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Resumo

Os modelos de aprendizagem automática dependem dos dados para aprender qualquer tarefa e,
dependendo da diversidade de cada um dos elementos da tarefa e dos objetivos do projeto, a quan-
tidade de dados pode ser elevada, o que, por sua vez, pode aumentar exponencialmente o tempo de
aprendizagem e o custo computacional. Embora a maioria do treino dos modelos de aprendizagem
automática hoje seja feito usando GPUs (unidade de processamento gráfico), ainda é necessária
uma quantidade enorme de tempo de treino para obter o desempenho desejado.

Este trabalho tem como objetivo analisar os algoritmos de aprendizagem de aprendizagem ou pop-
ularmente conhecidos como metalearning, que são métodos que não apenas tentam melhorar a
velocidade de aprendizagem, mas também o desempenho do modelo e, além disso, requerem menos
dados e envolvem várias tarefas. O conceito envolve o treino de um modelo que aprende constan-
temente a aprender tarefas novas em ritmo acelerado, a partir de tarefas aprendidas anteriormente.

Para a revisão do trabalho relacionado, será dada atenção aos métodos baseados em otimização
e, mais precisamente, ao MAML (Model Agnostic MetaLearning), porque em primeiro lugar é um
dos métodos de metalearning mais populares e em segundo lugar, esta tese foca a criação de um
método baseado em MAML, chamado MAML-DBL, que usa uma técnica de taxa de aprendizagem
adaptável com limites dinâmicos que permite obter convergência rápida no início do processo de
treino e boa generalização no fim.
A proposta variante de MAML tem como objetivo tentar evitar o desaparecimento das taxas de
aprendizagem durante o treino e a desaceleração no fim onde entradas densas são predominantes,
embora possa ser necessário um ajuste adicional dos hiperparâmetros para alguns modelos ou onde
entradas esparsas podem ser predominantes, para melhorar o desempenho.

O MAML-DBL e o MAML foram testados nos conjuntos de dados mais comumente usados para
modelos de metalearning, e com base nos resultados das experiências, o método proposto mostrou
um desempenho bastante competitivo em alguns dos modelos e até superou o baseline em alguns
dos testes realizados.
Os resultados obtidos com o MAML e MAML-DBL (num dos conjuntos de dados) mostram que os
métodos de metalearning são soluções altamente recomendáveis sempre que um bom desempenho,
menos dados e um modelo versátil ou com várias tarefas são necessários ou desejados.

Palavras-chave

Metalearning;MAML;MAML-DBL
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Abstract

Machine learning models rely on data to learn any given task and depending on the universal di-
versity of each of the elements of the task and the design objectives, multiple data may be required
for better performance, which in turn could exponentially increase learning time and computa-
tional cost. Although most of the training of machine learning models today are done using GPUs
(Graphics Processing Unit) to speed up the training process, most however, depending on the
dataset, still require a huge amount of training time to attain good performance.

This study aims to look into learning learning algorithms or popularly known as metalearning
which is a method that not only tries to improve the learning speed but also the model perfor-
mance and in addition it requires fewer data and entails multiple tasks. The concept involves
training a model that constantly learns to learn novel tasks at a fast rate from previously learned
tasks.

For the review of the related work, attention will be given to optimization-based methods and most
precisely MAML (Model Agnostic MetaLearning), because first of all, it is one of the most popular
state-of-the-art metalearning method, and second of all, this thesis focuses on creating a MAML
based method called MAML-DBL that uses an adaptive learning rate technique with dynamic
bounds that enables it to attain quick convergence at the beginning of the training process and
good generalization towards the end.
The proposed MAML variant aims to try to prevent vanishing learning rates during training and
slowing down at the end where dense features are prevalent, although further hyperparameter tun-
ning might be necessary for some models or where sparse features may be prevalent, for improved
performance.

MAML-DBL and MAML, were tested on the most commonly used datasets for metalearning mod-
els, and based on the results of the experiments, the proposed method showed a rather competitive
performance on some of the models and even outperformed the baseline in some of the carried out
tests.
The results obtained with both MAML-DBL (in one of the dataset) and MAML, show that met-
alearning methods are highly recommendable solutions whenever good performance, less data and
a multi-task or versatile model are required or desired.
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Chapter 1

Introduction

1.1 Objectives

Modern advancements in machine learning and its current application in several fields and tools
we use in our daily endeavours, such as the internet, automobiles, and mobile apps, has caused
a growing interest in AI and machine learning based developement amongst software companies
and engineers as well as amateur programmers and developers worldwide. However, as machine
learning grows and is being applied to several new fields and devices, so do new challenges, such
as computational cost to train a model on massive amount of data, data scarcity for new fields,
inflexible or non-versatile learning methods, among others. Several techniques that attempt to
solve such challenges are constantly being designed, and among the proposed techniques, one
promising direction that has shown a certain degree of sucess and received growing attention in
recent times is learning to learn or meatalearning. In this thesis, we will begin by looking at
machine learning, then talk briefly in general terms about metalearning, and as the title specifies,
we will be focusing strictly on the learning algorithms or the learning of some neural network-based
metalearning techniques. Be advised that only minimum attention will be given to the learning
model and architecture as it is not the focus and therefore out of the scope of this work.

1.2 Motivation: Stating the problem and solution

To achieve high accuracy most machine learning models usually require lots of data and time,
which amounts to high computational cost. Today, most software engineers and IT companies rely
on at least a GPU but can sometimes use a ridiculously large number of GPUs (2,048)[JSH+18]
for high accuracy as well as to cut down time and cost while still retaining the same amount of
data.
However, in situations where only limited resources are available (e.g. a single GPU) and high
accuracy as well as speed is desired or required, training a model on a huge dataset from scratch
could be painfully lengthy. For this problem, I was able to find two interesting possible solutions,
which are, transfer learning and metalearning. Transfer learning relies on pretraining, that is, to
use transfer learning for a new task (eg. recognizing trucks), known as the target task Tt on a
domain Dt there must be a model already trained to perform a related task (eg. recognizing cars),
known as the source task Ts on a related domain Ds in which the loss output layer of the existing
model of Ts is replaced with a new loss output layer related to Tt to make the transferred model
achieve quick convergence for Tt with fewer datapoints, known as few-shot learning. However in
cases where there is no model pretrained on a related task Ts, the model will have to be trained
from the scratch on the entire dataset however large it is, which brings us back to the original
problem.[Wik20g]

Metalearning on the other hand, claims to provide a more independent, flexible, robust and versatile
solution where a model can learn not just one task but multiple tasks (task flexible) Ti with fewer
data from the scratch without the need to rely on a model previously pretrained on a related task,
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thus leading to less data, less training time, and less cost. In addition, metalearning could also be
very useful in situations where only limited data is available.
There are three main metalearning types, namely optimization-based, metric-based and memory
augmented types and several approaches. MAML, an optimization-based approach, was chosen
after an extended research was made to select a metalearning approach with which to experiment
to prove or disprove the above mentioned claims, as well as see if it is a viable solution to the limited
hardware resources (since the authors only used one GPU for their experiments) problem. This
thesis also proposes a method that tries to improve the performance of MAML, called MAML-DBL,
trained also with a single GPU.

1.2.1 Justifying my Choice of Approach

My choice of optimizatio- based meta learning methods instead of other methods such as metric-
based or memory augmented is related to:

• Success: First of all, they are one of the most successful metalearning types in machine
learning not only in terms of accuracy or convergence speed, but also when applied to other
fields such as robotics [ABB+17], combination with probabilistic methods [GFL+18], imita-
tion [DAS+17], among others.

• Algorithm: The simple and straightforward algorithms of most optimization-based meth-
ods show an elegant way of defining metalearning with commonly used or already known
neural network techniques, unlike other methods that involve the use of sometimes a series
of networks or not so clear and rather unpopular structures, concepts and architectures. e.g.
relation [SYZ+17], attention block [MRCA18], fast weights, slow weights [MY17], etc.

• Robustness and flexibility: The robustness and maleability of most optimization-based
methods, allows them to be easily applied to different settings of machine learning such as
classification, regression, reinforcement learning and be easily modified, experimented and
implemented in real world systems and devices.

My choice of MAML among the optimzation-based techniques boils down to its gradient based
model agnostic nature, that is, apart from being one of the most effective techniques in the cat-
egory, it is actually the standard or model for most of the other optimization techniques, for
instance, Meta-SGD, which, from the results in Table 8, is the most successful optimization-based
technique, at the time of this thesis, and it is just a slight modification of MAML. This means
that understanding or analyzing MAML is also a way to understand almost all the other methods
(excluding the RNN based ones) in the category.

MAML-DBL was proposed to try to improve MAML by trying a more recent learning rate ap-
proach with dynamic bounds that starts off as an adaptive method but gradually transforms to a
momentum-based SGD method with the intent of trying to reduce any chance or risk of vanishing
learning rates and bringing about generalization as training progresses as opposed to the fixed
adaptive method used in the vanilla MAML.

1.3 Research Aims and Objectives

The aims and goals for this thesis could be divided into:

2



• First, introduce the subject, analyze metalearning types and methods via extensive literature
review of learning learning algorithms, in order to investigate or get to know the existing state
of the art methods.

• Focus on optimization-based methods and carry out a theoretical analysis of their learning
model, learning algorithm setup or how they work.

• Propose a metalearning method based on the optimization approach called MAML-DBL.

• Finally, evaluate MAML as well as MAML-DBL using a single GPU on the two most com-
monly used metalearning datasets in terms of accuracy and speed, and draw conclusions as
to their effectiveness or veracity of their claims in solving or addressing the problem.

1.4 Research Methodology

The research methodology could be split into two parts;
The theoretical analysis, some sort of survey or literature review of state of the art learning to
learn methods, which as earlier said will be based on reviewing existing available literature such
as articles, research papers and publications of state of the art approaches of metalearning. And
the experimental part, which was done using the Omniglot and MiniImagenet datasets.
For the theoretical analysis, in order to ensure the credibility as well as the effectiveness of each
approach in the fast-evolving machine learning and technological world, each of the available lit-
erature, especially the research papers considered, had to meet certain criteria as detailed below:

• Reliable source such as the cornell university archive (arxiv.org), paperswithcode.com, among
others to ensure some level of credibility.

• At least 20 research papers were studied to ensure an extensive knowledge and understanding
of the subject.

• The papers were chosen based on their relevance to learning learning algorithms, metalearning
and learning to learn.

• The date range on average was set to 2016 to 2020, to ensure the approach still has some
effectiveness today and has not been long outperformed by other techniques.

• The choice of approach for the experimental analysis required the technique used as baseline
is still currently effective, as MAML not only is still efficient today but is being applied and
used in many other ways and machine learning settings.

For the experimental analysis,

• The experiments had to be similar to the ones mentioned in the research paper to confirm
their claims.

• The programming language and technologies had to be the same as well to ensure compati-
bility.

• MAML as well as MAML-DBL were evaluated on accuracy and training duration on a GPU
to ensure relevance to the problem being addressed.

• To measure the training time, the default linux execution timing tool, ’time’, was used.

3



1.5 Contribution to Knowledge

1. This thesis attempts to introduce or propose methods that could be helpful in cases where
data for a particular task or set of tasks is limited and where no prior knowledge or pretrained
model is available.

2. This thesis could also serve as a way of providing basic background knowledge or as a guide
for a novice or anyone interested in working with metalearning techniques for whatever reason
in a future work.

3. This thesis proposes MAML-DBL (MAML with Dynamic Bound Learning rate).

1.6 Thesis Structure

This thesis is made up of six chapters, this first chapter which is the introduction, contained the
general objectives and focus of this thesis, the problem statement, the aims and objectives, the
motivation and justification of chosen method and the contribution to knowledge. The following
chapters are as described below:

• Chapter 2; Introduces and defines the concepts used in addressing the problem. Defines and
introduces optimization, machine learning, metalearning and learning learning algorithms,
as well as the metalearning task and the commonly used metalearning datasets.

• Chapter 3; Presents the state of the art in metalearning. It analyzes several contempo-
rary state-of-the-art metalearning methods and their performances as well as some of their
applications.

• Chapter 4; Evaluates the MAML and MAML-DBL, by defining some useful terminologies,
describing the MAML pseudocode, supplying some guidelines to access and download the
source code, data preprocessing, looking into some aspects of the code, then running it.

• Chapter 5; Describes the types of experiments carried out, the results, and the facts observed
during the experiments.

• Chapter 6; Conclusion and final thoughts.
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Chapter 2

Overview of Learning to Learn

2.1 Objectives

This chapter aims to define some concepts that are important to understanding learning to learn
also known as metalearning.

2.2 Classical Optimization

Before delving into machine learning, it will be wise to first talk a bit about optimization, as
machine learning especially neural networks involve optimization methods [GBC16].
Optimization from a general perspective, is the search for the best or optimum solution to a
given problem. From a more technical perspective, it is the use of the best or most appropriate
algorithm to find the maximum (maximize) or minimum (minimize) possible outcome or value for
an optimization model. [BP14]
An optimization problem is any real world problem that requires a very specific and exclusive
solution. Which means that the solution to an optimization problem is tailored to solve only that
specified problem to the minutest detail, such that it is useless for any other problem, and has to
be updated and re-optimized if the specified problem or any of its detail changes. [BP14]
In general, optimization, for the sake of clarity, is usually broken down into two main stages, the
model and the algorithm.
An optimization model, consist of at least an objective function, decision variable(s), and, de-
pending on the nature of the problem, some constraints.

• The objective function f(x) of an optimization problem is an algebraic description of your goal
with respect to your decision variable(s) x. And is usually denoted either as a minimization
or maximization as:

min
x∈Rn

f(x)

• The decision variables x are the inputs to your objective function or the decisions you wish
to make.

• The constraint ci(x) are the restrictions or the area of focus of the model. Usually preceded
by "subject to" and denoted as either an equality or inequality as:

minimize
x ∈ Rn

f(x)

subject to ci(x) = 0,

ci(x) ≥ 0

(2.1)

An optimization algorithm is a set of steps designed to help the model converge to the optimum
solution. The set of steps include finding an update direction, defining a step size or step length

5



indicating how far to go in the update direction, and a convergence check, which based on the
chosen algorithm may sometimes require you to evaluate the hessian.
Optimization algorithms are usually either gradient based, which could also require hessian eval-
uation, or gradient free.[Wik20b]

2.3 Machine Learning

Machine learning, from a general perspective, could be defined as the search for the best parameters
or solution to a given problem, with the help of a machine or rather a computer, that can or has
been formulated as some data distribution over a specified task. From a more technical perspective,
it is the use or formulation of the most suitable or appropriate machine learning algorithm for a
machine learning model in order to achieve quick convergence and high accuracy. [GBC16]
Machine learning has several learning settings or paradigms such as supervised learning, unsu-
pervised learning, reinforcement learning, etc. In this work however, focus will be placed on the
supervised learning setting and under supersived learning we will be concentrating on classification
problems.
Supervised learning involves mapping an input such as an image, or an observation from a
gathered data to a labelled output [Wik20f], which could either be a classification or a regression
problem.
Classification problem relates to categorical or discrete data where an input is assigned or
mapped to a specific category or class from a finite set of labels[Wik20e].
Regression problem deals with continuous data where inputs are mapped or used to estimate or
predict a specified output or dependent variable. Usually used for prediction and forecasting[Wik20d].
In general, machine learning, for the sake of clarity, can also be broken down into two main parts,
the model and the algorithm.
The machine learning model, consist of at least a cost or objective function, parameter(s), and,
depending on the nature of the problem, some constraints.

• The loss function measures the error of each example or observation (datapoint) of the
training set. The cost function or average total/generalized loss function measures the error
or average of the sum of the loss of all or multiple examples in training set, and could also be
defined as the algebraic representation of your goal with respect to the parameters, which in
this case is the minimization of the error of the equation fitting or splitting all the datapoints
in the training set. And it is usually the expected value or average of the sum of all the losses
across the training set of a given learning problem or task, since the definite data distribution
is usually not known.
When dealing with neural network based models, neural networks have functions known as
activations or nonlinearities and deciding on the ones to choose or use could be a deciding
factor or have a strong influence on how you choose or formulate the cost or objective function.

• The parameters or weights are the inputs to your cost function that are constantly optimized
by the learning algorithm.

• The constraint are the restrictions or the area of focus of the model.

All these four components constitute the machine learning model.
There are several types of machine learning models but we will be focusing on neural network
based models. Neural networks could be viewed from a learning and mathematical perspective as
a huge composition of functions or mappings structured to represent some qualitative concept such
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as the working of the brain, the seeing of the eye, etc, and built into a cost function in terms of
the parameters, which is optimized, learned or trained by a learning algorithm. After building or
choosing your learning model, you are not there yet, as the learning model alone is like a car with
no engine, so we still need a learning algorithm.

The learning algorithm is a set of steps or an iterative program or formulation that helps
minimize your learning model. It is similar to an optimization algorithm but refined to befit
learning models.
There are several types of learning algorithms which are usually grouped into gradient based and
gradient free learning algorithms, and as said earlier our focus in this thesis paper will be gradient
based learning algorithms which are often considered the most effective for most cost functions
(especially smooth or continuous functions).
Although there are several gradient based learning algorithms that follow different steps, however,
there are three fundamental steps most of them must adhere to in their journey to training or
optimizing the learning mode and achieving convergence.
The basic steps of a learning algorithms include;

• Search direction, decides on the direction to go based on the gradient,

• Learning rate, tells how far to go in the chosen direction, and

• convergence check, checks if minimum value or cost have been attained.

2.4 Metalearning

Metalearning is a subfield or alternative paradigm of machine learning where a model, sometimes
called the metalearning system, learns to improves its future learning performace from previous
learning episodes and related tasks.[Wik20a][HAMS20]
Technically, it is like adding another learning model M to an existing learning model B and
remodelling both of them in such a way as to make B learn a task at a time from a batch of tasks
or a distribution of tasks and make M learn the generalized knowledge of all the tasks learned by
B, in order to use this generalized knowledge to optimize or help B learn the next task or batch
of tasks.
The metalearning model usually consist of an outer learning model M and an inner learning
model B. M from a machine learning perspective kind of acts as a learned learning algorithm (eg.
initializer,optimizer, etc) to B.
Both B and M have all the features of a learning model as discussed in the previous section (2.3),
however, they are structured to accomplish different goals;M aims to learn to be a better optimizer
to B from the models produced by B, and B aims to learn how to produce new models as fast as
possible by taking advantage of the generalized knowledged supplied by M . In metalearning, the
combination of both B andM is regarding as a single machine learning model sometimes called the
metalearning system [HS97], since they both work together to achieve mutual or common goals,
which are, few-shot learning and versatility.
Usually both models have their individual learning algorithms. However,M must use an objective,
a set of parameters and a learning algorithm capable of elevating it from just a simple learning
model to a learned learning algorithm or optimizer to B.
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2.5 Optimization versus Learning versus Metalearning

• Optimization focuses on a definite or specific data distribution of a given problem or task.
The solutions are specific and exclusive to the specified problem.

• Learning focuses on an indefinite or unlimited data distribution (could be made up of several
solutions to optimization problems) of a given problem or task usually reduced to a train set
and test set.

• Metalearning focuses on a specified distribution of learning problems or tasks.

2.6 The Machine Learning Task

A machine learning task varies based on the machine learning paradigm or setting been used.
Therefore, a machine learning task could either be a reinforcement learning task, unsupervised
learning task, or from the supervised learning setting; a regression task or a classification task,
which is the focus of this thesis.
A classification task Tc is any task that involves the categorization, classification or splitting of
K number of datapoints from a specified N number of classes or labels. As shown in Figure 1
and Figure 2. A conventional machine learning classification model, as discussed in the previous
section, is limited to only one classification task.
In few-shot learning K number of datapoints or examples is known as K-shot and N number of
classes is known as N-way. Where K ∈ Z and where N is the number of all elements of a finite set
and N ∈ Z.

Figure 1: A single 2-class classification task with four examples per class or 4-shot, from [Rava]

Figure 2: A single 5-class classification task with 1 example per class or 1-shot, from [Ravb]
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2.6.1 Vanilla classification task vs. Metalearning classification task

We have just seen what a normal machine learning classification task looks like, and we also know
that conventional machine learning models including deep learning classification model (although
their parameters can be reused for quick convergence of a related task via transfer learning. They
are still limited to a single task at a time.) are only limited to a single N -class classification task.

Meta-classification models however, are capable of learning multiple tasks, and therefore not limited
to a single task, which brings in two other metalearning jargons or variables:

• Task batch: A task batch for a meta-classification model Bt is a set or a group of N -class
classification tasks with a specified batch-size Sb. Where N and K is the same for all the
tasks in Bt.

• Batch-size: The batch-size Sb is the size or amount of tasks in the Bt and it is always a
whole number Sb ∈ Z.

Meta-classification models learn with or feed on task batches as a single metalearning instance
involves a task batch Bt with a specified Sb containing a series of N -class classification tasks with
K number of examples for each class in each task Tc. As shown in Figure 3

Figure 3: A task batch Bt of batch-size Sb equal to more than two, containing more than two 5-class
classification tasks with 1 example per class or 1-shot, from [Ravb]

2.7 Datasets

A dataset refers to the gathered or available set of examples. Which is usually made up of several
observations or solutions to the given problem. It is usually split into training set and test set or
support set and query set in metalearning. As said earlier, we would not be focusing on the learning
model but the algorithms. It would be necessary however, to introduce the most commonly used
datasets in metalearning research at the time of this thesis work, which include;

2.7.1 Omniglot

The Omniglot dataset[bre], introduced in Lake et al[LSGT11], to aid few-shot evaluation and
learned learning algorithm research. It is a dataset of writing systems, made up of over 1600
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distinct characters from 50 different alphabets, each of which was handwritten by 20 different
people. Omniglot images are grayscale. A sample of some of the characters in the omniglot
dataset is shown in Figure 4.

Figure 4: Example of the images in the Omniglot dataset from [LSGT11]

2.7.2 MiniImagenet

MiniImagenet dataset[yl], introduced in Vinyals et al[VBL+16], to aid few-shot evaluation and
learned learning algorithm research. It is a mini-sized version of the ImageNet dataset, and consist
of 60,000 colour images of size 84 x 84 shared into 100 classes of 600 examples. Authors split it
into 80 classes for training and 20 classes for testing their approach. A sample of a few classes in
the miniImagenet dataset is shown in Figure 5

Figure 5: Samples from 6 classes in the miniImagenet dataset from [Dev].

2.8 Summary

This chapter talked about optimization and how it relates to machine learning and metalearning. It
also defined the metalearning task and introduced the most commonly used metalearning datasets.
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Chapter 3

Related Work

3.1 Objectives

In this chapter, we will be looking at current state of the art metalearning approaches and their
learned learning algorithm techniques and methods. We will talk about part of the metalearning
model which includes; the loss functions and cost functions in terms of parameters and focus more
on the learning algorithms, used to optimize the loss function for a single example or the cost
function for multiple examples, and the learned learning algorithm or optimizer.

3.2 Types

Although, in the thesis paper our focus will be on current state of the art optimization based
metalearning types. We will briefly talk about other common so called metalearning types, some
of which are considered metalearning techniques due to the fact that they accomplish few-shot
learning and not because they have a metalearning structure, which include:

• Optimization-Based

• Metric-Based

• Memory Augmented methods

3.3 Metalearning Approaches

3.4 Optimization-Based

Called optimization based simply because they use optimization or learning methods and ideas
both in the construction and training of the metalearning model.

3.4.1 Model Agnostic Metalearning (MAML)

• The basic idea of MAML by Finn et al [FAL17] is to find a better initial parameters so that,
the model can quickly learn new tasks with fewer gradient steps.

• MAML is model agnostic, meaning that we can apply MAML to any model that is trainable
with gradient descent.

This metalearning model uses the cross-entropy cost function for both the inner and outer learning
models in terms of the parameters for discrete classification between the predicted and true class.
Cross entropy cost function measures the performance of a classifier or classification model whose
output is a probability value between 0 and 1 such as the outputs of a sigmoid or a softmax
activation function. And as the predicted probiblity diverges from the true label or target output
the cross entropy loss increases and vice-versa.[ Re17]
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LTi
(fφ) =

∑
x(j),y(j)∼Ti

y(j)logfφ(x(j)) + (1− y(j))log(1− fφ(x(j)))

Where y(j) and fφ(x(j)) are the true label and the predicted probability of an input/output pair
x(j) , y(j) or example sampled from a learning problem or task Ti from a given distribution over
tasks.
The cross entropy cost function of the inner learning model in terms of parameters fθ, of each
example or datapoint (since it is GD the average error of all examples in training set are first
measured before the GD learning algorithm is applied) of a single task at a time in sampled batch
of tasks from the distribution over tasks, is optimized or trained by the gradient descent (GD)
learning algorithm, while the cross entropy cost function of the outer model (or metalearning level
or learned learning algorithm to be) in terms of parameters fθ′

i
of a single model at a time from

the sampled batch of models produced by the inner learning model (or base level) is optimized
or trained by the stochastic gradient descent (SGD) learning algorithm. Gradient descent (GD)
is a learning algorithm that waits until the inner learning model samples through all datapoints
or examples in the training set of a given task from the batch of sampled tasks from a specified
distribution over related tasks, so as to minimize the cost or empirical loss or expected value of all
the losses of all datapoints in the training set of the said task.

min
θ

∑
Ti∼p(T )

LTi
(fθ′

i
) =

∑
Ti∼p(T )

LT (fθ − α∇θLTi
(fθ))

where:
∇θLTi

(fθ) - is the gradient of LTi
(fθ), and

α - is the learning rate for inner learning model.
SGD on the other hand is a learning algorithm that optimizes the outer learning model or the
cross entropy cost function of the metalearning model in terms of the parameters of the model,
to be precise, after each example or mini-batch of examples. The above equation or the supposed
cost function of the outer learning model which measures the cost of each model produced by the
inner learning model is indeed the objective function of the metalearning model as a whole with
respect to the parameters (at this level they refer to each of the produced model parameters fθ′

i
),

which when minimized using SGD goes through a meta gradient update which involves a gradient
through a gradient or rather the hessian vector product computation, as shown in the equation
below.

θ ← θ − β∇θ
∑

Ti∼p(T )

LTi
(fθ′

i
)

After the outer or metalearning model is trained on a batch of models produced by the inner learn-
ing model it is able to behave as a learned learning algorithm or optimizer capable of initializing
the inner learning model for its next batch of tasks from a specified distribution over tasks. This
helps the inner learning model converge quickly and with less gradient steps or iteration. Which
is useful in cases where data is scarce or where quick convergence is desired or required. This
approach was trained for few-shot imaage recognition on Omniglot dataset with a learning rate of
0.4 and on MiniImagenet with a learning rate of 0.1. The results are as shown in Tables 1 and 2:

The main challenge encountered in this approach is a significant computational expense coming
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Table 1: MAML performance on Omniglot as illustrated in [FAL17]

Omniglot
[LSGT11] 5-way 1-shot Accuracy 5-way 5-shot Accuracy 20-way 1-shot

Accuracy
20-way 5-shot
Accuracy

MAML, no
conv. 89.7 ± 1.1% 97.5 ± 0.6% - -

MAML 98.7 ± 0.4% 99.9 ± 0.1% 95.8 ± 0.3% 98.9 ± 0.2%

Table 2: MAML performance on MiniImagenet as illustrated in [FAL17]

MiniImagenet [VBL+16] 5-way 1-shot Accuracy 5-way 5-shot Accuracy
MAML, first order approx. 48.07 ± 1.75% 63.15 ± 0.91%
MAML 48.70 ± 1.84% 63.11 ± 0.92%

from the use of second derivatives or hessian product vector when backpropagating the meta-
gradient through the gradient operator in the meta-objective. They however the original technique
with a version using only the first order gradients and noticed that the performance was almost the
same as the original MAML technque, which they believe is due to the fact that ReLU modelled
neural networks are locally almost linear as most of the second order update had almost no effect
on the metalearning model as they either close to zero or zero. They suggested an where the second
order update step will be omitted, a suggestion that was tested by Nichol et al [NAS18] in their
Fomaml (first order maml) and Reptile techniques. [FAL17]

3.4.2 LSTM Optimizer: Learning to Learn by Gradient Descent by Gradient De-
scent

Learning to learn by gradient descent by gradient descent by Andrychowicz et al [ADC+16] pro-
poses a solution to traditional learning algorithms failing in the face of data scarcity by learning an
RNN (LSTM) structured learning model to optimize or learn a base model. This technique uses
gradient descent to optimize the RNN which in turn optimizes the parameters of the base network
by gradient descent as well, hence the title" learning to learn by gradient descent by gradient de-
scent".
As said earlier, it is made up of an outer learning model called the optimizer which is RNN(LSTM)
based and a inner learning model called the optimizee which is MLP based. Suppose the objective
of the optimizee is f(θt), after every input to the optimizee the optimzer, whose job is to optimize
the optimizee, tries to do is job by taking the gradient of f(θt) in terms of the parameters (which
are arranged through time t) together with the previous hidden state value (of a previous timestep
or optimizee data input) and of course its own weights φ as input and with this information it
acts as a learning algorithm (which is kind of designed or tailored to match the structure of an
RNN/LSTM), optimizes the current parameter and feeds it back to the optimizee. So, instead of
the optimizee relying on the normal gradient descent learning algorithm, the optimizer becomes a
learned or trained learning algorithm to the optimizee.

θt+1 = θt + gt(∇f(θt), φ)

Where:
θt+1 is the updated parameter,
θt is the previous parameter,
gt is the output from the metalearning compartment function that receives two arguments; the
gradient of loss with respect to old parameter and its set of parameters.
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∇f(θt) is the gradient of old parameter.
φ - The parameters of the optimizer.
The optimizer is updated using backpropagation through time (BPTT), which is done at test time
or rather with the test or meta-train set.

ct = ft � ct−1 + it � c̃t

Where:
ct - Refers to the updated or optimized cell state.
ft - Refers to the forget gate
ct−1 - Previous cell state.
it - Step size.
c̃t - Gradient with respect to loss.
Learning to learn by gradient descent by gradient descent was evaluated on MNIST and CIFAR-10
datasets using ADAM for the optimizer and a learning rate chosen by random search. This method
outperformed baselines or standard optimizers such as SGD, RMSprop, ADAM, and Nesterov’s
accelerated gradient (NAG).

3.4.3 Meta-SGD

While vanilla gradient based algorithms methods work well with a huge amount of labeled data,
they are unlikely reliable for few-shot learning. Meta-SGD by Li et al [LZCL17] which uses a very
similar approach as MAML, whose aim is to find a gradient based learned learning algorithm or
optimizer that achieves few-shot learning. Gradient based few-shot learning which is unattainable
with vanilla or classical gradient based learning algorithms or methods because they require a
huge data of different, if not all, examples of a single task to avoid overfitting to certain types of
examples or a specific training set but rather generalize to all of them if possible. Learned learning
algorithms or optimizers also known as metalearners not only help avoid overfitting to a particular
training set of a task but also generalize to multiple tasks from a specified distribution over tasks
(accomplish versalitity).
This is the cost function or empirical loss used for both the inner and outer learning model of
Meta-SGD;

LT (θ) = 1
|T |

∑
(x,y)∈T

l(fθ(x), y)

The learning algorithm used for the inner model is a GD algorithm, in which the learning rate is
elementwise multiplied with the gradient.

θ′ = θ − α ◦ ∇LT (θ)

Which influences the update or search direction of descent and which is similar to the GD learning
algorithm used on the inner or base learning model of MAML.
The objective function of the metalearning model as a whole or cost function of the outer model,

min
θ,α

ET∼p(T )[Ltest(T )(θ′)] = ET∼p(T )[Ltest(T )(θ − α ◦ ∇Ltrain(T )(θ))]

in terms of the parameters and the learning rate of the GD learning algorithm used to update the

14



inner learning model (which is slightly different from MAML that only focuses on the parameters).
Like MAML, the objective is optimized using SGD learning algorithm. Data preprocessing involves
spliting dataset into training set and test set. The training set is used to train the inner model
using GD while the test set is used to train the outer model using SGD that also tries to convert
it into a learned (trained) learning algorithm or optimizer (learns to initialize the inner learning
model for a new task).
Meta-SGD was evaluated on few-shot classification using Omniglot and MiniImagenet datasets
and was compared alongside some metric-based techniques or baselines. The results are as follows.

Table 3: Meta-SGD performance on Omniglot as illustrated in [LZCL17]

Omniglot 5-way 1-shot Accuracy 5-way 5-shot Accuracy 20-way 1-shot
Accuracy

20-way 5-shot
Accuracy

Siamese Nets 97.3% 98.4% 88.2% 97.0%
Matching
Nets 98.1% 98.9% 93.8% 98.5%

Meta-SGD 99.53 ± 0.26% 99.93 ± 0.09% 95.93 ± 0.38% 98.97 ± 0.19%

Table 4: Meta-SGD performance on MiniImagenet as illustrated in [LZCL17]

MiniImagenet 5-way 1-shot Accuracy 5-way 5-shot Accuracy 20-way 1-shot
Accuracy

20-way 5-shot
Accuracy

Matching
Nets 43.56 ± 0.84% 55.31 ± 0.73% 17.31 ± 0.22% 22.69 ± 0.20%

Meta-SGD 50.47 ± 1.87% 64.03 ± 0.94% 17.56 ± 0.64% 28.92 ± 0.35%

3.4.4 Others

Other methods under this category include;

• First-Order MAML (FOMAML) and Reptile (which are first-order variants of MAML) by
Nichol et al[NAS18], which was evaluated on few-shot classification on Omniglot and Mini-
Imagenet datasets.

Table 5: FOMAML and Reptile performance on Omniglot as illustrated in [NAS18]

Omniglot 5-way 1-shot Accuracy 5-way 5-shot Accuracy 20-way 1-shot
Accuracy

20-way 5-shot
Accuracy

FoMAML +
Transduction 98.3 ± 0.5% 99.2 ± 0.2% 89.4 ± 0.5% 97.9 ± 0.1%

Reptile 95.39 ± 0.09% 98.90 ± 0.10% 88.14 ± 0.15% 96.65 ± 0.33%
Reptile +
Transduction 97.68 ± 0.04% 99.48 ± 0.06% 89.43 ± 0.14% 97.12 ± 0.32%
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Table 6: FOMAML and Reptile performance on MiniImagenet as illustrated in [NAS18]

MiniImagenet 5-way 1-shot Accuracy 5-way 5-shot Accuracy
FoMAML+Transduction 48.07 ± 1.75% 63.15 ± 0.91%
Reptile 47.07 ± 0.26% 62.74 ± 0.37%
Reptile+Transduction 49.97 ± 0.32% 65.99 ± 0.58%

• The Meta-learning system is a legacy approach by Hochreiter et al from their Learning to
Learn Using Gradient Descent papers[HYC01]and[YHC01], where they introduced the idea
of using LSTMs[HS97] as learned optimizers.

• LSTM Meta-learner by Sachin Ravi and Hugo Larochelle[RL17] which is based on the Meta-
learning system introduced by Hochreiter et al[HYC01] and similar to Learning to learn by
gradient descent by gradient descent by Andrychowicz et al[ADC+16], was evaluated on few-
shot classification on MiniImagenet alongside matching network baseline. The results are as
shown in table 7.

Table 7: LSTM Meta-Learner performance on MiniImagenet as illustrated in [RL17]

MiniImagenet 5-way 1-shot Accuracy 5-way 5-shot Accuracy
Matching Nets 43.40 ± 0.78% 51.09 ± 0.71%
Matching Nets FCE 43.56 ± 0.84% 55.31 ± 0.73%
Meta-Learner LSTM 43.44 ± 0.77% 60.60 ± 0.71%

3.4.5 Best Approach in This Category

The best approach on aggregate in this category from the results obtained on omniglot and Mini-
Imagenet based on accuracy, as shown below is Meta-SGD, it only slightly lost to Reptile ,64.03%
vs. 65.99%, on the 5-class 5-shot evaluation on MiniImagenet as portrayed in table 8.

Table 8: Best performance on MiniImagenet and Omniglot in this category.

Best 5-way 1-
shot Accuracy Best 5-way 5-shot Accuracy 20-way 1-shot

Accuracy
20-way 5-shot
Accuracy

MiniImagenet Meta-
SGD≈50.47% Reptile≈65.99% - -

Omniglot Meta-
SGD≈99.5% MAML/Meta-SGD≈99.9% Meta-

SGD≈95.9%
MAML/Meta-
SGD≈98.9%

3.5 Metric-Based Approaches

Approaches using this technique try to attain versatility and quick learning by learning class em-
beddings from few examples in support set and then comparing or rather applying a metric or
distance function to a new example in query set and learned embeddings to tell if it belongs to
that class or not.
Approaches here achieve architectural versatility as well as quick learning as they can be applied
to various types of inputs such as images, text, sounds, among others, we might only have to

16



change the embedding function, and are n-shot based with the ability of learning quickly from few
datapoints.

3.5.1 Siamese Neural Networks

A siamese neural network by Gregory Koch[Koc15], is made up of two or more identical neural
networks, each having the same architecture and weights. The goal of this approach is to compare
a pair or more of inputs (eg. images, text, etc) and tell if they are the same or different. Siamese
neural networks are not limited to a specific type of neural network as feature extractors could be
a pair of RNNs or CNNs. It is considered a metalearning method probably because it consist of at
least two neural networks which work together to achieve a common or mutual goal, which is to
correctly discriminate pairs of inputs after a few examples as it also learns using a few-shot regime.
Siamese nets work by sampling datapoints from a dataset in form (X1, X2, Y ) split into input for
the first neural network X1, input for the second neural network X2 and the true label or target
output Y which is either 1 (meaning that they belong to the same class) or 0 (not a match). After
sampling an input the embedding functions or identical neural networks will extract the embedding
or feature vector from the pair or more of inputs and use an energy function such as the Euclidean
distance to measure the metrics or difference between the pair, the output is usually converted to
probability using a sigmoid function and a loss function, such as a regularized cross entropy loss
function, is applied, which is then updated, if necessary, by a standard backpropagation algorithm,
where the gradient is additive across the twin embedding functions due to the tied weights.
This technique was evaluated on the Omniglot and MNIST datasets. Its performance on Omniglot
is as shown in Table 9:

Table 9: Siamese Network performance on Omniglot as illustrated in [Koc15]

Siamese Nets on Omniglot no distortions affine distortions x8
30k training 90.61% 91.90%
90k training 91.54% 93.15%
150k training 91.63% 93.42%

3.5.2 Prototypical Neural Networks

Prototypical Neural Networks by Snell et al[SSZ17], operate in quite a similar way as the siamese
neural network, but with a different architecture. Instead of having twin networks, prototypical
nets only have a single embedding function or neural network which could also be a CNN, an
RNN, etc. They seem to achieve metalearning as well as few-shot learning by creating and using
prototypes. This is done by sampling inputs from a dataset arranged in the usual input-true label
format (x1, y1), (x2, y2), ...(xn, yn) where x is the input or example and y the true label or target
output, three or four examples from each class in the dataset is randomly sampled and set aside,
this is called the support or train set, then another set of three or four examples are sampled (to
be used later) and called the query or test set . Training is done in episodes and in the same way
for each class (meaning with the same quantity of examples). The embedding function extracts
the features from each class in the support set, then generates a class prototype by computing the
mean of the learned features of all the examples in a class. After creating a prototype for each of
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the classes in the support set by computing the mean of the features of all the examples in each of
the classes. The model is tested with examples from the query set.
In order to predict the class of a new example in query set, the embedding function or neural
network exract or generates the embeddings or feature vector of a novel query point, compares the
distance between novel example from query set and the embeddings of each class protoytpe using
the Euclidean distance, softmax is applied to the output to the distance found to get the prob-
ability, So the class prototype versus novel query point comparison with the highest probability
will be the class to which the novel query point belongs. This method was evaluated on Omniglot
and MiniImagenet alongside a statistical approach baseline called "neural statistician"[ES16]. The
results are presented in Table 10 and Table 11

Table 10: Prototypical neural network performance on Omniglot as illustrated in [SSZ17]

Omniglot 5-way 1-shot Accuracy 5-way 5-shot Accuracy 20-way 1-shot
Accuracy

20-way 5-shot
Accuracy

Neural Statis-
tician 98.1% 99.5% 93.2% 98.1%

Prototypical
Nets 98.8% 99.7% 96.0% 98.9%

Table 11: Prototypical neural network performance on MiniImagenet as illustrated in [SSZ17]

MiniImagenet 5-way 1-shot Accuracy 5-way 5-shot Accuracy
Prototypical Nets 49.42 ± 0.78% 68.20 ± 0.66%

3.5.3 Relation Nets

Relation network by Sung et al[SYZ+17], is another metric-based technique, which behaves in a
very similar way as the two previously discussed aproaches in this category. It achieves few-shot
learning by measuring the relation between two objects or inputs. It comprises of two connected
networks sequentially arranged, one to extract features and the other to tell the relation. This
works by first, spliting your dataset into support set and query set both arranged in the usual
input, true label manner (x1, y1), (x2, y2), ...(xn, yn) with few examples from each class in dataset.
Use the embedding function or the first neural network to extract the features of an example in the
support set, next do the same for an example in the query set, concatenate both feature vectors or
embeddings from the support set and query set, then use the relation function, which could be a
convolutional neural network classifier that generates the relation score ranging from zero to one,
to obtain the relation score, evidently a value between 0 and 1. This technique was also evaluated
on Omniglot and MiniImagenet datasets as shown below:

Table 12: Relation network performance on Omniglot as illustrated in [SYZ+17]

Omniglot 5-way 1-shot Accuracy 5-way 5-shot Accuracy 20-way 1-shot
Accuracy

20-way 5-shot
Accuracy

Relation Nets 99.6 ± 0.2% 99.8 ± 0.1% 97.6 ± 0.2% 99.1 ± 0.1%
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Table 13: Relation network performance on MiniImagenet as illustrated in [SYZ+17]

MiniImagenet 5-way 1-shot Accuracy 5-way 5-shot Accuracy
Relation Nets 50.44 ± 0.82% 65.32 ± 0.70%

3.5.4 Others

Another technique that fall into this category include;

• Matching networks by Vinyals et al[VBL+16], is a metric-based technique that was also eval-
uated on Omniglot and MiniImagenet datasets as shown below:

Table 14: Matchning network performance on Omniglot as illustrated in [VBL+16]

Omniglot 5-way 1-shot Accuracy 5-way 5-shot Accuracy 20-way 1-shot
Accuracy

20-way 5-shot
Accuracy

Matching
Nets 98.1% 98.9% 93.8% 98.5%

Matching
Nets (fine
tuned)

97.9% 98.7% 93.5% 98.7%

Table 15: Matching network performance on MiniImagenet as illustrated in [VBL+16]

MiniImagenet 5-way 1-shot Accuracy 5-way 5-shot Accuracy
Matching Nets (fine tuned) 46.6% 60.0%

3.5.5 Best Approach in This Category

The best approach in this category, evaluated on few-shot classification on Omniglot and MiniIm-
agenet datasets is the relation network on aggregate. On Omniglot, the relation network outper-
formed all other relative approaches on every test. On MiniImagenet, the relation network was
slightly outperformed by prototypical network on the 5-class 5-shot evaluation as shown below:

Table 16: Best performance on both MiniImagenet and Omniglot datasets in this category.

Best 5-way
1-shot Accu-
racy

Best 5-way 5-shot Accuracy 20-way 1-shot
Accuracy

20-way 5-shot
Accuracy

MiniImagenet Relation
net≈50.44% Prototypical net≈68.2% - -

Omniglot Relation
net≈99.6% Relation net≈99.8% Relation

net≈97.6%
Relation
net≈99.1%
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3.6 Memory Augmented Methods

Memory augmented methods use external memory storage to improve the learning process of neural
networks. The most common from this category is MANN (Memory Augmented Neural Network).
Memory augmented techniques have an external memory-based outer learning model rather than
a neural network based one, like the optimization-based methods.

3.6.1 MANN (Memory Augmented Neural Network)

MANN or memory augmented neural network by Santoro et al[SBB+16] is a memory augmented
technique based on the idea of neural turing machines (NTM), which is an algorithm capable of
storing and retrieving information from an external memory. It tries to replace the use of hidden
states as memory like in RNNs with the use of a neural network augmented with an external mem-
ory from where information can be stored and retrieved. MANN and memory augmented method
are usually made up of three main components; The controller, Memory, Read and write heads.
The controller is either a feedforward neural network or a recurrent neural network, that reads
from and writes to the memory. The memory is where information is stored, it is called memory
bank or memory matrix because it is a 2D matrix made up of memory cells with N x M rows and
columns. The read and write heads are the pointers indicating the addresses of the memory from
which the controller has to read and write to.
Information is accessed from the memory using attention mechanisms that uses special read and
write operations in conjunction with a weight vector to detect which particular location in the
memory is important to read from or write to while ignoring other locations. Weight vector is up-
dated using a gradient based learning algorithm. MANN was evaluated on the Omniglot dataset,
as shown below.

Table 17: MANN performance on Omniglot as illustrated in [SBB+16]

Omniglot 5-way 5-shot Accuracy 15-way 5-shot
Accuracy

MANN 88.4% 88.7%

3.6.2 Others

Other similar techniques in this category include;

• Meta-networks by Tsendsuren Munkhdalai and Hong Yu[MY17] which was tested on Om-
niglot and MiniImagenet as shown below.

Table 18: Meta-Networks performance on Omniglot as illustrated in [MY17]

Omniglot 5-way 1-shot Accuracy 10-way 1-shot Accuracy 15-way 1-shot
Accuracy

20-way 1-shot
Accuracy

MetaNet 98.95% 98.67% 97.11% 97.0%
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Table 19: Meta-Networks performance on MiniImagenet as illustrated in [MY17]

MiniImagenet 5-way 1-shot Accuracy
MetaNet 49.21 ± 0.96%

3.7 Other Applications and Areas of Metalearning

So far we have seen a couple of common techniques in metalearning and restricted our focus to the
classification setting, however metalearning techniques spread far beyond the supervised learning
setting. In this section we will briefly look at some other applications of metalearning in settings
other than supervised learning both in machine learning related areas and beyond. However, they
will not be discussed in detail as they are beyond the focus of this current work but could probably
be considered in a future work.

3.7.1 Bayesian Inference

3.7.1.1 LLAMA

LLAMA (lightweight laplace approximation for meta-adaptation) introduced by Grant et al[GFL+18]
in 2018 is an approach that tries to solve the challenges encounterd in learning quickly from a dis-
tribution of tasks otherwise known as few-shot learning. This method is the product of combining
gradient based approaches (here MAML) and the hierarchical bayes approach together, for this
to work, MAML is restructured so that it’s used for probabilistic inference purposes in a hier-
archical Bayes model. The experimental analysis occur in two phases; a small-scale or warmup
phase and a large-scale phase. The aim is to test if this modified version of MAML[FAL17] can
generate samples from the distribution over adapted parameters and if this approach is any good
in large-scale meta-learning problems like MiniImagenet. The first phase of the experiment used a
toy non-linear model with MAML acting as an algorithm that learns the mean of a Gaussian prior
on model parameters, and uses the mean of this prior as an initialization for fast adaptation. The
result shows that this approach allows to directly sample models from the task-specific parameter
distribution after 10 datapoints of a new, previously unseen sinusoid curve. The second phase used
the miniImagenet dataset containing 64 training classes, 12 validation classes, and 24 test classes
and compared LLAMA with fine-tuning, nearest neighbor, Matching networks FCE [VBL+16],
Meta learner LSTM [RL17], SNAIL[MRCA18], Prototypical networks [SSZ17], mAP-DLM (Tri-
antafillou et al, 2017), and MAML. The model was structured to receive N (one was used) of
instances of J (five was used) unseen classes, and rated on how well it classifies M new instances
still within the J classes. The results show that this approach is efficient enough in large-scale
setups and despite the fact that the difference to MAML is minimal, it recorded a competitive and
state of the art performance among other baselines.

3.7.2 Reinforcement Learning

3.7.2.1 RoboSumo 3D Environment

Continuous adaptation via meta-learning in nonstationary and competitive environments[ABB+17],
first published in 2017 and revised in 2018 by Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya
Sutskever, Igor Mordatch, Pieter Abbeel introduces the RoboSumo 3D environment to attempt
to solve the problem of continuous learning and adaptation from limited data in non stationary
environments.
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RoboSumo is a competitive multi-agent environment, that allows different agents to play sequences
of games against each other and keep adapting to incremental changes in each other’s policies. Non-
stationary environments like RoboSumo requires a high level of few-shot learning as the agent is
forced to rapidly learn from the little experience it can get before moving to a new environment.
To improve continous adaptation in such environments, the authors use a probabilistic model for
MAML in a multi-task reinforcement learning setting, having dynamically changing tasks, policies
and trajectories, which are random variables dependent on each other as the policy and trajectories
at previous step are used to build a new policy for the current step and the model is optimized
using truncated backpropagation through time (TBPTT). This method was applied three types
of model architectures or policy networks; a 2-layer MLP, an embedding (1 fully-connected layer
replicated accross the time dimension) followed by a 1-layer LSTM and a RL2 with a similar ar-
chitecture as the previous one. The agents are simple multi-leg robots in the form of ants, bugs
and spiders capable of nonstationary locomotion. Experiments were carried out to investigate,
first, how different adaptation methods would behave in a limited interaction environment of one
or very few episodes, second, how many episodes are requird for a method to successfully adapt
to the changes, third, how do different adaptation methods rank in a competition against each
other. The experimental evaluation compared the three previously mentioned adaptation methods
with three baselines; naive (no adaptation method attached), an implicitly adapted RL2 and a
tracking adaptation that continously does PPO updates at execution time. Results to the first
investigation show that during the first 2 episodes the baselines outperformed the meta-learned
adaptations in behavior, however they equalled baselines from the third episode and outperformed
them by the sixth and seven episodes. For the second experiment meta-learned adaptation meth-
ods required about 100 episodes to adapt and improve their win-rates against constantly improving
opponents while baselines declined in performance during the rounds of iterated games. Lastly, in
a competition against each other meta-learned policy networks outperformed baselines, however
LSTM-based agents were predominant and had a better performance than the others.

3.7.3 Demonstration and Imitation Learning in Robotics

3.7.3.1 NTP (Neural Task Programming)

Learning to Generalize Across Hierarchical Tasks[XNZ+17], published in 2018 by Danfei Xu, Suraj
Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei and Silvio Savarese introduces the Neu-
ral Task Programming (NTP) approach to solve the problem of one-shot meta generalization in
robots, by learning modular and reusable neural programs for different hierarchical tasks. NTP
has a sophisticated architecture with an LSTM at its core surrounded by other levels such as an
observation encoder, task specific interpreter, task specific encoder, API decoder and task specific
selection.
NTP algorithm learns to instantiate neural programs from demonstrations of tasks (from a video)
so as to generalize to unseen tasks or programs. The algorithm recursively breaks down the gen-
eral objectives (such as object sorting) into simpler objectives (such as pick and place instead) and
delgate a neural program to perform each one of them. Both the decomposition (break down)
mechanism and neural programs are trained side by side.
The experimental build up consist of three robot manipulation tasks, which are object sorting,
block stacking, and table clean-up that are conducted in a 3D simulated environment. The tasks
test for three features which are; generalization to changes in length, topology and semantics, com-
patibility with image-based input without access to ground truth state and performance in similar
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real-world tasks having combinations of the variations used. Training datasets were generated by
an expert policy agent and NTP (LSTM) architecture was compared with Flat, Flat (GRU), NTP
(no scope) and NTP (GRU) baseline architectures. Results show that NTP was sucessful and
outperformed baselines in the above mentioned tests.

3.7.3.2 One-Shot Imitation Learning

One-shot imitation learning[DAS+17] was published in 2017 by Yan Duan, Marcin Andrychowicz,
Bradly C. Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter Abbeel and Wojciech
Zaremba to solve the problem of learning and generalizing from few or a single demonstration of any
given task in imitation learning. The solution they came up with was a meta learning framework
they called one-shot imitation learning which uses soft attention models initially proposed for
machine translations which also gained success in image captioning. Prior to the release of this
paper, the most successful techniques in imitation learning had been behavioral cloning which uses
a supervised learning approach to map observations to actions and inverse reinforcement learning
where a reward function is estimated to acknowledge the demonstrations as near optimal behavior.
These techniques (and other previous related publications) however, were either only appropriate
for learning a specific task or skill, for other domains or for multiple shot learning which wasn’t
quite the aim of the authors who not only wanted a meta learning capable imitation learning system
but one that is also one-shot learning capable. Their framework one-shot imitation was created
to achieve this goal. This approach adopts behavioral cloning and DAGGER imitation learning
algorithms which only require demonstrations rather than reward functions to be specified and uses
a three-module architecture. These modules namely; demonstration network, context network and
manipulation network, are actually separate neural nets functioning together to reach the above
mentioned mutual goal (one-shot imitation across multiple tasks).

3.7.3.3 DAML

One-shot imitation from observing humans via domain-adaptive meta-learning[YFX+18], pub-
lished in 2018 by Yu et al which introduced DAML or domain-adaptive meta-learning approach,
which applies metalearning (MAML based) to try to solve the challenge of imitating humans from
just one observation, by enabling robots with the ability to learn from raw video pixels of a human
irrespective of substantial domain shift in the perspective, environment, and embodiment between
the robot and the observed human. Authors believe that this approach could also be used to
imitate animals or a simulated robot, for simulation to real world transfer. They also believe that
it is braoadly applicable to problems that involve inferring information from out-of-domain data,
such as one-shot object recognition form product images.

3.7.4 Behavioral Analysis

3.7.4.1 Machine Theory of Mind (Tom-Net)

This approach[RPS+18] uses metalearning to build models for the agents it encounters, just by
observing their behaviour. TomNet attempts to tackle the challenge of needing several behavioural
observations in order to make good predictions about the characteristics and mental states of agents
including their desires, beliefs, and intentions. This is done by gathering a strong a prior model
of the behaviour of the agents while allowing for self-improvement to making richer and better
predictions about the agents.
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TomNet was applied to agents interacting in a simple grid- world environment, and was able to learn
to model random algorithmic, and deep reinforcement learning agents from varied populations,
outperforming classic Tom (theory of the mind) tasks such as the "Sally-Anne" test. The authors
believe that proposed method or framework, which is capable of autonomously learning how to
model other agents in its world is a crucial step forward for developing multi-agent AI systems for
building intermediating technology for machine - human interaction, and advancing the progress
on interpretable AI.

3.8 Summary

This chapter examined state-of-the-art metalearning methods, the best approaches based on the
results of their experiments, as well as some of their applications to other areas of machine learning
and beyond.
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Chapter 4

MAML and MAML-DBL

4.1 Objective

In this chapter we will be examining MAML-DBL alongside MAML. Before introducing the pro-
posed approach we’ll take a look at MAML’s algorithm and structure or architecture.

4.2 MAML’s Algorithm for Classification

MAML’s algorithm is split into two very elegant main stages, namely, the single task or task specfic
stage and the across-tasks stage, and it goes forth and back between these steps at every iteration.
The going forth and back of these two steps forms the basis or whole foundation of its originality,
robustness, simplicity and efficiency.

Like most metalearning approaches, MAML begins with a task batch which the authors call meta-
batch, made up of either training tasks or validation tasks.

For each dataset, the tasks are split into training tasks which are used at train time and test
tasks or validation tasks used at test time. Each task, either training or validation, comprises its
individual support set and query set. The support set (or train set at train time or validation
set at validation time) is used for the task specific stage (the inner loop) while the query set (or
meta-train set at train time or meta-validation set at test time) is used for the across tasks stage
(the outer loop). Validation is done after a couple of training or metatrain, as used by the authors,
iterations. For both Omniglot and MiniImagenet, for example, validation is done after every 500
iterations.
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Figure 6: MAML pseudocode for few-shot supervised learning as presented in [FAL17]

The first stage, that is, the inner loop, or from a metalearning perspective the inner learning or
base model, focuses, as earlier said, on the acquisition of single task or task-specific knowledge, as
shown in lines 4 to 9 of MAML pseudocode in Figure 6 which says:

• After randomly initializing the parameters θ and setting the hyperparameters of either a
convolutional or non-convolutional network.

• Sample a task batch or meta batch Ti ∼ p(T ) consisting a specified number of N-way classifi-
cation tasks (task batch or meta batch-size) from a given a distribution over tasks p(T ). Al-
though the authors offer an option for non-image classification tasks using non-convolutional
networks, we’ll be focusing on image classification tasks.

• For each task Ti in Ti ∼ p(T ), sample equal amount of K datapoints D from the support set
SD for each of the classes of the task Ti.

• Evaluate or compute the empirical loss or cost LTi using D, evaluate the gradient ∇θLTi(fθ).

• Update the parameters θ both for the fully connected and convolutional layer with gradient
descent (GD), using the predefined learning rate α for the inner loop or inner learning model.

• Sample a novel or unseen equal amount of K datapoints D′i from the query set QD of the
same task Ti for the meta-update or outer learning model and set aside.

• Sample next task Ti from Ti ∼ p(T ) repeat previous steps, keep doing this until all the tasks
in Ti ∼ p(T ) have been evaluated.

This will mark the end of the task-specific stage as well as the inner loop.

The second stage, that is, the outer loop, or from a metalearning perspective the outer learning
or meta-level model, which is technically more like an unrolling or unfolding back into the inner
learning model to update the initial parameter on the across-tasks knowledge, focuses on the
acquisition of across-tasks knowledge, as shown in lines 10 and 11 of Figure 6, which says;
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• For the same batch of tasks Ti ∼ p(T ) as in the first stage, evaluate each Ti on their previously
sampled novel D′i from the query set QD with respect to their respective updated parameters
θ′i, compute the empirical loss LTi

for each of the tasks, summed them up to compute the
average loss, which also means combining all the individual losses together to have a single
loss; an across tasks loss, as well as an across tasks parameters (weights and biases) of the
sampled task batch Ti ∼ p(T ).

• Compute the gradient ∇θ
∑
Ti∼p(T ) LTi

(fθ′
i
) and update the initial parameters θ or rather

minimize loss in terms of the initial parameters θ using stochastic gradient descent (SGD),
using the predefined learning rate β for the outer loop or learning model, which simply means
to backpropagate by unrolling through the whole process, that is, the whole of the second
stage and first stage, to obtain an across task knowledge, which would obviously involve a
gradient through a gradient or the hessian, since we already computed the gradients for the
same Ti ∼ p(T ) using D in the first stage.

• Once the initial parameters θ are updated, use them to initialize the weights θ of the inner
learning model or task-specific stage for the next batch of tasks sampled from p(T ) and
repeat the previous steps for n number of iterations. The authors used 60000 iterations.

4.3 MAML as a Learned Optimizer

As mentioned in overview chapter, the basic requirements for a learning algorithm or optimizer is a
search direction, which is determined by the gradient, a learning rate and a convergence check.The
MAML framework as a whole uses a learned meta-gradient for its search direction to update or
optimize the initial parameters (learn the initializations) of the inner learning model, an unlearned
or fixed global learning rate (as a learned one, will naturally increase the number of parameters of
the network), and iteratively checks if convergence has been attained.
Since MAML uses a fixed learning rate, that is, the learning rate method of the hand-designed
optimizer, the choice of the hand-designed optimizer, especially the way it conditions learning
rates, plays an important role in both the training speed, convergence, and accuracy of the model.
An optimizer with bad learning rate handling could lead to vanishing learning rate and stagnancy
or non-convergence, which was one of the main issues of the Adagrad optimizer. On the other
hand, non-adaptive learning rates methods, although they usually generalize better, could slow
down training and convergence, especially when sparse features are involved such as with vanilla
gradient descent methods. But there wouldn’t be any need to learn the learning rates and add
more learnable parameters to the network as well as more computations and memory overhead if
there were optimizers that had a good way of handling the learning rates.

Vanilla MAML, as a learned optimizer, is an Adam-based adaptive method, which is applied in
the across tasks stage (in the outer loop).
The authors opted for an Adam-based method, because it is an advanced and more robust variant of
the vanilla SGD with added features and desirable properties, as well as to instantly take advantage
of the desirable properties it offers and at the same time transmit the benefits to its learned version.

Adaptive Moment Estimation or Adam [KB14] published in 2015, as shown in Figure 7, is a learn-
ing algorithm method or optimizer that combines or adds two concepts not present in vanilla SGD,
which are momentum and adaptive learning rate. Momentum allows for smoother trajectory as
opposed to non-momentum based vanilla SGD methods where movement is wavy and oscillatory,
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causing slow training and convergence. The adaptive learning rate technique was developed to
address slow convergence of non-adaptive learning rate methods due to sparsity issues, as some
parameters could be stuck at the same place for a long time due to no update and since the learning
rate is the same for all parameters, the few times they get updated, they only move the same length
as the dense features (whose parameters are frequently being updated), thus causing an overall
unevenness in movement and hence a slower training and convergence. Adaptive methods adapt
the learning rate such that the more frequently a parameter gets updated the lower or the more
decayed its learning gets and the less frequently a parameter gets updated the less decayed the
global learning rate gets, this is done using exponentially running average. However, in situations
where there are almost no sparse features and the parameters get updated very frequently, it might
be better to use non-adaptive learning rate methods, as using adaptive learning rate methods (un-
less carefully tuned by the user) could lead to low learning rates and slow down or even stagnate
convergence.
Although Adam, as the name implies, uses initialization bias correction to ensure that the expecta-
tion or estimation of the gradients by both the momentum vector and the parameter update history
vector (to diminish the learning rates) are always as close as possible to the true first and second
moment respectively, in order to try to avoid rapidly diminishing learning rates, nonetheless, there
are cases where training with Adam either gets relatively slow with time, stagnates [LXLS19] or
even fails to converge to the optimal minimum [RKK19].

This thesis proposes a modified version of the vanilla MAML that uses a more recent and flexible
variant of the Adam optimizer but with dynamic bound, that enables it start out as an adaptive
learning rate method and later on, a non-adaptive learning rate method, that is, it takes the best
out of both adaptive and non-adaptive approaches, making it immune to the vanishing learning
rate problem without adding excessive computations or memory overhead.

Figure 7: Pseudocode of Adam’s algorithm and update rule as illustrated in [KB14]

4.3.1 Batch Normalization

Another method used by the authors of MAML to improve performance is batch normalization
which is a technique used to ensure that the inputs into every layer of the neural network comes
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from the same distribution, which in turns reduces noise and the variance of inputs from layer to
layer and mini-batch to mini-batch, which is meant to speed up training and convergence.

Batch Normalization is the normalization or rescaling of any input or hidden layer of a neural
network. This is achieved by appropriately adjusting or balancing the output from each previous
activation layer, to ensure that it is neither too high nor too low.
Getting rid of all imbalance in each of the hidden layers of the neural network helps avoid instability
and improves training speed as well as convergence [FD17].
Batch normalization H ′ normalizes a minibatch of activations H by subtracting the batch mean µ
from H and dividing by the batch standard deviation σ.Which also gives rise to or adds an extra
layer to each neuron as well as two trainable parameters to each layer at training time, that is,
the learnable weight γ which controls (or which the network uses to adjust) σ, and bias β which
controls (or which the network uses to adjust) µ [GBC16], as shown below:

H ′i = Hi − µ
σ

yi = γH ′i + β

Batch normalization is used before a ReLU nonlinearity (pre-nonlinearity usage) at every hidden
layer of the MAML algorithm for few-shot classification as recommended by the authors of the
original batch normalization paper [IS15]. However, it’s still a bit unclear as to where to place the
batch normalization layer for better performance, as some other researchers [da16] argue that they
obtained better results following a post-nonlinearity or activation usage of batch normalization.
However, in the end, it’s up to the software engineer or data-scientist to decide or examine which
is best for his or her model or network.

4.3.2 Other Useful Techniques

4.3.2.1 ReLU nonlinearity

ReLU or the rectifier linear unit function in machine learning, as shown in a simplified form in
the equation below, is an activation function that simply gets rid of any negative output from the
linear layer by setting them equal to zero[Wik20c]. It can be used in most types of neural networks,
especially convolutional neural networks (CNNs), where it has shown great success. ReLU is the
main activation used when evaluating MAML on classification tasks.

f(x) = x+ = max(0, x)

4.3.2.2 Softmax Function

Softmax σ(z)i or Softmax(xi) is an activation function that is used to convert each element zi in
the vector of logits z (the unnormalized predictions or output vector of a model) into probablities
that add up to one. Its output is a vector representing the probability distribution of all the
possible outcomes. It is usually applied to the last layer of a neural network, which is also the case
of the MAML algorithm for few-shot classification tasks [Uni18].
The softmax function is as shown below, where ezi is the application of the exponential function
to each element zi in z and

∑K
j=1 e

zj the sum of the application of the exponential function to all

29



the elements zj in the vector of logits z:

σ(z)i = ezi∑K
j=1 e

zj

4.4 MAML’s Structure for Classification

4.4.1 Implementation of the MAML Algorithm in Tensorflow

MAML for image classification involves three layers; the embedding function or CNN, the fully
connected layer or inner model and the metalearning layer or the outer model.
Below are extracts or snapshots of the implementation of the MAML algorithm in tensorflow, as
coded by the authors, illustrating specified definitions used to evaluate MAML on few-shot image
classification. For full details and code refer to [Fin].

4.4.1.1 CNN

• The CNN pipeline for this method originally consist of 4 convolution modules each with a
3 x 3 convolutions or sized filters and 64 filters, followed by batch normalization, a ReLU
nonlinearity, and a 2 x 2 max-pooling, as shown in lines 25-37 of the utils.py file and lines
210-218 of file maml.py in the source code folder:

Figure 8: Code defining the CNN routine extracted from utils.py in[Fin]

Figure 9: Code defining the hidden layers of the CNN extracted from maml.py in[Fin]

• While evaluting MAML on each of the major meta learning datasets, slight modifications
were applied, such as, for Omniglot, strided convolutions were used for downsampling instead
of max-pooling, and for MiniImagenet instead of 64 filters, 32 filters were used per convolution
layer to reduce overfitting.
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• The rest of the convolutional network definitions can be found in lines 185-225 of maml.py
in [Fin].

4.4.1.2 Fully connected layer

To test the flexibility of the MAML learned learning algorithm in classification tasks, the fully
connected layer was implemented for both non-convolutional and convolutional networks. For
non-convolutional networks, the authors used 4 hidden layers of sizes 256, 128, 64, 64, each of
which includes batch normalization and ReLU nonlinearities, and they are followed by a linear
layer and softmax as specified in Figure 10. The channels from line 42-45 in Figure 10 indicate
colored input images such as those from miniImagenet or grayscale input images such as those
from the omniglot dataset. The cost function used for the fully connected layer is the cross-
entropy loss function. The remaining fully connected network definitions can be found in lines
50-177 of maml.py in [Fin].

Figure 10: Lines 34-41 of maml.py in [Fin], denoting the convolutional and non-convolution pathways.

4.4.1.3 Metalearning layer

The metalearning layer definitions can also be found in lines 50-177 of maml.py as well as in
main.py in [Fin]. The loss function used for the metalearning layer is also the cross-entropy loss
function.
In general, the authors claim that their method uses fewer overall parameters compared to matching
nets[VBL+16] and meta-learner LSTM [RL17], since no additional parameters other than the
weights of the classifier were used. But still, MAML outperforms both techniques as seen in the
previous chapter.
MAML is also applicable for learning tasks in other machine learning settings such as reinforcement
learning and regression.

4.5 Proposed Approach

MAML is an adaptive learning rate metalearning approach that relies on a fixed learning rate
method. For improved performance, trade offs are usually made.
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Some researchers such as Li et al in [LZCL17] suggest not just learning the initializations (like
MAML does) but also learning the learning rates for improved performance which obviously comes
at the cost of increased amount of trainable parameters, computations and memory overhead.
Since MAML, is a method that also involves computing the hessian-vector product which is al-
ready computationally costly, further increasing the computations and parameters by learning the
learning rates could make MAML difficult to train unless a trade off is made in which the extra
second order gradient step must be gotten rid of to avoid excessive computational overhead from
the increased number of trainable parameters of the learned learning rate method.
This thesis however proposes a method called MAML-DBL (MAML with Dynamic Bound Learning
rate) that uses learning rates with dynamic bounds to try to improve or boost MAML’s conver-
gence speed or/and accuracy (depending on the prevalent type of features) and prevent vanishing
learning rates, without the need to increase the amount of parameters, computations, or memory
overhead.
MAML-DBL, as a learned optimizer, is an Adabound based adaptive method. An Adabound-based
method was opted for because it possesses the ability to transform from an adaptive learning rate
method to a momentum based method by gradually annealing the learning rate as training pro-
gresses.
Adaptive moment estimation with dynamic bound or Adabound [LXLS19] as shown in Figure 11 is
a variant of the Adam optimizer that adds the concept of dynamic bound to its design. Adabound
tries to combine the fast initial progress of adaptive methods once training begins and gradually
switches to the good final generalization (non-discriminative) properties of SGD towards the end.
This is done using dynamic bound a technique inspired by gradient clipping (clips gradients that
are larger than a threshold) that gradually clips the learning rates as training progresses such that
the learning rates constrained within the dynamic bound (a dynamic lower and upper bound, that
gradually draws closer and closer to the learning rate from both sides as training progresses) gets
more restricted (less and less adaptive), gradually transforming the behaviour of the learning rate
from an adaptive to non-adaptive one, such that it generalizes rather than adapts towards the end
of training. Dynamic bound enables Adabound to avoid any chances of vanishing learning rate
without compromising or sacrificing the softened oscillations or less intense fluctuations enjoyed
by momentum based methods (as opposed to vanilla SGD methods).

Figure 11: Pseudocode of Adabound’s algorithm and update rule as illustrated in [LXLS19]

4.6 Summary

This chapter elaborated on MAML’s algorithm, structure and experimental details. It also intro-
duced MAML-DBL, the proposed method, and the technique it uses.
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Chapter 5

Experimental Evaluation

5.1 Objective

The objective of this chapter is to describe the experiments conducted for both MAML-DBL and
MAML as well as to show and detail the experimental results, graphs, observations and final
assessment.

5.2 Software requirements

The MAML source code requires the following dependencies to run:

• python 2.* or python 3.*

• TensorFlow v1.0 or higher.

The MAML source code can be accessed and downloaded at [Fin]. Usage instructions can also be
found on the same page. Other details on data preprocessing, usage and running of the MAML
source code can be found in the appendix A.

5.3 MAML’s Experiment Details

To evaluate MAML experiments were carried out on both the omniglot and miniImagenet dataset
in the following manner;
For omniglot, the authors used 1200 from the 1623 characters in the dataset for training and the
remaining for testing. Data augmentation of the omniglot dataset with rotations by multiples
of 90 degrees was also applied as suggested by Santoro et al in [SBB+16]. The 5-way or class
1-shot (meaning that each task in batch of task will have 5 classes with a single example each)
convolutional and non-convolutional MAML models on omniglot, were each trained with 1 gradient
step (per task), a meta batch-size of 32 tasks and a learning rate α of 0.4. The network was
evaluated with 3 gradient steps and the same learning rate α.
The 20-way or class 1-shot (20 classes with 1 example each per task in batch) convolutional model
was trained with 5 gradient steps, a meta batch-size of 16 tasks, and a learning rate of 0.1. And
was evaluated also using 5 gradient steps and the same step-length.
On MiniImagenet, both the 5-way 1-shot and 5-way 5-shot models were trained with 5 gradient
steps, a learning rate of 0.01, and a meta batch size of 4 tasks for 1-shot and 2 tasks for 5-shot.
The model was evaluated using 10 gradient steps at test time with 15 examples per class used to
evaluate the post-update meta gradient in compliance with Ravi and Larochelle in [RL17]. The
authors trained all the above mentioned models for 60,000 iterations with a hardware setup that
included a single NVIDIA Pascal Titan X GPU.
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5.4 Experiments

The experiments are divided into four, two experiments for the Omniglot dataset and the other
two for the MiniImagenet dataset.
All experiments were conducted in comformity with the experiments in the MAML paper in terms
of architecture and hyperparameter setting, except for the learning rate value for MAML-DBL
which was set to 0.01 as recomended in [Kim19]. A single GPU was used to train both MAML
and MAML-DBL models.
The details of each experiment on the Omniglot and MiniImagent datasets will be expressed
with reference to the input structure, network structure, results, accuracy comparative graph and
observations.

5.4.1 Experiment 1: 5-way 1-shot Omniglot dataset

5.4.1.1 Input Structure

The input structure of MAML-DBL for this experiment was as follows:

• Images are grayscale and are resized to 28x28 pixels with data augmentation consisting of
rotations by multiples of 90 degrees as suggested in [SBB+16],

• Each task-batch-size or meta batch-size is made up of 32 tasks per meta iteration,

• Each task in batch is a 5-class classification task with a single example for each class,

• One gradient step update per task,

• A learning rate of 0.01.

5.4.1.2 Network Structure

The network structure of MAML-DBL for this experiment was as follows:

• CNN uses strided convolutions for downsampling, 64 filters followed by batch normalization
and ReLU activation per convolution layer, no pooling layer involved,

• Fully connected layer consist of 4 hidden layers with batch normalization and ReLU nonlin-
earity each, followed by a last layer and softmax,

• Uses the cross entropy loss function for both the inner and outer loop.

5.4.1.3 Results

The results of MAML-DBL alongside the MAML baseline for this experiment were as follows:

Table 20: Training results in terms of average accuracy and approximated training time.

Omniglot
[LSGT11] Accuracy Approximated Training time

MAML 96.8% ≈6hrs

MAML-DBL 97.7% ≈6hrs30
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5.4.1.4 Accuracy Graph

The accuracy graph after every 6000 iterations of MAML-DBL alongside the MAML baseline for
this experiment is as follows:
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5.4.1.5 Observations

Facts observed during this experiment include:

• For this model, MAML-DBL behaved exactly as expected, and showed faster initial conver-
gence than the baseline as illustrated in the accuracy graph.

• As expected from a learned optimizer and metalearning method as well as an adaptive-based
method, the training started at an average speed but became faster as training progresses (as
the initializations were being learned) with very high accuracy. Towards the end however, as
the switch to a momentum based SGD method was made, training got slower, but MAML-
DBL still generalized well and maintained a very high accuracy till training ended.

• Towards the end, as the learning rates were being annealed, the high accuracy did not drop
and was sometimes higher than the baseline, meaning that MAML-DBL was able to generalize
better towards the end, which could be evidence that sparsity was not much of an issue
during training and that the claims of faster initial convergence and better generalizations
than adaptive methods at the end are indeed true for this specific model.

• Although MAML also slowed down towards the end, it recorded a better overall training
time than MAML-DBL.

5.4.2 Experiment 2: 20-way 1-shot Omniglot dataset

5.4.2.1 Input Structure

The input structure of MAML-DBL for this experiment was as follows:

• Images are grayscale and are resized to 28x28 pixels with data augmentation consisting of
rotations by multiples of 90 degrees as suggested in [SBB+16],

• Each task-batch-size or meta batch-size is made up of 16 tasks per meta iteration,
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• Each task in batch is a 20-class classification task with a single example for each class,

• Trained with five gradient steps per task,

• A learning rate of 0.01.

5.4.2.2 Network Structure

The network structure of MAML-DBL for this experiment was as follows:

• CNN uses strided convolutions for downsampling, 64 filters followed by batch normalization
and ReLU activation per convolution layer, no pooling layer involved,

• Fully connected layer consist of 4 hidden layers with batch normalization and ReLU nonlin-
earity each, followed by a last layer and softmax,

• Uses the cross entropy loss function for both the inner and outer loop.

5.4.2.3 Results

The results of MAML-DBL alongside the MAML baseline for this experiment were as follows:

Table 21: Training results with reference to average accuracy and approximated training time.

Omniglot
[LSGT11] Accuracy Approximated Training time

MAML 87.7% ≈36hrs

MAML-DBL 89.7% ≈48hrs

5.4.2.4 Accuracy Graph

The accuracy graph after every 6000 iterations of MAML-DBL alongside the MAML baseline for
this experiment is as follows:
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5.4.2.5 Observations

Facts observed during this experiment include:

• For this model, MAML-DBL behaved in quite a similar manner as the previous experiment,
and showed faster initial convergence than the baseline with a slightly lower accuracy than
the baseline towards the end as illustrated in the accuracy graph.

• As expected from a learned optimizer and metalearning method as well as an adaptive based
method training started at a good initial speed, it picked up as training progressed (as the
initializations are being learned) while still maintaining high accuracy, but then it gradually
got lengthy as training went on till the end, which is probably due to the switch to a mo-
mentum based SGD method, but MAML-DBL still generalized well and maintained a high
accuracy till the end.

• MAML-DBL started off with a higher accuracy advantage over the baseline, and as the learn-
ing rate was gradually annealed, the high accuracy did not drop but was slightly surpassed
by the baseline, meaning that MAML-DBL was able to also generalize well towards the end
(although not as the previous experiment), which could also indicate that sparsity was not
much of an issue during training and that the claim of faster initial convergence is indeed
true for this specific model. As an Adabound-based adaptive method, MAML-DBL, I’d say
generalized well towards the end but not as good as the baseline at the very end as shown
in the accuracy graph.

• Although training with MAML also got lengthy as training went on, but not as lengthy as
with MAML-DBL, which is why it features a better overall training speed than the proposed
method but falls short as regards the overall average accuracy.

5.4.3 Experiment 3: 5-way 1-shot MiniImagenet dataset

5.4.3.1 Input Structure

The input structure of MAML-DBL for this experiment was as follows:

• Each example is a 84x84 pixel colour image.

• Each task-batch-size or meta batch-size is made up of 4 tasks per meta iteration,

• Each task in batch is a 5-class classification task with a single example per class,

• Five gradient steps per task,

• A learning rate of 0.01.

5.4.3.2 Network Structure

The network structure of MAML-DBL for this experiment was as follows:

• CNN Uses 32 filters followed by batch normalization and ReLU activation per convolution
layer. The convolution layer is followed by a 2x2 max-pooling layer,

• Fully connected layer consist of 4 hidden layers with batch normalization and ReLU nonlin-
earity each, followed by a last layer and softmax,

• Uses the cross entropy loss function for both the inner and outer loop.
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5.4.3.3 Results

The results of MAML-DBL alongside the MAML baseline for this experiment were as follows:

Table 22: Training results with reference to average accuracy and approximated training time.

MiniImagenet
[VBL+16] Accuracy Approximated Training time

MAML 52.7% ≈87hrs

MAML-DBL - -

5.4.3.4 Accuracy Graph

The accuracy graph after every 6000 iterations of MAML-DBL alongside the MAML baseline for
this experiment is as follows:
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5.4.3.5 Observations

Facts observed during this experiment include:

• In this model, MAML-DBL behaved in quite a different way from the previous experiments,
the only similarity was that it showed a rather promising initial accuracy, but as training
progressed it stagnated and after a while, stopped training, as shown in the accuracy graph.

• As expected from a learned optimizer and metalearning method as well as an adaptive-
based method, training started at a initial speed, but as training went on or as it gradually
transformed to a momentum based SGD method, it failed to generalize as the accuracy
gradually declined, then stagnated before the training was brought to an abrupt end.

• Other hyperparameter settings and tunning were experimented to see if MAML-DBL’s be-
haviour would improve, however in all, it showed the same unstable, irregular and unprece-
dented behaviour always tending, sometimes quickly sometimes slowly, towards stagnancy
and non-convergence.

• Judging severe sparsity issues might be the problem, gamma or the convergence rate of
the bounds in the Adabound setting was reduced to make the proposed method behave a
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bit longer like an adaptive method before transforming, since the baseline, which uses an
adaptive-based method, displayed no such problems in training. This brought about some
improvements, but in the end, the proposed method was imminently doomed for stagnation
and incomplete training.

• I believe further reducing gamma would have brought about further improvements but that
would’ve made the whole point of these experiments useless, as further reducing gamma would
gradually disfigure and strip the proposed method of its transformative nature and reduce it
to just another Adam based method, making it behave just like the baseline. Rather than
aggressively reducing gamma for results, it would probably be better to use a full adaptive
method.

• The baseline behaved exactly as usual only at a slower pace. But showed no signs of stagna-
tion like the proposed method.

5.4.4 Experiment 4: 5-way 5-shot MiniImagenet dataset

5.4.4.1 Input Structure

The input structure of MAML-DBL for this experiment was as follows:

• Each example is a 84x84 pixel colour image.

• Each task-batch-size or meta batch-size is made up of 2 tasks per meta iteration,

• Each task in batch is a 5-class classification task with a five examples per class,

• Five gradient steps per task,

• A learning rate of 0.01.

5.4.4.2 Network Structure

The network structure of MAML-DBL for this experiment was as follows:

• CNN Uses 32 filters followed by batch normalization and ReLU activation per convolution
layer. The convolution layer is followed by a 2x2 max-pooling layer,

• Fully connected layer consist of 4 hidden layers with batch normalization and ReLU nonlin-
earity each, followed by a last layer and softmax,

• Uses the cross entropy loss function for both the inner and outer loop.

5.4.4.3 Results

The results of MAML-DBL alongside the MAML baseline for this experiment were as follows:

Table 23: Training results in terms of average accuracy and approximated training time.

MiniImagenet
[VBL+16] Accuracy Approximated Training time

MAML 69.7% ≈115hrs

MAML-DBL - -
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5.4.4.4 Accuracy Graph

The accuracy graph after every 6000 iterations of MAML-DBL alongside the MAML baseline for
this experiment is as follows:
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5.4.4.5 Observations

Facts observed during this experiment include;

• For this model, MAML-DBL behaved in a quite similar way as the previous experiment, the
only difference was that it took a little longer to stagnate.

• MAML behaved as usual only at a slower pace. But showed no signs of stagnation like the
proposed method.

5.4.5 Assessment of the Proposed Method

Some of the advantages of the proposed technique observed from the experiments include:

• MAML-DBL outperformed baseline in both of the Omniglot experiments.

• Showed high initial accuracy even in the failed experiments.

• Generalized well at the end in both of the Omniglot tests, surpassing the baseline in one of
them.

The disadvantages observed from the experiments include;

• Slower overall training speed compared to the baseline.

• Slow training speed before and during stagnation in the MiniImagenet test and gradually
reducing training speed towards the end in some of the Omniglot experiments especially the
second one.

• Poor performance, stagnation and failure to converge in both of the MiniImagenet experi-
ments.
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5.5 Summary

This chapter illustrated the results and observations of the experiments conducted for both MAML-
DBL and the baseline on the Omniglot and MiniImagenet datasets.
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Chapter 6

Conclusion

6.1 Thesis Overview

Learning learning algorithms are increasingly being proposed in recent research works as machine
learning experts and engineers have observed that they perform much better than hand designed
learning algorithms, but then, what are learning learning algorithms and what do they look like?
This thesis has made an attempt to explain the concept of learned learning algorithms and met-
alearning to the best of the author’s ability relying on books, literary publications and experiments.
It starts with a general definition of optimization and its relevance to learning as well as to learned
learning algorithms and metalearning, followed by an itemization of the steps and an introduction
to commonly used metalearning datasets. This is followed up by an analysis of state-of-the-art
techniques as well as their literature, and applications or extensions to other fields of artificial
intelligence, leading to a practical examination, testing and verification of the code of one of the
state-of-the-art approach called MAML or model-agnostic metalearning.

MAML, as well as the metalearning method proposed by this thesis, which is also based on MAML
called MAML-DBL or MAML with Dynamic Bound Learning rate, were evaluated using the most
common metalearning datasets to find out if metalearning is actually a viable solution to achieving
high accuracy and training speed with limited resources or data.

The experiments were conducted using the Omniglot and MiniImagenet datasets and a GPU. Dur-
ing the experiments, both techniques showed specific advantages and disadvantages, while MAML
showed consistency and better speed in all the experiments, it was outperformed by MAML-DBL,
in terms of overall accuracy, in all the experiments conducted on Omniglot. MAML-DBL however
failed to perform on the MiniImagenet dataset.

The results of the experiments does prove in most of the cases that metalearning is a possible
solution in times of limited computational resources, considering all models were trained from
the scratch on entire datasets. Furthermore, certain conclusions could be drawn from the results
of the experiments for better accuracy and/or speed when practically using a metalearning method.

First of all, the results on Omniglot show that the 5-way 1-shot model performed better in terms of
speed and accuracy than the 20-way 1-shot model, which could indicate that metalearning models
whose tasks have fewer number of classes are likely to learn faster and perform better than their
counterparts with tasks having larger number of classes, including deep networks and vanilla ma-
chine learning methods. So, for accuracy and speed, it may be adviceable to go for lesser number
of classes or ways when using a method such as MAML or MAML-DBL, which is one of the benefit
of metalearning, that is, its versatility, as an entire dataset can be broken down into small tasks
having fewer classes and fed via few-shots into the metalearning network.

In addition, the results on MiniImagenet with MAML, show that the 5-way 5-shot attained a
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higher accuracy than the 5-way 1-shot model, however it took a shorter time to train the latter
than the former. So, if the focus is accuracy rather than speed, increasing the shots by a little bit
could do the trick, however if speed is more important, keeping the shots and the classes down
could make a whole lot of difference as far as speed is concerned.

6.2 Future Work

I hope in a future work to find better ways of improving the proposed method and make it work
efficiently not only on the Omniglot dataset but especially on the MiniImagenet dataset.
As a continuation to this thesis, a direction I believe could be a starting point to improving
MAML-DBL is a data and architectural-based approach, rather than an algorithmic approach as
presented by this thesis, by researching efficient ways to preprocess and batch-normalize the data
and the inputs to the hidden layers as well as find more suitable architectures in order to improve
training, especially on the MiniImagenet dataset, although other algorithmic trade-offs could also
be researched and examined.

6.3 Final Thoughts

In conclusion, I believe this thesis have presented the research carried out to study, implement
and test learned learning algorithms or metalearning methods such as MAML and MAML-DBL,
in order to provide a general knowledge on the subject as well as share useful recommendations
backed up by the results of the experiments to make metalearning an easily implementable option
to anyone desiring a versatile, fast and accurate model, despite certain limitations such as data
scarcity or limited computational resources.
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Appendix A

Appendix

A.1 MAML data preprocessing

To use the omniglot and miniImagenet datasets with the Maml code the following must be done;

A.1.0.1 Omniglot

• Go to the Omniglot dataset at [bre], download images_background and images_evaluation
in the "omniglot/python/" directory.

• Put the contents of both folders, without the root folder, in the "data/omniglot" directory of
the maml code folder,

• Run the following command, from inside the maml code folder in the command line:

$ cd data/
$ cp −r omniglot /∗ omnig lot_res i zed /
$ cd omnig lot_res i zed /
$ python res i ze_images . py

Following these steps, the Omniglot images are downsampled to 28 x 28.

A.1.0.2 MiniImagenet

• Go to the MiniImagenet dataset at [yl]

• Click on the README.md file, go to the bottom of the page to "Download Processed Images"
, click on "Download jpg files" and download both the train, val, and test images or image
folders and the csv files.

• Since they’ve already been processed, no need to run the authors’ instructed script, just
extract the contents, that is, the train, val and test folders and put them, together with the
csv files, in the "data/miniImagenet" directory in the maml code folder.

A.2 Running the MAML code

If you have all the required dependencies (specified above) installed on your machine, running
and evaluating the MAML source code can be done from the terminal. There are several options
on which MAML can be evaluated including few-shots classification on the omniglot or on the
miniImagenet dataset. The experimental protocol for few-shot classification is similar to the one
proposed by Vinyals et al in [VBL+16], which is N-way or class classification with either 1-shot or
5-shot training, and which would require the following default inputs to the code to run:
For 5-way, 1-shot omniglot:
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$ python main . py −−datasource=omniglot −−meta t ra in_ i t e ra t i on s=60000
−−meta_batch_size=32 −−update_batch_size=1 −−update_lr=0.4
−−num_updates=1 −− l o g d i r=l o g s /omniglot5way/

For 20-way, 1-shot omniglot:

$ python main . py −−datasource=omniglot −−meta t ra in_ i t e ra t i on s=60000
−−meta_batch_size=16 −−update_batch_size=1 −−num_classes=20
−−update_lr=0.1 −−num_updates=5 −− l o g d i r=l o g s /omniglot20way/

For 5-way 1-shot mini imagenet:

$ python main . py −−datasource=miniimagenet −−meta t ra in_ i t e ra t i on s=60000
−−meta_batch_size=4 −−update_batch_size=1 −−update_lr=0.01
−−num_updates=5 −−num_classes=5 −− l o g d i r=l o g s /mini imagenet1shot /
−−num_f i l ters=32 −−max_pool=True

For 5-way 5-shot mini imagenet:

$ python main . py −−datasource=miniimagenet −−meta t ra in_ i t e ra t i on s=60000
−−meta_batch_size=4 −−update_batch_size=5 −−update_lr=0.01
−−num_updates=5 −−num_classes=5 −− l o g d i r=l o g s /mini imagenet5shot /
−−num_f i l ters=32 −−max_pool=True

A.2.1 Errors and Fixes

Running the MAML code was not without some challenges, errors and compatibility issues, as the
MAML source code was written using the old tensorflow syntax (e.g. v.1.*), which was the vogue
at the time MAML was proposed, but have either been deprecated or modified in recent versions
of tensorflow, that is, the 2.* series.
The way to go about this problem is either to rewrite most of the code using the most recent syntax
or downgrade to an older tensorflow version. Below are some of the errors I got while trying to
run the code as well as the versions of Python, and tensorflow I was using at the time of the error:
After downloading the datasets and doing the necessary preprocessing, the first time I ran the code
in the terminal, the error I got was a syntax compatibility issue as shown in Figure 12. At the
time, I had python 3.8.2 and tensorflow 2.2 installed which is the latest tensorflow version at the
time of the writing of this thesis paper.

Figure 12: First error, saying that module tensorflow.contrib.layers could not be found since it has been
replaced by tf.keras.layers in the new tensorflow version.

After changing it to "tf.keras import layers" I got another syntax compatibility error somewhere else
in the code as illustrated in Figure 13. Which I fixed with "tf.compat.v1.logging.set_verbosity",
but then kept getting other errors due to incompatible code. After which I changed my python
version to 3.6.0 and tensorflow version to 1.14.0 as shown in Figure 14 and 15.
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Figure 13: Second error.

Figure 14: I installed python 3.6.0 in order to install tensorflow 1.14

Figure 15: I installed tensorflow 1.14 in order to see if it will solve the syntax incompatibilities

On downgrading both python and tensorflow versions to the above mentioned versions, I got a
whole new type of error, shown in Figure 16, which I fixed with by checking the protobuf version
installed on my machine and upgrading it to protobuf version 3.6.0 as portrayed in Figure 17 and
Figure 18.

Figure 16: Error saying that procedure google.protobuf.pyext._message could not be found.

Figure 17: Checked the protobuf version installed.
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Figure 18: Upgraded it to protobuf version 3.6.0.

Following this modifications the code was finally able to run, although, not without some depre-
cation and to be removed in future versions warnings. I first tried the "omniglot 5-way 1-shot"
command mentioned in the previous subsection as shown in Figure 19 and Figure 19.

Figure 19: Running the code for omniglot 5-way 1-shot experiment.

Figure 20: Begining training.
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