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ABSTRACT: The estimation of steatosis in a liver graft is mandatory prior to liver transplantation, as the risk of graft failure 
increases with the level of infiltrated fat. However, the assessment of liver steatosis before transplantation is typically based on a 
qualitative or semi-quantitative characterization by visual inspection and palpation, and histological analysis. Thus, there is an 
unmet need for transplantation surgeons to have access to a diagnostic tool enabling an in situ fast classification of grafts prior 
extraction. In this study, we have assessed an Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopic 
method compatible with the requirements of an operation room, for the evaluation of the lipid contents in human livers. A set of 20 
human liver biopsies obtained from organs intended for transplantation were analyzed by expert pathologists, ATR-FTIR 
spectroscopy, lipid biochemical analysis, and UPLC-ESI(+/-)TOFMS for lipidomic profiling. Comparative analysis of multi-source 
data showed strong correlations between ATR-FTIR, clinical and lipidomic information. Results show that ATR-FTIR captures a 
global picture of the lipid composition of the liver, along with information for the quantification of the TAGs content in liver 
biopsies. Although the methodology performance needs to be further validated, results support the applicability of ATR-FTIR for 
the in situ determination of the grade of liver steatosis at the operation room as a fast, quantitative method, alternative to the 
qualitative and subjective pathological examination.

1. INTRODUCTION
Liver transplantation has become the therapy of choice for 

patients with irreversible end-stage liver diseases, being a 
lifesaving procedure for patients with acute liver failure1. The 
great success of this surgical procedure has led to an 
increasing demand for transplantable organs and a shortage of 
donor grafts to meet the demand which has led surgeons to 
consider suboptimal grafts. One of the most common disorders 
occurring in liver donors is non-alcoholic hepatic steatosis 
(NAFLD). Liver steatosis is typically characterized by the 
macro or microvesicular accumulation of lipid droplets within 
the cytoplasm2 in the absence of a secondary contributing 

factor such as excess alcohol intake, viral infection, or drug 
treatments3.

NAFLD is a challenging and multisystem disease that 
affects 25% of the global population4. It is qualitatively and 
semi-quantitatively evaluated by histological analysis under 
light microscopy of an extemporaneous biopsy. Thus, the 
surgeons extracting team at the site of organ donation, take the 
organ, prepare and preserve it for transportation to the hospital 
where the transplantation will take place, and while the 
recipient is being prepared for the surgery, the pathologist 
examines the graft to decide about its suitability. One of the 
reasons for rejecting the liver is an excess of fat accumulation. 
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Steatosis is nowadays highly prevalent, and the vast majority 
of liver donors do display this to a certain extent. Beyond a 
50% volume of fat deposition within the cell, a liver graft 
tends to be rejected, and the operation has to be discontinued 
with the economic loses and the discomfort for the potential 
recipient. A way to minimize this would be an early estimation 
of the degree of steatosis, ideally at the site of organ 
extraction. The gold standard for the assessment of hepatic 
steatosis is a histological analysis by a pathologist describing 
semi-quantitatively the percentage of volume of hepatocytes 
containing lipid droplets in the cytoplasma2. Four grades of 
liver steatosis based on the percentage of fat within the 
hepatocytes have been proposed: grade 0 (no steatosis, <5%), 
grade 1 (mild, 5%-33%), grade 2 (moderate, 34%-66%), and 
grade 3 (severe, >66%)3. Histopathology also provides 
additional information about the occurrence of macro- or 
micro-steatosis, inflammation, ballooning degeneration and 
fibrosis. However, intra- and inter individual variability in 
interpreting images, the inconsistency of staining techniques, 
and sampling size errors may lead to a misrepresentation of 
the extent of steatosis. An additional limitation is that 
histological analysis does not provide information on the 
chemical composition of the lipids. Steatosis can also be 
graded by ultrasound or macroscopic evaluation during 
deceased donor procurement, but a previous study carried out 
in explanted, but not transplanted livers, showed that these 
procedures were not reliable5. Also, imaging techniques such 
as computed tomography or magnetic resonance imaging are 
rarely applicable to dead donors. Thus, there is an unmet need 
for transplantation surgeons to have analytical methods 
enabling a fast, in situ grading of liver steatosis prior to 
extraction.

Metabolomic characterization of lipid and phospholipid 
profiles using liquid chromatography – mass spectrometry 
(LC-MS) has shown that steatotic livers present high levels of 
cholesterol ester, diradylglycerols (DAGs), triradylglycerols 
(TAGs), free fatty acids, sphingolipids, and other lipids such 
as acylcarnitines and cardiolipins, compared to non-steatotic 
livers. On the contrary, certain phospholipids have lower 
concentrations in steatotic livers. Also, LC-MS and high-
resolution magic-angle-spinning nuclear magnetic resonance 
based metabolomics have been used for the search of 
metabolomics signatures of graft dysfunction to forecast the 
outcomes before transplantation6,7. In spite of their relative 
high sensitivity and specificity, these techniques require time-
consuming sample preparation and analysis, as well as data 
processing steps.

Fourier Transform Infrared (FTIR) spectroscopy is a 
label‐free, non-destructive and cost-effective technique that 
provide molecular fingerprints of biological samples8. IR 
absorption can be associated with the concentration of 
biomolecules9 (e.g., lipids, phospholipids, DNA, glycogen, 
proteins), informing on the global biochemical status of the 
cells within the tissue which could be exploited to evaluate 
tissue status and organ suitability10. FTIR-microspectroscopy 
has been proposed to grade steatosis on frozen tissue sections 
using standard11 and synchrotron radiation12,13 identifying 
differences in gluconeogenesis, glycolysis, and lipogenesis 
activities based on sugar and lipids contents in hepatocytes. 
FTIR spectra of unstained, frozen human liver tissue sections, 
acquired using a microscope, and Attenuated Total 
Reflectance (ATR)-FTIR spectra of frozen tissue sections 
deposited on a regular glass slide, showed that the average 

lipids/proteins ratio measured by IR spectroscopy was linearly 
associated with the concentration of TAGs measured by gas 
chromatography-mass spectrometry10. ATR-FTIR was also 
recently used to quantify the degree of steatosis in freeze-dried 
liver tissue of a mouse model using the histological evaluation 
of liver sections as reference14. 

This study was undertaken as a proof of concept to evidence 
the potential of ATR-FTIR spectroscopy for rapid 
determination of the grade of liver steatosis and the lipid 
composition of human liver samples. Using reference 
information obtained from expert pathologists, total TAGs 
concentrations and LC-MS lipidomic profiles, our results 
demonstrate an excellent performance of dry film ATR-FTIR 
for a direct quantification of the TAGs content in liver 
biopsies, offering information to estimate relative lipid and 
phospholipid contents, and for the determination of the grade 
of liver steatosis. Further research will aim at the assessment 
of the applicability of ATR-FTIR for the in situ analysis of 
human livers at the operation room. 

2. MATERIALS AND METHODS
Standards and reagents
LC-MS grade acetonitrile, isopropanol (IPA), methanol, and 

methyl tert-butyl ether (MTBE) were obtained from Scharlau 
(Barcelona, Spain) and formic acid (≥95%), and ammonium 
acetate (≥98%) from Sigma-Aldrich Química SL (Madrid, 
Spain). Ultra-pure water was generated employing a Milli-Q 
Integral Water Purification System (Merck Millipore, 
Darmstadt, Germany).

Samples
A total of 20 liver tissue samples were obtained from the 

Human Liver Collection at the BioBank of the University and 
Polytechnic Hospital La Fe (Valencia, Spain). This collection 
comes from donor livers which were primarily assigned to 
liver transplantation but, due to failings in some of the 
inclusion criteria (e.g. steatosis) they were donated to research. 
Liver samples were analyzed and classified according to 
histological information, the % macro and microsteatosis and 
the visual examination of the graft as 1: no steatosis; 2: low-
intermediate steatosis; 3: intermediate-high steatosis; 4: high 
steatosis. The use of these samples for research purposes was 
approved by the Ethics Committee for Biomedical Research of 
the Health Research Institute La Fe (Valencia, Spain) 
(approval number 2014/0247).

Quantification of TAG in samples
A portion of 15-20 mg frozen liver tissue and 450 μL water 

were introduced in a 2 ml polypropylene tube containing 
CK14 ceramic beads (Precellys, France) for tissue 
homogenization (2 homogenization cycles of 25 s, 6,000 rpm, 
5 ⁰C) in a Precellys 24 Dual system. 400 μL were collected 
and mixed with 500 μL CH3OH and 1 mL CHCl3. The sample 
was homogeneized (vortex, 30 s), left on ice for 10 min, and 
centrifuged at 10,000 x g (15 min, 4°C). The lipid phase 
(CHCl3) was collected, centrifuged (10,000 x g, 15 min, 4°C), 
evaporated to dryness and re-dissolved in 40 μL isopropanol. 
Total TAGs content was analyzed with a colorimetric kit 
(Spinreact, Barcelona, Spain). The TAG concentration in the 
sample was expressed as μg/mg protein15. 

ATR-FTIR analysis
Infrared spectra in the 3000 to 700 cm-1 range were acquired 

using a ReactIR15 FTIR (Mettler-Toledo, Columbus, USA) 
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spectrometer equipped with a liquid nitrogen-refrigerated 
mercury–cadmium–telluride detector. No purge system was 
required. Measurements were made using an AgX probe (9.5 
mm x 1 m) accessory equipped with a diamond sensor 
composite (DiComp™) and a ZnSe focusing element for ATR, 
to simulate future experimental conditions in the operation 
room. A portion of ~5 mg of the liver sample was deposited in 
the center of the ATR crystal for the acquisition of the FTIR 
spectra of the tissue co-adding 256 scans with a resolution of 4 
cm−1. For the spectral acquisition of the dry film, a portion of 
~5 mg of liver sample was deposited in the center of the ATR 
crystal and left for 15 s. Then, the sample was removed and 20 
s after its removal, a spectrum of the dry residue was collected 
co-adding 256 scans with a resolution of 4 cm−1. A spectrum 
of air previously recorded using the same instrumental 
conditions was used as background. The total measurement 
time was ~4 min/sample. After each measurement, the ATR 
surface was cleaned using a cotton swab and H2O, 
isopropanol, CH3OH and H2O consecutively until recovery of 
the baseline signal. Spectral acquisition order was randomized 
to avoid biased results due to instrumental effects, but sample 
replicates were measured in a row to avoid additional tissue 
freeze and thaw cycles. 

Lipidomic analysis
A portion of 20-40 mg frozen tissue was mixed with 

CH3Cl:CH3OH (2:1) (20 µl/mg tissue) in a 2 ml polypropylene 
tube containing CK14 ceramic beads (Precellys, France) for 
tissue homogenization (3 homogenization cycles of 40 s at 
6,000 rpm and 5 ⁰C, with pauses of 30 s between cycles) in a 
Precellys 24 Dual system (Precellys). Homogenates were 
collected and transferred to clean microcentrifuge vials for 
centrifugation (13,000 x g, 10 min, 4 ⁰C). Then, the 
supernatant was collected and 4 µl H2O/mg tissue were added. 
The mixture was homogenized (vortex, 20s) and centrifuged 
(2,000 x g, 5 min, 4C). The organic phase was withdrawn and 
evaporated to dryness (SpeedVac). The residue was dissolved 
in 150 µl (1:1) (5:1:4 IPA:CH3OH:H2O, 5 mM CH3COONH4, 
0.1% v/v HCOOH):(99:1 IPA:H2O, 5 mM CH3COONH4, 
0.1% v/v HCOOH). A blank extract was prepared following 
the same procedure but replacing tissue samples with water. 
For quality control, 10 μL of each sample extract were pooled 
in a glass vial to create a quality control (QC) sample.

Untargeted metabolomic analysis was carried out employing 
a 1290 Infinity ultra performance liquid chromatograph 
(UPLC) system from Agilent Technologies (CA, USA) 
equipped with a UPLC BEH C18 column (50 x 2.1 mm, 1.7 
µm) from Waters (Wexford, Ireland). Full scan MS and MS2 
data in the range between 50 and 1500 m/z were acquired 
using an Agilent 6550 Spectrometer iFunnel quadrupole time-
of-flight (QTOF) MS system. Samples were analyzed in two 
independent batches using positive and negative electrospray 
ionization (ESI+/-). Two blanks and nine QC replicates were 
injected at the beginning of each sequence for system 
conditioning and MS2 data acquisition. Then, the sample batch 
including 20 liver samples in randomized order, 5 QCs (1 QC 
every 5 samples) and 5 blanks (2 before the first, and 3 after 
the last QC replicate) was analyzed. Blanks and QCs were 
used to monitor the instrument performance, correct within-
batch effects, and identify unreliable, background, and carry-
over features as described elsewhere16,17. Iterated data 
dependent acquisition (DDA), in which MS2 spectra were 
acquired in consecutive QC replicates using untargeted DDA 

in the [70-200], [200-400], [400-600], [600-800], [800-1000], 
[1000-1250], and [1250-1500] Da ranges, was employed. 

Peak table generation was carried out using XCMS18. The 
centWave method was used for peak detection with the 
following parameters: mass accuracy, 20 ppm; peak width, 
(3,15); snthresh, 50; prefilter, (5,3000); minimum difference in 
m/z for overlapping peaks, 10 mDa. Intensity weighted m/z 
values of each feature were calculated using the wMean 
function. Peak limits used for integration were found through 
descent on the Mexican hat filtered data. Grouping before and 
after RT correction was carried out using the nearest method 
and 9s as rtCheck argument and mzVsRTbalance = 5. Missing 
peaks were filled by reintegrating the raw data files using the 
fillPeaks method. The XCMS CAMERA package was used 
for the identification of pseudospectra across samples using 
xsAnnotate, groupFWHM, findIsotopes, groupCorr and 
findAdducts using standard parameters.

Automatic metabolite annotation was carried out as 
described elsewhere19 using the following parameters: spectral 
libraries: HMDB (www.hmdb.ca) and LipidBlast; m/z 
accuracy in both, precursor and fragment ions (5 mDa); weight 
of m/z and intensity for the calculation of the dot product and 
reverse dot product20 (in this study, m=1.2 and n=0.9 for dp 
and rdp, respectively); minimum number of matching ions in 
the experimental and reference spectra: 3; absolute and 
relative intensity thresholds in the MSMS spectra: 0.01% of 
the base peak and 200 AU; minimum mean dot product: 0.75. 
Metabolite annotation using LipidBlast  was carried out using 
LipiDex using 0.01 Da tolerances in both MS (precursor) and 
MS2 (fragment) data20.

Software 
Data acquisition and manual peak integration were carried 

out employing MassHunter Workstation (Agilent, version 
B.07.00). Raw data (.D) was converted into mzXML format 
using ProteoWizard (http://proteowizard.sourceforge.net/). 
Peak detection, integration, deconvolution, alignment and 
pseudospectra identification were carried out using XCMS and 
CAMERA in R 3.6.1. Principal Component Analysis (PCA) 
and Partial Least Squares (PLS) regressions were carried out 
in MATLAB 2020a (Mathworks Inc., Natick, USA) using in-
house written scripts and the PLS Toolbox 8.7 (Eigenvector 
Research Inc., Wenatchee, USA). MATLAB scripts for Joint 
and Individual Variation Explained (JIVE) analysis were 
obtained from http://genome.unc.edu/jive. The LC-MS 
annotated peak table, ATR-FTIR and clinical data, MATLAB 
data and a .mlx MATLAB script are accessible at the Zenodo 
repository (DOI:10.5281/zenodo.3906954).

3. RESULTS AND DISCUSSION
Data overview
Figure 1 shows the ATR-FTIR spectra in the 1800-800 cm-1 

range of four samples obtained during liver procurement for 
organ transplantation. Spectra were acquired after positioning 
each liver sample on top of the ATR surface (Figure 1A), and 
after removing the sample and waiting 20 s for the generation 
of the dry residue (Figure 1B). The figure also shows the 
spectra after standard normal variate (SNV) normalization 
using the standard deviation of each spectrum as normalization 
factor (see Figure 1C-D). In all cases, the main spectral 
contributions were derived from proteins, carbohydrates, 
phosphate bands from phospholipids, DNA and RNA, and 
lipids. Minor band shifts were observed between the spectra of 
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hydrated and dry samples. The intense and broad bands of 
water in the spectra of hydrated liver tissue samples strongly 
overlaps with other bands in the 1600-1700 cm-1 region, 
reducing the signal to noise ratio, and the repeatability of the 
measurements. Besides, previous works have reported that the 
extinction coefficients for the bands associated with the 
nucleic acids change with the hydration state, being assumed 
that similar effects could be valid for other 
biochemicals21,22,23. 

The bands at 1650 cm-1 (protein amide I), 1547 cm-1 
(protein amide II), and 1309 cm-1 (protein amide III)24 could 
be discerned in the absorbance spectrum of dry residues.

Figure 1. ATR-FTIR spectra of four liver tissues with 
different TAG concentrations in the 1800-800 cm-1 range. 
Spectra were acquired after positioning each liver sample on 
top of the ATR surface (A), and after removing the sample and 
waiting 20 s for the generation of the dry residue (B). Panels C 
and D show the A and B spectra after SNV normalization, 
respectively.

Characteristic bands associated with lipids at 1749 cm-1 
(saturated ester C=O stretch from lipids and cholesterol 
esters), and 1456 cm-1 (CH2 bending of lipidic acyl chains), 
1402 cm-1 (COO- symmetric stretch of fatty acids and amino 
acids) were also present in the spectra. Furthermore, the 1300-
900 cm-1 region contains overlapped bands from C-O and P-O 
stretching modes from lipids, phospholipids, carbohydrates 
and nucleic acids. Bands at 1240 cm-1 (PO2

- antisymmetric 
stretch from phospholipids25 and nucleic acids23) and 1081 cm-

1 (PO2
- symmetric stretch from phospholipids and nucleic 

acids) could be appreciated, as well as glycogen bands26,27 at 
1156 cm-1 (CO-O-C antisymmetric stretching of glycogen and 
nucleic acids) and 1027 cm-1 (C-O stretching of glycogen). 
The glycogen band at 1040 cm-1 overlap with the PO2- band at 
1081 cm-1. Lipid bands at 2979 cm-1 (CH3 asymmetric 
stretching), 2930 cm-1 (CH2 antisymmetric stretch), and 2880 
cm-1 (CH2 symmetric stretch) showed low signal to noise ratio 
due to the intense absorption of the probe (AgX) in that region 
and were not displayed in Figure 1.

Figure 2. PCA scores (A,C) and loadings (B,D) plots obtained from the analysis of UPLC-TOFMS (top) and ATR-FTIR 
(bottom) data. Color scale in the scores plots indicates the reference TAGs concentration (µg/mg protein).

The comprehensive analysis of the hepatic lipidome is 
challenging. Nonetheless, the employed strategy for the 
lipidomic analysis of liver extracts by UPLC-TOFMS enabled 
the annotation of the major lipid classes (e.g.  
glycerophospholipids, glycerolipids, fatty acyls or 
sphingolipids) and subclasses (e.g. TAG, 
glycerophosphoethanolamines, glycerophosphocholines, 
glycerophosphoglycerols, or ceramides) constituents of liver 
(see Figure S1). Each of the 538 annotated features was 

linearly correlated to the reference hepatic TAGs 
concentrations to get an overview about those changes in the 
lipidome associated with the grade of steatosis. Based on the 
ratio of annotated features with a statistically significant (p-
value<0.05) linear association, four subclasses were inversely 
correlated to the TAGs content 
(glycerophosphoethanolamines, glycerophosphocholines, 
glycerophosphoinositoles, and glycerophosphoserines). On the 
other hand, triradylcglycerols, diradyglycerols, fatty alcohols 
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5

and linoleic acids and derivatives were mostly positively 
correlated to the reference TAGs concentrations (see Table 1)

Association between the ATR-FTIR spectra and the 
lipidomic profile.

The UPLC-TOFMS lipidomic and ATR-FTIR data sets 
were analyzed with PCA. Regarding the analysis UPLC-
TOFMS data, the first two principal components (PCs) 
accounted for 16.4% and 14.4%, of the total variation in the 
autoscaled dataset, respectively. PC1 was associated with the 
relative TAGs content, indicating that this was one of the main 
sources of variation (see Figure 2A). Figure 2B shows the 
loadings plot with metabolites labelled according to their class 
for better visualization (a detailed version of the same plot 
displaying the subclasses can be found in the Figure S2).

The loadings plot indicated that glycerolipid (mainly TAGs 
and DAGs) and glycerophospholipid concentrations were 
inversely correlated, and that the ratio 
glycerolipids/glycerophospholipids was highly associated with 
the first PC. Distribution of samples along PC2 was partially 
linked to the relative concentrations of sphyngolipids, steroid 
and steroid derivatives and a group of glycerophospholipids 
with low loadings in PC2. 

Table 1. Number of features (N) annotated according to 
the lipid class, and number of features showing a 
statistically significant positive (N+) or negative (N-) linear 
correlation with the TAGs content. Note: only subclasses 
with at least four annotated features were included. GPLs: 
Glycerophospholipids; GPEs: 
Glycerophosphoethanolamines; GPCs: 
Glycerophosphocholines; GPGs: Glycerophosphoglycerols; 
GPIs: Glycerophosphoinositols
Class Subclass N N+ N-

GPLs GPEs 80 2 5
Glycerolipids Triradylcglycerols 63 18 7
GPLs GPCs 60 1 6
GPLs GPGs 60 4 2
Sphingolipids Ceramides 59 2 0
Glycerolipids Diradylglycerols 32 19 1
GPLs GPIs 31 0 13
GPLs Plasmenyl 31 2 6
Fatty acyls Fatty acid esters 22 0 1
GPLs Glycerophosphoserines 17 0 5
Sphingolipids Glycosphingolipids 7 0 1
Fatty acyls Fatty alcohols 6 3 0
Fatty acyls Lineolic acids and deriv. 6 4 0
Steroids and deriv. Cholestane steroids 4 1 1
Steroids and deriv. Stigmastanes and deriv. 4 0 1

Figure 2C depicts the scores of the PCA model of the mean 
centered, normalized, derivative ATR-FTIR dataset. The use 
of the ATR-FTIR second derivative spectrum reduces the 
signal to noise ratio but it also eliminates spectral baseline 
shifts and enables a more specific identification of overlapping 
bands than in the original spectrum, thereby improving the 
specificity of the spectral analysis. PC1, accounting for 79.4% 
of the total variation, was again associated with the TAGs 
contents. Figure 2D showed that spectral regions associated 

with lipid and phospholipids centered around 1749 and 1456 
cm-1 presented higher loading values PC1. Considering the 
PCA was performed over the second derivative of the spectra, 
this implies that negative PC1 score values should be 
correlated with higher absorbance in these regions and hence 
with larger TAG content. This is in good agreement with 
results depicted in Figure 2C, showing an increasing of the 
TGAs levels when the PC1 score value decreases. The bands 
centered around 1152 and 1040 cm-1 attributed to glycogen 
and phospholipids showed high loadings in the second PC. 
Exploratory analysis by PCA pinpointed the glycerolipids 
concentration as one of the main sources of data variation and 
showed similar distributions of the samples in the PC1-PC2 
scores space as those observed in the scores plot of UPLC-
TOFMS data shown in Figure 2A. The Mantel test28 was then 
applied to evaluate the correlation between the PCA scores 
plots obtained using ATR-FTIR and UPLC-TOFMS data. This 
test evaluates the significance of the correlation between 
pairwise distance matrices. In this study, the standardized 
Euclidean multivariate distances between matched sample 
pairs were used. The statistical significance of the Mantel test 
distance (r) was determined by a permutation test (10000 
permutations). Results obtained demonstrated that both data 
sets were significantly related to each other (r = 0.30, p-
value<0.001), showing the suitability of ATR-FTIR to capture 
complex biochemical information from liver samples.

JIVE is a chemometric approach suitable for the integration 
of multi-source data obtained from the same samples29. The 
algorithm identifies and separates the shared patterns among 
data sets (i.e. the joint structure, J) from the individual 
structure (A) of each data set that is unrelated to the joint 
structure. Here, JIVE split the data variation into low-rank 
approximations capturing variation across the ATR-FTIR and 
MS data sets (J), structured variation individual to ATR-FTIR 
and MS data sets (AIR and AMS), and the residual variations 
(EIR and EMS). After the selection of the ranks of J (r=2), AIR 
(r=3) and AMS (r=6) (significance threshold α=0.05, 
permutations: 1000, convergence threshold: 10-9), the joint 
structure accounted for the 38% and 24% of the ATR-FTIR 
and MS variation, respectively, and the individual structures 
accounted for the 52% and 52% of the total variation in ATR-
FTIR and MS, respectively (see Figure S3). The large 
contribution in J from ATR-FTIR data was in agreement with 
previous observations indicating that major changes in the 
liver composition observed by UPLC-TOFMS can be detected 
by ATR-FTIR.

Figure 3. Correlations of LC-TOFMS lipid classes and 
ATR-FTIR data determined by heterospectroscopy using the 
Pearson coefficient. Notes: A correlation cutoff was applied 
(slope p-value<0.05) for a better visualization. TG: 
Tryglycerols; DG: Diglycerols; GPI: glycerophosphoinositols; 
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GPC: glycerophosphocholines; GPE: 
glycerophosphoethanolamines; GPS: glycerophosphoserines.

Joint comparative analysis of LC-MS and ATR-FTIR 
data

Statistical heterospectroscopy (HSY)30 was employed to 
assess the correlation between IR bands and UPLC-MS data. 
In this study, HSY involved the calculation of the Pearson 
coefficient correlation between ATR-FTIR absorbances and 
the intensity of UPLC-MS features linearly correlated with the 
lipid content. From results depicted in Figure 3 two main 
patterns could be discerned: bands associated with neutral 
lipids centered on 1749 and 1456 cm-1, and between 1300-
1130 cm-1 presented statistically significant positive 
correlations with the concentrations of DAGs, TAGs and 
linoleic acids and derivatives lipid subclasses. On the contrary, 
bands centered around 1122 and 1100 cm-1 attributed to 
glycogen and phospholipids were mainly negatively correlated 
to plasmenyls and glycerophosphocholines concentrations. 
Patterns found in the HSY suggest a negative correlation 
between the glycerolipids and glycerohospholipids. Liver 
steatosis is characterized by an increase in intracellular fatty 
acid-derived metabolites (e.g. TAGs, DAGs) due to either 
increased uptake of free fatty acids and/or to up-regulated de 
novo hepatic lipogenesis2. Previous studies have reported 
decreased levels of phospholipids in steatosis31. 

Direct quantification of lipid content by ATR-FTIR 
spectroscopy

Figure 4A shows a statistically significant positive 
correlation between the intensity of the C=O(s) band at 1749 
cm-1 in the normalized spectra and the TAGs contents in liver 
samples. Then, a multivariate PLS model was developed for 
the quantification of the relative TAGs content, using the 
1800-800 cm-1 spectral region and SNV normalization. 
External validation is considered the gold standard to provide 
accurate prediction estimates of the generalization 
performance of predictive model. However, this approach 
requires the exclusion of test samples from the sample set used 
to develop the regression model. In this study, the number of 
samples was limited (n=20), and the selection of an external 
test set would have left too few calibration samples for being 
representative of the whole population. Thus, statistical 
validation was carried out by leave one out - cross validation 
(CV) and, to avoid overly optimistic results, no variable 
selection step was included during model development. Figure 
4B shows the CV-predicted TAG concentrations using 2 latent 
variables providing a RMSECV = 316 µg/mg protein. The 
statistical significance of the model was assessed by 
permutation testing (250 permutations) as described 
elsewhere32,33, providing a p-value<0.005 (see Figure 4C), thus 
indicating that the model was significant at the 95% 
confidence level. The analysis of the the contribution of the IR 
bands to the model was carried out considering the Variable 
Importance in Projection (VIP) and the regression vector, 
respectively. Figure 4D shows the spectrum of a liver sample 
with a color scale corresponding the VIP score value of each 
wavenumber. As expected, bands centered at 1749, 1456, and 
1402 cm-1 associated with lipids show high positive values of 
the regression vector and VIP values.

Suitability of IR for steatosis quantitation 
Liver tissues were classified into 4 categories based on the 

information provided by the pathologist, and on the reference 
TGA content using a 4-quantile clustering (1: no steatosis; 2: 

low-intermediate grade; 3: intermediate-high steatosis; 4: high 
steatosis). Then, liver samples were classified based on the 
TAG content estimated by ATR-FTIR data and the quantiles 
defined by the reference TAGs values. Results showed, as 
expected, a good agreement between the classification 
provided by the pathologist and the TGA content, but also 
between the pathologist report and the classification estimated 
by ATR-FTIR. The slight differences in classification (e.g. 
101 and 90, were classified as highly steatotic by the 
pathologist and TGA content, and as intermediate-high 
steatotic by ATR-FTIR), could be explained by the fact that 
the micro and macro steatosis which is easily observed under 
light microscopy, is composed principally by TGAs, while 
ATR-FTIR, provides a wider range of signals that include 
other lipids (e.g. sphyngolipids, glycerophospholipids) that 
cannot be accurately quantified under routine optical 
examination of tissue slices.

Table 2. Classification provided by the pathologists and 
the reference and predicted by ATR-FTIR relative TAGs 
concentrations (µg/mg protein). Grafts were classified 
according to the reference TAGs content using 4-quantile 
(q1-q4) clustering and 202, 560 and 1250 µg/mg protein as 
thresholds.
Graft # Pathologist 

steat. class*
Reference TAG 
(q1-q4)

ATR-FTIR 
TAG (q1-q4)

112 1 30 (q1) -18 (q1)
66 1 40 (q1) 463 (q2)
40 1 49 (q1) 503 (q2)
67 1 68 (q1) 227 (q2)
115 1 180 (q1) 316 (q2)
107 1 201 (q1) 531 (q2)
109 2 263 (q2) 144 (q1)
99 2 451 (q2) 250 (q2)
91 2 521 (q2) 127 (q1)
50 2 557 (q2) 1077 (q3)
119 3 506 (q2) 655 (q3)
117 3 660 (q3) 744 (q3)
88 3 863 (q3) 1171 (q3)
113 3 1360 (q3) 988 (q3)
101 4 1022 (q3) 618 (q3)
90 4 1370 (q4) 834 (q3)
92 4 1462 (q4) 1563 (q4)
110 4 1607 (q4) 1256 (q4)
57 4 1881 (q4) 1581 (q4)
120 4 3320 (q4) 3094 (q4)
*: Stratification based on the % macro and microsteatosis 

and on the visual examination of the graft. 1: no steatosis; 2: 
low-intermediate steatosis; 3: intermediate-high steatosis; 4: 
high steatosis.

Evaluation of the technique as a point of care tool
Results indicate that ATR-FTIR provides an overview of the 

lipid composition of the liver, as well as information for the 
quantification of the TAGs content and the grade of steatosis. 
However, liver tissue contains not only hepatocytes, but also 
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hepatic stellate cells, cholangiocytes, Kupffer cells and 
endothelial cells, and extracellular matrix. Thus, despite most 
of liver cells are hepatocytes, the biochemical composition 
reflects an average of all cells content in the liver biopsies, and 
may detract the correlation with the percentages of 
hepatocytes containing fat vacuoles in the cytoplasm estimated 
by histopathology. Also, although histopathological and IR 
analysis were performed on adjacent sections of the liver, the 
intrinsic liver heterogeneity may introduce a measurement 
error affecting the correlation between both techniques. 

Data was acquired with the diamond IR sensor in direct 
contact with liver tissues. The liver is covered by a thin (~ 30-
40 µm) layer of connective tissue fibers called Glisson’s 
capsule composed primarily of type I collagen and, to a lesser 
extent, type III collagen. Collagens present a series of 
characteristic bands in the 1800-900 cm-1 range including 
amide I and II absorption bands at 1659 and 1555 cm-1, bands 
at 1035 and 1079 cm-1 from the carbohydrate moieties, and at 
1454, 1403, 1340, 1282, 1240, and 1205 cm−1 attributed to  
bending vibration of CH2 and CH3 groups as well C-N and N-
H stretching vibrations34. Thus, it must be addressed whether 
the acquisition of ATR-FTIR spectra by direct contact on a 
whole liver organ and hence through the barrier that represents 
the Glisson’s capsule, would impair the spectral lectures to 
such extent as to prevent the meaningful read outs to estimate 
the liver lipid contents, and whether further chemometric 
analysis would enable the removal of spectral interferences 
arising from the Glisson’s capsule. Should this be the case, it 
would be then conceivable the use of a handy ATR-FTIR 
equipment at the operations room in the course of a liver 
explant for transplantation. 

Figure 4. ATR-FTIR for the quantification of TAGs in liver 
samples. A) Linear regression between reference TAGs 
concentrations and ATR-FTIR band areas (1770-1720 cm-1, 
two-points baseline: 1775, 1722 cm-1); B) CV-PLS predicted 
TAG relative concentrations using the 1800 – 800 cm-1 region; 
C) Permutation test: assessment of the statistical significance 
of the RMSEC and RMSECV values; D) ATR-FTIR spectrum 
of a liver dry residue in the 1800-800 cm-1 range. The color 
scale indicates the VIP score in the PLS model build for the 
prediction of the TAGs concentrations.

4. CONCLUSIONS
This study is a proof of concept evidencing that ATR-FTIR 

renders valuable quantitative and qualitative descriptors of the 
lipid content of human liver biopsies. The acquisition of ATR-
FTIR spectra can be rapidly carried out without complex 
sample processing or the use of toxic reagents, at virtually no 

cost, for a preliminary characterization of the lipid liver 
composition. The acquisition of dry film ATR-FTIR spectra is 
suitable for a fast determination of the grade of steatosis in 
liver grafts ready for transplantation. Although the 
methodology needs to be further validated, results indicate the 
potential applicability of ATR-FTIR as a point of care tool to 
support graft evaluation at the operation room.
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