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Empirical study on the effects of acquisition parameters for FTIR hyperspectral 

imaging of brain tissue

J. Sacharz1,2, D. Perez-Guaita1,3, Mustafa Kansiz4, Shaiju S. Nazeer1, A. Weselucha-Birczynska2, S. Petratos,5 B. R. Wood1* 

and P. Heraud1,6*

1 Centre for Biospectroscopy and School of Chemistry, Monash University, 3800, Victoria, Australia

2 Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland

3FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland

4 Photothermal Spectroscopy Corp. 325 Chapala St, Santa Barbara, CA, 93101, USA

5 Department of Neuroscience / Central Clinical School, Monash University, Alfred Centre, 99 Commercial 

Rd, Prahran, 3004, Victoria, Australia

6 Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and 

Health Sciences, Monash University, 3800, Victoria, Australia.

Abstract

Fourier transform infrared (FTIR) spectroscopic imaging is a powerful technique for molecular imaging of 

pathologies associated with the nervous systems including multiple sclerosis research. However, there is no 

standard methodology or standardized protocol for FTIR imaging of tissue sections that maximize the ability 

to discriminate between the molecular, white and granular layers, which is essential in the investigation of 

the mechanism of demyelination process. Tissue sections are heterogeneous, complex and delicate, hence 

the parameters to generate high quality images in minimal time becomes essential in the modern clinical 

laboratory. This article presents an FTIR spectroscopic imaging study of post-mortem human brain tissue 

testing the effects of various measurement parameters and data analysis methods on image quality and 

acquisition time. Hyperspectral images acquired from the same region of a tissue using a range of the most 

common optical and collection parameters in different combinations were compared. These included 

magnification (4 × and 15 ×), number of co-added scans (1, 4, 8, 16, 32, 64 and 128 scans) and spectral 

resolution (4, 8 and 16 cm-1). Images were compared in terms of acquisition time, signal-to-noise (S/N) 

ratio, and accuracy of the discrimination between three major tissue types in a section from the cerebellum 
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(white matter, granular and molecular layers). In the latter case, unsupervised k-means cluster (KMM) 

analysis was employed to generate images from the hyperspectral images, which were compared to a 

reference image.

The classification accuracy for tissue class discrimination was highest for the 4x magnifying objective, with 

4 cm-1 spectral resolution and 128 co-added scans. The 15x magnifying objective gave the best accuracy for 

a spectral resolution of 4 cm-1 and 64 scans (96.3%), which was just above what was achieved using the 4x 

magnifying objective, with 4 cm-1 spectral resolution and 32 and 64 co-added scans (95.4 and 95.6 %, 

respectively). These findings were correlated with a decrease in S/N ratio with increasing number of scans 

and was generally lower for the 15x objective. However, longer scan times were required using the 15x 

magnifying objective, which did not justify the very small improvement in the classification of tissue types. 

Keywords

Fourier Transform Infrared Spectroscopy, FTIR imaging, brain tissue, k-means cluster analysis, multiple 

sclerosis

Introduction

Fourier transform infrared (FTIR) spectroscopy is a powerful and non-destructive technique, which provides 

information about the molecular composition in the form of a unique spectrum for every sample1-3. The 

spectrum can be treated as a molecular “fingerprint”, which enables investigations into the structural and 

macromolecular composition of complex biological materials. As a versatile tool, it has been applied to 

many fields of science2-3. In particular, biological and medical research are becoming niche fields for the 

technology with many papers on the detection of breast4, skin5, ovarian6 tumors, heart and liver diseases2 

appearing in the literature. Advanced Vibrational spectroscopy methods and chemometric based analysis 

have been used also to examine brain tissues2, 7-14 for studying glioma2, 7-13 and neurodegenerative diseases 
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like epilepsy 14-17, Alzheimer's, Parkinson's and multiple sclerosis2, 13, 18 making it an important tool in brain 

research2.

The human brain is one of the most important and complex organs. It is highly specialized in every distinct 

heterogeneous anatomical region. Nerve cells generate electrical impulses that travel through the body based 

on semipermeable excitable membranes that modify permeation to small chemical molecules19. Any 

changes at the molecular level of nerve tissue can cause dysfunction to any part of the body. Brain tissue is 

composed of water (70–83%), protein (7.5–8.5%) and lipids (5–15%). In white matter, the concentration of 

lipids reaches 15% while in the gray matter only 5%20-21. Brain lipids can be divided into three main classes: 

neutral lipids, phospholipids, and sphingolipids20-21. However, the composition and concentration of lipids 

can change in very specific ways in diseased brain tissue. Hence, most studies focus on lipid concentration 

because it is a useful diagnostic parameter to determine for example type and grade of a brain tumor or 

neurodegenerative disease2, 20. However, the analysis of lipids in tissue by FTIR is challenging due to the 

standard fixation procedures that often entails the use of paraffin. Bands from paraffin obscure important 

regions of the spectra especially the C-H molecular vibrations of lipids. Importantly, they do not interfere 

with ester, acid and alcohol functional groups of lipids. Elimination of paraffin through organic solvents 

removes paraffin contributions, but it can also alter the lipid content of the tissue.1

Both the sample preparation and the method of the measurement are essential in achieving high-quality 

images when using FTIR spectroscopy to study the brain. Preparation of a brain tissue sample requires an 

experienced histologist and an appropriate procedures2, 13, 22. Although the FTIR method is non-destructive 

and quite easy to perform, measurements of large areas of tissue can take a long time. Therefore, most of the 

biological samples need to be safely stored for long periods of time2, 13, 22. In this context, the best format of 

the biological tissues for FTIR spectroscopic analysis are formalin-fixed paraffin embedded tissues with an 

appropriate thickness. To avoid absorbance saturation due to an excessive long pathlength, the thickness 

should be less than 10 μm 2,13 when using transmission substrates and 5 μm 2 when using transflection low 

emissivity (low E) slides. The sample needs to be placed on an IR-transparent material such as BaF2 or 

CaF2, for transmission measurements. This mode provides the best S/N ratio2-3 and is free from optical 
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artifacts associated with transflection mode. It is also crucial to select appropriate measurement parameters, 

such as the type of objective (magnification), spectral resolution and number of scans23. The correct 

configuration and parameters result in optimal image acquisition speed and spectral quality. However, there 

is no standard procedure suitable for every case and the acquisition parameters need to be established for 

different tissue fixation and sectioning techniques1-3, 23 depending on the specific aim of the experiment.

In FTIR hyperspectral imaging each FTIR spectrum is ascribed to a particular x, y spatial coordinate 

generating a spectral hypercube containing information on the macromolecular chemistry of the tissue 

section. The images can be presented as false-colour maps by using tools such as Unsupervised Hierarchical 

Cluster Analysis (UHCA). UHCA and k-means clustering (KMC) are often used to identify tissue histology 

and the resultant images can be directly compared to stained tissue sections to assist in identifying both 

anatomical and histopathological features at the molecular level1-3.

Many recent studies have shown that the preparation of samples, experimental setup, the data pre-

proceedings and data analysis plays a crucial role in the diagnosis of any type of tissues using vibrational 

spectroscopy 2,24-34. 

Effectiveness of high magnification FTIR-FPA bench-top chemical imaging system with cluster and 

Principal Component Analysis (PCA) has been demonstrated for mice brain tissue. 25 The usefulness of this 

approach was the ability to co-localize molecular changes to different areas around the plaques and discover 

marker bands surrounding the plaque from the co-accumulation of molecular components indicative of 

inflammatory states 25. Despite the enormous potential of FTIR spectroscopy, clinical implementation has 

been hampered because of practical obstacles like the speed of data acquisition and the lack of optimized 

computational procedures for extracting clinically relevant information. A modified Bayesian classification 

protocol was applied to aid in the digital identification of molecular pathology of cancer 26. Use of a 

Quantum Cascade Laser (QCL) system for this study sped up the image acquisition. It has been shown that 

tunable QCLs provide continuous coverage of the wavenumber range of interest enabling the discrete 

imaging of larger sample areas in minutes and at a pixel size smaller than that generally employed by the 
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FTIR globar/hotwire systems. The great benefit of the QCL system is the use of a room temperature detector 

with no required liquid nitrogen cooling 27. 

A crucial issue is the method of initial sample preparation. K-means cluster analysis was performed on 

spectral data from patients with prostate cancer, by monitoring the methylene hydrocarbon-associated 

vibrations as a function of solvent immersion time during washes of either hexane or xylene, indicated that 

after 5–10 minutes of immersion in the solvent the hydrocarbon-associated vibrations remain fairly 

consistent across the tissue. This suggests that solvent-resistant lipids remain present in formalin-fixed tissue 

as they are locked into protein–lipid complex matrices 28. Advanced statistical techniques like Linear 

Discriminant Analysis (LDA), which is a statistical multivariate supervised method, and PCA (unsupervised 

method prior to the LDA analysis), achieved an ~ 85% classification accuracy among normal, polyp, and 

cancer groups in the tissue of the benign premalignant colonic polyps 29. The complex analysis, performed 

on prostate cancer tissues using appropriate calculations for S/N ratio, reduced the data acquisition time by a 

factor of ca. 3 without significant degradation in classification accuracy. The classification accuracy was 

shown to depend on the S/N ratio of the recorded data, but improving the spectral resolution had no effect in 

the classification modelling 30. A study performed on breast cancer tissue using high-performance DFIR 

microscopy enabled histologic imaging 31. The optical design was combined with real-time control 

algorithms to reduce errors and achieve minimal-distortion on the acquired images. This enabled the use of a 

single-element detector plus the ability to modulate the beam, while the confocal geometry helped reduced 

noise within each spectral band, allowing the construction of precise classification models using a fewer 

number of discrete wavenumber values without extensive signal averaging or mathematical noise rejection. 

Enhanced spatial image quality provided detailed tissue segmentation for tumor detection 31 and similar 

approaches have been trailed in studies of whole organisms, like nematodes 32-34. 

Research into demyelination processes in the brain such as Multiple Sclerosis (MS) requires a reliable 

differentiation into the three main regions of cerebral tissue. However, sometimes the discrimination is not 

always straightforward especially if the signal-to-noise ratio is low or if spectral bands cannot be resolved 

due to poor spectral resolution. In other cases, an excess of resolution and number of scans results in large 

acquisition times, which make it impractical for the acquisition of several samples. The aim of this work was 
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to verify by empirical means the influence of the data collection method and measurement parameters for 

tissue differentiation. We believe the approach shown here will help improve the quality and consistency of 

FTIR images recorded of sensitive biological material, particularly for brain sections providing a way to 

establish optimal collection parameters to achieve a high S/N in minimal time.

Experimental

Samples

A section of cerebellum brain tissue from a human adult female was used for our studies, obtained from post 

mortem material kept by the Southern Health Brain Tissue Bank, Melbourne, Victoria, Australia. All frozen 

human deep-cortical white matter tissues were acquired from the Victorian Brain Bank Network (VBBN) 

under the National Health and Medical Research Council guidelines and the Monash University Human 

Research Ethics Committee approval number CF13/1646-2013000831. Post-mortem interval did not exceed 

56 h. All specimens were obtained from the frontal lobe deep white matter, frozen under liquid nitrogen and 

then stored in the Brain Biobank (-80C until required). Brain tissue was taken post mortem and the 

dissected pieces (of volume of approximately 2-5 cm3 each) dropped into liquid nitrogen. No cryo-

preservatives were used. The frozen tissue pieces were fixed by placing them directly in 10% phosphate-

buffered formalin for 2 weeks. The fixed tissue fragments were dehydrated by placing them three times for 2 

hours in the following ethanol concentrations: 50%, 70%, and finally absolute ethanol. The tissue was then 

cleaned in xylene (3 changes, 2 hours in each). The cleaned tissue was placed in molten paraffin (3 times, 

for 2 hours in each), then embedded. The paraffin brain tissue blocks were warmed briefly (2-3 min) in a 

water bath at 50 ºC before cutting. Tissue sections of 10 μm thickness were mounted on the CaF2 substrates. 

The samples were not deparaffinized before measurements.

FTIR hyperspectral imaging 

FTIR spectra were acquired at the Centre for Biospectroscopy at Monash University in Melbourne, 

Australia, using an Agilent (Santa Clara, USA) Cary 620. Spectra were recorded in standard magnification, 

transmission mode over the region 4000–1000 cm−1. The sample was imaged using two kinds of objectives: 
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4x and 15x with the pixel size of 19 µm × 19 µm and 5.5 µm × 5.5 µm, respectively. Single image tiles (128 

x 128 of the focal plane array) covered 700 µm x 700 µm for 15x objective and 2400 µm x 2400 µm for 4x 

objective. For each objective, different images were obtained combining different numbers of co-added 

scans (1, 4, 8, 16, 32, 64 and 128 scans) and different spectral resolutions (4, 8 and 16 cm-1). In total, 21 

images were obtained for each objective, representing every combination of co-added scan number and 

spectral resolution. A background image was acquired with the same corresponding magnification and 

resolution in a clean area on the slide using four times the number of scans compared to the sample 

measurement. The region of interest in the tissue was acquired using a mosaic of 12 tiles (x=4 by y=3) for 

the 15x objective and 1 tile (x=1 by y=1) for the 4x objective. Special care was taken to ensure the images 

were always acquired at the same position on the tissue.

Data analysis

The resulting FTIR hyperspectral data cubes were processed using Matlab v2016a from Mathworks (Natic, 

USA) software. Data was processed using Matlab scripts and functions written in-house. Preprocessing of 

data was carried out using the functions available in the PLS toolbox v8.2. from Engeinvector (Manson, 

USA). Only the spectral regions from 1500-1800 and 1000-1350 cm−1 were considered for the ensuing 

analysis, which includes the amide region (1700–1250 cm−1), the νas PO2− region (1250–1200 cm−1) and the 

νas C–O region (1060–1000 cm−1). The spectral region between the 1350 cm-1 and 1500 cm-1 containing the 

CH bending bands from paraffin were eliminated from the spectra prior to the analysis. 

KMC analysis was carried out by employing the kmeans function from the statistical toolbox of Matlab 

using the squared Euclidean distance. The following preprocessing was carried out prior to the KMC: (i) 

calculation of the first derivative of each spectrum using a Savitzky-Golay filter (15 points and 2nd order 

polynomial); (ii) standard normal variate normalization; and (iii) mean centering. The noise reduction was 

performed using the PCA function available in the PLS toolbox. In short, PCA was applied pixel-wise to the 

raw image. Data was then reconstructed considering a limited number of PCs, aiming to eliminate the 

spectral variation associated with random noise (see the Results section for more information).
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Results & discussion

Characterization of the different types of brain tissue

A visible image of the stained tissue under investigation is shown in Figure 1a. The area included three 

different structures of the cerebellum: white matter; granular layer; and the molecular layer. The white 

matter in the cerebellum is composed mainly of myelinated axons, the granular layer contains mainly the 

cell bodies of neurons associated with the axons in white matter, whereas the molecular layer is comprised 

mainly of a mixture of myelinated axons and dendrites. Two reference maps, which contained the same 

number of pixels as the IR images using the 15x and 4x objectives, were created using two criteria: i) the 

histopathological image, and ii) preliminary results of the cluster analysis. First, each pixel was categorized 

as a class according to the assignment in the H&E stained image (Figure 1a and 1b), which is considered as 

a gold standard for differentiating between the granular, white and molecular regions. However, it should be 

noted that FTIR images and stained images come from adjacent tissue sections. This implies that the 

distribution of the tissue is very similar but not the same and edges and borderlines of tissue could be 

slightly modified. To improve the accuracy of the reference maps, cluster maps obtained with the highest 

S/N ratio, were visually compared with the reference maps and no major differences were found in the tissue 

sections. We marked 4 clusters corresponding to the three different tissue types: white matter (red colour), 

granular layer (yellow colour) and molecular layer (light blue colour) [Fig. 1b]. The violet colour on the map 

marked the area that included empty spaces in the sample caused by cracks in the tissue section.

Figure 1c shows the average spectra for each cluster for 1500-1800 cm-1 and 1100-1350 cm-1 obtained from 

the image. The spectral range between 1350-1500 cm-1 contained only two intense paraffin bands and was 

removed for analysis. In principle, one could consider the subtraction of paraffin contributions using 

chemometric methods. With that aim, a spectrum from pure paraffin was extracted from one of the images. 

The contribution of the paraffin to the spectra was calculated using the integration of the band at 2850 cm-1 

and for each pixel this contribution was multiplied by the extracted spectrum of paraffin and subtracted from 

the original spectra, creating a corrected image. However, as shown in the Electronic Supplementary 
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Information (ESI), the corrected spectra provided similar results to the analysis excluding the 1500-1300 cm-

1 region. Hence, it was decided to do not over treat the data and continue the analysis excluding the region 

instead of correcting the whole image. 

The spectra in 1800-1500 cm-1 range were similar for all clusters. The bands at 1654 cm-1 and 1544 cm-1 

correspond to the protein amide I and amide II modes, respectively. The range from 1350-1100 cm-1 showed 

more heterogeneity within the sample. The visible bands at 1345 cm-1 included: the CH2 wagging vibration 

from phospholipids, fatty acids, triglycerides, and amino acid side chain vibrations; amide III vibrations 

from proteins at 1304 cm-1; PO2
- asymmetric stretch from DNA at 1242 cm-1; a band at 1123 cm-1 assigned 

to the C-O stretching band of ribose ring from RNA, and a band at 1064 cm-1 assigned to the -CO-O-C 

asymmetric stretch from cholesterol esters1,2. Furthermore, the carbonyl band generally found at 1735 cm-1, 

is not very intense compared to nucleic acid bands. The violet spectrum shows smaller amide bands in 

comparison to the other classes, and negative bands in the 1350-1100 cm-1 region resulting from low 

absorbing proteins in this region of tissue. 

White matter in the cerebellum consists mostly of axons and neurons covered with myelin and is 

subsequently rich in lipids and proteins. The molecular layer is a mixture of the granular cell axons and 

Purkinje dendrites. The intensity of the band at 1345 cm-1 is greater for these two brain regions, which 

contain more lipids compared to the granular layer. The granular layer contains mostly the cell bodies 

dominated by nuclei. The band at 1242 cm-1 is the strongest in the granular layer, which indicates the 

presence of nucleic acids in the cell nucleus. We also observe weak DNA bands in the white matter and 

molecular layer, because the white matter contains several deep nuclei, like the dentate nucleus and 

molecular layer contains Purkinje dendrites35-36. 

Comparison of data acquisition parameters

The accuracy of tissue identification

For each image, 4 different KMC images were performed establishing 4, 5, 6 and 7 classes, respectively. In 

most cases, each class of the KMC analysis contained pixels associated with different tissue regions and 

hence the frequency of the pixels of each class in the different brain regions were computed. The whole 
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class was finally assigned to the region with the largest occurrence. Figure 2 shows all cluster images 

obtained with the 4 × and 15 × objectives from the three different spectral resolutions and 7 groups 

associated with different numbers of co-added scans. The best results were achieved from images acquired 

at 4 cm-1 spectral resolution and co-adding 128 scans. The 15 × objective gave better results compared to the 

4 × objective based on the tissue class separation and distinct boundaries between tissues, even with the use 

of a smaller number of scans. By increasing the number of scans, we could achieve better images in all 

cases. Both spectral resolutions, 4 cm-1 and 8 cm-1 showed similar results, while resolution 16 cm-1 gave 

adequate class separation only with more scans.

The effect of the measurement parameters on the classification capability of FTIR hyperspectral imaging 

was quantified in Figure 3a, which shows a table with the classification accuracy of the k-means clustering 

of measurements from the experimental brain images acquired at different magnification, resolution and 

number of the scans. These values were obtained comparing the KMC images of Figure 2 with the regions 

of the reference image (Figure 1). In both magnifications the accuracy of tissue classification grew with the 

number of scans for all resolutions and the highest accuracy is obtained for resolution 4 cm-1 and 128 scans. 

From these results, it is clear the expected relation between the classification accuracy and the number of 

scans averaged for obtaining the spectrum, indicating that a minimum of signal-to-noise ratio is needed to 

detect the differences between the tissue classes. However, the measurement time grew with the number of 

scans and the acquisition of large image mosaics (i.e. with the 15 × objective) can be time consuming if 

large numbers of scans were acquired (see Table1). The image acquisition time ranged from almost two 

hours to less than a minute. Shortest acquisition time is important for process automation, however, the 

image processing time for UHCA maps is often the bottle neck in FPA imaging. The time taken for images 

with an accuracy above 90 % is less than 9 minutes using the 15 × objective. By comparison, the 

combination of 4 × objective and a larger number of scans (32 or greater) was able to achieve a 90% 

accuracy within 2-5 minutes. This time advantage would be further enhanced when the sample area becomes 

larger and there is a necessity for high throughput sample analysis. It is important to note that between 4 × 

and 15 × magnifications, the brain tissue presented shows clear boundaries using 4 × magnification and the 

tissue discrimination did not appear to require any further increase in spatial resolution. The acquisition time 
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also decreased when the spectral resolution is decreased because the distance the moving mirror actually 

moves is decreased at low spectral resolution. The shortest time of measurements was observed using 16 cm-

1 spectral resolution, but at this resolution, the ability to discriminate the tissue regions was compromised; 

the tissue class discrimination accuracy was similar for all numbers of scans and complete discrimination of 

the tissues was only observed for 128 scans using the 4 × objective, while this could be achieved with 16 

and 64 scans for the 15 × objective. Of course, the 16 cm-1 or even 32 cm-1 may be sufficient for some tissue 

sections depending on the anatomical or histological features. For instance, Bhargava et al.30 found that 

discrimination between cell types is almost identical for 4 to 16 cm−1 resolution but starts degrade at 

32 cm−1. 

This is clearly seen in figure 4, which shows the precision calculated as the percentage of true positives over 

the sum of true-positives and false-positives from class identification compared to the reference map. It can 

be seen that the differentiation of white matter was not successful in any image acquired at 16 cm-1. KMC 

image analysis (Figure 2) indicates that the white matter was in most of the cases confused with molecular 

layer. This was the case using the 4 × objective with 4 and 8 cm-1 spectral resolutions using 1-8 scans, and 

with 16 cm-1, spectral resolution using 1-64 scans. Acceptable discrimination of white matter was obtained 

at both magnifications using 4 cm-1 spectral resolution and greater than 16 scans. The reason for the 

difficulty to discriminate white matter from the molecular layer was presumably because of spectral 

similarities between these two classes (Figure 1c), especially in the 1100-1300 cm-1 region. Both contain 

myelinated axon and hence the spectra contain bands from lipids.

The hyperspectral matrix was reshaped as a column of spectra with every 100th spectrum being selected. 

For each selected spectrum, the region between 1750 and 1800 cm-1 was baseline corrected using the 

Automatic Weighted Least Squares algorithm available in the PLS toolbox package (polynomial order=1) 

and the standard deviation of the absorbance at this corrected region is considered as noise. The overall 

noise value was the mean of noise for all the selected spectra. Figure 3b shows a table that summarizes the 

noise obtained from the calculations. As expected, the data reveals that the noise increases with increasing 

the spectral resolution and decreasing with the number of scans. The latter is probably caused by the 

Page 11 of 24 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
1 

A
ug

us
t 2

02
0.

 D
ow

nl
oa

de
d 

on
 8

/2
1/

20
20

 5
:0

7:
20

 A
M

. 

View Article Online
DOI: 10.1039/C9AY01200A

https://doi.org/10.1039/c9ay01200a


12

presence of some water vapour interference, especially at 4 cm-1, which is characterized by sharp narrow 

rotational bands that contribute to the noise based on calculating the standard deviation of the absorbance 

within the 1750-1800 cm-1 region. As seen in Figure 3b, the noise at 128 scans was less that at 64 scans, 

however, unexpectedly in some cases, the noise at 32 scans was less than at 64 scans. Considering that these 

images were obtained with a large acquisition time, the increase in the noise may be caused by changes in 

the environment, such as fluctuating humidity during the measurement. A large number of scans also 

implies a large acquisition time, which means that a longer time elapsed between the background and the 

sample measurement. In general, this result indicates that when selecting the number of scans, there is a 

tradeoff between the noise level required for the classification and the time needed for the measurement.

Effect of Principal Component Analysis (PCA) noise reduction

Results indicated that the noise level was crucial in the classification capability of the different images 

obtained. To determine if the impact of noise could be reduced by post processing we used a PCA noise 

reduction procedure. This method generates PCA over all the spectra of the image. The spectral matrix is 

then reconstructed using the first 20-30 principal components (PCs), with the first PCs explaining the largest 

amount of variance and the rest of the PCs, which are expected to contain the noise components, are 

rejected. Figure 5 presents the noise of the hyperspectral images before and after noise reduction using 20 

and 30 PCs. PCA noise corrected images obtained with 1-16 scans show similar noise levels compared to 

the raw images obtained with a larger number of scans. 

Our next aim was to assess whether the noise correction improved the capability of the KMC analysis to 

characterise the different regions of the cerebral tissue. KMC analysis was applied over the PCA noise 

corrected images and classification accuracy values were computed and compared with the uncorrected 

images. No significant differences between the accuracy values before and after PCA noise reduction were 

found. The paired t-test comparisons for noise between all the 21 conditions (3 resolutions and 7 number of 

scans) before and after PCA noise reduction (both 20 PCs and 30 PCs) gave rise to p values greater than 

0.05 irrespective of the measurement parameters. Although the noise was reduced measurably, the 

classification capability was not improved significantly.
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Conclusions

This work described the importance of measurement conditions and data processing for imaging large area 

samples using focal plane array IR microscopes. The classification accuracy for tissue class discrimination 

was highest for the 4x magnifying objective, with 4 cm-1 spectral resolution and 128 co-added scans. In 

terms of tissue classification accuracy, the 15x magnifying objective gave the best accuracy for a spectral 

resolution of 4 cm-1 and 64 scans (96.3%), which was just above that achieved using the 4x magnifying 

objective, with 4 cm-1 spectral resolution and 32 and 64 co-added scans (95.4 and 95.6 %, respectively). 

These findings were correlated with decreases in the noise value with increasing number of scans and was 

generally lower for the 15x objective. However, the longer time acquisition time using the 15x magnifying 

objective because of the increase in the number did not justify the very small improvement in classification 

accuracy (54 min for the 15x objective using 64 scans versus 2.5 min for the 4 × objective with 32 scans). 

We found that when using 16 cm-1 spectral resolution, although measurement times were shorter, it was easy 

to lose the information contained in the spectra necessary for tissue class discrimination for both 4x and 15x 

magnification.

On the basis of these observations we selected the best parameters for both magnifications. For 4x 

magnification the best compromise parameters are: 8 cm-1 spectral resolution and 128 scans. For 15x 

magnification the best compromise parameters are: 8 cm-1 spectral resolution and 32 scans. Each of the 

combination sets gives good results, S/N ratio and tissue specificity using cluster analysis. If the best spatial 

resolution is required, then the 15x would be preferred, as it has a smaller pixel projection area on the tissue 

plane. The fundamental and greatest advantage of the 4x objective is certainly the measurement time, which 

makes imaging much faster and comes into its own with large sample areas. This allows us to apply greater 

number of scans, which significantly improves the images and is crucial for better results. Nevertheless, the 

selection of the parameters depends on the accuracy needed for each clinical application and on how 

spectrally similar the classes are, with more spectral similarity requiring better SNR and/or better spectral 

resolution but it also depends on cluster size, with clusters ~>40um (roughly twice the 4x pixel size of 
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19um) expected to be resolved well with the 4x objective and thus benefiting from the significant time 

savings for spatial domains < 40um, then the 15x objective is superior.

Our work proves that FTIR hyperspectral imaging is a promising method for diagnosing anatomical and 

histopathological features in brain tissue and can be performed in less than 5 min providing one is judicious 

in the selection of the FTIR hyperspectral collection parameters. This work provides an empirical approach 

towards developing a Standard Operating Protocol (SOP) for FTIR hyperspectral imaging of brain tissue 

sections that takes into account measurement parameters including magnification, spectral resolution, and 

the number of scans, to achieve optimal signal-to-noise and diagnostic precision in the shortest possible 

time.
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Figure legends

Figure 1. a) Image of Hematoxylin and eosin (H&E) stained section; b) Classes assigned to different regions 

of the brain tissue: white matter (red), granular layer (yellow) and molecular layer (light blue). The violet is 

assigned to the holes in the tissue; c) Standard normal variate (SNV) transformation normalized average 

spectra of the classes assigned to vide b)

Figure 1. a) Image of Hematoxylin and eosin (H&E) stained section; b) Classes assigned to different regions 

of the brain tissue: white matter (red), granular layer (yellow) and molecular layer (light blue). The violet is 

assigned to the holes in the tissue; c) Second derivatives of the average spectra of the classes assigned to 

vide b)

Figure 2. Cluster images obtained from the hyperspectral images acquired using objectives of different 

magnification, spectral resolution and number of scans. The results from the most accurate k-means cluster 

considering (4-7) classes is shown. See experimental section for more information.

Figure 3. Classification accuracy of the k-means clustering from the experimental brain images acquired at 

different magnification, resolution and number of scans.

Figure 4. Precision of the classification of the different magnification, resolution and number of scans. 

Precision was calculated as the percentage of true positives over the sum of true positives and false 

positives, in terms of correct classification of spectra to one of the four classes (white matter, molecular 

layer, granular layer or hole in the tissue) when compared to that position in the reference map.

Figure 5. Noise levels of the spectra of the hyperspectral images with and without PCA noise reduction. For 

calculating the noise, only 1% of the spectra in each image were considered. The hyperespectral matrix was 

reshaped as a column of spectra and ever 100th spectrum was selected-. For each selected spectrum, the 

region between 1750 and 1800 cm-1 was baseline corrected (“Automatic Weighted Least Squares", 

polynomial order=1) and the standard deviation of the absorbance at this corrected region is considered as 

noise. The overall noise value was the mean of noise for all the selected spectra.
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Figure 2. Cluster images obtained from the hyperspectral images acquired using objectives of different 
magnification, spectral resolution and number of scans. The results from the most accurate k-means cluster 

considering (4-7) classes is shown. See experimental section for more information. 
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Figure 3. 

  Accuracy (%)  Numer of scans:    

Magnification Resolution (cm-1) 1 4 8 16 32 64 128 

4x 4 55,01 77,45 82,41 84,18 95,57 95,38 96,10 

 8 63,89 82,32 84,49 85,19 87,93 87,75 91,61 

 16 70,96 82,56 84,00 84,85 85,36 85,38 86,35 

15x 4 77,82 91,71 94,00 94,73 95,23 96,31 95,89 

 8 82,44 88,75 89,62 89,41 87,74 88,54 90,12 

 16 85,95 87,56 87,69 88,76 87,98 87,74 87,74 

         

  Noise (x10-3)  Numer of scans:    

Magnification Resolution (cm-1) 1 4 8 16 32 64 128 

4x 4 7,90 4,15 3,17 3,40 2,04 1,86 1,93 

 8 4,87 2,56 1,77 1,79 1,45 1,38 1,52 

 16 3,01 1,98 1,63 1,43 1,45 1,31 1,37 

15x 4 6,85 3,76 2,87 2,46 1,93 2,82 3,14 

 8 4,54 2,58 2,11 1,57 1,67 1,26 1,55 

 16 2,37 1,69 1,41 1,54 1,21 1,07 1,07 

         

  Time (min)  Numer of scans: 

Magnification Resolution (cm-1) 1 4 8 16 32 64 128 

4x 4 <1 <1 ~1 1,5 2,5 4,5 9 

 8 <1 <1 ~1 1 2 3 5 

 16 <1 <1 ~1 ~1 1,5 2 3,5 

15x 4 7 9 12 18 31 54 106 

 8 5 6 7 10 17 31 58 

 16 4 4 5 7 11 19 35 
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Figure 5 
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