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Resumo 

 

Com o aumento do interesse em missões interplanetárias, novas trajetórias e métodos devem 

ser estudados e analisados de maneira a diminuir os custos e aumentar a capacidade de 

transportar instrumentação científica.  

Neste trabalho, é realizado um estudo numérico de trajetórias interplanetárias entre a Terra 

e Marte, utilizando a Lua para efetuar uma manobra de assistência gravitacional, com os 

objetivos de diminuir a energia necessária para a transferência interplanetária e testar e 

analisar o uso do algoritmo self-adaptive Levenberg-Marquardt como corretor diferencial para 

o desenho de missões espaciais. 

Os resultados obtidos são comparados com valores de transferência direta alcançados com os 

mesmos métodos e com os valores estimados para as próximas oportunidades de transferência 

interplanetária entre Terra e Marte. São obtidos resultados com o problema de dois corpos de 

astrodinâmica e verificados e validados com o software aberto GMAT desenvolvido pela NASA 

para uma abordagem mais realista. O algoritmo self-adaptive Levenberg-Marquardt 

desenvolvido para este trabalho na linguagem de programação   Python 3.6 é testado e 

utilizado como corretor diferencial para obter as trajetórias para o problema de dois corpos. 

Os resultados demonstram que o algoritmo self-adaptive Levenberg-Marquardt é adequado 

para planear missões, que a assistência gravitacional lunar pode ser executada em todas as 

situações estudadas e que apenas em poucas ocorrências não é viável. Das 4 oportunidades de 

lançamento analisadas apenas em uma situação a assistência gravitacional lunar não diminuiu 

a energia de lançamento. 

Os resultados indicam que a energia necessária para efetuar futuras missões a Marte ou a 

outros corpos do sistema solar pode ser reduzida e consequentemente a massa de carga útil 

nestas missões pode ser aumentada. A possível introdução de um novo método de cálculo 

para desenhar missões espaciais também é demonstrado através dos resultados obtidos. 
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Abstract 

 

As the interest in interplanetary missions is rising, new trajectories and methods should be 

studied and analyzed to decrease the costs and increase the capacity of transporting 

scientific instruments and payload to Mars.  

In this work, a numerical study of interplanetary trajectories between Earth and Mars is 

performed, using the Moon to carry out a lunar gravity assist manoeuvre, with the objective 

of decreasing the launch energy for the interplanetary transfer and analyze the use of the 

self-adaptive Levenberg-Marquardt algorithm as a differential corrector for space mission 

design.  

The obtained results are compared with the values of the direct transfer achieved with the 

same methods and with the estimated values for the next interplanetary transfer Windows 

between Earth and Mars. The results are obtained with the astrodynamics two body problem 

simplistic model and verified and validated with the open source NASA’s software GMAT for a 

more realistic approach. The self-adaptive Levenberg-Marquardt algorithm developed for this 

work in the programming language Python 3.6 is tested and used as a differential corrector to 

obtain the trajectories for the two-body problem. 

The results demonstrate that the self-adaptive Levenberg-Marquardt algorithm is adequate to 

design space missions, a lunar gravity assist can be executed in all situations studied and only 

in a few cases is not viable. Of the four launch windows analyzed only in one situation the 

lunar gravity assist does not diminish the launch energy. 

The results show that the energy needed to perform future Mars missions or missions to other 

Solar System bodies can be reduced and consequently the payload mass can be increased. The 

possible introduction of a new calculation method for space mission design is also shown due 

to the observed results. 
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Chapter 1 

1 Introduction 

1.1 Motivation 

In less than a century, space exploration evolved, from barely existent, with exploration with 

nothing but telescopes and other instruments, to a billion euro worth business sector with 

dozens of governmental agencies and private corporations investing in space technology and 

exploration. In competition or working together, all these entities made unbelievable 

advancements for humanity and in technology that today is available to anyone on Earth. 

It is important to look forward for the space race that is in progress, because we are 

searching for the limits of the human body, spirit and our place in the Universe. This search 

can unite nations, promote cooperation between countries and organizations, create a 

healthy competition for research and technologies. We can contribute to the advancement of 

humanity, although we have numerous problems as a species, still struggling to find the best 

way to coexist with each other and to live as a sustainable civilization in our home planet. 

Despite these inconveniences, space exploration must never stop. Knowledge and scientific 

advancements are never enough and there is no argument to not support the study of the 

Solar System, and the Universe around us, which no doubt will help the progress of Humanity. 

 

1.2 Problem overview  

Mars is the second planet closest to Earth, in distance and size, and has two known small 

moons: Phobos and Deimos. It is the main target for interplanetary missions: the United 

States of America, the Soviet Union, ESA and India performed unmanned missions. Although 

most of the attempted missions failed, some of them were successful. The completed 

missions consisted of orbiters, landers or just simple flybys. To this day, there is one active 

rover operating in the surface of Mars, Curiosity, one lander, InSight and six orbiters scanning 

the planet: Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, Mars Orbiter Mission, 

MAVEN, and the Trace Gas Orbiter. Currently there are planned missions for the next five 

years from NASA, ESA and China to keep exploring and reveal new data about the celestial 

body and its system. 

However, there is still a lot to know about this planet; we can claim that it is the one that we 

have more knowledge about, besides Earth. Because of this and other reasons, it is the most 

probable candidate for a manned mission to another celestial body other than the Moon and 

probably one of the first to be colonized by humanity in the future. 
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Generally, to reach Mars a direct transfer is used, which consists of burning while in the 

parking orbit around the Earth. The parking orbit can be a low Earth orbit and can vary from 

400 km to 1500 km of altitude, with any inclination, depending on the next manoeuvre to 

perform.  For a Mars direct transfer, this manoeuvre puts the spacecraft on escape velocity, 

in order to achieve a solar orbit that intercepts Mars orbit. The duration of the journey 

usually is no less than 180 days and not more than 450 days. To perform the most efficient 

trajectory, the time of flight may vary depending on the position, inclination and proximity of 

both. Some manoeuvres can be performed during the cruise phase to correct anomalies in the 

trajectory. Finally, the orbit insertion burn is performed near the target body, to ensure that 

the spacecraft enters in orbit, preventing the vehicle from continuing to outer space. 

Depending on the type of mission and its objective, the vehicle can perform more burns to 

achieve the desired orbit, or to achieve the trajectory to enter the atmosphere and initiate 

the descent to the surface landing site. On some cases, together with the retrograde burn to 

slow down the spacecraft, aerobraking can be used. This technique consists of using the outer 

layers of the atmosphere, so that atmospheric drag helps reducing the spacecraft’s velocity 

and thus saving fuel.  

As Mars exploration interest keeps growing in worldwide space agencies, the need for cheaper 

and alternative means of getting to the red planet are important. Some means can be used to 

increase the payload capacity and allow a vaster scientific payload. 

 

1.3 Space Missions 

From the photographs of the surface collected by orbiters and other missions, it is plausible 

that Mars once had liquid water on its surface, mainly because of geologic formations that 

reminds us of dried river beds, similar of what we find on Earth, and other formations that 

point to water flowing as their origin. Because of this and other data, scientists believe that 

we can soon find evidence that simple life forms may have existed once on the Martian 

surface. Its surface temperature is relatively similar to Earth’s comparing to all bodies in the 

solar system, and it is relatively close to Earth, with one transfer window approximately 

every two years, or 780 days. It is known that there are large quantities of solid water on 

both poles, which can be used to supply a colony, as well as systems of caves that can provide 

future shelters from cosmic radiation. 

Gravity assist manoeuvres are widely used since the first decades of deep space exploration, 

mainly for space missions to the outer or inner bodies of the Solar system and are an efficient 

method to reduce fuel mass and increase the payload capacity, although a gravity assist 

manoeuvre can extend the mission time significantly . This technique consists of using 

another celestial body in order to increase or decrease the orbit energy relative to the main 

celestial body. The spacecraft performs a ballistic flyby and departures from the assisting 

body’s sphere of influence with the same velocity magnitude but in a different direction, 

changing its orbit relative to the main body.  
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This method was used for the first time in an interplanetary mission in 1974, by the Mariner 

10, the spacecraft performed a gravity assist, using Venus as the assisting body to reach 

Mercury. After this mission, several other missions also took advantage of gravity assist 

manoeuvres, the most notorious being the Voyagers 1 and 2, launched in the 1970’s, and are 

still operating on their journey to interstellar space. Both missions were launched to take 

advantage of a rare planet alignment that allowed Voyager 1 to perform a flyby in Jupiter and 

Saturn, studying and photographing the planets and their moons. Although Voyager 2 was 

launched before, its trajectory was longer and slower, as it would reach Jupiter later. The 

spacecraft continued its planned mission and performed also a flyby to Saturn. Due to 

Voyager 1 flight path, that aimed to get close with Saturn’s moon Titan, the spacecraft orbit 

inclination changed considerably, and prevented any further encounters with other objects. 

However, Voyager 2 managed to perform a Uranus flyby with operating instrumentation, as 

well as a Neptune encounter. Both missions prove the potential of gravity assist missions, 

performing missions that otherwise could be unlikely to happen with the existing technology 

[1]. 

More recently, in 2004 ESA’s Rosetta mission was launched, with the purpose of studying and 

attempt to land on the Comet 67P/Churyumov-Gerasimenko, with a high elliptic orbit, which 

apoapsis is beyond Jupiter’s orbit, and periapsis between Mars and Earth’s orbit. This kind of 

orbit was unreachable with a direct trajectory. So, the spacecraft was launched into a 

heliocentric orbit, that would encounter Earth one year after its departure, using Earth as a 

gravity assisting body to increase the orbit energy. After the first Earth flyby, the spacecraft 

headed to Mars, where it also performed a flyby, so that its trajectory would encounter Earth 

again in 2007, two years after the first flyby. The last gravity assist was in 2009, also using 

Earth’s gravity to increase velocity and change the inclination, to finally reach the comet in 

2014. The mission was successful, and it was the first to land on a comet [2].  

As this work aims to find new alternative more effective trajectories to Mars for the near 

future, namely trajectories with Lunar gravity assist, it is important to analyse the next 

launch windows, in order to find the most efficient launch dates and times of flight, as well 

as a favourable Moon position to perform the gravity assist effectively. With that purpose, the 

Pork Chop analysis is needed. The Pork Chop diagrams shows characteristic energy 3C , that is 

needed to obtain an interplanetary transfer, depending on the launch dates and arrival dates. 

The curves represent the constant values of 3C , where the centre represents the minimum 

required for the interplanetary transfer [3]. 

For the numerical calculations a Differential Corrector was used [4]. A Differential Corrector 

is a numerical solver for boundary value problems, it works as an equation system solver. It   

converges the function value to the defined target, or as close as possible to it, varying the 

chosen parameters to find a solution. The general method used as a differential corrector is 

the Newton-Raphson method. In this work, a new method is used as Differential Corrector: 

the self-adaptive Levenberg-Marquardt method. 
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The Levenberg-Marquardt method has its origins in Newton-Gauss method. This method added 

the damping parameter k  to the previous method. This is a positive multiplier and was 

introduced in this method with the purpose of reducing the impact of the singularity of the 

Jacobi Matrix kJ . The method and the algorithm will be described in more detail in the work 

ahead. 

In order to test the self-adaptive Levenberg-Marquardt (SLM) as a Differential Corrector, this 

method was applied to a previous studied Lunar gravity assist trajectory in a similar work [5]. 

In this work it was proven that for the MER-A mission it was possible to decrease the launch 

energy due to a Moon flyby. So, this mission was also examined to verify the capability of the 

SLM as a potential Differential Corrector. 

The launch windows analysed span from 2020 to 2026. In these six years, there are four 

possible launch opportunities, one every two years. Each one of those has two possible types 

of trajectories: a short one and a long one. These types of trajectories depend on the angle 

between the departure point and the arrival point relative to the Sun. If the angle is greater 

than 180o, it is type II trajectory (long), if the angle is less than 180o it is a type I trajectory 

(short). Although the type II requires more time of flight, it is more effective, so in this work, 

it was the general type of trajectory chosen. According to a previous study performed for the 

ExoMars mission [6], a lunar gravity assist can increase the mass of the vehicle injected to 

Mars between 9% and 10.5%. 

 

 

1.4 Objectives 

The main objective of this dissertation is to test and use the self-adaptive Levenberg-

Marquardt algorithm as a potential differential corrector to design the trajectory, by applying 

the algorithm to try to replicate the results of a previously studied lunar gravity assist 

transfer to Mars.  

The method is then applied to several future launch windows to find a way to reduce the 

launch energy and consequently reduce the fuel mass or increase the payload capacity of  

future missions to Mars, by taking advantage of the Moon’s gravity and its favourable positions 

to perform a gravity assist and decrease the initial orbit energy to reach its target.  
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1.5 Dissertation Structure and Software 

The work is divided in 4 chapters: 

 Chapter 1: Introduction – A small motivation, and short description of the importance 

of space exploration and Mars missions, objectives of the work, as well as a brief explanation 

of some concepts and methods used in the work ahead. 

 Chapter 2: Models and Algorithms – In this chapter the algorithms and numerical 

methods to describe the astrodynamics analysis are explained. 

 Chapter 3: Results – The results are presented and discussed, comparing values from 

the two-body problem and GMAT to the pork chop analysis and the ones obtained for the 

direct transfers. 

 Chapter 4: Conclusions – Presentation of the final conclusions of the work, possible 

errors and recommendations for future work. 

The software used to perform this analysis was the open source programming language Python 

3.6 and NASA’s General Mission Analysis Tool (GMAT) 2018 version. 
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Chapter 2  

2 Models and Algorithms 

In this chapter, the astrodynamics model used for this analysis are described. Note that the 

two-body propagation was mainly used for this analysis, being GMAT used to conclude and 

obtain the result, since it describes more accurately the motion of all bodies in the Solar 

System.  

For an adequate use of the two-body problem, the trajectory is divided in four sections: from 

Earth injection burn to the Moon’s sphere of influence (SOI), the flyby until the escape from 

Moon’s SOI, the flight until the Earth’s SOI, and the journey between Earth’s SOI and Mars’s  

 SOI. 

The sphere of influence of a celestial body is delimited by a sphere of constant radius, and 

inside this sphere the prevalent force is the body’s gravity, disregarding the forces of all 

other bodies. This method is not the most accurate, although is the less complex for the 

initial calculations, and gives a good first guess that can be worked on. The vectors are 

identified with the general symbol a


and â  is used for unit vectors.  The norm of the vector 

is represented by the same letter without symbols a . 

 

2.1 Keplerian and Cartesian coordinates 

The satellite state representations are essential to define the orbit and the motion of an 

object in space, there are several types of coordinates systems, but in this work only three of  

those are used. 

The Keplerian coordinate system defines the orbit of the spacecraft through orbital elements: 

a, the semi-major axis, e, the eccentricity, i, inclination,  , the right ascension of the 

ascending node,  , the argument of periapsis and  , the true anomaly. For hyperbolic 

orbits, 0a negative and 1e , for parabolic orbits =a  and 1=e  and for elliptic orbits 

0a  and 10  e . 

The Cartesian coordinate system is inertial, the orbit is given also by six elements, the IJK  

components and the kji vvv ,, . The I  axis is pointed towards the vernal equinox, J  axis is 

90o east in the equatorial plane and K  axis extends towards the north pole of Earth. 

It is important to transform the coordinates, according to the calculations that best suit the 

models used, so the transformation equations are also represented in [7]. 

Cartesian to Keplerian ),,,,,,(  ieavr


 

The angular momentum vector h


 is needed, and it is calculated with the general cross-

product equation: 
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vrh


=      (2.1) 

The vector pointing to the node is found doing the cross product of the angular momentum h


 

and the unit vector ]100[ˆ =K : 

hKn


= ˆ      (2.2) 

The eccentricity vector is then calculated using the cartesian vectors, their norms and the 

gravitational parameter   of the orbiting body: 

( )




vvrr

r
v

e




−








−

=

2

    (2.3) 

To calculate the semimajor axis a  the specific mechanical energy   is needed:  

r

v 
 −=

2

2

     (2.4) 

It is important to verify if the orbit is a parabola, calculating the eccentricity vector norm. 

If 1e


then: 





2
−=a      (2.5) 

( )2
1 eap −=      (2.6) 

 If 1=e


then:  



2
h

p =      (2.7) 

=a       (2.8) 

 

And to calculate the other orbital parameters: 

h

h
i K

=)cos(      (2.9) 









−=


=

)0(2

)0(
)cos(

J

JI

nif

nif

n

n


    (2.10) 









−=


=

)0(2

)0(
)cos(

K

K

eif

eif

en

en




 



   (2.11) 









−=


=

)0(2

)0(
)cos(

vrif

vrif

re

re











    (2.12) 

In the equations that have a condition statement, the mentioned parameters have to be 

verified, as the answer can be between º180 and º360 . 

Keplerian to Cartesian ),,,,,,( vriea


  [7] 
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This method consists of determining the position and velocity vectors in perifocal coordinate 

system (PQW), and then using a rotation matrix to convert to the geocentric equatorial 

system. For this, the semiparameter is used because the semimajor axis in a parabola is 

infinite. 

)1(
2

eap −=      (2.13) 

 























+

+

=

0

)cos(1

)sin(

)cos(1
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
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
      (2.14) 
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
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
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





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


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=
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))cos((

)sin(







e
p

p

vPQW


    (2.15) 

















−+−+

−−−

=

)cos()sin()cos()sin()sin(

)sin()cos()cos()cos()cos()sin()sin()cos()sin()cos()cos()sin(

)sin()sin()cos()cos()sin()sin()cos()cos()sin()sin()cos()cos(

iii

iii

iii

R







(2.16)  

To obtain the final vectors in the geocentric equatorial reference frame, the obtained 

cartesian vectors are rotated through the rotation matrix R  for this case [7][8]. 

PQWrRr

=      (2.18) 

PQWvRv

=      (2.19) 

 

2.2 Epoch format 

The epoch format chosen is the Modified Julian Date, as it is compatible with GMAT and 

simplifies the conversions and calculations. 

The conversion from Gregorian Date to Julian Date and to Modified Julian Date is shown 

below [7]: 

5.1721013
9

275
int

4

12

9
int7

int367 ++







+



































 +
+

−= d
m

m
y

yJD   (2.20) 

daypJDMJD +−= )2430000(     (2.21) 
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24

60

60 h

mn
s

pday

+

+

=       (2.22) 

Where y  is year, m is month, d is day, h is hour, mn is minutes and s is seconds, while the 

term dayp is the fraction of day. 

 

2.3 Patched conic trajectories 

The patched conic approximation is a method to simplify ballistic interplanetary trajectories. 

The method consists of an interplanetary transfer be approximated by several arcs, and in 

each one of these the motion of the spacecraft is described by the two-body problem, 

considering only the influence of the main body on the vehicle. 

In this case, with the application of the patched conic method, the trajectory will be divided 

in 5 phases: 

 - The arc from Earth to the Moon’s SOI, considering a hyperbolic trajectory relative to 

Earth; 

 - The arc that describes the Moon’s flyby, considering a hyperbolic trajectory relative 

to the Moon; 

 - The arc from the Moon’s SOI to the end of Earth’s SOI, also hyperbolic; 

 - The arc of the interplanetary transfer, between Earth and Mars, described by an 

elliptic orbit relative to the Sun; 

 - Finally, the Mars arrival, described by a hyperbola relative to Mars. 

The dimension of the celestial bodies SOI and other important data are present in Appendix A, 

Table A.1. 

 

2.4 Kepler propagation 

For the Earth’s and Sun’s sections of the trajectory, the two-body Kepler propagation is used. 

This method predicts with a reasonable accuracy the position and velocity vectors on any 

moment of the orbit, given the initial position, velocity vectors and the time between the 

initial position and the position to be calculated.   

The universal variables method of Kepler propagation is one of the methods to solve Kepler’s 

problem, but unlike other methods mentioned in [7], this method allows to solve the problem 

in all possible conic sections so, in this case it is the best option. The classical formulas 

involving the different anomalies E, B and H have some problems when dealing with nearly 

parabolic orbits. 

The used algorithm is described below: 

Kepler Propagation ),,,( 00 vrtvr


 : 
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0

2
0

2 r

v 
 −=      (2.23) 

0

2
0 2

r

v
+

−
=


      (2.24) 

where  is the inverse of the semimajor axis to verify the geometry of the orbit and   is an 

universal variable that is defined to replace time as the independent variable. 

For circle or ellipse  )(:)000001.0( 0 t  

For parabola :)000001.0(   

00 vrh


=      (2.25) 



2
h

p =      (2.26) 

Equations 2.26 and 2.27 represent the Baker’s equation for parabolic orbits [7] and the 

calculation of the variable 0 , where s is the period of the orbit. 

)(3)2cot(
3

t
p

s =


     (2.27) 

)tan()(tan
3

sw =      (2.28) 

)2cot(20 wp      (2.29) 

For Hyperbola: :)000001.0( −  



1
=a       (2.30) 













−−+

−
−

)1()(

)(2
ln)(

000

0





ratsignvr

t
atsign    (2.31) 

  2
n=      (2.32) 

 is a convenient variable introduced to relate   and the semimajor axis. 

),( 3232 ccccCompute   

)1()1( 203
00

2
2 crc

vr
cr nn 


 −+−


+=



   (2.33) 

r

crc
vr

ct nnn

nn

)1( 302
200

3
3

1








−−


−−

+=+



  (2.34) 

n  assumes the value of 1+n before the loop restarts. 

A loop sequence using the Newtown-Raphson is required until 
6

1 101
−

− − nn  . 
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Finally, the f and g functions calculation: 

2

0

2

1 c
r

f n−=      (2.35) 

)1( 3

0

−


= c
rr

f n 
     (2.36) 

3

3

ctg n




−=     (2.37) 

2

2

1 c
r

g n−=      (2.38) 

Finally, the f and g functions are applied to the position and velocity vectors: 

00 vgrfr

+=     (2.39) 

00 vgrfv





+=     (2.40) 

This method uses the 2c  and 3c values, the universal variables and it is known as the Sundman 

transformation, which relate the time and orbit’s properties, their calculation is explained:  

 

If 
6

101
−

 : 

 


 )cos(1
2

−
=c     (2.41) 

3
3

)sin(



 −
=c     (2.42) 

If 
6

101
−

− : 

  


 )cosh(1
2

−−
=c     (2.43) 

3
3

)(

)sinh(





−

−−−
=c    (2.44) 

In case the 
66

101101
−−

−  : 

  
2

1
2 =c       (2.45) 

6

1
3 =c       (2.46) 

   

 The previous algorithm is presented in [7], as well as the 2c  and 3c values, the 

universal variables. 
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2.5 Earth, Moon and Mars coordinates 

The position and velocities of the celestial bodies were based on data from GMAT, as it is 

possible to retrieve report files with the planets or any other celestial bodies data. The report 

files consisted in the MJD time, and cartesian state vectors in each 1/1000 of a day 

approximately. If the files were used as described, the amount of time and computation 

needed to search for the state vector several times per iteration would be immense. So 

instead of this method, the report file was reduced to one state vector per day, this state 

vector is used to calculate the position and velocity of the body, using  the Kepler 

Propagation, according to the t between the time in the report file for that day, and the 

time of the state vector to determine. 

Kepler Propagation ),,,( vrttvr refrefref


−  

refrefref tvr ,,


are the position vector, velocity vector and time reference given by the GMAT 

report file. 

 

2.6 Lambert’s problem 

The Lambert’s problem is one of the most important tools for initial orbit determination, as it 

calculates an initial velocity vector to connect any given points in space, given the time of 

flight but the orbit is unknown. It is specially known for interplanetary mission design and 

likewise widely used as a tool to construct the useful pork chop plots. 

The method used for this work to solve this problem, is the Lambert’s problem function from 

the library pykep, which is a scientific library for Python, developed by the European Space 

Agency for astrodynamics research [9].  

Lambert’s Problem ),,,( 00 ff vvtrr


  

 This function is used to estimate initial velocity vectors that connect the initial starting 

points of the Moon’s SOI, during the pruning phase, and Mars position in the arrival epoch. It 

is also used to calculate the first velocity vector, in the Earth’s parking orbit, that connects 

this point and the point in the B-plane given by the pruning phase. 

 

2.7 Gravity assist model 

The gravity assist model is used to describe the motion of the vehicle inside the Moon’s SOI, 

more specifically to know the position and velocity vectors after the flyby, as well as the 

distance of closest approach to the Moon and the time of flight of the hyperbolic passage.  

In relation to the Moon, the excess velocity magnitude is the same, before and after the 

flyby, but the change of direction causes the initial orbit around Earth to be different. If the 

spacecraft passes behind the Moon, relative to its direction of motion, the vehicle will 
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increase its orbit’s energy in the Earth reference. However if it passes in front of the Moon, 

the opposite will happen, resulting in an orbit with less energy. 

The spacecraft’s state vector in the Moon reference frame are: 

MoonEm rrr


−=      (2.47)  

MoonEm vvv


−=     (2.48) 

EE vr


, are the position and velocity vectors in Earth’s reference frame, and MoonMoon vr


,  are 

Moon’s position and velocity, also in Earth’s reference frame. 

To calculate the state vectors after the flyby, it is necessary to calculate the Keplerian 

elements of the hyperbolic orbit in the Moon’s reference frame. 

Cartesian to Keplerian ),,,,,,( imimi ieavr 


 

 

From the hyperbolic flight path, it is known that the true anomaly at the end of the flyby is  

if  −= 2      (2.49) 

 so, the rotation matrix (2.15) can be used to obtain the final state vectors. 

Keplerian to Cartesian ),,,,,,( mfmff vriea


   

It is also vital to calculate the time of flight in the Moon’s SOI. 

From the Kepler equation that describes the mean motion [7], the time since periapsis and 

the eccentric anomaly can be related: 

)()sin(
3

TtaEeEM −=−=     (2.50) 

The expression )( Tt −  represents the change in time. 

Equation 2.49 can be arranged to define the time of flight between the two positions: 

3

00 )sin(sin)(

a

EEeEE
t flight



−−−
=    (2.51) 

In this case, the time from the initial position on the Moon’s SOI of the hyperbolic passage to 

periapsis and from periapsis to the final position is the same, equation 2.50 can be:  

))sinh((2
3

HHe
a

t flight −
−

=


   (2.52) 

The hyperbolic anomaly H  is determined by [7]: 

))cosh(1( Hear −=     (2.53) 

After the state vectors calculation in the Moon’s reference frame, it is necessary, to 

transform it into the Earth’s reference frame again. 

MoonmfEf rrr


+=     (2.54) 

MoonmfEf vvv


+=     (2.55) 
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2.8 B-Plane 

The B-plane or Body plane is a planar coordinate system that helps targeting a celestial body. 

It can be used to aim for a specific point to enter in orbit of a celestial body, for example to 

enter a polar orbit when arriving at the planet or moon [10]. Generally, the targeting is made 

in mid-course or in a correction manoeuvre, but it can also be made in the injection burn. 

The B-plane can be seen as an attached target to the body, and it is always perpendicular to 

the incoming asymptote of the spacecraft approaching the body.  

 

In figure 2.1, in the left, TB  and RB  represent the point where the vehicle pierces the B-

plane, while in the right, both asymptotes of the hyperbolic trajectory that the spacecraft 

performs are represented. 

It is possible to obtain the TB  and RB   coordinates from the r


 and v


 coordinates [7][11]: 

vr

vr
h 






=ˆ      (2.56) 

The unit vector normal to the orbital plane is written in Equation 2.56. The eccentricity 

vector is obtained in equation 2.56: 




vvrr

r
v

e




)(2 −








−

=     (2.57) 

The semimajor and semiminor axis are determined, where v is the excess velocity at 

infinity:  

2


−=
v

a


     (2.58) 

1
2
−−= eab      (2.59) 

Figure2.1-B-plane Coordinate System seen from a viewpoint perpendicular to the B-plane, and seen 

from a perpendicular viewpoint to the orbit plane 
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It is possible to use the eccentricity norm to calculate the hyperbolic asymptote angle s  in 

equation 2.59: 









=

−

e
s

1
cos

1      (2.60) 

The unit vector Ŝ   and T̂  are calculated in, where  TK 100ˆ = : 

)sin(
ˆ

ˆ
)cos(ˆ

ss

eh

eh

e

e
S  






+=     (2.61) 

KS

KS
T

ˆˆ

ˆˆ
ˆ




=      (2.62) 

The R̂  vector can be calculated with the cross product: 

TSR ˆˆˆ =      (2.63) 

Finally, the B


 vector, the TB  and RB  parameters are given by: 

)ˆˆ( hSbB =


     (2.64) 

TBBT
ˆ=


     (2.65) 

RBBR
ˆ=


     (2.66) 

 

2.9 Spherical coordinates 

In parts of this work, namely in the pruning phase, it is important to find the positions in the 

Moon’s SOI that can be connected to Mars with a proper trajectory. The best way to do it is to 

make a grid search, using spherical coordinates. So, the coordinate transformation between 

spherical and cartesian coordinates is presented: 

Spherical to Cartesian ),,,,( KJI rrrr   

)cos()sin( rrI =     (2.67) 

)sin()sin( rrJ =     (2.68) 

)cos(rrK =      (2.69) 

Where r is the radial distance,  is the polar angle, or the angle between the point and K̂ , 

 is the azimuthal angle, or the angle between the point and Î . KJI rrr ,,  are the 

r


components. 
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2.10 Self-adaptive Levenberg-Marquardt algorithm 

The self-adaptive Levenberg-Marquardt (SLM) algorithm is an iterative method used to find 

the minimum of a system of non-linear equations or to find its solution as in [12]. 

0),,,( 3,21 =in xxxxF      (2.70) 

This method has been used for various applications through numerous fields of study, but in 

this work it is used as differential corrector, in order to minimize the difference between the 

target values and the calculated trajectories values.   

Over the last two decades, the LM method was improved several times, including the addition  

of new parameters, mainly to improve the updating of the damping parameter . 

The first changes in the method were introduced in [13], choosing the LM parameter as  

2

kk F= . Although this value could be either too large and not converge quickly or could 

be too small and lose its role according to [12]. 

Following this modification [14] proposed kk F=  and concluded it has a quadratic 

convergence under the local error bound condition. So, the next modification to the value of 

this parameter came with [15], who added a positive constant ]2,0[ : 


 kk F= . In this 

case the constant causes the method to converge to the solution super linearly when ]2,0[  

and quadratically for 2= . 

However, the last LM parameter on which [12] was based, brings another variable to 

determine the size of the step: kkk F = . The parameter k is also updated along the 

iteration process according to the value of kr , the ratio between the actual reduction and 

the predicted reduction. 

In the used algorithm, the chosen definition for the LM parameter is: 

  


 kkk F=       (2.71) 

 

)(1 kkkk rq =+      (2.72) 

 

where a )( krq continuous nonnegative function appears, and krr = . Now,  is changed at 

each iteration, depending on the ratio between reductions. So  controls the step of the 

convergence by updating constantly  and consequently the LM parameter. 

q(r) can be given by:  









−−=
3

)12(21,
4

1
max)( rrq     (2.73) 

We consider the solution to be: 

kknn FF dXX += )()(     (2.74) 

where kd  is a correction factor calculated in: 
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  k
T
kkk

T
kk FJIJJd

1
)(
−

+−=      (2.75) 

kJ  being the Jacobian Matrix of the system, k  is the damping parameter, I  the identity 

matrix and )( kk FF X= . 

The damping parameter k  is a positive multiplier and was introduced in this method with 

the purpose of reducing the impact of the singularity of the Jacobian Matrix kJ . The 

parameter  k  is also updated along the iteration process according to the value of kr , the 

ratio between the actual reduction and the predicted reduction. 

The algorithm is briefly described below: 

SLM: ))(,,),(( objectiveknkobjectiveIn FFFF − XXXX : 

The iteration process starts with the calculation of the step kd , through equation 2.74. 

The next phase is to find the reduction ratio and predict the next kx  values: 

k

k
k

Pred

Ared
r =      (2.76) 

)(−)(= kkkk dPred  0      (2.77) 

22
)( kkkk dxFFAred +−=     (2.78) 

2
0 kF=)(      (2.79) 

2

kkkk dJFd +=)(     (2.80) 

According to the value of kr , a condition is established for the value of 1+kx  :   







+
=+

0

0

1
,

,

prx

prifdx
x

kk

kkk

k     (2.81) 

0001.00 =p is a value to check if the reduction is acceptable. The last step is to update the 

parameter k : 

 )(,max1 kkk rqm  =+     (2.82) 

 

Finally, repeat until 0=k
T
k FJ or 100=k  or until the desired objectives are obtained. In 

this algorithm the m  constant [12] is the minimum limit for the LM parameter in order to 

avoid a larger step than desired near the solution. 

 

2.11 Differential corrector application 

In this subsection, it is described how the differential corrector is used to reach the set  

objectives. 
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2.11.1 Pruning phase 

The Self-Adaptive Levenberg-Marquardt algorithm is first used in the pruning phase, where 

the objective is to find the first trajectories that connect points on the surface of the Moon’s 

SOI and Mars. So, in this case, the trajectory starts with a Kepler Propagation from the end of 

the Moon’s SOI until the end of Earth’s SOI, followed by a Kepler Propagation from this point 

to Mars. The objective function gives the arrival point depending on the departure position  

ir


 and initial velocity iv


, as well as the departure and arrival times it , ft ,respectively. 

)(),,,( ipruningfiiipruning vFttvrF


  

















=

K

J

I

ipruning

R

R

R

vF )(


    (2.83) 

IR , JR , KR  are the cartesian IJK coordinates for the spacecraft position at ft  relative to 

the Sun. 

Although the function is dependent on all the parameters, the only variable is the velocity  

iv


. As this function defines the motion of the spacecraft according to the two-body problem, 

and its position in  ft , the Mars position at ft is our objective value. 

))(,,),(( MarsoptpruningoptMarsipruning RvFvRvvF −


 

















=
ref
K

ref
J

ref
I

Mars

R

R

R

R      (2.84) 

ref
IR ,

ref
JR ,

ref
KR  are the Mars IJK coordinates for the position of the planet in ft  relative to 

the Sun. 

 

It is necessary to calculate the Jacobian matrix of the system: 
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
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
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
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
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v
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v
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v
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)()()(
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





    (2.85) 

The partial derivatives are calculated with the forward finite difference: 

v

vFvvF

v

vF



−+
=



 )()()(


    (2.86) 

where 
10

10
−

=v  is the perturbation, which was chosen due to the brief study performed in 

[5]. 
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The pruning analysis is performed in two or more stages, as in first stage, a search for the 

region in the Moon’s SOI that best suits the chosen criteria. This starts with the intervals for 

spherical coordinates  0 ,  20   and the value of r is the Moon SOI radius. Each 

of these intervals was divided in 40, resulting in a grid with 1600 points each 1/5 of a day 

over the course of 5 days. After this preliminary search, to select the suitable values, a 

backwards propagation is needed to calculate the radius of periapsis, the B-plane parameters, 

the time of flight and the eccentricity of the orbit relative to Earth before the flyby. So, to 

select the values for the next pruning phase, the requirements are the minimum periapsis 

radius, while above the Moon’s equatorial radius )1750( km and below km5000  , and the 

minimum eccentricity before the flyby, as well as the requirement of  0TB , with the 

objective of only selecting the trajectories that passed behind the Moon according to the 

Moon’s velocity vector. 

In the second phase, the process is repeated with a smaller grid, with an interval of 

rad4.0 for both  and  angles, surrounding the values that gave the best results in the 

previous stage. The time window is also reduced to 2 days and the analysis is made each 1/10 

of a day. 

In the third and final stage, the grid is reduced to an interval of rad2.0 , the same way as in 

the previous stage, and the time is reduced to one day with a 1/50 of a day analysis step. 

The results of this analysis consist of the position coordinates, the velocity vector and the 

time in the surface of the Moon’s SOI, as well as the radius of periapsis and eccentricity 

values. The trajectories with the smallest periapsis radius are analyzed, which can represent 

the trajectories where the Moon contributes more to the angle change, and consequently to 

greater energy orbit. The trajectories where the eccentricity relative to Earth before the 

flyby values are smaller are also studied, which represents the orbits that depart Earth with 

less energy. 

2.11.2 Single shooting method 

In order to find the complete trajectory that connects the departure point and Mars with a 

Lunar gravity assist, the single shooting method was used. According to this method, the self-

adaptive Levenberg-Marquardt algorithm was used to target simultaneously the B-plane 

parameters given by the pruning analysis and Mars position in ft . This method is 

implemented in a similar way as in the pruning phase, however in this phase the whole 

trajectory is determined. 

The trajectory starts with a Kepler propagation from the parking orbit until the Moon’s SOI, 

followed by the hyperbolic passage while in the Moon’s SOI, and similarly to the pruning, a 

Kepler propagation until the Earth’s SOI limit and another until Mars arrival. 

The function that describes the path is:  

)(),,,( ifinalfiiifinal vFttvrF


  
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IR , JR , KR  are the cartesian IJK coordinates for the spacecraft position at ft  relative to 

the Sun. TB  and RB   are the B-plane parameters calculated from the initial velocity 

vector and e is the orbit’s eccentricity [5]. 

 

Likewise, the function variable is just the initial velocity vector iv

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The matrix goalF is formed by the reference values for the algorithm to solve to, minimizing 

the difference between the function outcome and the objective. 
ref
IR ,

ref
JR ,

ref
KR  are the 

Mars IJK coordinates for the position of the planet in ft  relative to the Sun, while 
refTB   

and 
ref

RB  are the B-plane reference coordinates to target the gravity assist, and 
ref

e is the 

reference eccentricity relative to the Earth given by the pruning phase. 

As this function yields six values from three variables, the Jacobian matrix for this problem is: 
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Chapter 3 

3 Results 

In this chapter, the results, graphs and tables obtained from the simulations are presented 

and discussed. The values obtained are compared with the previous work [5] in case of the 

MER-A mission, and the others are compared to the pork chop plots, results from [3] and to 

results obtained with the single shooting method for a direct transfer. 

The most efficient epoch dates for departure and arrival, as well as the type of transfer are 

from [3] results. 

Table 3.1: Direct Launch Windows with results from [3] and [5] 

Departure 

(UTCGregorian) 

dd-mm-yy 

Arrival 

(UTCGregorian) 

dd-mm-yy 

Departure 

(MJD) 

Arrival 

(MJD) 

Orbit 

type 

Direct 

Characteristic 

Energy 

]/)[(
22

3 skmC  

10-06-2003 04-01-2004 22801 23009 Short 8.94481 

23-08-2020 06-10-2021 29085 29494 Long 16.5038 

15-09-2022 04-10-2023 29837 30222 Long 13.7934 

05-10-2024 15-09-2025 30589 30934 Long 11.1894 

30-10-2026 21-08-2027 31344 31629 Long 9.1371 

 

The table (3.1) describes the direct transfers that can be used for an interplanetary mission 

to Mars, including departure and arrival epochs, the orbit type and approximate 

characteristic energy 3C . 

The purpose of the gravity assist manoeuvre is to reduce the characteristic energy 3C  and 

obtain a trajectory that accomplishes, with a small deviation, the departure and arrival 

dates. It is unlikely that the Moon is in the correct position to perform the gravity assist at 

the most efficient time to do the transfer manoeuvre. So, in the worst-case scenario, the 

injection epoch can be up to 15 days after or prior to the ideal epoch for interplanetary 

transfer, which can cause a significant reduction of the orbit energy gain, or even question 

the viability of the gravity assist. According to [3], the estimates of the direct characteristic 

energy are calculated with Lambert’s problem. Similarly to the two-body problem it only 

considers the gravitational influence of one body at a time. 

In order to approximate the numerical study as close to reality as possible, the General 

Mission Analysis Tool (GMAT) is used. GMAT is an open source software developed by a NASA’s 

team, but also private and public contributors and it is the only available open source 

software for mission design, analysis, optimization and navigation. The first released version 

was in 2007 and since then it has been continuously improved with several accessible 
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versions. It was validated and verified in [16]. The latest version released is the R2018a, the 

one applied in this work. This tool is supporting some real-world missions such as the Solar 

Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), the Advanced 

Composition Explorer (ACE), the Transiting Exoplanet Survey Satellite (TESS) and the Lunar 

Reconnaissance Orbiter (LRO). GMAT’s syntax is based on MATLAB, and it can be used either 

by user interface or script language. Besides that, there are two interfaces with Python and 

MATLAB that can be used to run user build functions. 

In this work 5 launch windows are studied: the first case of study is the MER-A mission, that 

was launched on 10th of June of 2003. This mission was studied previously with a Lunar gravity 

assist manoeuvre in [5], and it was proven that a Moon flyby would decrease the 

characteristic energy significantly. So, to test the algorithm that is used in this work, this 

case is studied once more to replicate or to improve the results. The remaining cases studied 

are all future possible launch windows that are scheduled to happen in the next 10 years. So, 

in these cases, there is the option of choosing the most favourable launch and arrival epochs, 

which clearly improve the chances of performing a successful gravity assist manoeuvre. 

In this chapter, the graphs and steps of only two of the analysed trajectories are displayed 

and discussed, while for the remaining, only the results are presented. The launch windows 

studied with the steps presented in detail start in around October of 2024 and October of 

2026, and are identified by case 1 and case 2, respectively. 

 

3.1 Direct single shooting and GMAT values 

In order to compare the results from the gravity assist, a brief study of the Mars direct 

transfers is performed. Using the departure and arrival epochs from [3], the self-adaptive 

Levenberg-Marquardt algorithm is applied the same way as in the single shooting method, 

only considering the departure position as the same position that is described in the work 

ahead to perform the gravity assist. The parts of the function that describe the motion 

considering the Moon are also discarded. 

The results from the direct trajectory obtained from the single shooting method and the 

GMAT simulation are presented in table 3.2. 

Table 3.2: Direct transfer results 

DEPARTURE (MJD) [3] ]/)[(
22

3 skmC  SSM 

DIRECT ]/)[(
22

3 skmC  

GMAT 

DIRECT ]/)[(
22

3 skmC  

29085 16.5038 15.5614 16.3724 

29837 13.7934 12.8764 14.2287 

30589 11.1894 10.2156 11.0333 

31344 9.1371 8.2732 9.2671 
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3.2 Pruning phase - case 1 

In case 1, the first stage of pruning started 11 days after the ideal injection date 30600=it , 

because the Moon is not at the adequate position to perform the gravity assist. 

In Figure 3.1, the velocity magnitudes from the pruned trajectories represented. From this 

plot it is possible to observe that the minimum velocity magnitude after the flyby orbits are 

closer to the ideal epoch given by the pork chop plots. Although by analysing the eccentricity 

e  values in Figure 3.3 and radius of the flyby periapsis in figure 3.4 it is explicit that the 

lower energy initial orbits are when 30604=it . 

In Figure 3.2, the spherical coordinates angles that represent the point of departure from the 

Moon’s SOI represented. Each one of the dots represents a trajectory that can be studied. The 

angle intervals used in the third pruning stage are 4.12.1  and 4.12.1  . The time 

interval is 3060530604  it  .The plot represents the 3rd stage of the pruning and there are 

less dots than expected, which means there are several trajectories per dot represented. 

Figure 3.1: Velocity magnitude of the pruning 2nd stage – case 1 

Figure 3.2: Spherical angles of the trajectories on the Moon's SOI on the 3rd stage of pruning – case 1 
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From figures 3.3 and 3.4, the eccentricity of the orbits relative to Earth prior to the flyby and 

the radius of the periapsis of the flyby are presented. From the values observed, the epoch 

more likely to be more studied is between 4.30604=it  and 6.30604=it , as the most 

efficient trajectory tends to have lower flyby periapsis and lower eccentricity. 

 

 

Figure 3.3: Eccentricity of the orbits relative to Earth before the flyby in the pruning 3rd stage – case 1 

Figure 3.4: Radius of the Moon's flyby periapsis in pruning 3rd stage – Case 1 
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The B-plane parameters presented in figure 3.5, and eccentricity values presented in Figure 

3.3 are the targeting parameters for the next step. These parameters are targeted for a first 

estimative value, which is optimized afterwards with the differential corrector.  

 

3.3 Single shooting method - case 1 

The results of the pruning are then studied and optimized with the Self-Adaptive Levenberg-

Marquardt, as explained in the previous chapter. The position and velocity vectors from the 

pruning phase are propagated backwards to calculate the estimated time at the beginning of 

the Moon’s flyby tmi  and the position vector in the periapsis periapsisr


. This position, along 

with tmi , the B-plane values and the eccentricity are then used to calculate the first guess.  

The initial position chosen to perform the trajectory is an arbitrary position from a Keplerian 

low Earth orbit with the following Keplerian elements: kma 8000= , 01.0=e , º10=i , 

º0= , º0= . The true anomaly element º300=  is arbitrarily chosen so that the starting 

position is adequate to target the Moon. This orbit has the purpose of representing a general 

parking orbit, where the launcher deploys the spacecraft. 

Before the optimization, it is important to calculate the injection epoch through the time 

before the flyby tmi , calculate the Moon’s position at tmi and set the target for the first 

guess as periapsisMoon rr


+  to shift the periapsisr


 from  Moon centred reference axes system to 

Earth centred. Lambert’s Problem is used to obtain the velocity vector 0v


 that connects the 

initial position 0r


and  periapsisr


, giving a good first guess so that the differential corrector can 

be applied. Instead of using tmi , an arbitrary epoch it  is set to get the first guesses. This way 

it is possible to study any pruned trajectory and not being dependent of the values obtained 

by the pruning. 

Figure 3.5:  TB  and RB   parameters of the trajectories in pruning 3rd stage – Case 1 
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It is important to note that the B-plane parameters and the eccentricity are multiplied by a 

factor of 3
10 , both in the function results as in the reference values. This is done because in 

the iterative process, the other target parameters, namely the position of Mars, has much 

greater absolute value, like dozens or hundreds of millions of kilometres ( 7
10 or 8

10 km ), 

compared to the B-parameters ( km
3

10 ). So, when the algorithm tries to decrease the 

difference between the norm of the function results and the norm of the reference vector, 

the fact that all the values are in the same magnitude, prevents the algorithm from reducing 

just the positions and increasing the difference between the function and reference B-

parameters so much that the trajectory missed the Moon’s SOI. When using this technique, 

with all parameters near the same magnitude, all of them have the same relevance, and 

prevents the iterations from drifting away from the B-parameters. 

The pruned trajectories are then applied to the algorithm, where some results are presented 

in Table 3.3: 

 

Table 3.3: 4 example results of the Lunar gravity assist manoeuvre – Case 1 

)(0 MJDt  Periapsis Radius 

)(km  

Velocity Magnitude 

)/( skm  

Characteristic Energy  

]/)[(
22

3 skmC  

30603.3755 2419 10.5263 10.6441 

30603.2704 2248 10.5152 10.4107 

30603.1980 2184 10.5051 10.1994 

30602.9517 1823 10.4834 9.7437 

 

In Table 3.3, 4 different results are presented to demonstrate the parameters variations. The 

last result shown is the most efficient trajectory found, considering that the flyby should 

occur at least 50km above the Lunar surface, due to safety reasons. 

Most of the results converged to the final solutions in less than 100 iterations, apart from a 

few exceptions that converged in less than 200. Overall, each one of the trajectories studied 

took less than a few minutes to obtain a solution.  

The arrival epoch is the same as in the pork chop studies 30934=ft . 

From the table it is clear the relation between decreasing radius of the periapsis and the 

decreasing orbit energy and velocity magnitude.  

Comparing the 4rd result from Table 3.3 with the results from Table 3.2 and the pork chop 

analysis, namely the characteristic energy, there is a significant reduction to obtain a 

trajectory to Mars. With the best result, the characteristic energy can be reduced by 

22
/47.0 skm using the single-shooting method. 

The injection epoch 0t  influences the periapsis radius, since the sooner the spacecraft 

encounters the Moon, the larger the turning angle   needs to be so that the spacecraft has 
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the correct flight path. The orbit’s energy relative to Earth also increases due to the 

increasing turning angle. 

 

3.4 Graphical representation - case 1 

The result obtained is now represented graphically in Python 3D plots. 

 

The graphs are obtained using Kepler propagation to obtain the positions of the spacecraft 

and using GMAT report files for the trajectory of the celestial bodies.   

 

Figure 3.6: Graphical representation of the departure from Earth and the Lunar gravity assist – Case 1 

Figure 3.7: Graphical representation of the Interplanetary phase of the trajectory – Case 1 
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3.5 GMAT simulation - case 1 

In order to translate the given results to a more accurate solution, and thus validating the 

work, the obtained results were tested in GMAT.  

As the software considers all bodies in the Solar system, the results are expected to be 

slightly different. To obtain a valid trajectory, a new study was made with all the obtained 

trajectories in the previous subchapter. 

The results from the GMAT analysis are represented in table 3.4: 

Table 3.4- Result of the GMAT simulation – Case 1 

)(0 MJDt  )(MJDt f  

)(km

rper
 

)/( skm

vmag
 

GMAT Direct  

]/[
22

3 skmC  

3C GMAT 

LGA 

]/[
22

skm  

30603.1218 30948.4127 1840 10.4882 11.0333 9.8629 

 

From the GMAT values in table 3.4 it is possible to observe the advantage of performing the 

flyby. Comparing the Characteristic Energy 3C  with the direct result obtained in GMAT, there 

is a significant reduction, even though the launch epoch for the Lunar gravity assist trajectory 

is performed 14 days after the ideal transfer. The value of the reduction is 

22
3 /17.1 skmC = . 

When comparing the results of GMAT with the single shooting method, it is possible to 

observe a slight increase in the characteristic energy. This can be explained by the influence 

of the Earth’s gravity shortly after the departure from Earth’s SOI, not considered in the 

patched conic trajectories method and consequently not on the single shooting method. 

 

3.6 Pruning phase - case 2 

The case 2 is presented, but in a shorter way as in the previous case the details of the process 

are explained. So, in this part it is presented the pruning analysis results and graphs and their 

discussion. 
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In Figure 3.8, the velocity magnitude for the pruned orbits in case 2 are presented. 

 

It is noticeable that the minimum velocity required for an interplanetary transfer occurs in 

the epoch 31344=it , as referenced in the pork chop analysis. 

 

Figure 3.8: Velocity magnitude of the 1st pruning stage – Case 2 

Figure 3.9: Spherical angles of the trajectories on the Moon's SOI on the 3rd stage of pruning – Case 2 
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In Figure 3.9, results for the spherical angles in the 3rd phase of the grid search are 

represented. 

 

The angle intervals used to obtain the results are  2.10.1  and 9.17.1  . The time 

interval is 3134631345  it . 

From the figures 3.10 and 3.11, it is clear that the best results for a lower energy orbit can be 

achieved between 4.31344=it  and 6.31344=it , where both eccentricity and radius of 

periapsis are low, increasing the efficiency of the manoeuvre. 

Figure 3.10: Eccentricity of the orbits relative to Earth before the flyby in the pruning 3rd stage – Case 2 

Figure 3.11: Radius of the Moon's flyby periapsis in pruning 3rd stage – Case 2 
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3.7 Single shooting method - case 2 

In this case, the method is applied in the same way as in case 1. The initial position chosen to 

perform the trajectory is an arbitrary position from the same low Earth Keplerian orbit, but 

the true anomaly element is º350=  and it is also arbitrarily chosen so that the starting 

position is adequate to target the Moon. 

So, some of the results of the single shooting method are presented in Table 3.5. 

 

Table 3.5: 4 example results of the Lunar gravity assist manoeuvre – Case 2 

)(0 MJDt  Periapsis Radius 

)(km  

Velocity Magnitude 

)/( skm  

Characteristic Energy  

]/)[(
22

3 skmC  

31343.2483 2405 10.3127 5.7099 

31343.0807 2164 10.3004 5.4577 

31342.9223 1973 10.2899 5.2413 

31342.8966 1945 10.2881 5.2033 

 

 

The arrival epoch is the same as in the pork chop studies 31629=ft . 

The same relation between the decreasing radius of periapsis and decreasing characteristic 

energy is verifiable. 

Figure 3.12 TB  and RB   parameters of the trajectories in pruning 3rd stage – Case 2 
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In this case it is evident that the characteristic energy is greatly reduced, comparing the best 

result with the direct transfer obtained, there is a reduction of 
22

3 /07.3 skmC = using the 

single shooting. 

The improved result is caused by the coincidence of the Moon being in a favourable position 

to perform the flyby in the same epoch as the most efficient direct transfer, even though the 

radius of periapsis is superior. 

 

3.8 Graphical representation - case 2 

In this subchapter the graphical representation of case 2 is presented. 

 

3.9 GMAT simulation - case 2 

The results from the GMAT simulation are presented in table 3.6:  

Table 3.6- Result of the GMAT simulation – Case 2 

)(0 MJDt  )(MJDt f  

)(km

rper
 

)/( skm

vmag
 

GMAT Direct  

]/[
22

3 skmC  

3C GMAT 

LGA 

]/[
22

skm  

31343.2483 31645.5052 2063 10.3451 9.2671 6.4245 

 

Figure 3.13: Graphical representation of the departure from Earth and the Lunar gravity assist -case 2 

Figure 3.14: Graphical representation of the Interplanetary phase of the trajectory – case 2 



 

 35 

In this case, there is a similar improvement as in the previous case of study. The 

characteristic energy has a reduction of 
22

3 /84.2 skmC = , which can be explained by the 

smaller radius of periapsis compared to the previous case and the fact that the Moon is in a 

very favourable position to perform the gravity assist manoeuvre.  

It is also possible to verify that there is an increase of characteristic energy comparing to the 

single shooting result, due to the same implications explained in the previous case, such as 

the influence of the Earth on the trajectory parts that in the single-shooting method are not 

considered. Although all other bodies are considered in GMAT, their gravitational influence 

alters the final solution but it’s not significant compared to Earth’s gravity effect on the 

overall trajectory. Despite the setbacks, GMAT’s algorithms managed to find a good 

trajectory. 

 

3.10 Other results 

In this subchapter, the results of the remaining epochs for the single shooting method (Table 

3.7) and the GMAT simulation (Table 3.8) are shown: 

Table 3.7: Results of the gravity assist manoeuvres with single-shooting method 

)(0 MJDt  Periapsis 

Radius )(km  

Velocity 

Magnitude 

)/( skm  

Direct 

]/)[(
22

3 skmC  

LGA 

]/)[(
22

3 skmC  

22807.1038 1834 11.2297 8.9448 5.3130 

29072.7259 1791 10.7490 15.5614 15.7081 

29837.4236 1864 10.5509 12.8764 10.6237 

 

 

Table 3.8: Results of the gravity assist in GMAT software 

Launch 

window )(0 MJDt / 

Mission 

 

)(0 MJDt  )(MJDt f  

)(km

rper
 

)/( skm

vmag
 

Direct  

]/[
22

3 skmC  

LGA 3C  

]/[
22

skm  

MER-A 22807.3790 23011.5357 1800 11.2688 8.9448 6.2732 

29085 29072.7520 29490.4874 1837 10.7891 16.3724 16.5742 

29837 29837.9350 30240.3587 1794 10.5715 14.2287 11.6182 

 

 

The results from the remaining launch windows where a gravity assist is performed are 

presented. Regarding the result for the MER-A mission, also performed in [5], there is a slight 

improvement of 
22

3 /08.0 skmC = . This can be explained by the lower radius of periapsis 
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than used in the mentioned work [5] kmrp 1838= . So, it is presumed that the result is 

identical. Similarly, to the mentioned work, there is a decrease of the characteristic energy 

of 
22

3 /67.2 skmC = . With this result, it is proven that the self-adaptive Levenberg-

Marquardt algorithm is as effective as the Newton-Raphson as a differential corrector and can 

be effectively used for space mission design. 

The result obtained in the 29085 launch window is inefficient. There is an increase in the 

characteristic energy of 
22

3 /20.0 skmC =  relative to the value of the direct transfer. This 

can be explained by the fact that during the favourable launch window, the Moon is 

essentially on the opposite position to the one needed to perform the gravity assist. There 

was an attempt to obtain an effective result both before and after the launch window. In 

both, epochs a trajectory was found, although the most efficient is the one presented in the 

Tables 3.7 and 3.8. However, the LGA trajectory after the launch window can be used as last 

resort, in case a mission scheduled for 29085 is unable to be launched in the exact day. A 

flyby can be performed approximately 14 days after the ideal direct launch window. The 

manoeuvre can prevent the cost increase of launching a mission outside of the direct efficient 

period.  

In the 29837 launch window, an efficient trajectory was found. Compared to the values of the 

direct transfer, there is a significant decrease in the characteristic energy 

22
3 /61.2 skmC = . 

The Table A.2 contains the detailed coordinates of all the injection manoeuvres performed 

with GMAT. 

Figures 3.15 to 3.20 show the graphical representation of the results discussed in this 

subchapter. 

 

Figure 3.15: MER-A Earth departure 
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Figure 3.16: MER-A Interplanetary phase 

 

 

Figure 3.17: 29085 Earth departure 
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Figure 3.18: 29085 Interplanetary phase 

 

Figure 3.19: 29837 Earth departure 
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Figure 3.20: 29837 Interplanetary phase 
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Chapter 4 

4 Conclusions 

In this work, a study of trajectories to Mars with a Lunar gravity assist was made. The 

objective of this work was to find alternative routes to Mars that can increase the payload 

capacity or decrease the fuel needed of future Mars missions, as well as to analyse the 

potential of the self-adaptive Levenberg-Marquardt algorithm as a differential corrector.  

The results were obtained using the two-body problem model, which is a simplistic but 

efficient method to design space mission trajectories. All results were validated using NASA’s 

General Mission Analysis Tool (GMAT), the porch chop plots and the comparison between the 

direct transfers and the LGA transfers.  

The proposed objectives for this work were achieved. The results include the validation of 

the differential corrector self-adaptive Levenberg-Marquardt algorithm with a trajectory 

previously studied, and the study of 4 future transfer windows. There was a solution found in 

all of them, and in 3 out of 4 of the Lunar gravity assist manoeuvres were effective, reducing 

the characteristic energy 3C  of the orbit. The results are compared with a previous study of 

the future Mars transfer windows and pork chop plots. It is safe to confirm that the self-

Adaptive Levenberg-Marquardt algorithm is a powerful tool that can be applied to mission 

design, due to the fact that in all launch windows a trajectory with a Lunar gravity assist was 

found. In the simulations where the Lunar gravity assist performed better than the predicted 

direct trajectories, the decrease of orbit energy was from 
22

/17.1 skm to 
22

/84.2 skm , which 

could mean a significant increase of the payload mass on most of the future missions to Mars. 

The success of the results can be explained by the flexibility of the departure and arrival 

epochs, as well as the possible use of short or long trajectories, type I or type II, respectively. 

This allowed to choose the type of trajectory compatible with the lunar gravity assist 

manoeuvre.  

The ineffectiveness of one of the studied trajectories can be explained by the fact that during 

the effective transfer window, the Moon is in the opposite position needed to perform the 

manoeuvre. So, to perform the flyby, the injection epoch needs to be approximately 14 days 

before or after the effective transfer window, thus increasing the characteristic energy of the 

trajectories.  

This work proves that these types of trajectories should be considered and studied for future 

Mars, Venus and other missions. However, the trajectories can be considered riskier due to 

lower altitude flybys and trajectory correction errors can cause serious failures. This can be 

prevented with higher altitude flybys, that still give a significant energy increase, but have a 

better margin for failure. 
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However, there were some difficulties to translate the best results from the single-shooting 

method to GMAT, as the influence of bodies is not taken into account in the simplistic two-

body problem model used, such as the influence of Earth’s gravity in the interplanetary phase 

right after reaching the limit of Earth’s SOI. The influence of the Earth’s gravity in the flyby 

phase also produced changes in the GMAT trajectory, particularly because these small 

changes in the initial phases of the trajectory are crucial and cause massive deviation in the 

end of the flight path. These setbacks extended greatly the time needed to compute the 

trajectories in GMAT and were an inconvenience to achieve ideal results. 

The main difficulties for this work can be summed up as the time of computation from GMAT, 

the single shooting and pruning methods. Even though the two-body problem is an acceptable 

simulation for real orbital mechanics, the translation of the results was difficult and time 

consuming. 

For future work, better models can be used, to diminish the difficulty of translating from the 

two-body problem to a more realistic simulator. Future work suggestions also include more 

than one Lunar gravity assist for deep space missions, as well as Lunar gravity assist 

manoeuvres to other Solar System body missions or multiple Lunar flybys. 
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Appendix A 

Table A.1 Physical data of Earth, Moon, Mars and Sun 

 Earth Moon Mars Sun 

Mass ][kg  24
109742.5   22

103483.7   23
104191.6   30

109885.1   

]/[
23

skm  5
10986.3   4902  4

10305.4   11
103271.1   

Period ][days  2564.365  3217.27  9801.686  −  

][kma  6
10598.149   6

103844.0   6
10939.227   −  

][radi  000.0  0898.0  0323.0  −  

e  0167.0  0549.0  0934.0  −  

Equatorial 

radius ][km  

6378 1738 3397  5
109570.6   

SOI radius ][km  5
102466.9   

5
106617.0   

5
1077278.5   −  

 

 

 

 

 

Table A.2 Injection ephemeris in Earth MJ200Eq reference frame in GMAT 

)(0 MJDt  Ir ][km  Jr ][km  Kr ][km  Iv ]/[ skm  Jv ]/[ skm  Kv ]/[ skm  

22807.3786 -

5950.7395 

-

2303.8716 

-

1701.4774 

0.55861 -9.49263 -6.04681 

29072.7519 1397.0293 -

7743.3369 

-

1363.0928 

10.42125 1.27715 2.48414 

29837.9350 3989.0782 -

6785.3544 

-

1193.1074 

9.38593 3.00576 3.82442 

30603.1217 3988.7141 -

6785.5135 

-

1192.3706 

9.01392 2.80708 4.56866 

31343.2483 7805.9753 -

1346.8180 

-234.4425 5.10027 7.84662 4.40887 
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Appendix B 

SELF-ADAPTIVE LEVENBERG-MARQUARDT IMPLEMENTATION ON 

PYTHON 
Flávio Rosa 

1Aerospace Sciences Department, Universidade da Beira Interior,  

 Covilhã, Portugal 
1flavio.rosa666@gmail.com 

(To be submitted) 

 

Abstract. The self-adaptive Levenberg-Marquardt algorithm is an iterative method for finding the 

solution of a 0)( =xF  non-linear set of equations or their minimum. It was proposed as an improvement 

for the Levenberg-Marquardt (LM) method and modified LM method. This work consists of a brief 

presentation of the LM method, and the adaptations made for the self-adaptive LM method, and its 

implementation on Python 3.7. The final chapter includes the test and example application of the 

algorithm.  

. 

 

Keywords: Self-adaptive Levenberg-Marquardt algorithm, non-linear equations, Python 3.7 

 

1. Introduction  

 
The self-adaptive Levenberg-Marquardt (SLM) algorithm is an iterative method used to find the 

minimum of a system of non-linear equations or to find its solution as in [1]. 

 

0),,,( 3,21 =in xxxxF       (1) 

 

This method has been used for various applications through numerous fields of study. 

In this paper, we will do a short review of the origin of [2][3], which is itself a modification of 

the Newton-Gauss method, followed by a description of the SLM method. This description 

includes the insertion of new parameters compared with the LM algorithm, some also presented 

in [4] such as α and δ. These parameters help to update the damping factor k  (Levenberg-

Marquardt parameter) in order to adjust the size of the step depending on the distance from the 

solution. This technique also includes the addition of the predicted reduction and an actual 

reduction, used to calculate their ratio kr to update the value of α accordingly. 

The SLM brings a new function q(r) with of purpose of updating the parameter α at a variable 

rate, allowing better numerical results.   

Finally, the last part of the article it’s an implementation of the SLM algorithm in the open 

source programming language Python 3.7. 

The algorithm is tested with some example functions found in [5], and it is also applied in a set 

of flight equations from a flight dynamics model, to estimate the equilibrium of the aircraft on a 

levelled flight.    

Note that this work does not intend to fully explain in detail the methods listed, and it’s 

suggested that the reader checks the original articles [1][2][3][4]. 

 

2. Levenberg-Marquardt Algorithm  

 
In this chapter the Levenberg-Marquardt algorithm is briefly presented and summed up to 

prelude the rest of the work.  

 

2.1. Problem 

 

From the problem  
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nn
n

in

RRxF

xxxF

→

=

:)(

0),,,( 21 
     (2) 

corresponds to n non-linear equations dependent on I variables, representing a system with  

 

0)( =XFn         (3) 

 
TX  is the solution vector of said system. 

 

2.2. Levenberg-Marquardt parameters 

 

We consider the solution to be  

 

    kknn FF dXX += )()(     (4) 

 

Where kd  is a correction factor calculated by: 

 

k
T
kkk

T
kk FJIJJd

1
)(
−

+−=      (5) 

 

kJ  being the Jacobian Matrix of the system, k  is the damping parameter, I  the identity 

matrix and )( kk FF X= . 

The damping parameter is a positive multiplier and was introduced in this method with the 

purpose of reducing the impact of the singularity of the Jacobi Matrix kJ . This parameter will 

modify the diagonal values of k
T
k JJ , it can be increased greatly in order to reach a kd  that 

decreases the error XX ˆ−=e , usually if the initial guesses are not in the neighbourhood of the 

solution. According to the evolution of the iterations and the  update over each iteration, it 

will assume smaller values as e decreases and X  approaches the desired values. 

After obtaining the parameter kd  this one is used to obtain the new trial vector 

 

kkk dXX +=+1      (6) 

 

Although the Levenberg-Marquardt method can overcome the singularity of the Jacobi matrix 

in cases where the initial guess is close enough to the system solution, some problems arise 

when non-singularity is too strong [1]. 

 

 

3. Self-adaptive Levenberg-Marquardt Algorithm  

 
3.1. Levenberg-Marquardt modifications 

 

Over the last two decades, the LM method was improved several times, including the adding of 

new parameters, mainly to improve the updating of the damping parameter . 

The first changes in the method were introduced in [6], choosing the LM parameter as  
2

kk F= . Although this value could be either too large and not converge quickly or could be 

too small and lose its role according to [1]. 

Following this modification [7] proposed kk F=  and concluded it has a quadratic 

convergence under the local error bound condition. So, the next modification to the value of this 

parameter came with [8], who added a positive constant )2,0( : 


 kk F= . In this case the 
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constant causes the method to converge to the solution super linearly when )2,0(  and 

quadratically for 2= . 

However, the last LM parameter which [1] and this paper were based, brings another variable to 

determine the size of the step: kkk F = . k is also updated along the iteration process 

according to the value of kr , the ratio between the actual reduction and the predicted reduction. 

 

k

k
k

Pred

Ared
r =       (7) 

 )(−)(= kkkk dPred  0      (8) 

 
22

)( kkkk dxFFAred +−=     (9) 

   
2

0 kF=)(       (10) 

   
2

kkkk dJFd +=)(      (11) 

 

In the previous modified LM algorithm k  assumes several different values depending on p0, 

p1 and p2 parameters given in [4].  

 

 

3.2 Self-adaptive Levenberg-Marquardt parameters 

 

In the studied algorithm, the chosen value for the LM parameter is  

 


 kkk F=                 (12) 

 

)(1 kkkk rq =+                (13) 

 

a new )( krq continuous nonnegative function appears, where krr = . Now,  is changed at 

each iteration, depending on the ratio between reductions. So  controls the step of the 

convergence by updating constantly  and consequently the LM parameter. 

q(r) can be given by:  









−−=
3

)12(21,
4

1
max)( rrq               (14) 

or 

 













−−= 3

1

)
2

1
(1,

4

1
max)( rrq                               (15) 

 

4. Algorithm 

 

The algorithm presented in [1] starts with the calculation of the step kd , given the values: 

1,10,0,20, 011 =+ krpmRx
n   with m as a positive constant to set the limit 

of the step, avoiding its increase near the result. 

 

1. k
T
kkkkk

T
k FJdIFJJ −=+ )(


   

 
The next phase is to find the reduction ratio and predict the next kx  values:  
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2.
k

k
k

Pred

Ared
r =   

 







+
=+

0

0

1
,

,

prx

prifdx
x

kk

kkk

k  

 

The last step is to update the parameter 
k : 

 

3.  )(,max1 kkk rqm  =+  

 

Finally, go back to step 2 and repeat until 0=k
T
k FJ or k=100. 

In this algorithm the m constant [1] is the minimum limit for the LM parameter in order to avoid 

a larger step than desired near the solution. 

 

 

5. Algorithm test 

 
This chapter contains the test of the algorithm, including 6 test functions and the flight 

dynamics model application of a STOL (Short Take-Off and Landing) aircraft to calculate its 

equilibrium on a levelled flight. 

 

5.1. Test functions 

 

The algorithm mentioned earlier was written in the open-source programming language 

Python3.7 and was experimented by multiple test functions found in [5]. 

Constants chosen: 1,10,0001.0,0001.0
8

00 ====
−  mp  

Test function 1:  

n=2, m=2 

12

2
121

1)(

)(10)(

xxf

xxxf

−=

−=
 

)1,2.1(0 −=x  

)1,1(0 atf =  

Results: The algorithm converged to the solution 0=f  after 38 iterations. 

 

 

Test function 2:  

n=2, m=2 

22212

22211

)14)1((29)(

)2)5((13)(

xxxxxf

xxxxxf

−+++−=

−−++−=
 

)2,1()2,5.0( 00 =−= xorx  

)8968.0,41.11(9842.48

)4,5(0

 −=

=

atf

atf
 

 

Results: The algorithm converged to the solution 0=f for )2,1(0 =x  after 17 iterations, and to 

the solution 9842.48=f for )2,5.0(0 −=x after 29 iterations. 

 

Test function 5:  

n=2, m=3 
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)1(625.2)(

)1(25.2)(

)1(5.1)(

3
213

2
212

1
211

xxxf

xxxf

xxxf

−−=

−−=

−−=

 

)1,1(0 =x  

)5.0,3(0 atf =  

 

Results: The algorithm converged to the solution 0=f for )2,1(0 =x  after 27 iterations. 

 

 

Test function 13:  

n=4, m=4 

2
41

2/1
4

2
323

43
2/1

2

211

)(10)(

)2()(

)(5)(

)10)(

xxxf

xxxf

xxxf

xxxf

−=

−=

−=

+=

 

)1,0,1,3(0 −=x  

)0,0,0,0(0 atf =  

 

Results: The algorithm converged to the solution 0=f for )0,0,0,0(0 =x  after 28 iterations. 

 

5.2. STOL aircraft equilibrium calculation  

 

For the second test of this algorithm, it was used the following flight dynamics model equations, 

for longitudinal model: 

 




 tansin)cos)cos.sin.(
cos

5.0(
1

max2

2

qugTCC
u

S
m

u TTDL −−+−=  

)sin.cos.cos.sin(
cos

)cos(
cos

maxmax 





 TTTT TTL
muu

g
q +−−−+=  




2

2

cos2 y

m

I

CcSu
q =  

q=  

And for the lateral-directional model: 

 

000 sin.cos)cossin( pwrugCC
m

QS
v yD +−+−−=   

)(
2 nxzlz

xzzx

CICI
III

QSb
p +

−
=  

)(
2 lxznx

xzzx

CICI
III

QSb
r +

−
=  

0tan.cos  rp +=  

 

Where ,,,,,, nmlyDL CCCCCC are the stability and control derivatives, m is the aircraft mass, 

Q  is the dynamic pressure, S  is the wing surface, b is the wing span, u is the horizontal speed, 

T  is the throttle fraction, maxT is the maximum thrust, T is the angle between thrust vector and 
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aircraft’s longitudinal axis, g is Earth’s gravitational acceleration constant, rpq ,, are the rate of 

manoeuvres, xzzyx IIII ,,,  are the moments of inertia and   is the roll angle. 

The stability and control derivatives are: 

rnannnnn

emmmmmm

rlalllll

ryayyy

eDDDDDD

eLLLLLL

rarp

eq

rarp

ra

eq

eq

CCrCpC
V

b
CC

CqCC
V

c
CCC

CCrCpC
V

b
CC
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CqCC
V

c
CCC

CqCC
V

c
CCC








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




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)(
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)(
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


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The variables considered for the longitudinal model are the angle of attack  , the pitch angle 

 and the elevator’s deflection e . 

The variables considered for the lateral-directional model are the yaw angle  , the ailerons and 

rudder deflections, ra  ,  respectively. 

The values for the stability and control derivatives ),,,(
0 r

nLL CCC


 are: 

107.0,0,171.0,037.0,101.0

12.2,6.35,05.6,78.0,0

024.0,20.0,113.0,53.0,125.0

0,233.0,362.0

0,0,0,67.0,036.0

465.0,83.7,33.1,24.5,3.0

0

0

0

==−=−==

−=−=−=−==

−===−=−=

=−=−=

=====

=====

rarp

eq

rarp

ra

eq

eq

nnnnn

mmmmm

lllll

yyy

DDDDD

LLLLL

CCCCC

CCCCC
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CCCCC

CCCCC




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
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Note: All derivatives are in radians. 

The data correspond to a levelled flight of 10000 ft (3048 m), and 37.0=M . 

The remaining aircraft data are: 

ftc

ftb

ftS

I

ftslugI

ftslugI

ftslugI

lbsW

xz

z

y

x

1.10

96

945

0

447000

215000

273000

40000

2

2

2

2

=

=

=

=

−=

−=

−=

=

 

 

 

5.3. STOL aircraft equilibrium calculation results  

 

In this subchapter, the results of the aircraft’s equilibrium calculation are presented. 
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Figure 1. Longitudinal model convergence 

 

The starting conditions for the longitudinal model were ( )1,1,10 =x  

 

 
Figure 2. Lateral-directional model convergence 

 

 

The starting conditions for the lateral-directional model were ( )0,2,20 =x  

 

From the longitudinal model graphic observation, we can see that it converges considerably fast, 

however it continues to iterate because the function reaches a minimum in the region close to 

zero. The final values are:  
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From the lateral-directional model graphic, we observe that it converges rapidly to a function 

zero, where the final values are: 

0

084.0

039.0

0

)084.0,039.0,0(

=====

=

=

=

=









 rpvF

rad

rad

x

r

a

f

 

 

6. Conclusions 

 
The self-adaptive Levenberg-Marquardt algorithm was implemented successfully. Its 

development over the years significantly improved its converging and singular matrix problem 

solving abilities, resulting in a relatively simple, working and effective algorithm with various 

applications, one of these in the aerospace technology. This application can and should be 

further explored and has a lot of room to improve.  
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Appendix C 

 

Earth-Mars trajectories with lunar gravity assist study using 
the self-adaptive Levenberg-Marquardt Algorithm  

 

Flávio Rosa1  

 
1Department of Aerospace Sciences, Universidade da Beira Interior 

Calçada Fonte do Lameiro 6, 6200-358 Covilhã, Portugal 
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Abstract.  In this work it is performed a numerical study of interplanetary trajectories between Earth 

and Mars, using the Moon to carry out a lunar gravity assist manoeuvre. The obtained results are 

compared with values from a direct transfer achieved with the same methods and with estimated 

values for the future launch windows for an interplanetary transfer between the Earth and Mars. The 

results are obtained with the two body problem and with the open source NASA’s software GMAT. 

The self-adaptive Levenberg-Marquardt algorithm developed for this work in the programming 

language Python 3.6 is tested and used as a differential corrector to obtain the trajectories for the two 

body problem.  The results demonstrate that the self-adaptive Levenberg-Marquardt algorithm is 

reliable for mission design, a lunar gravity assist can be executed in all situations studied and only in 

a few cases it is not viable.  

 
 

Keywords:  Interplanetary transfer; gravity assist; self-adaptive Levenberg-Marquardt; Mars   

 
 
1. Introduction 
 
Generally, to reach Mars a direct transfer is used, which consists of accelerating while in the 

parking orbit, that can be a low Earth orbit and can vary from 400 km to 1500 km of altitude. 

For a Mars direct transfer, this maneuver puts the spacecraft on escape velocity, in order to 

achieve a solar orbit that intercepts Mars orbit. The duration of an efficient journey usually is no 

less than 180 and not more than 450 days, depending on the position, inclination and proximity 

of the planets, this time can be different to perform the most efficient trajectory. In the cruise 

phase, between the planets, trajectory correction maneuvers can be performed, or TCM’s. 

Finally, the orbit insertion burn is performed near the target body, to ensure that the spacecraft 

enters in orbit. Depending on the type of mission and its objective, the vehicle can perform 

more burns to achieve the desired orbit, or to achieve the trajectory to enter the atmosphere and 

initiate the descent to the surface landing site. On some cases, together with the retrograde burn 

to slow down the spacecraft, aerobraking can be used. This technique consists of using the outer 

layers of the atmosphere, so that atmospheric drag helps reducing the spacecraft’s velocity and 

thus saving fuel.  

As Mars exploration interest keeps growing in worldwide space agencies, the need for cheaper 

and alternative means of getting to the red planet are important. Same means can be used to 

increase the payload capacity and allow a vaster scientific payload. 

Gravity assists are widely used since the first decades of deep space exploration, mainly for 

space missions to the outer or inner bodies of the Solar system and are an efficient method to 

reduce fuel mass and increase the payload capacity, although a gravity assist can extend the 

mission time. Several missions in space exploration history used this method to achieve their 

goals that otherwise wouldn’t be possible with the available technology. 
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In order to find the most efficient launch dates and times of flight for the analysis of the future 

launch windows, the epochs from Yang, B. et al. (2018) pork chop plots are used. The self-

adaptive Levenberg-Marquardt algorithm (Fan, J., & Pan, J. 2005), mentioned in this paper as 

SLM, is tested and used as a differential corrector to converge the trajectory describing function 

values to the reference values. To test this method, the mission of the MER-A Spirit Rover is 

analyzed. In a previous work (Oliveira, R. 2017 Msc. Dissertation), it was proven that a 

trajectory with a Lunar gravity assist (LGA) is possible and efficient, so the values obtained are 

compared to this work to check the utility of the SLM as a differential corrector. The launch 

windows analyzed span from 2020 to 2026. In these six years, there are four possible launch 

opportunities, one every two years. According to a previous study (Gil-Fernandez, J. 2005), 

performed for the ExoMars mission, a Lunar gravity assist can increase the mass of the vehicle 

injected to Mars between 9% and 10.5%. 

The objectives of this work is to test and use the self-Adaptive Levenberg-Marquardt algorithm 

to find a way to reduce the fuel mass or increasing the payload capacity of a future mission to 

Mars, by taking advantage of the Moon’s gravity and its favorable positions to perform a 

gravity assist and decrease the initial orbit energy to reach its target. The results obtained with 

the algorithm using the two body problem are then verified and validated in GMAT for a more 

realistic approach. 

The software used to perform this analysis was the open source programming language Python 

3.6 and NASA’s General Mission Analysis Tool (GMAT) 2018 version. 

 
2. Models and Algorithms 
 

In this chapter, the astrodynamics models and algorithms used for this analysis are described. 

Note that the two-body propagation was mainly used for this analysis, being GMAT used to 

conclude and obtain the result, since it describes more accurately the motion of all bodies in the 

Solar System.  

 
2.1 Keplerian and Cartesian coordinates 
 

The Keplerian coordinate system defines the orbit of the spacecraft through the classical orbital 

elements: a, the semi-major axis, e, the eccentricity, i, inclination,  , the right ascension of the 

ascending node,  , the argument of periapsis and  , the true anomaly. The Cartesian 

coordinate system is inertial, the orbit is given also by six elements, the KJI rrr ,,  and 

KJI vvv ,, components. The I  axis is pointed towards the vernal equinox, J  axis is 90 o east in 

the equatorial plane and K  axis extends towards the north pole of Earth. It is important to 

transform the coordinates, according to the calculations that best suit the models used, so the 

transformation equations are also represented in Vallado, D. and McClain, W. (2013): 

 

Cartesian to Keplerian ),,,,,,(  ieavr


 

 

Keplerian to Cartesian ),,,,,,( vriea


   

 

2.2 Patched conic trajectories 
 

The method consists of an interplanetary transfer be approximated by several arcs, and in each 

one of these the motion of the spacecraft is described by the two-body problem, considering 

only the influence of the main body on the vehicle. 

In this case, with the application of the patched conic trajectories method, the trajectory will be 

divided in 5 phases: 

 - The arc from Earth to the Moon’s SOI, considering a hyperbolic trajectory relative to 

Earth; 

 - The arc that describe the Moon’s flyby, considering a hyperbolic trajectory relative to 

the Moon; 
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 - The arc from the Moon’s SOI to the end of Earth’s SOI, also hyperbolic; 

 - The arc of the interplanetary transfer, between Earth and Mars, described by an elliptic 

orbit relative to the Sun; 

 - Finally, the Mars arrival, described by a hyperbola relative to Mars. 

 

 

2.3 Kepler propagation 
 
This method predicts with a reasonable accuracy the position and velocity vectors on any 

moment of the orbit, given the initial position, velocity vectors and the time between the initial 

position and the position to be calculated.   

The universal variables method of Kepler propagation is one of the methods to solve Kepler’s 

problem, but unlike other methods mentioned in Vallado, D. and McClain, W. (2013) and 

Battin, R. (2000), this method allows to solve the problem in all possible conic sections so, in 

this case it is the best option. 

The method is based on the use of f and g functions and the universal variables  ,  , 2c  and 

3c . 
0r  is the norm of the initial position vector , r  is the norm of the final position, calculated 

in  the algorithm, and t  is the time of flight between positions. 

 

Kepler Propagation ),,,( 00 vrtvr


 : 
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2.4 Earth, Moon and Mars coordinates 
 

The position and velocities of the celestial bodies were based on data from GMAT, as it is 

possible to retrieve report files with the planets or any other celestial bodies data. The report 

files are in the MJD time and present cartesian state vectors in each 1/1000 of a day 

approximately. If the files were used as described, the amount of time and computation needed 

to search for the state vector several times per iteration would be immense. So instead of this 

method, the report file was reduced to one state vector per day, this state vector is used to 

calculate the position and velocity of the body, using  the Kepler Propagation, according to the 

t  between the time in the report file for that day, and the time of the state vector to determine. 

 

Kepler Propagation ),,,( vrttvr refrefref


−  

 

refrefref tvr ,,


are the position vector, velocity vector and time reference given by the GMAT 

report file. 

 
2.5 Lambert’s problem 
 

The Lambert’s problem calculates an initial velocity vector to connect any given points in 

space, given the time of flight but the orbit is unknown. It is known for interplanetary mission 

design and to construct the pork chop plots. 
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The method used for this work, is the Lambert’s problem function from the library pykep, 

which is a scientific library for Python, developed by the European Space Agency for 

astrodynamics research (Esa.github.io. 2019).  

 

Lambert’s Problem ),,,( 00 ff vvtrr


  

 

This function is used to estimate initial velocity vectors that connects the initial starting points 

of the Moon’s SOI, during the pruning phase, and Mars position in the arrival epoch. It is also 

used to calculate the first velocity vector, in the Earth’s parking orbit, that connects this point 

and the point in the B-plane given by the pruning phase. 

 

 
2.6 B-plane targeting 
 
The B-plane is the planar coordinate system that helps targeting the Moon. It is used to aim for a 

specific point to perform the gravity assist. It can be seen as an attached target to the body, and 

it is always perpendicular to the incoming asymptote of the spacecraft approaching the body. 

Generally, the targeting is made in mid-course in a TCM, but in this case it is made in the 

injection burn. The TB   and RB   parameters represent the point where the vehicle pierces the 

B-plane. It is possible to obtain the TB  and RB   coordinates from the r


 and v


 coordinates 

(Vallado, D. and McClain, W. 2013), (Cho, D., Chung, Y., & Bang, H. 2012). 
 

2.7 Self-adaptive Levenberg-Marquardt 
 
The self-adaptive Levenberg-Marquardt (SLM) (Fan, J., & Pan, J. 2005) algorithm is an 

iterative method used to find the minimum of a system of non-linear equations or its solution. 

This method has been used for various applications through numerous fields of study, but in this 

work is used as differential corrector, in order to minimize the difference between the target 

values and the calculated trajectories values.   

We consider the solution to be: 

 

kknn FF dXX += )()(     (5) 

 

Where kd  is a correction factor calculated in: 

 

k
T
kkk

T
kk FJIJJd

1
)(
−

+−=       (6) 

 

kJ  being the Jacobian Matrix of the system, k  is the damping parameter, I  the identity 

matrix and )( kk FF X= . After the modifications mentioned above, the damping parameter is 

considered: 

 

The damping parameter k  is a positive multiplier and was introduced in this method with the 

purpose of reducing the impact of the singularity of the Jacobi Matrix kJ . k is also updated 

along the iteration process according to the value of kr , the ratio between the actual reduction 

and the predicted reduction. 

 

SLM: ))(,,),(( objectiveknkobjectiveIn FFFF − XXXX  

 

The iteration process starts with the calculation of the step kd , through equation (6). 

The next phase is to find the reduction ratio and predict the next kx  values: 
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According to the value of kr , a condition is established for the value of 1+kx  :   
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0001.00 =p  is a value to check if the reduction is acceptable. The last step is to update the 

parameter 
k : 

 

 )(,max1 kkk rqm  =+
    (13) 
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4

1
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Finally, go back to step 2 and repeat until 0=k
T
k FJ or 100=k  . In this algorithm the 

m constant (Fan, J., & Pan, J. 2005) is the minimum limit for the LM parameter in order to 

avoid a larger step than desired near the solution. 
 

2.8 Differential corrector application 
 
2.8.1 Pruning phase 
 
The Self-Adaptive Levenberg-Marquardt algorithm is first used in the pruning phase, where the 

objective is to set several trajectories than connect the points from the grid search and Mars 

position. So, in this case, the trajectory starts with a Kepler Propagation from the end of the 

Moon’s SOI until the end of Earth’s SOI, followed by a Kepler Propagation from this point to 

Mars. So, the objective function gives the arrival point depending on the departure position  

ir


 and initial velocity iv


, as well as the departure and arrival times it , ft ,respectively. 

pruningfiiipruning FttvrF ),,,(

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Ir , Jr , Kr  are the cartesian IJK coordinates for the spacecraft position at ft  relative to the Sun. 

Although the function is dependent on all the parameters, the only variable is the velocity  iv


. 

As this function defines the motion of the spacecraft according to the two-body problem, and its 

position in  ft , the Mars position at ft is our objective value. 

 

),,),(( MarspruningoptMarsipruning rFvrvvF −

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ref

Ir , ref
Jr , ref

Kr  are the Mars IJK coordinates for the position of the planet in ft  relative to the 

Sun. 

It is necessary to calculate the Jacobian matrix of the system: 
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The pruning analysis is performed in three stages, gradually decreasing the spherical angles 

window analyzed and the time interval. 

 

2.8.2 Single-shooting method 
 
In order to find the complete trajectory that connects the departure point and Mars with a Lunar 

gravity assist, the single shooting method was used. According to this method, the self-adaptive 

Levenberg-Marquardt algorithm was used to target simultaneously the B-plane parameters 

given by the pruning analysis and Mars position in ft . 

The function that describes the path is denominated:  

 

finalfiiifinal FttvrF ),,,(


 




























=

e

RB

TB

r

r

r

F K

J

I

final      (18) 

 

Ir , Jr , Kr  are the cartesian IJK coordinates for the spacecraft position at ft  relative to the Sun. 

TB  and RB   are the B-plane parameters calculated from the initial velocity vector and e is 

the orbit’s eccentricity relative to Earth. 

Likewise, the function variable is just the initial velocity vector iv


. 
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The matrix goalF is formed by the reference values for the algorithm to solve to, minimizing the 

difference between the function outcome and the objective. ref
Ir , ref

Jr , ref
Kr  are the Mars 

IJK coordinates for the position of the planet in ft  relative to the Sun, while refTB   and 

ref
RB  are the B-plane reference coordinates to target the gravity assist, and ref

e is the 

reference eccentricity relative to the Earth given by the pruning phase. 

As this function yields six values from three variables, the Jacobian matrix for this problem is: 
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3. Results 
 

In this chapter, the results, graphs and tables obtained from the simulations are presented and 

discussed. The values obtained are compared with the previous work (Oliveira, R. 2017 Msc. 

Dissertation) in case of the MER-A mission, and the others are compared to the pork chop plots, 

results from Yang, B. et al. (2018) and to the results obtained with the single shooting method 

and GMAT for a direct transfer. 
 

.  

Table 1: Direct Launch Windows with results from Yang, B. et al. (2018) and Oliveira, R. 2017 Msc 

Dissertation 

Departure 
(UTCGregorian) 

dd-mm-yy 

Arrival 
(UTCGregorian) 

dd-mm-yy 

Departure 
(MJD) 

Arrival 
(MJD) 

Orbit 
type 

Direct 
Characteristic 

Energy 

]/)[(
22

3 skmC  

10-06-2003 04-01-2004 22801 23009 Short 8.94481 

23-08-2020 06-10-2021 29085 29494 Long 16.5038 

15-09-2022 04-10-2023 29837 30222 Long 13.7934 

05-10-2024 15-09-2025 30589 30934 Long 11.1894 

30-10-2026 21-08-2027 31344 31629 Long 9.1371 

 

The purpose of the gravity assist maneuver is to reduce the characteristic energy 3C  and obtain 

a trajectory that accomplishes, with a small deviation, the departure and arrival dates. It is 

unlikely that the Moon is in the correct position to perform the gravity assist at the most 

efficient time to do the transfer maneuver. So, in the worst-case scenario, the injection epoch 

can be up to 15 days after or prior to the ideal epoch for interplanetary transfer, which can cause 
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a significant reduction of the orbit energy gain, or even question the viability of the gravity 

assist. 

In order to approximate the numerical study as close to reality as possible, the General Mission 

Analysis Tool (GMAT) is used. GMAT is an open source software developed by a NASA’s 

team, but also private and public contributors and it is the only open source software for mission 

design, analysis, optimization and navigation available. The first released version was in 2007 

and since then it has been continuously improved with several accessible versions. It was 

validated and verified in S. P. Hughes et al. (2014). 

 

3.1 Direct single shooting and GMAT values 
 

In order to compare the results from the gravity assist, a brief study of the Mars direct transfers 

is performed. The self-adaptive Levenberg-Marquardt algorithm is applied the same way as in 

the single shooting method, only considering the departure position as the same position that is 

described in the work ahead to perform the gravity assist. The parts of the function that describe 

the motion considering the Moon are also discarded. 

The results from the direct trajectory obtained from the single shooting method and the GMAT 

simulation are presented in table 2. 
Table 2: Direct transfer results 

DEPARTURE 

(MJD) 

Yang, B. et al. 

(2018) ]/)[(
22

3 skmC  

SSM 

DIRECT ]/)[(
22

3 skmC  

GMAT 

DIRECT ]/)[(
22

3 skmC  

29085 16.5038 15.5614 16.3724 

29837 13.7934 12.8764 14.2287 

30589 11.1894 10.2156 11.0333 

31344 9.1371 8.2732 9.2671 

 

3.2 Single shooting method and GMAT results 

 

The results of the single shooting are presented in table 3 and the results of the GMAT 

simulations are presented in table 4. 

 
Table 3: Results of the gravity assist maneuvers with single-shooting method 

)(0 MJDt  Periapsis 

Radius )(km  

Velocity 

Magnitude 
)/( skm  

Direct 

]/)[(
22

3 skmC  

Characteristic 

Energy LGA 

]/)[(
22

3 skmC  

22807.1038 

(MER-A) 

1834 11.2297 8.9448 5.3130 

29072.7259 1791 10.7490 15.5614 15.7081 

29837.4236 1864 10.5509 12.8764 10.6237 

30602.9517 1823 10.4834 10.2156 9.7437 

31342.8966 1945 10.2881 8.2732 5.2033 
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Table 4: Results of the gravity assist in GMAT software 

Launch 

window )(0 MJDt / 

Mission 

 

)(0 MJDt  )(MJDt f  

)(km

rper
 

)/( skm

vmag
 

Direct  

]/[
22

3 skmC  
3C LGA 

]/[
22

skm  

MER-A 22807.3790 23011.5357 1800 11.2688 8.9448 6.2732 

29085 29072.7520 29490.4874 1837 10.7891 16.3724 16.5742 

29837 29837.9350 30240.3587 1794 10.5715 14.2287 11.6182 

30589 30603.1218 30948.4127 1840 10.4882 11.0333 9.8629 

31344 31343.2483 31645.5052 2063 10.3451 9.2671 6.4245 

 

The results from the launch windows where a gravity assist is performed are presented. 

Regarding to the result for the MER-A mission also performed in Oliveira, R. 2017 Msc 

Dissertation, there is a slight improvement of 22
3 /08.0 skmC = . This can be explained by the 

lower radius of periapsis than used in the mentioned work kmrp 1838= . So, it is presumed that 

the result is identical. Similarly, to the mentioned work, there’s a decrease of the characteristic 

energy of 22
3 /67.2 skmC = . With this result, it is proven that the self-adaptive Levenberg-

Marquardt algorithm is as effective as the Newton-Raphson as a differential corrector and can 

be used for space mission design effectively. 

The result obtained in the 29085 launch window is inefficient. There is an increase in the 

characteristic energy of 22
3 /20.0 skmC =  This can be explained by the fact that during the 

favorable launch window, the Moon is basically on the opposite position to the one needed to 

perform the gravity assist. There was an attempt to obtain an effective result both before and 

after the launch window, in both epochs a trajectory was found, although the most efficient is 

the one presented in the tables 3 and 4. However, the LGA trajectory after the launch window 

can be used as last resort, in case a mission scheduled for 29085 is unable to be launched in the 

exact day. A flyby can be performed approximately 14 days after the ideal direct launch 

window. The maneuver can prevent the cost increase of launching a mission outside of the 

direct efficient period.  

In the 29837 launch window, an efficient trajectory was found. Comparing to the values of the 

direct transfer, there is a significant decrease in the characteristic energy 22
3 /61.2 skmC = . 

In the 30589 launch window, comparing the characteristic energy 3C  with the direct result 

obtained in GMAT, there is a significant reduction, even though the launch epoch for the Lunar 

gravity assist trajectory is performed 14 days after the ideal transfer. The value of the reduction 

is 22
3 /17.1 skmC = .  

In the last launch window, the characteristic energy has an increase of 22
3 /84.2 skmC = , 

which can be explained by the fact that the Moon is in a very favorable position to perform the 

gravity assist maneuver. 
Expectedly there is a small increase of the velocity magnitude magv  and characteristic energy 

3C  comparing the GMAT results to SSM. This is caused by the influence of all bodies of the 

Solar system at all moments of the trajectory, mainly the influence of Earth shortly after the 

departure from Earth’s SOI, as well as the influence of Earth’s gravity in the phase of the flyby.  
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Table 5: Injection ephemeris in Earth MJ200Eq reference frame in GMAT 

)(0 MJDt  
Ir  Jr  Kr  Iv  Jv  

Kv  

22807.3786 -5950.7395 -2303.8716 -1701.4774 0.55861 -9.49263 -6.04681 

29072.7519 1397.0293 -7743.3369 -1363.0928 10.42125 1.27715 2.48414 

29837.9350 3989.0782 -6785.3544 -1193.1074 9.38593 3.00576 3.82442 

30603.1217 3988.7141 -6785.5135 -1192.3706 9.01392 2.80708 4.56866 

31343.2483 7805.9753 -1346.8180 -234.4425 5.10027 7.84662 4.40887 

 
 
 
3.3 Graphical representations  
 
The results obtained with the SSM are now represented graphically in Python 3D plots. 

 

  
Earth departure Interplanetary phase 

Figure 1: MER-A mission LGA 

 
 

  
Earth departure Interplanetary phase 

Figure 2: 29085 launch window with LGA 
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Earth departure Interplanetary phase 

Figure 3 29837: launch window with LGA 

 

  
Earth departure Interplanetary phase 

Figure 4: 30589 launch window with LGA 

 

  
Earth departure Interplanetary phase 

Figure 5: 31344 launch window with LGA 



 

 65 

 

 

4. Conclusions 
 

The objective of this work was to find alternative routes to Mars that can increase the payload 

capacity or decrease the fuel needed of future Mars missions. The results include the validation 

of the differential corrector SLM algorithm with a trajectory previously studied, and the study of 

4 future transfer windows. There was a solution found in all of them, and in 3 out of 4 of the 

Lunar gravity assist maneuvers were effective, reducing the characteristic energy 3C  of the 

orbit. The results are compared with a previous study of the future Mars transfer windows and 

pork chop plots. It is safe to confirm that the self-Adaptive Levenberg-Marquardt algorithm is a 

powerful tool that can be applied to mission design, due to the fact that in all launch windows a 

trajectory with a Lunar gravity assist was found.  

The success of the results can be explained by the flexibility of the departure and arrival epochs, 

as well as the possible use of short or long trajectories, type I or type II, respectively. This 

allowed to choose the type of trajectory compatible with the lunar gravity assist maneuver. In 

the simulations where the Lunar gravity assist performed better than the predicted direct 

trajectories, the decrease of orbit energy was from 22
/17.1 skm to 22

/84.2 skm , which could 

mean a significant increase of the payload mass on most of the future missions to Mars.  

This work proves that these types of trajectories should be considered and studied for future 

Mars, Venus and other missions. Although the trajectories can be considered riskier due to 

lower altitude flybys and trajectory correction errors can cause serious failures. This can be 

prevented with higher altitude flybys, that still give a significant energy increase, but have a 

better margin for failure. 
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