

Software for a Service Robot

André Rosa de Sousa Porfírio Correia

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática
(2º ciclo de estudos)

Orientador: Prof. Luís Filipe Barbosa de Almeida Alexandre

junho de 2020

ii

iii

Agradecimentos

Neste capítulo irei-me referir às pessoas que tiveram grande influência durante o desen-

volvimento desta tese. Em primeiro lugar quero agradecer ao professor Luís Alexandre

pelo enorme apoio, por todos os conselhos que me deu e por estar sempre disponível

quando precisei, teria sido impossível sem a sua ajuda. Quero também agradecer à minha

família que sempre me apoiou não só durante o desenvolvimento deste tese, como em toda

a minha vida. Foram eles que me permitiram entrar e terminar o mestrado. Por último,

queria agradecer a todos os meus amigos, em especial aos colegas do Soft Computing and

Image Analysis Laboratory (SociaLab), nomeadamente ao Gaspar Ramôa, Vasco Lopes,

António Gaspar, Bruno Silva e Nuno Pereira que me ajudaram durante o desenvolvimento

desta tese.

iv

v

Resumo

Os robôs de serviço são cada vez mais comuns devido aos avanços constantes na área da

inteligência artificial, substituindo os humanos em tarefas cada vez mais complexas. Ao

ter um robô autónomo e competente desempenhando tarefas diárias em vez do seu dono

humano, a produtividade destes consequentemente aumenta. A pesquisa por melhores

robôs de serviço levou à criação de competições robóticas onde tais tipos de robôs são

avaliados e o estado da arte é forçado a avançar. Com o objetivo de possuir um robô de

serviço que sirva as pessoas na universidade, bem como um dia participar em tais com-

petições, o Socialab adquiriu um robô Turtlebot2. O laboratório tem proposto vários pro-

jetos ao longo dos anos, cada um adicionando novos níveis de funcionalidade ao robô.

Com cada estudante que tem vindo a realizar o respetivo projeto, o software que foi de-

senvolvido tem estado continuamente a aumentar. Adicionalmente, cada projeto comple-

tado tem permanecido separado dos restantes e não tem sido utilizado desde o momento

da sua criação. Por esta razão, o software desenvolvido está a ser desperdiçado. Portanto,

é imperativo integrar todo o software disponível no robô. No entanto, como novos proje-

tos serão desenvolvidos, este problema de projetos disjuntos poderá voltar a ocorrer após

a integração dos projetos atuais. Ademais, com o aumento da funcionalidade que é desen-

volvida, mais dificil e demorado será a sua integração. De forma a evitar este problema

na sua totalidade, é necessário criar software estrutural que facilite o desenvolvimento de

novas funcionalidades, bem como a sua integração com o software já existente.

De forma a atingir este objetivo, foi desenvolvida uma classe cujo propósito é controlar a

execução de todos os processos em execução no robô. Adicionalmente, foi efetuada uma

pesquisa sobre diversas competições robóticas com o objetivo de identificar os tipos de

funcionalidades mais comuns, que referimos como módulos. Depois foi realizada uma

implementação de cada um destes módulos. Devido à universalidade destes módulos, a

sua implementação permite que software futuro, que provavelmente depende de alguns

dos módulos, apenas os tenha que importar, em contraste com ter que os re-implementar.

Adicionalmente, em linha com as práticas de qualidade de software, se cada um dos módu-

los precisa de uma atualização, esta apenas tem de ser realizada nos respetivos módulos,

ao invés de ter de atualizar cada software adjacente que teve de o implementar. Este foi o

primeiro objetivo da tese. Após a criação de uma fundação sólida para o desenvolvimento

de software para robô, o foco transferiu-se para a criação de nova funcionalidade. Uma

lista de tarefas robóticas foi obtida da pesquisa anterior sobre várias competições robóti-

cas. A ideia é que se o robô é capaz de realizar tais tarefas então não só pode participar nas

competições que as requerem, como também tem utilidade que pode ser utilizada pelas

pessoas na universidade. A lista visava ser o mais extensa possível, tendo em conta as re-

strições temporais de desenvolvimento da tese, de modo a deixar o robô com o máximo de

funcionalidades possível. Desta forma, sete tarefas foram escolhidas. A implementação

de cada uma das tarefas é explicada em detalhe no seu capítulo respetivo.

vi

À medida que cada tarefa foi desenvolvida, os seus componentes individuais foram ex-

traídos para novos módulos, passiveis de serem utilizados por outras funcionalidades,

respeitando assim, o objetivo inicial de criar software flexível e reutilizável. Este fator

tornou a criação das tarefas seguintes cada vez mais simples devido a estas dependerem

de funcionalidades já implementadas nas anteriores. A implementação das tarefas exigiu

conhecimento das diferentes áreas da inteligência artificial. Este facto levou à ampliação

do meu conhecimento ao invés da especialização numa área, algo que é frequente na re-

alização de teses. A realização deste trabalho demonstra como as distintas tarefas robóti-

cas foram implementadas. Devido à natureza variada das tarefas, é demonstrado como

enfrentar um conjunto diverso de problemas que podem aparecer na área da inteligên-

cia artificial. Adicionalmente, este trabalho apresenta uma abordagem para a criação de

uma fundação sólida para o desenvolvimento e integração de novo software. Por último,

as tarefas estão aferidas contra o estado da arte, significando que atualizações futuras às

tarefas podem ser realizadas e provadas superiores através da comparação dos seus resul-

tados.

Palavras-chave
Robótica, Inteligência Artificial, Qualidade de Software, Segmentação Semântica, Classi-

ficação, Deteção

vii

Resumo alargado

Os robôs de serviço são cada vez mais comuns devido aos avanços constantes na área da

inteligência artificial, substituíndo os humanos em tarefas cada vez mais complexas. Ao

ter um robô autónomo e competente desempenhando tarefas diárias em vez do humano,

a produtividade destes consequentemente aumenta. A pesquisa por melhores robôs de

serviço levou à criação de competições robóticas onde tais tipos de robôs são avaliados

e o estado da arte avança. Com o objetivo de possuir um robô de serviço que sirva as

pessoas na universidade, bem como um dia participar em tais competições, o Socialab

adquiriu um robô Turtlebot2. O laboratório tem proposto vários projetos ao longo dos

anos, cada um adicionando novos níveis de funcionalidade ao robô. Com cada estudante

que tem vindo a realizar o respetivo projeto, o software que foi desenvolvido tem estado

continuamente a aumentar. Adicionalmente, cada projeto completado tem permanecido

separado dos restantes e não tem sido utilizado desde o momento da sua criação. Por esta

razão, o software desenvolvido está a ser desperdiçado. Portanto, é imperativo integrar

todo o software disponível no robô. No entanto, como novos projetos serão desenvolvi-

dos, este problema de projetos disjuntos poderá voltar a ocorrer após a integração dos

projetos atuais. Ademais, com o aumento da funcionalidade que é desenvolvida, mais di-

ficil e demorado será a sua integração. De forma a evitar este problema na sua totalidade,

é necessário criar software estrutural que facilite o desenvolvimento de novas funcional-

idades, bem como a sua integração com o software já existente. Após a criação de uma

fundação sólida para o desenvolvimento de software para robô, o foco transferiu-se para

a criação de nova funcionalidade.

O primeiro capítulo define o âmbito e o problema onde esta dissertação se enquadra. Adi-

cionalmente, são descritos os principais objetivos da realização deste trabalho, bem como

as principais contribuições deste para a realização e integração de novos trabalhos cujo

intuito seja o desenvolvimento de funcionalidades para o robô. Por fim, é explicada a

estrutura deste documento.

O segundo capítulo foca a criação de uma fundação sólida para o desenvolvimento e in-

tegração de novo software. Nele é explicado o estado atual do software do robô e como

foi atualizado. De seguida o funcionamento do ROS, ferramenta que facilita a criação de

software para robôs, é explicado de forma sucinta. Após a explicação, é concluído que

as tarefas robóticas dependem da execução de processos ROS. Adicionalmente, foram

identificados problemas que ocorrem devido à execução não controlada destes processos.

Por este motivo, foi criada uma classe que controla a execução de todos os processos no

robô de forma a evitar os problemas identificados, permitindo aos novos programas us-

arem estes processos através desta classe sem terem de re-implementar a lógica do seu

controlo. Após a criação de uma fundação sólida neste capítulo, os capítulos seguintes

focar-se-ão no desenvolvimento de novo software.

viii

No terceiro capítulo foram identificadas as tarefas robóticas a implementar neste projeto.

As tarefas foram extraídas da documentação de quatro competições robóticas, com o intu-

ito de que se o robô tem capacidade para participar nas competições, então tem necessari-

amente utilidade para servir as pessoas na universidade. Nem todas as tarefas presentes

na documentação foram escolhidas pois requerem ferramentas que o robô não possui de

momento, como um braço robótico para manipulação ou um drone. A lista final contém

sete tarefas. De seguida, o objetivo de cada tarefa é explicado, bem como a lista de passos

que a constituem. Após a identificação das tarefas, foram identificados três conjuntos de

funcionalidades que são comuns a grande parte das tarefas. São estes: navegação, a ca-

pacidade do robô navegar no seu ambiente de forma autônoma; fala, a capacidade de o

robô comunicar verbalmente com os humanos; reconhecimento de fala, a capacidade do

robô perceber o que os humanos comunicam de forma verbal. A implementação inicial

destas funcionalidades facilita o desenvolvimento das seguintes tarefas, pelo qual foram

priorizadas.

O quarto capítulo explica o que é a navegação autônoma e expõe a sua necessidade. De

seguida é explicado que a navegação autônoma nos robôs é atingida em três passos: 1)

mapeamento, 2) localização, 3) criação de um caminho. O primeiro passo, mapeamento,

consiste na criação de um mapa do ambiente onde o robô se deslocará autonomamente.

Nesta secção é explicado o algoritmo responsável pela criação deste mapa, SLAM. Adi-

cionalmente, são também expostas e comparadas duas abordagens que o implementam.

Na seção seguinte é explicado como efetuar a localização do robô no mapa gerado no passo

anterior. O algoritmo, baseado no filtro de partículas, MCL é explicado com algum de-

talhe. De seguida, as ferramentas que o implementam e consequentemente permitem

localizar o robô são apresentadas. Seguidamente, o passo da criação de um caminho que

permite que o robô se desloque da sua localização inicial à localização desejada é expli-

cado. Por último, foram criados programas adicionais relacionados com a navegação. Um

programa monitoriza a localização do robô em cada instante de forma a que outros pro-

gramas tenham acesso a esta informação. O segundo permite efetuar a rotação do robô

em torno de si mesmo.

O quinto capítulo dedica-se à explicação da implementação das funcionalidades que for-

necem a comunicação entre o robô e os humanos. O robô simula fala, de forma a comu-

nicar com os humanos verbalmente, através da conversão de uma frase de texto para um

ficheiro áudio. Esta conversão é efetuada através do uso da biblioteca GTTS. O ficheiro de

áudio é depois executado, simulando a fala do robô. De forma inversa foi implementada a

funcionalidade que permite que o robô perceba a fala dos humanos. Esta funcionalidade

foi implementada através do uso de um conjunto de microfones ReSpeaker que capturam

o áudio que contém a fala dos humanos. Este áudio é depois enviado para uma biblioteca

do ROS que interpreta a fala presente no áudio e o converte em frases de texto. Por último,

foram criadas funções que permitem usufruir de ambas as funcionalidades.

ix

O sexto capítulo corresponde à implementação da tarefa intitulada ”Help-me-carry”. Nesta

tarefa o robô tem de seguir o humano até que este lhe peça que pare. De seguida o humano

coloca um saco em cima do robô e indica-lhe para o entregar numa determinada localiza-

ção, algo que o robô terá de realizar sem falhas. A tarefa já estava implementada na sua

maioria, pois foi o projeto de licenciatura de um colega. Contudo, a comunicação entre

robô e humano era efetuada através de códigos QR, algo que teve de ser alterado para a fala

e reconhecimento de fala, implementado no capítulo anterior. Adicionalmente, o código

foi dividido em módulos para que futuras tarefas possam usufruir das mesmas funcionali-

dades. Por último, algumas alterações foram efetuadas ao código de forma a torná-lo mais

resistente a erros originados pela câmera.

O sétimo capítulo corresponde à implementação da tarefa intitulada ”Restaurant”. Nesta

tarefa o robô desempenha o papel de empregado de mesa. Constantemente monitoriza o

seu ambiente à espera de clientes que o chamem através de um aceno de mão. De seguida

o robô desloca-se à mesa do cliente e interpreta o seu pedido. O robô terá de navegar entre

a mesa e o bar de forma a receber e entregar o pedido. A funcionalidade que teve de ser

implementada do zero foi a deteção de acenos de mão. Vários métodos foram experimen-

tados até se atingir a funcionalidade final. Esta baseia-se na monitorização do movimento

horizontal de mãos que estão perto de caras. Os fatores medidos são o número de mu-

danças de direção, a sua frequência e a amplitude média dos acenos. Os restantes passos

foram implementados diretamente usando as três funcionalidades base implementadas

anteriormente. Adicionalmente, especulou-se sobre uma forma de criar um modelo ca-

paz de realizar a deteção de movimentos de mãos. Contudo, devido a restrições temporais

resultantes das tentativas falhadas, combinado com o facto de não se saber se o método

funcionaria, optou-se pela implementação da funcionalidade descrita anteriormente, fi-

cando esta apenas como potencial candidata a solução de problemas semelhantes.

O oitavo capítulo corresponde à implementação da tarefa intitulada ”Speech, Object and

Person Recognition”. Nesta tarefa o robô terá de responder a uma pergunta posta pelo hu-

mano e reconhecer um objeto que o humano lhe mostra. De forma a resolver o primeiro

problema, duas abordagens foram implementadas. Uma requer internet, usa a API da

Wikipédia de forma a procurar a questão e obter a resposta no resultado com maior cor-

respondência. A segunda abordagem foi implementada pois o robô deve ter utilidade

mesmo quando não tem acesso à internet. A partir de uma API foram gravadas milhares

de perguntas e respostas num ficheiro de texto, onde o robô procurará a pergunta que lhe

foi posta. Foi concluído que a segunda abordagem é rudimentar pois será rara a ocasião

em que a pergunta se encontra dentro do ficheiro de texto. De seguida foi enfrentado

o problema de reconhecimento de objetos. Os objetos requeridos na competição foram

identificados e re-criados no laboratório. Por fim, um conjunto de dados com estes obje-

tos foi criado, seguido do treino um modelo capaz de os reconhecer. Devido a estes objetos

não serem comuns no dia a dia, um segundo modelo foi treinado num conjunto de dados

com objetos mais comuns, de forma a que o robô tenha utilidade fora das competições.

x

Contudo, os tipos de objetos reconhecidos pelo robô estão ainda limitados pelo conjunto

de dados. Este problema é resolvido através da implementação da última tarefa.

O nono capítulo corresponde à implementação da tarefa que requer que o robô use um ele-

vador de forma a mudar de piso. A tarefa requer que o robô entre e saia de forma autónoma

no elevador. Contudo, o robô pode ser assistido pelos humanos de forma a escolher o

piso bem como identificar quando o elevador chegou ao piso desejado. Esta comunicação

foi implementada usando as duas funcionalidades de comunicação entre robô e humano.

A implementação da entrada e saída do elevador seguiu uma abordagem dinâmica, que

funciona em qualquer elevador. O robô deteta a abertura da porta do elevador usando

informação da câmera. De seguida identifica o estado do interior do elevador através do

seu mapeamento. Depois identifica a posição mais espaçosa do elevador à qual se deslo-

cará de forma a minimizar a probabilidade de tocar em humanos. A saída do elevador é

efetuada de forma semelhante.

O décimo capítulo é dedicado à explicação de duas tarefas, ”Welcoming Visitors” e ”Cater-

ing for Granny Annie”. Na primeira, o robô monitora as imagens da câmara e deve recon-

hecer pessoas que aparecem nas imagens. Para tal efeito foi utilizada uma biblioteca que

extrai descritores de caras de imagens. É guardada uma lista de descritores que corre-

spondem às pessoas que o robô conhece. Quando aparece uma pessoa na imagem o robô

compara os novos descritores com os da base de dados. Caso não reconheça a pessoa, pede

a um humano que a identifique, atualizando depois a base de dados. Na segunda tarefa,

o robô deve perceber comandos verbais falados pelos humanos. Na documentação estão

especificados três tipos de comandos. Cada um foi implementado através da criação de

um autómato que indica se a frase falada pelo humano corresponde ou não ao comando.

O décimo primeiro capítulo é dedicado à explicação da tarefa intitulada ”Getting to Know

my Home”. O robô tem um mapa semântico do ambiente, que contém a lista de objetos

presentes e a sua respetiva localização no ambiente. De seguida o robô deve percorrer

o ambiente e detectar alterações comparando as informações atuais com as informações

presentes no mapa. Embora a criação do mapa possa ser feita estáticamente, foi criada

uma abordagem para automatizar a sua criação. Adicionalmente, foram realizadas várias

experiências de modo a identificar qual o tipo de descritores a ser utilizado para a expan-

são dinâmica do conhecimento do robô sobre objetos. De seguida, um algoritmo para

automatizar o processo de deteção de alterações no ambiente foi criado, com base na fun-

cionalidade de navegação, leitura do mapa semântico e extração dos descritores.

Por último, os principais resultados deste trabalho são resumidos no décimo primeiro

capítulo. Para além disso, discutem-se também as principais contribuições para o desen-

volvimento da integração de novas funcionalidades. De seguida, faz-se um resumo das

implementação das várias tarefas. Finalmente, é exposta uma perspetiva final resultante

da realização deste trabalho.

xi

Abstract

Service robots are becoming more commonplace every year due to advances in artificial

intelligence, substituting humans in increasingly more complex tasks. By having an au-

tonomous and competent service robot performing routinely tasks instead of its human

owners, their productivity increases. The search for better service robots has led to the

creation of competitions where such robots are tested and the state of the art technology

is pushed further. Socialab acquired a Turtlebot2 robot to serve people around the uni-

versity campus and one day participate in such competitions. With hopes of achieving

these goals, the laboratory has proposed a variety of projects over the years, each adding

new layers of functionality to the robot. With each student that has tackled their respective

project, the developed software has been continuously stacking. However, each completed

project has remained separate from each other and hasn’t been used ever since. Hence, the

developed software is being wasted. Therefore, it is imperative to integrate all the avail-

able software into the robot. Yet, as new projects are proposed, the problem of scattered

software can reoccur after the integration of the currently available ones. Furthermore,

with more functionality that is developed, the harder and longer it takes to complete their

integration. To prevent this entirely, it is necessary to create structural software that eases

the development of new functionality as well as its integration with the current software.

To achieve this, a class was developed which is responsible for controlling the execution of

all processes running in the robot, of which the different software depends on. Addition-

ally, research was done on multiple competitions to identify the most commonly required

functionality traits, which we refer to as modules. Afterwards, an implementation of each

of these modules was developed. Because of their universality, their implementation al-

lows future software that requires any of the modules to simply import them, rather than

having to re-implement them. In line with good software quality practices, if any of the

modules needs an upgrade, this upgrade simply has to be performed on the respective

module, instead of upgrading every adjacent software that uses this module. This was

the first goal of this thesis. After creating a solid foundation for robot software develop-

ment, the focus shifted towards the creation of new functionality. The different tasks were

obtained from the previous research of various robotic competitions. The idea is that if

the robot can perform such tasks then it can participate in the competitions, while the

same functionalities can be used around campus. The list aimed to be as long as possi-

ble with the goal of leaving the robot with as much functionality as possible while taking

into consideration the time restraints of the development of this thesis. Seven tasks were

selected. The implementation of each task is explained in detail. As each task was devel-

oped, the implemented steps were turned into modules, therefore respecting the initial

goal of flexible and reusable software. Because of this, as more tasks were developed the

following task’s implementation was increasingly simpler as some of the requirements

were already available from the development of their predecessors. The tasks required

knowledge from different areas of artificial intelligence. This lead to the broadening of

my knowledge rather than specialization in a single area.

xii

With this work, we show how distinct robotic tasks were implemented. Due to the varied

nature of the tasks, we show how to tackle a multitude of different problems that appear in

the area of artificial intelligence. Additionally, the work presents an approach to create a

solid foundation for the development and integration of increasingly more software. The

tasks are benchmarked, meaning future updates of the tasks can be performed and proved

superior through the comparison of their results.

Keywords

Robotics, Artificial Intelligence, Machine Learning, Classification, Semantic Segmenta-

tion, Detection

xiii

Contents

1 Introduction 1

1.1 Motivation and Objectives .. 2

1.2 Thesis Organization .. 2

2 Foundations 3

2.1 Software Updates .. 3

2.2 Process Controller ... 3

2.2.1 Implementation ... 5

2.3 Conclusion... 7

3 Robot Tasks 9

3.1 Competitions ... 9

3.1.1 European RoboCup@Home Education Challenge 2019 10

3.1.2 ERL Smart CIties RObotics Challenge .. 10

3.1.3 ERL Consumer Local Tournament .. 11

3.1.4 RoboCup@Home league Open Challenge .. 11

3.2 The chosen tasks .. 11

3.2.1 Help me Carry .. 11

3.2.2 Speech, Object and Person Recognition ... 12

3.2.3 Restaurant .. 13

3.2.4 Take the Elevator .. 13

3.2.5 Catering for Granny .. 14

3.2.6 Welcoming visitors ... 14

3.2.7 Getting to Know My Home ... 14

3.3 Conclusion.. 15

4 Navigation 17

4.1 Mapping ... 17

4.1.1 Requirements ... 17

4.1.2 Simultaneous Location And Mapping (SLAM) 18

4.1.3 Map ... 18

4.2 Localization .. 19

4.2.1 Requirements ... 19

4.2.2 Monte Carlo Localization (MCL) .. 19

4.3 Path Planning .. 20

4.4 Developed Sub-Modules .. 21

4.4.1 Pose Tracker ... 21

4.4.2 Rotation ... 22

4.5 Conclusion... 23

xiv

5 Human-Robot Communication 25

5.1 Text-to-Speech .. 25

5.2 Speech-to-Text .. 25

5.2.1 Speech-Recognition Functions .. 26

5.3 Conclusion ... 26

6 Help-me-Carry 29

6.1 Conclusion ... 31

7 Restaurant 33

7.1 Handwaving Recognition .. 33

7.1.1 Attempted strategies .. 34

7.1.2 The working solution ... 38

7.2 Obtaining the table’s position ... 42

7.3 Manual Conversion ... 43

7.4 Conversion using TF .. 43

7.5 Getting the order ... 44

7.6 Conclusion ... 44

8 Speech, Object and Person Recognition 45

8.1 Ability to answer questions ... 45

8.1.1 Implementation ... 45

8.2 Object recognition ... 46

8.3 Conclusion ... 48

9 Take the Elevator 51

9.1 Related work .. 52

9.2 Pipeline .. 53

9.2.1 Detect when door opens .. 54

9.2.2 Converting from map units to world units and vice-versa 55

9.2.3 Entering the elevator ... 57

9.2.4 Obtaining the Map ... 57

9.2.5 Mapping the Elevator’s inside ... 58

9.2.6 Cropping the Map .. 59

9.2.7 Fill the Map .. 59

9.2.8 Binarize the Map .. 60

9.2.9 Find goal position .. 61

9.2.10 Move inside .. 61

9.2.11 Exiting the elevator .. 61

9.3 Experiments .. 62

9.3.1 Detect the Opening of the Door ... 62

9.3.2 Entering and Exiting the Elevator ... 63

9.3.3 Results.. 63

9.4 Conclusion ... 64

xv

10 Welcoming and Catering Visitors 65

10.1 Welcoming Visitors ... 65

10.1.1 Person Identification Algorithm ... 65

10.2 Catering for Granny Annie .. 68

10.2.1 Algorithm .. 69

10.3 Conclusion... 70

11 Getting to know my home 71

11.1 Acquiring information ... 71

11.1.1 Following the human ... 72

11.1.2 Detect when the object’s name is spoken .. 72

11.1.3 Obtaining information about the object .. 73

11.1.4 Algorithm .. 86

11.2 Identifying changes on the map .. 86

11.3 Conclusion... 87

12 Conclusions 89

12.1 Foundations .. 89

12.2 Robotic Tasks .. 90

12.2.1 Help me Carry ... 90

12.2.2 Restaurant ... 90

12.2.3 Elevator ... 90

12.2.4 Speech Object and Person Recognition .. 91

12.2.5 Welcoming Visitors .. 91

12.2.6 Catering for Granny Annie ... 91

12.2.7 Getting to Know my Home .. 92

12.3 General Conclusions ... 92

Bibliografia 93

xvi

xvii

List of Figures

4.1 Map of the department obtained using SLAM ... 19

4.2 Simulation of localization in RViz ... 20

4.3 Simulation of path planning in RViz .. 21

7.1 Example of how one intensity matrix is obtained ... 35

7.2 Accuracy of different machine learning methods on intensity matrix test set 35

7.3 Centroids of hands and faces... 37

7.4 Normalization of centroid values .. 38

7.5 Study of the movement of the hand in both axis ... 38

7.6 How the distance and timestamp of each wave is calculated 41

7.7 Camera and Map coordinate systems comparison .. 42

7.8 Camera and Map vertical axis rotation problem ... 43

9.1 Pipeline of our proposal. ... 53

9.2 Map received from Map Server zoomed in ... 58

9.3 Sequence of maps corresponding to the several processing steps of the pro-

posed algorithm. See text for full details. .. 58

9.4 Robot entering an empty elevator; Robot entering an elevator with one pas-

senger; Robot entering an elevator with two passengers; Robot entering a

room. ... 62

10.1 Automata for command to fetch objects ... 69

10.2 Automata for command to control the blinds ... 70

10.3 Automata for command to control the lights .. 70

xviii

xix

List of Tables

8.1 Coloured Object Dataset Results on an Inception v3 architecture 48

8.2 CORE50 Results on a Inception v3 architecture ... 49

9.1 Time of execution of the twelve experiments, in seconds. 64

10.1 Accuracy of face identification algorithm on Faces94 dataset with varying

number of classes, training set sizes and test set sizes ... 68

11.1 Pixel accuracy comparison between ADE20K and COCO semantic segmen-

tation models on Washington’s RGB-D Object Dataset. 77

11.2 Results of the two tested approaches for a test image class prediction based

on the calculated distances in the training set. .. 79

11.3 Results of 21 convolutional neural-network architecture’s features on train-

ing and test sets with 5 images per class ... 80

11.4 Results of 21 convolutional neural-network architecture’s features on 10

classes with 5 points per class in test set .. 81

11.5 Results of 21 convolutional neural-network architecture’s features on 10

classes with 100 points per class in test set ... 82

11.6 Accuracy of point cloud descriptors on the Washington dataset using the

Hausdorff distance .. 83

xx

xxi

Acronyms

AI Artificial Intelligence

API Application Programming Interface

AGI Artificial General Intelligence

AMCL Adaptive Monte Carlo Localization

CNN Convolutional Neural Network

GB Giga Byte

CPU Central Processing Unit

GPU Graphics Processing Unit

GTTS Google Text-To-Speech

MCL Monte Carlo Localization

ML Machine Learning

NN Neural Network

PC Point Cloud

PCA Principal Components Analysis

PCL Point Cloud Library

PFH Point Feature Histograms

PFHRGB Point Feature Histograms RGB

PGM Portable Gray Map

OGM Occupancy Grid Map

ORB Oriented FAST and rotated BRIEF

OS Operating System

RAM Random Access Memory

RGB Red Green Blue

ROS Robot Operating System

SIFT Scale-Invariant Feature Transform

xxii

SLAM Simultaneous Location And Mapping

SURF Speeded Up Robust Features

TF Transform

YAML Yet Another Markup Language

1

Chapter 1

Introduction

With advances in technology, more complex hardware is available. Additionally, contin-

uous advancements in the area of artificial intelligence allow computers to solve more

problems which were previously restricted to humans. Because of this, robots can in-

corporate these software models and, combined with the hardware, substitute humans in

increasingly more complex tasks. Furthermore, by having an autonomous and competent

service robot performing routinely tasks instead of its human owners, their productivity

increases. Therefore, service robots are becoming more commonplace.

The search for better service robots has led to the creation of competitions where such

robots are tested and the state of the art technology is pushed further. The state-of-the-art

service robots can manoeuvre around the environment autonomously, without colliding

with objects and without posing a threat. Additionally, high-end service robots are built

in ways that resemble humans. They possess robotic arms which, paired with high-end

algorithms, allows them to grasp even the most complex of objects. Advancements in

artificial intelligence, specifically machine learning, allow robots to detect and recognize

distinct objects. Also, big progress has been done to tackle the problem of speech recog-

nition which in return has lead to the creation of commonplace robots such as Amazon’s

Alexa. Also, drones are planned to have a big role in the delivery of items such as online

orders or emergency medicine.

It is safe to say that service robots will be more frequent in human lives. Because of this,

Socialab acquired a Turtlebot2 robot with the purpose of having it serve people around

the university campus, as well as one day, participate in robotic competitions. With hopes

of achieving these goals, the laboratory has proposed a variety of projects over the years,

each adding new layers of functionality to the robot. However, after each student has fin-

ished their respective project, the developed software has remained separate from the rest

and hasn’t been used ever since. Therefore, it is imperative to integrate all the available

software into the robot. Yet, as new projects are proposed, the problem of scattered soft-

ware can reoccur after the integration of the currently available ones. Furthermore, with

more functionality that is developed, the harder and longer it takes to complete their in-

tegration. To prevent this entirely, it is necessary to create structural software that eases

the development of new functionality as well as its integration with the current software.

2

1.1 Motivation and Objectives

This work has two main goals. The first goal is motivated by the existence of several iso-

lated projects that created new functionality for the robot. This work will not only have

to integrate the currently existing functionality but will also have to prevent this prob-

lem from reoccurring. Therefore, the first goal is to create a solid foundation of software

which eases the development of new functionality into the robot, as well as its integration

with the currently available one. Afterwards, the focus of the thesis will then shift into

the development of new functionality, aiming to leave the robot with as many capabili-

ties as possible. This goal ties into the first as the development of new functionality is a

self-feeding process. In other words, the more functionality is available, the easier it is to

develop a new one. This is because certain robotic tasks share steps and requirements.

Therefore, if a task requires functionality that is already available, its implementation be-

comes automatic. Hence, this thesis will aim to develop, not only as much functionality

as possible within the time restraints, but also the most common types of functionalities

required in robotic tasks.

1.2 Thesis Organization

The remainder of this thesis is organized as follow: Chapter 2 focuses on the creation of a

strong software foundation which eases the creation and integration of new functionality.

Chapter 3 lists and explains the explored robotic competitions which were used to identify

the new robotic functionalities to develop in this thesis. Chapter 4 presents an explana-

tion of how autonomous navigation can be achieved in robots. Furthermore, it explains

what navigation-related functionalities were created. Chapter 5 focuses on the communi-

cation between the robot and humans. Both ways of communication were implemented

and explained. Chapter 6 describes the ”help-me-carry” task. Since it was mostly imple-

mented by a colleague, the chapter focuses on the explanation of the improvements that

were made to it, as well as the way the task was integrated. Chapter 7 describes the imple-

mentation of the ”Restaurant” task, with a focus on the creation of a method that detects

when people handwave. Chapter 8 explains how the ”Speech, Object and Person Recog-

nition” task was implemented, which required the creation of an object recognition model

as well as a way for the robot to understand a question and provide an accurate answer.

Chapter 9 explains the implementation of the ”Elevator” task, where a dynamic approach

was developed which allows the robot to enter and exit any type of elevator. Chapter 10

incorporates the description of two tasks ”Welcoming Visitors” and ”Catering for Granny

Annie”. One requires the robot to identify people while the other requires the robot to

identify what verbal command was spoken. Chapter 11 describes the implementation of

the final task named ”Getting to know my home”. The task requires the robot to identify

changes made to the environment. A dynamic approach to obtain the initial information

of the environment was created. Finally, conclusions are drawn in chapter 12 and a review

of the work the developed work is outlined.

3

Chapter 2

Foundations

Before being able to work on new software, the robot needs to be properly configured. The

configuration of the robot at the start of the project was outdated. To develop the best pos-

sible software, it is best to use the latest versions of the libraries and frameworks. There-

fore ROS and the necessary ROS packages needed to be updated. Additionally, the com-

puter’s operating system was also outdated and, combined with the fact that the newest

ROS version was incompatible with the current operating system’s version, it was also up-

dated. Also, a few tools were developed to support the future development and integration

of new software. This chapter is dedicated to the explanation of what updates were done

to the robot’s software as well as what tools were developed with the intent of providing a

solid foundation for future software development and integration.

2.1 Software Updates

The starting setup was still using ROS Indigo which was released back in 2014. The lat-

est ROS version is Melodic. There are other three ROS versions in between Indigo and

Melodic. Needless to say that ROS was heavily outdated and required an update. On the

other hand, the computer’s operating system, Ubuntu, was still on version 14, while the

latest version, at the time of this project’s development, is 18. This combined with the

fact that ROS was only compatible with Ubuntu 18 made the decision to update Ubuntu

unquestionable.

These decisions did, however, come with a few downsides. Unfortunately, TurtleBot2’s

ROS packages weren’t yet released for ROS Melodic. This fact made the installation of

these packages more complicated than just using the usual package installer. The pack-

ages had to be installed from source. Additionally, changes had to be made to make them

work in ROS Melodic.

2.2 Process Controller

Before the explanation of what is the process controller, it is necessary to first understand

why it was created. Consequently, to understand why it is necessary, it is required to

understand how ROS works. It is worth pointing out beforehand that the following ex-

planation is very general and that ROS has many other features than the ones that will

be mentioned. This explanation’s purpose is to simply point out problems that led to the

creation of the process controller. In a nutshell, the Robot Operating System (ROS) works

through the creation of nodes.

4

There can be different types of programs, each with its different utility for the robot, how-

ever, there needs to be a way to integrate the newer programs with the current ones. This

is done by making each program be its own node. ROS then provides ways for different

nodes to communicate with each other through tools such as topics. All the nodes and the

information passed through them are controlled by a master node, roscore. Some nodes

provide information by publishing it to the topics (publishers), while other nodes may

then use this information by subscribing to the topic and reading the information as it is

published (subscribers). Because of this, if a program requires a specific type of informa-

tion, then the program responsible for publishing this information to the topic needs to be

running, else the subscriber will not receive any information. For example, if a program

wants to have access to the images captured by a kinect camera then a process responsi-

ble for publishing these images to topics has to be running. Hence we can say that this

program is dependent on the execution of a certain process to work. All programs that

create a node are dependent on roscore to be running as this is the program that regis-

ters and keeps track of all the nodes, as well as controls the flow of information. Without

it, no nodes can be registered, meaning that no publishers or subscribers can be initial-

ized, hence no communication can occur between programs. Additionally, nodes must be

unique, two nodes can not exist with the same name. Meaning that a second process that

tries to launch the duplicate node will crash. The solution isn’t as simple as just assuring

that the same program isn’t called again if one instance of it is already running, because a

different program may share the same node and therefore still cause the crash. This idea

can be understood by analysing Turtlebot2’s 3dsensor launcher and AMCL’s launcher.

Both require the use of the kinect camera, hence they share some nodes. Consequently, if

one is launched while the other is running, one of them will be closed and then the logic

of the program that was dependent on the process that was closed will fail. In a nutshell,

the problems that need to be addressed are the following:

• Duplicates - A second instance of a program that initiated a node can’t run.

• Dependencies - Some processes depend on the execution of others.

• Incompatibilities - Some processes can’t be executed at the same time.

These problems can be avoided by considering them every time a program, which needs

to launch a process, is created. The program can check if the processes that it depends

on are running, if the process is already running and if incompatible processes are run-

ning. However, this means that the logic will be rewritten every time a new program that

launches a process is created. In the long run, making changes and maintaining the syn-

chronization of all the different modules will become unmanageable. Because of this, it

is better to create a centralized program that takes care of launching new processes and

handling all the problems. Then, if changes need to be made, they only need to be done on

this program, rather than searching for all occurrences of it on all the different programs.

We will refer to this program as the process controller.

5

2.2.1 Implementation

This program keeps track of all the processes that were started through it by storing them

in a dictionary. This dictionary maps the process’s identification, a unique key, to the

actual process.

2.2.1.1 Starting a process

This is the main function of the program. It receives the command string to be executed

as well as its identification key. The key’s value is somewhat irrelevant but it must be

unique in the set of all process keys. The program will then detect if the key exists in its

dictionary. If this is not the case then it will start the process and add it to the dictionary.

If it does already exist then it will check if the process is still running. If it is running then

it won’t do anything to avoid duplicates. If on the other hand, the process is not running

then it the function will start it. This case corresponds to a process that ran before but

either finished or its stop function was called, hence why it exists in the dictionary. The

execution of the process is done by using a python library named subprocess. A new shell

is created where the process will be executed.

This function starts a process by receiving a command. With this logic, the problem of

having duplicate processes is avoided. However, the other two types of problems can still

occur and must be tackled. Yet, the dependencies depend on the process itself and need to

be individually specified. Because of this, each process must have a start function where

the processes it depends on are started (by calling their respective start functions).

In order to fix the problem related to incompatibilities, we will compare the nodes that the

process would register with the nodes already registered. If the process wishes to register

a single node that is already registered, the launching of the process is cancelled. This

means we are prioritizing the processes that already running and protecting them from

crashes due to incompatibilities. If a process fails to start because of nodes already being

registered, then the programmer must change the logic of the programs as it contains

conflicts. The list of nodes that are registered at a specific time can be obtained by calling

the function 'get_node_names' from the rosnode library present in ROS’ Python API.

The nodes that the process wishes to register have to be identified in the process’ start

function. To identify the nodes registered by a specific process, the process needs to be

launched and the previous function must be called before and after the launch. The nodes

registered by the process are the ones that were not registered before the launch.

Additionally, there is one last problem to take into consideration. The subprocess library

starts a process in a different thread and returns the control of execution to the main

thread immediately after. This means that the next instruction of the main thread may

occur before the process is fully operational and, considering that most ROS processes

take a few seconds to initialize, this is most often the case. However, when a program

calls the function to start the required process it expects the process to be running when

the function finishes.

6

The nodes that the process initializes aren’t registered instantly. This fact means that

if the program depends on the creation of these nodes and therefore starts the process

responsible for their creation but doesn’t wait for it to register them, then it will fail or

potentially crash. Because of this, the start functions must wait for the process to be fully

initialized before returning. This is achieved by waiting for all the nodes that process is

expected to register in roscore to be registered.

The list of registered nodes is obtained using the function mentioned before. Since we

know the nodes that are launched by the process (to avoid incompatibilities), we can sim-

ply wait for these to be present in the list. A function was created to achieve this. It receives

a list of nodes and only returns when all of them have been registered.

The process controller should provide an interface to start and stop every single type of

process. Because of this, if more processes are necessary other than the ones that are

already provided with this project, then the new start function should follow the following

formula:

1. Have a unique key to identify the process in the dictionary.

2. Specify the nodes that it wishes to register.

3. Check if any of the nodes is already registered and if so stop the launch.

4. Start the processes it depends on by calling their respective start function. All of

them have to at least call the start function of roscore.

5. Call the start process function to start a process with the respective command and

key.

6. Wait for its nodes to be registered.

2.2.1.2 Stopping a process

It is best practice to stop a process after the program that required it no longer needs it.

Both for CPU optimization but also because it may prevent the execution of processes that

share registered nodes. This function receives the key of a process and checks if it exists

in the dictionary. If not, then the process doesn’t exist therefore can’t be closed. If it exists

then it checks if the process is running. If it isn’t running then it is already stopped hence

nothing needs to be done. If it is running then it stops it. The function waits for the process

to close completely before returning rather than just sending the signal to terminate and

immediately returning. This way we don’t risk starting an incompatible process whilst the

other is still ’cleaning up’ and consequentially leading to a crash.

7

2.3 Conclusion

In this chapter we identified that the initial robot setup was heavily outdated. Therefore,

both ROS and the operating system, Ubuntu were reinstalled. However, this fact meant

that Turtlebot2’s packages had to be manually installed which required some tinkering.

Secondly. we identified that most programs rely on the execution of ROS processes to

obtain external information. However, the simultaneous execution of certain processes

leads to fatal errors. Therefore, a program was created which handles the launching, exe-

cution and termination of all ROS processes. All of these changes create a stable founda-

tion for the creation of new robotic functionalities.

8

9

Chapter 3

Robot Tasks

The goal of the project is to provide the robot with increasingly more functionality to al-

low it to consequentially solve increasingly more tasks. Then, use the new capabilities to

provide utility around campus as well as participate in robotic competitions. Therefore,

it becomes necessary to identify and list the functionalities that need to be developed.

When it comes to campus utility the possibilities are endless, the only restrictions that

do exist have to do with time constraints and the robot’s components. The competitions,

however, provide a rule book where the tasks that the participants must complete are well

documented including goals and restrictions.

By implementing a task for a specific competition, the developed functionality can likely

be partially or, in some cases, completely used around campus. Because of this, this chap-

ter will focus on the exploration of possible competitions that the robot can participate

in. However, with this said, these are team competitions, they require multiple members

because it is impossible for one person to develop all the functionalities required for the

robot to compete. Because of this, it is necessary to select tasks to solve in the scope of this

project taking into consideration the already available functionality developed by my col-

leagues. This chapter is dedicated to the explanation of the chosen tasks and the reasons

behind each respective choice. At first, a summary of the explored competitions will be

provided. Then the tasks that were selected from the competitions will be explained, ac-

companied by the reasons that led to their choice, as well as justifications as to why other

tasks were discarded.

3.1 Competitions

Some research was done on the available competitions considering their quality, challenge

and location. RoboCup@Home league [MRW
+
19] is an annual international competition

for autonomous service and assistant robots to compete in. Its main goal is to encourage

the development of new technology for personal and domestic applications. Anyone with

an autonomous robot can participate. The @Home league consists of a sequence of tests

followed by an open challenge to demonstrate the abilities of the robot. To participate in

the open challenge the robot must participate in at least one test. The open challenge is

composed of two stages each with its own specific set of tasks followed by the final stage

where random tasks from the previous stages are selected. The task list changes from year

to year as the standards of quality increase. This project references the 2019 competition.

10

The previous competition corresponds to the end goal of socialab’s robotics’ work. How-

ever, it is better to start low and increasingly tackle bigger challenges. Because of this, the

European RoboCup@Home Education Challenge 2019 was also explored. This challenge

corresponds to a single stage with a set of tasks. Additionally, SciRoc challenges were ex-

plored. These challenges are divided into tests called episodes. The ’1ST ERL Smart CIties

RObotics Challenge, Milton Keynes, UK, 2019’ was the latest European challenge by the

time this project was created. This combined set of tasks is where this project’s tasks will

be selected from.

3.1.1 European RoboCup@Home Education Challenge 2019

This challenge is composed of a set of three tasks. Each task requires the robot to do

a sequence of steps which are listed below. Each step tests the robot’s capabilities in a

specific category. The 2019’S tested categories can be summarized in:

• Navigation - the robot’s ability to move around the room, going to specific locations

and avoiding obstacles along the way.

• Speech - the ability to verbally communicate with humans.

• Following - the ability to follow a person.

• Speech Recognition - the ability to detected and interpret a person’s speech and sub-

sequently perform the correct and desired task.

• Person/Face Detection - the ability to detect who is in the frame.

All three tasks of the challenge were picked and implemented in this project. They are

listed and explained in the following sections.

3.1.2 ERL Smart CIties RObotics Challenge

This challenge is divided into episodes each focusing on at least one functionality type. At

the moment of the development of this project, the available episodes are the following:

’Deliver coffee shop orders’, ’Take the elevator’, ’Shopping pick and pack’, ’Open the door’

and ’Fast delivery of emergency pills’. Only the first two will be attempted as the other

three require manipulation to grab bags, open doors and when it comes to the last one,

a drone is required. The robot is not a drone and doesn’t yet have an arm to perform

manipulation therefore these tasks can not be tackled.

11

3.1.3 ERL Consumer Local Tournament

ERL Consumer [AAA
+
18] is a competition that challenges robots to perform home ac-

tivities for humans. This competition’s challenges, even though they are set in domestic

environments, resemble similar challenges to be posed in smart city environments like

shopping malls, such as recognising and picking objects, moving outside the home to

populated areas, and/or taking elevators between doors. Therefore, ERL Consumer lo-

cal tournaments aim to prepare teams for the ERL Smart City Challenges. At the time of

developing this project, a tournament is set to happen in Portugal. Because of this, all the

required tasks will be attempted so that a university team can hope to participate.

3.1.4 RoboCup@Home league Open Challenge

As mentioned before, this competition is the biggest of its kind, the most competitive and

consequently the hardest to participate and be competent in. The chosen task to tackle

was the Restaurant task as it is similar to tasks in the previously mentioned challenges,

this will be explained in more detail below. Most of the other tasks require manipulation

and/or command interpretation. This last one is a problem because there isn’t an available

list of specific commands and therefore, for one to compete and complete this challenge,

a large number of commands would have to be developed which would make a project

of its own. Additionally, this type of feature will be implemented to a certain extent with

speech recognition for a few tasks.

3.2 The chosen tasks

In this section, all the chosen tasks are explained in detail. The competition from where

they were extracted is identified. Then an overall explanation of the task is presented,

followed by a detailed list of steps required to complete the task.

3.2.1 Help me Carry

This task was selected from the European RoboCup@Home Education Challenge 2019.

The goal of this task is for the robot to help carry bags from one location to another. This

task does not test manipulation as the bags are placed on the robot by the human. The

main evaluated functionality is navigation because the robot is expected to navigate to the

bag’s initial location by following a human and then autonomously navigate to the location

where the bag must be delivered to. Additionally, speech recognition is evaluated as the

robot needs to understand when to stop following the human and where the bag must be

delivered. This task was mostly implemented by a colleague during the development of his

bachelor’s degree project. However, there are missing components in his implementation

as well as room for improvement. These will be discussed in the section of the task’s

implementation.

12

The ”Help-me-Carry” task is composed of the following steps:

• Setup : The robot starts in a known home position. A person waits for the robot in

a known location.

• Step 1: The robot goes to the human’s location. This step tests Navigation.

• Step 2: The robot speaks indicating it’s ready to follow. This step tests Speech.

• Step 3: The robot follows the person. This step tests Person Detection and Naviga-

tion.

• Step 4: The robot listens to the person’s command indicating where to deliver the

bag that was just placed on it. This step tests Speech Recognition.

• Step 5: The robot autonomously navigates to the specified location. This step tests

Navigation.

• Step 6: The robot speaks indicating it has arrived. This step tests Speech.

3.2.2 Speech, Object and Person Recognition

This task was selected from the European RoboCup@Home Education Challenge 2019.

As the name says, the task aims to test the robot’s ability to recognize speech, recognize

objects and recognize people. However, the person recognition component of this task is

somewhat misnamed as there is no person recognition involved. The robot simply rotates,

moves closer to the person that was initially behind it and greets them. This fact will

become clearer during the explanation of this task’s implementation because the robot

will simply move closer to the closest object in front of it, it is just assumed that the object

is a person in this task. An object is then shown to the robot, the robot must recognize it

and speak the object’s name. Lastly, the human asks the robot a question as to which the

robot must provide the correct answer.

The task can be divided into the following steps:

• Setup: A person, holding an object, stands behind the robot.

• Step 1: The robot turns around facing the human. This step tests Navigation.

• Step 2: The robot gets closer to the human. This step tests Navigation and mainly

Person Detection.

• Step 3: The robot speaks, greeting the human. This step tests Speech.

• Step 4: The person asks the robot a question. The robot must answer accordingly.

This step tests both Speech Recognition and Speech.

• Step 5: The human shows the object to the robot. The robot must identify the object

correctly and speak its name. This step tests Object Detection and Recognition and

Speech.

13

3.2.3 Restaurant

This task was selected because, not only does it not require manipulation or any other

type of unavailable hardware, but also because some work has been done as it was part

of a colleague’s bachelor’s degree project. However, he barely got started as it wasn’t his

main focus, nonetheless, some useful components are available which will help.

Additionally, this task is present, with minor differences, in all three competitions. This

means that, by implementing it, we essentially implemented three tasks in one. The goal

of the task is to create a table serving robot. The robot needs to note and deliver food

orders from/to clients in the room. The task can be divided into the following steps:

• Setup: The robot starts in a known home position, named the bar. A person, that

performs the role of a barman, also awaits in that location.

• Step 1: The robot frequently scans for people waving or verbally calling for it. This

step tests Person recognition (and waving) on top of Speech Recognition.

• Step 2: The robot must then move to the table where the person, that called for it,

is sitting. This step tests Navigation.

• Step 3: The robot then listens to the person’s order and notes it down. This step

tests Speech Recognition.

• Step 4: The robot goes back to the home position. This step tests Navigation.

• Step 5: The robot speaks the order to the barman. This step tests Speech.

• Step 6: The robot returns to the table with the order that has been placed on it by

the barman. This step tests Navigation.

• Step 7: The robot returns to the home position and repeats the cycle.

3.2.4 Take the Elevator

This task was selected from the ERL Smart CIties RObotics Challenge episodes. It con-

sists of providing the robot with the capability of taking an elevator semi-autonomously.

The robot must navigate autonomously in and out of the elevator but can rely on human-

assistance to control the elevator and identify the elevator’s current floor. The implemen-

tation of this task comes with the additional benefit of allowing the robot to move from

floor to floor in campus buildings by taking the elevator.

14

The ”Take the Elevator” task can be divided into the following steps:

• Setup: The robot waits in front of an elevator with people inside.

• Step 1: The robot enters the elevator after detecting the opening of the door. This

step tests Navigation.

• Step 2: Robot speaks to the humans asking them to press a floor number. This step

tests Speech.

• Step 4: The robot waits for humans to indicate that the elevator has reached the

desired floor. This step tests Speech Recognition.

• Step 5: Robot exits the elevator. This step tests Navigation.

3.2.5 Catering for Granny

This task, as well as the following two tasks, belong to ERL’s Consumer Local competition.

In this task, the robot has to understand a set of fixed commands. After understanding the

command the robot will have to perform the corresponding task. The list of commands is

the following:

• Turn on/off the lights - the robot has remote access to a room’s light controls. It can

then turn the lights on or off.

• Lower the blinds - the robot has remote access to the blinds controls. It can then

lower or raise them.

• Find and grab an object - the robot is requested to fetch an object. The robot must

understand which object was requested. It will then have to find it, grab it and de-

liver it. The grabbing part will have to be ignored for the time being as the robot

doesn’t have an arm yet.

3.2.6 Welcoming visitors

The robot has access to a surveillance camera. When someone knocks on the door or

rings the bell the robot will have to identify the person. Depending on who the person is

the robot will then perform a specific task. For example, if the person is the mailman then

the robot would open the door and accept the letter(s).

3.2.7 Getting to Know My Home

In this task, the robot will have to create a map of the room. With it, the robot should be

able to navigate the environment. Then, objects will be pointed to and named. The robot

will have to understand this behaviour and memorize the object. Finally, the robot must

autonomously navigate the room and identify changes that occurred since the learning

phase. These changes include objects moved from their initial location and new objects

placed in the room.

15

3.3 Conclusion

The goal of this chapter was to identify what features should be implemented by the end

of the thesis. To achieve this, research was done on multiple robotic competitions. By

implementing these tasks we simultaneously provide functionality that allows the robot to

participate in such competitions while also gaining some utility for campus usage. Seven

different tasks were selected. After selecting the individual tasks five primary modules

were identified. These are Navigation, Speech, Speech Recognition, Object Detection.

These functionalities correspond to the most common requirements in robotic tasks.

16

17

Chapter 4

Navigation

Most of the selected tasks require the robot to autonomously navigate its environment to

achieve the goals. However, without care, the robot will either not know where to go or

crash in its path. Because of this, a proper navigation module needs to be implemented to

allow the robot to move around the environment safely and effectively. This chapter will

focus on the navigation module explaining how it works and how it was implemented in

our robot. In a nutshell, for the robot to be able to navigate around the environment, a

map of said environment needs to be developed. Then, the robot needs to know in which

location of the map it is at. Lastly, a path to the desired location needs to be created. All

these components will be explained in the following sections.

4.1 Mapping

This step involves creating a map of the environment the robot will navigate in. This is

required because if the robot were to navigate blind, the robot wouldn’t know where in

the environment it is currently standing, therefore it wouldn’t know in which direction it

should move to go to the desired location. A simple analogy can be made by comparing

the robot with someone that decided to travel to a place they have never been before and

have just landed in the airport. How does the person know which direction to go? Well,

the answer is by using a map.

4.1.1 Requirements

The map is created by moving the robot around the environment, allowing its sensors to

capture information about obstacles in it. To achieve this goal, there are a few require-

ments. Besides having a mobile robot, it is also necessary to have some kind of hardware to

act as sensors to capture information about the environment. In this project, a Microsoft

XBOX 360 Kinect camera was used to perform this task. Afterwards, an algorithm to

create a map using the information of the sensors is required. ROS offers many imple-

mentations of the SLAM algorithm to perform this task. This algorithm will be explained

in more detail below. Additionally, it is useful to use a tool that allows the visualization

and control of this process, the tool RViz was used for this.

18

4.1.2 Simultaneous Location And Mapping (SLAM)

SLAM is the algorithm used to generate a map of the room. By reading its name one can

deduce that it also locates the robot in the map that it is generating simultaneously. It

achieves this by reading the data of the robot’s sensors, more specifically the depth data,

gathering a series of 3D views of the environment with approximate positions and dis-

tances, as well as odometry data to know the rotation of the robot’s wheels for localization.

The two most popular SLAM approaches are GMapping and RTAB-Map. Both generate

very similar maps, meaning they have similar performances in this regard. They both im-

plement their version of the SLAM algorithm, therefore they both convert the information

of the sensors into a map similarly. However, there is one big downside to GMapping: the

generated map is static, in other words, once an area of the map is drawn it cannot be

changed. This means that if the room changes, for example by placing a chair in a pre-

viously empty position, this chair will not be shown on the map and, consequently, the

robot may crash into it. On the other hand, RTAB-Map updates the map with the most

recent information of the room. Using the previous example this means that if the map

generates an empty position but later a chair is placed there, the algorithm will detect it

and update the map. Because of this, the latter was chosen in this project as the SLAM

approach to generate the map of the room.

4.1.3 Map

The map generated by the SLAM algorithm is a two-dimensional Occupancy Grid Map

(OGM). It is essentially an image, hence the grid part. Where each pixel in the grid stores

the value of occupancy of that specific place in the map. There are three types of occu-

pancy:

• Unknown - represented by the value -1 (negative one). Visually it corresponds to

the colour grey. It means the robot doesn’t know what exists in this area because the

sensors didn’t capture any information from it. Either because the map is incom-

plete or because this area is unreachable. For example, an area outside of a closed

room is unreachable and therefore, it is marked as unknown.

• Empty - represented by the value 0 (zero). Visually it corresponds to the colour

white. It means that the robot didn’t detect any obstacles in that location, therefore

a path can be created passing through it.

• Blocked - represented by the value 100 (one hundred). Visually it corresponds

to the colour black. It means that the robot detected an obstacle in that location,

therefore the planner can not create a path through it.

19

The map can be obtained by using a service like map_saver available in the package

map_server. It returns two files: a PGM and a YAML file. The first one corresponds to

the actual OGM while the second provides information about the map such as the name

of the corresponding OGM map file and it’s resolution. This file will be further explained

later. The map generation can be visualized using RViz by adding a map tool and linking

it to the topic where the information about the map is being published to.

Figure 4.1: Map of the department obtained using SLAM

4.2 Localization

Localization corresponds to the next step in the chain to achieve navigation. It is the

process of locating the robot in the previously generated map. Continuing with the earlier

analogy, when someone arrives in the airport, in order to be able to navigate around the

city, they need a map and to locate the airport (their current position) on the map before

moving. Otherwise, they would just walk around randomly not knowing if they are getting

closer to their desired destination or farther. This section tackles this problem.

4.2.1 Requirements

The requirements to locate the robot in the map, besides having a map, are similar to the

mapping process. The difference is that instead of using a mapping algorithm, a local-

ization one is required. The localization algorithm uses the information captured by the

sensors to determine where the robot might be on the map. The algorithm used to per-

form localization was MCL and is explained in more detail in the next section. Once again

RViz provides a few helpful tools, this time to visualize the localization process.

4.2.2 Monte Carlo Localization (MCL)

This is the algorithm used to locate the robot in the map generated during the mapping

phase. To achieve this, the algorithm generates a set of possible particles, sometimes also

referred to as poses. Hence, the algorithm is also called a particle filter. Each particle

represents a possible position and orientation of the robot on the map.

20

Similarly to the mapping process, as the robot moves around the room, it collects more

information about its environment. By using this information, more and more particles

that are wrong, are discarded. Over time the remaining particles will concentrate on a

spot. This algorithm is used by the ’amcl’ node that comes in the ROS package of the same

name. This node requires information from the sensors and from the map therefore it

subscribes to their respective topics. The information about the current possible particles

are published into the topic named '/particlecloud'. RViz allows the visualization of

these particles, each red arrow in the image 4.2 corresponds to a possible position.

Figure 4.2: Simulation of localization in RViz

The image represents a typical state of the localization process before the robot has moved

around the environment and collected enough information to precisely estimate its po-

sition. The arrows are already somewhat congregated due to two reasons. First, even

though the robot is stationary, it is already receiving information about the part of the en-

vironment in front of it and in range of the sensor. However, the main contributor to this

is the estimation of an initial pose. This estimation can be done by hand through RViz or,

most usefully, by specifying the pose parameter to AMCL at its launch. If this parameter

isn’t specified then its values reset to zero.

The robot’s current estimated location can be obtained by reading the information pub-

lished to the ROS topic named '/amcl_pose'.

4.3 Path Planning

This step consists of the creation of a path that leads the robot from its current location to

its desired location. Therefore, this step requires an occupancy map, localizing the robot

in the map and a goal location. In other words, all the steps explained before built up to

this. It is important to note that perfect localization isn’t required to create a path. As

the robot moves along the path, the localization algorithm keeps discarding the invalid

particles consequently adjusting the estimate location.

21

However, the poorer the precision of the initial localization the more adjustments will

have to be performed to the path until the goal is reached. A path is created by sending a

goal pose (position and orientation) to a ROS service named MoveBaseGoal. The algorithm

will create a sequence of checkpoint positions that lead to the final position. To reach

each checkpoint, the algorithm will apply velocity to the robot with a direction based on

the current position and the next checkpoint. The information about the calculated path

can be obtained by subscribing to ROS topic named 'MoveBase/plan'. Once again, RViz

provides a tool which allows the creation of a navigation goal as well as the visualization

of the current path. In figure 4.3, an example is presented of RViz visualizing a path after

a navigation goal has been established. The path is represented by the green line.

Figure 4.3: Simulation of path planning in RViz

4.4 Developed Sub-Modules

The first half of this chapter was dedicated to the explanation of how to use ROS’s tools

to build a strong foundation for the robot to perform navigation. This section will focus

on the explanation of what functionalities, that are related to navigation, were developed

and added to the robot.

4.4.1 Pose Tracker

Many tasks need to know the robot’s current position and/or rotation. So instead of hav-

ing to keep re-writing the code as well as potentially, because of multi-threading, having

the robot asking for its position on two different modules at the same time, a sub-module

was created solely for this purpose. This feature will keep a global variable that corre-

sponds to the robot’s current pose. This variable is updated frequently and can be accessed

by all the other modules that need it. A subscriber is created for the /amcl_pose topic that

is responsible for keeping track of the robot’s pose. Every time a callback is received, the

global variable is updated with the current pose of the robot.

22

4.4.2 Rotation

The Speech, Object and Person Recognition task has a step that requires the robot to ro-

tate 180º degrees (around its vertical axis). Because of this fact, this task was the main

motivator for the development of this functionality. However, since rotation is such a

general and useful behaviour its implementation will provide a simple and flexible inter-

face so that other modules can easily use it to rotate the robot. This means that instead

of just developing a feature that rotates the robot 180º, to achieve the requirements for

the previously mentioned task, the rotation sub-module will instead allow the callers to

specify the rotation angle. Additionally, to allow for even more flexibility, the callers can

also choose between rotating the robot a certain amount of degrees or rotating the robot

to achieve a certain rotation value in regards to its initial reference point. The difference

between these two is explained below.

4.4.2.1 Implementation

When the TURTLEBOT2 robot is initiated it can be moved around by publishing velocity mes-

sages to certain ROS topics. These messages are divided into two components: linear

and angular. If the linear values aren’t null then the robot will move in the provided di-

rection. On the other hand, if the angular values aren’t null then the robot will rotate.

Many ROS topics achieve this and they may vary from robot to robot. For this project the

chosen topic was /mobile_base/commands/velocity. Now that we’ve figured out how to

rotate the robot, the problem that emerges is how to know how many angles the robot has

rotated when provided with an angular velocity. To solve this, we’ll make use of the pre-

viously developed sub-module that keeps track of the robot’s current pose. As mentioned

before, this sub-module keeps track of the robots current pose which contains informa-

tion about the robot’s current position and current rotation values. Therefore, by reading

these values, that keep being updated, we know what was the robot’s initial rotation and

what is its current rotation as it is being rotated by publishing messages with angular ve-

locity to the topic. Consequently, when its current rotation hits the desired value, we stop

rotating the robot by publishing a velocity message with null values to the topic, achieving

our goal.

The pose’s rotation values are in quaternions, the angular velocity accepts radians hence a

conversion had to be done. ROS’ transform package provides a function to do this conver-

sion. Additionally, because it is more intuitive to work with degrees rather than radians,

the function will accept degrees as its inputs. Therefore, a conversion between these two

units was implemented. The angular velocity to provide the robot with at a given moment

is calculated based on the difference between the robot’s current rotation value and the

goal rotation value. The farther away the robot is from its goal, the faster it will move and

vice-versa. The robot won’t achieve dangerous velocity values because the rotation an-

gle will be normalized between -180º and 180º. This range corresponds to ROS’ rotation

range.

23

The robot will stop rotating when its current rotation value corresponds to the goal rota-

tion. However, since the robot may take a long time, or never manage to hit the perfect

rotation, as well as the fact that rotating 179.6º instead of 180º is acceptable, a config-

urable parameter is provided. This parameter corresponds to an acceptable error thresh-

old. As mentioned in the beginning, two functions were created: one that rotates the

robot a certain amount of degrees and another that rotates the robot to achieve a certain

rotation value. The latter’s implementation corresponds to the previous explanation. The

first simply adds the desired rotation that it receives from its input to the robots current

rotation, obtaining a goal rotation, and passes it to its cousin function, this way no code is

re-written.

4.5 Conclusion

In this chapter, we exposed the utility that autonomous navigation provides to a robot.

Then, we concluded that to reach this goal there are three requirements: mapping, local-

ization and path planning. Each of these requirements was studied, explained and im-

plemented. Afterwards, functionalities related to navigation were developed and their

implementation described.

24

25

Chapter 5

Human-Robot Communication

This chapter explains how both speech and speech recognition modules were implemented.

The communication of the human with the robot and of the robot with the human is dif-

ferent, however, since they are intrinsically connected they were grouped into a single

chapter. In a nutshell, the robot communicates with the human using a text-to-speech

library and the human communicates with the robot by the means of a microphone and

software that converts speech into text.

5.1 Text-to-Speech

This section explains how the communication of the robot with the human was imple-

mented. This communication corresponds to the implementation of the speech module

required in the ’Robot Tasks’ chapter. The chosen approach was to use a library that con-

verts text into audio. This audio will then be played simulating speech. Google Text- To-

Speech (GTTS) library was chosen for this job. It is a free to use python library that

interfaces with google’s text-to-speech API meaning it is a perfect fit for our problem. It

provides the ability to generate audio files where an input text is ’spoken’. Lastly, a way of

playing this audio was required. To achieve this python’s Operating System (OS) library

was used. Below is a code snippet of the implemented speech module.

def speak (t e x t) :

language = ” en ”

file_ name = ’ /tmp/ output . mp3 ’

output = gTTS (t e x t= text , lang=language , slow= False)

output . save (file_ name) # create f i l e

os . system (” play ” + file_ name) # play f i l e

The GTTS library is used to generate the speech file where the requested text is spoken.

This file is saved in the temporary directory as it’s utility ends with this function’s execu-

tion. Then the audio is played using the OS library.

5.2 Speech-to-Text

This section explains how the communication of the human with the robot was imple-

mented. This communication corresponds to the speech-recognition module required in

the ’Robot Tasks’ chapter. The chosen approach was to use a ’ReSpeaker Mic Array V2.0’.

The ReSpeaker V2.0 is based on XMOS’s XVF-3000. This chipset includes many voice

recognition algorithms to assist in performance.

26

Additionally, there is a ROS package developed to interact with this microphone, named

respeaker_ros. It provides a service that when launched publishes the microphone’s in-

formation, such as sound direction and localization, into each respective topic. Further-

more, there is another useful ROS package called ros_speech_recognition that takes the

microphone’s audio and converts the speech into text form.

In order to obtain information provided by the microphone one simply has to launch

respeaker_ros launch file and create a subscriber to the respective topic. Such behaviour

is explained in the code snippet below:

def callback_ speech_ to_ text (data) :

print (” Speech=” + str (data))

def callback_ sound_ direction (data) :

print (” Direction=” + str (data))

rospy . Subs cr iber (” / sound_ direct ion ” , Int32 , ca l lback_ sound _ direct ion)

rospy . Subs cr iber (” / speech_ to_ text ” , S tr ing , ca l lback_ speech _ t o_ t ex t)

In the previous example two subscribers were created, one receives speech data and the

other receives audio direction data. Alternatively, if one is only interested in receiving

the audio’s speech, one simply needs to implement a ’SpeechRecognitionClient’ that fre-

quently publishes the detected speech in the last few time frames. This is exemplified in

the code snippet bellow:

c l i e n t = Speech Recognition Client ()

while True :

r e s u l t = c l i e n t . recognize ()

print (r e s u l t)

5.2.1 Speech-Recognition Functions

Based on the previous logic, three functions were created to fill the different needs re-

lated to speech-recognition. The first is a function that returns the first string of speech,

recognized by the speech to text algorithm after its call. This function is useful for when

the robot accepts multiple answers from the human and needs to identify which one was

spoken in order to perform the task associated with each answer. The remaining two

functions receive a string as input and only return the execution control when this string

is present in the recognized speech. One returns when the recognized sentence is exactly

the same as the input string, while the other returns when the string is present in the

recognized sentence. The functions are useful for when the robot waits for the human to

speak a single and specific sentence or word.

5.3 Conclusion

This chapter explained the implementation of the two communication-related modules:

speech and speech recognition. The first is used to allow the robot to verbally communi-

cate with humans. The implementation is based on the use of a text-to-speech library. A

27

function was created which receives as input the text to be spoken by the robot. To per-

form speech recognition, a ReSpeaker microphone array was used to capture audio. The

audio stream is then passed to a speech-recognition algorithm present in an open-source

ROS package with the same name, which converts it into text. Lastly, three functions were

created that fill the different needs related to speech-recognition.

28

29

Chapter 6

Help-me-Carry

This chapter will focus on the explanation of how the ’help-me-carry task’ was imple-

mented. This task was initially implemented by a colleague named António Fernandes

[FER18] for his bachelor’s degree project. Therefore, most of the work was already done

and available. However, some changes were required. Ideally, the robot is controlled by

voice, not only is this a requirement in the competitions, but it is also more practical than

his approach which was to use QR codes. Rather than a person carrying all the QR codes

and showing the correct one for the current step, the person will just have to speak to the

robot. Additionally, the code was structured in a state-machine architecture which was

changed for two reasons. On one hand, it is quite useless as each state of the machine

can just be replaced by an ordinary function call. On the other hand, the code is static,

each step is used in the task but can’t be used in other tasks. This fact was fine in An-

tónio’s project because he only needed to develop this one task. However, the goal of this

project is to develop modular code to be reused in other tasks if necessary. Therefore, the

code was segmented into new modules in addition to the previously developed ones in

this project.

In short, two new modules were obtained from Antonio’s code:

• Move to Human - Calling this module will make the robot get closer to the nearest

object in front of it. The distance can be tuned in a parameter. This module is im-

portant for the ’follow the human’ module because the robot will follow the closest

object which is guaranteed by this step.

• Follow Human - This module calls the ’TurtleBot_Follow’ package which in result

makes the robot follow the closest object in front of it. Therefore, if the human is

the closest object, the robot will follow him around.

The changes made to the initial implementation of the task can be summarized into:

• Code was segmented - as mentioned before two functionalities were obtained from

Antonio’s code and transformed into modules. This change makes it so that other

programs (or tasks) can just call the functions that implement them, rather than

having to rewrite the entire code.

• Code was cleaned and optimized - the state-machine architecture was removed and

certain code instructions were removed.

30

• Move closer logic - The robot moves closer to the human by subscribing to a topic

which receives depth data from the camera. This data comes in the form of a ma-

trix of depth values. The robot then obtains the distance to the closest object by

finding the centre value. However, this implementation is susceptible to errors. On

one hand, the method only accounts for a single value. If the human isn’t centred

in the camera’s frame then the centre value will not correspond to the distance to

the human. Additionally, if this specific value is wrong, the distance to the closest

object will consequently be wrong. One the other hand, the data published by the

camera can contain NaN (not a number) values. These can occur when there are

no objects in the range of the camera’s depth range. Therefore, if the centre value

is NaN then the program fails. This problem occurred quite frequently which lead

to its identification. To prevent all these problems from happening the robot will

obtain the distance to the closest object by calculating the mean of values around

the centre point of the matrix. The calculation of the mean will first identify and re-

move NaN values from the equation. The size of the range around the centre point

is a configurable parameter. From testing the size of the range isn’t very restrictive

in precision and a range of 20 cells proved to consistently work.

• Speech recognition instead of QR codes - the robot will move from step to step either

automatically or, if waiting for a human command, by recognizing speech using the

previously developed speech recognition module.

• Speech for feedback - the robot will speak to the human giving him feedback about

the state of the task for the human to know if the robot understood his previous

command and to understand what do robot is currently doing or will do next. This

will be clearer bellow.

The resulting task’s functionality can be summarized in the following steps:

1. The robot waits for the human to say ’help me carry’.

2. The robot calls the ’move closer’ module to get closer to the human trying to reach

the distance specified by the customizable parameter, which by default is 20 cen-

timetres. This is necessary because the ’Turtlebot_follower’ package will cause the

robot to follow the closest object. Therefore by making the robot get closer to the

human we assure that the closest object is the human and consequently guarantee

that the robot will follow him.

3. The robot speaks informing the human that its ready to follow by speaking ’Ready

to follow’. It calls the ’follow human’ module.

4. During this process the robot is listening for human commands and waits specif-

ically for the human to say ’stop’. This means that they have reached the desired

destination and therefore the robot will stop following the human.

5. The robot will inform the human that it will no longer follow by speaking ’I will stop

following’.

31

6. The robot waits for the human to place the bag that will be delivered. It specifically

waits for the verbal command ’go’.

7. Once the robot hears the command, it will navigate to the specified location in the

map where the bag should be delivered to. This is done through the navigation mod-

ule. Therefore, a map of the environment must be created and specified a priori. The

robot uses AMCL to localize itself on the map and to move to the goal location. This

also implies that the coordinates associated with the spoken location are available

in a variable.

6.1 Conclusion

This chapter explained the implementation of the first task, named ’help-me-carry’. The

task was initially developed by a colleague, however, his implementation left room for im-

provement. In the initial implementation, the robot progressed through the task by the

means of QR codes. This meant that the human would have to carry all the required QR

codes as well as find and show the correct one for the current step. This mechanic was

changed to the recognition of speech by the means of the implemented module. Addi-

tionally, the code was cleaned and feedback is provided through the task by allowing the

robot to communicate its state through the speech module. Then, some changes were

performed on the algorithm which brings the robot closer to the human. Lastly, the in-

dividual parts of the algorithm were extracted and transformed into individual modules,

allowing them to be called not only by this task but also to any other program that needs

them without requiring the re-writing of the code.

32

33

Chapter 7

Restaurant

This task is common to both SciRoc and RoboCup@Home competitions making its im-

plementation that much more valuable. This section is dedicated to the explanation of

how each step of the task was implemented. This task makes use of a handwaving detec-

tion module that was created specifically for it as well as other general modules such as

navigation, speech and speech recognition.

The task’s functionality can be summarized in the following steps:

1. The robot uses the handwaving detection module to detect people handwaving at it.

2. A conversion from camera coordinates to map coordinates is applied, obtaining the

position of the table where the person that wove at the robot is located on the map.

3. The robot moves to the table’s coordinates.

4. The robot interprets the clients’ speeches using the speech recognition module and

notes down the order.

5. The robot moves back to the bar and speaks the order that it received.

6. The robot waits for a verbal command ”deliver” indicating that the order’s items

have been placed on top of it.

7. The robot goes back to the table, using the same coordinates.

8. The robot waits for a verbal confirmation ”thank you” that indicates that the clients

have grabbed their food.

9. The robot goes back to the bar repeating the process all over again.

7.1 Handwaving Recognition

The robot can detect hands and faces in a specific frame through the means of cascade

models. However, detecting handwaving implies that the movement of the hand over a

set of consecutive frames is analysed. To solve this problem, a few strategies were at-

tempted before arriving at a working solution. Initially, the idea was to create a dataset

of some sort that described the movement of the hand when a person is and isn’t wav-

ing it, then training a model to classify these movements. However, over time, with the

occurrence of more and more problems and with the emergence of new ideas, the strate-

gies were modified and the need for a dataset was removed. This chapter will start with

the explanation of the attempted strategies, why they failed and how they led to the final

algorithm. Afterwards, the final solution is explained in detail.

34

7.1.1 Attempted strategies

During the process of discovering the best method to detect handwaving, a few strategies

were attempted. Though these strategies didn’t work, it is important to mention them as

they were the reason as to why some techniques were discarded and others used. In this

section, all of the attempted and failed strategies will be exposed as well as the reasons as

to why they failed.

7.1.1.1 Intensity Matrix Approach

Detecting handwaving implies analysing the movement of the hand over a set of frames.

The initial idea was to create a dataset, where the data would describe the movement of

the hand in some way. With this dataset, a model would be trained and ideally, it would be

able to determine if a specific movement corresponded to a handwave or not. Additionally,

the position of the face in the frame was also considered for a couple of reasons: on one

hand, the task requires that the ’clients’ of the restaurant must be looking directly at the

robot whenever they handwave at it, on the other hand, even if the previous requirement

did not exist, a person’s hand is relatively close to their face when handwaving, this relative

position can be useful to separate handwaving from other types of hand movements.

This first strategy attempted to combine a whole set of frames in a single matrix. This

matrix would describe the movement of the hand and face during the set of frames to the

classifier. To achieve this the hand and face detectors were applied on each frame of the

set, obtaining the position and dimensions of the hands and faces existing on each of the

respective frames. Afterwards, the centroids of all the hands and faces were calculated

giving the location (pixel) of the respective hand or face in the frame. Then, an empty

matrix (all of its values are set to zero) with the same height and width as the frames was

created. Since the Kinect camera captures images with a size of 640 x 480 this was also

the size of each matrix. Subsequently, the values of the matrix in the previously calculated

centroid’s positions (same row and column) were changed to describe the position of the

hands and faces over the set of frames. The intensity of these values increases with the

index of the frame and with the index of the hand/face in the frame as there can be multiple

hands and faces in the frame. This way no value in the matrix is the same. The hope

was that, with the increase of value with frames, the training framework could detect the

sequence pattern by figuring out that the higher the value the later in the set it occurred.

Also, it was thought to separate the values of the faces from the ones of the hands while

also keeping their correlation in the frame. In other words, tell the classifier that the value

is from a hand or a face, but encoding the values in a way that the classifier could tell that

a face pixel and a hand pixel occurred at the same time (same frame). This was achieved

by encoding the values, adding 1000 to value of the hand to obtain the value of the face.

This way the values of the hands are bellow 1000 and the faces above it, separating the

two, but the value in the ’tens’ which indicates the frame, is the same between the face and

the hand.

35

Figure 7.1: Example of how one intensity matrix is obtained

A dataset with 2208 images was created using the Kinect camera to capture the scene.

The images captured by the camera were published to ROS topics. Rosbag was used to

obtain the sequence of images published to these topics. After applying the intensity ma-

trix method and using a size of 10 frames per set a matrix dataset was obtained containing

2098 entries.

Since each matrix is 640 x 480, this means the problem is 307200 dimensional. Con-

sequently, 2208 representatives of the space are not enough to achieve decent density.

Because of this PCA was used to reduce the dimension of the space. The top 20 compo-

nents were selected corresponding to a loss of information of less than 2%.

Lastly, the data was separated into a test set and a training set. 10% of the data was used for

testing leaving the remaining 90% for training. The two sets were created while keeping

the percentage of the two classes. 10 different types of classifiers were used for training.

Since some classifiers use some kind of randomness, such as initial weight values in a

neural network, the results may vary. Because of this, each classifier was trained 10 times.

The average scores for the model obtained by training each classifier 10 times can be seen

in figure 7.2.

Figure 7.2: Accuracy of different machine learning methods on intensity matrix test set

After observing the results of the previous figure one can conclude that they aren’t good

enough. Still, to avoid any doubts, the models were tested in a real environment. A pro-

gram was developed to store the last 10 frames, generate the intensity matrix and pass it

to the models. The result was clear, the models would never detect handwaving and would

always guess ’not waving’. It’s pretty clear after attempting this solution why it failed.

36

The generated matrix has 307200 values and only a handful are different than 0. Ad-

ditionally, the values of the hands and faces will rarely be in the same pixel because the

person may be closer or farther away from the camera, may be a taller or a shorter per-

son, standing or sitting and so on. This means that, for this strategy to have any chance of

working, one would need to generate a dataset of millions of images to generate all pos-

sible intensity matrixes for this handwaving problem. To add insult to injury it was also

identified that the hand and face detection frameworks sometimes fail to detect hands

and faces in cases where these are present in the image. This mainly happens when the

hand and/or face was moving very fast and the camera captured motion blur. This con-

sequently results in even less density of hand and face points in the matrix. Needless to

say, a better approach was necessary.

7.1.1.2 Position Difference Approach

This approach attempts to fix some of the problems identified with the previous one.

Mainly it attempts to solve the problem that the previous one had with its matrix. The

matrix had the same size as the image, therefore it had 307200 values, additionally only

a handful of them were different than 0. This meant that only less than a percent of the

information of the matrix was useful to the classifier. Consequently, all of the classifiers

would disregard these useful values and always guess ’Not waving’. This new approach

attempts to correct this by only providing the classifier with useful information. In short,

not only will this new approach reduce the dimensionality of the problem but it will also

increase the density of useful information.

Before moving on, it is important to mention that this approach was not implemented and

therefore not tested. It didn’t pass the idea stage because of a problem identified with the

generation of the dataset combined with the emergence of new ideas of which lead to the

final solution. As mentioned before when handwaving, the movement of the hand may be

too fast, which leads to the Kinect capturing motion blur which consequently means that

the hand detector will not be able to detect hands in the frame making it not just useless

but parasitic because the dataset will say that the sequence corresponds to a handwave but

the positions of the hands weren’t detected and this behaviour is usually associated with

’not handwaving’. A solution to this problem was proposed by just skipping the frames

that don’t contain any hands. An additional problem stems from the fact that, in some

cases, more than one hand and/or face can be in the frame. In a restaurant environment,

multiple people enjoy their meals together at the same table. This problem was fixed in

the final solution and that method could also be used here to generate a dataset with only

the main hand and face. During the brainstorming of this idea, other ideas came up that

lead to the final solution and therefore this approach was scrapped.

37

With this said, this approach is worth explaining because, assuming it works, can lead to

the creation of detectors for all types of hand movements, not just handwaving detectors.

The idea started with just saving the position of the hand and face in each frame of the

set. Since each position can be represented with the x and y value of the pixel each frame

would be represented by 4 values. If the size of the set is 10 then each sequence can be

represented by 40 values. This process is explained in the figure 7.3.

Figure 7.3: Centroids of hands and faces

After some brainstorming a problem was identified: the hand movement can happen in

different regions of the camera. In other words, on one moment a person can handwave

while standing and their hand will be close to the top of the image while in another moment

they can be handwaving while sitting and their hand is closer to the bottom. In short,

some sort of normalization is required. The first idea was to subtract the minimum x and

minimum y in the sequence to all of the values. This would mean that each sequence

would have a hand with a position of 0,0 and all the other ones would be relative to it.

However, there is a flaw in this normalization approach. To normalize a sequence, the

minimum and maximum values of x and y are required. In the next sequence, all the im-

ages except the first are the same, however, the new image may be the new minimum and

therefore the previous common images will be normalized differently in the new sequence

even though they are the same points.

Because of this, the process was modified to extract the difference of the position of the

hand in consecutive frames. This way regardless of where the hand starts in the sequence,

the movement described with this approach should be correct. This idea is exemplified in

figure 7.4.

This approach, assuming it works, can be expanded to generate a dataset for different

types of hand movements. With such a dataset, one would just have to repeat the process

of the previous approach: train a classifier and then use it to classify hand movements.

38

Figure 7.4: Normalization of centroid values

7.1.2 The working solution

The main problem when attempting to classify a hand movement as handwaving is to not

classify any other type of hand movement as handwaving. Because of this, the main focus

of the brainstorming was to identify what distinguishes a handwave from any other type

of hand movement. The main identified characteristics are:

• The hand is facing the person that we are trying to call.

• The hand is open. In other words, it is an open palm.

• The movement of the hand describes a wave, hence the name.

Figure 7.5: Study of the movement of the hand in both axis

39

The ’wave’ movement can be dissected into two axes: horizontal and vertical. In the hori-

zontal axis, the hand performs a sequence of back and forth movements (left to right and

vice-versa). In the vertical axis, the movement of the hand can be more complex depend-

ing on the inclination of the forearm and the angle that the arm makes with the trunk.

In the figure 7.5, two different waving cases were exposed. In both cases, the hand moved

back and forth in the horizontal axis. However, in the second case, the hand barely moved

in the vertical axis. The idea of this approach is to completely ignore the vertical axis. This

has to do with the idea that humans don’t do any other type of hand movement with an

open palm and moving the hand back and forth except when they are handwaving. There-

fore, these two conditions constitute the foundations of the algorithm, as they are what

separates handwaving from any other type of hand movement. This way, we achieve the

end goal and prevent problems that may arrive by considering the vertical axis, such as

the following: in two consecutive frames the hand detector detected the hand in slightly

different positions, however, the hand didn’t move in the real world. If we were to con-

sider the vertical axis then, because of the second case represented in the previous image,

this difference has to be considered as a movement when in reality there was no move-

ment. Therefore, by disregarding the vertical axis we achieve the same goal and avoid a

few problems.

The algorithm gets RGB and Depth frames from the Kinect camera. The depth image

returns the distance of each point to the camera in millimetres. For each frame, the hands

and faces are obtained using the hand and face detectors. Afterwards, the hands that

aren’t palms are filtered out. This is done by extracting the hand from the image, using

the box dimensions provided by the hand detector, and then passing it to another detector.

This detector is also based on a cascade classifier. It was initially proposed by Paul Viola

and improved by Rainer Lienhart. It detects palms or fists in an image. By only passing it

the area of the image with the hand we prevent it from detecting palms in another region

and wrongly classifying the current hand as a palm. If the detector doesn’t detect any

palms in the region then the hand is discarded.

Afterwards, the depth value of each face and hand are obtained. First, the x and y co-

ordinates of the centroids of the hands and faces are obtained. With these coordinates,

one could obtain the depth value from the depth image. However, the Kinect camera isn’t

100% accurate. Therefore, by only using only one value we are risking carrying a lot of

errors into the next steps. Because of this, a function was created to calculate the median

of the depth values around the centroid. An average could have been calculated instead of

the median, however, the idea was to filter out the outliers as the problem isn’t when the

depth value is inaccurate by a few millimetres but when it is inaccurate by a few hundred.

Subsequently, the hand depths are compared to the face depths. The hands that aren’t in-

side of any threshold, centred around the faces depth values, are discarded. This is done

because, when handwaving, the hand is usually parallel to the face, in other words, the

face and the hand have around the same depth value.

40

This step removes hands that are ’too in front’ or ’too behind’ of any face, as neither of

these cases could correspond to a frame in the handwaving movement. The credit of this

step has to be attributed to Luís Pais [PAI19] as this would have been used in his approach.

Next, the position of the hands and faces in the real world is obtained. This is done by

using the x and y coordinates of the centroid in the RGB image and the depth calculated

previously. It is worth noting that the z real-world value corresponds to the depth. With

these three values and by using Kinect constants that depend on its calibration and are

based essentially on trigonometry, one can find out the real world x and y coordinates.

Thereupon, the hands are filtered one last time, this time by calculating its distance to

each face. If the distance to the nearest face is still above a configurable threshold then

the hand is discarded. The idea behind this filter is the following: in a frame, there can

be a face and hand from two different people, the face of one of them and the hands of

the other are outside the frame. Now, a hand needs to be attached to the body, by an

arm. Therefore if a hand is farther away to the face than the value which represents the

maximum length of the arm then the program detects that the face does not belong to any

face in the image and consequently is discarded.

After all these filters there should either be no hands left or only one. Technically there is

a chance that there can still be more than one hand if two people are waving at the robot

at the same time. However, not only is this case extremely rare but also means that both

people are waving and therefore since the robot will detect that there is handwaving in the

frame it will be correct. If there are no hands left then a counter is increased. This counter

counts the number of consecutive frames where there were no hands left after the filters

were applied. If this counter hits a certain configurable value then all the variables used to

detect handwaving are reset. These variables will be explained further on. This counter is

necessary because if a hand goes out of view for a certain number of frames then it needs

to be considered lost. After all, a different hand may then enter the frame and it shouldn’t

be considered the same hand. If there are hands in the frame then this counter is reset

(set back to zero).

In the case where there is a hand left, its new position is compared with its previous po-

sition. If the difference is smaller than a configurable threshold then it’s ignored. As

mentioned before, in consecutive frames the hand detector may return a box in differ-

ent positions even though the hand didn’t move. This threshold mechanism prevents the

algorithm from detecting the going back and forth constantly even though the hand is

stationary.

The way the handwaving will be detected is if it respects three conditions:

• The hand changed direction x amount of times. Where x is a configurable parameter.

• The average distance traversed each time it changes direction is superior to a con-

figurable threshold (Amplitude).

• The average time it took for the hand to change direction is inferior to a configurable

threshold (Frequency).

41

After calculating the current position of the hand, and comparing it to its previous posi-

tion, the algorithm obtains the current direction that the hand is moving to. If the direc-

tion changed i.e. it is different than the direction it was moving in the last iteration, then

the algorithm updates the hand’s direction and increments a counter. This counter counts

the number of times the hand changed direction. If this counter hits a certain limit then

the algorithm will check if the average distances traversed and the average time stamps

are superior to a certain threshold. Each time a direction changes a timestamp is added

to a list. This timestamp is the time that passed since the hand started moving in that

direction and until it changed. Additionally, there is also a list which holds the distance

traversed by the hand in that particular direction. Calculating the average of both of these

lists we obtain the average amplitude and frequency of each wave. If the time is too slow

then even if the hand did move far enough each time, it did it over a long period of time and

therefore it was not a handwave. Similarly, if the hand did move fast enough but did not

move ’far’ enough then it was not a handwave either. This thought process is exemplified

in the following 7.6:

Figure 7.6: How the distance and timestamp of each wave is calculated

The algorithm can be summarized in the following list of steps:

1. For each RGB and depth image captured by the frame:

(a) Obtain hands and faces in the RGB image.

(b) Filter out hands that aren’t palms.

(c) Calculate the centroid of each face and hand.

(d) Calculate the depth of each face and hand.

(e) Filter out hands that aren’t inside any depth threshold centred around faces.

(f) Calculate the world position of the hands.

(g) Filter out hands that aren’t close enough to any face.

(h) If there are no hands left, increase a counter and potentially reset variables if

it hits a certain value.

(i) Obtain distance traversed by the hand between two frames (in the x-axis).

42

(j) Ignore iteration if the distance is below a certain threshold.

(k) Calculate direction (Left or Right).

(l) Update position if the direction didn’t change.

(m) If the direction did change:

i. Add time frame to the list.

ii. Add distance traversed to the list.

iii. Increase counter of direction changes if it hits a certain value check if the

average of time frames and distances are superior to its respective thresh-

olds and if so, detect handwaving.

7.2 Obtaining the table’s position

The robot detects that people are handwaving at it using the handwaving detection mod-

ule. This module returns the coordinates of the hand. However, these coordinates are rel-

ative to the camera, in other words, they are in an axis system whose origin corresponds

to the camera. However, the axis system of the camera doesn’t match with the axis system

of the map, as exemplified by the figure 7.7.

Figure 7.7: Camera and Map coordinate systems comparison

This means that before worrying about anything else, the camera coordinates need to be

adjusted as following:

• Map_x = Camera_z

• Map_y = -Camera_x

• Map_z = Camera_y

There is a second problem that needs to be tackled. The coordinate system of the map

is centred around the position of where the robot started when the map was generated.

However, the coordinate system of the camera corresponds to the robot’s current position.

Additionally, the robot may have a rotation different from the start rotation of when the

map was generated. This problem is exemplified in the following figure.

43

Figure 7.8: Camera and Map vertical axis rotation problem

Because of this problem, rotation and translation transforms need to be applied to the

coordinates returned by the detector. Two ways of achieving this were explored: a manual

way using trigonometry to calculate the transforms and an automatic way using ROS’s TF

package.

7.3 Manual Conversion

If one was to add the coordinates returned by the handwaving detector to the robot’s cur-

rent position on the map then the new position would be wrong by a certain amount of

degrees. This value corresponds to the robot’s current rotation value around the vertical

axis. In order to fix this, the point’s position on the camera’s coordinate system is first ro-

tated around the origin by this value. Only then are this point’s coordinates added to the

robot’s position on the map. Therefore, the resulting formulas for converting the camera’s

coordinates into map coordinate’s are the following:

map_x = robot_pos_x + camera_x ∗ cos (robot_rot_y) − camera_z ∗ sin (robot_rot_y)

map_z = robot_pos_z + camera_z ∗ cos (robot_rot_y) − camera_x ∗ sin (robot_rot_y)

7.4 Conversion using TF

TF is ROS’ transform package. It’s implemented in such a way that it allows program-

mers to use the transformation that they require without having to think and implement

the math themselves (as it was done above). First, the robot’s tree of frames was deter-

mined. Each frame is a component of the robot and has its own coordinate system. The

frames of the camera and world were identified, they are respectively: camera and odom

frames. A transform listener between these two frames was created. This listener returns

the transformations that allow conversion from camera coordinates to map.

44

The result is divided into two arrays: translation and rotation. Each of these components

has four cells as they are quaternions. These two components are then used to obtain a

transformation matrix (4x4). Afterwards, the camera coordinates are placed in a 4 wide

array (x, y, z and last value is set to 0). Lastly, the transformation matrix is combined with

the camera coordinates’ array resulting in the map coordinates.

7.5 Getting the order

This section attempts to explain the 4th step of the tasks’ algorithm with more detail. At

the beginning of the task, the robot will read a text file that contains all the items that are

available for order in the menu and load them into its memory. When the robot gets close

to the clients’ table it will have to note down their orders. It will start by asking the clients

what they would like to order. After the clients finish communicating with the robot, it will

obtain a list of sentences from the speech recognition module. The robot will search for

each item of the menu in each of the spoken sentences. If an item’s name is mentioned in

a sentence it is added to the order. If the list returned from the speech recognition module

is empty, meaning no sentences were recognized, or no item from the menu existed in all

the spoken sentences, then the robot will ask the clients: ”will that be all?”. If the clients

answer ”yes” then the robot returns to the bar, if not then the robot will continue to accept

the orders until the clients respond affirmatively to the previous question.

7.6 Conclusion

This chapter explains the implementation of the restaurant task. The task requires the

robot to detect when people call for it by handwaving. Therefore, a handwaving detector

had to be implemented. Many approaches were attempted, leading to an implementa-

tion based on detecting frequent oscillations in the position of hands close to faces in the

horizontal axis. The robot moves between the bar and table locations using the naviga-

tion module implemented previously. It obtains the coordinates of the tables by applying

a transformation matrix. Lastly, the robot communicates both with the clients and the

barman through the speech and speech recognition modules.

45

Chapter 8

Speech, Object and Person Recognition

This task contains a misname. There isn’t a need for person identification since it is as-

sumed that a person is already standing behind the robot. The robot will simply have

to rotate and face the person. This was done using the navigation’s sub-module rota-

tion to make the robot rotate 180º. Then, the robot will have to get closer to the person.

Since it is assumed that there is no other object in between the robot and the human, the

move-to-human sub-module that was extracted and improved from Antonio Fernandes’

’help-me-carry’ code, was reused for this step. Afterwards, the robot will have to greet the

human, this was done using the speech module, the robot will randomly select an item

from a list of possible greetings and speak it. For the rest of the task, 2 new modules had

to be developed. The robot will have to answer a question correctly so the ability to answer

questions had to be created. Additionally, the robot will have to recognize an object that

is shown to it and speak its name, therefore an object recognition module had to also be

developed.

8.1 Ability to answer questions

From the research that was done, robocup@Home doesn’t provide a list of questions that

the robot has to answer, or much information about them. Because of this, it is assumed

that the competition requires that the robots are capable of answering any type of ques-

tion. It is not expected that the robot is capable of answering any possible question as that

would be an impossible task. Instead, the level of the robot’s ability to answer questions is

tested. However, the amount of work required to develop software that allows the robot to

be competent at answering questions requires its own dedicated project. Therefore, this

section will explain what was done as a foundation for potential new projects to expand

on and provide the robot with a more competent ability to answer questions.

8.1.1 Implementation

The implementation of this feature can be divided into two components: online and of-

fline. The robot usually has internet access around campus and should have internet ac-

cess during the competitions. However, there are cases where it doesn’t have access to the

internet for a variety of reasons. If this is the case, then the robot shouldn’t become use-

less. Because of this, if the robot has internet access it will try to answer the question using

its online method, if that is not the case then the robot will resort to its offline method.

46

The online method is completely dependent on Wikipedia’s knowledge. There is a python

library, named Wikipedia, that allows programs to search Wikipedia similarly to a browser

search. This search returns a list of available page names that match the search query. The

search query, in this case, is the question that the user asked the robot. Afterwards, the

robot requests the contents of the first page as it’s the one with the biggest match. Lastly,

the first sentence from the page is returned and will be spoken by the speech module. This

approach assumes that the answer is in the first sentence of the page, which is most often

the case. However, it is clear to see that there are cases where the first sentence is not

what the user asked. Hence, as mentioned before, there is a lot of room for improvement

in this specific functionality.

If the robot doesn’t currently have internet access or if Wikipedia had no information

about the question that was asked, then the robot will try to use its offline method to

answer the question. This offline component is what needs to be improved by a dedicated

project. It is currently only a placeholder. A proper machine learning method is necessary.

Nonetheless, the current approach is composed of having a text file with thousands of

questions and their respective answer. These questions were obtained by calling ’opentdb’

API which provides a list of questions and answers. Their database keeps expanding as

more users create questions so a program was developed to update the current local list

with the new questions. These questions are completely random and vary from a wide

range of topics. This approach is rudimentary. On one hand, the amount of possible

questions that can be asked is much bigger than the few thousands that are available so

the question that was asked will most likely not be in the list. While, on the other hand,

even if the list was complete, it would be so long that it would be impossible for the robot

to hold it in its memory, much less search the question in the list in an acceptable time

frame.

In short, the online component is somewhat competent at answering questions but not

perfect, while the offline component is very rudimentary. Both work as placeholders and

should be replaced if and when a better solution is developed.

8.2 Object recognition

Robocup@Home’s rule-book doesn’t list all the objects that may be required to be recog-

nized by the robot in the competition. It’s very generic in their description such as ’colour-

ful hand-held objects’. However, some objects are mentioned in the provided examples.

Therefore, the following list of items was extracted from the objects that were explicitly

mentioned in the rule-book. Because there may be objects that weren’t explicitly men-

tioned and therefore are missing from the list, the created dataset is may be incomplete.

As a result of this, if new items are listed in newer versions of the rule-book or somehow

new information about these items that are required in the competition is discovered, then

the dataset should be updated accordingly and the model retrained.

47

The list of objects that were present in the documentation is the following:

• A plate. 4 different coloured plates were created (red, green, blue and yellow).

• A bowl. 4 different coloured bowls were created (red, green, blue and yellow).

• Cup. 4 different coloured cups were created (red, green, blue and yellow).

• Napkin. 3 different coloured napkins were created (pink, yellow and blue).

• Fork. 4 different coloured forks were created (red, green, blue and yellow).

• Knife. 4 different coloured knives were created (red, green, blue and yellow).

• Spoon. 4 different coloured spoons were created (red, green, blue and yellow).

• Thrash bag.

• Paper bag. 4 different coloured papers were created (red, green, blue and yellow).

• CD/DVD/Blue-ray disk.

• Book. 4 different coloured books were created (black, blue, red and orange)

• Pen. 4 different coloured pens were created (red, green, blue and yellow).

A dataset with these 12 classes, plus an additional class named ’Nothing’ that represents

when no object is being shown to the robot, was created. Since the task requires that the

robot rotates and gets closer to the human, then the point of view from where the objects

will be shown to the robot is fixed. Therefore, the images were obtained from this point

of view, changing only the rotation of the objects between frames. Google’s Teachable

Machine was used to generate the dataset. It is a framework that allows for the creation of

machine learning models by abstracting all the theory. Only the dataset generation part

was used. It provides a simple user interface that allows the users to configure the number

of frames to be captured and the time interval between them. In short, it simplifies the

process of creating a dataset. 900 images were obtained for each class. Additionally, for

items that can have multiple colours such as cups, the 900 images are composed evenly

of the colours. This means that for the case of the cup class since there are 4 different

coloured cups (red, yellow, green and blue), 225 images were obtained for each colour.

The dataset was split into three subsets: training, test and validation. 10% of the data was

used for test and another 10% was used for validation. It is also important to note that

the 10% was extracted from each class meaning no class is more or less represented in

any of the sub-sets. When it comes to model architecture, 2 types were tested: resnet and

inception v3. Only these two were used as inception v3 achieved satisfying results. The

results of inception are shown in the table 8.1.

48

Table 8.1: Coloured Object Dataset Results on an Inception v3 architecture

Epoch Loss Accuracy ValLoss ValAcc

1 48.03 0.9275 0.34 99.91

2 2.99 0.9946 0.02 100.00

3 2.35 0.9965 0.12 99.91

4 1.19 0.9980 0.01 100.00

5 0.94 0.9989 0.00 100.00

6 0.52 0.9993 0.00 100.00

7 0.40 0.9998 0.00 100.00

8 0.30 0.9998 0.00 100.00

9 0.28 0.9999 0.00 100.00

10 0.28 0.9998 0.00 100.00

The model achieved 100% accuracy on the test data.

The previous dataset is specific to the competition. However, purely red knives or blue

spoons aren’t seen too often in the outside world. The robot should have utility for uni-

versity campus usage if no blue spoons appear for it to recognize then its utility is null.

Therefore, other datasets were explored to have the robot recognize objects that can be

available outside of the robotic competitions. The dataset named CORE50 created by

Vincenzo Lomonaco and Davide Maltoni [LM17] was used. It has 10 different classes each

with 5 sub-classes of objects that can be handheld. The dataset provides 3300 images for

each subclass. Only items that can be handheld are necessary as the intention is for the

human to show the object to the robot in their hand. Still, it is not perfect, as ideally, the

robot would recognize any type of object that can be handheld. This problem was tackled

in the last task.

Once again, Resnet and Inception v3 architectures were tested to determine which one

should be used for a model trained with the CORE50 dataset. After 20 epochs the best ac-

curacy the RESNET model achieved in validation was of 70.75% that corresponds to the

4th epoch of training therefore these respective weights were the selected ones. Addition-

ally, this model achieved an accuracy of 87.45% in the test data. After 20 epochs the best

accuracy the Inception model achieved in validation was of 75.39% that corresponds to

the 3rd epoch of training therefore these respective weights were the selected ones. Addi-

tionally, this model achieved an accuracy of 90.05% in the test data. Inception once again

achieved better results than Resnet. The results of Inception are shown in the table 8.2.

8.3 Conclusion

This chapter presents an explanation for how the ’Speech, Object and Person Recognition’

task was implemented. As mentioned before, it is a small misname as the task doesn’t re-

quire person recognition. The robot simply assumes that a person is standing behind it

and that there are no objects between them. Therefore, it uses the navigation module

to rotate 180º and the module extracted from the help-me-carry task to move closer to

the human. Then, the human asks the robot a question which it understands through its

49

Table 8.2: CORE50 Results on a Inception v3 architecture

Epoch Loss Accuracy ValLoss ValAcc

1 38.16 92.58 1.7267 63.24

2 3.82 99.26 2.4168 56.56

3 2.12 99.59 1.0686 75.39

4 1.50 99.71 2.4497 57.17

5 1.23 99.77 2.9451 52.21

6 1.05 99.81 1.5465 70.17

7 0.51 99.92 3.0387 52.12

8 0.15 99.99 2.4687 63.85

9 0.19 99.97 2.7293 59.06

10 0.23 99.97 2.1623 63.65

11 0.31 99.95 1.9359 67.56

12 0.28 99.95 1.5529 72.10

13 0.34 99.94 2.4394 59.19

14 0.28 99.96 3.2756 51.57

15 0.25 99.97 2.6163 62.03

16 0.14 99.98 1.9606 65.68

17 0.17 99.98 2.8461 58.95

18 0.07 100.00 2.1142 67.18

19 0.10 99.98 3.3059 56.95

20 0.09 99.99 1.6693 72.27

speech recognition module. Two approaches were developed to attempt to answer the

question: an online and an offline approach. The first interfaces with Wikipedia’s API

while the other searches for the question in a text file with thousands of questions. The

latter is exceptionally rudimentary and, since the robot should function without internet

access, future projects should improve on it. Lastly, in order to recognize the object that

the human shows, a classification module was created. Two datasets were used. The first

was created by hand, after identifying the specific objects requested by the competition.

The second’s purpose is to attempt to provide the robot with the ability to recognize ob-

jects outside of the competition. Two architectures were tested: Resnet and Inception.

Inception outperformed Resnet in both datasets.

50

51

Chapter 9

Take the Elevator

In this task, the robot will have to take the elevator to move to another floor of a building.

The task starts with the robot already facing the elevator. The robot will have to commu-

nicate with humans to succeed in its goal. This help involves selecting the correct floor

and detecting that the elevator reached the robot’s desired floor. Firstly, the robot has

to detect that the elevator’s door is open. Then it will have to identify the inside of the

elevator to figure out if it can enter without colliding with obstacles, more importantly,

humans. After managing to enter the elevator the robot will ask the humans to select its

desired floor. The robot waits for confirmation before asking again. It will then wait for

people to indicate that the elevator has reached the specified floor. The robot will then

exit the elevator. Detailed explanations of how each of these steps were implemented can

be found in their respective sub-sections. This task was extracted from SCIROC’s Con-

sumer Challenge. However, it provides the robot with an essential capability for campus

navigation. For the service robot to achieve its goal, most often than not, it has to navigate

its workspace which often has multiple floors. As a result, either the robot can move from

floor to floor or its utility is restricted to a single floor. Therefore, by implementing this

task not only can the robot perform it in the competition but also use it to move from floor

to floor in campus buildings.

Many approaches have been developed and applied to different robots that allow them to

take an elevator. However, most of that research is focused on controlling and monitoring

the elevator itself [KAO07][TSG
+
13][ALST16]. This includes recognizing the elevator’s

control panel to press the correct button for the desired floor, as well as analysing the

elevator’s floor display to detect when the elevator has reached the robot’s desired floor.

The process of entering and leaving the elevator, however, is often neglected.

Some choose to ignore the state of the elevator’s inside, assume it is empty, and simply en-

ter it [ALST16]. In the current world, modern robots are expected to move autonomously

and therefore mustn’t pose a threat to not only itself but especially humans that may be

inside, entering or leaving the elevator. Other approaches require the robot to have prior

knowledge of the elevator’s inside [ATC
+
12][ALST16], that being either a map of the eleva-

tor or expecting the elevator to have specific features that help the robot enter it. Service

robots should be able to take the elevator without requiring it to have specific features

built specifically for it. Lastly, some robots tackle this problem using multiple sensors

[TSG
+
13]. However, if the problem can be solved using fewer sensors, then this ability

becomes available to a wider range of robots. Because of this, this paper provides an ap-

proach which aims to allow robots to enter and exit elevators safely while limiting the

sensors to the bare minimum, that is, one.

52

9.1 Related work

A state-of-the-art analysis was done to have an idea of how modern robots tackle this prob-

lem. In [KAO07], the focus is split on controlling the elevator and navigation. The authors

propose a method for the recognition of the elevator’s call button for the robot to press,

as well as the recognition of the current floor number. By applying an adaptive threshold

method to the 2D image captured by the robot they obtain a binary image and create the

candidates of the button and the floor number using an additional filtering method. They

then reject weak candidates using an artificial neural network and consequently get the

position of the button and current floor number. The authors then describe their method

for allowing the robot to enter the elevator. They first build an occupancy grid map. Then

they calculate the fitness value from the occupancy grid map. The goal position is the one

with the maximum fitness value. The path is built using a distance transform.

In [ZCL19] a method is proposed to tackle the multi-floor navigation challenging robots.

A solution is provided to the problem of the discontinuity of maps between floors. The au-

thors introduced a 2D maps alignment algorithm using a map server provider that solves

the transition between different maps. Afterwards, a method for tracking the state of the

elevator’s door and the current floor is provided. The detection of the door’s state requires

the robot to have access to a map of it. A barometer was used to detect what floor the el-

evator is currently on. Additionally, using a Convolutional Neural Network (CNN)-based

object detection algorithm, a method was created to detect and track humans to avoid col-

lisions. Lastly, for path planning, their method was based on the creation of cost maps,

Adaptive Monte Carlo Localization (AMCL) for localization and Dijsktra’s algorithm as a

global planner.

In [ATC
+
12], the authors developed a method for a robot to navigate using an elevator.

The project was done in compliance with Tsukuba Challenge 2011’ rules. The method

requires the use of a laser range scanner and an omnidirectional camera. The Hough

transform was used to detect straight lines in images to detect when the elevator’s door

opens. When it comes to entering and exiting the elevator the method relies on the two

sensors with the dependency that the elevator has a stop line. Template matching and

edge detection techniques are applied to omnidirectional camera images to detect the stop

line. To avoid collisions with passengers, the laser range finder is used to detect distances

to obstacles.

The work presented in [TSG
+
13] explains the developed method for autonomous multi-

floor navigation, using an elevator, applied to a semi-humanoid robot. The robot is ca-

pable of mapping and localizing the elevator in its environment, navigating towards it,

entering it, pressing the button of the desired floor and exiting the elevator at the cor-

rect floor. The robot is equipped with laser range finders, stereo and monocular vision

systems, and robotic arms. The work focuses on navigation towards the elevator and the

robot’s interaction with the elevator’s buttons.

53

The robot enters the elevator in a straight line not considering an ideal position. A SLAM

algorithm was used to map the environment, using a LIDAR scanner, and localize the

robot in it. The elevator buttons were detected using a technique named FastMatchTem-

plate. Afterwards, the localization of the buttons for manipulation with the robotic arms

is obtained by reading depth information from its cameras.

In [ALST16] a method is proposed for multi-floor navigation for specifically distributed

Life Science Laboratories. A solution to the discontinuity between maps of different floors

is proposed. Their method proposed a map with multiple layers each representing a floor.

An algorithm for localization and path planning was developed for navigation in the lab-

oratories. As for entering the elevator, the authors created a landmark on the maps for

the elevators. A method for detecting the elevator’s button was developed. The data was

captured using a Kinect 1 camera. The images were then processed through a series of

filters. After button pressing, the mobile robot continuously checks the door’s state and

waits to enter the elevator. Then, a landmark on the map is used to help the robot enter

and localize itself in the elevator. Lastly, the robot recognizes the destination floor button

and controls the elevator similarly to the outside button.

9.2 Pipeline

Figure 9.1: Pipeline of our proposal.

The approach assumes that the robot is standing in front of the elevator and facing towards

it, as these are the requirements of the task in the competition. Therefore, the robot must

know where the elevator is in the building and have the capability of moving to its loca-

tion. This is done by creating a map of the environment and using the navigation module

by specifying the elevator’s location on the map. The robot first needs to identify when

the elevator’s door opens. During this process, it obtains its distance to the door. Once

the door opens, the robot creates a map of the elevator’s inside. Afterwards, the robot

processes the map using the information of its distance to the door. Then, if possible, it

figures out a position on the map to move to. Lastly, it moves to that position in the ele-

vator. The robot then communicates with a human to reach the desired floor. The robot

first politely asks the humans to select its desired floor, using the speech module.

54

∑
d =2

i=1 j=1

i=1 j=271

The robot then waits for confirmation before repeating the request. This is done through

the use of the speech recognition module. Afterwards, the robot waits for humans to indi-

cate when the elevator has reached the desired floor. Once this indication has been given

the robot politely asks the humans to hold the elevator’s door for it. To exit the eleva-

tor, the robot rotates 180º and repeats the previous process. Each step of the process is

explained with more detail in their respective sub-section.

9.2.1 Detect when door opens

Before the robot can enter the elevator it first needs to know at what distance it is standing

from it. This way it knows that if it moves a certain distance forward, it will be inside the

elevator. However, it also needs to detect that the elevator’s door has opened else it would

collide with it.

To achieve these goals, the robot reads information from the depth sensor. In our case,

the sensor that was used was a Kinect camera.

Let’s consider that the robot is standing facing the elevator. We represent the depth image

by d, which is a matrix with 640 by 480 pixels, in our case. Denote D as the distance

from the robot to the elevator. We can estimate D by finding the average value of d: d̄ =

∑480 ∑640 d[i, j]/(480 ∗ 640).

However, only a portion of the depth image is useful. The frame of the elevator and every-

thing around it may be inside the camera’s viewpoint. Because of this, since the objects

outside of the elevator are closer to the camera, d̄ will be smaller than D. Hence, if the

robot were to move forward d̄ meters it would still be outside of the elevator. In order

to solve this, only the center columns of the depth image are kept and used to calculate

the average distance, discarding the columns that correspond to the elevator’s frame and

everything around it: d̄1 =
∑480 ∑370 d[i, j]/(480 ∗ 100). We chose to use a range of

100 because this amount provides enough precision without risking elements around the

elevator to be included.

Additionally, we know that an elevator’s door opens horizontally. Since it doesn’t open

vertically then the vertical information is redundant, because the depth values in cells

with the same column are similar. If the elevator’s door is closed then all the values will

be identical. However, once the door starts to open, the values between columns start

to differ. Some have depth values that still correspond to the distance to the door while

others have depth values that correspond to the distance to the objects inside the eleva-

tor. The latter must have higher depth values because, even if there are objects inside the

elevator since they were behind the door, they are necessarily farther away to the robot

than the door is. On the other hand, the rows should remain similar to each other, since

it is assumed that the door opens horizontally. Therefore, we can simplify the region of

interest in the matrix even further and only calculate the average values in a single row:
¯ 370

j=271 d[120, j]/100. Only values from the centre row are considered.

55

i=1

For every depth image received from the camera, the robot obtains d̄2. These values are

then placed in a queue with a size of S. The smaller the queue the more susceptible the

robot is to errors from objects that stand in front of it, while the larger it is, the longer it

will take for the robot to detect that the door opened. A value of S = 50 ensured that the

robot detects that the door opens quickly and is resilient to when people pass in front of it.

When a new value for d̄2 is calculated, the robot calculates the difference of this value to the

average values in the queue, Q̄ =
∑S Q[i]/S, before placing it in the queue. When the

door opens, the depth value will be the depth value from the robot to the elevator’s door

plus the elevator’s depth. The queue stores depth values from the robot to the elevator’s

door. Therefore, if the difference between the new value and Q̄ is higher than a certain

threshold the robot knows that the door opened. This threshold can’t be too small else the

robot may signal that the door opened when it didn’t. Similarly, it can’t be too big else if

the door does open the elevator may not be deep enough to surpass the threshold value.

However, this isn’t a problem as the elevator’s typical depth does give enough of a margin

for error to allow the robot to consistently detect that the door opens using this method.

After detecting that the elevator’s door opened, the robot knows the distance to the eleva-

tor as it is Q̄. Using a queue rather than just storing one value increases the precision of

the calculation of the distance as well as the detection of when the door opens. If a person

were to pass in between the robot and the elevator during the scanning, then the depth

of the closest object would be smaller than usual. When the persons leaves, the depth

would increase once again. In this case, the difference would likely be higher than the

threshold and the robot would indicate that the door opened when it didn’t. Additionally,

the calculated distance to the elevator would be wrong. With the queue, we prevent this

entirely.

Instead of using depth information to detect when the elevator’s door opens, one could

have used coloured images and classified the door as open or closed using a machine

learning model (for instance, using semantic segmentation). However, the sensor’s ap-

proach works in all cases while in the classifier’s case an elevator’s door may be so unique

that the model struggles to correctly classify it. Other inconveniences would be the need

to acquire many samples of elevator doors to train the method and its high computational

cost.

9.2.2 Converting from map units to world units and vice-versa

The need to be able to convert map units to world units as well as the reverse, appeared

while developing this task. However, their utility has wider applicability than this task,

therefore, they should belong in a module. Because of this, they were added as utility

functions to the navigation module. As discussed in the navigation chapter, when a map

is saved it generates two files: one is the image of the map and the other is a YAML file

that provides information about the map it corresponds to. This YAML file provides the

necessary information to do these conversions.

56

One information the file provides is the resolution of the map. The resolution is the num-

ber of meters, in the real world, that each pixel equates to. By default, it is usually 0.05

meters, or in other words, 5 centimetres, this means that 20 pixels equate to a meter. On

the other hand, it provides the origin of the map. This is a 2-DIMENSIONAL array that in-

dicates how far in the x and y-axis, respectively, the origin of the map (0,0) is from the

bottom left corner of the map. For example, if the YAML file indicates that the origin of

the map is [2,1] then that means that if we count 2 meters in the x-axis and 1 meter in

the y-axis, starting from the bottom left corner of the map, we should reach its origin. It

is worth noting that in reality these values are negative, and it indicates how many me-

ters one has to traverse in both axes to reach the bottom left corner starting in the origin.

However, since one wants to find the origin it makes more sense to start from the bottom

corner rather than using reverse logic. With these two sets of information, one can convert

between the two types of units.

9.2.2.1 Map units to world units

Knowing the row and column of a pixel on the map, one may want to know what is its

corresponding coordinate in the real world.

origin_pixelx = yaml_originx/map_resolution ∗ −1

coordinatex = (pixelx − origin_pixelx) ∗ map_resolution

The first formula finds the pixel coordinate of the origin by using the process mentioned

previously. The product by minus one converts the origins’ value to a positive one. The

second formula converts the distance traversed from the origin to meters. The same con-

version logic is applied to the y value.

9.2.2.2 World units to Map units

Knowing the x and y coordinates in the real world, one may want to know what is their

corresponding pixel in the map.

origin_pixelx = yaml_originx/map_resolution ∗ −1

pixelx = origin_pixelx + (coordinatex/map_resolution)

Once again the origin’s pixel value is determined. Then the meters are converted into pixel

units and shifted based on the origin’s value.

57

9.2.3 Entering the elevator

The next step is for the robot to enter the elevator. A simple approach could be to just

move the robot a certain number of meters in a straight line. This number of meters

could either be the distance to the door calculated before (plus an additional number so

that the robot is fully inside the elevator), or until the distance to the closest object (the

back of the elevator) is small enough meaning that the robot is so close to the back that it

is inside of the elevator. However, these approaches only work if there are no people to

take the elevator with the robot. If this is not the case then in the first approach the robot

may collide with people and in the second approach, it may think that a person is the back

of the elevator and either stay outside the elevator or in the door’s area. Because of this, a

mapping of the area needs to be done to know where the robot can move to to get inside

of the elevator without colliding with people. The first idea was to map out the elevator’s

entrance and its inside. Once this map is done the boundaries of the elevator would be

specified in the map.

With this information the robot would try to move inside the specified boundaries, rtabmap

would update the map preventing the robot from colliding with humans. However, this

approach is static. Each time the robot needs to enter a new elevator someone has to map

it out first and identify its boundaries. Because of this, a more dynamic approach was

attempted. In this new approach, a new map is generated once the robot detects that the

elevator’s door is open. The robot will then automatically identify the elevator’s bound-

aries on the map. Then it will try to find an area inside those boundaries to where it can

move in without colliding with people. Each of these sub-steps is explained with more

detail in the following sections.

9.2.4 Obtaining the Map

Recall from the navigation chapter that the current map is managed by a service named

map_server. The current map can be obtained by running a command that calls a sub-

module of map_server, map_saver. One can specify the topic from where the map will

be obtained (by default is /map, however, rtabmap uses /rtabmap/proj_map) as well as

the name and directory to where the map will be saved to. A new function was added

to process_controller module that runs the map_saver command, with the provided pa-

rameters, and waits for the map to be saved. An example of a map of the elevator that the

robot generates just after detecting that its door has opened is presented in figure 9.2.

58

Figure 9.2: Map received from Map Server zoomed in

The robot was able to see a small part of the elevator’s door and its back. From here on

the robot needs to process the map to identify where it should move to.

9.2.5 Mapping the Elevator’s inside

Figure 9.3: Sequence of maps corresponding to the several processing steps of the proposed algorithm. See

text for full details.

After detecting that the elevator’s door has opened, the robot needs to determine the cur-

rent state of the elevator’s inside. It needs to know if there are obstacles inside it or not

to be able to know if it can enter and where it should move to. As a means to achieve this,

the robot creates a map of the elevator’s inside. An example of such a map is represented

in part A of Figure 9.3. The map likely includes more information rather than just the ele-

vator’s inside and therefore that extra information will have to be identified and removed

in the following steps.

There are many available mapping options in ROS, such as RTABMapping and Hector

mapping. We used GMapping, as other options would sometimes fail to map the depart-

ment’s elevator’s inside.

59

Recall that a map in ROS is simply an occupancy matrix. Each cell contains information

about the state of a specific location of the environment. The values of the cells can be one

out of three possible options: occupied, empty and unknown. An occupied value corre-

sponds to the colour black on the map, it means that there is an obstacle at this location.

The empty value corresponds to the colour white and it signals that there is no obstacle in

this location and therefore the robot can path through it. Lastly, the unknown value, rep-

resented by the colour grey, signals that the robot hasn’t obtained any information about

this location.

9.2.6 Cropping the Map

After obtaining the map of the elevator, the robot needs to process it to extract the goal

position that allows it to safely enter the elevator. Since the robot is standing outside

of the elevator some of the outside areas will be mapped. This information needs to be

cropped out as the available area outside of the elevator is useless because the goal is for

the robot to go inside. When saving the map one obtains the occupancy grid image but also

a file that provides information about its corresponding map. This information includes

the resolution of the map, in other words, how many meters in the real world does one

pixel in the map equates to. Additionally, it also provides information about the starting

position of the robot when the map was generated. Since the robot hasn’t moved since the

generation of the map, this starting position corresponds to the robot’s current position.

The x-axis corresponds to the direction the robot is facing initially. The y-axis is perpen-

dicular to the x-axis. Since the robot is standing perpendicularly to the elevator’s door,

the elevator’s door is then parallel to the y-axis of the map. This means that the elevator’s

door is, for the most part, in a column of pixels. Hence by knowing the distance to the

elevator’s door, knowing the robots initial position and knowing how to convert world co-

ordinates to pixel coordinates we calculate the door’s column pixel on the map. Lastly, we

can black out all the columns before (and including) the door’s column as they correspond

to areas outside of the elevator. This step is represented in part A of Figure 9.3.

9.2.7 Fill the Map

Sometimes after scanning the area, the map that is generated is incomplete. This be-

haviour is exemplified in part B of Figure 9.3. In this case, the robot should be able to

move because there were no obstacles in that area. However, the mapper didn’t generate

enough available space for the robot to move to. When the robot fails to move in or out

of the elevator it resets and starts the process again. However, the mapper would return

the same map and hence fail once again and lead to a never-ending loop. The reason the

mapper returns a map similar to the one shown before is believed to be because it didn’t

detect a wall (or obstacles) hence it is not convinced that there is free space in that area.

The map presented in part B of Figure 9.3 was generated after scanning inside a room

(while standing outside).

60

The room is much larger than a normal elevator and no wall was in range. This was

done while developing this method and helped to debug problems. However, this likely

means that, for the case of an elevator, this type of map has a lower chance of being gener-

ated, since elevators tend to be small enough to prevent this behaviour from happening.

Nonetheless, a way around this fact was implemented to use in case a map like this is

generated.

The implemented solution works by filling the grey pixels inside the blob. Pixels inside the

bounding box of the blob are searched one by one. If the pixel is grey then the algorithm

will check if there are white pixels to its left and right inside a maximum distance or if

there are white pixels above it and below it, once again inside a maximum distance. If

either case occurs then the pixel is coloured white. The search distance needs to be small

else grey pixels in between two different areas are filled. A value of ten appeared to be

enough to fix this problem when it occurred. This approach assumes that there aren’t any

obstacles in these grey spots else the mapper would have identified them, hence these grey

pixels can be assumed to be free spots.

It is always risky to colour grey pixels white and assume that the area on the map is free

without confirmation. However, the only grey pixels that are being coloured white are

the ones surrounded by true white pixels. We assume that if there were obstacles in the

unknown area, the sensor would have detected them and coloured the pixels black. Addi-

tionally, this is an optional step as the type of map that requires it was never generated in

an elevator environment.

9.2.8 Binarize the Map

As mentioned previously the map has three types of values. For the robot to navigate

safely, it needs to avoid areas marked on the map as occupied, represented by the colour

black. On the other hand, it is free to path through white regions as the sensor didn’t detect

obstacles in them. However, when it comes to regions marked as unknown, represented

by the grey colour, things get more ambiguous. The area is either empty or occupied but

since the sensors didn’t collect information about it the robot doesn’t know if it can move

there safely. However, the worst-case scenario is if the region is occupied and the robot

chooses to path there. In this case, the robot will collide with the obstacle and worst of all,

if it is a person, then the robot is a threat. Because of this, regions marked as unknown on

the map will be considered obstacles by the robot. If it doesn’t get confirmation that the

area is free it will not move through it. In the end, this means colouring the grey pixels of

the map, black. This process is represented in part C of Figure 9.3.

61

9.2.9 Find goal position

The last step of map processing is to identify the ’ideal’ position for the robot to achieve

in the elevator. The bounding box of the white region is searched pixel by pixel from left

to right and from top to bottom. For each iteration, the biggest square composed only of

white pixels and with a bottom left corner corresponding to the current pixel is identified.

If the biggest square found in the current column of pixels is smaller than the area of

the map occupied by the robot, the algorithm finishes earlier. This is because since the

blob is searched from left to right if no square bigger than the robot’s size at a specific

column exists then the robot can traverse past it, therefore, there is no need to continue

searching. The centre of the biggest square obtained is the ideal position and it is where

the robot should aim to move to. This step is exemplified in part D of Figure 9.3 where

the biggest square identified is represented in dark grey and its centre pixel is the goal

position. If during the processing of the map no blobs are identified or no square big

enough is available, then the robot will remap the area and try again.

9.2.10 Move inside

To perform this step the navigation module will be used. We have created the map. Then,

we have localized the robot on the map, since the robot hasn’t moved its location is zero

in all axis. Therefore, all that is left to do is place a navigation goal to the desired loca-

tion. This location in world coordinates is obtained from converting the map coordinates

obtained from the previous step. The navigation module will create a path and move the

robot to the ideal location.

9.2.11 Exiting the elevator

The robot entered the elevator and hasn’t moved since. It is important to point out that

when the navigation goal was set to enter the elevator, the orientation of the goal position

was set to the initial orientation. This means that when the robot enters the elevator it is

facing the same direction as it was at the start of the method. Because of this, the robot

is facing opposite the elevator’s door. Therefore the robot is first rotated 180º, using the

rotation function developed in the navigation module, causing the robot to face the door

once again, only this time, from the elevator’s inside.

To exit the elevator, the robot repeats the whole process used to enter. This means that the

robot will have to remap the area, only this time the area corresponds to the environment

outside of the elevator. Then, the map is processed through the same pipeline obtaining

a goal position. Lastly, a navigation goal is set for that goal position causing the robot to

exit the elevator. One thing that hasn’t been explained is how the robot knows its current

distance to the elevator’s door to process the map (cropping step). The distance to the

door can be obtained by subtracting the distance that the robot moved in the x-axis by the

distance to the door that robot calculated when it entered the elevator.

62

Figure 9.4: Robot entering an empty elevator; Robot entering an elevator with one passenger; Robot

entering an elevator with two passengers; Robot entering a room.

9.3 Experiments

Several experiments were done to test our method, these are represented in Figure 9.4.

The robot is a turtlebot 2 controlled by a laptop with 16GB RAM, i7 1.8GHZ 8 core CPU and

131 GB Disk. First, the robot was tested in elevator environments. Because the elevators

are public and people needed to use them, we had time constraints. Because of this, only

three different elevators were used for testing. Additionally, since we believe our method

can be extended for room switching, the robot was also tested in a room environment.

Every experiment was repeated 3 times. In the first scenario, there are no people inside

the elevator (or the room), in the second scenario there is one person inside and in the

third, there are two people. In all scenarios, there is enough room for the robot to move.

All the data captured by the camera was recorded using rosbags and is provided for future

bench-marking.

The robot was placed in front of the door perpendicularly facing it. The robot was then

switched on, followed by the initialization of the recording of rosbags and lastly, the pro-

gram was started.

9.3.1 Detect the Opening of the Door

The first step of the experiments involved testing the method’s accuracy at detecting when

the door opens. If the door was initially closed the robot detected when it opened with

100% accuracy. Additionally, the method to obtain the distance to the door also showed

to be precise as the robot never moved to areas outside the elevator. Even in the room en-

vironment, where the door rotates rather than slides, the method worked well. However,

the method failed if the door was open right from the start.

63

This is because the method first needs to obtain the distance to the door and then detect

when this distance changes. If the door is already open the distance will only shorten

when it is closed. However, once the door closes the method starts working because the

wrong distance values in the queue will be replaced with correct ones. Even though it

is a setback, it doesn’t negate the robot’s success, but it does delay it. Since this part of

the process can be extracted and tested separately, another independent experiment was

conducted. The door was opened, then closed 20 times. The method accurately detected

when the door opened and closed in all cases.

9.3.2 Entering and Exiting the Elevator

Afterwards, the pipeline was evaluated in its entirety. The experiment was repeated twelve

times with a perfect success rate even in the cases where there were two people inside the

elevator. However, one problem was detected. The robot moved to a position closer to the

door and farther away from the back of the elevator to avoid the people. Because of this,

the robot ended up in a position where part of itself would still be in collision range with

the door if it were too close, preventing the elevator’s door from closing and consequently

preventing the elevator from moving. This is because the map is cropped at the door’s

position, but the door has a certain depth. Hence, a change to our algorithm had to be

done. Before cropping, the robot first adds 50cm to the value of its distance to the door.

Even though the elevator door’s vary, their depths tend to be similar, and the robot won’t

fail to enter the elevator if it added a few unnecessary extra centimetres to the door’s depth.

With this change, the robot crops the map at the point where the elevator’s inside starts

and this prevented the previously mentioned case from occurring.

To exit the elevator, the method worked similarly to what happened when entering it. If

there was an obstacle close to the elevator in the outside, the robot would place itself in a

position where it would intersect with the elevator’s door. Therefore the change that was

done in the previous step was also applied in this step.

9.3.3 Results

The robot succeeded in entering and exiting the elevator as well as the room in all twelve

experiments. However, some problems did occur while performing the experiments which

forced the experiment to be restarted. A problem that occurred had to do with image com-

pression while saving the map. These problems were related to the processes responsible

for gathering information from the sensor as well as mapping. Because these problems

are external to the method, the experiments were not considered failed, instead, they were

restarted. The processing of the map when entering and exiting the elevator took, on av-

erage, 3.2 seconds. The experiments averaged an execution time of 96.92 seconds. These

results are presented in Table 9.1.

64

Table 9.1: Time of execution of the twelve experiments, in seconds.

Experiment
Map Processing Map Processing Total

The long average time of the experiments is a consequence of a few diverse factors. At the

start of the experiments the door is closed, and it remains this way for a few seconds. This

time hovered between 10 to 15 seconds. This way we make sure that the robot is actually

properly detecting the opening of the door and not somehow accurately guessing if the

door were to always open at the same time. Then the processes of mapping the elevator’s

inside needs to be launched. Next, the information from the sensor needs to be captured

to generate the map. Afterwards, the map needs to be obtained from the mapping process.

Then, after applying our map processing pipeline the processes responsible for controlling

the robot need to be launched. Finally, the robot needs to move the calculated distance.

Each of these steps occurs twice, when the robot wants to enter the elevator and when the

robot wants to exit it.

9.4 Conclusion

This chapter explains the implementation of the elevator task. The implementation of

this task not only allows the robot to perform the task in a competition but it also allows

it to navigate in between floors. The goal was to create a method that worked on novel

elevators. In other words, a method that works on any elevator without requiring a spe-

cific setup. The implementation avoids collision both with the elevator’s door and with

obstacles that may be inside it. This is done by detecting when the elevator’s door opens

and dynamically mapping the interest region (either elevator’s inside or outside). Exper-

iments were performed to evaluate the method. Results proved that the method never

failed to reach the goals of moving the robot in and out of the elevator. However, time

measurements proved the method to be slow due to the time it takes to launch ROS pro-

cesses, mapping and saving the map.

 Entering Exiting Time

1 2.91 2.84 104.26

2 3.02 2.56 107.43

3 3.04 2.73 100.61

4 3.28 3.48 96.80

5 3.13 3.10 90.28

6 3.24 2.18 104.70

7 2.94 2.68 93.59

8 3.06 2.76 93.49

9 3.18 2.82 91.23

10 3.56 3.60 85.66

11 3.41 5.14 100.05

12 3.58 4.96 94.95

Average 3.20 3.24 96.92

65

Chapter 10

Welcoming and Catering Visitors

This chapter explains the implementation of two tasks: ’Welcoming Visitors’ and ’Cater-

ing for Granny Annie’. These two tasks were combined into one chapter for a few reasons.

First, both tasks were extracted from the same competition. Secondly, both tasks are rel-

atively small in scale, especially when compared to the other tasks implemented in this

thesis. Lastly, the two tasks share a common goal, which is to identify an input to deter-

mine what is the respective task that the robot must do. The ’Welcoming Visitors’ task

expects the robot to identify people present in images it receives from the camera. Then,

depending on the identified person, it performs a task. For example, if the identified per-

son is the mailman then it would probably expect to be handled letters. Similarly, the

’Catering for Granny Annie’ task requires the robot to recognize verbal commands and

identify what it must do to fulfil the command.

10.1 Welcoming Visitors

In this task, the robot has access to camera images. It needs to try to identify the person

that is present in the images. Then, depending on who the person is and assuming the

person was identified, the robot performs a specific task. In a nutshell, this task challenges

the robot’s ability to identify people. The task is specifically used in the competition to

identify people that are at the entrance door of a home, through a surveillance camera.

Before explaining how this feature was implemented credit needs to be attributed to Vasco

Lopes and Nuno Pereira. They had previously developed a program that uses a python

library named face_recognition. They provided me with a sample program and hence

spared me the time and effort of looking for solutions to this problem as well as figuring

out how the library works.

10.1.1 Person Identification Algorithm

The robot keeps a folder of pictures of people it knows. Even though one picture per person

could work, as it will be proven during the bench-marking of this algorithm, as the number

of known people increases the number of samples per person will have to increase for the

algorithm to remain competent. Therefore, a folder of pictures per person will be saved in

the database folder. This second approach does, however, require more memory to store

all the photos and more processing time to process them all. Initially, the database folder

is empty because the robot doesn’t know anyone. The algorithm starts by processing the

class folders. A list of names is obtained as well as a list of respective image encoders.

66

These encoders are obtained by passing the images through a function presented in the

face_recognition. In a nutshell, the robot has an image database of people’s faces and

when this algorithm starts it loads it into memory.

Afterwards, the robot starts to obtain images from the camera. The face detector module

is used to check if the frame has a face of a person in it. If not, then the image is ignored,

otherwise, the image is placed in a queue. This queue stores a set of recent images that

have faces in them. This queue is reset if the time between frame insertions is above a

certain threshold. This way if one person comes in front of the camera, leaves and then

a different person arrives, the frames of the first person are deleted. This queue also has

a maximum size to avoid old frames being processed as well as avoiding long processing

times. When the queue is full, then the set of frames is processed. This way the robot has

more information about the person rather than just one frame. This means that it has

a higher chance of identifying correctly a person that it should identify. The robot fails

this task if it asks the human to identify a certain person, because it believes them to be a

stranger, only to be told that it should know who the person is and therefore it is failing

its job.

To identify the person in the images, the robot will use the database. For each frame, it

will obtain its encoders. Then it will compare these to all the encoders in the encoder’s

list. This last step returns a list of boolean values with the same size as the database’s

encoder’s list. Each item in this list indicates if the encoders in the same index from the

database’s list matches with the frame’s encoders. If all values of the list are false and if

the robot would only use this single frame, it would guess that the person is a stranger

because the encoders don’t match with any of the known ones. The class with the most

positive indexes (true values) is the predicted class. After repeating this process for all

frames in the list the robot obtains a list of results. Some of the results may indicate a

stranger while others may guess a different person. A conclusion needs to be taken from

these results.

First, the robot will check if the results classify the person as a stranger. It will count

the number of results that predict a stranger. Then it will divide this value by the size

of the queue. In other words, it will obtain the percentage of stranger guesses. Then it

will compare this percentage with a threshold. If it is above this threshold it will end the

iteration and predict stranger. If this threshold is too small then the robot has a higher

probability of classifying known people as strangers but it also has a lower probability of

classifying a person as someone else. For security purposes, it is preferable for the robot

to call someone known a stranger than opening the door to one.

If the person is not a stranger then the robot will count the percentage of each name that

was guessed, similarly to the stranger percentage. The person with the highest percentage

is then returned.

67

It is worth pointing out that this algorithm is implemented to recognize a person in the

frame. It trusts that as long as there is one known person in the frame, the door can be

opened. If the algorithm were to require potentially more people to be at the door at a

time and all to be identified it would need to be changed.

Lastly, to estimate how well the face_recognition algorithm performs, it was bench-marked

on a dataset. The requirements for the dataset were to contain only images of people’s

faces, have a significant variety of people and have a significant number of samples per

person. After searching through different datasets the chosen one was the Faces94 dataset

[Uni94]. This dataset contains pictures of faces of 121 people as well as 20 pictures taken

per person, varying in facial expression.

A program was developed whose goal is to split the dataset into a test and a training set.

The training set will simulate the database while the test set will simulate the images ob-

tained from the camera during the execution of the algorithm. The program receives as

input the number of images per class (person) that are to be placed in the training set.

Since there are 20 images per class in the original dataset, this number must be inferior

to it to ensure that there is at least one image (per class) in the test set. The program first

creates the test and training folders. Then it proceeds to create the class folders inside both

test and training folders. Next, it iterates over the class folders of the original dataset, se-

lecting N̄ random images and placing them in the respective class folder in the training

set, while the remaining 20-N̄ images are placed in the test set. This program allows us

to test on varying test and training set sizes by simply changing the input parameter.

The bench-marking program first reads the training set folder, extracts the descriptors

from each image and creates the database. This previous step is the same as the database

loading step. Next, the program reads the test folder. For each image in the test folder,

the program first extracts its descriptors. Then, exactly as what was done in the developed

algorithm, the programs matches the descriptors with the database, obtaining a boolean

array then extracts the predicted class from the array by finding the class with the most

positive values. Lastly, the program compares the predicted class of the image with the

correct class. In case of a match, a variable that keeps track of the number of correct class

predictions is increased by one. After iterating through all the images the algorithm’s

estimated accuracy is obtained by dividing the previous variable by the total number of

images in the test set.

This evaluation was done multiple times on test and train sets of different sizes. The re-

sults obtained are presented in the table 10.1.

68

Table 10.1: Accuracy of face identification algorithm on Faces94 dataset with varying number of classes,

training set sizes and test set sizes

Classes Training/Test Set Size Total# Test Images # Correct Predictions Accuracy %

10 19/1 10 10 100.00

10 10/10 100 100 100.00

10 5/15 150 150 100.00

10 1/19 190 183 96.32

25 19/1 25 22 88.00

25 10/10 250 220 88.00

25 5/15 375 329 87.33

25 1/19 475 358 75.37

50 19/1 50 44 88.00

50 10/10 500 439 87.80

50 5/15 750 647 86.27

50 1/19 950 718 75.58

151 19/1 151 106 70.20

151 10/10 1510 1039 68.81

151 5/15 2265 1443 63.71

151 1/19 2869 1219 42.49

From the results presented in table 10.1 WE can conclude that as the algorithm identifies

more people (the number of classes increases), it increasingly struggles to accurately iden-

tify the person. However, the results also show that the previous problem can be mitigated

by increasing the database size.

10.2 Catering for Granny Annie

In this task, the robot must recognize verbal commands. Then, for each command, there

would be a respective task that the robot would perform. However, the linking between

command and task can be infinite and easily changed. Therefore, this implementation fo-

cuses only on the identification of which command was spoken and the return of variables

which would affect the performance of the respective task. The list of commands is the

following:

1. Turn the lights [ON/OFF] in the [ROOM] - the robot has remote access to a room’s

light controls. It can then turn the lights on or off.

2. Leave the blinds [OPEN/CLOSED/HALF-OPEN] - the robot has remote access to

the blinds controls. It can then lower or raise them.

3. Fetch the [OBJECT_NAME] - the robot is requested to fetch an object. The robot

must understand which object was requested. It will then have to find it, grab it and

deliver it. The grabbing part will have to be ignored for the time being as the robot

doesn’t have an arm yet.

69

These commands were the ones required by the competition at the date of the develop-

ment of this thesis. This means that the list of commands may vary in the future and

therefore the command identification algorithm will need to be expanded accordingly.

However, the implementation of these commands will hopefully provide a good founda-

tion which eases the addition of new commands. The commands in the list contained

variables that affect what the robot would do. This means that not only does the robot

need to identify what type of task it must perform, but it also needs to know how it must

perform it. For example, the first command requires the robot to manipulate the lights.

However, the robot needs to know if the lights need to be turned on or off, as well as to

which room does this task need to be performed on.

10.2.1 Algorithm

The robot will constantly be performing speech recognition. After a sentence is recognized

it will pass it to this tasks’ function. This function will return an index number which

corresponds to a commands index as well as the value of the variables accepted by the

command. If the returned index is negative, then no valid command was recognized.

The function verifies if the input string corresponds to each valid command. Each com-

mand has an automata created from the command’s grammar specified in the previous

list. An automata is a system which represents a grammar, that receives a string of char-

acters and indicates if it belongs to the grammar or not. The automata is constituted by

a set of states. The characters of the string are read one by one, changing the state of

the automata. If by the end of the string the automata is in an acceptance state, then the

string belongs to the grammar, otherwise, it does not. If the input string is accepted by

the automata, then this means that human spoke this command. The respective index is

returned as well as the values of the variables. The values are extracted from the string us-

ing the automata. A representation of the automatas is presented in figures 10.1, 10.2 and

10.3. The asterisk symbol corresponds to a path that accepts any character that doesn’t

have another valid path from the current state. Furthermore, the automatas change state

after processing every single character. However, to simplify the explanation, the au-

tomatas inn the figures accept a sequence of characters in between two states, just re-

member that the two stages are representing multiple.

Figure 10.1: Automata for command to fetch objects

70

Figure 10.2: Automata for command to control the blinds

Figure 10.3: Automata for command to control the lights

10.3 Conclusion

This chapter explains how both ’Welcoming visitors’ and ’Catering for Granny Annie’ tasks

were implemented. The first requires the robot to monitor camera images and detect

when people are present in the frames. Then, it must attempt to recognize them or classify

them as strangers. The algorithm extracts descriptors using the face_recognition library.

It then combines information from multiple and sequential frames to achieve the conclu-

sion. The quality of the descriptors was benchmarked on faces94 dataset. The results were

satisfying. However, since the algorithm doesn’t make a decision based on a single frame,

the accuracy of classification is greater than the one reported. The second task requires

the robot to understand three verbal commands. An algorithm was implemented using

the speech recognition module. This algorithm receives the recognized speech and, based

on the results of the different automatas, returns an index, which indicates what type of

command was identified, and the values of the command’s parameters. Both tasks act as

a setup for something else since after recognizing the person or the command the robot

could perform any type of task.

71

Chapter 11

Getting to know my home

This task focuses on acquiring and representing knowledge about the environment. Some

random changes are then made to the environment. The robot must identify these changes

and point them out. The task ’Getting to know my home’ therefore consists of two parts.

First, the robot must obtain information about the environment where the task will be

performed. The information must be saved in a semantic map which contains the names

of the objects and their location in the environment. The process of obtaining this infor-

mation isn’t restrictive since the competition doesn’t evaluate this step it simply consid-

ers the semantic map as a requirement for its successor. This means that a human could

create the semantic map by hand, writing down the objects’ names and calculating their

locations. However, as will be discussed shortly, a more automated approach was imple-

mented. The second part consists of the robot traversing the environment and verifying

if the objects registered on the semantic map are still in their initial location, verbally

communicating each conclusion.

11.1 Acquiring information

This step precedes the actual task. There are no limitations as to how the robot should

learn new objects. This means that participants could attempt to build classification mod-

els during the set-up days. However, each time new objects are added or a new environ-

ment is used, the models need to be retrained. Not only would it be challenging to create

a competent model in time but it would likely have to be discarded and recreated later.

Because of this, a new approach is required, preferably, an approach that eases the pro-

cessing of teaching the robot about each object.

With the previous goal in mind, an approach was created where the robot follows the

human around and learns one object at a time. The algorithm consists of the following

cycle:

1. The robot follows the human around.

2. The human tells the robot to stop following.

3. The human points to an object and speaks its name.

4. The robot captures information about the object and saves it in a database.

5. The robot registers the object’s position in the semantic map.

72

11.1.1 Following the human

This step is similar to what was done for the ”Help-me-carry” task. The robot will follow

the human around using the follower process. However, the robot will be told to stop

when it is time for it to learn a new object. This means that the robot will have to stop

the follower process. However, by doing this it also stops the publication of camera im-

ages which are essential for learning the new object. Additionally, after learning the new

object, the robot will have to register its position on the map, therefore it must know its

current location. Because of these two requirements, both AMCL (for localization) and

follower processes have to be running at the same time. However, they are incompatible

because, since they both require the camera, they share nodes. Because of this problem,

a custom launch file that starts AMCL and the setup nodes for the follower process was

created. Then, a second launch file launches the follower process, but only the follower

node, as it expects the setup nodes to be already registered. The task begins by starting

this process, meaning that the robot will be able to locate itself on the map through AMCL.

Additionally, a subscriber to the image topic is created which saves the latest image in a

variable, while a second subscribes to the acml_pose topic which constantly updates the

robot’s position. Next, the process that starts the custom follower process (compatible

with AMCL) is started, causing the robot to follow the human around. The robot will use

the speech recognition module and constantly detect speech. Once the detected speech

matches a known stopping word such as ”stop”, the robot will stop the following process

and therefore stay in place. The human will then teach the robot the new object, a process

which will be discussed in the following sections. Afterwards, the robot will ask the human

if the task is finished. In the case of a negative answer, the robot will resume following the

human by restarting the follower process, learning new objects until the human’s answer

is affirmative.

11.1.2 Detect when the object’s name is spoken

The human must name the object to the robot because the robot will need to, later on,

point out the objects that are present or missing in the environment using their names.

The robot expects the human to say the object’s name using the following syntax:

• This is [article] [object_name].

The possible articles in the English language are ’a’, ’an’ and ’the’. Because the speech

recognition software isn’t perfect, to minimize delays by requiring the human to repeat

the sentence, if no article is recognized, the sentence is still accepted. The algorithm for

this step uses the speech recognition module to recognize all the speech being spoken to

the robot. The recognized text is concatenated and saved. When the sequence of letters

’this is’ is recognized then the robot knows that the following text equates to the object’s

name. If articles are present in the robot’s name, they are removed.

73

11.1.3 Obtaining information about the object

The robot receives RGB images and point clouds from the camera. Similarly to what was

done for the handwaving detection module, a synchronizer was used to guarantee that the

RGB images correspond with the point clouds. The amount of data to save per object is

one by default but can be changed to save more information each time. Since the robot is

standing still at this point, the images and point clouds will be similar to each other, hence

the robot would likely just be saving redundant information if the amount was superior

to one. However, a bigger amount of data to collect reduces the risk of having to start

the learning process of this object from scratch. An example of this is the pointing finger

position detection step. The algorithm may not detect the position of the pointing finger

in an RGB image and therefore require a new image. With the purpose of efficiency and

time saving, the synchronization and saving of RGB images and point clouds are started

when the task starts. The images and point clouds are saved in their respective queues.

These queues have a maximum size of ’N’. If the queue is full then the oldest value in the

queue is deleted and replaced with the most recent one. This prevents outdated data from

occupying the computer’s memory. When the human speaks the object’s name the ’N’

most recent RGB images and point clouds are retrieved from the queues. This way no

time is wasted starting the camera processes, initializing the subscribers and waiting for

N images and point clouds.

The RGB images include the object of interest, the hand of the human pointing at the

object and potential background objects. It is necessary to automatically know what object

the human is pointing to. A hand key-point extraction algorithm was found and adapted.

This original algorithm received an image and, if a hand was present, it identified the pixel

coordinates of key-points of the hand. These key-points are returned in an array of 2D-

values (x and y coordinate). This array always had a fixed size of N, a configurable number

of key-points, by default 22. Some elements of the array could be ’None’ values if the key-

point was not identified in the image. This is important because after some testing it was

also found that the pointing finger’s position always corresponded to the eighth point in

the array, for the default N value of 22. Therefore, the original algorithm was changed to

only return the eighth value in the array, obtaining the position of the pointing finger in

an image.

For each image received, the position of the pointing finger is calculated using this algo-

rithm. If the key-point was not detected, it is a ’None’ value, the image and respective

point cloud are discarded.

When it comes to extracting the object being pointed at from the information received

from the camera a semantic segmentation model on the RGB images was used.

While image classification simply attributes a class to the whole image, semantic segmen-

tation attributes a class to each pixel of the image. It is essentially classification per pixel,

rather than per image. Although, to classify a pixel it requires information about its neigh-

bouring pixels.

74

Each colour corresponds to a class. The result is that the individual objects are identified,

as well as their positions and contours in the image. By applying a segmentation model

to the RGB images received from the camera, ideally, all the objects would be segmented.

Then, by knowing the position of the pointing finger, the object at that position would

be kept while all the others would be discarded. However, as with any machine learning

method, semantic segmentation requires a dataset. Ideally, since any object could tech-

nically be shown to the robot for learning, the dataset would be complete with all possible

objects in the world. However, not only does such a dataset not exist but would also take

too many resources to train a model for it. For that reason, datasets with home objects

were explored since that is the type of environment primarily focused on the task. With

this said, we seem to have hit a paradox, we want the robot to learn about a new object,

however, require the object to be known by the robot when the segmentation model was

trained. This isn’t exactly true. Yes, the semantic segmentation model requires a dataset

and will be used to learn about the object being shown. However, if the object being shown

isn’t in the dataset, the model will still output a semantic segmentation of the input image

and, hopefully, that output can be useful for learning about the object.

Two datasets were found and a model trained for each of them was used and tested. The

first dataset is COCO [LMB
+
14]. COCO is a large-scale object detection, segmentation

dataset with over 300 thousand images of everyday scenes and 91 object categories la-

belled over 2.5 million instances. The second dataset used was ADE20K [ZZP
+
17] devel-

oped by researchers at MIT. It contains 20 thousand images annotated with 150 object

categories.

After passing the RGB image through the semantic segmentation model a segmented im-

age is obtained as output. This image has potentially multiple regions, each corresponding

to what the model thought was an individual object. We still want to extract the object be-

ing pointed to and discard the rest of the scene. From before, we’ve obtained the pixel

coordinates of the pointing finger. Hence the object should be in the segmented region

that contains this pixel. The individual regions are searched one by one until the one that

contains this pixel is identified. Semantic segmentation attributes a single class to each

pixel and does this to all pixels. Therefore this pointing finger pixel can only be in a sin-

gle region and there is always one region that contains it. After identifying the matching

region all the pixels that don’t belong to it are coloured black in the original image while

the ones that do belong are left untouched.

At this point, depending on the quality of the segmentation, we have an image with the

object of interest and everything else blacked out. The robot now needs to extract infor-

mation about the object in the image to recognize the object when new images are ob-

tained. Image descriptors were created for this purpose. They extract specific features

from the image that, hence the name, describe the image. Similar images have similar

features while different images have different features hence their descriptors should be

very distinct. The idea is to save these descriptors in a database.

75

Then, when a new image is obtained, its descriptors are extracted and matched with the

ones in the database to know which object is in the image. Three different feature extrac-

tion algorithms were used: Speeded Up Robust Features (SURF), Scale-Invariant Feature

Transform (SIFT) and Oriented FAST and rotated BRIEF (ORB). All of these algorithms

are implemented in opencv library. These are hardcoded feature extractors. They were

created back when convolutional neural networks didn’t exist. Simple tests proved them

to be rudimentary for this purpose hence they can’t be used.

For processing the point clouds the goal remains the same, that is, extracting the object

from the scene. Point clouds provide an extra dimension to the problem, the depth. While

in the case of images the scene is projected to a single plane and, therefore it is harder to

separate adjacent points. However, in the case of the point cloud these adjacent points

may have high contrast in their depth values, this likely means that they belong to two

different objects.

An Euclidean clustering algorithm was implemented. Clustering means organizing simi-

lar data values into groups where each group is a cluster. The algorithm receives a point

cloud and filters it. First points with ’NaN’ values are discarded. Then, a voxel grid is

applied to the point cloud. Voxel grid creates a three-dimensional grid, where each cell

shares the same size N. All the points inside a cell are transformed into a single point.

This transformation can vary, but it can be for example the average of the points in the

cell. The bigger the N the more values will be in each cell. This consequently reduces the

size of the original point cloud.

Then a Kd-tree representation of the point cloud is built. This algorithm will return a tree

object that represents the original point cloud. The way the algorithm works is it selects

a dimension out of the set of dimensions. Then it calculates the median of the values in

that dimension. Points whose value are inferior to that dimension belong to a different

branch than the ones that are superior to the median. The process is then repeated for all

the dimensions.

Then an empty list C is created. This list will contain the clusters. Additionally, an auxil-

iary queue of points Q that need to be checked is created. The points in the point cloud are

searched on by one. For every point searched, the point is added to the queue Q and this

queue is also searched. For every point searched in the queue Q, the neighbour points are

searched in a sphere of a specific radius. If the point is not in the queue Q then it is added

to it. After searching the queue Q this Q is added to the list of clusters as a new cluster and

it is reset for the next iteration.

At this point, we have a list of clusters. We need to find out which cluster corresponds

to the object of interest and which ones to discard. Once again we use the position of the

pointing finger. However, this position is the pixel coordinates of the finger in the RGB

image and the point cloud is an array of points.

76

The conversion from matrix coordinates to array index is:

• index = y * image_width + x

This conversion only works because the publishing of RGB images and point clouds was

registered. This means that the point clouds’ points are sorted, in other words, if we apply

the formula above to all the points in the point cloud and match their RGB values to the

RGB values of the RGB image, they are the same.

With the above formula, we can then obtain the point of the pointing finger’s tip in the

original point cloud. However, since this point cloud had to be filtered and transformed

using the voxel grid algorithm, this point may not exist in the transformed point cloud

and consequently in any of the clusters. Because of this, we can’t find out which cluster to

extract by checking which one contains this point, because this point likely does not exist

in any of them. To solve this problem we calculate the euclidean distance of this point to

all the points in each cluster. Then the cluster with the smallest mean Euclidean distance

is the cluster to extract.

Having the winning cluster with, hopefully, the desired object the remaining step is to

extract information that describes this object and save it in a database. Similarly to what

was done to the RGB images, descriptors were used. Point Feature Histograms (PFH),

Point Feature Histograms RGB (PFHRGB) and SHOTCOLOR were the chosen set to test.

These were chosen out of the available descriptors because they proved to have the best

results in [ALE12]. The algorithm to extract each descriptor was implemented and applied

to the winning cluster, the descriptors were then saved in a database.

The last method tested for information extraction involves obtaining the output of the

convolution layers in the pre-trained model. The SURF, SIFT and ORB descriptors ex-

tract specific features from the image. These features are hardcoded in the algorithm.

However, these algorithms were created in a time were convolutional-neural-networks

did not exist. Convolution is the process of applying filters to an image to extract certain

information that depends on the filter. The filters are adjusted during the training of the

neural-network with the dataset. After convolution, there is usually a down-sampling step

to reduce the size of input data. This process is then repeated multiples times resulting

in an array of values that are the output of multiple feature extraction steps. This output

is what describes the image to the neural-network. These filters were obtained, not from

hard code, but by adapting to real-world data. The idea is to obtain a model pre-trained

on the ’imageNET’ dataset. Then pass an image to the model but, rather than obtaining

the output of the last layer, we obtain the output of the layer before the fully connected

layers, the output of the feature extraction step. Different network architectures extract

different features, we don’t know which architecture is superior for this job so they will

have to be tested to reach this conclusion.

77

To find out which method provides the best results, they have to be tested on a dataset.

Washington’s RGB-D Object Dataset was a perfect fit for this problem [KLF11]. This

dataset contains 51 classes of objects. Each image contains only one object and an empty

room as the background. Sequences of frames were obtained for each object by moving

the camera around, resulting in the capture of images in different angles. For each image

captured a depth image in the form of a black and white image was saved, as well as the

respective point cloud and a semantic mask. In short, this dataset provides the four types

of data required to test all the implemented methods above.

The first experiment consists of analysing the accuracy of the two segmentation models.

The images in the dataset are read one by one then, the for each image we read its re-

spective segmentation mask, this is the ground truth mask. We then pass the RGB image

to the semantic segmentation model, obtaining what the model believes to be the correct

mask. Lastly, we compare the colour of each pixel of the two masks, obtaining the number

of identical pixels. We then divide this number by the number of total pixels in the image

obtaining a percentage of similarity between the two masks. The average of these per-

centages is then calculated by summing all the percentages from each image and dividing

this sum by the number of images processed. The result is the accuracy of the semantic

segmentation model. The dataset has 207662 images, the results are presented in the

following table.

Table 11.1: Pixel accuracy comparison between ADE20K and COCO semantic segmentation models on

Washington’s RGB-D Object Dataset.

Model Name Pixel Accuracy %

ADE20K 57.69

COCO 81.79

From the results obtained we can conclude that the ADE20K performed quite poorly.

Since the masks have binary values, then for each pixel the model can only guess between

2 values. This means that in the worst-case scenario if the model was guessing randomly it

would obtain nearly 50% accuracy. ADE20K only performed slightly better than this. On

the other hand, COCO performed far better with 81.79% accuracy. This means that if we

choose to use a segmentation model in our task we will use COCO and discard ADE20K.

The next experiments consist on identifying the best CNN architecture for feature extrac-

tion on RGB images. To perform the experiment, the dataset has to be split into two sets:

a training set and a test set. First, the features of the images in the training set are ex-

tracted, creating a database. This step simulates the teaching phase of the task. Then, to

determine how well the features extracted by the architecture help in identifying the ob-

ject’s correct class, the features from the images in the test set are extracted. Afterwards,

each set of features is matched with the sets of features in the database. This step returns

the class of object the architecture believes the image belongs to. Lastly, the guessed class

is compared with the real class. This process is repeated for all the images in the test set.

The result is the number of images the architecture accurately predicted as the test image’s

class.

78

Essentially, the results will show which architecture extracts features that have very sim-

ilar values in images with the same class but are very distinct in images from different

classes of objects.

A program was developed to extract the training and test sets from the original dataset.

This program receives as its input two numbers. The numbers indicate how many images

will be extracted, from each class, to form the train and test sets, respectively. The pro-

gram then reads the images in a class folder, it indexes them and randomly selects N+M

images, where N is the number of images per class for training and M is the number of

images per class for testing, placing them in the new dataset folder. It repeats this process

for all class folders. With this program, we can quickly change the number of images in

the training and test set allowing us to perform experiments with different amounts of

data, without having to manually select N+M images ourselves. Additionally, the selec-

tion process is random which means that there is no bias towards specific images being

included or ignored.

Afterwards, the program responsible for calculating a certain architecture’s accuracy was

developed. The program starts by reading the training folder and creating a database

of features. The training folder contains 51 sub-folders (one per class) and each folder

contains the N images obtained in the previous step. Each image will be passed to the

CNN and the output of the convolution part, the features, will be saved. The extracted

features will be stored in a class list. A class list contains the sets of features extracted from

all the images in the class folder. Lastly, the class lists are stored in a global list, which

inherently contains all the data. This means that all training data is loaded into memory

at once. This is required because the features of each test image will have to be matched

with each feature in the training set. This means we are limited to a maximum amount of

data in the train set. This amount depends on the available RAM in the computer, for our

case its 16 GB, and the number of features extracted by each CNN architecture. In order

to not require the train data to be loaded in memory, an alternative could be to extract the

features of the images in the train set each time a test image is processed. But this means

that the process of loading the database which only happens once if we choose the first

approach of loading the entire training set into memory would need to be repeated 51 x M

times (once per image in the test set), which would correspond to an exponential increase

in execution time.

Next, the images in the test set are processed. The class folders in the test set are sequen-

tially opened and each of its images is processed one at a time. The images are passed to

the CNN and its features are extracted, similarly to what was done in the database cre-

ation step. Then, the test image’s set of features is compared to each set of features in

the database. This comparison, which will be explained shortly, returns a prediction for

the image’s class. If the predicted class is equal to the real class of the test image then a

counter of class hits is increased. In the end, this counter is divided by the total number

of test images processed which results in the architecture’s accuracy.

79

i=0

∑ ∑ ∑

CNN receive an image as input and output it’s class (for classification problems). This

means that the convolutional part of the network responsible for extracting features is

then connected to a set of fully-connected layers. However, we are interested in obtaining

the output of the convolutions not the output of the fully connected layer because we aren’t

interested in training a network in a static dataset. Pytorch library was chosen to fulfil

the requirements. First, the library allows us to download a neural-network architecture

from a variety of choices. Additionally, we can choose to download a pre-trained model

of that network in a data-set, such as ImageNet dataset. It is important to use a pre-

trained model in a dataset even though it isn’t going to be used for classification because

the network was trained for feature extraction. If we simply download architecture with

random weights we would obtain poor results since the network has no idea what it is

supposed to accomplish. Lastly, it is possible, through some effort, to obtain output from

the network’s inner layers using Pytorch.

The neural-network’s architecture determines the size of the set of features extracted ev-

ery time it receives an image. In other words, the amount of features extracted varies from

architecture to architecture but is static no matter the image that is passed to a specific ar-

chitecture. This fact allows us to use euclidean distance to determine how different or how

similar two sets of features are, as both sets have the same amount of numbers. Addition-

ally, one fact that remains consistent between architectures is that the extracted feature

set is always a 4-dimensional array. This means that the formula to calculate the distance

between two sets of features is the following: d̄ (s̄ 1, s̄ 2) =
∑I

J

j=0

K

k=0

L

l=0
(s1ijkl −

s2ijkl)
2
. Where d is the distance between the sets of features s_1 and s_2.

Each test image’s features are compared with each of the training features extracted in

the beginning using the previous formula for each comparison. In order to predict the

test image’s class, two approaches were tested. One approach is to predict the class to be

the same class as the class of the train image with the minimum distance value to the test

image. The second approach calculates the average distance of each class to the test image,

then the predicted class is the one with the smallest average. These approaches were tested

in the same setup, in other words, the same network architecture and same training and

test sets. The results are shown in the table below. It is important to mention that for the

following two experiments the networks were pre-trained on ImageNet dataset.

Table 11.2: Results of the two tested approaches for a test image class prediction based on the calculated

distances in the training set.

Architecture Training/Test Set Size Approach Type # Correct Predictions %

Resnet50 5/5 Minimum 132/255 51.76

Resnet50 5/5 Min. Class Mean 107/255 41.96

Resnet50 10/50 Minimum 1129/2040 55.34

Resnet50 10/50 Min. Class Mean 948/2040 46.47

VGG16 5/5 Minimum 104/255 40.78

VGG16 5/5 Min. Class Mean 48/255 18.82

80

From the results presented in table 11.2, we can conclude that regardless of the train set

size and neural-network architecture the approach that predicts the class of the train im-

age based on the smallest distance always surpasses the second approach which uses the

mean of the classes. Also, the results confirm the suspicion that increasing the train set,

even though it increases computational time, increases the accuracy of class predictions.

The next experiment will test different convolutional neural-network architecture’s fea-

ture extractions. From the previous experiment, the approach that will be used for class

prediction will be the one which predicts the class based on the minimum distance. Both

the test and training sets will contain 5 images per class. Increasing the test set would

provide a more precise accuracy value for each architecture. Additionally, by increas-

ing the train set the accuracy value of each architecture would also increase. However,

on one hand, there are time constraints to test a large number of architectures and on

the other hand, there are hardware limitations that prevent us from using larger training

sets because the RAM isn’t big enough to load that much memory. 21 different convolu-

tional neural-network architectures were tested in this setup. These networks were the

ones available through Pytorch, the library used for obtaining values in middle layers of

neural-networks for feature extraction. However, the different CNN architectures have

different sizes and also extract a different number of features. In short, some architec-

tures have a higher computational cost than others. This meant that some architectures

couldn’t be tested on the dataset with all 51 classes due to Random Access Memory (RAM)

restrictions. The table 11.3 contains the accuracy results obtained after running the dif-

ferent architectures on the maximum number of classes.

Table 11.3: Results of 21 convolutional neural-network architecture’s features on training and test sets with

5 images per class

Architecture # Correct Predictions %

DENSENET161 43/50 86.00

DENSENET169 81/95 85.26

DENSENET201 59/75 78.67

DENSENET121 77/100 77.00

Mobilenet 162/255 63.53

Resnet34 148/255 58.04

VGG19 51/90 56.67

RESNET18 143/255 56.08

RESNET101 143/255 56.08

MNASNET1 140/255 54.90

Alexnet 133/255 52.16

Resnet50 132/255 51.76

SQUEEZENET11 116/255 45.49

SHUFFLENET21 108/255 42.35

VGG16 104/255 40.78

SHUFFLENET205 97/255 38.04

Squeezenet 97/255 38.04

Mnasnet05 70/255 27.45

Googlenet 38/255 14.90

81

From the results presented in table 11.3, we can conclude that the Densenet family of ar-

chitectures out-performed the remaining ones. In particular, Densenet161 and Desenet169

achieved levels of accuracy that are good enough for classification. However, these are

also the architectures that ran on the least number of classes. Recall from the results ob-

tained during the benchmarking of the person identification algorithm, the accuracy was

inversely proportional to the number of classes. This means that other architectures may

be superior to densenet when tested on the same number of classes. To test this theory,

a second test was performed where all the architectures are tested on the same number

of classes. Ten was the maximum number of classes that our computer could handle with

the densenet architecture.

Table 11.4: Results of 21 convolutional neural-network architecture’s features on 10 classes with 5 points

per class in test set

Architecture # Correct Predictions %

DENSENET161 46/50 92.00

DENSENET169 45/50 90.00

DENSENET201 42/50 84.00

DENSENET121 41/50 82.00

MobileNet 41/50 82.00

ResNet34 35/50 70.00

AlexNet 34/50 68.00

RESNET152 34/50 68.00

ResNet50 33/50 66.00

RESNET18 33/50 66.00

RESNET101 30/50 60.00

VGG16 30/50 60.00

VGG19 30/50 60.00

MNASNET1 29/50 58.00

SQUEEZENET1 26/50 52.00

SQUEEZENET11 26/50 52.00

SHUFFLENET205 25/50 50.00

SHUFFLENET21 24/50 48.00

MnasNet05 23/50 46.00

GoogleNet 17/50 34.00

Even though the average accuracy increased across the board in 11.4, the densenet fam-

ily of architectures still stands at the top of the table. Additionally, the order of the table

is very similar with the main exception being AlexNet architecture which drastically in-

creased in accuracy with the decrease in the number of classes. We may be able to increase

the accuracy of classification by combining RGB feature matching with point cloud feature

matching, depending on how well those methods perform.

The test was repeated, this time increasing the number of data points in the test set to 100

per class. The results of this test are exposed in table 11.5.

82

Table 11.5: Results of 21 convolutional neural-network architecture’s features on 10 classes with 100 points

per class in test set

Architecture # Correct Predictions %

DENSENET161 904/1000 90.40

DENSENET169 886/1000 88.60

DENSENET201 844/1000 84.40

DENSENET121 841/1000 84.10

MobileNet 770/1000 77.00

ResNet34 678/1000 67.80

ResNet50 674/1000 67.40

RESNET101 668/1000 66.80

RESNET152 661/1000 66.10

RESNET18 636/1000 63.60

AlexNet 630/1000 63.00

MNASNET1 630/1000 63.00

VGG16 587/1000 58.70

VGG19 569/1000 56.90

SQUEEZENET11 566/1000 56.60

SHUFFLENET21 547/1000 54.70

SQUEEZENET1 502/1000 50.20

SHUFFLENET205 487/1000 48.70

MnasNet05 411/1000 41.10

GoogleNet 296/1000 29.60

Even though the order of the architectures in the middle of the table did change in 11.5, the

densenet family of architectures is still dominant. Furthermore, the order to the different

types of densenets is also the same, though the overall accuracy did slightly decrease.

The next step consists of the identification of which type of point cloud descriptors are

going to be tested followed by their implementation. After reading the paper in [ALE12],

where 13 different descriptors were tested, PFHRGB and PFH were chosen because they

were the best performing. SHOTCOLOR did outperform PFH and its implementation was

attempted. Unfortunately, an error kept occurring during its extraction from a point cloud

consequently leading to always incorrectly guessing the object’s class.

The remaining two types of descriptors were tested using Point Cloud Library (PCL). This

library is the go-to library for anything point cloud related because it provides hundreds

of classes and functions which ease the development of programs. Unfortunately, it is

implemented in c++ language. This fact not only requires learning this language but also

requires the creation of a way to call these c++ programs from the python scripts. A solu-

tion was found by making use of ROS’ frameworks. The c++ program publishes messages

to a topic, these messages are then received by the python program which is subscribed

to this topic.

Two programs, similar to what was done for the RGB descriptors, were developed to test

the accuracy of the point cloud descriptors on the Washingon’s dataset. The first splits the

dataset into training and test sets, only this time the program only works with the point

cloud files rather than the RGB images.

83

The second program, similar to what was done for the RGB descriptors, is responsible

for calculating a point cloud descriptor accuracy on the test set based on the information

in the training set, only this time it had to be written in c++. The logic of this program

is similar to the one developed for the RGB descriptors. The program reads the training

set, extracts the descriptors from each point cloud, places it in a class list which is then

placed in a global list. The program then reads each point cloud in the test set, extracts

its descriptors, compares them with the ones in the global list obtaining a predicted class

and lastly compares the predicted class with the real class to calculate the accuracy of

the method. In short, the differences between this program and the one developed for the

RGB descriptors, apart from the fact that it is written in c++, is the way that the descriptors

are extracted as well as the way they are compared with each other. The code responsible

for extracting each type of descriptor was adapted from the official PCL’s documentation.

The cloud is first loaded into memory. Then to reduce the number of points to be pro-

cessed, the cloud is filtered using a Voxel Grid. Next, the normals of the points in the

filtered cloud are calculated. The filtered cloud and normals are passed to the function

present in the PCL which computes the features, one of the two types of descriptors.

The number of points in the calculated descriptor depends on the number of points of the

point cloud. In a nutshell, unlike the RGB descriptor method where the number of points

extracted only depended on the CNN’s architecture and not the images, the point cloud’s

descriptors vary with the size of the input cloud. This affects the way the comparison of the

two descriptors is made. Since two descriptors may and likely have different numbers of

points, the euclidean’s distance formula can’t be applied as there isn’t a direct one to one

match between the indexes of each descriptor. For this reason, a different formula that

calculates the distance between two sets with an unequal amount of points was required.

The chosen formula was Hausdorff’s distance [ALE13].

D(A, B) = max{sup{d(a, B) | a ∈ A}, sup{d(b, A) | b ∈ B}}.

Where d(a, B) = min{ed(ai, bi), i = 1, ..., | B |} and ed is the euclidean distance between

two points.

The program ran on a dataset with 10 point clouds for training and 40 for test, per class.

The results are shown in the table 11.6.

Table 11.6: Accuracy of point cloud descriptors on the Washington dataset using the Hausdorff distance

Descriptor Type # Correct Predictions %

FPFH 346/2040 16.96

PFHRGB 374/2040 18.33

The table shows that both types of descriptors presented poor accuracy values. This means

that this method can’t be used as a standalone. In other words, one can’t reliably obtain the

correct class of the object in the robot’s camera by obtaining the point cloud and passing

it through either of these methods. However, these methods may still be useful when

combined with the RGB descriptors by potentially increasing their accuracy.

84

The next step will then test the accuracy of the combination of different methods to see

if the accuracy obtained from the densenet architecture can be improved further. This

means the combination of methods that potentially are written in different programming

languages, RGB descriptors are written in python whilst PC descriptors are written in c++.

One additional setback is the fact that if we want to test the accuracy of a certain method

X combined with different other methods the execution of the method X will have to be

repeated each time. In other to solve all of these problems, the programs are changed

to, instead of calculating the accuracy of the method on the test set, saving the output to

a text file as a table. This table will have one row per file in the test set while each row

will have as many columns as the number of classes, Washington’s dataset has 51, with an

additional column that contains the name of the text file. A cell in row R and column C

will contain the minimum distance of the text file’s descriptor of row R to the descriptors

of each of the train files of class C.

Before proceeding further, it is important to identify a problem. If we want to test the

accuracy of the combination of an RGB method with a PC method, then we need to make

sure that the point cloud files in the point cloud dataset match with the RGB images in

the RGB dataset. Otherwise, the distances would not match. This meant the creation of

a program which creates both RGB and point cloud datasets where their files match with

each other.

A program was then created to calculate the accuracy of the combination of two meth-

ods, through the combination of their respective tables. The program receives the names

of the two tables and proceeds to read the respective files loading each table into a two-

dimensional array. Then, each of the tables is normalized. This is done because the values

of distance in different tables likely are on different scales. If one table has values in the

thousands while the other has values in the hundreds then the first table will have a higher

impact on the conclusions. Therefore, the tables have to be converted into the same scale

through normalization. Normalization was done by first calculating the minimum and

maximum values in the table. We will call amplitude the difference between the maxi-

mum value and the minimum value. Then, each value in the table is subtracted by the

minimum value, this makes the range of values start at 0 since no number can be negative

as there is no number smaller than the minimum. Lastly, the numbers are divided by the

amplitude. Since the range was varying from zero to amplitude, by dividing the numbers

by the amplitude, the range now varies from zero to one. This way, all the values in the

tables keep their proportions to each other but both tables now have the same range of

values.

Afterwards, the program creates a table which is the combination of the two normalized

input tables. The program iterates over the first table row by row. It reads the name of the

text file associated to the row then finds the index of the row associated with the same test

file in the second table. This is necessary as the files may not be read in the same order

in different executions meaning that the indexes of rows of different tables don’t match.

Then each index of the row’s columns is iterated over.

85

Each table has an associated weight, this value indicates how much influence the respec-

tive table will have on the creation of the combined table. The weight of a table will be

the accuracy of the respective method obtained during the previous tests. A cell’s value

in the combined table will be the result of the sum of the multiplication of the cell values

of each table by their respective weight divided by the sum of the weights. The formula is

the following:

CTrc = (T1rc ∗ W1 + T2rc ∗ W2)/(W1 + W2)

Where CT is the table that resulted from the combination of tables T1 and T2, r and c are,

respectively, the row and column indexes and lastly W1 and W2 are the weights associated

to the tables.

With the previous algorithm, we can obtain a table which is the result of the combination

of two tables that represent two methods. The last step left is to calculate the accuracy

represented by this table to know if the combination of the two methods constitutes an

improvement. To achieve this, each row of the table is iterated one by one. The real class

of the file associated with the row is identified. Since we assured that the class folders

were read alphabetically and the number of test files per class is static, we can simply

divide the row’s index by the number of test files per class to obtain the real class index.

The predicted class is the column index of the cell with the minimum value in the row, as

this is the class with the minimum distance to the test file. Similarly to what was done in

previous algorithms, a counter variable keeps track of the number of times the predicted

class equalled the real class. In the end, the accuracy resulting from the combination of

the two methods is obtained by dividing this counter variable by the number of rows in

the table (number of test files).

All possible combinations were tested. Since there are over 200 possible combinations,

only the combinations of N architectures which increased the maximum accuracy of the

N-1 architectures are listed below.

• Alexnet + DENSENET169 - 94 %

• DENSENET121 + DENSENET161.TXT + PFHRGB + VGG16 - 96 %

• DENSENET169 + DENSENET201 + PFHRGB + VGG16 - 96 %

The results refer to the evaluation of accuracy on the dataset with 5 data points per class

in the test set. This is important to refer because the combination of the tables that were

obtained from the execution on the dataset with 100 data points per class didn’t show any

combination that improved accuracy. Therefore, since this dataset has a higher sample

size, the conclusion will be taken from its results. Consequently, no combination of archi-

tectures will be used. Instead, the highest performing architecture, DENSENET161, will be

used for feature extraction in the task.

86

11.1.4 Algorithm

After studying and testing different approaches and reaching definitive conclusions it is

time to integrate all the separate tools into one program that allows the robot to perform

the learning task. The program starts by checking if the database directory exists and, in

case it doesn’t, creates it. Next, the program starts the AMCL process (compatible with

follower) and creates a subscriber to receive images from the camera. This subscriber’s

callback function simply receives and stores the latest image. Then a loop is started which

contains the main logic of the task. First, the program starts the follower process which

causes the robot to follow the human. The program uses the speech recognition module to

constantly recognize speech. Once this module recognizes that the human said ”stop”, the

program stops the follower process and the robot stops following the human. Then, the

program waits for the human to say the object’s name using the ”this is” logic explained

previously. At this point, the robot knows the object’s name and should be able to see it.

The last step is to extract and save the object’s features. The program tells the human to

point to the object and constantly checks for the existence of a pointing finger in the frame.

Once it detects the finger, the program saves its pixel position. Next, the program tells the

human to stop pointing and waits for the finger to be removed from the frame. Afterwards,

the image is segmented using the COCO model and the pointing finger’s position. Lastly,

the features of the image are extracted and stored in the database in a folder whose name

corresponds to the object’s name. At this point, the robot asks the human if the task is

finished. If the answer is affirmative then the program stops, else the cycle is repeated.

11.2 Identifying changes on the map

In the second part of the task, the part that is evaluated by the competition, the robot

will have to use the information gathered from the previous step to identify changes that

were since made to the environment. The implementation of this step was much quicker

because all of the software developed. The robot receives as input a semantic map, gen-

erated in the previous step. If it receives a different type of file the program can identify

this and throws an error. At the beginning of its execution, the program starts AMCL.

This achieves two things: the program can create a subscriber to receive images from the

camera as well as be able to send navigation goals to move the robot.

The semantic map is read 10 lines at a time since every 10 lines represent an object. For

each object in the semantic map, the program will use the navigation module and move

the robot to the object’s location. It repeats the navigation goal until it is successful. Be-

cause the map contains both the position and orientation of the robot when the object’s

information was captured, when the robot achieves these values it should be facing the

object (if it is still there). The only thing left to do is for the robot to verify if the object

is still present. To achieve this, the last image captured by the camera is used and its de-

scriptors are extracted. Then the descriptors stored in the database correspondent to the

object in question are read into memory.

87

Next, the distance between the new descriptor and each of the descriptors in the database

is calculated. If the average distance is smaller than a certain threshold then the object

is still present, else the object is missing. In either case, the robot speaks the conclusion

it reached through its speech module. Then the cycle is repeated until there are no more

objects in the semantic map. The threshold’s chosen value was 1.1. This value was reached

through experimentation. The robot would move to locations where the object was still

present and the distance calculated stored. Similarly, to find the distance when the ob-

ject is not present, the robot was moved to locations where the object was missing. This

value was the average between the maximum value obtained in the first scenario and the

minimum value obtained in the second scenario.

11.3 Conclusion

This chapter explained the implementation of the ’Getting to Know my Home’ task. It

consists of two parts. The first part involves the creation of a semantic map. A simpler

approach could have been taken as the competition doesn’t specify how the map should

be built. However, the goal was to create an approach which allowed a quick and simple

method of performing this step as its only a setup for the actual task. Furthermore, cre-

ating an approach which continually and dynamically increases the robots knowledge of

objects can be extended to other tasks, for example, the ’Speech Object and Person Recog-

nition’ task, but also potential future ones. To achieve this, many descriptor extraction

methods were tested. Results show that from the architectures tested, DENSENET161 pro-

vides the highest accuracy. Afterwards, an algorithm was implemented where the robot

follows the human around the environment and is taught the object’s names and locations

one at a time. Then an algorithm which reads a semantic map generated by the previous

step was implemented. The robot goes to each location specified on the map, extracts the

descriptors of the images captured by the camera, compares them to the database and

concludes if the object is still present or is missing.

88

89

Chapter 12

Conclusions

This chapter contains an overview of what was accomplished from the development of this

thesis. It will answer the question if all that was initially stated to be achieved ended up

being accomplished. Additionally, ideas on what parts can be improved further, as well

as how they can be improved will be stated.

12.1 Foundations

The first thing that had to be done was to update the robot’s software. Both ROS and

Ubuntu are regularly updated. This means that after the conclusion of this project, both

will have to be updated once again. The turtlebot specific packages were installed from

source. This means that they won’t have to be reinstalled when ROS is updated. Af-

terwards, ideas on how to ease the integration and development of new software were

thought of. The goal was to make every bit of functionality a module so that it can simply

be imported and used by the programs that require it. This prevented the functionality

from having to be re-written, which means that bug fixing and/or updating, only needs to

be performed in the module itself, rather than in every program that implemented such

functionality. These, however, are just guidelines, future software should follow them to

guarantee integration and scalability, rather than reverting to the initial state before the

development of the thesis, with scattered projects. Additionally, a problem was identi-

fied that is a consequence of running programs that make use of ROS’ functionalities, si-

multaneously. The implementation of the process controller class prevented crashes that

occurred due to the concurrent execution of ROS processes which use identical nodes.

Additionally, it takes care of starting dependencies automatically rather than having to

re-write the starting logic in every program that requires a certain process. Furthermore,

the initialization and stopping of each process are controlled by the class, allowing syn-

chronization with the program’s instructions. In a nutshell, the implementation of this

class allows other programs to start the required processes in a much less difficult and

verbose manner and without having to worry about potentially crashing. However, each

process has to be specified in the class through the creation of a start and stop function.

There are many available ROS processes, and the number keeps increasing as time goes

by. This means that new programs may require the execution of a process that isn’t avail-

able in the process controller class. Therefore, the programmer will have to update this

class through the creation of the respective start and stop functions. The creation of both

these functions is simple and fast due to the examples of other processes and due to the

explanation of how to write such functions in the respective chapter.

90

12.2 Robotic Tasks

The second goal of the project was to implement as many tasks as possible with the avail-

able time to develop the thesis. For this purpose, seven robot tasks were identified. All

seven tasks ended up being implemented. Furthermore, the creation of these tasks re-

quired the creation of functionalities which were turned into modules which means they

can be used by future tasks, consequently cutting the amount of work required. Further-

more, this meant that this single project implemented more tasks than any other so far,

corresponding to a gigantic step to achieve the goals of participating in robotic competi-

tions as well as having an autonomous robot roaming around campus.

12.2.1 Help me Carry

This task had been implemented by a colleague. Improvements were performed directly

on his implementation. The code was restructured to fit the modularity goal. The RQ code

method of communicating with the robot was replaced with speech recognition. Lastly,

the depth detection method of which the robot uses to get closer to the human was im-

proved, consequently making it more reliant and resistant to measurement errors from

the camera.

12.2.2 Restaurant

To implement this task, a way of detecting when a person was waving at the robot had

to be created. After a couple of attempts, a working solution was created. However, the

solution has its problems. Due to the inaccuracies of hand and face detection modules,

the approach often fails to detect a handwave and requires the human to handwave for a

longer than what would be ideal. Additionally, the approach does sometimes inaccurately

detect a handwave when there was no such thing. Creating or finding better hand and face

detectors would improve the current algorithm. On the other hand, the approach which

discussed the creation of a dataset that classifies hand gestures could be implemented in

a dedicated project. It was not attempted as the allocated time for the implementation of

the task was running out and there wasn’t a guarantee that the approach would work.

12.2.3 Elevator

This task could have been statically implemented by generating a map of the elevator

before-hand, then specifically finding the coordinates that the robot must move to. How-

ever, the goal of the implementation was to develop a more dynamic solution to the prob-

lem. The final implementation allows the robot to enter and exit potentially any type of

elevator.

91

12.2.4 Speech Object and Person Recognition

This task required the robot to answer a question and to correctly name an object be-

ing shown to it. To solve the first challenge two approaches were developed. One uses

Wikipedia’s API to answer the question. This approach works rather well but it isn’t per-

fect because there is no guarantee that Wikipedia has the answer for the question, nor that

the answer to the question is in the first few sentences of the page that had the biggest

match with the question. Furthermore, the approach only works if the robot has internet

access to communicate with the API. Therefore, an offline approach was implemented

which gathered thousands of questions and answers in a text file. This approach is rudi-

mentary as the likelihood of a question being in the text file is small. The conclusion is that

the online method is a fine implementation but there is a large margin for improvement

through an allocation of a project with this goal. To solve the second problem, a dataset

was created. This dataset was obtained from the list of items present in the competition’s

rule-book. However, this list may be updated in the future which will require the dataset

to also be updated accordingly. Furthermore, to provide the robot with the ability of object

recognition outside of the scope of the competition, a new dataset was explored. However,

after developing the ’Getting to know my Home’ task, this step could be replaced with the

object learning process of this task. This is because it allows for infinite expansion, while

the model was obtained from a dataset with a very small number of objects.

12.2.5 Welcoming Visitors

A working implementation of this task was achieved through the integration of a face

recognition module present in a python package. However, the face recognition state-

of-the-art keeps improving meaning that this model can be replaced by a better one in the

future. Such change is simple and quick to perform since all that is necessary is to change

the model in the function responsible for extracting the face descriptors.

12.2.6 Catering for Granny Annie

This task required the robot to understand three specific commands. The recognition of

these commands was implemented with the addition of allowing the human to change

certain variable’s values in the speech. Although this task was implemented successfully,

its implementation does not allow the rapid integration of more commands. This is be-

cause the command recognition was implemented through the creation of an automata

for each type of command. Even though this solution works, it still requires the design

and implementation of an automata for each new command.

92

12.2.7 Getting to Know my Home

This task required the creation of a semantic map of the environment. The robot later

compares the information on the map with the state of the environment to spot changes.

The rules of the competition don’t restrict the way the map should be created. The chosen

approach aimed to be as robust, dynamic, and lasting as possible. The robot continu-

ally expands its knowledge of objects by following the human around the room and being

taught the objects’ names. The learning is based on the features extracted from convolu-

tion. Different CNNs extract different features. This required the evaluation of the quality

of features extracted from different architectures to identify which one should be used for

this particular task. Testing was also done to verify if the accuracy could be increased

through the combination of multiple types of features. Results showed that the densenet

family of architectures had the highest accuracy. However, since there are infinite possi-

bilities for CNN architectures, and there are already more architectures than the ones that

were tested, there is a high chance that the accuracy of the method could be improved by

using a different architecture. Nonetheless, this change implies the simple replacement

of architecture in the feature extraction part of the code. Therefore, the results were a

success because a way of dynamically adding objects to the robot’s knowledge was found.

12.3 General Conclusions

The development of this thesis was a difficult yet enjoyable challenge. All the initial goals

were achieved. This means that the robot is now able to perform seven individual robotic

tasks. Furthermore, the implementation of these tasks required the implementation of

blocks of code, modules, which can be re-used by future tasks. This fact, combined with

the software created for easing the development and integration of new software, rep-

resents a solid foundation for the creation of new robotic tasks. Tackling each task and

later achieving the solutions required using tools from multiple branches of the area of

artificial intelligence. Therefore, this thesis allowed me to learn about multiple sub-areas

of artificial intelligence, broadening my knowledge rather than specializing in a specific

problem.

93

Bibliography

[AAA

+
18] Aamir Ahmad, Francesco Amigoni, Iman Awaad, Jakob Berghofer, Rainer

Bischo, Andrea Bonarini, Rhama Dwiputra, Giulio Fontana, Frederik

Hegger, Nico Hochgeschwender, Luca Iocchi, Pedro Kraetzschmar,

Gerhard Lima, Matteo Matteucci, Daniele Nardi, Pedro Miraldo, Viola

Schiaonati, Sven Schneider, Meysam Basiri, Emanuele Bastianelli, Pedro

Resende, and João Mendes. Erl consumer: European robotic league for

consumer service robots. http://www.https://www.eu-robotics.net/

robotics_league/upload/documents-2018/ERL_Consumer_10092018.pdf,

2018. 11

[ALE12] Luís A. Alexandre. 3D descriptors for object and category recognition: a

comparative evaluation. In Workshop on Color-Depth Camera Fusion in

Robotics at the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), Vilamoura, Portugal, October 2012. 76, 82

[ALE13] Luís A. Alexandre. Set distance functions for 3D object recognition. In 18th

Iberoamerican Congress on Pattern Recognition, volume LNCS 8258 of Lec-

ture Notes in Computer Science, pages 57–64, Havana, Cuba, November

2013. Springer. 83

[ALST16] A.A. Abdulla, Hui Liu, Norbert Stoll, and Kerstin Thurow. A new robust

method for mobile robot multifloor navigationin in distributed life science

laboratories. Journal of Control Science and Engineering, 2016, 08 2016.

51, 53

[ATC
+
12] R. Amano, K. Takahashi, T. Cho, K. Kobayashi, K. Watanabe, and Y. Kurihara.

Development of automatic elevator navigation algorithm for jaus compliant

mobile robot. In The 6th International Conference on Soft Computing and

Intelligent Systems, and The 13th International Symposium on Advanced

Intelligence Systems, pages 1633–1638, Nov 2012. 51, 52

[FER18] António Fernandes. Preparing a robot for the robocup@home competition.

06 2018. 29

[KAO07] Jeong-Gwan Kang, Su-Yong An, and Se-Young Oh. Navigation strategy for

the service robot in the elevator environment. pages 1092 – 1097, 11 2007.

51, 52

[KLF11] Xiaofeng Ren Kevin Lai, Liefeng Bo and Dieter Fox. A large-scale hierarchical

multi-view rgb-d object dataset, May 2011. 77

[LM17] Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and bench-

mark for continuous object recognition, 2017. 48

http://www.eu-robotics.net/

94

[LMB
+
14] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.

Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,

ABS/1405.0312, 2014. Available from: http://arxiv.org/abs/1405.0312.

74

[MRW
+
19] Mauricio Matamoros, Caleb Rascon, Sven Wachsmuth, Alexander William

Moriarty, Johannes Kummert, Justin Hart, Sammy Pfeiffer, Matthijs van

der Brugh, and Maxime St-Pierre. Robocup@home 2019: Rules and regula-

tions (draft). http://www.robocupathome.org/rules/2019_rulebook.pdf,

2019. 9

[PAI19] Luis Pais. Integrating new functionality into a TURTLEBOT2. 06 2019. 40

[TSG
+
13] D. Troniak, J. Sattar, A. Gupta, J. J. Little, W. Chan, E. Calisgan, E. Croft, and

M. Van der Loos. Charlie rides the elevator – integrating vision, navigation

and manipulation towards multi-floor robot locomotion. In 2013 Interna-

tional Conference on Computer and Robot Vision, pages 1–8, May 2013. 51,

52

[Uni94] University of Essex. Faces94 [online]. 1994. Available from: https://cswww.

essex.ac.uk/mv/allfaces/faces94.html. 67

[ZCL19] J. Zhao, Y. Chen, and Y. Lou. A human-aware robotic system for mobile robot

navigating in multi-floor building with elevator. In 2019 WRC Symposium

on Advanced Robotics and Automation (WRC SARA), pages 178–183, Aug

2019. 52

[ZZP
+
17] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Anto-

nio Torralba. Scene parsing through ADE20K dataset. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017. 74

http://arxiv.org/abs/1405.0312
http://www.robocupathome.org/rules/2019_rulebook.pdf
https://cswww.essex.ac.uk/mv/allfaces/faces94.html
https://cswww.essex.ac.uk/mv/allfaces/faces94.html

