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Resumo
Apassagemdo sector privado de segundo para primeiro plano, no campoda exploração espa-
cial depende, em grande parte, da viabilidade financeira de tais projetos. É difícil de estimar
até que ponto este sector conseguirá desenvolver os recursos já disponíveis para a exploração
espacial, mas a ligação entre avanço tecnológico e redução de custos é inquestionável.

Emmotores foguete de propelente líquido, uma combustão mais eficiente implica uma tran-
sição do combustível e/ou oxidante para o regime supercrítico. Apesar de estas condições
não serem novidade dentro da câmara de combustão de um motor foguete, ainda não são
perfeitamente compreendidas e as ferramentas para as estudar ainda estão em fase de de-
senvolvimento.

O comportamento não linear das propriedades termofísicas de um fluido no regime super-
crítico aumenta a dificuldade de qualquer simulação numérica nestas condições. Neste tra-
balho, a lei dos gases ideais perde validade e é substituída por modelos de maior precisão.
As Equações de Estado de Peng-Robinson e de Soave-Redlich-Kwong são comparadas com
uma Equação de Estado multiparamétrica de referência para o azoto, permitindo assim es-
timar o erro associado a cada um destes modelos. Esta Equação de Estado de referência é
implementada através da base de dados REFPROPv9.1 que oferece simultaneamente um au-
mento de precisão e redução de custo computacional. O mesmo cuidado é também aplicado
às propriedades calóricas e de transporte.

Para lidar com o escoamento incompressível, mas de massa específica variável, dentro da
câmara de combustão, a média normalmente aplicada às equações de conservação demassa,
quantidade de movimento e energia é dispensada em favor da média de Favre, ponderada
pela massa específica. Este sistema de equações é por fim fechado com diferentes mode-
los de turbulência, onde reside o principal foco deste estudo. O desempenho e a validade
de tais modelos, desenvolvidos e calibrados para condições subcríticas, são estudados para
condições supercríticas.

Por fim, os dados experimentais correspondentes ao desenvolvimento de camada demistura
de azoto são usados para validação. Os resultados mostram-se em boa concordância com
os experimentais e, quando comparados com os de outros estudos numéricos semelhantes,
mostram que não existe, de facto, uma dependência monotónica entre a complexidade de
um modelo de turbulência, desempenho e qualidade de resultados.

Palavraschave

injeção emcondições supercríticas,modelo de turbulência, equaçãode estado,motores foguete
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Abstract
As space exploration enters a new erawhere not only public but also private enterprises begin
to flourish, financial viability becomes a preponderant factor. It is hard to estimate how far
the contribution of this sector to the development of the resources available thus far will be,
but the link between engineering technology and cost reduction is unquestionable.

In a Liquid Rocket Engine, higher combustion efficiency comes at the cost of both the fuel
and/or the oxidiser surpassing their critical points and entering the domain of supercritical
fluids. While these conditions have been present in rocket engines combustion chambers for
decades, they are still not fully understood and tools to properly simulate such conditions are
still in the development stages.

The highly non-linear behaviour of the thermophysical properties of a fluid in this regime
increases the difficulty of any attempt to run numerical simulations. The ideal gas law is
no longer valid and must be replaced by more accurate models. The Peng-Robinson and the
Soave-Redlich-Kwong Equations of State (EoS) are compared to a reference EoS for nitrogen
to gain some insight on the magnitude of error that simpler cubic Equations of State incur
in the simulation results. The output of the multi-parameter EoS is obtained from the real
gas library REFPROPv9.1 thus reducing computational costs while still achieving a level of
accuracy thatwould otherwise not be possible. A similar treatmentmust be given to transport
and caloric properties that have a significant impact on the flow structure.

To deal with the incompressible but variable density conditions inside the combustion cham-
ber, the standard time-averaging method is replaced by the Favre averaging procedure and
the system of equations is closed with different turbulence models, the main focus of this
study. The performance of said models, designed and calibrated to run in subcritical condi-
tions, is then studied and their validity for the supercritical regime is assessed.

Ultimately, computational results are validated against experimental data regarding the de-
velopment of themixing layer of nitrogen. Results show a good agreement with experimental
data and, when compared to additional numerical studies for the same conditions, it is visible
that there is no monotonic dependence betweenmodel complexity, performance and quality
of results.

Keywords

supercritical injection, turbulence model, Equation of State, Liquid Rocket Engine
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Chapter 1

Introduction

Supercritical fluids exist as a byproduct of different natural occurring phenomena. In sub-
merged volcanos, for example, pressure crosses the critical point for water at around 2200m

below sea level and together with the high temperatures of a volcanic eruption, the liquid
water turns into a gas-like fluid, triggering underwater lava fountains [1]. The atmosphere of
Venus is another example. It is mostly comprised of CO2 meaning that, for its temperatures
and pressures values, it is in the supercritical regime [2,3].

In the industry, the applications for such fluids seem to be never-ending, ranging from su-
percritical drying used to produce aerogels to the extraction of substances and cleaning pro-
cesses where there is also an apparent ecological benefit [4]. Its appearance in propulsion
has become more noticeable with the development of higher pressure systems such as when
diesel is compressed in an internal combustion engine [5,6], but the scope of this work falls
on a different system.

Rocket engines are mainly used to launch vehicles into space, where atmospheric propul-
sion systems are not appropriate. The principle is that of expelling accelerated mass and,
through Newton’s third law, using the resulting reaction force as thrust. This is similar to
how a jet engine works, except that rocket engines must carry both their fuel and oxidiser.
The chemical reaction between the propellants in the combustion chamber causes a thermal
expansion and pressure increases in this confined space. These gases are then accelerated
and ejected through the nozzle. Depending on how the propellants are stored, rocket engines
are categorised as liquid, solid or hybrid engines. We will focus on the first.

The thrustmagnitude of such an engine is separated into two components, as shown in equa-
tion (1.1) where ue and pe are the velocity of the accelerated gases and the pressure at the
nozzle exit, Ae is the cross-section area, p∞ is the ambient pressure and ṁ is the mass flow
rate. The first term is the impulse thrust and the second is the pressure thrust. Due to the
shape of the nozzle, maximum thrust is obtained if pe = p∞ [7].

F = ṁue +Ae(pe − p∞) (1.1)

With the high costs of launching cargo into space, the main concern is to keep the weight as
low as possible while still having enough thrust to propel the vehicle. The specific impulse,
Isp, is the ratio between the total impulse, It, and the weight of propellant as shown in equa-
tion (1.2). Here, the mass of propellant,mp, divided by the time of combustion, tb, yields ṁ

1
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and by applying the condition for maximum thrust mentioned above, it becomes apparent
that the specific impulse can only be increased with the velocity of the expelled gases. This
parameter shows how much thrust can be obtained from a unit of weight of propellant and
therefore a high Isp is desirable.

Isp =
Ftb
mpg0

=
ue
g0

(1.2)

By assuming a steady and isentropic flow the energy conservation equation leads to a con-
stant value of h+ u2/2 where h is the enthalpy. Hence, and since h = cpT , one can write

cpTe +
u2e
2

= cpTcc +
u2cc
2

(1.3)

where Tcc and ucc are the temperature and velocity in the combustion chamber.

By assuming a negligible velocity inside the chamber and rewriting the isobaric specific heat
as a function of the adiabatic index γ and the ideal gas constant R, we arrive at

ue =

√
2γ

γ − 1
RTcc

[
1− Te

Tcc

]
=

√√√√ 2γ

γ − 1
RTcc

[
1−

(
pe
pcc

) γ−1
γ

]
(1.4)

It becomes clear that the velocity of the gases at the exit of the nozzle increaseswith the cham-
ber pressure, along with the specific impulse. This justifies the desire for higher pressures
inside the combustion chamber, leading to a transition into the supercritical regime as the
liquid propellants are heated when exiting the injector. The RS-25, the Vulcain and the Vinci
engines are only a few examples of Liquid Rocket Engines (LREs) that operate with cham-
ber pressures above critical conditions [8–10]. Coaxial injection of oxygen and hydrogen
constitutes a typical configuration in this type of engine.

Understanding the flow dynamics under these conditions is crucial to create better andmore
reliable tools to simulate and optimise rocket engine performance. Researchers started by
studying a simpler setup with liquid nitrogen instead of oxygen as the injected oxidiser for
safety concerns and to diminish the pressure in the test facility, since the critical pressure
of nitrogen is nearly two thirds that of oxygen. [11] explains that the reported results are
similar as long as there are no chemical reactions. Furthermore, to avoid variation ofmaterial
properties due to species mixing, the fuel can be injected into a chamber filled with gaseous
nitrogen.

Experimental studies with supercritical fluids are costly and hard to execute. Additionally,
despite still not being the reference when studying a certain phenomenon, when validated
for a specific set of conditions, Computational Fluid Dynamics (CFD) can provide invaluable
information that an experimental study cannot. The validation of a numerical setup under
these simplified conditions (LN2/GN2) can therefore be seen as a first effort towards accu-
rately and reliably simulating combustion phenomena inside an LRE combustion chamber.
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1.1 Objectives

A small step in the direction of the validation of the numerical setup discussed in the previous
section is to understand how current turbulencemodels, calibrated for subcritical conditions,
behave under supercritical conditions. With an accurate thermodynamic formulation, we
evaluate the efficiency and accuracy of each tested model and try to link the structure of
each one or the presence of specific terms to certain characteristics of the final results. This
comprises one of the objectives of this study.

Additionally, by comparing the obtained results to those of other researchers, we aim to ce-
ment the conviction that simple turbulence models can in fact produce very accurate results
at a much reduced computational cost, when compared to Large Eddy Simulation (LES).

Finally, we seek to provide some insight into the error induced by the most commonly used
Equations of State (EoS) under these conditions. With this in mind, two cubic EoS are com-
pared to a reference EoS for nitrogen, used as a benchmark.

By working towards understanding the phenomena inside an LRE combustion chamber, we
hope this study will help the industry find its way in adopting more cost efficient yet still
reliable design process tools.

1.2 Overview

The present work is divided into a series of chapters: Introduction, Theoretical Review,
Mathematical Model, Implementation, Results and Discussion and finally Conclusions and
Future Work. In the second chapter, an updated review of the scientific research made until
this point is presented in terms of supercritical phenomena next to relevant experimental and
numerical studies. Chapter three focuses on describing the equations and considerations ap-
plied to define the flow dynamics and thermodynamics, moving on to chapter four that goes
on describing the methodology used to apply said equations to a discrete domain with the
least possible amount of numerical error. In chapter five, the results obtained with the de-
scribed mathematical model are validated against experimental data as well as against other
numerical data. Finally, in chapter six, conclusions are drawn from the current investigation
and, with the groundwork laid, suggestions for future work are presented.
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Chapter 2

Theoretical Review

This chapter is dedicated to discussing the supercritical regime and its main implications on
fluid behaviour. After this initial discussion, wemove on to the relevant experimental studies
and measuring techniques and finally to the respective numerical studies. But before going
that far, it is helpful to introduce some basic concepts and definitions.

At an arbitrary constant temperature, a gas can be converted to a liquid by increasing the
pressure. However, as the temperature increases, so does the kinetic energy of themolecules
along with the pressure needed to bring the gas to a liquid. The critical temperature, Tc,
marks the point after which a transition to the liquid phase is no longer possible, no matter
the applied pressure. The vapour pressure at the critical temperature is then defined as the
critical pressure, pc. The critical point then marks the end of vapour pressure line, where
both temperature and pressure reach their critical values. Here, physical properties change
dramatically and become identical for the liquid and gas phases, the isobaric specific heat is
infinite while both surface tension and latent heat are zero, though this will still be discussed
in section 2.1. The position of this point is affected by the magnitude of the intermolecular
attraction forces meaning that it is specific to each substance. Nitrogen is the subject of this
study and Table 2.1 can be used to locate its critical point in a phase diagram.

On a final note, several authors divide the supercritical regime into different regions which
we briefly mention in the upcoming section. However, following the work from [12], we
define supercritical as the region of T > Tc or p > pc in which there is no phase equilibrium
and therefore no phase transition. Despite the absence of a phase transition, we will still
discuss how properties can be severely altered inside the supercritical regime through non-
equilibrium processes.

Table 2.1: Critical properties of nitrogen

Properties Value

Tc [K] 126.192
ρc [kg ·m−3] 313.30
pc [MPa] 3.3958
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2.1 Considerations on the supercritical regime

When dealing with supercritical fluids, the borders in a phase diagram are an interesting
point of discussion. One can imagine a diagram as that of Figure 2.1 where the critical tem-
perature and pressure create three additional regions besides the subcritical gaseous and
liquid phases. We mention this diagram only as a stepping stone to introduce a modified
diagram that considers a different border and that is of bigger interest in this study.

A

III

III IV

V

pc

Tc

p

T

Figure 2.1: Fluid phase diagram [13]

By comparing the molecular arrangement in a liquid, in region II, to that of a supercriti-
cal fluid, in region III, [13] shows that the molecular disposition in both cases bares no
differences. When moving through A, however, the substance switches from liquid-like to
gas-like fluid at some point in region IV . Data obtained from theNIST database presented in
Figure 2.2 clearly shows that the supercritical regime can indeed harbour fluids of different
characteristics and with different density values. While different isobaric lines converge to
different density values for higher temperatures, they arrive at generally the same value of
density for lower temperatures indicating once more a liquid-like incompressible behaviour.

This transition from a liquid-like to a gas-like fluid could be compared to a subcritical boil-
ing, the main difference being that the isothermal vaporisation typical of subcritical fluids
is replaced by a continuous non-equilibrium process that takes place over a finite tempera-
ture range. As this happens, the specific heat capacity goes through amaximum and actually
tends to infinity when approaching the critical point, as shown in Figure 2.2. Much like [11],
we refer to this transition phenomenon as pseudo-boiling and to the maxima of specific heat
capacity as pseudo-boiling line.

With this, [14] presents an altered phase diagram, shown in Figure 2.3, where the pseudo-
boiling line is a direct continuation of the subcritical vapour pressure line. The effects of
crossing the pseudo-boiling line play an important role in the present study so we shall use
this diagram as a reference.
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Figure 2.2: Density and isobaric specific heat values for nitrogen (data from the NIST database)
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Figure 2.3: Adopted phase diagram [14]

Besides the specific heat, themolecular viscosity and the thermal conductivity are also greatly
affected during this transition as shown in Figure 2.4. For these two properties, as well as for
the specific heat, it is clear that a static value cannot be used since it would produce largely
unrealistic results. Sections 3.5 and 3.6 are dedicated to properly defining these quantities.

Density prediction must also be minded. We have already observed the strong density gra-
dients in Figure 2.2 where, for p = 4MPa, a 1K increase at 129K is responsible for a 21%
reduction in density values. With this kind of behaviour, a constant density value cannot be
set and [15] shows that even the ideal gas equation proves very unreliable in this region. To
solve this problem, a series of real gas EoS can be applied to their specific advantages and
disadvantages.

Multi-parameter EoS can produce very accurate results but are immensely consuming in
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Figure 2.4: Viscosity and thermal conductivity values for nitrogen (data from the NIST database)

terms of computational power. Such equations can be created through polynomial and ex-
ponential expansionswhere the coefficientsmultiplied by each term are specific to each fluid.
These coefficientsmust be fitted through the available experimental data for the conditions in
which the EoS is to be valid. The 32-termmodified Benedict-Webb-Rubin (MBWR) [16] EoS
achieves a relative density error smaller than 0.5% above and below the critical point. [17]
proposes a 12-term EoS with available coefficients for a series of substances, nitrogen in-
cluded, while [18, 19] provide a highly accurate 18-term EoS optimised directly for nitrogen
with a relative density error no higher than 0.042% for the test conditions used in this work,
listed in Table 4.1. Themajor drawbackwith this approach is the CPU cost and, inmost cases,
this factor alone prohibits the use of multi-parameter EoS.

An alternative is to use a multi-parameter EoS to calculate fluid properties prior to the nu-
merical simulation start and store these values in a library to be accessed during runtime,
thus completely eliminating the need for any further calculations. The initial computational
cost necessary to create this library for a wide range of temperature and pressure with suf-
ficient resolution is elevated but the profit is high since this only has to be done once. This
method is extremely captivating due to the obvious accuracy gain over simpler EoS and si-
multaneous computational cost reduction. [14] implements this type of library in his study
and ANSYS® also allows for the usage of a real-gas library [20] as discussed in section 3.4.

Both the Soave-Redlich-Kwong (SRK) EoS [21] and the Peng-Robinson (PR) EoS [22] are
widely used for their simplicity since they only employ three parameters specific to each
species, related to intermolecular forces and the finite volume of each molecule. Both of
these EoS have been used by a series of researchers in other studies, as shall be discussed
in section 2.3. Nevertheless, their accuracy and the dependent variables must be monitored
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and considered when evaluating simulation results. [23] reports a noticeable error for these
two equations in the critical region when compared to the multi-parameter Benedict-Webb-
Rubin (BWR) EoS [24]. Here, the relative density error for the SRK and PR EoS goes up to
13% and 17% respectively, at approximately 10MPa. These errors are not for nitrogen but
oxygen instead and at a very high reduced pressure so they serve only as a warning. The
influence of the different EoS in the present study cases is presented and discussed in sec-
tion 5.1.1 where the results obtained using these two cubic EoS are compared to those when
using the REPROPv9.1.

On anothermatter, we know that in a subcritical injection surface instabilities are responsible
for jet atomisation where small discrete ligaments begin to break up and droplets are ejected
from the jet core as can be seen in Figure 2.5a. In a supercritical injection, however, the
breakup mechanics are entirely different. [25] describes one of the main characteristics of
supercritical fluids as the impossibility of a two-phase flow due to the disappearance of the
surface tension at and beyond the critical point. Similar effects are reported by [11] where the
surface tension is measured for oxygen from subcritical temperatures, with higher values, up
to the critical temperature, for which it completely vanishes.

Several other authors describe this different breakup mechanism where the drops and lig-
aments are no longer detected and no distinct surface interface can be determined. [25]
notes that this disintegration mechanism more closely resembles turbulent and diffusive
mixing than the traditional jet disintegration and [14] describes a thermal-breakup mecha-
nismwhere the limit of the jet core is defined by the transition of the fluid across the pseudo-
boiling line. Figure 2.5b clearly shows how the interface dissolves between the two fluids.

The Knudsen number (Kn) describes the degree of departure from continuum and is defined
as the ratio between the mean free path, average distance travelled by a molecule between
collisions, and the characteristic length of the problem. If the Kn number is low enough,
momentum transfer and collision between molecules is predominant but, for higher values,
molecules become increasingly more independent of one another and the equations used to
define fluid dynamics become invalid. [6] makes use of this measurement to describe the in-
terface dissolution in the supercritical regime. The author studies this phenomenon for fuel
inside the combustion chamber of diesel engines and comes to the conclusion that in a super-
critical regime, the interface thickness between the two fluids greatly increases along with a
reduction in surface tension. At the interface, in subcritical conditions, the Knudsen number
(Kn) is well above 0.1 and a continuum flow cannot be considered across this interface so a
discrete two-phase method has to be implemented in numerical simulations. For a super-
critical injection, on the other hand, the increase in interface thickness lowers the Kn number
and creates an acceptable continuum flow regime. This means that the governing equations
apply across this interface thus validating the usage of a single phase flow approach.

In the end, both the thermodynamic behaviour and the breakup mechanisms have a direct
effect on the jet structure. As the liquid-like nitrogen is injected into the chamber, its tem-
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(a) p/pc = 0.91 (b) p/pc = 2.71

Figure 2.5: Liquid nitrogen injected into a heated nitrogen environment at sub- and supercritical pressures [26]

perature increases as it begins to mix with warmer gas-like nitrogen. The structure of the
flow changes and it can be divided into three characteristic regions as Figure 2.6 shows. [27]
defines the length of the potential core as the distance at which the centreline density re-
mains relatively constant and [14] compiles and compares four different equations attempt-
ing to predict this length that are either based on the ratio between the densities of the liquid
and gas-like fluids or are given a constant value for any specific test geometry. In the self-
similar region, the absolute value of flow variables can still change but their radial profiles
are no longer a function of axial direction. In between these two regions is the transition zone
where the turbulent and diffuse mixing are most relevant. As instabilities begin to appear,
dense pockets of liquid-like nitrogen are separated from the jet core causing an increase in
density fluctuations [28,29]. As a result, density sharply decreases and energy dissipation is
significative.

In experimental studies, this structure is visible through the axial and radial density distri-
butions and also through the jet spreading angle. These measurements are then used by the
numerical studies for validation of the results, discussed in sections 2.2.3 and 2.3.
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Self Similar RegionTransition RegionPotential Core

Figure 2.6: Jet mixing flow field [27]

2.2 Experimental work

After a small introduction of the behaviour of a supercritical fluid, it seems appropriate to
discuss how it can be experimentally studied and measured. For the time being, Computa-
tional Fluid Dynamics (CFD) tools need to be validated by experimental results due to the
lack of a general, efficient and accurate mathematical formulation. But experimental stud-
ies are not deprived of error and uncertainty whether from the user, the equipment or the
measuring techniques. Even more so, in the present case of supercritical fluids where the
desired test conditions are hard to maintain while measuring and visualisation techniques
become more restricted, such errors can have a strong impact on the outcome. It is there-
fore very important, when using CFD tools to study a certain phenomenon, to be familiarised
with its experimental counterpart to allow for an informed critical analysis during the vali-
dation process. The experimental studies here discussed make use of two main measuring
techniques: Shadowgraphy and Raman spectroscopy. Sections 2.2.1 and 2.2.2 are dedicated
to the discussion of each of these measurement techniques and section 2.2.3 to the relevant
experimental studies and their findings.

2.2.1 Shadowgraphy

Shadowgraphy is a powerful tool that allows to qualitatively study the dynamics of fluids
through flow visualisation. The basic structure of this setup is presented in Figure 2.7 where
the light beam is initially redirected before reaching the test facility. After it crosses the fluid,
it is once again adjusted, as shown in Figure 2.8, before arriving at a film that is sensitive to
the light intensity. As described by [30], this light intensity and the captured contrast are
dependent on the second derivate of the densitymeaning that in Figure 2.5b, even if a certain
area retains a certain shade of grey, the density can be changing. What remains constant is
its rate of change.

Unlike the technique described in the next section, this is a non-evasive method meaning
that it does not alter the composition or behaviour of the test subject. As discussed, it can
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Figure 2.7: Shadowgraph instalation [30]

Figure 2.8: Deflection of light rays on a variable second density environment [30]

be used to study the structure of the jet, but it is not suitable to quantify the density field
that is being observed. To solve this problem, shadowgraphy can be combined with Raman
spectroscopy.

2.2.2 Raman spectroscopy

When radiation impacts on a certain substance, light is scattered in different directions with
the samewavelength as the incident beam. Such elastic collisions where the energy of the im-
pacting photon remains unchanged are referred to as Rayleigh scattering. [31] discovered in
1928 that additional diffuse radiation is also present with an altered wavelength. This wave-
length shift represents the energy that is absorbed or emitted by molecules. The resulting
frequency is dependent on the molecular structure meaning that it can be used to identify
the substance in question. Additionally, the Raman signal intensity, I, is proportional to the
number density and to the scattering cross-section, amongst other parameters. [32] explains
that by considering a constant cross-section, the density values can be calculated as shown
in equation (2.1). However, the author warns that this assumption can lead to an underesti-
mation of the density values in the cases where an initial dense potential core is present.

ρ =
I

I∞
ρ∞ (2.1)

The scattered radiation is regrettably small and a strong light source is needed. While Raman
initially used sunlight as a source, present day researchers make use of monochromatic laser
beams. By lowering the wavelength, the scattered radiation is increased and better results
can be obtained, but this comes at the cost of possible photo-decomposition and spikes in
density values.
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[27, 32] mention additional challenges in high density regions that reduce the amount of
scattered radiation. This happens because of the high refraction index that redirects some
of the signal along the jet axis. As a result, the measured density in this region can be some-
what underestimated. In one of the test cases of [27], the maximum measured density is
of 400 kg/m3, but for the reported injection temperature of 126.9K, the corresponding den-
sity value is of 457.82 kg/m3, accounting for a relative density error of 12.6%. While this is
a major source of error along the potential core, it has little influence further downstream
where the density starts to decrease along with the refraction effects. When analysing the re-
sults, it is important to remember that an overestimation of the density values in the potential
core when compared to the experimental results is expected and that both should begin to
coincide in the transition region.

2.2.3 Study cases

There are a series of experimental studies on supercritical injection, but we shall focus the
discussion on those that deal only with nitrogen. In the work produced by [32] the injection
temperature varies between sub- and supercritical values but always at supercritical pres-
sures. With this, the axial distributions of density and temperature are studied and compared
for two different chamber pressure conditions. The shape of the density and temperature ra-
dial profiles are also published to analyse the transition from an initial top hat shape to a free
jet profile typical of a self-similar region. This is complemented by the Full Width Half Max-
imum (FWHM) measurements taken from the temperature and density profiles that have
not only different rates of growth but also different magnitudes.

While the aforementioned author studies both the temperature and density profiles, [33]
focuses on the latter. In his setup, Raman scattering is used to measure the structure of a
nitrogen jet at sub- and supercritical pressures. Some of the most interesting conclusions
of this work are related to the measuring techniques themselves but insight is also given in
regards to the supercritical regime. The author plots the density along the radial direction to
study the differences between the density profiles for p/pc = 0.43 and p/pc = 2.03. He then
compares these density profiles for different axial positions to identify a self-similar region
in the jets. Some emphasis is also put into studying the jet spreading angle and growth rate.
While several methods are discussed, the FWHMmeasurement of density is regarded as the
most appropriate choice when multiplied by a factor of 2 for supercritical pressures. With
thesemeasures, the author reports an increase in the jet growth ratewith increasing pressure.
Similar observations are made in [26] where there is an added interest in studying the na-
ture of the jet. By analysing the disintegration process and themixing layer both qualitatively
(through Shadowgraphy) and quantitatively (through Raman spectroscopy), similarities ap-
pear between supercritical and variable density incompressible gaseous jets, justifying the
need for the Favre averaging method.

In the experimental setup of [34], pressures are kept at supercritical values and the influ-
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ence of the injection temperature and velocity is studied. Raman spectroscopy is once again
applied to measure the density values that are then plotted along the axial and radial direc-
tions, in addition to velocity and temperature profiles. With this, the author is capable of
analysing the structure of the jet and the influence of each parameter and concludes that the
temperature has a stronger influence than the pressure and velocity in the flow field. The
author mentions the absence of a potential core in some test cases when compared to the nu-
merical results and justifies this with the quality of the Raman images and a possible heating
mechanism inside the injector. Nevertheless, potential core lengths are compared to two dif-
ferent relations, one of which provided in [33]. The spreading angle calculated through the
2×FHWM is compared to the spreading angle calculated through the shadowgraph images
and numerical results, showing discrepancies for some cases. The work produced by [34]
is later followed by [27,35] where additional experimental data are published and analysed,
and correlations are offered for the potential core length and for the jet spreading angle.

Finally, both [26,34] discuss the effects of buoyancy and arrive at the conclusion that in the
region of 0 < x/d < 30, these effects can be neglected in favour of the inertial forces.

2.3 Numerical work

The three studies [27,34,35] performed at the DLR provide valuable and extensive informa-
tion regarding not only the experimental process and data but also the numerical counter-
part. Additionally, they are used to validate a considerable amount of numerical studies. To
have as much data for comparison as possible, we have chosen to replicate these test con-
ditions. Yet, some numerical studies have recurred to other test conditions and while this
excludes their results from direct comparison with ours, it still allows for a qualitative anal-
ysis since the phenomenon remains largely similar.

When looking at the numerical studies in these conditions, we see a clear preference for cubic
EoS. [15, 28, 29, 36–43] have selected some form of the PR EoS to define the evolution of
density in the critical region. [28,29,40–43] added a correction to the PREoS to considerably
reduce the error in the critical region while [15, 39, 44, 45] have used the SRK EoS. For his
numerical calculations, [35] reports the use of the MBWRmodel and two authors, [14,46],
have gone further by using a real gas library. Transport properties have also been defined in
a more accurate manner, with the trend being the definitions provided by [47].

The modelling of turbulence is still one of the most important topics of discussion. With
the advent of CFD, the available range of fidelity has increased in regards to new turbulence
models, LES and Direct Numerical Simulation (DNS). Recently, [28,29] performed a three-
dimensional DNS for conditions similar to those of case 3 but with a lower Reynolds (Re)
number to allow for a coarser mesh. Except for the shorter potential core caused by the
lower Re number, results for the axial density decay are in excellent agreement with the ex-
perimental measurements, which is to be expected from DNS. But this method is, for now,
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very restrictive and the interest has been mainly in LES. The results from [36,37] are indeed
quite accurate for case 3 but, for some reason, the density values are largely underestimated
for case 4 where an unrealistic potential core is also observed.

The cooperative work from [41–43] between two universities compares results from a pres-
sure and a density based solver. Both of which show results that agree with each other but
that do not agree with the ones from [36]. In this case, the density values in the transition
region are slightly over estimated for case 3 and, while they do agree fairly well with the ex-
perimental data for case 4, there is once again an unrealistic potential core. Similar results
are obtained by [40] for both case 3 and 4. Another LES simulation by [48] can provide ac-
ceptable results for case 3, depending on the chosen parameters, but here the density values
for case 4 are under estimated in the transition region with yet another unrealistic poten-
tial core. The results based on some variation of the PR EoS from the previously described
simulations are displayed in Figure 2.9 for a clear overview of how they differ so strongly
from one another. We present them in a non-dimensional form through ρ+, defined in equa-
tion (2.2), where ρ0 is the injection density and ρ∞ is the farfield density. Both the injection
and farfield density values are obtained from the NIST database [49] for the respective pres-
sure and temperature values. Still in this figure, x/d is the axial coordinate normalised by
the injector diameter. It is clear that all results show different behaviours in case 4, but have
a common potential core that does not agree with the experimental data.

ρ+ =
ρ− ρ∞
ρ0 − ρ∞

(2.2)

To assess the need for such costly methods, [15] compares results obtained from LES simu-
lations with those from four different k− ε based turbulence models, including [50,51]. The
author concludes that, with the correct variation, the results closely match those from the
LES simulations. He also notes the influence of different EoS leaving the question if the re-
sults discussed so far differ mainly due to the LES parameters or due to the thermodynamic
modelling.

Ultimately, [27, 39, 52] study this phenomenon solely through turbulence modelling. The
three have implemented a k−ε basedmodel and there is a fairly good agreement with exper-
imental data for both case 3 and 4, except for the potential core predicted in case 4. In [39]
the axial density decay does not seem to match for case 4, but it is worth noting that the di-
mensional data, reconstructed from the normalised density values, does not match that of
other authors indicating an error in the reconstruction process. This observation seems to
be supported by the comparison made in [44].

By looking at the studies already discussed, it is clear that the trend is either LES or a k − ε

based model. To the knowledge of the author, only two works have expanded their study in
this field. Coupled with a pre-calculated real gas library, [14] uses the Spalart-Almaras [53]
model and [46] studies how different turbulence models behave under supercritical condi-
tions. The results show that there are indeed differences between each one, but the general
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Figure 2.9: Comparison of LES simulations [27,36,42,48]

trend reasonably follows the experimental data.

Despite the stark interest in LES over the past years, results vary by a largemargin and are, at
best, comparable to those obtained through simpler formulations. Figure 2.10 gives a clear
andundoubtedly strong impression that there is no direct correlation between the complexity
of a turbulence model and the quality of the results.
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Figure 2.10: Comparison between k − εmodel and LES [27,42]

2.4 Summary

So far, we have had the chance to introduce the supercritical regime along with its influence
on the physical properties of nitrogen. By crossing the pseudo-boiling line, the specific heat
capacity momentarily increases to a maximum and the density values change dramatically
alongwith themolecular viscosity and thermal conductivity. Severalmethods can be adopted
to accurately predict the values of these properties in this region, each with their specific ad-
vantages and complexity. Additionally, the disappearance of surface tension in the super-
critical regime leads to an altered jet structure that more closely resembles the injection of
a gaseous turbulent jet into a gaseous environment. This structure has been studied both
experimentally and numerically. While in experimental cases it is important to be familiar
with the process and to be aware of measurement error sources, in numerical studies it is in-
teresting to compare the outcome of different turbulence prediction methods. The research
available thus far is mainly concentrated on LES or k− ε turbulence models and comparison
studies on this subject are scarce. Having reached this far, we can now introduce a mathe-
matical model appropriate to the test conditions.
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Chapter 3

Mathematical Model

This chapter is sectioned into different fields. One must start with the concept of a conserva-
tion law and the equations that define the transport of a set of conserved quantities. After-
wards, approximations to specific terms in these equations have to be made to simplify their
resolution. Turbulence modelling is one of the major aspects in this field but there are other
factors to be considered such as themodelling of thermodynamic properties. Themathemat-
ical model is implemented through the software ANSYS® FLUENT®, and while most of the
desired settings are readily available, some have to be applied through User Defined Func-
tions (UDFs). Also important is to remember that some turbulence models here introduced
are not directly taken from the original source but instead adjusted by ANSYS®, making the
solver manual, [20], the recommended source of information.

3.1 General form of a conservation law

The concept of conservation law is here introduced and applied to mass, momentum and
energy per unit volume. If we consider the surface S delimiting the volume Θ, the variation
in time of the scalar ϕ inside that same volume is

∂

∂t

∫
Θ
ϕdΘ (3.1)

and the flux is a vectorial quantity normal to S defined by the rate at which ϕ crosses this
surface so that

−
∮
S
FidSi (3.2)

A flux can be divided into two categories. An advective flux is characterised by the passive
transport of ϕ by the bulk of the fluid. A diffusive flux, on the other hand, is proportional
to the concentration of ϕ across the domain, i.e., the higher the gradient of ϕ the higher its
diffusive flux. The advective flux is defined as

FAi = ϕui (3.3)

and the diffusive flux as

FDi = −Γ
∂ϕ

∂x
(3.4)

where Γ is the diffusivity coefficient.
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With the temporal variation and the flux contributions defined, twomore terms can be added
to the conservation equation of ϕ to account for surface and volume sources:∫

Θ
QVidΘ+

∮
S
QSidSi (3.5)

The terms from equations (3.1) (3.2) and (3.5) represent all the possible contributions to the
evolution of a conserved quantity. By summing them up and applying the Gauss theorem,
the integral form of the conservation equation is obtained in equation (3.6).∫

Θ

∂ϕ

∂t
dΘ+

∫
Θ

∂Fi

∂xi
dΘ =

∫
Θ
QVidΘ+

∫
Θ

∂QSi

∂xi
dΘ (3.6)

Additionally, in can be expressed as∫
Θ

[
∂ϕ

∂t
+

∂

∂xi
(Fi −QSi)

]
dΘ =

∫
Θ
QVidΘ (3.7)

In equation (3.7), the flux is joined with the surface source term since they tend to have a
similar behaviour. The term (Fi −QSi) can therefore be considered as an effective flux.

3.1.1 Mass conservation equation

For the conservation of mass, ϕ is replaced by ρ. Mass can neither be created nor destroyed
and as a result, there is no diffusive term in equation (3.8), only an advective one. In the
absence of external mass sources, the mass conservation equation, also known as continuity
equation, is in its integral form: ∫

Θ

[
∂ρ

∂t
+

∂

∂xi
(ρui)

]
dΘ = 0 (3.8)

3.1.2 Momentum conservation equation

Momentum is a vectorial quantitymeaning that its transport is defined by asmany equations
as the number of dimensions that are assumed. For this case, ϕj = ρuj and the momentum
advective flux is thus defined as

FAi = ρujui (3.9)

Again, we assume the inexistence of diffusion of momentum, as we did for the continuity
equation, eliminating the diffusive flux term.

External volume forces are introduced through the volume source term as ρfi. Also, inside
the control volume Θ, the internal forces cancel each other but this does not happen on the
surface S for which there is no counter action. This results in the surface source term

QSi = σij (3.10)
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where the internal stress tensor σij is defined by its anisotropic and isotropic components:

σij = tij − pδij (3.11)

In equation (3.11), the viscous shear stress is defined by the tensor tij . In equation (3.12) it is
defined as function of both the molecular viscosity, µ, and of the second viscosity, replaced
by −2/3µ, leading to

tij = 2µ

(
sij −

1

3

∂uk
∂xk

δij

)
(3.12)

where sij is the strain-rate tensor

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.13)

Applying the previous terms to the structure from equation (3.6), leads to the momentum or
Navier-Stokes equations in their integral form:∫

Θ

[
∂

∂t
(ρui) +

∂

∂xj
(ρujui)

]
dΘ =

∫
Θ

[
− ∂p

∂xi
+
∂tij
∂xj

+ ρfi

]
dΘ (3.14)

3.1.3 Energy conservation equation

The total energy of a fluid can be expressed as the sum of its internal energy, e, and its kinetic
energy per unit mass:

E = e+
uiui
2

(3.15)

If one considers the conserved quantity ϕ = ρE, then the advective flux is

FAi = ρEui (3.16)

and the diffusive flux is, through Fourier’s law of heat conduction,

FDi =
∂qi
∂xi

= −κ ∂T
∂xi

(3.17)

where T is the absolute temperature and κ is the thermal conductivity defined by

κ = ρcpα (3.18)

In equation (3.18), α is the thermal diffusivity that can be used to understand the physical
meaning of the Prandtl (Pr) number:

Pr = µcp
κ

=
ν

α
(3.19)
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Here, ν is the kinematic viscosity and the Pr number can be interpreted as the ratio between
momentum and thermal diffusion.

Finally, the distinction has to be made between volume and surface sources. The volume
sources represent the sumof thework done by fi and any heat sources other than conduction,
qH . Hence, volume sources can be defined as

QVi = ρuifi + qH (3.20)

and the surface sources as

QSi = uiσij = uitij − uipδij (3.21)

With this, the energy conservation equation can be written in its integral form as∫
Θ

[
∂

∂t
(ρE) +

∂

∂xj
(ρEuj)

]
dΘ =

∫
Θ

[
− ∂qj
∂xj

+
∂

∂xj
(uitij)−

∂

∂xj
(uip)+

+ρuifi + qH

]
dΘ

(3.22)

or, by removing volume sources,∫
Θ

[
∂

∂t
(ρE) +

∂

∂xj
(ρHuj)

]
dΘ =

∫
Θ

[
− ∂qj
∂xj

+
∂

∂xj
(uitij)

]
dΘ (3.23)

For the future, it is be helpful to keep in mind that the total enthalpy is defined by

H = e+
p

ρ
+
uiui
2

= h+
uiui
2

= E +
p

ρ
(3.24)

3.2 Approximations

The conservation equations derived in sections 3.1.1, 3.1.2 and 3.1.3 cannot be directly dis-
cretised and a statistical approach must be implemented. Turbulence consists of random
fluctuations of the various flow properties and in 1895 Osborne Reynolds proposed the sep-
aration of such quantities into a mean and a fluctuating part. According to this method,
a time average is applied to the governing equations. However, the new fluctuating terms
introduce a closure problem where the number of unknowns is higher than the number of
transport equations. Turbulence modelling deals with this closure problem by introducing
new transport equations to reproduce the behaviour of the fluctuating terms.

The Reynolds averaged equations are introduced for a short explanation of the concept af-
ter which the Favre averaged equations, adequate for variable density flows, are presented.
Finally, the relevant turbulence modelling variants can be introduced.
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3.2.1 Reynolds averaging

The backbone of the Reynolds averaging approach is the splitting a quantity into a mean and
a fluctuating component

ϕi = ϕi + ϕ′i (3.25)

where

ϕi = lim
t→∞

1

∆t

∫ t+∆t

t
ϕidt (3.26)

(3.27)

meaning that

ϕ′i = lim
t→∞

1

∆t

∫ t+∆t

t
(ϕi − ϕi)dt = 0 (3.28)

Additionally

∂ϕi
∂xj

= lim
t→∞

1

∆t

∫ t+∆t

t

∂ϕi
∂xj

dt = ∂

∂xj

[
lim
t→∞

1

∆t

∫ t+∆t

t
ϕidt

]
=
∂ϕi
∂xj

(3.29)

With equation (3.28) and equation (3.29) we can write

∂ϕi
∂xj

=
∂ϕi
∂xj

(3.30)

Finally, themean of the product between a fluctuation and amean value is zero which greatly
simplifies the average of a product:

ϕiϕj = (ϕi + ϕ′i)(ϕj + ϕ′j) = ϕiϕj + ϕ′iϕ
′
j (3.31)

3.2.2 Favre averaging

In order to simulate a variable density incompressible flow, the Favre averaging approach
is used instead to include the effect of density variations. If one were to apply ρ = ρ + ρ′

to the Reynolds averaged equations, the final formulation would be far too complex and the
difficulty of establishing closure approximates would considerably increase.

The Favre averagingmethod eliminates this obstacle by introducing the density-weighted ϕ̃i:

ϕi = ϕ̃i + ϕ′′i (3.32)

where, in parallel to equation (3.27),

ϕ̃i =
1

ρ
lim
t→∞

1

∆t

∫ t+∆t

t
(ρϕi)dt (3.33)
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or

ϕ̃i =
ρϕi
ρ

(3.34)

This offers a much more compact notation than that of the Reynolds averaging since ρϕi can
be written as in equation (3.35) instead of the Reynolds average variation in equation (3.36).
While the differencemay not seem enormous here, it has amuchmore noticeable effect when
applied to the governing equations, [55].

ρϕi = ρϕ̃i + ρϕ′′i = ρϕ̃i

ρϕ′′i = 0
(3.35)

ρϕi = ρϕi + ρ′ϕ′i (3.36)

And, similarly to equation (3.31), the present approach gives

ϕiϕj = (ϕ̃i + ϕ′′i )(ϕ̃j + ϕ′′j ) = ϕ̃iϕ̃j + ϕ′′i ϕ
′′
j (3.37)

The concept is then applied to equations (3.8), (3.14) and (3.23) leading to∫
Θ

[
∂ρ

∂t
+

∂

∂xi
(ρũi)

]
dΘ = 0 (3.38)

∫
Θ

[
∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj)

]
dΘ =

∫
Θ

[
− ∂p

∂xi
+

∂

∂xj

(
t̃ij + τij

)
+ ρfi

]
dΘ (3.39)

∫
Θ

[
∂

∂t
(ρẼ) +

∂

∂xj
(ρũjH̃)

]
dΘ =

∫
Θ

[
∂

∂xj

[
− qj − qtj + ũi

(
t̃ij + τij

)
+ tjiu′′i−

−1
2ρu

′′
i u

′′
i u

′′
j

]]
dΘ

(3.40)

In equation (3.39) the instant pressure, p, is replaced by the average pressure, p, and the
viscous stress tensor from equation (3.12) is averaged to

t̃ij = 2µ

(
S̃ij −

1

3
S̃kkδij

)
(3.41)

where the mean strain-rate tensor S̃ij is

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(3.42)

The second last term in equation (3.39) is referred to as the Reynolds stress tensor and holds
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correlations originated from the averaging process:

τij = −ρu′′i u′′j (3.43)

Additional terms also appear in equation (3.40) such as Ẽ, H̃ and the turbulent heat flux, qtj ,
defined by

Ẽ = ẽ+
1

2
ũiũi + k, H̃ = h̃+

1

2
ũiũi + k (3.44)

qtj = ρu′′jh
′′ (3.45)

with k as the turbulent kinetic energy per unit mass:

ρk =
1

2
ρu′′i u

′′
i (3.46)

The double and triple correlations from equations (3.39) and (3.40) are also a product of
the averaging process which is too extensive to describe here. The Reynolds stress tensor
alone introduces three additional independent variables to the previous four equation sys-
tem meaning that the system is not yet closed. This emphasises the closure problem men-
tioned earlier. A transport equation for τij can be provided but the number of unknowns only
increases and the system remains open. Nevertheless this is the essence of second-order tur-
bulence models and it is discussed in section 3.3.7. For now, an approximation for τij is
needed.

3.2.3 Closure approximations

The terms τij , qj , qtj , tjiu′′i from equations (3.39) and (3.40) still need to be defined. The
Boussinesq approximation can be used to define the Reynolds stress tensor and is on the ba-
sis of turbulence modelling. This approximation relates τij with the viscous stress tensor by
introducing the concept of eddy or turbulent viscosity, µt. It is based on an analogy between
the influence of themolecular viscosity on themolecular transport ofmomentum (at amicro-
scopic scale) and the influence of a turbulent viscosity on the transfer of momentum caused
by turbulent fluctuations (at a macroscopic scale). As a result, equation (3.41) becomes

τij ≈ 2µt

(
S̃ij −

1

3
S̃kkδij

)
− 2

3
ρkδij (3.47)

and is referred to as the Boussinesq approximation. While the terms for i ̸= j are in fact
modelled through µt, the trace of τij is still exactly defined through the specific turbulent
kinetic energy from equation (3.46) like

τii = −ρu′′i u′′i = −2ρk (3.48)

With this relation, turbulence models can focus on calculating µt and k.
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The laminar and turbulent heat transport terms, qj and qtj , are defined according to Fourier’s
law from equation (3.17) so that

qj = −cpµPr
∂T̃

∂xj
= − µ

Pr
∂h̃

∂xj
, qtj = −cpµtPrt

∂T̃

∂xj
= − µt

Prt
∂h̃

∂xj
(3.49)

Prt represents the turbulent Pr number, i.e., Prt = νt/αt, where νt is the turbulent kinematic
viscosity and αt is the turbulent thermal diffusivity.

Finally, the molecular diffusion and the turbulent transport, tjiu′′i − ρ1
2u

′′
i u

′′
i u

′′
j , are coupled

together and modelled as shown in equation (3.50). Henceforth, σϕ represents the Prt for
any variable ϕ.

tjiu′′i −
1
2ρu

′′
i u

′′
i u

′′
j =

(
µ+

µt
σk

)
∂k

∂xj
(3.50)

The approximations described above are then introduced in equation (3.40), leading to∫
Θ

[
∂

∂t
(ρẼ) +

∂

∂xj
(ρũjH̃)

]
dΘ =

∫
Θ

[
∂

∂xj

[(
µ

Pr +
µt
Prt

)
∂h̃

∂xj
+

(
µ+

µt
σk

)
∂k

∂xj
+

+ũi

(
t̃ij + τij

)]]
dΘ

(3.51)

At this point, the system of governing equations is still open at µt, k and Prt. Material prop-
erties must also be defined.

3.3 Turbulence modelling

Asmentioned earlier, τij can be directly solved. But for now, the focus is on using the Boussi-
nesq approximation andmodelling the turbulent viscosity. Turbulencemodels approach this
in differentways but generally using the sameproperties such as the turbulent kinetic energy,
the turbulent dissipation rate, ε, and the specific dissipation rate, ω. Each of these variables
needs a transport equation and in turbulence terminology, an n-equationmodel refers to the
n additional equations besides the ones expressing the conservation ofmass, momentumand
energy, needed to close the system.

The mixing length hypothesis proposed by L. Prandtl provides an expression to define the
turbulent viscosity based on the assumption that the x-momentum of a fluid remains con-
stant for a length of lmix in the y direction. lmix is the mixing length that is characteristic
of each flow geometry along with a characteristic velocity, that must be defined in advance.
Ergo, zero equation models where the length and velocity scales are not defined through
properties such as k, ε or ω, are not independent of the case of study.

One and two equation models overcome this obstacle by introducing transport equations for
history dependent variables that can represent a velocity and a length scale. Specifically,
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the two equation models studied in this work define the velocity scale through the turbulent
kinetic energy to incorporate non-local and flow history effects in the turbulent viscosity.
Its transport equation comes from the transport equation of the trace of the Reynolds stress
tensor, shown in equation (3.48), leading to

∂

∂t
(ρk) +

∂

∂xj
(ρũjk) = τij

∂ũi
∂xj

− tji
∂u′′i
∂xj

+
∂

∂xj

[
tjiu′′i −

1
2ρu

′′
i u

′′
i u

′′
j − p′u′′j

]
−

−u′′i
∂p

∂xi
+ p′

∂u′′i
∂xi

(3.52)

with the averaged dissipation rate defined by

ρε = tji
∂u′′i
∂xj

(3.53)

The molecular diffusion and the turbulent transport are once again simplified through the
approximation from equation (3.50) while p′u′′j and p′(∂u′′i /∂xi) are disregarded due to the
lack of knowledge on its behaviour and the believe that it has a minor effect in the flow. The
pressure work term u′′i (∂p/∂xi) is also left out. As a result, equation (3.52) becomes

∂

∂t
(ρk) +

∂

∂xj
(ρũjk) = τij

∂ũi
∂xj

− ρε+
∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
(3.54)

3.3.1 Spalart-Allmaras

Unlike other turbulence models, the one equation Spalart-Allmaras model [20, 53] directly
derives a transport equation for the turbulent viscosity. In this case, the turbulent kinetic
energy present in equation (3.47) is disregarded when calculating τij:

τij ≈ 2µt

(
S̃ij −

1

3
S̃kkδij

)
(3.55)

The turbulent viscosity is given by

µt = ρν̃fv1 (3.56)

where ν̃ is the modified turbulent viscosity and the viscous damping function, fv1, is given
by

fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
(3.57)

where cv1 is a constant of the model. The transport equation for ν̃ includes a production, a
destruction and a diffusion term:

∂

∂t
(ρν̃) +

∂

∂xj
(ρũj ν̃) = P −D +

1

σν̃

[
∂

∂xj

(
(µ+ ρν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(3.58)
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The production of turbulent viscosity, P , is given by

P = cb1ρŜν̃ (3.59)

with

Ŝ = Ω̃ +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
(3.60)

Here, cb1 and κ are constants, d is the distance to the wall and Ω̃ is the mean magnitude of
vorticity defined in equation (3.61) where Ω̃ij is the mean vorticity.

Ω̃ =

√
2Ω̃ijΩ̃ij , Ω̃ij =

1

2

(
∂ũi
∂xj

− ∂ũj
∂xi

)
(3.61)

The destruction termD is defined as

D = cw1ρfw

(
ν̃

d

)2

(3.62)

where

fw = g

[
1 + c6w3

g6 + c6w3

]1/6
, g = r + cw2(r

6 − r), r =
ν̃

Ŝκ2d2
(3.63)

cw1 =
cb1
κ2

+
1 + cb2
σν̃

(3.64)

The constant cw1 is here introduced as function of cb1 and cb2 to balance the production,
destruction and diffusion of ν̃ and the constants cw2 and cw3 are model specific, listed in
Table 3.1 along with the additional constants. This model includes additional terms related

Table 3.1: Spalart-Allmaras model constants [20]

Constant Value

σν̃ 2/3
κ 0.4187
cb1 0.1355
cb2 0.622
cw2 0.3
cw3 2
cv1 7.1

to the transition from laminar to turbulent flow. But since the case of study is fully turbulent,
such terms can be neglected and are not mentioned here. The following turbulence models
are presented in the same manner where only the used terms are presented and discussed.

Ultimately, the three independent unknowns present in the Reynolds tensor have here been
replaced by one unknown, µt, and equation (3.58). Hence, the system is closed.
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3.3.2 Standard k − ε

If k is used to define a velocity scale, a formulation is still needed for the length scale, other-
wise user input is still required and the system is not closed:

µt = ρk1/2l (3.65)

To define the turbulent length scale l, an additional transport equation for the turbulent dis-
sipation rate is introduced, leading to

µt ∼ ρk2/ε, l ∼ k3/2/ε (3.66)

A definition for k is already available in equation (3.54) and onemore needs to be formulated
for ε. Deriving an exact equation for the turbulent dissipation rate producesmore correlation
terms than it does for the transport equation of k as [57] demonstrates. As an alternative, it
is defined in analogy with equation (3.54), i.e., the dissipation rate equation has generation
and destruction terms that are assumed to be proportional to the production and dissipation
of k. Still, this approximation represents one of the main weaknesses of ε based models.

As a result, the standard k − εmodel [20,51] can be written as:

∂

∂t
(ρk) +

∂

∂xi
(ρũik) = τij

∂ũj
∂xi

− ρε+
∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
(3.67)

∂

∂t
(ρε) +

∂

∂xi
(ρũiε) = Cε1

ε

k
τij
∂ũj
∂xi

− Cε2ρ
ε2

k
+

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
(3.68)

The turbulent viscosity is defined by

µt = Cµ
ρk2

ε
, l = Cµk

3/2/ε (3.69)

where Cµ is a model constant. The remaining constants of the model are listed in Table 3.2.

Table 3.2: Standard k − εmodel constants [20]

Constant Value

Cε1 1.44
Cε2 1.92
Cµ 0.09
σk 1.0
σε 1.3

Themodel was developed under the assumption that the effects of viscosity on the turbulence
structure are negligible which means that it is only valid for fully turbulent flows.

Besides the current version, two additional ε based models are introduced over the next sec-
tions.
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3.3.3 RNG k − ε

[20, 58] implemented renormalisation group (RNG) methods to account for the different
scales of motion and for a more accurate representation of the Prt number used both in the
turbulent properties and in the energy equation. This modified version of the k− εmodel no
longer restricts the Reynolds number and is therefore more accurate and reliable for a wider
range of flows than the standard model.

In the RNG k− εmodel, equation (3.69) remains unchanged but the transport equations are
slightly altered:

∂

∂t
(ρk) +

∂

∂xi
(ρũik) = τij

∂ũj
∂xi

− ρε+
∂

∂xj

[(
ψkµeff

) ∂k
∂xj

]
(3.70)

∂

∂t
(ρε) +

∂

∂xi
(ρũiε) = Cε1

ε

k
τij
∂ũj
∂xi

− C̃ε2ρ
ε2

k
+

∂

∂xj

[(
ψεµeff

) ∂ε
∂xj

]
(3.71)

Here, Cε2 is no longer a constant but instead defined by

C̃ε2 = Cε2 +
Cµλ

3(1− λ/λo)

1 + βλ3
, λ ≡ k

ε
S̃, S̃ =

√
2S̃ijS̃ij (3.72)

where S̃ is the magnitude of the mean strain-rate tensor. For moderately or weakly strained
flows, the RNG model produces comparable results to the standard model. However, in re-
gions of large strain, λ > λ0, there is a negative contribution and the value of C̃ε2 decreases.
As a result, the overall value of ε increases, reducing k and the turbulent viscosity.

The inverse effective Pr numbers ψk and ψε are defined according to the RNG theory [20]:∣∣∣∣ ψ − 1.3929

ψ0 − 1.3929

∣∣∣∣0.6321∣∣∣∣ ψ − 2.3929

ψ0 − 2.3929

∣∣∣∣0.3679 = µ

µeff
(3.73)

where µeff = µ+ µt and ψ0 = 1.0. As the Re number increases, ψk and ψε will tend to 1.393.
The constants employed in this model are listed in Table 3.3.

Table 3.3: RNG k − εmodel constants [20]

Constant Value

Cε1 1.42
Cε2 1.68
Cµ 0.0845
β 0.012
λ0 4.38

3.3.4 Realisable k − ε

A common issue with the previous k−εmodels is that they do not always fulfil the constraint
of positivity of the normal Reynolds stress terms. Let us once again consider equation (3.47)
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to define the normal Reynolds stresses:

u′′2i = −2νt

(
S̃ii −

1

3
S̃kk

)
+

2

3
k (3.74)

If equation (3.69) is now used to replace νt, it is visible that u′′2i , which must be positive,
becomes negative when the strain is large enough to satisfy

k

ε

(
S̃ii − S̃kk

)
>

1

3Cµ
≈ 3.7 (3.75)

for the standard k − ε, as an example.

The realisable k− εmodel [20,57] overcomes this problem by formulating a flow dependent
Cµ and by applying a new definition for ε obtained from the exact equation for the transport
of the mean square vorticity fluctuation ω′

iω
′
i. For high Reynolds numbers the assumption

ε = νω′
iω

′
i is valid, as shown by [57], and can be used to derive a dissipation rate transport

equation leading to

∂

∂t
(ρk) +

∂

∂xj
(ρũjk) = τij

∂ũi
∂xj

− ρε+
∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
(3.76)

∂

∂t
(ρε) +

∂

∂xj
(ρũjε) = C1ρSε− C2

ρε2

k +
√
νε

+

[(
µ+

µt
σε

)
∂ε

∂xj

]
(3.77)

In contrast with the previous versions, the production of ε is no longer based on the produc-
tion of k. Equation (3.69) is once again used to define µt in which

Cµ =
1

A0 +AsU∗k/ε
(3.78)

A0 is listed in Table 3.4 along with the remaining constants whileAs, U∗ and C1 are given by

U∗ =

√
S̃ijS̃ij + Ω̃ijΩ̃ij (3.79)

As =
√
6 cos ξ (3.80)

ξ =
1

3
arccos(

√
6χ), χ =

S̃ijS̃jkS̃ki

Ŝ3
, Ŝ =

√
S̃ijS̃ij (3.81)

C1 = max

[
0.43,

η

5 + η

]
, η =

S̃k

ε
(3.82)
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Table 3.4: Realisable k − εmodel constants [20]

Constant Value

σk 1
σε 1.2
C2 1.9
A0 4.04

3.3.5 Standard k − ω

In the k − ω model, the length scale is the specific dissipation rate, ω, such that

µt ∼ ρk/ω, l ∼ k1/2/ω, ε ∼ kω (3.83)

The presented version of the k−ωmodel from [20] is an improvement over the original 1998
version proposed by Wilcox [59]. A more recent version of the model is already available
in [56] to deal with the ill behaviour of the ω in free stream regions by means of a cross-
diffusion term. However, the used modified version claims to achieve a similar goal.

The turbulent dissipation rate is replaced by the dissipation per unit time or specific dissi-
pation rate defined as ω = ε/k. The transport equations for the turbulent variables in this
model are written as

∂

∂t
(ρk) +

∂

∂xj
(ρũjk) = τij

∂ũi
∂xj

− ρβ∗fβ∗kω +
∂

∂xj

[(
µ+ σk

ρk

ω

)
∂k

∂xj

]
(3.84)

∂

∂t
(ρω) +

∂

∂xj
(ρũjω) =

ω

k
τij
∂ũi
∂xj

− ρβfβω
2 +

∂

∂xj

[(
µ+ σω

ρk

ω

)
∂ω

∂xj

]
(3.85)

In equation (3.84), β∗ and σk are constant and unlike in the 2006 Wilcox version where
the cross diffusion term (∂k/∂xj)(∂ω/∂xj) appears in the transport equation of ω, it is here
introduced in the dissipation of the turbulent kinetic energy through fβ∗:

fβ∗ =

1 , χk ≤ 0
1+680χ2

k

1+400χ2
k

, χk > 0
, χk =

1

ω3

∂k

∂xj

∂ω

∂xj
(3.86)

Equation (3.85) contains an additional element fβ that is defined in equation (3.87) and the
new model constants are available in Table 3.5.

fβ =
1 + 70χω

1 + 80χω
, χω =

∣∣∣∣ Ω̃ijΩ̃jkS̃ki
(β∗ω)3

∣∣∣∣ (3.87)

Additional terms related to low Reynolds numbers corrections and compressible effects are
available for this model but are neglected for the current study. Also, and much like in the
realisable k − εmodel, an attempt is made to reducing the round-jet anomaly by sensitising
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Table 3.5: Standard k − ω model constants [20]

Constant Value

σk 2.0
σω 2.0
β∗ 0.09
β 0.072

the dissipation of ω to the mean deformation of the flow through fβ and χω. The predictions
for k and ω outside of the shear layer remain on the biggest setbacks of this model, despite
the introduction of a cross diffusion term.

3.3.6 SST k − ω

After the proposal of the Wilcox k − ω model, [60] developed the shear-stress transport
(SST) k − ω model to retain the robust and accurate formulation of the Wilcox model inside
the shear layer while taking advantage of the freestream qualities of the k − ε model in the
farfield. To achieve this, the transport equation for ε is converted into a similar formulation
as that of ω, both are multiplied by a blending function and finally added together. This
blending function, F1, is designed to be one in the viscous sublayer of the boundary layer
and tend to zero in the log-law region (y+ > 70), thus switching from the k − ω to the k − ε

based coefficients in the proper moment. With this, the transport equations are written as

∂

∂t
(ρk) +

∂

∂xj
(ρũjk) = τij

∂ũi
∂xj

− β∗ρkω +
∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(3.88)

∂

∂t
(ρω) +

∂

∂xj
(ρũjω) =

γ

νt
τij
∂ũi
∂xj

− βρω2 +

[
(µ+ σωµt)

∂ω

∂xj

]
+

+(1− F1)2ρ
1

ωσω2

∂k

∂xj

∂ω

∂xj

(3.89)

The constants σk, σω, γ and β, represented by ϕ, are affected by the blending function F1 and
ruled by

ϕ = F1ϕ1 + (1− F1)ϕ2 (3.90)

where ϕ1 and ϕ2 represent the analogous k−ω and k− ε constants, respectively. These con-
stants, with the corresponding subscripts, are listen in Table 3.6. Additionally, γ is defined
by

γ1 = β1/β
∗ − κ2/σω1

√
β∗, γ2 = β2/β

∗ − κ2/σω2
√
β∗ (3.91)

and the blending function is defined by

F1 = tanh(arg41), arg1 = min

[
max

( √
k

0.09ωd
,
500ν

d2ω

)
,

4ρk

σω2CD
+
ω d2

]
(3.92)
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where d is the distance to the closest surface and CD+
ω is the positive part of the cross-

diffusion term:

CD+
ω = max

(
2ρ

1

ωσω2

∂k

∂xj

∂ω

∂xj
, 10−10

)
(3.93)

The final alteration is in the turbulent viscosity formulation that becomes

µt =
ρk

ω

1

max[1, (S̃F2)/(a1ω)]
(3.94)

F2 = tanh(arg22), arg2 = max

(
2

√
k

0.09ωd
,
500µ

d2ωρ

)
(3.95)

Contrary to what the previous models do, this provides two different definitions for µt in an
attempt to better approximate the Reynolds stresses through a blending function, F2, that
is equal to zero in free shear layers and one in boundary layers. In the latter region, τ is
assumed to be proportional to k:

τ = ρa1k (3.96)

Combining this with the definition of τ taken from the Boussinesq approximation, in equa-
tion (3.97), equation (3.94) is obtained.

τ≈µtS̃ (3.97)

By guaranteeing that the condition from (3.96) is satisfied inside the boundary layer, this
model aims to achieve better results in near wall regions. However, when in free shear re-
gions, there is actually no improvement since the definition of µt returns to ρk/ω.

Table 3.6: SST k − ω model constants [20]

Constant Value

σk1 1.176
σk2 1.0
σω1 2.0
σω2 1.168
β1 0.075
β2 0.0828
β∗ 0.09
κ 0.4187
a1 0.31

3.3.7 Reynolds Stress-BSL

Second-order turbulencemodels abandon theBoussinesq approximation in favour of a trans-
port equation for τij that is coupled with an equation for either ε or ω. Since the latter is still
a modelled equation, it is one of the largest sources for loss of accuracy in this model. The
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other point of concern are the assumptionsmade to close the τij transport equation. Deriving
the equation for the Reynolds stresses yields

∂τij
∂t

+
∂

∂xk
(ũkτij) = −τik

∂ũj
∂xk

− τjk
∂ũi
∂xk

− ρεij + ρΠij+

+
∂

∂xk

[
µ
∂u′′i u

′′
j

∂xk
− ρCijk

] (3.98)

where the pressure strain, the dissipation and the turbulent diffusion are defined in equa-
tions (3.101), (3.99) and (3.100) respectively, and need to be approximated.

ρεij = tkj
∂u′′i
∂xk

+ tki
∂u′′j
∂xk

(3.99)

ρCijk = ρu′′i u
′′
ju

′′
k + p′u′′i δjk + p′u′′j δik (3.100)

ρΠij = p′
(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
(3.101)

According to [20], εij is approximated by

εij =
2

3
β∗kωδij (3.102)

Unlike in expression (3.99), here only the trace of εij is considered, i.e., this approximation
implies that the motion in the small scales is essentially isotropic and therefore only valid for
high Re numbers. For lower Re, additional considerations are needed as discussed by [61].
Also, in equation (3.102) β∗ is a constant while k and ω are solved using the BSL k−ωmodel
from [60] similar to the version presented in section 3.3.6. The only difference being that µt
is defined as in equation (3.83) and themodel constants are replaced by those fromTable 3.7.
Additionally, the turbulent diffusion Cijk is defined according to [62]:

Cijk =
µt
ρσk

∂u′′i u
′′
j

∂xk
(3.103)

where σk = 0.82.

To achieve an approximation for the pressure strain term, the pressure fluctuation p′ is di-
vided into p′slow and p′rapid from which a slow and a fast pressure strain term spawn. By
applying the LRR model from [63], the sum of both terms gives

Πij = −β∗C1ω

(
u′′i u

′′
j −

2

3
kδij

)
− α̂

(
Pij −

1

3
Pkkδij

)
− β̂

(
Dij −

1

3
Pkkδij

)
−

−γ̂k
(
Sij −

1

3
Skkδij

) (3.104)
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with

Pij = −u′′i u′′m
∂ũj
∂xm

− u′′ju
′′
m

∂ũi
∂xm

, Dij = −u′′i u′′m
∂ũm
∂xj

− u′′ju
′′
m

∂ũm
∂xi

(3.105)

α̂ = (8 + C2)/11, β̂ = (8C2 − 2)/11, γ̂ = (60C2 − 4)/55 (3.106)

In the end, the approximations from equations (3.102), (3.103) and (3.104) are introduced
into equation (3.98) and the model constants are obtained from Table 3.7.

Table 3.7: Reynolds Stress-BSL model constants [20]

Constant Value

σk1 2.0
σω1 2.0
β1 0.075
σk2 1.0
σω2 1.168
β2 0.0828
β∗ 0.09
κ 0.4187
C1 1.8
C2 0.52

3.3.8 Additional considerations on heat transfer modelling

Heat transfer is modelled according to equation (3.51) with small alterations in regards to
the Prt, depending on the turbulence model. It seems that this variable has a considerable
impact on the development of the flow structure. [64] concluded that a constant value of 1
for the Prt number provides the best approximation when compared to variable Prt formu-
lations, and [34] arrives at the same conclusion when comparing his numerical results to the
experimental data. For this reason, the Prt is set to 1 in the energy equation (3.51). Neverthe-
less, [64] demonstrated that a variable Prt number is particularly important in the transition
region and the RNG k− ε is the only model used where this ratio is not a constant neither in
the energy equation nor in the transport equations of the turbulent properties. In this case,
the term (

µ

Pr +
µt
Prt

)
∂h̃

∂xj
(3.107)

is replaced with

κeff
∂T̃

∂xj
(3.108)

where the effective thermal conductivity κeff is defined as

κeff = ψcpµeff (3.109)
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Here, the inverse effective Pr number, ψ, is calculated using equation (3.73) with ψ0 = 1/Pr.
This approach gives the RNG k − ε model an advantage over other alternatives where the
turbulent Pr number is set as a constant.

3.4 Equation of State

In the supercritical regime, physical properties can vary drastically and cannot be defined by
simple relations. One such property is the density and, as the test case is incompressible, the
main concern is to establish a reliable relation between density and temperature variations.
For this, three EoS are implemented. As seen in Figure 3.1, in the vicinity of the critical
point the PR and the SRK EoS show a different behaviour. This error affects the prediction
of the jet structure and its impact should therefore be assessed. With this in mind, version
9.1 of theNational Institute of Standards and Technology (NIST) Reference Fluid Thermody-
namic and Transport Properties Database (REFPROP) [65] is directly linked to FLUENT®.
The nitrogen properties stored in this library are calculated using the multi-parameter EoS
from [19] and the high accuracy of this method means that it can be used as a benchmark for
comparison and evaluation of the behaviour of the two cubic EoS.

3.4.1 Soave-Redlich-Kwong EoS

Unlike in the ideal gas equation, two parameter Equations of State consider both the finite
volume of the molecules and the attraction forces between one another through the param-
eters b and a, respectively. [21] introduced a modified version to the original Redlich-Kwong
equation [66]:

p =
RT

v − b
− a(T )

v(v + b)
(3.110)

with v as themolar volumeandR as themolar gas constant. Themodifications fromSoave lay
mainly with the dependence of a on Tc, to improve the behaviour in the supercritical region,
and on the acentric factor, ω, to deal with the polarity of individual species. The variables a
and b are defined by

a = a(Tc)ζ(τ, ω), a(Tc) = 0.42747
R2T 2

c

pc
, b = 0.08664

RTc
pc

(3.111)

where τ is the inverse reduced temperature, Tc/T , and the dimensionless parameter ζ(τ, ω)
is defined as

ζ(τ, ω)0.5 = 1 +m(1− τ−0.5), m = 0.480 + 1.574ω − 0.176ω2 (3.112)

At the critical point, ζ(τ, ω) becomes unity and the definition for a becomes similar to that
of the Redlich-Kwong EoS. To apply this EoS, one only needs the critical constants and the
acentric factor which goes to show the simplicity of this relation, especially when compared
to multi-parametric models. For the case of nitrogen, the critical properties are listed in
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Table 2.1 and the acentric factor is equal to 0.0372.

3.4.2 Peng-Robinson EoS

In the quest for amore reliable Equation of State, [22] proposed a newEoSwith an improved
prediction of the liquid density values:

p =
RT

v − b
− a(T )

v(v + b) + b(v − b)
(3.113)

where a and b are defined by

a = a(Tc)ζ(τ, ω), a(Tc) = 0.45724
R2T 2

c

pc
, b = 0.07780

RTc
pc

(3.114)

and the factor ζ(τ, ω) is

ζ(τ, ω)0.5 = 1 +m(1− τ−0.5), m = 0.37464 + 1.54226ω − 0.26992ω2 (3.115)

The coefficients of bothEoShave a similar structure. But, as the comparison analysis from [67]
suggests, the PR EoS has a higher accuracy from the critical point up to 2ρc after which the
predictions of the SRK equation are preferable. For the region between 0.4ρc < ρ < ρc it is
not exactly clear which is better suited but this will come again into question in section 5.1.1.
In any case, both tend to similar values at lower densities as shown in Figure 3.1. Still, the
author argues that no analytical equation can properly define the critical region since it does
not have an analytical nature. The path to increased accuracy is through an EoS possessed
of parameters determined from data fitting methods.
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Figure 3.1: Comparison of density values obtained from the PR EoS, the SRK EoS and the NIST database
at 4MPa [49]
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3.4.3 A reference EoS for nitrogen

The EoS presented by [19] is based on the Helmholtz energy, F , which is then normalised
and set as a function of τ and δ = ρ/ρc:

F (ρ, T )

RT
= f(δ, τ) = f0(δ, τ) + f r(δ, τ) (3.116)

The first right hand-side term refers to the ideal gas contribution to the Helmholtz energy
while the second represents the residual Helmholtz energy corresponding to the intermolec-
ular forces considered in a real gas formulation. The ideal gas contribution is defined in
equation (3.117), the residual addition is shown in equation (3.118) and the corresponding
constants are listed in [19]. Thermodynamic properties can then be calculated based on the
derivatives of these two terms.

f0(δ, τ) = ln(δ) + a1 ln(τ) + a2 + a3τ + a4τ
−1 + a5τ

−2 + a6τ
−3+

+a7 ln
(
1− exp[−a8τ ]

) (3.117)

f r(δ, τ) =
6∑

k=1

Nkδ
ikτ jk +

32∑
k=7

Nkδ
ikτ jk exp[−δlk ] +

36∑
k=33

Nkδ
ikτ jk exp[−ϕk(δ − 1)2−

−βk(τ − γk)
2]

(3.118)

The coefficients specific to this EoS are obtained through data fitting methods based on ex-
perimental measurements from a series of authors and for a wide range of temperatures and
pressures. Its accuracy is, therefore, considerably higher in the supercritical region than the
PR or the SRK EoS as depicted in Fig 3.1 where the information obtained from the NIST
database is calculated through this EoS, [49]. Additionally, the author reports an average
absolute error (AAD%), defined in equation (3.119), for the density values of no more than
0.042% for 0.6 < δ < 1.5 when compared to experimental measurements. This level of ac-
curacy provides a good point of reference to determine the influence of the cubic Equations
of State on the development of a supercritical jet.

AAD% =

∑n
i=1 |ϕi − ϕexacti |

n
× 100 (3.119)

3.5 Transport properties

Transport properties have a direct impact on the governing equations through such terms as
those in equations (3.19) and (3.41) and must, therefore, be properly defined. Their strong
variation is already discussed in section 2.1 when it is made clear that there is a sharp drop
both in molecular viscosity and thermal conductivity as temperature approach supercritical
values. To overcome this non-linear behaviour, the work from [68] is used to define both µ
and κ regardless of the EoS used. This is already implemented into the REFPROP database,
but when using the cubic EoS, UDFs are written to defined these variables. In any case, the
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associated error with these formulations is of around 2% for both themolecular viscosity and
thermal conductivity.

The molecular viscosity is split into an ideal gas and a residual contribution and is defined in
equation (3.120) in μPa · s.

µ = µ0(T ) + µr(δ, τ) (3.120)

The ideal and the residual contributions are given by

µ0(T ) =
0.0266958

√
MT

σ2Φ(T ∗)
, µr(τ, δ) =

5∑
k=1

Nkδ
ikτ jk exp

[
− γkδ

lk
]

(3.121)

whereM is the molar mass and σ is the Lennard-Jones size parameter, listed in Table 3.10,
while Φ(T ∗) is

Φ(T ∗) = exp

[ 4∑
k=0

bk
(
ln(T ∗)

)]
, T ∗ =

T

θ
(3.122)

with θ as the Lennard-Jones energy parameter and γk being zero if lk = 0 and one if lk ̸= 0.
Finally, the coefficients for equation (3.121) and equation (3.122) are listed in Table 3.8. Sim-

Table 3.8: Coefficients of the viscosity equation [68]

k bk Nk ik jk lk

0 0.431 - - - -
1 -0.4623 10.72 2 0.1 0
2 0.08406 0.03989 10 0.25 1
3 0.005341 0.001208 12 3.2 1
4 -0.00331 -7.402 2 0.9 2
5 - 4.620 1 0.3 3

ilarly, the thermal conductivity, expressed in equation (3.123) inmW ·m−1 ·K−1, is divided
into an ideal gas contribution, a residual contribution and an additional critical enhancement
term, only applied through the REFPROPv9.1 database.

κ = κ0(T ) + κr(δ, τ) + κc(δ, τ) (3.123)

The ideal gas and the residual contributions are then given by

κ0 = N1

[
µ0(T )

1× 10−6

]
+N2τ

j2 +N3τ
j3 , κr =

n∑
i=4

Nkδ
ikτ jk exp

[
− γkδ

lk
]

(3.124)

for which the coefficients Nk, τ jk and δik are listed in Table 3.9, while γk holds the same
meaning as it did in equation (3.121). Finally, the critical enhancement term is defined as

κc = ρcp
kBR0T

6πξµ
(Φ̂− Φ̂0) (3.125)
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Here, the molecular viscosity is retrieved from equation (3.120) while Φ̃, Φ̃0 and ξ are

Φ̂ =
2

π

[(
cp − cv
cp

)
tan−1(ξ/qD) +

cv
cp
(ξ/qD)

]
(3.126)

Φ̂0 =
2

π

(
1− exp

[
− 1

(ξ/qD)−1 + 1
3(ξ/qD)

2δ−2

])
(3.127)

ξ = ξ0

[
χ̃(T, ρ)− χ̃(T0, ρ)(T0/T )

Γ

]v/γ
, χ̃(T, ρ) =

pcδ

ρc

(
∂ρ

∂p

)
T

(3.128)

The isochoric and isobaric specific heats, cv and cp, as well as χ̃ are dependent on the used
EoS and the remaining parameters are available in Tables 2.1 and 3.10, though if ξ is negative
then κc is set to zero.

Table 3.9: Coefficients of the thermal conductivity equation [68]

k Nk ik jk lk

1 1.511 - - -
2 2.117 - -1.0 -
3 -3.332 - -0.7 -
4 8.862 1 0.0 0
5 31.11 2 0.03 0
6 -73.13 3 0.2 1
7 20.03 4 0.8 2
8 -0.7096 8 0.6 2
9 0.2672 10 1.9 2

Table 3.10: Parameters of the viscosity and thermal conductivity equations

Properties Value

T0 [K] 252.384
M [g ·mol−1] 28.01348
σ [nm] 0.3656
θ [K] 98.94
qD [nm] 0.40
ξ0 [nm] 0.17
kB [J ·K−1] 1.380658 × 10-23

R [J ·mol−1 ·K−1] 8.3145
R0 1.01
Γ 0.055
γ 1.2415
v 0.63

3.6 Caloric properties

For the SRK and the PR EoS, the isobaric specific heat is calculated as the sum of the de-
parture specific heat with the ideal contribution, implemented through a UDF in FLUENT®.
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This ideal contribution is taken from [19] and is also used to obtain equation (3.117). Ac-
cording to the author, this definition provides an average error of 0.05% for temperatures
below 900K. c0p is described in equation (3.129), where u = 3364.011/T K, and crp is calcu-
lated as in equation (3.130).

c0p
R

= 3.5 + 3.066469× 10−6T + 4.701240× 10−9T 2 − 3.987984× 10−13T 3+

+1.012941
u2 exp(u)

[exp(u)− 1]2

(3.129)

crp = crv −R− T
(∂V/∂T )2

∂V/∂P
(3.130)

[20] states that the departure isochoric specific heat, crv, is calculated by differentiating the
equation for the departure of the internal energy with respect to the temperature while the
other derivates come fromdifferentiating equation (3.110) or (3.113). Ultimately, when using
a cubic EoS, the isobaric specific heat is

cp = c0p −
crp
M

(3.131)

When using equation (3.116), the isobaric specific heat is defined through equation (3.132)
with each individual term defined in [19].

cp = cv +R

[
1 + δ(∂f r)/(∂δ)τ − δτ(∂2f r)/(∂δ∂τ)

]2[
1 + 2δ(∂f r)/(∂δ)r + δ2(∂2f r)/(∂δ2)τ

] (3.132)

3.7 Summary

We began this chapter by establishing how the dynamics of a moving fluid can be predicted
through the transport equations for the conserved quantities. Sadly, the computational re-
sources currently available do not practically allow for the direct resolution of these equa-
tions. The introduction of time-averaging methods solves this problem but leads to another
by introducing the Reynolds stresses, the closure of the system of governing equations. At
this point, turbulence modelling comes in to predict the fluctuations in the velocity field.
Seven different models are introduced that can be split into two main categories, first and
second-ordermodels. The first-ordermodelsmentionedmake use either of one or of two ad-
ditional turbulent variables while the one second-order model directly resolves the Reynolds
stress terms. Moreover, due to the implications of the supercritical regime, we introduce
three EoS to predict density values at two distinct accuracy levels. Depending on which is
chosen, values are either calculated in real time or retrieved from a real gas library to pre-
vent excessive computational costs. Accurate formulations for the transport properties and
for the specific heat capacity are also introduced, where the later is dependent on the EoS
used. With an established mathematical model, we now bring the reader into context with
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the experimental test conditions and the numerical setup which will lead to a solution in a
discretised domain.
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Chapter 4

Implementation

The governing equations we discussed in the last chapter can be affected by a respectable
amount of error originated from the approximations we made so far. While this is one of the
main points of interest in this study, it is not the only source of error. Once the governing
equations are defined, they must be applied to a finite computational domain in a process
that is affected by numerical error. In this chapter, we describe the discretisation methods
selected to reduce this error to aminimum. We thenmove on to discussing the order inwhich
the equations are calculated and the relaxation settings used to increase stability.

The first section, however, is dedicated to our reference test case which dictates the com-
putational domain geometry and the boundary conditions. The chapter then finishes with
a small comparison to determine the number of calculation points needed to achieve mesh
independency.

4.1 Test cases

Aswas already discussed, the test cases from [27] are the basis of comparison for this numer-
ical study. In particular, case 3 and case 4 are investigated where cold nitrogen is injected
into a chamber at ambient temperature with 4 windows for optical access. The conditions of
cases 3 and 4 are listed in Table 4.1, where the subscripts hold the same meaning as they do
in equation (2.2).

Table 4.1: Test conditions [27,49]

Case p∞ [MPa] u0 [m/s] T0 [K] T∞ [K] ρ0 [kg/m3] ρ∞ [kg/m3]

3 3.97 4.9 126.9 297 457.82 45.24
4 3.98 5.4 137 297 164.37 45.36

The test chamber is depicted in Figure 4.1 where the injector measures 90mm in length
and 2.2mm in diameter and the pressurised chamber measures 122mm in diameter with a
length to injector diameter ratio (x/d) greater than 40. The chamber wall is heated to remain
at a constant temperature of 297K but neither the injector wall nor the faceplate are heated.
The experiment starts with the injector at ambient temperature and during the injection of
the liquid nitrogen, it begins to cool down as the fluid heats up. When the fluid reaches the
target temperature, the experiment records the Raman or the Shadowgraph images as de-
scribed by [69]. Since the time needed to obtain the Raman and Shadowgraph images is
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small when compared to the time the injector needs to cool down, a quasi steady state flow
is considered.

Figure 4.1: Test chamber [27]

The author measures three different temperature sets. The first one, T1, at the entry of the
injector and the other two, Ta and Tb, with a thermocouple at the injector exit. Ta is deter-
mined with the thermocouple placed orthogonally to the injector axis where it is only par-
tially covered by the flow. Consequently, the measured temperature is higher than Tb, which
is measured with the thermocouple aligned with the jet and placed 1mm inside the injector.
The author argues that since the temperature at the centre should be lower than the tempera-
ture at the wall, this secondmeasure is underestimated. In either case, the twomeasures are
performed in a separate test not to influence the jet flow. For now, Ta is used as the injection
temperature.

It is worth noting that velocity values at the injector exit provided by [27] are not measured,
but calculated instead. These are based on the chamber pressure, the measured injection
mass flow and the temperature at the exit of the injector. It is referred to as the averaged jet
velocity at the injector outlet. If one is to simulate the injector while considering an adiabatic
injectorwall, it is logical to applyu0 uniformly at the injector inlet and expect a velocity profile
at its outlet for which the average velocity is still u0.

4.2 Numerical setup

This section is dedicated to the numerical methods implemented to properly apply the gov-
erning equations to a discretised domain. The test geometry, the mesh and its boundary
conditions are initially discussed, followed by a small explanation of the algorithm defining
the order of calculation of the equations as well as the pressure-velocity coupling method.
Afterwards, themain traits of the employed discretisation schemes are discussed and finally,
we present an independence study for the grid resolution and relaxation factors.
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4.2.1 Geometry and meshing

A two-dimensional axisymmetric geometry is preferred over a three-dimensional one to re-
duce computational costs. Based on the experimental setup from [27] depicted in Figure 4.1,
the test domain is that in Figure 4.2. The diameter of the chamber and of the injector are of
122mm and 2.2mm respectively, whilemeasuring in length 250mm and 90mm each. Assum-
ing that the chamber is vertically aligned in the test experiments from [27], the parameter fx
in equation (3.39) is set to 9.81m · s−2.

Figure 4.2: Domain boundary conditions

While section 4.2.7 is dedicated to determining the necessarymesh resolution for the present
conditions, we make already a small comment on this subject. The near wall region of a flow
can be divided into three main layers. Closest to the wall is the viscous sublayer where the
flow is almost laminar and the molecular viscosity plays the dominant role in mass, momen-
tum and heat transfer. Furthest away is the fully turbulent layer and in between is the log-law
region where molecular and turbulence are of similar importance. To determine the bound-
aries of each of these layers, a coordinate normalised by the flow conditions is typically used.
The y+ as defined in equation (4.1) is a function of the friction velocity, the absolute distance
to the wall, the density and the molecular viscosity.

y+ =
ρutd

µ
, ut =

√
tw
ρ
, tw = µ

(
∂u

∂y

)
y=0

(4.1)

Traditionally, turbulence models either resolve the flow down to the viscous sublayer, in
which case y+ ≈ 1 is desirable, or make use of wall functions to reduce the demand on mesh
resolution. In this latter case, the y+ should be set much higher and the conclusion would
be that the same mesh cannot be used for turbulence models of these two different cate-
gories. To overcome this setback, the Enhanced Wall Treatment (EWT) described in [20] is
activated for all the turbulence models used. With this, all solution variables are smoothly
blended from their viscous sublayer formulation to their corresponding logarithmic layer for-
mulation, depending on the mesh. Additionally, these wall functions are calibrated to cover
intermediate y+ values between 1 and 30, effectively arriving at amesh independent formula-
tion. Hence, more important than achieving a certain y+ value, which is approximately 10 at
the injector wall, is the overall mesh resolution inside the boundary layer. To achieve higher

47



Turbulence Modelling on Supercritical Jet Injection

quality results in this region, we set a minimum of 25 points in the wall-normal direction.

4.2.2 Boundary conditions

The domain contains five different boundary conditions displayed in Figure 4.2. At the inlet,
a constant axial velocity profile is set to u0, in accordance with the values from Table 4.1, and
the radial velocity is set to zero. Additionally, the turbulent kinetic energy, turbulent dissipa-
tion rate and specific dissipation rate are based on the turbulent intensity, I, and turbulent
viscosity ratio, µt/µ:

k =
3

2
(Iu0)

2, ε = ρCµ
k2

µ

(
µt
µ

)−1

, ω = ρ
k

µ

(
µt
µ

)−1

(4.2)

Cµ is specific to each of the turbulence models and u0 is the injection velocity already men-
tioned. In the Spalart-Allmaras model, ν̃ is taken directly from the turbulent viscosity ratio,
and in the Stress-BSL model the turbulent stresses are assumed to be zero, except for the
trace of the tensor which is calculated as in equation (3.48). In all cases, the turbulence in-
tensity is set to 5% at the inlet and the turbulent viscosity ratio to 10.

A pressure outlet is defined with a gauge pressure of 0MPa and where the pressure values at
the outlet face are calculated by averaging the specified operating pressure of p∞, with the
interior pressure. Also, at the axisymmetry axis, the value of any specific property is equalled
to that of the adjacent cell.

At all walls, a no-slip condition is applied where both the normal and the tangential velocity
components are set to zero. With the Spalart-Allmaras model, the modified turbulent vis-
cosity is as well set to zero at the wall and the same happens to the Reynolds stresses in the
Stress-BSLmodel. The remaining turbulent variables are defined using the already discussed
EWT, described in [20].

Finally, for the adiabatic walls of the injector and the faceplate, the heat flux from equa-
tion (3.49) is set to zero, but for the isothermal wall heat transfer is calculated through a
dirichlet boundary condition by setting a constant temperature at the wall of 297K:

q = hf (Tw − Tf ) (4.3)

where hf is the fluid side heat transfer coefficient, Tw is the temperature at the wall and Tf
is the local fluid temperature.

4.2.3 Discretisation

FLUENT® uses a Finite Volume Method (FVM) where the integral form of an equation is
calculated over the regarded domain as equation (4.12) shows. If, for example, the control
volume Θ equals Θ1 + Θ2 + Θ3, the conservation equation is applied to each of the finite
volumes and the internal surface fluxes must cancel each other so that only exterior contri-
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butions remain. Such a property is essential for the scheme to remain conservative and an
FVM approach automatically guarantees this condition.

To explain the concept behind discretisation schemes, we introduce the definition of the
derivate of a function ϕ(x) at point x:

∂ϕ

∂x
= lim

∆x→ 0

ϕ(x+∆x)− ϕ(x)

∆x
(4.4)

By using a Taylor expansion, and for∆x ̸= 0:

ϕ(x+∆x) = ϕ(x) + ∆x
∂ϕ

∂x
+

∆x2

2!

∂2ϕ

∂x2
+

∆x3

3!

∂3u

∂x3
+ · · · (4.5)

or

ϕ(x+∆x)− ϕ(x)

∆x
=
∂ϕ

∂x
+

∆x

2!

∂2ϕ

∂x2
+

∆x2

3!

∂3ϕ

∂x3
+ · · · = ∂ϕ

∂x
+O(∆x) (4.6)

where the truncation errorO(∆x) goes to zerowith the first power of∆x. ForO(∆x2), the er-
ror goes to zero with second power of∆x and a first-order approximation becomes a second-
order approximation.

By considering a discrete domainwith a finite number of points as shown in Figure 4.3, equa-
tion (4.6) can be replaced with

∂ϕC
∂x

=
ϕR − ϕC
∆xr

− ∆x

2!

∂2ϕC
∂x2

− ∆x2

3!

∂3ϕC
∂x3

=
ϕR − ϕC
∆xr

+O(∆x) (4.7)

which is a first-order forward difference. A first-order backward difference can be obtained
by subtracting∆x instead of adding it:

∂ϕC
∂x

=
ϕC − ϕL
∆xl

+
∆x

2!

∂2ϕC
∂x2

− ∆x2

3!

∂3ϕ

∂x3
=
ϕC − ϕL
∆xl

+O(∆x) (4.8)

Finally, a second-order central-difference results from summing up the two previous cases:

∂ϕC
∂x

=
ϕR − ϕL

∆xl +∆xr
− ∆x2

3!

∂3ϕ

∂x3
=

ϕR − ϕL
∆xl +∆xr

+O(∆x2) (4.9)

or

∂ϕC
∂x

=
ϕr − ϕl
∆xC

+O(∆x2) (4.10)

FLUENT® stores the values of the scalar ϕ at the cell centres, but the face values ϕr and ϕl
are also necessary and must be interpolated from the cell centred values, which can be done
through a variety of different interpolation schemes. The number of points used and the
position of each one, plays an important role in the order of accuracy of the discretisation
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C rl RL
Δxl Δxr

ΔxC

Figure 4.3: Representation of cell center values (capitalised) and face values

scheme and in how it deals with different physical phenomena. The diffusion of a certain
quantity, as an example, is affected by the gradient of concentration of that same quantity
over the entire domain, and a central difference is more appropriate. It is therefore used for
the diffusive terms of the transport equations.

Additionally, for the advective terms, [15] demonstrates that the use of a first-order upwind
scheme leads to a considerable loss of accuracy under these conditions, excluding it from
our list of options. The QUICK scheme [70] is employed instead as a tool for reducing the
oscillatory and unstable behaviour of second-order numerical schemes and to deal with the
numerical diffusion affecting first-order upwind schemes. Equation (4.11) serves as an ex-
ample to demonstrate the concept. At point C, it can be discretised using the values of ϕ at
the cell faces as shown in equation (4.12). These however, need to be interpolated through
the stored cell centred values.

∂ϕ

∂t
= −∂(uϕ)

∂x
+

∂

∂x

(
Γ
∂ϕ

∂x

)
(4.11)

∂ϕC
∂t

=

[
ulϕl − urϕr + Γr

(
∂ϕr
∂x

)
− Γl

(
∂ϕl
∂x

)]
/∆xC (4.12)

The application of a central differencing scheme to the diffusive term of equation (4.12) has
a stabilising effect and is therefore straightforward. However, when applied to the advective
term, it can lead to instabilities and to an oscillatory behaviour for a grid Péclet number (Pe)
higher than two, i.e., local advection two times larger than diffusion. In short, the second-
order accuracy can come at the expense of stability. By contrast, in an upwind differencing
scheme, the cell centred value of ϕ is assumed to represent a cell average value and hold
throughout the entire cell, meaning that the face quantities are identical to the upstream
cell quantities. This technique provides an increased stability of the advective term to the
variations ofϕC , but only because of the numerical diffusion introducedby assumingϕl = ϕL.
To diminish this numerical diffusion the grid spacingmust considerably decrease, leading to
a higher computational cost which is also not desirable.

TheQUICK scheme introduced by [70] combines a higher order accuracywith the directional
behaviour of the upwind scheme to provide additional stability for the advective term in a
coarser mesh. According to the illustrations on Figure 4.4a and Figure 4.4b, the face values
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are defined as

ϕr =
1

2
(ϕC + ϕR)−

1

8
(ϕL + ϕR − 2ϕC) (4.13)

ϕl =
1

2
(ϕL + ϕC)−

1

8
(ϕFL + ϕC − 2ϕL) (4.14)

Additionally, the slope of the parabola at ϕr is identical to the slope of the chord linking
ϕC with ϕR, meaning that the gradient can be defined as in equation (4.10). Like in the
upwind scheme, the direction of the interpolation is based on the velocity values. With this
technique, theQUICK scheme achieves third order accuracy for the advective terms in a FVM
formulation [71]. Still, in the quest for additional stability, FLUENT® implements an altered
version of the QUICK scheme presented by [72] in which the 1/8 factor from equations (4.13)
and (4.14) is replaced by a solution dependent value. As a result, this is used for the advective
terms in equation (4.12) while the diffusive terms are discretised with second-order accurate
central differences through equation (4.10). This exemplifies the numerical schemes used in
this study.

φFL

φL

φR

φC

φr

ur

(a) Interpolation of ϕr

φFL

φL

φR

φC
φl

ul

(b) Interpolation of ϕl

Figure 4.4: Quadratic interpolation [70]
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4.2.4 Solution approach

A pressure based coupled algorithm is implemented where conservation of mass is achieved
not through the continuity equation (3.8), but through a pressure based continuity equation
instead. For this, the divergence operator is applied to the momentum equation (3.14) and
the condition from equation (3.8) is introduced, leading to equation (4.15), that must also be
averaged.

∂

∂xi

(
∂p

∂xi

)
=

∂

∂xi

(
− ρ

∂

∂xj
(uiuj)− uj

∂

∂xj
(ρui) +

∂tij
∂xj

+ ρfi

)
(4.15)

According to this algorithm, also described in Figure 4.5, fluid properties are initially calcu-
lated through the equations described in sections 3.4, 3.5 and 3.6 with either the initial con-
ditions or the current solution values. The turbulent viscosity is also determined at this point,
after which a velocity and pressure fields need to be calculated. For this, a system of equa-
tions comprising the momentum (3.39) and the pressure based continuity equation (4.15)
are solved simultaneously. After this point, the energy equation (3.51) is solved along with
the transport equations for the turbulent variables introduced in section 3.3. The cycle is
repeated until the condition of convergence is achieved.

STOP

Update properties

Simultaneously solve the system
of momentum and pressure based

continuity equations

Solve energy, turbulence
and other scalar equations

Converged?
No

Yes

Figure 4.5: Pressure based solution algorithm

But equation (3.39) still requires the pressure values at the cell faces and these must inter-
polated from the cell centred values. In a collocated grid scheme, both the velocity and the
pressure values needed for interpolation are retrieved from the same cell. But when calcu-
lating the pressure field with equation (4.15) on a collocated grid, oscillations in the pressure
field may appear as a result of an odd-even decoupling of the pressure and velocity, i.e., that
on a specific point the pressure and velocity do not affect one another. The PRESTO! (PREs-
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sure STaggering Option) [20] scheme employs a staggered grid method [73] whereby the
velocity and pressure values are stored in different positions and for which the control vol-
umes are no longer equal. Ultimately, the pressure values are calculated directly for the cell
face and no interpolation is needed. This results in the elimination of the decoupling of the
pressure and velocity fields along with any possible oscillations and is therefore used in the
current work.

4.2.5 Initialisation and convergence criteria

A hybrid initialisationmethod [20] is employed where the Laplacian of the velocity potential
is solved,

∇2φ = 0 (4.16)

with certain boundary conditions: the normal velocity is zero at the wall, u0 at the inlet and
the velocity potential is zero at the outlet. The pressure field is also solved using an equation
similar to equation (4.16) by assuming p∞ at the outlet as a boundary condition. These initial
velocity and pressure fields are then introduced into the first iteration of the algorithm from
Figure 4.5.

For the present work, convergence is assumed when the conditions for each equation in Ta-
ble 4.2 are reached. The residuals are used as convergence criteria for their link to the solu-
tion error. When this tends to zero so do the residuals, [54]. This technique is necessary since
the exact solution is not known and thus the solution error cannot be directly calculated.

Table 4.2: Convergence criteria

Equation Absolute criteria

Continuity 5× 10−4

Momentum 1× 10−3

Energy 1× 10−6

Modified Turbulence Viscosity 1× 10−3

Turbulent Kinetic Energy 1× 10−3

Specific Dissipation Rate 1× 10−3

Turbulent Dissipation Rate 1× 10−3

Reynolds Stresses 1× 10−3

4.2.6 Under-relaxation

The under-relaxation of variables, usually referred to as explicit under-relaxation, reduces
the change of ϕ from one iteration to the next. The under-relaxation factor θ is implemented
so that

ϕ = ϕold + θ∆ϕ (4.17)
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where ∆ϕ is the difference between the calculated solution and the solution at the previous
iteration, ϕold. This means that the higher the value of θ, the higher the convergence rate
should be because more weight is given to the calculated solution. On the other hand, this
might increase instabilities in regions of high gradients.

Under-relaxation of equations, known as implicit relaxation, is also applied through a pseudo
time step method where the term from equation (4.18) is added to the discretised equation.

ρ∆u
ϕ− ϕold

∆t
(4.18)

In equation (4.18),∆t does not represent a physical time step but instead a pseudo time step
that defines the level of relaxation.

The explicit and implicit relaxation factors used are those from Tables 4.3 and 4.4, respec-
tively. The verification values mentioned in these two Tables are used to determine if the
initially used factors have an impact on the final solution. For case 3 with the standard k− ε

model, we let the solution converge on these initial relaxation factors, after which we allow
the calculation to restart from the last solution with the verification relaxation factors. As
there is no disturbance in the residuals, it can be concluded that the relaxation has no influ-
ence on the solution. Its influence is merely felt on the speed and stability of convergence.

Table 4.3: Explicit under-relaxation factors

Variable Initial Relaxation Factor Verification Relaxation Factor

p 0.5 0.75
ρ 0.3 0.4
µt 0.5 0.75
k 0.4 0.75
ε 0.3 0.75
ω 0.4 -
ν̃ 0.4 -
τij 0.5 -

Table 4.4: Implicit under-relaxation factors

Equation Initial Relaxation Factor Verification Relaxation Factor

Momentum 0.5 0.75
Energy 0.3 0.4

4.2.7 Independence study

A mesh independency study based on the centreline decay of the density is performed using
three levels of refinement with 180 000, 280 000 and 495 000 points in a structured orthog-
onal mesh of rectangular elements. The comparison is made for case 4 from Table 4.1 and
the results, with the standard k − ε model, are shown in Figure 4.6. Despite a very slight
variation of density values in the transition region, the three meshes provide close results
to one another with similar slopes indicating that the flow is sufficiently well resolved with
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the coarser grid. The more refined grid is not applied because the gain in accuracy does not
justify the additional computational cost and the mesh of 280 000 points is used over the
coarser one to maintain grid independence for the remaining turbulence models.
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Figure 4.6: Centreline density decay at three different grid resolututions for case 4 with the standard k−εmodel
and the REFPROPv9.1 [65]
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Chapter 5

Results and Discussion

The results for the test conditions of both case 3 and 4 of [27], are presented in normalised
values obtained from equation (2.2). This is especially importantwhen comparing the results
to those of other researchers since it provides a common scale for comparison. The injection
and farfield density values are specific to each test and, for the present study, are listed in Ta-
ble 4.1. Absolute density values are only used when comparing the results obtained through
the different EoS.

5.1 Chamber

Figure 5.1 shows a comparison between the models described in section 3.3 for case 3 and
case 4. [35] describes the end of the potential core region as the point at which density be-
gins to rapidly decrease and, for the sake of comparison, we define this point at ρ+ = 0.99.
In Figure 5.1a we see that almost all models predict a similar length potential core with val-
ues ranging between x/d ≈ 6.4 and x/d ≈ 7.6. The only exception is the standard k − ω

model that largely overestimates the length of the potential core up to x/d ≈ 12.5, which
could be attributed to the poor performance of this model in free stream conditions. Even if
the version here used is an improvement over the 1998Wilcox k− ω [59] with an additional
cross-diffusion term in the turbulent kinetic energy transport equation designed to improve
the behaviour under free stream conditions [20], it seems to have little impact under these
conditions. The poor behaviour of this model is apparent not just in the transition region
but throughout the entire domain. It is as well visible that the density values in the poten-
tial core are considerably higher than those from the experimental measurements. As was
already discussed in section 2.2.2, this could be attributed by the very high density inside the
potential core that tends to deflect the radiation of the incident beam in the axial direction,
decreasing the Raman scattering arriving at the sensor. As a result, the prediction of the
density values in the potential core should bemore accurate than what Figure 5.1a impresses
on the reader. As the density decreases in the transition region, the radiation deflection de-
creases, the Raman scattering related errors diminish and the experimental data are already
in better accordance with the numerical results.

Still in the potential core, turbulence seems to have no impact in the development of the jet
since instabilities have not yet appeared and therefore the density remains constant. In the
transition region, [28] reports a maximum in density fluctuations as pockets of injected ni-
trogen begin too smear out and cross the pseudo-boiling line. The same author also discusses
how the heat absorbed to overcome the intermolecular attraction leads to an increase in the
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0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
0

0.2

0.4

0.6

0.8

1

(b) Case 4

Figure 5.1: Centreline density decay with different turbulence models and the REFPROPv9.1 [65]

heat entropy production with a maximum already closer to the self-similar region. An anal-
ogy can be found between this and the trend of k and ε. Figure 5.2 shows how the dissipation
rate of turbulence reaches a maximum in the transition region but begins to decrease when
the fluid crosses the pseudo-boiling line, leading to thermal expansion and a reduction in
shearing. In turn, this thermal expansion spawns strong variations in velocity that are visi-
ble in the increase of the turbulent kinetic energy, indicative of a stronger turbulent mixing
mechanism.

With the increase of these turbulent mixing effects, the behaviour of the different models
starts to diverge in the transition region. Here, the energy dissipation plays a significant role
at the same time as the density values begin to sharply decrease. Themore complex structure
of the SST k−ωmodel does not provide exceptionally good results in this region, despite its
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Figure 5.2: Centreline distribution of the turbulent dissipation rate and of the turbulent kinetic energy for case
3 with the RNG k − εmodel and the REFPROPv9.1 [65]

alternating coefficients and shear stress based formulation for µt. In fact, whenmoving away
from the wall, the model only uses the k − ε based coefficients and consequently we can see
that its behaviourmore closelymatches that of the k−ε than that of the standard k−ωmodel.
Also, the additional formulation for µt has little impact here as it only becomes active in the
near wall region. The five equation Stress-BSL model also overestimates the density values
between 7.5 < x/d < 20. This can be attributed in part to the dependency of this model
on ω and the inherent deficiencies of its transport equation and coefficients. However, for
x/d > 20 it is one of the models that better agrees with the experimental data. The Spalart-
Allmaras model also provides slightly over estimated results between 7.5 < x/d < 22.5 but it
is striking to see how well a one equation model behaves next to a five equation one.

Between the three ε based models, the realisable k − ε provides the worst results right after
the end of the potential core and it begins only to coincide with the experimental measures
at x/d ≈ 20. At least for this case, its alternate equations for ε and Cµ equations are no
improvement over the other two variants. Between the standard k − ε model and the RNG
version, there are two main differences: the formulation for the destruction of ε and the new
definition for the turbulent Pr number inserted in the turbulent transport equations (3.70)
and (3.71) and in the energy equation (3.51). Especiallywhen considering thework from [64],
we are led to believe that the variable Pr number is themain cause for the improved behaviour
of the RNG k − ε model over the standard version. The model accurately predicts density
decay across the domain with the exception of the region between 17.5 < x/d < 25 where
there is a slight under estimation. Nevertheless, from all the tested models, it is the one that
provides the best results for case 3.

Finally, with the exception of the standard k−ωmodel, all others tend to the same values of
density around x/d = 30where according to [27] a self-similar development is to be expected.
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In case 4 the differences in potential core length, depicted in Figure 5.1b, are similar to those
of case 3 ranging from x/d ≈ 6.6 to x/d ≈ 7.7, with the exception of the standard k−ωmodel
that once again shows an ill behaviour until x/d = 30. The injection density in this case is
considerably lower than that of case 3 and themagnitude of the experimental measurements
matches the numerical results right from the start. However, the unrealistic potential core
discussed in section 2.3 is still predicted, independently of the model used which does not
agree with the results from [27]. As [14] concludes, the more energy is needed to reach the
pseudo-boiling temperature, the more stable the potential core is and this energy is consid-
erably higher for case 3 than for case 4. The author suggests that the reduced stability of the
potential in case 4 coupled with a possible heating mechanism inside the injector are suf-
ficient to completely eliminate the potential core at the injector exit. However, the results
presented in Figure 5.1b do not account for an isothermal injector wall which might be the
reason for the incorrect prediction of a potential core.

In this case, the Stress-BSL model is the one to better predict the density values in 17.5 <

x/d < 30 while the majority provides underestimations. Nevertheless, its behaviour outside
this region is not exceptional and the overall results donot justify the computational cost. The
slope produced by the SST k − ω model does not match that of the experimental data, but
the results start matching the experimental data earlier than they do in case 3. A difference
in behaviour is also noticeable for the ε based models. Here, the standard k − εmodel gives
slightly better predictions in the transition region than it does for case 3. More noticeable is
the resemblance between its results and those of the Spalart-Allmaras model. In this case,
the RNG k−ε displays aworse behaviour with results that are slightly off for 15 < x/d < 22.5,
but still acceptable. Once again, by x/d = 30 themajority of themodels lead to similar values
of density in the centreline where a self-similar structure is already present.

The RNG k − ε provides the most reliable results for case 3 but its computational time is
high when compared to the other µt based models, which is even more noticeable for case
4. In this instance, there is not one that greatly surpasses the others in quality of results and
performance. Still, the reasonable accuracy of the Spallart-Almaras and the standard k − ε

models is followed by their higher efficiency when compared to the other models. The same
cannot be said for the Reynolds stress model, for which the calculation time is between 5.5
and 7 times that of the most efficient for each case.

Based on the previous overall analysis, the results obtained when using the RNG k− εmodel
are used for comparison with the results from other researchers for case 3 and 4 while the
Spalart-Allmaras model is additionally used for comparison in case 4 due to its simpler for-
mulation, reasonably accurate results and higher efficiency. This comparison is displayed in
Figure 5.3 where, especially for case 3, there is a clear improvement with the RNG k−εmodel
over LES. In fact, we can see that simpler turbulence models generally outperform LES, no
matter the author. The exception to the rule are the results from [36] that are in much better
agreement with the experimental data, but at a higher computational cost.
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Figure 5.3: Centreline density decay comparison between different authors and the present work with the REF-
PROPv9.1 [65]

In case 4 the improvement is not as clear. Figure 5.3b shows that the present work provides
the longest potential core while the study from [44] does not predict a potential core at all,
despite not making reference to heat transfer inside the injector. For x/d > 7.5 the results
from [27, 40, 42] have the most accurate predictions while those from [36, 48] largely un-
derestimate the density values. When comparing the results from [27] and even those with
the Spalart-Allmaras model to those of [40, 42], the differences are very small at a lower
computational cost. When looking at Figures 5.3a and 5.3b, there is a clear advantage in us-
ing only turbulence modelling over LES. The results are largely similar if not better and the
complexity of the setup implementation and computational cost are highly diminished.
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5.1.1 Equation of State influence

Moving again to the present work, Figure 5.4 shows the values for the density and specific
heat obtained with the REFPROPv9.1 database, that accurately predicts the pseudo-boiling
phenomenon discussed in section 2.1. In case 3, [14] shows that the injection temperature
of 126.9K is still below the pseudo-boiling temperature of 129.57K and therefore the specific
heat experiences a peak at x/d ≈ 11 as the fluid begins to warm up outside the injector.
The same author also discusses the pseudo-boiling point as the point of maximum cp and
of maximum (∂ρ/∂T )p and Figure 5.4a matches this description showing the coincidence of
both points. In case 4, the injection temperature of 137K is already above the pseudo-boiling
temperature and there is no peak in the specific heat. Instead, it remains fairly constant until
x/d ≈ 5 along with the temperature inside the potential core, and begins then to decrease.
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Figure 5.4: Centreline density and specific heat distributionwith theRNG k−εmodel and theREFPROPv9.1 [65]

Also, in Figure 5.5, one can compare the influence of the three tested EoS and how they im-
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pact the jet structure. In both cases, the differences are most noticeable in the potential core
region. As was to be expected from Figure 3.1, the PR EoS shows better results in this re-
gion for case 3 with a relative density error of 4.6% compared to 13.4% for the SRK EoS.
Even beyond the potential core, the error is significant and only begins to diminish when ap-
proaching the self-similar region where density is much reduced. Contrary to what happens
in case 3, in case 4 the potential core length appears to decrease when switching from the
Helmholtz energy based EoS to the cubic EoS from x/d ≈ 6.6 to x/d ≈ 6. In the potential
core region, the density calculated with the PR EoS is over estimated with an error in density
values relative to the Helmholtz energy EoS of 4.81% while that calculated with the SRK EoS
is more accurate with a relative error of just 0.61%. In any case, beyond x/d = 10, both the
PR and the SRK EoS continue to produce a considerable amount of error which, once again,
only begins to decrease around the self-similar region. One can see that the qualitative er-
ror is not as severe when plotting for ρ+, but this goes to show how the quantitative results
can be influenced by thermodynamic modelling. On top of that, despite the much improved
accuracy, the efficiency when using the REFPROPv9.1 is still very much on par with that of
the cubic EoS, with an average increase in computational time of only 15% when using the
standard k − εmodel for case 4.
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Figure 5.5: Centreline density decay with the RNG k − εmodel and three different EoS [21,22,65]

5.2 Injector

This small section is introduced to discuss the effects of the injector in the overall flow struc-
ture. While we don’t consider heat transfer in this region, the length of the injector alone and
the radial velocity profiles have their interest. When simulating the injector in its full length,
xi, we arrive at the centreline velocity distribution shown in Figure 5.6. As the boundary
layer at the injector wall created by the no-slip condition grows with the axial coordinate,
the flow near the wall slows down thus accelerating that around the axis. We can see then
that at x/xi ≈ 0.73 the boundary layers merge together and the flow becomes completely
viscous. From this point onwards, the velocity profile adjusts itself slightly to reach the fully
developed turbulent velocity profile from Figure 5.7. In this figure we also make a compar-
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ison to an alternate approach while setting the same constant mass flow at the inlet. When
removing the injector from the domain, the power-law velocity equation [74] presented in
equation (5.1) shows a good agreement with the results from the present work. Here, n is a
function of the Re number, umax is the axial velocity at the centreline and r is the injector
radius. Such an approach constitutes a valid alternative to the simulation of the injector in
terms of the velocity field effects. Since the power-law velocity equation provides very similar
results to those obtained when simulating the injector, the effect on the jet structure should
also be negligible.
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Figure 5.6: Centreline distribution of the axial velocity inside the injector for case 3 and 4 with the RNG k − ε

model and the REFPROPv9.1 [65]
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Additionally, looking at both Figure 5.6 and 5.8, we can see how important the effects of
the injector are and how its length influences the downstream flow. If the injector length
is set to 0.75× xi, a completely viscous flow is still formed inside the injector and the flow
structure inside the chamber is practically equal to when simulating with xi. However, if the
length of the simulated injector is too small and there is still an inviscid core flow at its exit,
the differences become very noticeable. The effect is mainly felt in the border between the
potential core and the transition region and becomes only invisible in the self-similar region.
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Figure 5.7: Radial distribution of the axial velocity at the injector exit for case 3 with the SST k − ω model and
with the power-law velocity equation [74]
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Figure 5.8: Centreline distribution of the axial velocity for case 3 with the RNG k − ε model and the REF-
PROPv9.1 [65]
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Chapter 6

Conclusions and Future Work

The steady state Favre averaged governing equations are used to deal with the incompress-
ible but variable density flow that is characteristic of the current test cases. To study the be-
haviour of turbulencemodelling in supercritical conditions, the system of equations is closed
with seven different models, that are based either on the turbulent viscosity or on the trans-
port of the Reynolds stresses. The effects of thermodynamic modelling are also investigated
by switching between two cubic and one multi-parameter EoS. An accurate formulation is
applied to the transport properties and to the isobaric specific heat. A pressure based algo-
rithm is used where the velocity and pressure fields are solved simultaneously. A staggered
grid method is then implemented to prevent pressure fluctuations together with the QUICK
scheme for the advective terms and second-order central differencing scheme for the diffu-
sive terms.

With this, the current study proposes a mathematical model that is capable of dealing with
the strong temperature and density gradients typical of supercritical injections as well as
with the non-linear behaviour of the thermodynamic properties. The results obtained are
compared to the experimental data for validation and to additional numerical work. There
is a generally good agreement with the experimental data for both case 3 with the RNG k− ε

model and 4 also with the RNG k − ε and with the Spalart-Almaras model. Nevertheless,
there is a clear distinction in the results obtained from different turbulence models. The re-
sults from the Stress-BSL model show that there is no clear advantage in calculating higher
order turbulence correlation terms. The similarly complex structure of the SST k − ω model
is as well not applicable to the current case and does not produce any improvements in the
freestream region, over the ε based models. The RNG k − εmodel produces especially good
results for case 3, possibly due to the variable Prt number but the similarly good results ob-
tained for case 4 with the standard k − ε and the Spalart-Allmaras models indicate that this
might not be the only relevant factor. Besides the analysis of the axial density decay, it would
be interesting in the future to look into the jet divergence angle predictions through differ-
ent methods such as the FWHM. These measurements could then be compared to empirical
models and experimental data to provide some additional insight into the influence of tur-
bulence modelling on the jet structure, more specifically the shear layer.

This study strongly supports the case that there is no direct correlation between the complex-
ity of a turbulence model and the accuracy of the final results. This argument becomes even
more evident when comparing our results with those of LES from other researchers. With
some exceptions, it is demonstrated that at least for case 3 the ε basedmodels perform better
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than LES. For case 4, both methods are on par with each other, but surely with an evident
gap in computational cost.

An additional contribution of this study is the insight regarding the simulation of the injec-
tor. The influence of the velocity field at the exit of the injector is studied and it is shown that
as long as there is still an inviscid potential core at this position, the downstream jet struc-
ture is noticeably affected. It is, therefore, a point that deserves some attention. In the end,
we compare the velocity profiles produced in the present work with those of the power-law
velocity equation to conclude that the latter is a good solution to replace the effects of the
no-slip condition on the injector wall.

Finally, a comparison of results when using two different cubic EoS and a reference EoS for
nitrogen shows how, despite the resemblance in qualitative behaviour, the quantitative re-
sults are greatly affected. The potential core density values for case 3 are better approximated
with the PR EoS and the same happens for case 4 with the SRK EoS. Besides the differences
in the predicted injection density, there is as well an influence on the transition region which
becomes less noticeable only when approaching the self-similar region.

On a final note, the use of cubic EoS in case 4 apparently also results in a slightly smaller
potential core. This potential core should not be present in the first place, but it is predicted
independently of the turbulencemodel and the EoS that is used. Researchers have suggested
that the disregard for the heating mechanism inside the injector could be in the source of the
wrongfully predicted potential core and [14] obtains results with a similar slope to that of
the experimental data but at lower density values. During the experimental procedure, as
the nitrogen is injected, its temperature increases while that of the injector wall decreases.
However, the values of the injector wall temperature at themoment when the Raman images
are collected are not published. An incorrect setting of the injector wall temperature could
therefore be the cause for the lower than expected density values.

Having validated the current mathematical model and determined how the velocity field af-
fects the flow structure, one of the next steps is to determine the impact of a heating mecha-
nism inside the injector and the boundary conditions to be used when simulating said mech-
anism. Once the thermal influence of the injector in the injected nitrogen is accurately sim-
ulated and validated against the experimental data, a function could be used to approximate
the temperature profile at the injector exit. This would allow for the complete removal of the
injector from the computational domain. Once this is achieved, the transition to the simula-
tion of reactive mixtures may begin.
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