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Abstract

Babesia bovis parasites present a serious and significant health concern for the beef and dairy 

industries in many parts of the world. Difficulties associated with the current diagnostic techniques 

include they are prone to human error (microscopy) or expensive and time consuming (Polymerase 

Chain Reaction) to perform. Little is known about the biochemical changes in blood that are 

associated with Babesia infections. The discovery of new biomarkers will lead to improved 

diagnostic outcomes for the cattle industry. Vibrational spectroscopic technologies can record a 

chemical snapshot of the entire organism and the surrounding cell thereby providing a phenotype 

of the organism and the host infected cell. Here, we demonstrate the applicability of vibrational 

spectroscopic imaging techniques including Atomic Force Microscopy Infrared (AFM-IR) and 

confocal Raman microscopy to discover new biomarkers for B. bovis infections. Furthermore, we 

applied Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) to detect B. bovis in red 

blood cells (RBCs). Based on changes in the IR spectral bands, ATR-FTIR in combination with Partial 
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Least Squares-Discriminant Analysis we were able to discriminate infected samples from controls 

with a sensitivity and specificity of 92.0 % and 91.7%, respectively in less than two minutes, 

excluding sample extraction and preparation. The proposed method utilized a lysis approach to 

remove hemoglobin from the suspension of infected and uninfected cells, which significantly 

increased the sensitivity and specificity compared to measurements performed on intact infected 

red blood cells (intact infected RBC, 77.3% and 79.2%). This work represents a holistic spectroscopic 

study from the level of the single infected RBC using AFM-IR and confocal Raman to the detection 

of the parasite in a cell population using ATR-FTIR for a babesiosis diagnostic. 

KEYWORDS: Babesiosis, Vibrational Spectroscopy, Imaging, Diagnosis

Introduction

Tick-borne Babesia parasites are responsible for important diseases in humans and animals globally. 

Babesiosis has a large impact on human health in some countries, but it also has devastating effects 

on the cattle industry worldwide, and improved diagnostic and control measures are urgently 

needed.  Bovine babesiosis (caused predominantly by B. bovis and B. bigemina) is an important tick-

borne disease that affects animals in many regions of the world, including South- and Middle 

America, Africa, Asia and Australia. Bovine babesiosis manifests as fever, anorexia and anemia, and 

in its most severe form, cerebral babesiosis, which is frequently fatal. The economic impact of 

bovine babesiosis is severe in the many countries affected by the disease largely due to its negative 

effects on the productivity of the beef and dairy industries.1,2 The reintroduction of B. bovis from 

Middle and South America into the USA is a constant threat, especially with increasing climate 

change and increasing globalization, which therefore warrants the development of better 

diagnostic/detection methods.3 Babesiosis is often transmitted simultaneously with other tick-
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borne diseases and can show similar clinical symptoms to anaplasmosis or theileriosis and hence 

the estimated number of undetected cases remains high.4,5 

Bovine babesiosis can be diagnosed currently using direct blood inspection using microscopy, and 

serological (IFAT, ELISA) methods but all of these methods have limitations.  Thus, the gold standard 

in diagnostic methods for babesiosis include microscopy and polymerase chain reaction (PCR)6. 

Microscopy is time consuming, and does not offer high sensitivity due to low parasitemia in 

babesiosis, and misdiagnosis is often a problem. In addition, microscopy is unable to discriminate 

between B. bovis and B. bigemina infections. In contrast, PCR methods are highly sensitive and 

specific, but time consuming, cumbersome, and expensive. Serological testing such as indirect 

fluorescent antibody test (IFAT) and the enzyme-linked immunosorbent assay (ELISA) require 

laboratory equipment and chemicals. Additionally, serological methods are mainly applied for 

research purposes and epidemiological studies, for export certification or when vaccine breakdowns 

are suspected and are not suitable for point-of-care diagnosis.6  Here, we propose an alternative 

diagnostic method, using vibrational spectroscopy probing the absorbance of infrared (IR) light or 

Raman scattering, both leading to molecular vibrations in a sample.7 Biological samples show 

characteristic spectral patterns, correlating to the absorbance or scattering of light, e.g., from lipids, 

proteins, carbohydrates and nucleic acids. Changes in the biochemical composition of a blood 

sample infected with a parasite can consequently be detected using vibrational spectroscopy. A 

number of vibrational spectroscopic methods in combination with chemometric data analysis have 

been explored for various biomedical purposes.8 IR and Raman based microspectroscopic imaging 

techniques such as confocal Raman imaging and Focal Plane Array (FPA) IR imaging allow for 

establishing local characteristics in individual infected red blood cells (iRBCs) and can be integrated 

in a multimodal approach to receive information about the spatial position of molecules within 

cells.9 In theory, IR and Raman provide complementary information of the parasite-host system. 
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Lipids, proteins, carbohydrates and DNA found in the parasite dominate the FTIR spectrum, whereas 

in the case of Raman, heme modes from hemoglobin are enhanced due to the resonance effect. 

Raman microscopy that utilizes excitation in the visible range enables images to be collected with a 

lateral spatial resolution approaching 0.3 µm, depending on the laser wavelength and optical 

configuration. The lateral spatial resolution of IR imaging techniques is usually limited by the 

refractive index of the incident light beam to 2 to 10 µm. This drawback can be overcome by 

coupling FTIR spectroscopy to Atomic Force Microscopy (AFM). AFM-IR allows for the collection of 

IR spectra with a nanoscale spatial resolution, as a very fine tip records the response of the 

molecules to the IR light. To obtain IR spectra at defined positions on the sample, the tip has to be 

placed directly onto the target such as a parasite inside a red blood cell (RBC). 

The aforementioned imaging techniques are very suitable for research applications (e.g. studies of 

the mode of drug action),10 but their use as a high throughput diagnostic tool is limited by the size 

and price of the instrumentation. In contrast, Attenuated Total Reflection (ATR) Fourier Transform 

(FT) IR spectroscopy records the overall chemical composition of a bulk sample. The technique uses 

compact instrumentation and is able to acquire a spectrum of an untreated sample within minutes, 

making it ideal for Point-of-Care (PoC) analysis. ATR-FTIR spectroscopy has for example been applied 

to the detection of other parasite related diseases such as malaria.11 

Here, we demonstrate the applicability of vibrational spectroscopic methods for the detection of B. 

bovis in bovine RBCs. Due to complex and subtle differences in the spectra of iRBCs and uninfected 

RBCs (uRBCs) chemometric data analysis was performed to extract the spectral information that 

correspond to B. bovis parasite. By applying AFM-IR we could assign spectral features characteristic 

of the parasite measured directly inside RBCs, such as DNA and lipid IR-bands. Confocal Raman 

microscopy was further used to obtain images of the parasite inside the RBC. Every pixel (0.3 µm x 
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0.3 µm) in the image contains a Raman spectrum. The AFM-IR spectra were used to identify 

potential marker bands of B. bovis infection to ultimately develop a simpler ATR-FTIR spectroscopy-

based method combined with chemometric data analysis for the detection of B. bovis. Partial least 

squares analysis (PLS-DA) was used to determine sensitivity (true positives/false negatives) and 

specificity (true negatives/false positives) of the method. Spectroscopic methods are quick, easy 

and reliable for detecting disease-induced phenotypic changes through characteristic molecular 

vibrations. In addition, the use of spectroscopic methods can also probe a range of molecules at the 

same time rather than focusing on only on a few biomarkers, as is the case with most phenotypic 

methods such as immunohistochemistry, for example. This means that even complex biological 

samples can be unraveled based on their biochemical fingerprint. Thus, ATR-FTIR might serve as a 

PoC non-subjective diagnostic tool that allows for a differential diagnosis of one disease in presence 

of another without the pre-requisite knowledge of a tick bite. This study serves as a proof of concept 

to detect bovine babesiosis and might potentially be adapted to human babesiosis as a rapid 

screening tool to increase the safety of blood transfusions.

Materials and methods

In vitro culture of Babesia bovis and sample preparation

Babesia bovis parasites were maintained in continuous in vitro culture in bovine RBCs suspended in 

HEPES-buffered RPMI-1640 with L-glutamine medium supplemented with Albumax II (1% w/v), 

hypoxanthine (300 µM) and sodium bicarbonate (2 g/L) as previously described.12 Parasites were 

cultured at 5% hematocrit in gassed (1% O2, 5% CO2 and 94% N2) sealed tissue culture flasks at 37°C. 

Cultures were diluted with fresh bovine RBCs approximately every 48 hours to maintain parasitemia 

below 10%.  Bovine RBCs used for culture were separated from serum, washed with Vega y Martinez 

Solution (VYMS)13 and stored at 4°C.
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These cultured bovine RBCs infected with B. bovis (6.8%–17.5% parasitemia) were centrifuged (2000 

x g, 5 min) and the supernatant (culture medium) was removed. The pellet (packed RBCs) was 

washed once with isotonic saline. Samples were then treated according to the specific needs of the 

technique (See following sections). 

AFM-IR

AFM-IR spectra were recorded on the NanoIR2 instrument (Anasys Instruments, Santa Barbara, CA 

93101, USA) using an optical parametric oscillator laser as a light source in the spectral range of 900 

to 1800 cm−1. The output power of the laser was aligned with the expected signal intensities 

according to the following scheme:

Wavelength 

region

Laser 

power

900 – 1500 cm−1 19.4%

1500 – 1600 cm−1 15.25%

1600 – 1700 cm−1 11.42%

1700 – 1800 cm−1 19.4%

IR Amplitude spectra were recorded with 4 cm−1 spectral resolution. 

IR maps were recorded with a scan rate of 0.07 kHz with a resolution of 200 points. Multispectral IR 

images were obtained by collecting several maps at different wavenumbers (940, 970, 1010, 1055, 

1079, 1106, 1130, 1237, 1353, 1457, 1550, 1656, 1720 and 1740 cm−1) at the same area and 

overlaying them in a self-written MATLAB tool. Topographic images were recorded simultaneously 

to the collection of the IR maps. 
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7

Confocal Raman microscopy

Hyperspectral Raman images were recorded using a confocal Raman microscope (WITec alpha300 

R, Melbourne, Australia) with an air-cooled solid-state laser operating at 532 nm as a light source 

with a grating of 600 grooves/mm (BLZ = 500 nm) and a back-illuminated CCD camera, which was 

cooled to −60 °C.  All measurements were controlled using the WITec Control Software and 

performed with a 100× dry objective (Olympus). 

Before spectra collection, a calibration was performed using the Raman scattering line of silica plate 

(520.5 cm−1). The spectra were collected in the spectral range from 0 to 4000 cm−1 with a resolution 

of 3 cm−1, an integration time of 10 s and a sampling density of 0.1 mm. 

Samples were smeared on a CaF2 crystal, creating a monolayer of RBCs, which were fixed by dipping 

the crystal in a solution of methanol. Then the crystal was placed on the AFM-IR instrument, and 

after locating the cells using the visible objective, AFM and AFM-IR along with single point spectra 

were acquired.  In total, 3 biological replicates were analyzed 5 cells were mapped and 150 spectra 

were obtained. Fore presentation we selected a representative image that clearly shows the 

parasite.

ATR-FTIR

ATR-FTIR measurements were carried out on a Bruker Alpha spectrometer (Bruker, Billerica, MA, 

USA), equipped with an ATR diamond accessory. It was set to a resolution of 6 cm−1 with 64 

interferograms co-added  per spectrum (background: 64 scans), a spectral range of 400–4000 cm−1 

and a data interval of 2 cm−1 was selected. Three measurement replicates were performed per 

sample. Background measurements were taken before each replicate.

For ATR-FTIR spectroscopy, the iRBCs were diluted with uRBCs, which have been spun down and 

washed to obtain final parasitemia of 0.0001%, 0.001%, 0.01%, 0.1%, 0.25%, 0.5%, 1%, 1.5%, 2%, 

and 3%. Each mixture (12 mixtures per concentration) was washed again with isotonic saline. For 
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samples of intact RBCs, three spots of each mixture were prepared on a glass slide using 5 µL each 

and allowed to dry in air. The drying step caused a decrease in the  water bands and an increase in 

bands associated to other biochemical compounds (proteins, lipids, carbohydrates and DNA).  

Samples were dried for a few hours until the contribution of water (bands at 3264 and 1632 cm-1) 

were negligible in the IR spectrum. 

For RBC lysis, 350 µL distilled water was added to 50 µL of packed RBCs. The mixtures were shaken, 

centrifuged (13,000 x g, 5 min) and the supernatant was removed. Four spots of each mixture were 

prepared on a glass slide using 7.5 µL each and allowed to dry in the air. 

Data analysis 

Data were analyzed in MATLAB (MathWorks, Natick, MA) using the PLS toolbox and a lab-written 

script in MATLAB (Gplotter) for image analysis. Each spectrum was smoothed or converted into its 

first or second derivative (Savitzky–Golay filter, smoothing), normalized (standard normal variate, 

SNV, or multiplicative scatter correction, MSC), Pareto scaled if applicable and mean centered. 

Sensitivity and specificity were calculated using partial least squares discriminant analysis. 

Partial least squares discriminant analysis

Partial least squares discriminant analysis (PLSDA) was performed using the PLS toolbox in MATLAB. 

Single point AFM-IR spectra were preprocessed (9 or 13 pt Savitzky–Golay smoothing (3rd order), 

SNV, mean centering) and spectral sets from three different AFM tip positions (on the parasite, on 

the body of the iRBC and on one uRBC) were discriminated. Spectra corresponding to pixels in 

hyperspectral Raman images were preprocessed (truncation of the region <400 cm−1, smoothing 15 

points Savitzky–Golay (2nd order), SNV, mean centering) and discriminated based on their 

localization (“parasite” and “cytoplasm”) on the cell. For ease of spectral interpretation, the second 
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derivative was assessed where the maxima of the original spectra become minima in the second 

derivative.

All ATR-FTIR data were corrected for potential background absorbance from water vapor. For this 

purpose, an independently recorded spectrum of water vapor (normalized for the band between 

3545.67 cm−1 and 3570.31 cm−1) was subtracted from the data. The pre-processed ATR-FTIR spectra 

of lysed samples (group 1: 0.001% to 0.1% parasitemia, group 2: 0.25% to 1% parasitemia) were 

analyzed over the three combined regions; the CH stretching region (2980–2800 cm−1), the ester 

carbonyl region (1800–1700 cm−1) and the carbohydrate region (1450–900 cm−1), while the spectra 

of intact RBCs (group 1: 0.01% to 0.1% parasitemia, group 2: 0.25% to 1%, group 3: 1.5% to 3% 

parasitemia) were analyzed in the fingerprint region (1800–900 cm−1). All spectra were 

preprocessed as shown in Table 1 and discriminated based on B. bovis infection.

Table 1

Sample Preprocessing Spectral regions (cm-1) Latent variables

Lysed 0.25%–1% 1st Der. (23 pt.) , MSC, 

PS, MC

3042.75–2804.59 

1784.18–1704.11 

1531.64–1016.3

6

Lysed 0.001%–

0.1%

2nd Der. (23 pt), SNV, PS, 

MC

3044.29–2804.11 

1792.09–1699.71 

1533.43–956.6 

4

Intact RBCs 1st Der. (23 pt,), SNV, MC 1802.61–1016.28 4
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10

Cluster Analysis

k-Means Cluster Analysis (kMCA) was performed using a lab-written tool in MATLAB (Gplotter) on 

the preprocessed (SNV) multispectral AFM-IR image (included wavenumber values: 940, 970, 1010, 

1055, 1079, 1106, 1130, 1237, 1353, 1457, 1550, 1656, 1720 and 1740 cm−1) and on the 

preprocessed (truncation of the region <400 cm−1, first derivative, 15 points  Savitzky–Golay 

smoothing (1st order), mean centering) on the hyperspectral Raman image.

Results

Phenotypic studies of Babesia bovis-infected RBCs

AFM-IR spectroscopy

A topographical map obtained by AFM (Figure 1A), was recorded before IR spectra were collected, 

showed two collapsed depressions in the iRBC (iRBC) that are indicative of the parasite in the RBC.14 

The same type of depression in the RBC was observed in Plasmodium spp.-infected human RBCs 

using AFM-IR and was explained by a destruction of the RBC cytoskeleton with a simultaneous 

increase in mesh size of the cytoskeletal network during schizogony of the parasite.15 The AFM 

probe tip was positioned directly on the region of the iRBC in direct contact with the intracellular 

parasite, on the cytoplasm of the iRBC, and on another uRBC and spectra were recorded (Figure 1A). 

1.5%–3%

Intact RBCs

0.25%–1%

1st Der. (23 pt,), MSC, 

MC

1782.08–1001.9 8

Intact RBCs

0.01%–0.1%

1st Der. (19 pt), SNV, PS, 

MC

1802.66–948.55 9
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11

Figure 1B shows the averaged spectra (n=26–27) from different tip positions. The most distinct 

differences were observed in the averaged spectra are between uRBCs and iRBCs, while spectra 

acquired from the cytoplasm of the iRBC and on the parasite containing region spectra appear 

similar. The amide I band, which is associated with mainly C=O stretching modes of the peptide 

group in proteins16 seems to be slightly more intense in the spectra from the cytoplasm surrounding 

the infected cells, while it is the weakest where the parasite is actually located. 16

In an IR spectrum, the phenotype is represented as a complex set of overlapped bands, making 

necessary the use of multivariate data analysis to extract the biochemical information.17 Two PLS-

DA models (Figure 1C) were developed: one discriminating the parasite within the cell from the 

surrounding iRBC cytoplasm (model 1); the other between iRBC cytoplasm and the uRBC (model 2). 

Figure 1: A: Topographic AFM map of one B. bovis-iRBC and one uRBC. Arrows indicate the 
positions on which IR spectra were recorded. B: Averaged IR spectra (9 smoothing points, vector 
normalized) acquired directly on the parasite from the iRBC and on the uRBC (red=from cytoplasm 
of iRBC, green=parasite, blue=uRBC). C: PLS-DA regression vectors (RV, upper panels) and 
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prediction plot (lower panels) showing the prediction against the position of the AFM-tip on the 
sample.    

The PLS-DA regression vectors (RV) shown in Figure 1C can be used to highlight differences between 

spectra taken from the parasite, from the cytoplasm of the iRBC and from the uRBC. The positive 

bands at 1652 cm−1 and 1540 cm−1 in RV1 and at 1640 cm−1 in RV2 match the amide I and amide II 

bands arising mainly from C=O stretching in the amide I band and a combination of N–H bending 

and C–N stretching modes in the amide II band.18 

The positive values in the carbohydrate region in RV1 might arise from alkyl group vibrations (at 

1300 cm−1) and vibrations from propionyl and higher ester groups in carbohydrates (at 1180 cm−1)19 

and demonstrate a higher absorbance from carbohydrates in the cytoplasm of the iRBC than the 

parasite directly. A comparison of the cytoplasm of the iRBCs and the uRBC shows a shift in the 

carbohydrate composition rather than a change in the total absorbance. 

The most remarkable differences between the two RVs, however, are the negative values around 

1720 cm−1 to 1740 cm−1 in RV1, which are assigned to a C=O stretching mode from ester carbonyl 

modes of lipids and the negative value at 1070 cm−1, which is tentatively assigned to a PO2
– 

stretching mode from nucleic acids. 

An inspection of the averaged spectra suggests that the difference between the iRBC cytoplasm and 

uRBCs is superior to the difference between the parasite and the iRBC cytoplasm. This corroborates 

the hypothesis that the parasite drastically modifies the overall chemical composition of the iRBC 

by utilization of cellular components such as carbohydrates, lipids and/or proteins. To further 

identify phenotypic characteristics of the parasite itself, we used AFM-IR to collect images of one 

single B. bovis-iRBC. Figure 2A shows the AFM topological image of a B. bovis-iRBC. Taking into 

consideration the PLS-DA RV, 14 individual wavenumber values were chosen for the collection of IR 

maps over the iRBC (940, 970, 1010, 1055, 1079, 1106, 1130, 1237, 1353, 1457, 1550, 1656, 1720 

and 1740 cm−1). These maps were registered spatially with a methodology previously described in 
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the literature20 resulting in a multispectral image. The average value of the intensity maps is shown 

in Figure 2B. The averaged map shows less intensity on the depression of the parasite. kMCA was 

performed on the multispectral image to determine the wavenumber values that show a higher 

abundance where the parasite is positioned inside the iRBC (Figure 2C). kMCA was able to identify 

4 classes. While classes 2 (C2, red) and 3 (C3, yellow) seem to be evenly distributed over the cell, 

class 1 (C1, blue) gathers along the upper edge of the cell and class 4 (C4, purple) appears in the 

area that was assigned to the parasite in the topographical image. Figure 2D shows the average class 

intensities for each of the selected wavenumber values, which contain information about the 

chemical composition of each class.

Figure 2: A: Topographic AFM image of one single B. bovis-iRBC. B: overlaid IR image. C: Classes 
obtained from kMCA on the multispectral IR image (class 1: blue, class 2: red, class 3: yellow and 
class 4: purple). D: average class intensities from kMCA on the multispectral IR image.

C1 has the strongest amide I (1656 cm−1) and amide II (1550 cm−1) bands. The amide II band is also 

strongly pronounced in C2 and C3, while C4 has the lowest value for this band.

The areas do not appear to differ in their lipid content as the ester carbonyl C=O stretching modes 

that appear around 1740 cm−1 seem relative consistent, though slightly higher in C1 and C3 and 
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slightly lower in C2. In the carbohydrate region, which includes vibrations from propionyl and higher 

ester groups in carbohydrates at 1179 cm−1,19 the intensity is higher in C1 and C2, while lower in C3 

and C4. 

Confocal Raman Microscopy

Raman microspectroscopy is a method complementary to IR absorption spectroscopy. In IR 

spectroscopy there must exist a change in dipole moment for the molecule to be IR active, while in 

the case of Raman active modes the dipole moment must be induced by the laser which changes 

the polarizability of the molecule or functional group. Therefore, molecules that are IR active are 

often Raman inactive and vice versa. Hyperspectral images of iRBCs were recorded using confocal 

Raman microscopy. kMCA was performed on preprocessed (first derivative, mean centering) 

spectra of one isolated B. bovis-iRBC (Figure 3).

Figure 3: A: Hyperspectral Raman image based on the integrated intensity of the band at 
1584 cm-1, B: kMCA cluster image, C: Probability of being parasite  for each pixel calculated by a 
PLSDA D: integrated average spectrum of each class E: PLS-DA regression vector. Here, the positive 
bands arise from molecules with abundance in the parasite, while the negative bands come from 
molecules that are substantial in the surrounding cytoplasm.

E
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Figure 3A shows the hyperspectral Raman image based on the integrated intensity of the band at 

1584 cm-1. PLS-DA was performed over all pixels in the hyperspectral image. Classes were manually 

selected from the image in Figure 3A and assigned to “parasite” and “cytoplasm” (spectra recorded 

from cytoplasm of the iRBC but not on the parasite itself).Figure 3B shows the UHCA for a single red 

blood cell infected with the Babesia bovis parasite using 5 clusters.  Figure 3C shows the probability 

with which each class is present in one pixel based on a value calculated from the PLS-DA prediction 

scores. The yellow (high probability) area confirms the presence of the parasite in the collapsed 

region of the image. Figure 3D shows the averaged spectra for each cluster. C5 (green) is more 

abundant where the parasite is located and around the edges of the RBC. There are some marked 

differences between the average class spectra. C5 has a lower intensity in the protein (1634 cm−1 

and 1584 cm−1) and fingerprint region (spectral region <1500 cm−1) of the spectrum; while the rest 

classes show stronger signal intensity in the protein region with strong bands at 1634 cm−1 and 1584 

cm−1, the latter being a classical heme band.21 Moreover, the parasite itself seems to have similar 

lipid content compared to the other classes because the averaged spectra of C5 have similar 

intensity to the other classes in the CH stretching region (>2800 cm−1), a region that is among others 

associated with symmetric CH3 stretching vibrations at 2929 cm−1 and asymmetric CH2 stretching 

vibrations at 2890 cm−1 of acyl chain lipids.22,21 

Detection of Babesia bovis-infected RBCs using ATR-FTIR spectroscopy

The infrared phenotypic studies show that not only the presence of the parasite in an iRBC is 

observed but also principal changes in the overall chemical composition of iRBCs emerge, which 

give rise to changes in the vibrational spectra. ATR-FTIR spectroscopy, on the other hand, is quick 

and easy to use and detects changes in a bulk sample rather than in individual RBCs. Therefore, this 

method serves as an optimal means to develop a PoC spectroscopy-based method for B. bovis 

diagnosis. 
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RBCs themselves show strong infrared absorbance arising from biological molecules such as 

membrane lipids, proteins and carbohydrates, a fact that can be easily overcome when single-cell 

measurements are performed. Thus, detecting a parasite in a bulk sample of RBCs means the 

detection of rather small changes in the composition of lipids, proteins and carbohydrates and the 

presence of parasitic products and DNA. To increase the sensitivity of the detection of in vitro 

cultured parasites in samples, we subjected RBCs to hypotonic lysis using distilled water. This causes 

the RBC membrane to rupture, thereby releasing the parasites and dividing the fraction into lysate 

and membrane fractions. Centrifugation and removal of the supernatant results in a high 

concentration of parasites with a reduced hemoglobin background from the red blood cell pellet 

and represents a truly novel approach to spectroscopic diagnosis of bovine babesiosis.  

ATR-FTIR spectra were recorded using B. bovis-iRBCs diluted with uRBCs to obtain a parasitaemia of 

0.25 to 1% (lower parasitaemias are shown in the SI) and compared to uRBC control. The chosen 

percentage matches parasitemia levels observed in infected cattle.23 B. bovis infection was 

predicted based on PLS-DA, which was applied to the spectra. Figure 4A shows the average ATR-

FTIR spectra of infected B. bovis-iRBCs
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Figure 4: A: Averaged vector-normalized ATR-FTIR spectrum of infected samples. B: Predicted 
infection for control versus 0.25 to 1% parasitemia.  C: Derived PLS-DA regression vector (first 
derivative  second derivative) that describes the spectral features responsible for the 
discrimination between lysed B. bovis-iRBCs and lysed uRBCs.

Changes in the humidity of the surrounding environment cause spectral bands from water vapor to 

appear in the FTIR spectra. Therefore, all recorded spectra were corrected for water vapor by 

subtracting an independently recorded spectrum of water vapor normalized to the band between 

3545 cm−1 and 3570 cm−1. Thereafter, spectra were pre-processed (spectral truncation, first 

derivative, SNV, scaling and mean centering) for chemometric data analysis.

The performance of the model to discriminate iRBCs from uRBCs was compared for spectra of lysed 

RBCs, dried onto a glass slide, to spectra of intact RBCs dried onto a glass slide (SI). PLS-DA of spectra 

of lysed RBCs with concentrations of 0.25%, 0.5% and 1% compared to uRBCs allowed for 

discrimination with a sensitivity of 92.0% and a specificity of 91.7% (Figure 4B). The sensitivity and 

specificity decreased to 77.3% and 79.2%, respectively, for samples of intact RBCs at concentrations 

between 0.25 and 1% parasitemia. For the lysed samples, spectral regions including the CH 

stretching region (3040–2800 cm−1), the ester carbonyl region (1800–1700 cm−1) and the DNA region 

(1450–900 cm−1) were analyzed. The PLS-DA RV (Figure 4C) was processed to the second derivative 

Page 17 of 28

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

to enable a more straightforward interpretation compared to first derivative spectra and contains 

information about differences in the chemical composition between the two classes. 

The RV shows spectral features from stretching vibrations of CH3 groups at 2950 cm−1 and of CH2 

groups at 2856 cm−1 that arise from asymmetric and symmetric vibrations, respectively. At 1766, 

1745 and 1729 cm−1, C=O vibrations from ester carbonyl groups from lipids or carbohydrates can be 

found. In the fingerprint region, the RV is in good agreement with the RVs from the AFM-IR study. 

The negative band at 1452 cm−1 is a C–H deformation mode of proteins and the band at 1415 cm−1 

arises from a C–N vibration from primary amides. Both are more pronounced in the controls. 

Between 1388 cm−1 and 1135 cm−1 C–H and C–O deformation and stretching vibrations from 

carbohydrates or lipids occur.19,24 These bands are partly more distinct in iRBCs and more intense in 

uRBCs. This suggests a shift in the carbohydrate and lipid composition rather than an increase or 

decrease of their amount. Biologically relevant bands are summarized in Table 2.

Table 2: Selected IR bands assigned to vibrations of biological molecules.

wavenumber (ATR-

FTIR)

wavenumber 

(AFM-IR)

Assignment classification

2950 cm−1  νasCH3 acyl chain lipids iRBC/parasite

2856 cm−1  νsCH2 acyl chain lipids iRBC/parasite

1766–1729 cm−1 1720 cm−1 ν C=O (lipids, ester 

carbonyl)

parasite

1452 cm−1 1452 cm−1 δC–H (proteins) parasite

1415 cm−1  δC–N (prim. amide, 

amide III)

iRBC

1388 cm−1 1388 cm−1 δC–H uRBC

1310 cm−1 1300 cm−1 alkyl groups uRBC

1265 cm−1  ν C–O iRBC

1224 cm−1  proteins, amide III or RNA 

νasPO2
−

uRBC
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1191 cm−1 1191 cm−1 ν C–O iRBC

1160 cm−1 1160 cm−1 ester groups 

(carbohydrates)

uRBC

1135 cm−1 1135 cm−1 C–H skeletal vibration iRBC
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Discussion

We applied spectroscopic imaging techniques to study B. bovis-induced phenotypic changes in 

parasite-iRBCs. The data obtained serve as a benchmark to establish an ATR-FTIR spectroscopy-

based tool for the rapid PoC diagnosis of Babesia infections. 

There are some technical considerations that should be taken into account when comparing ATR-

FTIR and AFM-IR spectra. The penetration depth of ATR-FTIR has been studied in depth 

previously25,26 and is defined as the depth at which the electric field falls to 1/E of its value at the 

surface. Considering the ATR measurement of RBCs using the conditions in this study (angle of 

incidence and refractive index of sample and diamond), the penetration depth (1-3 µm) is well 

above the thickness of an RBC. In addition, when the lysate of an RBC is considered, a homogenous 

solution is measured and the penetration depth becomes irrelevant. However, the use of AFM-IR is 

relatively new, and there is still not a consensus as to the actual “penetration depth” (i.e. which 

layers of sample below the tip contribute to the spectrum and how the contribution decays with 

depth) of the technique. Recent measurements of the Plasmodium spp. parasite20 have shown that 

the spectra contain contributions from different cell components such as hemozoin, hemoglobin or 

lipids. Most of these components are found below the cell membrane, indicating that the AFM-IR 

spectra represents to some extent the composition of internal organelles. The most pronounced B. 

bovis-induced phenotypic variation appears in the protein region (1700–1500 cm−1). In the 

topographic AFM image, the parasite manifests as depressions  in the RBCs (Figure 2A).14,27 This 

collapse might be explained by a reduction in the content of structural proteins on the surface of 

the iRBC around the parasite compared to the rest of the cell leading to weakening if the 

cytoskeleton, which is in agreement with the single point AFM-IR measurements in this study (Figure 

1). Comparison of AFM-IR single point spectra taken with the AFM tip on top of the parasite, on the 

cytoplasm of the iRBC and on the cytoplasm of one uRBC shows a lower intensity of the amide I and 

amide II bands in the parasite. The positive values in PLS-DA regression vector 1 (See figure 2c), 
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which compares the parasite area to the cytoplasm of the iRBC show a higher occurrence of proteins 

in the cytoplasm than directly on the parasite. 

Between the cytoplasm of iRBCs and uRBCs, a shift in protein secondary structure is indicated by a 

shoulder that appears at 1512 cm−1 in uRBCs that is not present in iRBCs. Furthermore, the amide I 

and amide II bands assigned in the PLS-DA regression vector 2 that contains information about 

differences in the chemical composition between iRBCs and uRBCs are both shifted towards lower 

wavenumber values, which indicate a higher abundance of proteins with β-sheet secondary 

structure in iRBCs. The positive values in regression vector 2 with a slight wavenumber shift 

indicative of protein secondary structural changes in iRBCs compared to uRBCs.28 This is in 

agreement with the observations in the averaged spectra in Figure 1B and can be explained by a 

decrease of the relative content of hemoglobin in iRBCs in favor of proteins excreted by the parasite. 

KMCA of the AFM-IR image identified 4 classes and shows lower intensity of the amide I and amide 

II bands in class 4, which clusters around the parasite. The amide I and amide II bands in class 1 

(blue, Figure 2) class 1 can be attributed to a high hemoglobin concentration in this region. The 

amide II band is also strong in class 2 (red, Figure 2) and class 3 (yellow, Figure 2), while class 4 

(purple, Figure 2) has the lowest value, which is coherent with the assumption that less protein is 

present around the parasite. 

kMCA of the hyperspectral Raman image identified 5 classes. In the averaged spectra of class 5 

(green, Figure 3), which corresponds to the parasite, a shortfall of spectral features associated with 

proteins, is found. This especially evident with the 1584 cm−1 band assigned to heme .21 

PLS-DA was performed over all pixels in the image assigning one class as “parasite” and one as 

“cytoplasm” to further establish the spectral differences between the parasite and the cytoplasm 

of the iRBC. The classes were discriminated based on spectral features shown in the regression 

vector, which showed a lower intensity of the heme band at 1584 cm−1 in the parasite. This band 

arises from molecular vibrations of hemoglobin that is observed to be less abundant in the location 
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of the parasite. This can be assigned to lower hemoglobin content and, analogous to the 

interpretation of the AFM-IR data, to a decrease in structural proteins that lead to a collapse of the 

cytoskeleton in the cell. This corroborates the finding that in Plasmodium sp.-infected human RBCs, 

the spectrin and actin junctions in the cell membrane are disrupted, which leads to dismantlement 

of the cytoskeleton15. This supports the view that collapse of the cell in the position of the parasite 

that we observed can be explained by disruption of the RBC cytoskeleton by the presence of the 

Babesia parasite. 

Besides the lower protein content in the parasite, there seems to be a higher abundance of lipids. 

This is implied, on the one hand, by the stronger intensity of bands around 1720–1740 cm−1 (C=O 

stretching mode of triacyl esters) in the PLS-DA regression vector from AFM-IR single point 

measurements. On the other hand, the intensity of Raman signals in the lipid region (CH-stretching 

vibrations at >2800 cm−1) stays approximately the same as opposed to the protein region. Cluster 

analysis confirms this assumption as class 5 (green, Figure 3) is distributed in the parasite as well as 

around the edges of the cell, where membrane lipids are present. The positive loadings in the PLS-

DA regression vector 1 from AFM-IR single point analysis in the carbohydrate region (1300 and 1180 

cm−1) along with the higher intensity of the same band in class 1 and class 2 from the cluster analysis 

indicates a lower abundance of carbohydrates in the parasite. 

The information from phenotypic studies was used to develop a spectroscopy-based method for B. 

bovis diagnosis. In combination with chemometric data analysis, ATR-FTIR spectroscopy allows for 

the discrimination between B. bovis iRBCs (0.25-1% parasitemia) and control uRBCs. Again; a 

combination of spectral regions that are associated with biological molecules was considered. While 

protein bands were observed to have less intensity in the infected samples, which is in accordance 

with the findings from phenotypic imaging, a shift in the carbohydrate and lipid bands was also 

observed. However, including the amide I and amide II bands that are characteristic for proteins in 
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the analysis, deteriorated PLS-DA results using spectral data acquired from lysed samples. This might 

be attributed to an irreproducible denaturation of the proteins when the sample is treated with 

distilled water. The PLS-DA regression vector from ATR-FTIR (Figure 4) studies is in good agreement 

with regression vector 2 from the AFM-IR study (Figure 1) that compares spectral features of the 

cytoplasm of iRBCs to spectral features of the cytoplasm of uRBCs, while less agreement can be 

found between the regression vectors from the ATR-FTIR and the AFM-IR study where spectral 

features from the parasite itself were compared with those from the cytoplasm of iRBCs. The C=O 

ester carbonyl stretching vibration from lipids appearing around 1720 to 1740 cm−1 is strongly 

pronounced in the parasite as found by single point measurements of a single iRBC. This finding is 

confirmed by the stronger signal from this band in the negative RV values from PLS-DA on ATR-FTIR 

data that represent the infected samples. Hence, infected samples seem to have a higher lipid 

content compared with uninfected samples, which might be attributed to the parasitic membrane 

and to possible lipid contributions from the numerous internal parasite organelles containing a 

membrane. This is consistent with previous studies characterizing the lipid composition of iRBCs.29-

31 The same applies for the C–H deformation mode from proteins at 1452 cm−1, which is more 

intense in infected samples as seen from the ATR-FTIR RV and is correlated with the parasite in 

regression vector 1 from AFM-IR measurements. 

The C–H deformation mode at 1388 cm−1, the alkyl group vibrations around 1300 cm−1 and the ester 

group vibrations of carbohydrates at 1160 cm−1, on the other hand, show positive values in the ATR-

FTIR RV and account for control samples, and are characteristic for uRBCs from single point AFM-IR 

measurements. The C–O stretching vibration at 1191 cm−1 and the C–H skeletal vibration at 1135 

cm−1 show negative values in the ATR-FTIR RV and account for infected samples, as well as 

representing the uRBC from single point AFM-IR measurements. A direct comparison between the 

regression vectors (Figure S1, SI) shows the strong agreement between the ATR-FTIR RV with 

regression vector 2 from the AFM-IR study that compares spectral features of the cytoplasm of iRBCs 
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to spectral features of the cytoplasm of uRBCs. This suggests that changes of the overall chemical 

composition of the RBC cytoplasm are more important for discrimination between infected and 

uninfected cells than spectral features of the parasites themselves.

In ATR-FTIR, the C–H stretching region (2800 to 3100 cm−1) was also taken into consideration. Here, 

a shift in the spectral bands is possibly associated with an increase of phosphatidylcholine and 

decrease of sphingomyelin in B. bovis infected samples.29 Moreover, more short lipid acid chains 

seem exist to in the infected sample than in the uninfected control, as the CH2/CH3 ratio is smaller 

in infected samples (Table 2).32

In summary, the attribution of changes in the chemical composition to specific IR and Raman bands 

appears challenging. Nevertheless, taking into account the overall spectral changes that observe all 

features over the whole spectral range combined allows for clear assessment of B. bovis infection. 

One of the major strengths of spectroscopy as a diagnostic tool is that not only one biomarker is 

detected, but even small shifts in the chemical composition of positive and negative samples can be 

detected, when a broad spectral range is considered.

Conclusions

The application of imaging techniques provided information about changes in the chemical 

composition between B. bovis infected and uninfected samples. AFM-IR with three different tip 

positions (on the parasite, on the surrounding cytoplasm of the iRBC and on the uRBC) revealed that 

differences between IRBCs and uRBCs are superior to the differences between the parasite and the 

cytoplasm of the iRBC. This is in agreement with the hypothesis that the parasite drastically modifies 

the overall chemical composition of the RBC by the utilization of blood components such as 

carbohydrates or proteins leading to a destruction of the cytoskeleton followed by a collapse of the 
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iRBC. The kMCA image could be superimposed on the AFM image and shows what bands are 

associated with parasite and cytoplasm in an iRBC. The main difference noted was a reduction of 

protein in the presence of the parasite, which is not surprising given the lack of hemoglobin in the 

region of the parasite.

Based on the above phenotypic studies, the utility of ATR-FTIR spectroscopy for B. bovis diagnosis 

was established. As ATR-FTIR on blood samples is usually hampered by the background absorbance 

of blood components, blood samples were lysed thereby isolating parasite and membrane 

components. This increased the detection sensitivity to 92.0% for 0.25% parasitemia, which is in the 

physiological range of parasite levels in the blood of infected cattle,23 demonstrating the possibility 

to translate ATR-FTIR as a simple and quick diagnostic tool in the field. A diagnostic tool that does 

not require specific biomarkers, but looks into changes of the overall chemical composition of a 

blood sample permits diagnosis without a symptomatic diagnosis. As B. bovis and B. bigemina can 

co-exist in a single bovine, future ATR-FTIR studies addressing the differential diagnosis among those 

two diseases are planned in our lab.
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