem

After seeing I was still not getting the expected results, I improved both the semantic
segmentation dataset (ADE20K) and 3D object classification Mini-dataset.

In the last test I did, I had 255 samples in the training set and 30 samples in the val-
idation set. To improve the semantic segmentation algorithm, I increased the dataset of
doorframes. As I already had several images of doors, taken for building the dataset for
object classification, I used some of those images to build the segmentation dataset. To
label the images, I used the CVAT (Computer Vision Annotation Tool), which was simple
to use. The user only needs to draw the polygons in the image. One advantage of using
this tool is it has one format to export the annotation that is very similar to the default
format of the ADE20K dataset and so, I could easily convert it to the correct format.

Previously, in the Mini-dataset, I had 731 images of closed doors, 157 images of open
doors. This dataset also had two images of downstairs and 31 images of upstairs for the
Stairs Problem. As I was focused on the Door Problem, I didn’t increase too much the
upstairs/downstairs dataset. After using the prototype portable system version 1.0 to
take more pictures of doors, my dataset was now constituted by 1096 images of closed
doors, 734 images of open doors, 12 images of downstairs, and 33 images of upstairs.

Once again I used the tool split-folder to split my dataset into test and train sets. A
strong point of the new dataset was that the number of samples of closed doors was no
longer five times bigger than the number of samples of open doors. With the improve-
ment, the number of samples of closed doors wasn’t even two times bigger than the num-
ber of samples of open doors. With the tool, split-folder I oversampling the number of
samples of open doors to be 1096 instead of 734. After the split, the dataset had 1992
images in the training set and 200 images for testing the model.

What was missing was label this new Mini-dataset so it could be used on the FastFCN
model. As I was annotating the images I came to the conclusion that it would take too
much time annotating all the images (1992 + 200), so I stopped annotating, and instead

61

of using the full dataset I created a small version of it. I came to this conclusion because
in the entire version of the dataset I have ten pictures of the same door, but with different
rotations, perspectives and illumination and they will be used in the 3D object classifica-
tion model, but for the semantic segmentation, one picture or two per type of door was
enough to for the model to be able to generalise well. So I reduce the dataset manually
and in the final, I had 200 samples in the train set and 40 samples in the test set.

5.5 Door 2D Semantic Segmentation

The idea of the 2D semantic segmentation is to detect the objects. In the first proposal
for solving the Door Problem, this method was used to reduce the point cloud that will
be used in the 3D object classification (PointNet) model and to just send the necessary
information to distinguish between the open and close door.

5.5.1 Using only doorframe class in semantic segmentation

Initially, I was doing 2D Door semantic segmentation as Ricardo did in his work, but later
on, I saw that doing only door segmentation would induce the model to bad results since,
in some situations, the information of the door may not be enough to classify its opening.
To solve this problem I proposed the doorframe instead of the door but, as I was labelling
the previous dataset in the CVAT, I came to the conclusion that there also are situations
that using the doorframe only wouldn’t work. The following situation shows the problems

L

Figure 5.6: Semantic Segmentation problem of using just the doorframe class. (1-Represents the input
image, 2-Semantic Segmentation output prediction, 3-Expected Semantic Segmentation output)

of only using the doorframe class:

As it can be seen in the figure, 5.6, the doorframe is divided by the door into two annota-
tions. There are two-door frames annotations for just one door. If we apply the proposed
algorithm, the first step would be to calculate the biggest area of all of the door frames in
the picture and them draw a bounding box, and crop the image following that bounding
box. But in this case, the door frame is divided into two parts, so only the biggest part will
be considered, and the image will be cropped following only that part of the doorframe
resulting in the wrong cropped image expected.

62

5.5.2 Using doorfirame and door class in semantic segmentation

One solution for the previous problem would be to instead of segmenting only the door-
frame, segment both doorframe, and door, and considered them as one class. In the previ-
ous example (5.6) if I used as one class both doorframe and the door, the predicted output
of the semantic segmentation model would be very similar to the expected.

5.5.3 Evaluation of the possible semantic segmentation strategies

To see which strategy was the best to use, I evaluated all the semantic segmentation Fast-
FCN different strategies, comparing the training times and the predictions using exactly
the same parameters in all the strategies. The strategy with the most correct cropped im-
ages in the test set would be the best to use because it would mean that it can generalise
better and crop more pictures correctly than the others. An image was correctly cropped
when it keeps only the interest zone in it. If the cropped image didn’t have enough infor-
mation to see if the door was open or closed or if the image had overload information, that
prediction would be considered as a bad prediction.

The difference between the strategies that were evaluated was which classes were la-
belled in the dataset. The after-process was the same for all the strategies. The model
FastFCN was trained with only two classes, the class that defines the strategy (just door,
just doorframe, door, and doorframe) and the class that represents all the other objects
(no-class). After this, the model was evaluated with the same test set (40 images) for all
the strategies, and the predictions were saved. For each prediction (40) it was calculated
the biggest area of the class that defines the strategy, and then, the bounding box was
drawn around that area. The original RGB image was cropped according to the bounding
box. After this step, filters (image or the width is too small) were applied to the cropped
image. The final step was to compare the resulting cropped images of each strategy.

3 strategies were considered:
« Labelling only the door class in the dataset
« Labelling only the doorframe class in the dataset
« Labelling both door and doorframe as one class in the dataset

The FastFCN(EncNet) model was trained separately for each one of the strategies dur-
ing 50 epochs. All the parameters of the training were the same, batch size equal to 5,
the backbone network was the ResNet101, and the learning rate was the default value
(0.003125). After training each model with the different datasets, the model was evalu-
ated in the 40 samples of the test set. The results were the following:

63

Strategy Train time | Mean accuracy | mlIoU

Only door labelled 22:27 min 0.9573 0.8622

Only door frame labelled 23:20 min 0.9650 0.7918
Door and door frame labelled 22:24 min 0.9474 0.8700

Table 5.2: Evaluation results on EncNet FastFCN with 3 different strategies

As it can be seen in table f.d, all training times were more or less the same for all strate-
gies. The difference was in the mean pixel accuracy and in the mean interface over the
union. Normally, in semantic segmentation, the mean IoU is taken into account more
than the mean pixel accuracy. This is true because the pixel accuracy only represents the
number of corrected guessed classes in each pixel while the interface over union is the
area of overlap between the predicted segmentation and the ground truth divided by the
area of union between the predicted segmentation and the ground truth. According to the
results, the best strategy was to use both door and doorframe labelled images as expected
because it had the biggest mIoU value although the strategy that only uses the door had
also a similar mIoU value.

The next step was to compare each model/strategy cropped image prediction in the 40
images of the test set. This second test was made because the most important aspect is
the number of corrected cropped images that each method can predict. The goal was to
get the biggest amount of corrected cropped images to use in the 3D object classification
network because they will generate smaller point clouds then the original images would
generate and have all the information that the network needs to distinguish between the
open and closed door. To test this, I just compared all the cropped prediction images and
saw manually if they had the necessary information for the door classification. The results
of this test were the following:

Strategy Corrected cropped images
Only door labelled 18 / 40
Only door frame labelled 29 / 40
Door and door frame labelled 38/ 40

Table 5.3: Corrected cropped images on EncNet FastFCN with 3 different strategies.

Although the strategy of only labelling the door class had good results in the evaluation
of the model, which means, the model can segment very well the door, it was the weakest in
the number of corrected cropped images. This strategy was the original one, but it’s quite
simple to understand why it wasn’t very good at getting the corrected cropped images. In
images where the door was open, sometimes the door itself was almost occluded, and so
the algorithm wouldn’t detect it. I concluded with this test that the best strategy at this
moment was to label both the door and doorframe classes as one class.

64

5.6 PointNet - (3D Object Classification)

As the 2D Semantic Segmentation strategy and the Mini-dataset had been improved, I
focused on the 3D object classification models. At this moment of the project, the main
goal was to solve the Door Problem and build as fast as I could one prototype system to
work to get feedback from a real user.

The PointNet was the first and only 3D Object Classification model that was tested in
this project. With the previous improvements, the dataset was no longer unbalanced in
terms of the number of samples in each class, 1992 images for the train set(996 open doors
and 996 closed doors), 100 images for the test set(50 open doors and 50 closed doors) and
100 images for the validation set(50 open doors and 50 closed doors).

Using the 2D Semantic Segmentation model EncNet FastFCN trained in the images
with both door and doorframes labelled as one class, I could reduce the size of the im-
ages to the interest zone. Although the semantic segmentation has improved (previous
section), it still wasn’t as good as I wanted it to be. There were scenarios where only the
door is detected, and the doorframe wasn’t. If the door, in this scenario, was open, it
would still mislead the network because the resulting cropped image would only have in-
formation around the door, making it look like the door was closed when it wasn’t. After
the semantic segmentation, the dataset will always be smaller because the semantic seg-
mentation algorithm will fail in detecting doors in some cases, normally the most difficult
ones. The size of the dataset at the moment before the use of semantic segmentation was
724,7 MB. After that, the size of the dataset decrease to 308,7 MB. The dataset, due to the
segmentation, had 1032 samples of closed doors and 565 samples of open doors. Using
up sampling, I increased the number of samples of open doors to 1032, starting to have
in total 2064 samples. This set was divided in the train[1864](932 open doors plus 932
closed doors), test[100](50 open doors plus 50 closed doors), and val[100](50 open doors
plus 50 closed doors).

I followed the same process when I built earlier the first dataset to test the PointNet. I
converted the RGB and Depth images to the file format .pcd and them to the file format
.pts. As I was converting the images to the point cloud data format, I noticed that some
point clouds had noise in the depth axis in terms of missing points. This was probably
due to the lens being dirty at the moment the image was photographed. The only solution
to this problem was to analyse the point cloud manually, one by one, and see if it was
noisy/corrupted or not.

I trained the model with the previous 2064 samples during 50 epochs and using the
batch size equal to 10. The learning rate was 0.001, and the number of points parameter
was equal to 10000.

65

As I was testing the PointNet, I came to the conclusion that if I wanted to build a pro-
totype system before Christmas, I had to implement a program that would put all the
modules explored and implemented until now together to be able to get feedback from a
real user.

5.7 Prototype Program

I built the first Prototype Program. This script waits for the user to interact with ("press
enter button”). This script uses the segmentation algorithm FastFCN to detect doors
in front of it using the information from the 3D camera RealSense D435. If there was
any door in front of the user, the program would use the 3D object recognition algorithm
PointNet to predict if the door was open or closed and inform the visually impaired user
through sound.

The first step in the program was to get the information (RGB and Depth) from the 3D
camera Realsense D435. After getting these, both the RGB and the Depth are rotated 9o
degrees since the camera is 90 degrees rotated as it was already explained in the Project
Material Section.

After rotating the image, the semantic segmentation algorithm FastFCN would detect if
there were doors in it. After getting the resulting image of the semantic segmentation the
biggest area of the class door_doorframe was calculated. If the biggest area wasn’t big
enough, it would mean that the algorithm barely detects any door and it would conclude
that there weren’t any doors in front of the user. If the semantic segmentation detected
a door, the 3D object detection algorithm PointNet would predict if the door was open or
closed using the depth information.

5.7.1 Problem - Real-Time

The biggest problem wasn'’t if the semantic segmentation algorithm or the 3D object de-
tection algorithm didn’t always predict the correct results but the inference time of these
algorithms. If the results don’t arrive at the user in real-time, it doesn’t matter if they are
correct because the visually impaired people can’t wait and he could already have an acci-
dent. To process one frame and predict if the door was open or closed, the program took
16/17 seconds which was really bad because the ideal case was to process at least 1 or 2
frames per second. In other words, the program should take no more than 1 second per
frame.

To solve this problem, I looked into the program code and tried to see which instruc-
tion/process could be improved in terms of speed, and I found one big mistake that the
program had. Both the model of the semantic segmentation algorithm and the model of
the 3D Object Recognition were loaded in every frame without being needy. Also, the data
loaders weren’t necessary because I was just testing one frame at the time instead of a big

66

data set. After doing those modifications, the total script inference time reduced 8 sec-
onds, which was great but far from the expected time. Another aspect that could reduce
the program’s time was to remove all file creation that the program was doing. I change to
the program to simply use variables without the need to save files. With this modification,
the total inference time also reduced about 8 seconds. The creation of the .pts file for the
PointNet model was taking to much time, and it was this creation that influenced more
the total inference time. The following table shows the results of all the modifications I
did to get to the final results:

Program modification | MSI time per frame | MSI time in FPS
Original program 16.0 seconds 0.0625
Removal of models loading 8.0 seconds 0.125
Removal of files creation 0.2 seconds 5

Table 5.4: Mean script inference times(MSI time) per frame and in frame per second in the desktop
computer after all the modifications in the prototype program. ()

5.8 PointNet Tests without Semantic Segmentation

This section will approach all the PointNet tests without the use of the semantic segmen-
tation model. In other words, in these tests, the most important was to see the mean
accuracy and inference time of the 3D object classification method. The main goal here
was to see the difference between using the entire(original) image captured by the camera
and using the cropped image obtained through the output of semantic segmentation. In
other words, the goal here was to see if it was possible to classify the point clouds correctly
without the need of using cropped point clouds with the objective also to decreased the
mean inference time.

5.8.1 PointNet with original size point clouds

The first test was to simply train the PointNet using the previously created Mini-dataset
of open and closed doors with the original sized point clouds.

Dataset used

For this test, as I said before I used the point cloud and images with the original size, 640
height, and 480 widths of the dataset I had at that time. This dataset had only 2 classes,
open door with 734 samples and closed door with 1096 samples. As it was built software
to check if the RGB images were clean or blurry, it was also built another software to check
the Depth information and to my surprise, I had a lot of 3D images with noise. This was
probably due to the lens being dirty and also due to some of the places I got samples didn’t
have the best illumination. After filtering these images, I got 615 samples of closed doors
and 479 samples of open doors, in total I lost almost half of my original dataset about
736(481 + 255) samples out of 1830.

67

Using data augmentation(angle rotation and horizontal flips), I increased the number
of samples of open doors to match the number of samples of closed doors, 615. I used 50
samples of each class for testing, 50 samples of each class for validation, and 515 samples
of each class for training. In total, I had 1230 samples for test, validation, and training.

Train parameters
I trained the model during 20 epochs with a batch size equal to 20 with a number of
points(PointNet) equal to 10000. There were 1030 samples for training which would give
51 iterations in training with the size of the batch (20). After the training, in each epoch,
it was calculated the loss and accuracy in the validation set. As the training wasn’t deter-
ministic, the model was trained three times(Iterations), and after that, it was calculated
the mean accuracy and loss between those three iterations for the test, validation, and

train set.

Results
It’s important to say that, each iteration consists in 20 epoch of training and validation
plus testing in the test set after the 20 epochs. It was also calculated the average time of
each script iteration to be later compared to other approaches.

The following table f.5 shows all the results in this test:

Mean Loss Mean Accuracy
Iteration Train Val Test Train Val Test Iteration time (seconds)
1° Iteration | 0.6243 | 0.5957 | 0.6047 | 0.6600 | 0.6375 | 0.6800 16307
20 Tteration | 0.6197 | 0.6160 | 0.6937 | 0.6700 | 0.6690 | 0.6700 16314
32 Iteration | 0.6148 | 0.6003 | 0.6054 | 0.6750 | 0.6645 | 0.5000 16272
Mean 0.6196 | 0.6040 | 0.6346 | 0.6683 | 0.6570 | 0.6167 16298

Table 5.5: Results in training and testing the PointNet with the Custom Filtered Dataset with the original
sized images.

Results analysis

As can be seen in the table, each iteration of training with 20 epochs takes more or less
16000 seconds which wasn’t too much in the machine learning area, but there are several
ways to reduce it and still have good results. Each epoch took around 15 minutes. The
results after 20 epochs of training weren’t good because the mean accuracy in the test set
was 0.6167 which, for a problem with two classes isn’t good enough(0.5 if random). As
was mention before, probably this was due to the network choose only 10000 points out
of 300000 points randomly, which only represented 3% of the original point cloud. It was
the same as representing a 2D Image with 300000 pixels with only 10000 random pixels
of those 300000, sometimes we can clearly classify the object and in other cases, we can’t.
The training wouldn’t happen in the portable system for visually impaired people, but the
prediction would and it was important to have the highest number of predictions possible
in 1 second. The iteration time is directly correlated with the inference time.

68

5.8.2 PointNet with voxelized grid original sized point clouds

In this test, I trained the PointNet with voxelised point clouds. Voxelised point clouds
are point clouds that have fewer points that their original size (down-sampling). This was
great because in this work it was really important that the system was in real-time and
with point clouds that represent the same information as the original ones but are lighter
would help the system to predict must faster. Voxel down-sampling uses a regular voxel
grid to create a uniformly down-sampled point cloud using the original point cloud.

Dataset used

The dataset used in this test was exactly the same as the previous one with the modifica-
tion of the point clouds to voxel down-sampling. In the previous test, each point cloud
had 307200 points (640 * 480), but with the voxelisation, now each point cloud (sample)
has around 10000 points. Although the number of points of each point cloud had been
reduced, the point clouds still represent the depth information greatly with less mem-
ory. The dataset with the original sized 1230 samples/point clouds had almost 18GB of
memory. With the voxelisation, the 1230 samples/point clouds have less than 1GB of
memory. To build the voxel grid point clouds I used the function voxel _down_sample of
the Open3D library, [ZPK18].

Train parameters
Regarding the train parameters, I also trained the model during 20 epochs with the batch
size 20 and the number of points equal to 10000. In the voxel down-sampling, I used
the voxel size equal to 0.00001. This value was chosen by trial and error until I get
enough voxelisation to represent the point cloud in more or less 10000 points.

Results
The following table f.6 shows all the results in this test:

Mean Loss Mean Accuracy
Iteration Train Val Test Train Val Test Iteration time (seconds)
10 Tteration | 0.5888 | 0.6112 | 0.6998 | 0.7042 | 0.6590 | 0.6900 982
20 Jteration | 0.5782 | 0.6067 | 0.4503 | 0.7122 | 0.6905 | 0.7500 988
32 Iteration | 0.5919 | 0.5685 | 0.4077 | 0.7043 | 0.7145 | 0.7000 987
Mean 0.5863 | 0.5955 | 0.5193 | 0.7069 | 0.6880 | 0.7133 986

Table 5.6: Results in testing the PointNet with the Custom Filtered Dataset with the voxel down-sampled,
original-sized point clouds.

PointNet with or without voxelization
Comparing the results of using the Pointnet with the original sized point clouds, f.q with
the results of using the Pointnet with the voxel down-sampling, 5.6 we can see that, in the
last approach, the mean iteration time is shorter as the mean loss in the train, validation
and test set. The mean accuracy in the train, validation, and test set is bigger in the ap-

69

proach that uses voxel down-sampling. Merging the results of both approaches we can
see more clearly which one is more suitable for the portable system f.7.

Mean Loss Mean Accuracy
Approach Train Val Test Train Val Test | Mean IT (sec)
Original dataset 0.6196 | 0.6040 | 0.6346 | 0.6683 | 0.6570 | 0.6167 16298
Voxel d;;::s_::mp led 0.5863 | 0.5955 | 0.5193 | 0.7069 | 0.6880 | 0.7133 986

Table 5.7: Mean loss, accuracy and iteration time values between using the Pointnet with the original sized
point cloud and with voxel down-sampled point clouds. IT stands for iteration time.

It’s important to say that initially, I was saving only the mean values in each iteration
of the train and validation set. Later on, I changed my method of presenting the results to
save the model/epoch with the best accuracy value in the validation set and the accuracy
value in the train set in that epoch. After all the epochs in one iteration, I used the model
with the best validation accuracy to test in the test set. The following table .8 represents
the comparison between using voxel down-sampling in the original dataset and not using
it with this modification.

Mean Loss Mean Accuracy
Approach Train Val Test Train Val Test Mean IT (sec)
Original dataset 0.5898 | 0.4966 | 0.5443 | 0.6873 | 0.7567 | 0.7333 15419
Voxel down-sampled 0.5115 | 0.3995 | 0.5553 | 0.7673 | 0.8067 | 0.7400 954
dataset

Table 5.8: Mean results of using the best model of each iteration between using the Pointnet with the
original sized point cloud and using voxel down-sampled point clouds. IT stands for iteration time.

Conclusions between using voxelization point clouds
Analysing the table 5.8, I concluded that using voxel down-sampled point clouds will give
better results, the main accuracy in the validation and test set is much better in the ap-
proach that uses voxel down-sampled in comparison with the approach that doesn’t use
it. The iteration time is also a lot smaller in the voxel down-sampled approach.

The voxel down-sampled approach seems to be the best in terms of better accuracy be-
cause the point clouds have about 10000 points and the random parameter in the pointnet
model, number of points, will select exactly those 10000 points in contradiction to the
other approach where each point cloud have around 300000 points and sometimes the
network wouldn’t select the best 10000 points that better represent the point cloud. The
biggest problem of this approach is the time that takes to convert a normal point
cloud into a voxel down-sampled point cloud. It’s important to say that I built the dataset
of normal point cloud and the dataset of voxel down-sampled point clouds before running
the pointnet, which means that the iteration time doesn’t have into account the time that
it takes to downsampling the point clouds.

70

In the portable system, the voxel downsampling takes more time than the actual pre-
diction in the pointnet, what the system improves in the accuracy decreases in the time.
The time it takes to predict one point cloud in the pointnet method is around 0.1 seconds
in the Jetson Nano portable system. The time it takes to down-sampled the point cloud
before using it in the pointnet is around 0.4 seconds using the method of the open 3d
library. Because of this, I opt to use

5.8.3 Train Pointnet with cropped point clouds

I'tested the difference between using the original point clouds with the voxel down-sampled
point clouds, but the main goal of these tests was to see if the semantic segmentation was

really necessary to predict if the door was open or closed and other problems that the

visually impaired have in indoor spaces and this system might solve. Recalling the first

proposal to solve the Door Problem, .3, after doing the semantic segmentation to know

the location in the RGB image of the door, the depth image is cropped and used in the

pointnet to classify if the door was open or closed. In this test, I used the same filtered

dataset, but instead of using the original point clouds, I cropped the point clouds accord-

ing to the location of the door in the RGB image with the objective to replicate the semantic

segmentation section.

Dataset used
The dataset used in this test was the same as the previous one, but instead of having the
original point clouds, the point clouds are cropped according to the location of the door
in those point clouds. 1030 samples for training, 100 for testing, and 100 for validation.
The original dataset had almost 18 GB of memory while the cropped dataset had around
9 GB of memory.

Train parameters
The parameters of this test were the same as the two previous one, f.8.1, , 3 iter-
ations, 20 epochs for training with the batch size 20 and the number of points equal to
10000.

Results
The following table f.9 shows the results for this test:

Mean Loss Mean Accuracy
Iteration | Train Val Test Train Val Test Iteration time (seconds)
Iteration1 | 0.5136 | 0.2713 | 0.6603 | 0.7696 | 0.8600 | 0.7000 7635
Iteration2 | 0.5568 | 0.4399 | 0.6420 | 0.7294 | 0.8200 | 0.5600 7671
Iteration 3 | 0.5389 | 0.4519 | 0.4479 | 0.7392 | 0.8400 | 0.6900 7688
Mean 0.5364 | 0.3877 | 0.5834 | 0.7461 | 0.8400 | 0.6500 7665

Table 5.9: Results of using the best model of each iteration using the Pointnet with cropped point clouds

71

Results analysis
Analysing the results, I concluded that the mean iteration time was smaller for cropped
point clouds as expected. Although the point clouds only had information about the door,
the accuracy-test results should be bigger in this approach but, compared with the initial
approach, with the original point clouds, the accuracy was smaller.

5.8.4 Merge of all the approaches

Due to the increase in the number of tables, it was better to summarise all the tests in
the point net and merge all the results in one table for better analysis. It was also tested,
despite the three approaches, an approach that uses cropped point cloud with voxel down-
sampled with the same parameters as the previous tests. The following table summarises
all the results in the pointnet:

Mean Loss Mean Accuracy
Approach Train Val Test Train Val Test Mea.ln Iteration
time (sec)

Original dataset 0.5898 | 0.4966 | 0.5443 | 0.6873 | 0.7567 | 0.7333 15419
Voxel down-sampled 0.5115 | 0.3995 | 0.5553 | 0.7673 | 0.8067 | 0.7400 954

original dataset

Cropped dataset 0.5364 | 0.3877 | 0.5834 | 0.7461 | 0.8400 | 0.6500 7665
Voxel down-sampled 0.5309 | 0.5034 | 0.4632 | 0.7555 | 0.7967 | 0.7400 492

cropped dataset

Table 5.10: Summary of all the best models results in each approach for the Pointnet 3d object classification

Analysing the summary table it can be seen that there was a draw in terms of mean
test accuracy using the best validation accuracy model between the approach that uses
voxel down-sampled point clouds and the approach that also uses voxel down-sampling
but with the cropped point clouds. As I said before, the voxel down-sampled approach
is faster to train but is slower to predict and inference when compared to the non-voxel
down-sampled approach.

Another interesting result was to compare the original approach with the cropped dataset
approach. The cropped point cloud simulates the result that the semantic segmentation
model sent to the pointnet and as it can be seen, it was better to give to the network all
the information around the door than just the door itself. This was a very important re-
sult because in the first proposal to solve the Door Problem I proposed to use semantic
segmentation to know the location of the door, use it to crop the depth image and use
only that crop point cloud to classify and solve the problem but now that section can be
discarded. The accuracy of the test set in the original dataset approach is bigger than the
accuracy in the cropped dataset approach.

72

I conclude with these tests that the semantic segmentation wasn’t needed for door clas-
sification; the simple use of the pointnet can solve the problem. The semantic segmen-
tation can be used to detect the location of the door and to inform the visually impaired
people that same location, for example, if it is at his right size or left size. One big problem
of using the entire point cloud to classify instead of using just the area around the door
is when the situation has more than one door. One door can be closed, and the other can
be open, for example, what should the algorithm return? Another big problem would be
when there isn’t any door. Should be created a class (No-Door) for this situation? Well,
since the Door Problem happens in locations where the person knows the locations of the
doors, he could only use the program when he is facing the door.

5.9 Testing in Jetson Nano

I'started to test the program and the algorithms in the single board computer Jetson Nano.
The Raspberry Pi 4 doesn’t have an integrated GPU, and it was necessary to use an Edge
TPU accelerator to run neural networks and all the machine learning algorithms in real-
time.

5.9.1 Installations

I installed the necessary libraries and packages to run the prototype program except for
the semantic segmentation algorithm FastFCN repository. After several searches, I came
to the conclusion that this package wasn’t compatible with the Jetson Nano system be-
cause at the moment no one had installed the package successfully in any kind of these
devices.

To replace the semantic segmentation algorithm I used the Fully Convolutional HarD-
Net, [CKR"1g], which is an implementation based on the Harmonic DenseNet, a low
memory traffic network. I chose this method because it was one of the fastest in terms
of FPS, and it had already the ADE20K data loader implemented, which has the same
structure as the dataset that I built. This algorithm was installed in the Jetson Nano with-
out any problem.

At this point, the strategy or method to solve the Door Problem wasn'’t fixed, so a new
version of the prototype program was created. This new version of the prototype program,
instead of using both semantic segmentation and 3d object classification to predict if the
door was open or closed, only uses the 3d object classification. The goal was to see the
difference in fps between the two versions of the program and also to see if the method
runs in real-time in the Jetson Nano which is much less powerful than the lab computer.

Although the use of only the Pointnet to classify the opening of the door was better than
using both semantic segmentation and Pointnet it has its disadvantages. The use of only
the Pointnet only works in environments where the visually impaired person knows the

73

place and the locations of the doors. If this prototype program was used in an environ-
ment that wasn’t known by the person, it wouldn’t work very well because the program
couldn’t tell where the door was. If there was more than one door in the scene, the pro-
gram would only predict as if there was only one door, and its answer would always be
incorrect because the program must answer for each door.

Because of the previous reasons, I didn’t discard the semantic segmentation approach
completely since it could still be used to improve the program to solve the Door Problem
and it would also be crucial to other tasks that the portable system would solve.

The following section presents a quantitative evaluation of the results of testing the
programs in the Jetson Nano.

5.10 Testingthe program between different versions of Jet-

pack

For this project there were assign two Jetson Nano and at the time this project was being
made the Jetson Nano Developer Kit, Jetpack release a new version with improvements
in the OS, TensorRT, cuDNN, CUDA and others improvements, the Jetpack ”4.3”.

Two versions of the Jetpack were tested, the old version 4.2 and the newest version
4.3. (As it was already said in the Project Material Section, later I installed the Jetpack
version 4.4 in one of the Jetson’s while the other remained with the version 4.3) Two
versions of the prototype program to solve the Door Problem were tested. The version B
it’s the fastest version that only uses 3D object classification to classify if the door is open
or closed. The second version, A, uses both semantic segmentation to crop the original
point cloud and them it uses the PointNet to classify.

One of the biggest problems of the single board computers was their heat dissipation
limitations. These devices normally overheat very quickly, and the system throttles. Be-
cause of this, I tested the script with a Fan and without it, after running the script for 15
minutes to simulate the overheat the system. Further tests about the Jetson Nano tem-
perature will be approached in this section.

The following table represents the tests in the Jetson Nano between the two versions of

the Jetpack, between having the Jetson cold or hot and between the two versions of the
prototype script to solve the Door Problem.

74

Table 5.11: Results in testing two different Jetpack versions in two programs with and without fan in terms
of time per frame prediction.(Program version A uses Semantic segmentation and Pointnet and version B
only uses the Pointnet to predict)

Program Mean time Standard deviation
Jetpack version Fan

version per frame(sec) (sec)
4.2 A X 0.4476 0.0040
4 A v o044y oooz0
42 B x o3 ooow
42 B v oy oo
DY A x oaes ooe
4 A v oam o002
43 B x omes ooozo
43 B < omee ooozs

After analysing the results of it was clear that the use of a Fan to cool the system
so it wouldn’t throttle didn’t have almost any effect in the performance of the programs.
Although the temperature rises and the systems get hot, the run of the prototype system
was independent of that and kept the same frames per second as it was running when the
system was cold which was excellent taking into account that the user will use the system
very often and it will eventually overheat.

Comparing the two versions of the program, the system gets at least five frames per
second with the B version and gets at least 2 frames per second with the A version.
Taking into account this fact, I considered that the best method that I had to distinguish
between just open and closed doors was program version B, just use the PointNet.

Finally, comparing the two different Jetpack versions, they don’t have any difference in

the mean times per frame except for the version A of the program. In the newest Jetpack,
version the script A is faster and the mean time per frame is smaller.

75

5.11 First prototype portable system for real-user

After all the testings in the single board computer, Jetson Nano, and after building one
final prototype approach to solve the Door Problem, the final step was to prepare the
system to be used by a real-user, a visually impaired person so I could get feedback.

5.11.1 Speed up the Jetson Nano start up

Before I concerned about the architecture of the portable system, there were still some
improvements that could be done in the Jetson Nano.

The boot time of the Jetson Nano could be faster and that was important because the
system would get shut down when the user wasn’t using it, and it must be fast to boot
when the user needs it.

The original boot time of the Jetson Nano with the Jetpack version 4.3 was 36.00 sec-
onds. The best way to reduce the boot time was to disable startup programs that wouldn’t
be used in the program to help the visually impaired people. After removing by trial and
error startup services like the gdm service, the networkd service, the ubuntu-fan service,
the snapd service among others, the boot time was reduced to 27.50 seconds.

5.11.2 Auto start Program after boot

Another improvement that was made was to auto start the script right after the system
boots. This was also very important because the user didn’t have to concern about starting
the program because the program would start after the Jetson Nano boots.

To do this, firstly I enable the auto-login by changing the configuration file so it wouldn’t
be necessary to login in manually. To auto-execute the script after the boot I added in
the bashrc file the execution command to run the script and then changed the startup
configuration file to start the terminal automatically after the system boots.

5.11.3 Improved approach - Semi-open class

As was said, the prototype approach, after testing different methods was to simply use
the PointNet to classify between open and closed doors, just two classes to simplify the
problem. The main goal of the Door Problem was to prevent the visually impaired people
from hitting with their heads in the edge of the door. The most dangerous case is when
the door is semi-open or semi-closed. In this case, the model that I built in the PointNet
would say that the door was closed because all of the images with the door semi-open were
labelled as closed doors.

76

To solve this issue, I add a third class to the model, the semi-open class to distinguish
between totally closed doors and semi-closed or semi-open doors. With this improved
approach, the system would give more information about the position of the door, and
the user will be aware of the door was semi-open, which was the most dangerous and
important case.

5.11.4 Add Sound

Sound is the best way to communicate with visually impaired people. I added to the script
bip sounds when the same starts, so the user knows that the system is loading the model
weights and getting ready to start predicting.

I also added sounds when the system predicts open, closed, and semi-open doors as it
was already said in previous sections of this report. These sounds are generated using the
Google text to speech library but they won’t be played in the script every time the
program inference an input point cloud. As the best approach of the moment could make
at least five inferences per second the sound could only be played after every five frames,
and, the answer would be the mean inference of the five frames. For example, if three
frames would say that the door was open and two would say that the door was semi-open,
the final answer would be that the door was opened.

5.11.5 Building of the prototype portable system version 2.0
The original idea was to have a portable system constituted by:

« asingle board computer (Raspberry Pi or Jetson Nano).

« a power bank to power the system.

* a 3D camera.

« some in-Ear phones.

These were the original items that would be part of the portable system, but the biggest
problem was how to merge these items and fuse them in one single portable system simple
enough to visually impaired people use it.

In all the previous four components, the component which was more complicated to
fuse was the Jetson Nano because the same was very fragile and it had to be cover by
some kind of box. Because of this, I started building the system using as a base the single
board computer.

In figure 5.7, we can see that there are four holes to use screws in each corner of the Jetson
Nano. Using these four holes as base a box was built using a 3D printer that could fit the

77

15 G606

i
i

Eiiii-:lg

N e

Figure 5.7: Jetson Nano top view from [Nviig].

Jetson Nano using screws. Also, inside of this box are the power bank and all the cables.
The box has one gap to let the cables pass through, namely the camera cable and the hear
hook headphones cable. It also has one USB entry to charge the power bank. It’s only one
entry to be simpler to the visually impaired user.

The biggest problem of this system would be how to turn on and off the Jetson Nano
without damaging it, because by default, the Jetson doesn’t have any power on/off button.
It’s possible to power off the Jetson Nano without the need to unplug the power cable using
the J40 pins. The pin 7 and pin 8 in the J40 disable the auto power on and the pins 1 and
2 initiate power-on if auto power-on is disabled. Using a button connected with the pins
1 and 2, we can turn on and turn off the Jetson Nano. The single issue about this method
is with the power bank, as it turns off after not receiving any signal from the Jetson Nano
for 20 seconds. If the user turns off the Jetson Nano, after 20 seconds the power bank
will turn off, and after that, it’s impossible to turn on the Jetson without first turning on
the power bank using its button. The solution was to use a single button that turns on
the power bank and the Jetson Nano and turns off only the Jetson Nano because after
20 seconds, the power bank will turn off automatically. This way, the system will turn on
without any problem and the user can turn off without damaging the SD card because the
Jetson turns off before the power bank. The biggest advantage is to save energy because
both the Jetson and the power bank don’t need to be always on.

78

5.12 Generic Obstacle Avoiding Mode

I built two modes for the prototype portable system version 2.0. One mode more
correlated with just the Door Problem which I called the Door Problem Mode and the
other more related to obstacle avoiding which I called Generic Obstacle Avoiding Mode.

Unlike the Door Problem Mode, the Generic Obstacle Avoiding Mode is a more general
mode that will help the visually impaired people to navigate by informing them of the
object’s distance in the environment. This was done by using a similar approach to how
the parking car sensors work. Using the depth information of the 3D RealSense camera,
it’s possible to inform the user if there are obstacles within a specific threshold.

I built a program for this mode which would get the depth information of the Realsense
camera in the form of a matrix with the size 640 x 480. This matrix was divided by lines,
so it was possible to see if the obstacles were closer to the left side or on the right side.
Threads were used to speed up the process to go through each element/pixel of the matrix
to see its depth value. In total, the program uses eight threads for each frame/matrix.
Each thread represents a region of the point cloud. In the figure, .8 is represented the
base operation of this Mode, but instead of using eight threads in the figure I just represent
four threads, 2 for the left side and 2 for the right side.

Depth image ~ Right
]]
Mean Mean
depth value depth value
8 20

Figure 5.8: Operation of Generic Obstacle Avoiding Mode - Depth image is divided in columns and for each
column the mean depth value is calculated.

The first lines of the matrix normally would represent the top region of the image, but as
the camera is rotated 9o degrees, the first lines represent the left side of the image, and
the last lines of the matrix represent the right side of the image. In other words, the first
four threads correspond to the left region of the image, and the last 4 represent the right
region. As the matrix has 480 lines, each thread processes 60(480/8 = 60) lines. For

79

each thread, the mean value of the depth information between the 60 lines of that thread
is calculated. After having the mean value for all the eight threads the mean value of the
first four threads which will correspond to the left side and the mean value of the last four
threads corresponding to the right side was calculated.

According to these mean depth values, the sound would get higher if those values were
small (meaning that the obstacles were closer). The sound will get lower as the distance of
the obstacles gets higher. This Mode works in stereo, in the way that the sound gets higher
in the left headphone if the mean value of the left side is smaller and the same goes for the
right side. This way, the visually impaired person can have an idea of the environment
around him and avoid obstacle collision in unknown places.

This mode is always in a loop doing the previous process. If the mean values of both
sides are smaller, meaning that the distance between the obstacle is smaller the sound
will get faster exactly like the beep sounds of the parking car sensors systems. If there
aren’t obstacles in a certain threshold, no sound will be played, so the user can relax since
constantly hearing beep sounds may be tiring.

This system/mode may seem useless because, usually, when the visually impaired peo-
ple are walking in the street they use a cane to help them navigate and avoid obstacles, but
they can’t avoid all of them. The most dangerous obstacles are the obstacles at the same
level as a person’s head, for example, a tree branch or a fallen signal. As the cane is usually
used in the ground region, these kinds of obstacles won’t be detected by the cane, and the
person would collide with them. The biggest advantages of the Generic Obstacle Avoid-
ing Mode is that these obstacles will get detected, because the camera can cover both the
ground and the level head at the same time, allowing the user to avoid all the dangerous
obstacles as it is represented in figure f.9g.

Figure 5.9: Advantage of using the Generic Obstacle Avoiding Mode(On the middle image the user collides
with the fallen tree since the white-cane doesn’t work at the head-level. On the right image, the user uses
the portable system and the same informs him about the nearby obstacle).

From this point of the project, Sérgio Gongalves, finalist student of computer engineer-
ing, improved this system by reproducing sounds in a 3D matrix that represents the depth
data from the 3d camera.

80

5.13 Power Bank Issues

The power bank used for the prototype version 2.0 was a Techlink power bank, 20000mAh,
Dual USB with 2.4A fast charging as it was already described in the Project Material sec-
tion. The official power supply considerations for Jetson Nano recommend micro-USB
power supplies with 5V-2.5A. Jetson Nano runs in two modes, 10 watts mode and 5 watts
mode. Until now, all our tests and experiments were tested with the 10 Watt mode, which
is the most power-full one allowing the system to work with four cores instead of only 2(5
watts mode).

After merging the two developed modes(Door Problem Mode and Generic Obstacle
Avoiding Mode) in one script, I came to the conclusion that the power bank wasn’t sup-
plying enough power to the Jetson Nano in 10 watts mode. The minimum power supply
for Jetson Nano is 2.0 A, but with the 3D camera and the in-earphones, the power needed
is bigger(>2.0 A). Although the power bank used didn’t have the capability to 2.5 A it had
2.4 A, which is very similar and should have been enough to power up all the systems.
Due to this problem, we develop several tests and experiments to actually see if the power
bank had the necessary power to power up the system or not. We also compared with two
other power supplies, the Raspberry Pi Universal Power Supply - 5V 2.5A and a Barrel
Jack Power Supply - 5V 5A.

Due to some system malfunction, the power-bank couldn’t provide enough power to the
Jetson Nano even without running any program and any connected devices. The Jetson
Nano turned off after 5 seconds when using the power-bank to powered it. I even try to
change the Jetson Nano mode to 5 watts, but I got the same effect. Using a USB voltage
tester, I analysed the voltage, current, and power that was being provided from the power-
bank to the Jetson Nano. 1 also analysed these measurements for the aforementioned
power supplies.

Table treats the results in terms of voltage, current, and power provided to the
Jetson Nano using different power supplies. I measured the system with and without
running the script.

Table 5.12: Voltage, current and power measurements provided to Jetson Nano from different power
supplies with and without the script running.

Power supply Script is running Jetson goes down Voltage (V) Current (A) Power (W) Power factor
Power-bank X v 4.5 0.42 1.63 1
Raspberry micro-USB X X 5.0 1.3 4.2 0.64
Raspberry micro-USB v X 5.0 3.8 10.5 0.55
Barrel Jack X X 5.0 1.9 4.2 0.44
Barrel Jack v X 5.0 4.8 10.5 0.44

81

We can confirm that the power-bank previous acquired, due to some system malfunc-
tion doesn’t provide the current (0.42 A) that it should (2.40 A). It can only provide 1.63
watts which aren’t enough to even start-up the Jetson Nano (4.2 watts). If the power-bank
had the current it should (2.40 A) with a voltage of 4.5 V and a power factor of 1, it would
provide about 10.8 watts, which would be more than enough to power up the Jetson Nano
while running the script in 10 watts mode, (P(watts) = 1 * 2.4 x 4.5 = 10.8).

After research, I came to the conclusion that the power bank wasn’t supplying enough
power due to some defect in cable connection. To solve this, I welded a Barrel Jack cable
in the Fast charging USB pins. After that, the Jetson Nano never turned off again using
the power bank as the power supply. Even if the script was running, the power bank would
still be able to power it.

82

5.14 Method A and B - Door Problem

So far, I have been focused on the Door Problem. Two approaches were developed for
solving this problem, one uses semantic segmentation with 3d object classification, and
the other only uses 3d object classification. As was said previously, the first method has
higher validation accuracy values but is slower since it adds semantic segmentation when
compared to the second method. From now on, I will denote the first method, Method A
for Door Detection and the second method, Method B for Door Detection. Figure
represents method A for door detection and figure represents method B.

5.14.1 Method A - 2D Semantic Segmentation and 3D Object Classifi-
cation

i Point sets |

Mobile system i 1 Cropped images E

| Open ii Semi-open {i Closed

Figure 5.10: Algorithm of Method A (2D semantic segmentation and 3D object classification).

Method A was the first approach that I developed for solving the Door Problem. It’s
based on 2D Semantic Segmentation and 3D Object Classification. The prototype sys-
tem version 2.0 captures the RGB and depth information through the camera. The RGB
image is used as input for the 2D Semantic Segmentation. The semantic segmentation
only uses 2 classes, one for door/doorframe and the other for no-class. The biggest
door/doorframe area in the semantic segmentation output is calculated with the goal to
obtain a bounding box around that area. Then, the depth image is cropped according to
the bounding box location. This depth information is the input of the 3D Object classi-
fication, and this network returns three values. Each value corresponds to a class(open,
closed, and semi-open). The output class is the highest value of these three. This method
works at 3 FPS in Jetson Nano. Each frame inference takes around 0.28 seconds.

83

5.14.2 Method B - 3D Object Classification

Figure 5.11: Algorithm of Method B (only 3D object classification).

Method B is very similar to the previous method with just one difference. Instead of
sending the cropped depth images to the PointNet, this method sends the original size
depth images. It doesn’t use 2D semantic segmentation, just 3D object classification. The
output works exactly in the same way as the previous method output works. This method
works at 5/6 FPS in Jetson Nano since it doesn’t use the 2D Semantic Segmentation part.
Each frame inference takes around 0.15 seconds.

Until now, the PointNet and the semantic segmentation FastFCN results were made
based on the previous approach (2 classes only, open and closed door). These methods
were tested again in the final approach of the Door Problem, f.11.3, which uses three
classes, open, closed, and semi-open doors.

I compared both methods (Method A and B for Door Detection) against each other
in real-time scenarios. Two semantic segmentation algorithms used in Method A as the
PointNet were trained in the desktop lab machine.

It’s important to mention that I didn’t change any of the algorithms used in the methods
as the PointNet, FastFCN, and FC-HarDNet. 1 only changed the data loaders and did the
necessary configurations to work with the data sets.

The dataset used for these methods was the Door Dataset - Version 1.0. This dataset
was built using the last filtered dataset with just two classes labelled. This last dataset had
615 closed-door images and 479 open door images. The Door Dataset - Version 1.0 has
588 closed doors images, 468 open doors and 150 semi-open doors images. At this point
in the project, this was the dataset used in all the experiments.

84

Experiments in Method A for the Door Problem
I compared the accuracy and speed of FastFCN and FC-HarDNet semantic segmentation
algorithms in method A.

I built a dataset (Door Semantic Segmentation sub-dataset - version 1.0) for training
the semantic segmentation algorithms that used part of the RGB images from the Door
Classification sub-dataset - version 1.0. To built this dataset, I used the Computer Vi-
sion Annotation Tool (CVAT), which allows us to draw polygons in the RGB images that
represent one class.

This dataset has 240 grey-scaled images with the size 480 x 640. I used the pixel ac-
curacy and mean intersection over union as the evaluation metrics for these tests. I also
compared the training and inference time in the aforementioned desktop computer.

Table 5.13: Comparison between using the FastFCN and the FC-HarDNet algorithms in Method A for Door

Detection.
Method A Test pixel Training Inference
] mloU | .
with accuracy time (sec) time (sec)
FastFCN 0.909 0.808 567 0.515
FC-HarDNet 0.701 0.418 426 0.019

The FastFCN algorithm has better results in pixel accuracy and mIoU in the test set when
compared with the FC-HarDNet algorithm, but the focus in this project was in real-time
door classification/detection methods. The FC-HarDNet is not as good as the FastFCN
at door segmentation, but it had a much smaller inference time (was more than 20 times
faster) and more importantly, it was compatible with the Jetson Nano. Taking this into
account, I opted to use the FC-HarDNet algorithm in Method A for the Door Problem.

Experiments in Method B for the Door Problem

For Method B, I was concerned about the one parameter of the PointNet, the number of
points that this model randomly selects from the input point set. These tests were done
previously in but with the old dataset, with just two labelled classes.

As the focus was in real-time door classification/detection methods, I built a downsam-
pled version of our dataset for PointNet using the voxel downsampling tool from the
Open3D, [ZPK18] library. As the PointNet, randomly selects the number of points in the
point clouds, the points selected in the downsampled point cloud will better represent the
point cloud because the downsampled cloud has fewer points (30000 on average) com-
pared with the original cloud (307200 on average). The goal here was to see if it was
worth it to downsample the point clouds taking into account the time it takes to do it and
the improvement in validation accuracy compared with the original point clouds.

85

Table 5.14: Evaluation of Method B with the original size point clouds in PointNet and using downsampled
point clouds.

Point cloud Mean validation Jetson Nano Downsampling
size accuracy inference time(sec) time(sec)
30k 0.428 0.111 0.386

300k 0.417 0.111 -

I trained the PointNet during ten epochs with a batch size equal to 20 and K'=10000.
For each approach, I trained three times and used the best validation accuracy value. I
used a voxel size, in the voxel downsampling Open3D tool, that produced a proportion of
10 to 1 in the downsampled point cloud.

Table represents the difference between using the original size and the downsam-
pled point clouds. The mean validation accuracy was a little better in the downsam-
pled point clouds as expected. The PointNet is more likely to select points that repre-
sent the point cloud uniformly since these have fewer points than the original size ones.
The inference time in Jetson Nano was the same for both approaches since the num-
ber of points selected was the same (number of points=10000) but with the downsam-
pling time, the downsampled approach was almost five times slower than the original one
((0.11140.386)/0.111 = 4.47). In view of the above and taking into account that the focus
was on real-time methods, I opted to used the original size point clouds and discarded the
downsampling for Method B of the Door Problem.

Method A vs Method B _for Door Detection
Method A has semantic segmentation that isn’t used in Method B. Certainly, Method B
is faster, but the addiction of semantic segmentation removes unnecessary information
for the object classification, which could lead to better results in terms of accuracy. I
compared both methods with respect to speed and test accuracy. I created another version
of the 3D dataset with cropped point clouds that represented the output of the semantic
segmentation module from the first method. This dataset was exactly equal to the original
in terms of sample numbers, and the distribution in the test, validation, and train set was
also the same. I trained the PointNet with this new dataset, and I compared the results
with the original dataset. This way, I could compare both methods assuming that the
semantic segmentation module returned the correct cropped point cloud.
Analysing the results of table 5.15, I came to the conclusion that the addition of semantic
segmentation in method A doesn’t pay off the time it takes because of the difference in test
accuracy. Method A takes twice as long when compared to Method B. It’s the semantic
segmentation time plus the inference time of the PointNet.
Although I'm removing unnecessary information on the point cloud, I'm also removing
information about the door surroundings, which has an important role in helping classi-
fying doors. This was the justification for the small difference in test accuracy between
method A and method B.

86

Table 5.15: Comparison of the methods assuming that the semantic segmentation module is returning the
correct output.

Mean test Jetson Nano Segmentation
Method

accuracy inference time(sec) time(sec)
A (after segment.) 0.494 0.111 0.131
B 0.433 0.111 -

5.15 Method C - Door Problem

From the previous said, it’s clear that the developed methods for solving the Door Problem
are fast and in real-time but the test accuracy wasn’t the desired (0.494 for Method A
assuming the semantic segmentation module segments correctly the doors and 0.433 for
Method B).

The official creators and developers of Jetson Nano released new documentation and
tutorials for using computer vision algorithms in real-time specifically for Jetson Nano.
We can take advantage of the NVIDIA’s TensorRT accelerator library to perform real-time
image classification, object detection, and semantic segmentation in Jetson.

Figure 5.12: Algorithm of Method C (2D Object Detection and 2D Image Classification).

The big problem earlier in this project was to perform these algorithms in real-time.
With the addition of this documentation for Jetson I could use real-time methods as the
AlexNet and Detectnet and implement them for the Door Problem. The idea was to use
firstly one real-time object detection method to detect the door and crop the image accord-
ing to the door detection. After getting the RGB cropped image, which now only contains
the door, I would use one real-time image classification method to classify the door (open,

87

closed, or semi-open).

Figure represents the algorithm of Method C for the Door Problem. Using the Re-
alsense camera, the portable system captures the depth and RGB channels. With the RGB
Image, this method uses an object detection or semantic segmentation method to get the
location of the Door. The RGB image is cropped with the information on the output of the
previous step.

With the RGB information, a 2D object classification model is used to classify the cropped
image in three different classes. The information is provided to the user via in-Ear phones,
with the class of the door and how distance it is from the user. This method works at 7/8
FPS in Jetson if it uses the Object Detection DetectNet and it works at 1/2 FPS if it uses
the semantic segmentation approach. These two variants, object detection, and semantic
segmentation, will be discussed later in this report chapter.

5.15.1 Jetson inference repository

Jetson inference is a repository that helps deploying deep-learning inference networks
such as ImageNet, [DDST09] and DetectNet, [ATS16] with TensorRT and NIVIDA Jet-
son. (The TensorRT concept will be approached in the next section) The repository has
several tutorials and guides in real-time object detection, image classification and seman-
tic segmentation. It uses the DIGITS tool from NVIDIA which is a GUI for training neural
networks. DIGITS is used for managing datasets, designing and training neural networks
and monitoring the training in real time. This tool was used in this project because it had
all the conditions for using the neural network models and apply them to door detection
and classification.

The repository was installed in the lab Jetson as all the necessary configurations for
using it with the Realsense camera. The DIGITS tool was installed in the lab computer for
training the neural networks, and saved its checkpoints. The checkpoints would them be
migrated to Jetson Nano through jetson inference repository.

5.15.2 Object detection with DetectNet

After following and completed all the tutorials successfully for object detection in jetson
inference repository I started to implement object detection networks in the Door Prob-
lem.

Firstly, I created a small version of the current dataset for object classification. Both the
doors and doorframes were annotated as class door with bounding boxes. One hundred
twenty images in total were annotated, 60 for testing, and 60 for training. This dataset
only had door images and 2 classes, door and dontcare/no-door. This last one repre-
sents all the objects that aren’t doors. This dataset was the beginning of the Door Object
Detection sub-dataset - version 1.0

88

I used the DetectNet model since it was recommended by the nvidia developers for real-
time object classification in the Jetson. DetectNet uses the GoogLeNet fully-convolutional
network (FCN) to perform feature extraction and prediction of object classes and bound-
ing boxes per grid square. There are used two loss functions simultaneously in the train-
ing, one to measure the error in predicting the object coverage (coverage_loss) and the
other the error in object bounding box corners per grid square (bbox_loss). To measure
the model performance against the validation set it’s used the mean Average Precision
(mAP) metric, the precision (ratio of true positives to true positives plus false positives),
and the recall (ratio of true positives to true positives plus true negatives). The intersec-
tion over union, which is the ration of overlapping areas of two bounding boxes to the
sum of their areas was computed for each predicted bounding box using the ground truth.
The predicted bounding boxes can be assigned as true positives or false positives depend-
ing on the ground truth bounding box and coverage value. Using a IoU threshold (0.7 by
default), the bounding box is designated as false negative or true negative (depending on
the predict coverage value) if the ground truth bounding box cannot be paired with the
predicted such that the ToU does not exceed the threshold.

Experiment 1

For the first experiment, I didn’t change the DetectNet model. The model was trained
with the aforementioned dataset during 1000 epochs with a batch size equal to 5 and
an exponential decay learning rate starting at 2.5e-05. The model learned nothing until
the 400th epoch where the mAP, precision, and recall values started to grow. In epoch
10000th, the model had a mAP of 0.1077, precision of 0.1700 and recall of 0.5846.

Experiment 2

The results weren’t the expected, and I did research on how to increase these values.
The DetectNet, as default, uses data augmentation, which isn’t good for all datasets as we
know. I changed the model to use the original images without the data augmentation and
trained the network with the same parameters as the previous training. In the final epoch,
the mAP was 0.0128, precision was 0.0459 and recall was 0.2105. With this, I concluded
that the data augmentation in our dataset, contrary to what I thought, improved the model
precision.

Experiment 3

In the next experiment, although the data augmentation increased the precision and
the other metrics, I kept it down and increased the training dataset instead with door im-
ages from other datasets. I used the DoorDetect Dataset, [ATS19], which has 149 samples
of door images labelled and is freely available online. With the addition of these images,
our training set increased from 60 samples to 209 (60 + 149 = 209). The parameters for

89

training the model remain the same as the previous tests, 10000 epochs, batch size equal
to 5, and learning rate starting at 2.5e-05 with exponential decay. In the last epoch, com-
paring with the previous experiment, the mAP increased to 0.0194, precision increased
to 0.0583, and recall decreased to 0.1739.

Experiment 4

The DetectNet by default uses data augmentation, namely, shifts on the images, image
rotation, image scale, hue image rotation and image desaturation. In the previous two
experiments, I removed all these augmentations to train the model with the dataset only
and see the difference. In this experiment, data augmentation was added again, such
as image rotation, hue image rotation, and image desaturation. The precision value was
too low, which means that the model was getting a lot of false positives. In other words,
the model was detecting almost every object like a door. I added several images (from
COCO dataset, [LMB™14]]) without any doors or doorframes to the dataset with the goal
to reduce the number of false positives. In total, I added 144 images not containing doors
which increased the training set from 209 to 353 (209 + 144 = 353). Another addition
that was made in this experiment was in the input image size. The DetectNet uses images
with size 640*640 by default, and I resized all of the images to that size as well. In the last
epoch, the mAP was 0.2618, the precision was 0.4432, and the recall was 0.5819. These
results were much better than all the results I got from the previous experiments.

Table compares all the previous four experiments on DIGITS in terms of data aug-
mentation, training set size, precision, recall, Jetson Nano inference time and training
time.

Table 5.16: Comparison of object detection experiments in DIGITS in terms of data augmentation, training
set size, validation precision, validation recall and training time.

. Jetson inference Training
Experiment Data Aug. Training setsize Precision Recall
time time (hours)
1 v 60 0.170 0.585 10 FPS 5
2 X 60 0.049 0.211 10 FPS 4
3 X 209 0.058 0.173 10 FPS 13
4 v 353 0.440 0.582 10 FPS 27

Analysing the table, I can conclude that training with data augmentation, for the Door
Problem, leads to better results in terms of precision and recall. The precision value in
the first three experiments was too low even though the recall value wasn’t. This was hap-
pening because the training dataset only had door images, leading the network to always
classify each detected object like a door. Adding other images that didn’t contain doors,
helped to avoid this problem since the network could learn that the objects in those im-

90

ages weren’t doors. The validation set (60 samples) remains the same to compare all the
experiments fairly in DIGITS.

5.15.3 Image classification with AlexNet and GoogleNet

The Door detection module will return one or more image for each door/doorframe de-
tected. Each cropped image is going to be classified as open, closed or semi open using a
image classification model as the AlexNet or GoogleNet.

I used the sub-dataset 2D Door Classification of the Door Dataset - version 1.0. This
dataset has 1086 images for training(548 open doors, 428 closed doors, and 110 semi-
open doors), 60 images(20 of each class) for validation, and 60 images(20 of each class)
for testing. Recalling that these images only contain the doors and doorframes for simu-
lating the output cropped image of the object detection model. These images were resized
using the function resize of the opencv to 480x640 with the goal to keep more or less the
doors aspect ratio.

Experiment 1

The AlexNet neural network was used in the first experiment of door classification in
DIGITS. The model was trained during 100 epochs using a learning rate equal to 0.02
with a step-down policy and with a batch size equal to 32. The epoch with a bigger accu-
racy validation value was the 100th epoch with validation accuracy of 90.625, train loss
of 0.369, and validation loss of 0.375.

Experiment 2

As the AlexNet got good results (validation accuracy greater than 90%), I tested the
GoogleNet as it was also already implemented in Caffe and it worked in DIGITS directly
without the need to install any additional library. The model, as the previous experiment,
was trained during 100 epoch with the same learning rate, the same policy, and with a
batch size equal to 16. The higher value of validation accuracy was 64.06, and it was
reached in epoch 70th with a train loss of 0.786 and validation loss of 0.837.

Experiment 3

The AlexNet model uses data augmentation by cropping the original image, which in
this case was 480x640 to a 227x227 image. The input image for AlexNet is a 227x227
image. Due to this random factor, the dataset was changed, and using the resize function
of opencv library the images were resized from 480x640 to 227x277 to ensure that the crop
would contain all the door information. The other training parameters were the same as
the parameters in experiment 1. The best epoch was the 32nd, with a validation accuracy
of 96.875, validation loss of 0.145, and a train loss of 0.052.

91

Experiment 4

As the previous experiment returned the best results, I used the 227x227 images for
training and validation again. The other parameters were equal with the exception of the
batch size and the learning rate. The default batch size for training the AlexNet was 128. In
this experiment, this parameter was changed to 6, and the learning rate was also reduced
to 0.001. As the batch size was smaller, the number of iterations per epoch increased, and
for its consequent the training time. The model reached the 100.00 validation accuracy
in epoch 13 and 30 with validation loss equal to 0.026 and train loss equal to 0.006.

Experiment 5

In this experiment the GoogleNet was used again but 224x224 images were used in-
stead. As the AlexNet, the GoogleNet uses data augmentation by cropping the input im-
age in 224x224 sizes. We changed the original dataset used in experiment 1 and 2 using
the resize function of opencv to resize the images from 480x640 to 224x224. The other
parameters remain the same as in experiment 2. In epoch 65 the validation accuracy was
90.00 with validation loss of 0.700 and train loss equal to 0.002.

Experiment 6

In experiment 4, by reducing the batch size and reducing the learning rate, the model got
better validation accuracy, but the training time was longer. In this experiment, the batch
size was reduced from 32, which is the default value of GoogleNet, to 6. The learning rate
was also reduced to 0.001, as it was in experiment 4. I used the 224x224 images dataset
with these training parameters. The best validation accuracy was 93.33 in epoch 34 with
validation loss equal to 0.179 and training loss equal to 0.049.

Table compares all the previous six experiments on DIGITS for image classifica-
tion in terms of the neural network used; train set batch size, input image size, validation
accuracy in the test set, training time and the inference time in Jetson.

Table 5.17: Comparison of image classification experiments in DIGITS in terms of neural network used,
batch size, input images size, best validation precision, validation loss, train loss and training time.

. Batch size Input Images Jetson Training
Experiment Neural Network Accuracy(Test)

train set size inference time time (sec)

1 AlexNet 128(default) 480x640 56.67 55 FPS 194

2 GoogleNet 32(default) 480x640 36.67 65 FPS 339

3 AlexNet 128(default) 227X227 95.00 55 FPS 188

4 AlexNet 6 227x227 98.33 55 FPS 499

5 GoogleNet 32(default) 224x224 91.67 65 FPS 342

6 GoogleNet 6 224x224 93.33 65 FPS 636

92

From the table, it is clear that the AlexNet neural network is the most suitable for door
classification in the Door dataset compared to the GoogleNet. The test accuracy val-
ues of AlexNet in experiments 3 and 4 are higher than the values obtained by using the
GoogleNet in experiments 5 and 6.

5.15.4 Development of Method C

This section describes the build and the implementation process of the Method C for door
detection and classification.

In this method, I only used 2D information for door detection and classification, and
the 3D was used for providing extra information as it was aforementioned. The jetson-
inference repository provides all the tools and frameworks to do 2D object detection and
image classification, but it doesn’t provide examples with these two algorithms together.

First, I used the DetectNet for object detection using the model of the best validation
epoch in Experiment 4 in 5.15.9. Jetson-inference provides two python scripts for the test
and the use of our models. The detectnet-camera.py, that, as the name implies, it uses
the trained model and provides a window with the objects detected in real-time in the
RGB camera channel. The detectnet-console.py is a script that also uses a specific trained
model but just returns the detected objects of one input image. I used this last one script,
but instead of returning the image with the detected objects and writing it in the system,
I cropped the image according to the detected bounding box coordinates. I also change
the input of the script, instead of using just one image, I am providing it with the RGB
channel of the Realsense camera in 60 frames per second. I added the image classification
network after the object detection, using the best validation trained model (AlexNet) in
Experiment 4inf.15.3. The input of the image classification network is the cropped image
according to the detected bounding box. The output of the image classification is the door
classification (open, closed, or semi-open).

5.15.5 Speed Evaluation of Method C

After implementing the 2D part of Method C for door detection and classification, I evalu-
ated method C speed in Jetson Nano to compare it later with the other developed methods.

To test the speed of this method, the detect time, classification time, and total script
time were counted. Each of these times was counted 100 times, and it was calculated
the average of each. As it was said several times in this document, Jetson Nano has two
modes, the 5 watts mode, and the 10 watts mode. I also tested the speed of Method C in
both of these modes with the goal of saving energy of the power-bank. In the experiments
done in I used two different image classification networks, AlexNet and GoogleNet.
Both of these networks were also tested in terms of speed (inference time) in the Jetson
Nano.

93

Table summarises the speed tests in theJetson Nano using its two different modes
(5 and 10 watts), using the DetectNet as the object detection network and using the AlexNet

and GoogleNet as the image classification networks.

Table 5.18: Jetson Nano inference time in 5 and 10 watts mode of Method C.

Object Image Obj. Detect. Img. Class. Total
Jetson Mode
Detection NN Classification NN Inference time(s) Inference time(s) Inference time(s)
5 watts DetectNet AlexNet 0.1356 0.0231 0.1698
10 watts DetectNet AlexNet 0.0993 0.0193 0.1255
5 watts DetectNet GoogleNet 0.1355 0.0201 0.1697
10 watts DetectNet GoogleNet 0.0965 0.0173 0.1202

As it can be seen in table .18, the total inference time isn’t the sum of the object de-
tection inference time with the image classification inference time. In the total inference
time, it is also taken into account the time that it takes to crop the image after the object
detection, the resize operation after it, and other crucial pre-processing methods. The
GoogleNet is faster than AlexNet in the Jetson although, the last one provided better ac-
curacy values (5.15.9). It can also be seen a significant difference between using the two
modes of Jetson in the total inference time.

In short, if the Jetson is in 5 watts mode it can perform the Method C (with DetectNet)
in 5/6 FPS (frames per second), which is more or less the same speed that the Jetson
performs Method B in 10 watts mode. In other words, Method C in 5 watts can be as fastest
as Method B is in 10 watts,. Method C has also better test accuracy values considering
that the object detection detects the door. If the Jetson is in 10 watts mode it can perform
Method C (with DetectNet) at 8 FPS.

5.15.6 Power-bank Duration in Method C

In .19, the power-bank for the system (Techlink 20000mAh with 2.4A fast charging) was
tested using a USB voltage meter. I measured the voltage, the current and the power of the
energy provided by the power-bank to the Jetson Nano. Instead of the 2.4A of current,
the power-bank was only providing energy with a current of 0.42A and the same could
handle the Jetson Nano. The portable system would shut down after a few seconds (5 /
10 seconds) since the provided energy wasn’t enough (1.63W).

This was happening because of the cable that I was using to power the Jetson was too
weak and couldn’t provide the original amount of current (2.4A) that it was supported
by the power-bank. This cable was switched with a barrel jack cable powerful enough to
power up the Jetson Nano.

94

As the power-bank was now working, it was possible to calculate its duration while per-
forming Method C for door detection and classification. This was really a piece of im-
portant information since it concerns the viability of the system and how long it can be
used.

For testing the real power duration of the power-bank, the same was recharged and used
to power up the Jetson Nano in 5 watts mode while running Method C (with DetectNet)
for door detection. The power-bank provided energy to the system for 9 hours and 42
minutes which is a good time since the Method C is the method that gets more out of
the GPU and uses it at its maximum because it takes advantage of TensorRT, designed
specifically for running these computer vision algorithms in the Jetson Nano.

In other words, the power-bank duration was tested while running only the Door Prob-
lem Mode using Method C. In a real case scenario, the visually impaired person would
switch between the Door Problem Mode and the Generic Obstacle Avoiding Mode. This
last mode in terms of power consumption uses less energy which means that the power-
bank can at least provide energy to the system for 9 hours and 42 minutes, but that isn’t
its limit.

5.16 Temperature Experiments in Method C

Jetson Nano is a single board computer that has only a heat-sink to prevent system throt-
tle. If the temperature of the system gets too high, the portable system will shutdown. It
is really important to regulate and monitor the portable system temperature to prevent
overheating of the same. The goal of these experiments was to reduce the temperature
of the portable system or at least reduce the time it takes until overheats and the system
starts to throttle.

It was measured the temperature in the CPU and GPU of the Jetson Nano using the
information of the thermal sensors located in zone 1 and 2 in Jetson. It was also measured
the temperature inside the portable system box (Power-bank and Jetson) using a pressure
and temperature sensor (BMP280). This sensor is connected to the Jetson by the J41 pins.

5.16.1 Experiment 1 - Open Box

For the first experiment, the temperature was measured with the box cover open while
running the Method C for door detection and classification (Descriptor Mode). The box,
CPU, and GPU temperatures were monitored for 30 minutes. Figure represents the
aforementioned experiment.

95

o]
o

— Box Temperature
1 = GPU Temperature
— CPU Temperature

Temperature / °C
N w B w (=)} ~
fo o o o = o

=
o
L

0 5 10 15 20 25 30
Time / min

Figure 5.13: Temperature experiment 1, portable system with box cover open.

The box temperature didn’t change much since the box cover was open. Its maximum
value in this experiment was 29 °C. CPU and GPU temperatures varied with the time much
more than the box temperature. They keep increasing over time and only stabilised on the
25 minutes mark. Their maximum value in this experiment was around 65 °C, more than
twice the box temperature.

5.16.2 Experiment 2 - Closed Box

The difference between this experiment and the previous one is that in this experiment,
the box cover is closed as it should be when the visually impaired people use the portable
system. Figure represents temperature experiment 2.

80

— Box Temperature
704 — GPUTemperature
— CPU Temperature

[=)]
o

u
o
L

Temperature / °C
w B
L] o

A

N
o
L

=
o
L

0 5 10 15 20 25 30
Time / min

Figure 5.14: Temperature experiment 2, portable system with box cover closed.

96

Unlike the previous experiment, the box temperature didn’t stabilise, and on the 30
minutes mark, it was still showing signs that it could increase even more. The maximum
value for the box temperature was around 32.5 °C. The most worrying values were the
CPU and GPU temperature values which reached 77.0 and 72.0 °C, respectively. As the
box temperature, the CPU and GPU temperature didn’t stabilise and were still showing
signs that they could increase even more.

5.16.3 Experiment 3 - Decrease Box Temperature

In the previous experiment, the box, GPU and CPU temperatures didn’t stabilise and
reached very high values. In this experiment, the temperature variation of the CPU, GPU,
and the box was tested again but for 1 hour. It was tested with this duration to ensure that
the temperature stabilises. Figure represents the temperature variation over time
with the original box of the portable system.

100
— Box Temperature
— GPU Temperature
— CPU Temperature
80 A
4
~ 60
g
2
o
(]
Q
€ 40
(0]
[
20 1
O T T T il T
0 10 20 30 40 50 60

Time / min

Figure 5.15: Temperature variation over 1 hour in experiment 3, portable system with box cover closed.

Running the program in 1 hour instead of 30 minutes allows the temperature to sta-
bilise. In 1 hour of program time, the GPU temperature is 77.5 °C, the CPU temperature
is 73.5 °C, and the Box temperature (inside the box) is 49.5 °C. These temperature values
are too high, and in addition to making the system throttle, the visually impaired user can
be hurt.

To solve this problem, 14 extra holes were made in the box cover. Originally, the box
cover had six ventilation holes, but these holes were not enough according to this experi-
ment. The difference between the original box cover and the actual box cover can be seen

in figure .16.

97

Figure 5.16: Difference between the portable system’s original box cover (left side) and the portable
system’s new box cover (right side).

After drilling the holes in the box, I compared the difference between the original and
the new box cover in terms of temperature variation. Figure treats the results of the
temperature variation for 1 hour of the original box cover and the new box cover.

100
— CPU Temp. Original
— CPU Temp. New
—— GPU Temp. Original
80 1 . GPU Temp. New

—— BOX Temp. Original — - -

-
BOX Temp. New :'_,;_//_,_/—'

Temperature / °C

20 A

0 10 20 30 40 50 60
Time / min

Figure 5.17: Temperature variation over 1 hour with the original portable system’s box cover and with the
new portable system’s box cover.

98

As it can be seen in figure .17, the addition of the new holes in the box cover allows the
air to circulate more, consequently allowing the system not to overheat as much as it was
with the original box cover. With the new box cover, after the program has been running
for 1 hour, the GPU temperature is 72.5 °C when it was 73.5 °C with the old box cover,
the CPU temperature is 76.5 °C when it was 77.5 °C and the Box temperature was 31.5 °C
when it was 49.5 °C. The biggest difference in temperature was in the Box temperature
(dropped 18.0 °C).

Although we got already good results, the air circulation of the portable system can still
be improved, consequently decreasing its box, CPU, and GPU temperatures. To decrease
even more these temperatures and increase the air circulation, I drilled 16 holes on the
sides of the box as it can be seen in figure f.18. Eight holes on each side, equally distant
from each other

Figure 5.18: Difference between the mobile system box before this experiment (left side) and during this
experiment, with new 16 holes (right side).

Once again, I tested for 1 hour, the box, CPU, and GPU temperatures variation before
and after these new 16 holes in the sides of the portable system’s box. It’s important to
mention that these temperature experiments were done on Jetson Nano in 5W mode. Fig-
ure represents these results. The mobile system has now a total of 36 holes, 20 on
the box cover, and 16 on the sides of the box. I will call this new version of the mobile sys-
tem, mobile system 36-holes, and the previous version will be named mobile system
20-holes because it only had 20 holes (on the box cover).

99

100

80 A

— CPU Temp. 36Holes
CPU Temp. 20Holes
—— GPU Temp. 36Holes
GPU Temp. 20Holes
—— BOX Temp. 36Holes
BOX Temp. 20Holes

60

40 A

Temperature / °C

20 1

0 10 20 30 40 50 60
Time / min

Figure 5.19: Temperature variation over 1 hour with the 20-holes mobile system version and with the
36-holes version.

The results weren’t expected. The addition of the holes decreased none of the evaluated
temperatures; in fact, it did the opposite. The mean temperature values increased with
the new version of the portable system box. The main reason for getting worse results
probably has to do with the initial temperatures values. It is remarkable that if the initial
temperature values were the same in both systems, the difference in temperature values
would be smaller. We can conclude that the addition of these new 16 holes didn’t pay an
important role to decrease the mean temperature values with the goal to avoid CPU/GPU
throttle.

5.16.4 Experiment 4 - Add a fan

We successfully decreased the portable system temperature(CPU, GPU, and Box) from
the previous experiments, but it is not yet the intended result. Even after drilling more
holes on the cover and sides of the box, the air circulation is poor and almost nonexistent.

To increase the air circulation inside the box, beyond the holes, I used a fan. This fan
was mounted in the box cover. The goal was to mount this fan on top of Jetson Nano
heatsink, but the box height wasn’t big enough so, it was mounted over the Jetson(in the
box cover) but not over its heatsink. It can be seen in figure how the fan was mounted
on the box cover. The fan is small (30(L)x30(W)x10(H)mm) since we are limited by the
available space inside the box.

100

Figure 5.20: Mounted fan in the portable system box.

With the fan mounted, the temperature experiments were repeated for thour. As in the
previous tests, it was measured as the CPU, GPU, and box temperatures. Figure treats
the results of temperature variation for 1 hour of the portable system with and without the
fan. The fan in this test was always working at 100% speed during all the experiment.

100
—— CPU Temp. no fan
— CPU Temp. with fan
—— GPU Temp. no fan
807 —— GPU Temp. with fan
—— BOX Temp. no fan /_/_’_/_/\/\’_/—
o —— BOX Temp. with fan ﬁ
< 60- i
g
=)
©
(]
Q.
€ 40 -
()]
[t ~
20 A
0 . - - ; '
0 10 20 30 40 50 60

Time / min

Figure 5.21: Temperature variation over 1 hour with and without the fan on the portable system.

101

With the addition of the fan, the mean temperature values of the portable system de-
creased as can be seen in figure F.21. After the program has been running for 1 hour, the
GPU temperature is 57.0 °C when it was 72.5 °C(no fan), the CPU temperature is 61.0 °C
when it was 76.5 °C, and the Box temperature is 34.5 °C when it was 32.5 °C. The only tem-
perature that didn’t decrease with the fan addiction was the box temperature, but that was
probably due to the time I took to put the box cover and isolate the portable system. In the
previous experiment, I took longer, and that’s why the box temperature was lower in the
first minutes when compared with the temperature with the fan. Another factor that may
influence this increase in the box temperature could be the heat that the fan reproduced
behind it and the hot air that is leaving the Jetson Nano heatsink.

5.16.5 Resume of all experiments

Table treats all the temperature experiments and compares them in terms of CPU,
GPU, and Box temperature after the program been running for 3ominutes and 1 hour.

Table 5.19: Comparison of the portable system temperature (GPU, CPU and Box) values after the script of
method C been running for 1 hour with the state evolution of the portable system (With or without box

cover, fan and number of holes on the portable system).

Boxcover NOofholes Fan T(°C)GPU3omin T(°C) CPU30min T(°C) Amb 3omin T(°C) GPU1h T(°C) CPU1h T(°C) Amb 1h

X 6 X 63.0 66.0 29.0 X X X

v 6 X 72.0 77-0 32,5 73.5 77-5 49.5
v 20 X 65.5 70.0 29.5 72.5 76.5 31.5
v 36 X 68.5 72.0 30.5 75.0 79.5 33.0
v 36 v 56.0 59.0 33.5 57.0 61.0 34.5

From table it can be concluded that the addition of the fan reduced the GPU and CPU
temperature of Jetson Nano considerably. The box temperature didn’t decrease, and the
reason was already explained in the previous sub-section. It can also be concluded that
it’s better to use a box cover with a fan than not using a box cover at all. The GPU and
CPU temperature values of the first temperature experiment are bigger than the GPU and
CPU temperature values with the box cover and the fan.

5.17 Improve Door Detection/Segmentation for Method C

This section treats all the experiments and improvements on the object detection/semantic
segmentation module of Method C for the Door Problem.

5.17.1 Improve DetectNet

From the experiments in Object Detection with DetectNet, and the experiments
in Image Classification with AlexNet and GoogleNet 1 concluded that the module that
needs more improvement is the object detection module. The big difficulty was the door
detection and localisation.

102

The big problem with the object detection was that the system usually detected objects
that weren’t doors, as doors. I called these cases False Positives.

Figure represents what are False Negatives, False Positives and True Positives in
object detection.

False Negative with loU =0.75
False Positive with loU = 0.1
True Positive with loU = 0.8

Figure 5.22: Example of False Positive, False Negative and True Positive in DetectNet.(GT stands for
Ground True)

The metric Recall is the ratio between the True Positives with True Positives plus False
Negatives. The metric Precision is the ratio between True Positives with True Positives
plus False Positives. Following this, if the Recall is small, it means that the system is
predicting a lot of False Negative cases and if the Precision is small, it means that the
number of False Positives is high.

From the experiments in the Recall was high, meaning that the number of False
Negatives was low but, the Precision wasn’t, meaning that the model was predicting many
False Positives. Taking this into account, the main focus was to decrease the number of
False Positives to increase the Precision.

A strategy to infer that the object that the system is predicting isn’t a door is to annotate
the dataset with the class "dontcare”. Until now, the dataset only had the annotations of
the doors. To solve this, I built a script that randomly writes annotations of bounding box
outside the already annotated door bounding boxes area. The goal of this strategy was to
train the system to classify all the other objects in the class dontcare. After annotating
the modified dataset for door detection (353 for training and 60 for testing) I trained the
DetectNet with the same parameters as the last experiment (Experiment 4) in since
it was the best experiment in terms of results. Figure treats the experiment results
and compares them with the results of Experiment 4 in 5.15.9.

103

Table 5.20: Comparison of the DetectNet model with the annotations of the class "dontcare” and without
them in terms of Precision, Recall and Training time.

. . Jetson inference Training
dontcare” Anno. Data Aug. Training set size Precision Recall
time time (hours)
X v 200 0.440 0.582 10 FPS 27
v v 200 0.423 0.530 10 FPS 27

As it can be seen in table f.2d, the results were not expected. In fact, the results were
worse than the previous experiment that didn’t have the class “dontcare”.I came to the
conclusion that the class "dontcare” didn’t influence the evaluation of the model. I other
words, the model was only concerned about the door class. The results were worse but
not so different from the previous ones. The DetectNet, as already said, uses Data Aug-
mentation and the reason why the results of Precision and Recall in both the experiments
were slightly different was probably because of the Data Augmentation randomness.

5.17.2 Object Detection limitations in jetson-inference

We can use jetson-inference repository with the DIGITS platform to train object detection
models that are compatible with theJetson Nano system. The issue here was that it was
only possible to train the DetectNet and although I was getting good results in terms of
speed (58] FPS), the precision remained very low (0.440). The DetectNet model is the
model that the NVIDIA developers provided for object detection in Jetson Nano but it’s
used to detect smaller objects in big pictures such as detecting cars from a satellite image.
The objects(doors) that I am trying to detect in the Door Detection Dataset - Version1
occupy a big part of the image. They are large objects while the objects which the DetectNet
was built to detect are small.

5.17.3 Semantic Segmentation in jetson-inference

Since I wasn’t getting good results in door detection and the only available neural network
for door detection was the DetectNet which wasn’t the most suitable for the Door Prob-
lem I decided to explore semantic segmentation in the jetson-inference. According to
Jetson-inference, using the SUN RGB Dataset (which is a semantic segmentation dataset
of indoor spaces) with 640x512 image size they reached 17 FPS in Jetson Nano with 65.1 %
accuracy. Since the images of the Door Semantic Segmentation Sub-Dataset - ver-
sion 1.0 are 640x480 pixels, the FPS on Jetson Nano would be more then 17 (640x512
is bigger than 640x480). For the semantic segmentation, the jetson-inference provides
one neural network compatible with Jetson Nano, the SegNet. Similarly to the DetectNet
in Object Classification, the SegNet can be trained using the DIGITS platform with my
dataset and the jetson-inference also provides pre-trained weights (FC AlexNet).

104

I did the tutorial of semantic segmentation in jetson-inference, which consists of training
the SegNet with the NVIDIA-AERIAL Dataset (2 classes only, sky and land). This is a toy
problem, and the network reached very high accuracy values in the first epoch (98.385%).
One problem of DIGITS was that it didn’t provide any evaluation metrics (like mean in-
tersection over union) other than accuracy.

I trained the SegNet with the Door Semantic Segmentation Dataset - version 1.0, 190
images for training and 10 for validation. Like the tutorial training, the network reached
high accuracy values in the first epoch(81.4%), but it didn’t exceed those values in the
following epochs. In the beginning, I thought that these were really great results, but
when I tested it on Jetson Nano, I found the opposite. The network was inferring that the
entire 640*480 image was the door when it wasn’t, §.23.

Figure 5.23: Difference between the original input image and the output of SegNet trained in Door Sem.
Seg Dataset(Version 1).

The network could run at 2 FPS in Jetson Nano, but it wasn’t really doing door segmen-
tation even after other training parameters where changed in the network training, as the
learning rate and the policy to decrease it throughout the training. On the one hand, we
have a network that works in real-time in a low powered device, but on the other hand,
that network can not do door segmentation.

5.17.4 Convert models to TensorRT

At this time of the development of this project, I already had more information about Ten-
sor Real Time(TensorRT). As the developers themselves describe, "NVIDIA TensorRT™
is an Software development kit (SDK) for high-performance deep learning inference. It

105

includes a deep learning inference optimiser and runtime that delivers low latency and
high-throughput for deep learning inference applications.”. TensorRT models run faster
without using significant reductions in accuracy and precision and are what the jetson-
inference models are based on. All of their models are TensorRT models which are the
most suitable for these kinds of low powered systems.

It is possible to even convert a Torch or Tensorflow model to the TensorRT model us-
ing the corresponding library to do it. But on the other hand, these tools and libraries
still have a lot of problems with compatibility since Torch, Tensorflow, and the other deep
learning development frameworks are constantly being updated. At the time I was devel-
oping this project, there were very few tutorials and information for converting models
into TensorRT models.

Using TensorRT was the solution for the previous problem because we can achieve high

accuracy values in real-time in low powered devices.

5.17.5 Semantic Segmentation - TorchSeg

I had worked with semantic segmentation in PyTorch in Method A for the Door Prob-
lem but the methods were either fast with little accuracy or very accurate but slow (FC-
HarDNet and FastFCN). Another problem was that it was very difficult to make these
models compatible with Jetson Nano and a big part of them wouldn’t work on it.

I explored several benchmark repositories for real-time semantic segmentation algo-
rithms implemented in PyTorch since it was the framework for deep learning development
that I was more comfortable with. The benchmark repository that I found more suitable
was the TorchSeg repository. It supports real-time semantic segmentation networks as
the PSPNet, [ZSQ™'16] and the BiSeNet, [YWP'18]. It also supports network training
and inference. I installed this repository in my lab computer and started to explore the
BiseNet model since this repository provided a BiseNet network with a ResNet18 which
is also used in the jetson-inference models. This model was trained in the ictyscapes,
[CORT16], dataset but I trained it using the provided pre-trained weights in the Door Se-
mantic Segmentation Dataset - version 1.0. The model and the trained weights can be
saved every epoch.

After training for a few minutes(20min), I made the inference on the test set and printed
the image results, and I conclude that this network was already giving better results than
the SegNet in terms of accuracy because it was already segmenting the door.

5.17.6 Torch to TensorRT

I had the model/snapshot with the weights of the last epoch of training. The next step
would be to convert the BiSeNet and these weights to a TensorRT model. I explore several
approaches to do it.

106

The approached that seemed the simplest was to use the library torchatrt but it wasn’t.
I installed the library with the repository without any problem, but the function simply
couldn’t convert our Torch model into a TensorRT model. I came to the conclusion that
the BiSeNet model couldn’t be converted to a TensorRT model using this library.

The other approached that seemed more difficult, was to convert the Torch model to a
ONNX model and then convert this ONNX model to a TensorRT model. ONNX stands
for "Open Neural Network Exchange”, and it’s an open format built to represent machine
learning models. This approached, although it seemed harder, at first sight, was the tech-
nique that was being used usually to convert models to TensorRT.

Convert to ONNX

To convert the Torch model to ONNX format I used the function torch.onnx.export()
from PyTorch. The arguments for this function are the input and output layers names
of the network, the model itself, a dummy input, and opset version. The opset version
is the version of the ONNX sub-module. Later versions support more current networks
while the first versions support older networks. After some trial and error, the supported
ONNX opset version that worked for my case was the 11, which is the second most current

version.

Convert to TensorRT

Once we got the ONNX model we can use the tool Netron to view or model. Netron
is a viewer for neural network, deep learning and machine learning models that sup-
ports ONNX models. The converted model, BiSeNet with ResNet18 as an input of shape
float32[1,3,640,480] and output of shape float32/1,3,80,60]. It returns a smaller output
because this network does a crop in the input image and this is how it was design. After
this, we simply do a opencv interpolation and get an output image with the same size as
the input.

The conversion to TensorRT and the installation of TensorRT in the lab computer were
more complex than the conversion to ONNX. I tried several tutorials to install TensorRT,

» Medium - Accelerate PyTorch Model With TensorRT via ONNX
+ Medium - Installation Guide of TensorRT for Yolov3

¢ GitHub - NVIDIA TensorRT

The solution was to use the official instructions/guide from NVIDIA, https://docs.
nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html. Afterseveral er-
rors in paths and missing libraries, I successfully installed TensorRT 7.0 which is the most

107

https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html

recent version for desktop computers. This version was installed because it is the only ver-
sion that’s compatible with the opset version 11 of ONNX.

I used the tool onnx-tensorrt to convert the ONNX model to TensorRT model. This tool
simply requires the ONNX model as the argument. I converted the model successfully
but to make sure that, in fact, the model was in TensorRT the mean inference time was
calculated in both of the models, TensorRT and the original PyTorch model in the lab
computer. I also compared the resulting images of both networks, as can be seen in figure

524,

Figure 5.24: Outputs of both Torch and TensorRT BiSeNet models with the same input door image. Torch
on the left side and TensorRT on the right side.

In figure f.24, we can clearly see that the difference in the output of both models is very
small. The output of the models may be similar, but the inference time isn’t. The mean
inference time in the Torch model was 0.02829 seconds, which corresponds to around 35
FPS. The mean inference time in the TensorRT model with the same input was 0.01901
seconds, which corresponds to 52-53 FPS. We gained 17-18 frames per second when we
used the TensorRT model in the lab computer.

Figure represents all the tested methods to convert the Torch BiSeNet model to
a TensorRT model. The last method of the figure was the method chosen to convert the
model.

torch2irt
Torch Lab Compuiter ';i TensorRT 7.0 I
torch.onnx.export() onnx-tensorrt
Torch Tab COMsatT —i ONNX I—“bmpu.e, TensorRT 7.0
torch.onnx.export() . onnx-tensorrt
Torch T EaRRiT —! ONNX I—'Je'wn — TensorRT 7.1

Figure 5.25: Tested methods to convert a Torch model to a TensorRT model. Arrows represent conversions.
Text above the arrow refers to the conversion method and text below the arrow refers where the conversion
was done.

{1

108

5.17.7 TensorRT in Jetson Nano

TensorRT is installed by default on the NVIDIA Jetpack SDK. 1 tried to do the inference in
Jetson Nano with the BiSeNet TensorRT model but I was not successful due to incompat-
ibility of TensorRT versions. The JetPack I had installed in Jetson Nano was the Jetpack
4.3 which has TensorRT 6.0 and the model I created in the lab computer was created using
TensorRT 7.0 and different TensorRT versions aren’t compatible.

At the time I was having this issue, a new version of Jetpack was released, Jetpack 4.4
which supported TensorRT 7.1. 1 installed this new SDK in Jetson Nano but when I tried
to make the inference, I still got the same error of incompatibility of different TensorRT.
I thought that TensorRT 7.0 was compatible with the TensorRT 7.1 from Jetson but it
wasn’t. One simple solution would be to update the desktop computer TensorRT version
from ”7.0” to ”7.1” but version ”7.0” was the last release for desktop computers, so it wasn’t
possible to update it.

The solution was to convert the ONNX BiSeNet model to TensorRT in the Jetson Nano.
Iinstalled the same tool that was used to do the conversion, onnx-tensorrt in Jetson Nano,
and I successfully converted the model. Finally, I was able to make the inference on Jetson
with the TensorRT model.

The TensorRT BiSeNet in Jetson Nano (10W mode) takes 45 seconds to make the infer-
ence of 100 images. The mean inference time of this model in Jetson is 0.40 seconds.
With just this inference time, we can conclude that this approach will work at only 1 FPS,
taking into account the image process and the image classification time. Compared to
previous methods for door detecting this method seems slow, even in a TensoRT model
but in fact, it isn’t. The mean inference time of the SegNet model trained in DIGITS is also
round 0.40 seconds in Jetson Nano (10W mode). The SegNet model, which is model
design by jetson-inference to run fast on Jetson and is also a TensorRT model, is as fast
as the TensorRT BiSeNet model. Beyond that, the SegNet model can’t detect doors while
the BiSeNet is already detecting doors with just a few epochs of training.

5.17.8 Training and Evaluating of the BiSeNet model

The BiSeNet torch model was trained in the lab computer using the Door Semantic Seg-
mentation Dataset - version 1.0. 200 images for training, 20 for validating and 20 for
testing. The evaluation metric used was the mean intersection over union (mloU).

Firstly, I trained the model for 400 epochs (around 50 minutes), with a batch size equal
to 4 and a learning rate equal to 1e-2. I use a ResNet18 model pre-trained in Cityscapes
dataset. Every ten epoch, the model weights were saved, and the mean train and validation
IoU were calculated. Figure represents the mean train and validation intersection
over union throughout the training epochs.

109

100

—— mean loU Train
mean loU Validation

80

60

mean loU

40 -

20 A

0 T T T T T T T
0 50 100 150 200 250 300 350 400
Epoch

Figure 5.26: Mean train and validation intersection over union during 400 training epochs.

I was expecting to overfit of the network, but there isn’t any evidence in the figure. The
max mean validation intersection over union was in the 350th epoch, but I needed to train
the model for more epochs to see if this value had its maximum in epoch 350 or if it could
still grow in the following epochs. The goal here was to obtain the maximum validation
IoU value, and I didn’t have enough epochs to conclude that this was the highest value.
Due to the previous, I repeated the process and trained the BiSeNet for 1000 epochs.
Figure represents the mean train and validation intersection over union throughout
1000 training epochs.

100

80
5 60
o
e
©
g

40 A

20 A

—— mean loU Train
mean loU Validation
0 T T T T
0 200 400 600 800 1000

Epoch

Figure 5.27: Mean train and validation intersection over union during 1000 training epochs.

110

From figure it’s clear that the model over fitted around epoch 900 with a mean train
IoU equal to 93.238 and a mean validation IoU equal to 85.005. The model was tested
in the test set using the weights of epoch 900 and the mean test IoU was 82.227.

5.17.9 Testing all approaches for Door Detection/Segmentation

Until now, I implemented and tested 3 different approaches for Door Detection/Segmentation
on Method C. The DetectNet for door detection, the SegNet for door semantic segmen-
tation and the BiSeNet also for door semantic segmentation. To evaluate and compare

an object detection method with a semantic segmentation method I simply compare the
output of the model, and if the same allows cropping the door correctly for door classi-
fication, I count as a correct output. The goal of these methods, (door detection or door
semantic segmentation) is to detect door contours or borders in the image and provide
the necessary information to the image classification model.

The object detection models already output a bounding box with the location of the
object, but the semantic segmentation models do not. The strategy here was to first detect
the biggest door cluster in the output of the semantic segmentation models and use the
smallest and the biggest x and y values to build the bounding box and crop the image.
Filters of Dilation followed by Erosion (Closing filters) (opencv) were also used on the
output of the semantic segmentation. If the biggest/maximum door cluster wasn’t bigger
than 30000 pixels or if the door width was not bigger than 150 pixels that door cluster
was forgone. These filters were the same that were used in Method A for Door detection
and classification.

The fact that it’s required to use these filters after the semantic segmentation outputs
is a disadvantage compared with the object detection version because they consume time
while time is precious since we are building a real-time method. The output of the BiSeNet
is an 80*60 image, and so, this image needs to be resized to a 640*480 image, and this
resizes operation takes time as well. So, for this semantic segmentation method, even
more, time is required. Figure represents the door detection/segmentation process
of Method C and the difference between using the object detection method, DetectNet
and the semantic segmentation method, BiSeNet.

111

Inference DetectNet Use BB to crop image

DetectNet

Output DetectNet Final Output

opencv
Inference opencv
BiSeNet D resize findContours

Output BiSeNet

BiSeNet

Original Image Resized Image Final Output

Figure 5.28: Difference in operations and filters between using the semantic segmentation BiSeNet and the
object detection DetectNet in the process of door detection/segmentation in Method C.

As it can be seen in figure F.28, the semantic segmentation method BiSeNet involves
several more processes after the inference itself, and that’s one of the biggest disadvan-
tages of using semantic segmentation for the door detection/segmentation.

Too further analyse the advantages and disadvantages of using the DetectNet, the Seg-
Net or the BiSeNet, all of these methods were tested in terms of inference speed and pre-
cision. Twenty door images were used to represent the positive cases, and 20 images with
no doors were used to represent the negative cases. The positive case is when there is a
door in the image, and the negative case is when there isn’t any door in the image. I used
20 images with no doors because of the DetectNet. This model was detecting the doors,
but it was also detecting doors when there wasn’t any door in the image (False Positive
case). With this, I could evaluate both the True and False Positives of each model and
compare the results. I analysed each image, and if the method output contained all the
necessary information for the image classification network, I would consider that case as
a True Positive. It was measured the mean inference time of each method and the post in-
ference time (just for the semantic segmentation approaches) in seconds in Jetson Nano.
It was also calculated the total time (inference time + post inference) of each method. The
total time represents the time, in seconds, that it takes to give the cropped RGB image to
the image classification network in Method C.

Table represents the evaluation and comparison of DetecNet, SegNet and BiSeNet
on Door Detection/Segmentation in terms of number of True Positives, False Positives,
the mean inference time, post inference and total time in Jetson Nano.

112

Table 5.21: Evaluation and Comparison of DetecNet, SegNet and BiSeNet on Door Detection/Segmentation
in terms of number of True Positives, number of False Positives, mean inference, post inference and total
time in seconds in Jetson Nano.

Mean Post Total
Method True Positives False Positives
Inference time(s) Inference time(s) Inference time(s)

DetectNet 14/20 5 0.130 (o} 0.130
SegNet 0/20 20 0.400 0.006 0.406
BiSeNet 19/20 2 0.400 0.012 0.412

From table we can conclude that the worst out of these 3 methods is the SegNet, the
default semantic segmentation algorithm in jetson-inference. The SegNet does not have
any True Positives since it always detects the entire image as the door object. Instead of
providing only the necessary information, it provides all the original image to the image
classification algorithm. It has 20 False Positives (20 negative images) due to the same
reason. The post inference time (0.006s) is a little smaller when compared with the
BiSeNet post time because the SegNet outputs a 640*480 image without having to resize
it. The BiSeNet needs to resize the image because it outputs an 80x60 image as it was
said previously. SegNet output is already a 640*480 image but if the Image Classification
model input image size is 227*227, the SegNet will also need to do resize the image to a
227%227,

The DetectNet, default object detection network in jetson-inference, has a total infer-
ence time, equal to 0.130s while the BiSeNet has a total inference time equal to 0.412s.
The DetectNet is more than 3 times faster than the BiSeNet (0.412/0.130 = 3.17). But, on
the other side, The BiSeNet is the method that achieved the best results in terms of num-
ber of True Positives and False Positives. With the BiSeNet network I couldn’t only detect
one out of 20 doors in the 20 doors images, while the DetectNet failed to detect 6 out of
20 doors. The biggest problem of the DetectNet was with the False Positive Cases, and we
can see this issue from these results, it detected 5 doors in images without any doors, while
the BiSeNet detected only 2 doors. To conclude, in terms of speed, the best approach is
undoubtedly the DetectNet approach but, in terms of precision, the best approach is the
BiSeNet approach.

113

114

Chapter 6
Conclusion

In this chapter all the scientific contributions of this work will be described, one final
experiment to conclude which of the developed methods would be the best for the visually
impaired people and the future work, or what could still be done in this project.

6.1 Scientific Contribution

In sort, the contributions of this work were:

« One portable system to help visually impaired people navigate that is easy
to use and transport, lightweight, doesn’t overheat, and can still be improved.

+ A Git Repository with all the instructions to prepare a Jetson Nano to run neural
network models and the developed methods in this project.

« Two Datasets for 3D and 2D Door and Stairs Classification labelled, freely
available online, and with information about the test, train and validation sets.

» 3 Methods to solve the visually impaired people Door Problem that work in real-
time in low powered devices.

6.2 Door Problem Methods

I develop three methods for solving the Door Problem that work in real-time in low pow-
ered devices such as the Jetson Nano. Method A uses 2D Semantic Segmentation to
detect the door and uses 3D Object Classification to classify it. Method B just classifies
the door with a 3D Object Classification method. Method C uses 2D Semantic Segmenta-
tion to detect the door and uses 2D Image Classification to classify it. Each method has its
own advantages and disadvantages but which one is the best to use in the portable system
for visually impaired people?

I compared all these three methods in terms of Door Detection, Segmentation Intersection
over Union ([oU) and inference time, in terms of Door Classification test accuracy and in-
ference time, and in terms of total method inference time. The following table represents
this comparison.

115

Table 6.1: Comparison of all the Methods for the Door Problem.

Seg. mean Seg. mean Class. Class. mean Total
Method Seg. Network Class. Network
test IoU time(s) test acc. time(s) time(FPS)
A FC-HardNet 0.418 0.131 PointNet 0.494 0.111 3
X X X PointNet 0.433 0.111 5-6
C BiSeNet 0.822 0.412 AlexNet 0.983 0.019 1-2

For each method, I used its best algorithms based on the experiments presented in the
previous chapter. That’s the justification for comparing method A with the FC_ HarDNet
algorithm for Semantic Segmentation and method C with the BiSeNet for Semantic Seg-
mentation and AlexNet for Door Classification. In other words, I used the best algo-
rithms in each method with the goal to compare each method at its best.

Talking first about the Semantic Segmentation part. Without a doubt that the best
method to Detect a Door is Method C. Using the BiSeNet in the TensorRT form, it gives a
0.822 mean test [oU which, when compared with the FC-HardNet is very good. Method B
doesn’t detect the door which could be a problem since this method doesn’t know if there
is any door or not in the scene while the other two know this and only classify the image if
there is a detect door in it. The only advantage of Method A is its speed, but it’s better to
have a method that works but takes a little longer than having something that works very
fast but fails several times.

Now, talking about the Door Classification part. Once again, without a doubt that
Method C is the best method. Initially, I thought that it would be better to classify an
object with 3D information, but the RGB information, in this case, is much more valu-
able. With the AlexNet classification network, Method C got a mean test accuracy equal
to 0.983 which is excellent when compared to the other methods.

To finish, the total inference time of each method. Here, Method C is the worst and
can only work at 1 to maximum 2 frames per second, while the others can work at 3 FPS,
(Method A) and 5-6 FPS, (Method B). But isn’t 1-2 frames more than enough? If every
frame of those frames per second would always be a clear image, without being blurred
and if the user walks slowly, this frame rate would be enough. The sound itself that is
reproduced each time the Door is detected and classified ("open door, closed door, semi-
open door”) takes also some time(0.5 seconds) to reproduce. The problem is when a frame
captured is blurred and will induce the system to produce wrong classifications, and the
person will just have another response in the next second.

Concluding, Method C is the last and the best method to solve the Door Problem since
the precision in detection and classification of the door pays off the time this method takes.
It’s better to have a method that still is in real-time, and it’s capable of providing the cor-

116

rect information to the visually impaired user than having a method that can provide the
information faster but not so correct.

6.3 Future work

For future work, I would have liked to migrate the last method for solving the Door Prob-
lem, Method C to the Stairs Problem, which was not so explored in this work. The reason
why I focused more on the Door Problem and not in the Stairs Problem was because of the
frequency that the Door Problem happens when compared with the Stairs Problem. The
Door Problem usually happens when a visually impaired person lives in a shared house,
and so it can happen a lot of times. The Stairs Problem doesn’t happen in the visually
impaired person’s home, it happens instead in unknown indoor places or in places where
they already have been to but don’t know every corner of the place. The Door Problem it’s
much more frequent than the Stairs Problem, and that’s the main reason why I focused
on building the portable system to solve this problem.

What was also left to be done was to get feedback from a real user. Due to the Pandemic
of SARS-CoV-2 Virus I wasn’t able to lend the portable system to a visually impaired per-
son to test it and give me feedback in return. This feedback would have been a great
contribution to this work and the next step to improve the portable system.

117

118

Bibliography

[ATS16]

[ATS19]

[Braoo]

[CDDo3]

[CFGTt15]

[CKR*19]

[CORT16]

[DDST09]

[HWo8]

[KAY11]

[KSH12]

Jon Barker Andrew Tao and Sriya Sarathy. Detectnet: Deep neural network
for object detection in digits, 2016. [,

Miguel Arduengo, Carme Torras, and Luis Sentis. Robust and adaptive door
operation with a mobile manipulator robot, 2019.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000.

Grazia Cicirelli, T. D’Orazio, and Arcangelo Distante. Target recognition by
components for mobile robot navigation. J. Exp. Theor. Artif. Intell., 15:281—

297, 07 2003. 15, 16, 17

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao
Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich
3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stan-
ford University — Princeton University — Toyota Technological Institute at
Chicago, 2015. g

Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, and Youn-
Long Lin. Hardnet: A low memory traffic network, 2019. [, 73

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The cityscapes dataset for semantic urban scene understanding. In Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2016. L0g

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

Brian Hoyle and Dean Waters. Mobility AT: The Batcane (UltraCane), pages
209—229. Springer London, London, 2008. Available from: https://doi.
org/10.1007/978-1-84628-867-8_6. §

N. Kwak, H. Arisumi, and K. Yokoi. Visual recognition of a door and its knob
for a humanoid robot. In 2011 IEEE International Conference on Robotics
and Automation, pages 2079—2084, May 2011. i, 16, (7

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097-1105. Curran

119

https://doi.org/10.1007/978-1-84628-867-8_6
https://doi.org/10.1007/978-1-84628-867-8_6

Associates, Inc., 2012. Available from: http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep—convolutional-neural-networks.
pdf. g

[LMB*14] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and
Piotr Dollar. Microsoft coco: Common objects in context, 2014. bd

[LRA17] A. Llopart, O. Ravn, and N. A. Andersen. Door and cabinet recognition using
convolutional neural nets and real-time method fusion for handle detection
and grasping. In 2017 3rd International Conference on Control, Automation
and Robotics (ICCAR), pages 144—149, April 2017. |15, 116, 17, k4

[MLRSo02] Inaki Monasterio, Elena Lazkano, Inaki Rano, and Basilio Sierra. Learning
to traverse doors using visual information. Mathematics and Computers in
Simulation, 60:347—356, 09 2002. [15, [t

[MSZW14] S.Meyer Zu Borgsen, M. Schopfer, L. Ziegler, and S. Wachsmuth. Automated
door detection with a 3d-sensor. In 2014 Canadian Conference on Computer
and Robot Vision, pages 276—282, May 2014. fig, i

[Nvi1g] Nvidia. Jetson nano developer kit 3d cad step model [online]. 2019. Avail-
able from: https://developer.nvidia.com/embedded/downloads. KX,

[opeon] openCV, Computer Vision Annotation Tool: A Universal Approach to Data
Annotation. Available from: https://github.com/opencv/cvat. B

[QGPAB18] Blanca Quintana Galera, Samuel Prieto, Antonio Adan, and Frédéric Bosché.
Door detection in 3d coloured point clouds of indoor environments. Automa-
tion in Construction, 85:146—166, 01 2018. |5, 16, 7, k4

[QPAB16] B. Quintana, S. A. Prieto, A. Adan, and F. Bosché. Door detection in 3d col-
ored laser scans for autonomous indoor navigation. In 2016 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1—

8, Oct 2016. [td, i, 17

[QSMG16] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Point-
net: Deep learning on point sets for 3d classification and segmentation.
CoRR, abs/1612.00593, 2016. Available from: http://arxiv.org/abs/

1612.00593. B,

[RC11] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011.

[RF18] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv, 2018. f

120

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://developer.nvidia.com/embedded/downloads
https://github.com/opencv/cvat
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593

[SDor]

[SLJ*14]

[TRZ"17]

[WZHt19]

[YHZH15]

[YWP+18]

[ZB08]

[ZDS*18]

[ZPK18]

[ZSQ+16]

[ZZP+17]

STAR-DETECTOR, Willow Garage Star Detector. Available from: http://
pr.willowgarage.com/wiki/Star-Detector. [L§

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions, 2014. §

Lore Thaler, Galen M. Reich, Xinyu Zhang, Dinghe Wang, Graeme E. Smith,
Zeng Tao, Raja Syamsul Azmir Bin. Raja Abdullah, Mikhail Cherniakov,
Christopher J. Baker, Daniel Kish, and Michail Antoniou. Mouth-clicks used
by blind expert human echolocators — signal description and model based
signal synthesis. PLOS Computational Biology, 13(8):1—17, 08 2017. Avail-
able from: https://doi.org/10.1371/journal.pcbi.1005670. fid

Huikai Wu, Junge Zhang, Kaiqi Huang, Kongming Liang, and Yizhou Yu.
Fastfcn: Rethinking dilated convolution in the backbone for semantic seg-
mentation, 2019. f,

T.H.Yuan, F. H. Hashim, W. M. D. W. Zaki, and A. B. Huddin. An automated
3d scanning algorithm using depth cameras for door detection. In 2015 In-
ternational Electronics Symposium (IES), pages 58—61, Sep. 2015. [15, 6,

k7

Changgian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong
Sang. Bisenet: Bilateral segmentation network for real-time semantic seg-
mentation, 2018. [4, lod

Zhichao Chen and S. T. Birchfield. Visual detection of lintel-occluded doors
from a single image. In 2008 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 1—8, June 2008.

kg, b7, a4

Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang,
Ambrish Tyagi, and Amit Agrawal. Context encoding for semantic segmen-
tation, 2018. 45

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library
for 3D data processing. arXiv:1801.09847, 2018. RS, bd, 85

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network, 2016. 8, o4

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Anto-
nio Torralba. Scene parsing through ade20k dataset. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017. 47

121

http://pr.willowgarage.com/wiki/Star-Detector
http://pr.willowgarage.com/wiki/Star-Detector
https://doi.org/10.1371/journal.pcbi.1005670

	Introduction
	Framework
	Goals
	Motivations
	Visually impaired people indoor problems
	Door Problem
	Stairs Problem

	Document Organization

	Fundamental Concepts and Related Work
	Computer vision concepts used in this project
	Point Cloud
	Algorithms used for the Door/Stairs Problem

	Related Work
	Navigation systems for visually impaired people
	Related work (Door classification and detection) Door Problem
	Ricardo Domingos's work - Door Problem method

	Project Material
	Lab Desktop Computer
	Description and characteristics

	Raspberry Pi 3B+
	Descriptions and characteristics

	Jetson Nano Nvidia
	Descriptions and characteristics
	Installation
	Python libraries version for Jetpack 4.3
	Python libraries version for Jetpack 4.4

	RealSense 3D camera
	Power bank 20000 mAh
	Portable System 1.0
	Portable System 2.0
	System characteristics
	System Modes
	User-interface

	DataSet
	System to capture data for building the Dataset
	Python script
	Camera Detail
	After Process - Dataset
	Errors in the 3D information

	System to label semantic segmentation and object detection datasets (CVAT)
	Door Dataset - Version 1.0
	Door Classification (3D and RGB) sub-dataset
	Door Semantic Segmentation sub-dataset
	Door Object Detection sub-dataset
	List of Neural Network Models that used this dataset

	Stairs Dataset - Version 1.0
	DataSet Comparison with Related Work

	Tests and Experiments
	Ricardo's work
	Ricardo's work problems
	Implementation of Ricardo's work
	Semantic Segmentation - Context-Encoding PyTorch
	Conclusion

	Use of 3D object classification models to solve the Door Problem
	Mini-DataSet
	PointNet
	Dataset for PointNet
	Data augmentation for dataset for PointNet
	PointNet implementation results

	First proposal to solve The Door Problem
	Problems with the dataset
	Problems with the semantic segmentation

	FastFCN semantic segmentation
	Training FastFCN for semantic segmentation with doorframe and stair classes
	Training the FastFCN EncNet with only 2 classes, doorframe and no-class
	Improve in the dataset for the first Proposal to solve the Door Problem

	Door 2D Semantic Segmentation
	Using only doorframe class in semantic segmentation
	Using doorframe and door class in semantic segmentation
	Evaluation of the possible semantic segmentation strategies

	PointNet - (3D Object Classification)
	Prototype Program
	Problem - Real-Time

	PointNet Tests without Semantic Segmentation
	PointNet with original size point clouds
	PointNet with voxelized grid original sized point clouds
	Train Pointnet with cropped point clouds
	Merge of all the approaches

	Testing in Jetson Nano
	Installations

	Testing the program between different versions of Jetpack
	First prototype portable system for real-user
	Speed up the Jetson Nano start up
	Auto start Program after boot
	Improved approach - Semi-open class
	Add Sound
	Building of the prototype portable system version 2.0

	Generic Obstacle Avoiding Mode
	Power Bank Issues
	Method A and B - Door Problem
	Method A - 2D Semantic Segmentation and 3D Object Classification
	Method B - 3D Object Classification

	Method C - Door Problem
	Jetson inference repository
	Object detection with DetectNet
	Image classification with AlexNet and GoogleNet
	Development of Method C
	Speed Evaluation of Method C
	Power-bank Duration in Method C

	Temperature Experiments in Method C
	Experiment 1 - Open Box
	Experiment 2 - Closed Box
	Experiment 3 - Decrease Box Temperature
	Experiment 4 - Add a fan
	Resume of all experiments

	Improve Door Detection/Segmentation for Method C
	Improve DetectNet
	Object Detection limitations in jetson-inference
	Semantic Segmentation in jetson-inference
	Convert models to TensorRT
	Semantic Segmentation - TorchSeg
	Torch to TensorRT
	TensorRT in Jetson Nano
	Training and Evaluating of the BiSeNet model
	Testing all approaches for Door Detection/Segmentation

	Conclusion
	Scientific Contribution
	Door Problem Methods
	Future work

	Bibliografia

