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a b s t r a c t 

The lattice Boltzmann flux solver (LBFS), first introduced by Shu et al. (2014) on structured meshes, al- 

lows fluid flow problems to be solved on unstructured meshes discretised by the finite volume method. 

The solver calculates the macroscopic fluxes at the cell interfaces from a local reconstruction of the lat- 

tice Boltzmann solution. In this paper the LBFS is extended to three-dimensional unstructured hexahedral 

meshes and a preconditioned lattice Boltzmann flux solver (PLBFS) is presented. The PLBFS involves ap- 

plying the preconditioning technique proposed by Guo (2004) to the LBFS and is achieved by modifying 

the equilibrium distribution function used to calculate the macroscopic fluxes at the cell interface. When 

the PLBFS is applied to steady flow problems, it is shown that convergence is significantly accelerated 

and the accuracy of predictions with unstructured grids is greatly improved when compared to the LBFS. 

This paper also introduces a strategy for choosing the optimal value of preconditioning factor with un- 

structured hexahedral meshes. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years the lattice Boltzmann method (LBM) has become 

a well established alternative for solving computational fluid dy- 

namics (CFD) problems. It involves calculating the change in the 

density distribution of discrete particles at the mesoscopic level. 

The change in density distribution is due to the collision of the dis- 

crete particles and the subsequent streaming of the particles. Us- 

ing a Chapman-Enskog expansion, it can be shown that the lattice 

Boltzmann equation (LBE) applied at a mesoscopic level is equiv- 

alent to the Navier-Stokes (NS) equations at a macroscopic level 

[1] . The LBM has many advantages compared with traditional NS 

equations solvers when solving transient problems as it does not 

involve the solution of the expensive Poisson equation for pres- 

sure and uses a highly algebraic and parrellisable approach to cal- 

culating densities and velocities in a flow problem. Limitations of 

the standard LBM include the necessary use of a uniform Carte- 

sian grid and the restriction of its use to flow problems with low 

Mach numbers. The required use of a uniform Cartesian grid is a 

major restriction when it comes to the modelling of real life en- 

gineering problems such as the haemodynamics of biomedical de- 
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vices and the aerodynamics of cars and aeroplanes. Issues encoun- 

tered include approximating curved boundaries using a staircase 

approximation and domain wide refinement of the grid to resolve 

boundary layer fluid dynamics. Using a staircase approximation in- 

troduces a geometrical discretisation error while domain wide re- 

finement of the grid leads to excessive computational effort. This 

has resulted in much research into fully unstructured LBMs which 

would enable the use of body fitted grids with complex geometries 

and have local refinement near boundaries. 

The first attempt at an unstructured LBM was by Peng [2,3] and 

Xi [4] . This approach involved the integration of the differential 

form of the LBE in control volumes around the grid points. How- 

ever it was found that the method suffered from significant in- 

stability issues. Over the years improvements to the stability of 

finite volume - lattice Boltzmann methods (FVLBM) have been 

made. Stiebler [5] introduced a least squares, linear reconstruction 

based upwind discretization scheme for the FVLBM. A total varia- 

tion diminishing approach to the FVLBM was introduced by Patil 

[6] whereas Ubertini et al. [7] used a memory term to increase 

stability thresholds of the method. More recently Zarghami et al. 

[8] used upwind second order pressure biasing factors as flux cor- 

rectors to improve stability. 

An alternative innovative approach was proposed by Wang et al. 

[9] and Shu et al. [10] when they developed the lattice Boltzmann 

flux solver (LBFS). This involves discretising the domain into cells 

and calculating the macroscopic fluxes at the cell interface using 

https://doi.org/10.1016/j.compfluid.2020.104634 

0045-7930/© 2020 Elsevier Ltd. All rights reserved. 
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a local reconstruction of the LBE. Unlike in the FVLBMs discussed 

above, the LBFS involves solving conservation equations for the 

macroscopic variables whereas the FVLBM involves solving con- 

servation equations of the particle distributions. While the origi- 

nal method was implemented on non-uniform orthogonal meshes, 

lately it has been applied to fully unstructured 2D tetrahedral 

meshes by Pellerin et al. [11] , Wu et al. [12] and more recently 

Liu et al. [13] . The latter introduces a high order least-squares ap- 

proach that improves the order of accuracy of the LBFS from 2nd 

order to 4th order. The LBFS also been extended to model fluid- 

structure interactions on 3D geometries through the use of the 

immersed-boundary method by Wang et al. [14] . 

The LBFS was adopted in this work due to its advantages over 

the FVLBM with regards to stability and the implementation of 

boundary conditions. The LBFS does not require the use of pressure 

biasing factors or other such schemes to achieve stability at higher 

Reynolds numbers. The LBFS also allows the direct implementation 

of physical boundary conditions whereas the FVLBM relies on the 

standard LBM family of boundary conditions which are more diffi- 

cult to implement. 

The LBFS shares many traits with the family of artificial com- 

pressibility methods (ACM) which was initially introduced by 

Chorin [15] . In the ACM, an artificial relationship is introduced be- 

tween pressure and density variables. This changes the nature of 

the governing equations from mixed elliptic/parabolic nature into 

the hyperbolic/parabolic. This enables the use of efficient time- 

stepping schemes in calculating the steady state solution of incom- 

pressible flows. The LBFS differs from the ACM, in that the rela- 

tionship between pressure and density is set by an arbitrary pa- 

rameter in the ACM [15] . More recently effort s by Turkel [16] and 

Malan [17] have provided a means of calculating the optimum 

value of this arbitrary parameter. In the LBFS the relationship be- 

tween pressure and density is defined by the lattice discretisa- 

tion and there is no need to optimise the arbitrary parameter re- 

quired in the ACM. The ACM and LBFS both solve the NS equa- 

tions, with the ACM using either a finite difference [18] or finite 

volume [17] spatial discretisation. The LBFS uses a finite volume 

approach. The ACM solves the NS equations but uses a perturbed 

continuity equation and, as described by He et al [19] , this has 

no physical meaning in incompressible flow. In contrast the LBFS 

is a âǣweaklyâǥ compressible method and its continuity equation 

has a physical meaning. There is also a difference in the stencils 

used in the calculation of the fluxes; the original ACM proposed a 

central differencing or leapfrog scheme [15] and more recently 3rd 

order upwind and 4th order central compact schemes have been 

used [20] . In comparison the LBFS uses a local reconstruction of 

the LBE to calculate the fluxes. Further differences arise in that the 

ACM requires the incorporation of artificial dissipation whereas the 

LBFS does not [18] [17] . According to Kozela [21] , the ACM is shown 

to require dual-stepping or similar implicit methods to effect real 

time accuracy for unsteady flows whereas the LBFS can effect real 

time accuracy using explicit and implicit methods. Finally, while 

the original ACM can be thought of as a preconditioning approach 

to the continuity equation, this has also been extended to intro- 

duce preconditioning to the momentum equations [22] . This has 

the impact of improving the convergence and robustness of the 

ACM approach. 

A key characteristic of the standard LBM is the grid indepen- 

dent ”compressibility” error which is directly proportional to the 

Mach number [23] . As a result LBM simulations limit this error 

by keeping the Mach number small, typically this involves keeping 

the Mach number less than 0.4 [24] . Reducing the Mach number 

has the knock on effect of increasing the disparity between the 

acoustic and convective wave speeds [25] . As the standard LBM 

typically employs explicit time-stepping, the Courant-Friedrichs- 

Levy (CFL) condition should be satisfied to ensure stability. At low 

Mach numbers this requires a time step inversely proportional to 

the largest eigenvalue in the system which is approximately the 

speed of sound. However the convective wave propagates informa- 

tion through the domain at the much lower fluid speed. As a re- 

sult a large amount of time steps are required to reach steady-state 

convergence. 

In recent years many researchers have made attempts to ac- 

celerate convergence of the standard LBM to steady-state conver- 

gence. A time independent formulation of the LBM has been pro- 

posed by Bernaschi et al. [26] . The steady-state solution is solved 

through iterative methods and this approach has also been imple- 

mented by Verberg [27] and Noble [28] . Tolke et al. [29] expanded 

on the time independent approach by using a multigrid approach 

to solve an implicit second-order finite difference scheme. An alter- 

native approach for accelerating convergence of the LBM to steady- 

state is using implicit schemes to discretise the time-dependent 

equation. This allows larger time steps to be used and has been 

implemented by Lee [30] , Seta [31] and Tolke et al. [32] . Fur- 

ther to this Mavriplis [33] proposed a non-linear form of multi- 

grid solver with a non-linear LBE time-stepping scheme. These 

methods all accelerate convergence of the LBM to steady-state 

but at the cost of increased complexity compared to the standard 

LBM. 

Preconditioning is another time-dependent steady-state accel- 

eration technique which was successfully applied to the LBM by 

Guo [34] originally. This approach follows the same principal as 

the preconditioning method developed by Turkel [25] to solve the 

incompressible and low speed compressible NS equations. As men- 

tioned above, at low Mach numbers there is a disparity between 

the acoustic and convective wave speeds. The ratio between these 

wave speeds is known as the condition number. The lower the 

condition number, the faster that a solution will converge to the 

steady-state solution. Preconditioning involves altering the eigen- 

values of the NS equations to reduce the condition number. Guo 

implemented preconditioning in the LBM by applying a single pre- 

conditioning factor ( γ -preconditioner) to the equilibrium distribu- 

tion function. For steady flows this results in an equivalent form of 

the NS equations with a reduced condition number, which reduces 

the number of iterations required to reach steady-state. 

There have been many additions to Guo’s original work. Prem- 

nath et al. [35] extended the preconditioning approach to allow 

for forcing terms in force-driven fluid flow problems. Izquierdo 

et al. [36] extended it to the generalised form of the LBM in- 

cluding the multiple-relaxation time LBM. In this work a second 

preconditioning factor ( β-preconditioner) was also used to im- 

prove the efficacy of preconditioning. They also investigated op- 

timal values of the preconditioning values for the LBM and gave 

apriori guidelines for such values [37] . More recently the ap- 

proach has been extended to a noncascaded central moments 

LBM [38] , a cascaded LBM [39] and a Gailliean invariant cas- 

caded LBM [40] . Meng et al. have also used an improved precondi- 

tioned multiple-relaxation time LBM to model flow through porous 

media [41] . 

In this work the γ -preconditioning approach of Guo’s work is 

adopted as it has similar performance to the β-preconditioning 

approach of Izquierdo’s work whilst being more efficient and also 

simpler to implement. It is applied to a LBFS on unstructured hex- 

ahedral grids and its performance is evaluated on two fluid prob- 

lems: 3D lid-driven cavity flow and 3D flow over a stationary cylin- 

der. The structure of the remainder of the paper is as follows: 

Section 2 introduces the LBFS and the preconditioned lattice Boltz- 

mann flux solver (PLBFS), Section 3 discusses the use of precon- 

ditioning with unstructured grids and proposes a strategy for the 

optimal choice of preconditioning parameter, in Section 4 the re- 

sults of numerical simulations are discussed, and a summary and 

conclusions are presented in Section 5 . 
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2. Methodology 

2.1. Governing equations 

2.1.1. Navier-stokes equations 

If body forces are neglected, the 3D unsteady NS equations can 

be written in conservative form for a finite control volume in a 

Cartesian coordinate system as: 

∂ 

∂t 

∫ 
V 

( Q dV ) + 

∫ 
S 

F · n dS = 0 (1) 

where t is time, V is the cell volume, S is the cell surface, n is the 

outward normal to element of area dS , Q is the vector of conserved 

variables [ ρ , ρu, ρv, ρw ], ρ is the density, and u, v and w are the 

components of the velocity vector V in the x, y and z directions 

respectively. Assuming a Newtonian, isotropic, isothermal fluid al- 

lows the flux tensor F to be defined as follows: 

F = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

ρu ρv ρw 

ρu 2 + p − μ
(
2 ∂u 

∂x 

)
ρu v − μ

(
∂u 
∂y 

+ 

∂v 
∂x 

)
ρuw − μ

(
∂u 
∂z 

+ 

∂w 
∂x 

)
ρv u − μ

(
∂u 
∂y 

+ 

∂v 
∂x 

)
ρv 2 + p − μ

(
2 ∂v 

∂y 

)
ρv w − μ

(
∂v 
∂z 

+ 

∂w 
∂y 

)
ρwu − μ

(
∂u 
∂z 

+ 

∂w 
∂x 

)
ρw v − μ

(
∂v 
∂z 

+ 

∂w 
∂y 

)
ρw 

2 + p − μ
(
2 ∂w 

∂z 

)

⎤ 

⎥ ⎥ ⎥ ⎦ 

(2) 

where p is the static pressure and μ is the dynamic viscosity. 

The above equations can be used to simulate incompressible flow, 

when the Mach number is low and density variation is small. 

Using a cell-centred finite volume approach for spatial discreti- 

sation, Eq. (1) is applied to every cell in the computational domain 

yielding a set of semi-discrete equations: 

d Q i 

dt 
+ 

1 

V i 

N faces ∑ 

n =1 

F i,n · n i,n S i,n = 0 (3) 

where for cell i , Q i is the vector of conserved variables, V i is the 

cell volume, N faces is the number of cell faces, n i,n is the outward 

normal of face n, S i,n is the area of face n on cell, and F i,n is the 

flux tensor at the centroid of face n . 

2.1.2. Lattice boltzmann flux solver 

In the LBFS the flux tensor at each cell interface is evaluated 

from a local reconstruction of the lattice Boltzmann solution (LBS) 

at the cell interface. The cell interface is defined as the centroid 

of the shared face between the two adjoining cells. In this work 

the single relaxation time Bhatnagar-Gross-Krook (BGK) collision 

model is employed. This leads to the following formulation for the 

flux tensor F : 

F = 

N ∑ 

α=0 

f eq 
α

⎡ 

⎢ ⎢ ⎣ 

e α,x e α,y e α,z 

e α,x e α,x e α,y e α,x e α,z e α,x 

e α,x e α,y e α,y e α,y e α,z e α,y 

e α,x e α,z e α,y e α,z e α,z e α,z 

⎤ 

⎥ ⎥ ⎦ 

+ 

N ∑ 

α=0 

[ 
1 − 1 

2 τs 

] 
f neq 
α

⎡ 

⎢ ⎢ ⎣ 

0 0 0 

e α,x e α,x e α,y e α,x e α,z e α,x 

e α,x e α,y e α,y e α,y e α,z e α,y 

e α,x e α,z e α,y e α,z e α,z e α,z 

⎤ 

⎥ ⎥ ⎦ 

(4) 

where e α,x , e α,y and e α,z are the x, y and z components respec- 

tively of the particle velocity vector e α in the α direction, τ s is the 

standard relaxation factor, f α is the density distribution function in 

the α direction, f 
eq 
α is the equilibrium density distribution function 

in the α direction, f 
neq 
α is the non-equilibrium density distribution 

function in the α direction and is equal to f α − f 
eq 
α , and N is the 

number of velocities in the lattice model. 

To implement the LBS at the cell interface, one must first 

choose a lattice velocity set to define e α . Velocity sets are usu- 

ally denoted in D d Q q form where d denotes the number of spa- 

tial dimensions covered by the velocity set and q is the number of 

velocities in the set. In this work the D3Q15 velocity set is cho- 

sen due to its computational efficiency and is shown in Table 1 . i, 

j and k are the unit vectors in the x, y and z directions respec- 

tively, c = δx/δt, δx is the lattice spacing along each Cartesian axis 

and δt is the streaming time step. Typically δx is set equal to δt 

giving c equal to 1 and this approach is adopted in this work. In 

physical terms c is considered to be the lattice velocity. When the 

D3Q15 lattice velocity set is applied to the cell interface, the lat- 

tice is formed by 15 nodes. The Cartesian coordinates of these lat- 

tice nodes can be represented in terms of lattice velocities. A 3D 

illustration of the D3Q15 lattice velocity set implemented at a cell 

interface is shown in Fig. 1 . In this figure the Cartesian coordinates 

of the two cell centres are referred to as r i and r i +1 respectively. 

The cell interface is referred to as r . 

The LBE with the BGK collision model [42] can be applied to 

model a Newtonian fluid at the cell interface. This enables the 

finding of the equilibrium and non-equilibrium density distribution 

functions required to calculate the flux tensor. The LBE is given 

by: 

f α( r , t ) = f α( r − e αδt, t − δt ) 

+ 

f eq 
α ( r − e αδt, t − δt ) − f α( r − e αδt, t − δt ) 

τs 

× f or α = 0 , 1 ...N (5) 

where the standard relaxation factor τ s is related to the viscosity 

and controls the influence of the viscous fluxes on the momentum 

equation. In physical terms it is the rate at which f α tends to the 

equilibrium density distribution function f 
eq 
α and is given by: 

τs = 

ν

c 2 s δt 
+ 0 . 5 (6) 

where ν is the kinematic viscosity and, as per the literature, c s is 

the speed of sound in the lattice grid equalling c/ 
√ 

3 for a D3Q15 

lattice model. The equilibrium density distribution function f 
eq 
α is 

given by a Hermite series expansion of the Maxwell-Boltzmann 

distribution: 

f eq 
α ( r , t) = ρw α

[
1 + 

e α · V 

c 2 s 

+ 

( e α · V ) 
2 − ( c s | V | ) 2 
2 c 4 s 

]
+ O ( V 

3 ) (7) 

where the weights w α are given as: 

w α = 

[ 

2 / 9 

1 / 9 

1 / 72 

] 

α = 0 

α = 1 − 6 

α = 7 − 14 

(8) 

As shown by Shu et al. [14] , by using the Chapman-Enskog ex- 

pansion and the linear Taylor series expansion of f 
eq 
α , the non- 

equilibrium density distribution function f 
neq 
α can be calculated as 

follows: 

f neq 
α ( r , t) = −τs 

[
f eq 
α ( r , t) − f eq 

α ( r − e αδt, t − δt) 
]

(9) 

In the localised reconstruction of the LBE at the cell interface, 

the flux tensor is now dependent on the post-streaming and pre- 

streaming equilibrium density distribution functions f 
eq 
α ( r , t) and 

f 
eq 
α ( r − e αδt, t − δt) respectively. These in turn are dependent on 

the density and velocity values at each lattice node. As f α is a den- 

sity distribution function, the density can be calculated by sum- 

ming f α up over all lattice velocities and similarly the momentum 
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Table 1 

Explicit representation of the D3Q15 velocity set. 

α 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

e α c · i 0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 -1 1 

c · j 0 0 0 1 -1 0 0 1 -1 1 -1 -1 1 1 -1 

c · k 0 0 0 0 0 1 -1 1 -1 -1 1 1 -1 1 -1 

Fig. 1. Local reconstruction of the LBS at a cell interface implementing a D3Q15 lattice velocity set. 

can be calculated by summing up the first moment of f α , i.e: 

ρ = 

N ∑ 

α=0 

f α

ρV = 

N ∑ 

α=0 

f αe α (10) 

From the equation of state for an isothermal ideal gas, the pressure 

can be found using: 

p = ρc 2 s (11) 

When a gas has been left alone for a sufficiently long period of 

time, it is assumed that f α will reach an equilibrium which is de- 

fined by f 
eq 
α . We can make this assumption as collisions tend to 

even out the angular distribution of particle velocities in a gas 

around a mean velocity. As this convergence to equilibrium must 

conserve mass and momentum at all locations, equilibrium values 

can also be used to calculate the macroscopic density and momen- 

tum at any location as follows: 

ρ = 

N ∑ 

α=0 

f eq 
α

ρV = 

N ∑ 

α=0 

f eq 
α e α (12) 

The pre-streaming equilibrium density distribution function 

f 
eq 
α ( r − e αδt, t − δt) is simply calculated by interpolating the 

macroscopic values from neighbouring cells at time t − δt: 

ρ( r − e αδt) 

= 

{ 

ρ( r i ) + ( r − e αδt − r i ) · ∇ρ( r i ) 
ρ( r i +1 ) + ( r − e αδt − r i +1 ) · ∇ρ( r i +1 ) 

} 

when r − e αδt in cell i 

when r − e αδt in cell i + 1 

(13) 

V ( r − e αδt) 

= 

{ 

V ( r i ) + ( r − e αδt − r i ) · ∇ V ( r i ) 
V ( r i +1 ) + ( r − e αδt − r i +1 ) · ∇ V ( r i +1 ) 

} 

when r − e αδt in cell i 

when r − e αδt in cell i + 1 

(14) 

Inputting these values into Eq. (7) gives f 
eq 
α ( r − e αδt, t − δt) . The 

next step is to find a value for f 
eq 
α ( r , t ) . This is simply done by 

finding ρ( r , t) and V ( r , t ) . As mass and momentum are conserved 

ρ( r , t) and V ( r , t ) can be calculated at the cell interface by sum- 

ming the pre-streaming equilibrium distribution functions, i.e.: 

ρ( r , t ) = 

N ∑ 

α=0 

f eq 
α ( r − e αδt, t − δt) 

ρ( r , t ) V ( r , t ) = 

N ∑ 

α=0 

f eq 
α ( r − e αδt, t − δt) e α (15) 

Inputting these values of ρ( r , t ) and V ( r , t ) into Eq. (7) will give 

f 
eq 
α ( r , t ) . Once f 

eq 
α ( r , t ) and f 

eq 
α ( r − e αδt, t − δt) have been found, 

f 
neq 
α ( r , t ) can be calculated and the fluxes at the cell interface cal- 

culated using Eq. (4) . 

2.1.3. Gradient calculation 

A key element of the LBFS is the accurate calculation of the gra- 

dient of the macroscopic variables at each cell centre as these gra- 
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dients are then used in Eq. (13) and Eq. (14) to initialise the local 

LBS at the cell interface. An inaccurate calculation of the gradient 

will lead to a local LBS that does not reflect the flow field correctly. 

Two prominent methods used to calculate gradients on unstruc- 

tured grids are the Green-Gauss and Least-Squares methods. Shima 

et al. [43] note how the Green-Gauss method is only fully accu- 

rate on uniform and symmetric grids but performs better on the 

thin and curved meshes with high aspect ratio cells that often ex- 

ist within boundary layers for high Reynolds number flow calcula- 

tions. Shima proposed a new hybrid Green-Gauss/Weighted-Least- 

Squares (GLSQ) approach for calculating the gradient. The GLSQ 

involves a geometry-dependent switch which applies the Green- 

Gauss method to those cells with a high aspect ratio and the Least- 

Squares method to cells with a low aspect ratio. This approach 

also has the benefits of ensuring monotonicity at cell interfaces, 

increasing the robustness of the solver, and allowing the accurate 

handling of hanging nodes in the gradient calculation. This is for 

a trivial increase in computational cost compared to the Least- 

Squares method. For these reasons the GLSQ approach is adopted 

in this work and is explained in detail in Appendix A . 

2.1.4. Preconditioned lattice boltzmann flux solver 

The PLBFS takes the same form as the LBFS with the precondi- 

tioned flux tensor F p is given by: 

F p = 

N ∑ 

α=0 

f eq 
α

⎡ 

⎢ ⎢ ⎣ 

e α,x e α,y e α,z 

e α,x e α,x e α,y e α,x e α,z e α,x 

e α,x e α,y e α,y e α,y e α,z e α,y 

e α,x e α,z e α,y e α,z e α,z e α,z 

⎤ 

⎥ ⎥ ⎦ 

+ 

N ∑ 

α=0 

[
1 − 1 

2 τp 

]
f neq 
α

⎡ 

⎢ ⎣ 

0 0 0 

e α,x e α,x e α,y e α,x e α,z e α,x 

e α,x e α,y e α,y e α,y e α,z e α,y 

e α,x e α,z e α,y e α,z e α,z e α,z 

⎤ 

⎥ ⎦ 

(16) 

where f 
eq 
α is defined as 

f eq 
α ( r , t) = ρw α

[
1 + 

e α · V 

c 2 s 

+ 

( e α · V ) 
2 − ( c s | V | ) 2 
2 γ c 4 s 

]
+ O ( V 

3 ) (17) 

and f 
neq 
α is defined as 

f neq 
α ( r , t) = −τp 

[
f eq 
α ( r , t) − f eq 

α ( r − e αδt, t − δt) 
]

(18) 

where γ is the preconditioning parameter and τ p is the precon- 

ditioned relaxation factor. The preconditioning parameter γ relates 

τ p to the standard relaxation factor τ s in the following way: 

γ = 

τs − 0 . 5 

τp − 0 . 5 

(19) 

Letting the preconditioning matrix P = diag 
(
1 , γ −1 , γ −1 , γ −1 

)
, 

then through the Chapman-Enskog expansion, the flux tensor in 

Eq. (1) for the preconditioned NS equations can be shown to be: 

F p = P 

×

⎡ 

⎢ ⎢ ⎢ ⎣ 

ρu ρv ρw 

ρu 2 + p ∗ − μ
(
2 ∂u 

∂x 

)
ρu v − μ

(
∂u 
∂y 

+ 

∂v 
∂x 

)
ρuw − μ

(
∂u 
∂z 

+ 

∂w 
∂x 

)
ρv u − μ

(
∂u 
∂y 

+ 

∂v 
∂x 

)
ρv 2 + p ∗ − μ

(
2 ∂v 

∂y 

)
ρv w − μ

(
∂v 
∂z 

+ 

∂w 
∂y 

)
ρwu − μ

(
∂u 
∂z 

+ 

∂w 
∂x 

)
ρw v − μ

(
∂v 
∂z 

+ 

∂w 
∂y 

)
ρw 

2 + p ∗ − μ
(
2 ∂w 

∂z 

)

⎤ 

⎥ ⎥ ⎥ ⎦ 

(20) 

where 

p ∗ = γ c 2 s ρ (21) 

and 

μ = γ ρc 2 s ( τp − 0 . 5 ) δt (22) 

For steady flows utilising Eq. (20) in Eq. (1) is equivalent to util- 

ising Eq. (2) in Eq. (1) but with a different equation of state. To 

demonstrate the effect of the preconditioning parameter on the 

rate of convergence, the partial differential equation form of the 

preconditioned NS equations is employed: 

∂ Q 

∂t 
+ P A 

∂ Q 

∂x 
+ P B 

∂ Q 

∂y 
+ P C 

∂ Q 

∂z 
= 0 (23) 

where A , B , C are the Jacobians of the flux vectors given by: 

A = 

∂ F p,x 

∂ Q 

B = 

∂ F p,y 

∂ Q 

C = 

∂ F p,z 

∂ Q 

(24) 

and F p,x , F p,y , F p,z are the components of the flux tensor in the x, 

y and z directions respectively. Considering only the inviscid terms, 

these are given by: 

F p,x = 

⎡ 

⎢ ⎣ 

ρu 

ρu 

2 + p ∗

ρv u 

ρwu 

⎤ 

⎥ ⎦ 

F p,y = 

⎡ 

⎢ ⎣ 

ρv 
ρu v 

ρv 2 + p ∗

ρw v 

⎤ 

⎥ ⎦ 

F p,z = 

⎡ 

⎢ ⎣ 

ρw 

ρuw 

ρv w 

ρw 

2 + p ∗

⎤ 

⎥ ⎦ 

(25) 

The preconditioned convection matrix PA is now written as: 

PA = 

⎡ 

⎢ ⎣ 

1 0 0 0 

0 

1 
γ 0 0 

0 0 

1 
γ 0 

0 0 0 

1 
γ

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

0 1 0 0 

γ c 2 s − u 

2 2 u 0 0 

−v u v u 0 

−wu w 0 u 

⎤ 

⎥ ⎦ 

(26) 

To calculate the eigenvalues of PA , the determinant of ( PA − λI ) is 

first calculated: 

det ( PA − λI ) = 

( u − λ) 
2 

γ 3 

[
λ2 − 2 uλ + u 

2 − γ c 2 s 

]
(27) 

The eigenvalues λ are found by letting Eq. (27) equal 0 giving: 

λ( PA ) = 

1 

γ
( u, u, u ± γ c s ) (28) 

The aim of preconditioning is to reduce the stiffness of the system 

by scaling the eigenvalues of PA appropriately. The reduction in 

stiffness can be measured by the condition number (CN) given as: 

CN( PA ) = 

| max [ λ( PA ) ] | 
| min [ λ( PA ) ] | = 1 + 

γ c s 

u 

= 1 + 

γ

Ma 
(29) 

where Ma is the dimensionless Mach number. A CN close to 1 in- 

dicates a well balanced system with no stiffness. From Eq. (29) it 

can be seen that to achieve a CN close to 1, it is required that 

Ma → ∞ or γ → 0. As Ma is restricted to values < 0.4 to satisfy 

incompressiblity requirements, reducing γ can be used to reduce 

the stiffness of the system. 

2.1.5. Time integration 

One advantage of the LBFS is that it allows a decoupling of the 

lattice streaming time step δt and the time integration of the NS 

equations. This enables the use of many different methods for the 

time integration of the NS equations in the LBFS. A fourth order 

Runge-Kutta (RK4) time-stepping scheme is adopted in this work 

as it has been shown to be very efficient and robust for a cell- 

centred finite-volume discretisation [44,45] . While acknowledging 

that steady flow problems do not require high levels of time accu- 
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Fig. 2. Stability limits for first and fourth order Runge Kutte time integration methods for both viscous �v and inviscid �v eigenvalues. 

racy, the RK4 scheme is far more robust than RK1/Forward Euler 

time-stepping schemes with regards to the stability limits of the 

magnitude of the viscous eigenvalues (see Fig. 2 ). As will be shown 

later in Section 3.3 , applying preconditioning increases the viscous 

eigenvalue of the flow and necessitates the adoption of the RK4 

scheme. Rewriting Eq. (3) in terms of a residual gives: 

d 

dt 
Q i + R ( Q i ) = 0 (30) 

where R ( Q i ) is the residual function defined by: 

R ( Q i ) = 

1 

V i 

L Q i (31) 

and L is the flux spatial discretisation operator defined as follows: 

L Q i = 

N faces ∑ 

n =1 

F i,n · n i,n S i,n (32) 

A RK4 integration scheme can be typically described as: 

Q 

( 0 ) 
i 

= Q 

( t ) 
i 

Q 

( 1 ) 
i 

= Q 

( 0 ) 
i 

− �t 

2 

R 

( 0 ) 
i 

Q 

( 2 ) 
i 

= Q 

( 0 ) 
i 

− �t 

2 

R 

( 1 ) 
i 

(33) 

Q 

( 3 ) 
i 

= Q 

( 0 ) 
i 

− �t R 

( 2 ) 
i 

Q 

( t+1 ) 
i 

= Q 

( 0 ) 
i 

− �t 

6 

( R 

( 0 ) 
i 

+ 2 R 

( 1 ) 
i 

+ 2 R 

( 2 ) 
i 

+ R 

( 3 ) 
i 

) 

where R 

( q ) 
i 

= R ( Q 

( q ) 
i 

) for q = 0 to 3, �t is the time-integration 

time step and t denotes the t th time step in the simulation. 

To ensure the stability of the time-stepping scheme, �t must 

fulfil the CFL condition [46] . A CFL condition for an explicit scheme 

where the allowable CFL number σ = 1 means that �t must be 

equal to or smaller than the time required to transport informa- 

tion across the stencil of the spatial discretisation scheme. Using 

higher order integration methods allows higher values of σ to be 

used. For a RK4 scheme σ = 2 . 78 . There are many ways to estimate 

the maximum allowable time step on unstructured grids with the 

following approach adopted in this work [47] : 

�t i = σ
V i 

(�c + C�v ) i 
(34) 

where �c and �v represent estimates of the spectral radii of the 

convective and viscous Jacobians respectively for cell i. C is an ar- 

bitrary constant which is normally chosen to be C = 4 . In the case 

of a cell-centred finite-volume scheme, the spectral radii are calcu- 

lated as: 

�c = �c,x + �c,y + �c,z 

�v = �v ,x + �v ,y + �v ,z (35) 

where the Cartesian components of the spectral radii are given 

as: 

�c,x = 

1 

γ
( | u | + γ c s ) S i,x 

�c,y = 

1 

γ
( | v | + γ c s ) S i,y 

�c,z = 

1 

γ
( | w | + γ c s ) S i,z 

�v ,x = 

2 μ

ρ

( S i,x ) 
2 

γV i 

�v ,y = 

2 μ

ρ

(
S i,y 

)2 

γV i 

�v ,z = 

2 μ

ρ

( S i,z ) 
2 

γV i 

(36) 
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Table 2 

A detailed summary of the PLBFS solution procedure. 

PLBFS Algorithm 

1. Calculate the local time step for each cell using Eq. (34) with Q 

( t−1 ) 
i 

as input. 

2. Calculate the gradients at the cell centres using Eq. (A.1) . 

3. At the cell interface initialise a D3Q15 local latttice Boltzmann solution with δx chosen so that 

all lattice grid nodes lie within the two cells adjoining the shared surface. 

4. Find ρ( r − e αδt, t − δt) and V ( r − e αδt, t − δt) at the lattice grid nodes by interpolation using 

Eq. (13) and Eq. (14) . 

5. Calculate the pre-streaming equilibrium density distribution function f eq 
α ( r − e αδt, t − δt) using 

Eq. (17) . 

6. Calculate ρ( r , t ) and V ( r , t ) , the post-streaming macroscopic variables at the cell interface, from 

Eq. (15) . 

7. Use these values to calculate f eq 
α ( r , t ) using Eq. (17) . 

8. f neq 
α ( r , t ) can be calculated from f eq 

α ( r , t ) and f eq 
α ( r − e αδt, t − δt) using Eq. (18) . 

9. The inviscid and viscous fluxes can then be calculated from f eq 
α ( r , t ) and f neq 

α ( r , t ) using Eq. (16) . 

10. The solution can then be advanced in time using Eq. (33) . 

where S i,x , S i,y and S i,z represent projections of the cell onto y-z, x-z 

and x-y planes respectively, i.e.: 

S i,x = 

1 

2 

N faces ∑ 

n =1 

| S x | i,n 

S i,y = 

1 

2 

N faces ∑ 

n =1 

| S y | i,n 

S i,z = 

1 

2 

N faces ∑ 

n =1 

| S z | i,n (37) 

where S x , S y and S z denote the x, y and z components of the face 

vector S i,n = n i,n · S i,n , S i,n is the surface area and n i,n is the out- 

ward normal of face n of cell i . The time step for the whole domain 

is then given as: 

�t = min ( �t i ) (38) 

For unstructured meshes, where the ratio of the largest cell to the 

smallest cell is large, this can result in extremely slow convergence 

of the solution to steady-state. However the transient behaviour 

of the flow in steady problems is of no interest. As a result local 

time-stepping can be employed and each cell is progressed at its 

maximum allowable stable time step calculated by Eq. (34) . This 

results in significant convergence acceleration. The computational 

procedure employed in the PLBFS is summarised in Table 2 . 

3. Impact of preconditioning on unstructured grids 

3.1. Overview 

One advantage of using an unstructured grid with the LBFS is 

that it allows local refinement of the mesh in areas of rapidly 

changing flow. In practice, this involves having a very fine mesh 

close to surfaces in the flow and a much coarser mesh further 

away. This is in contrast to the traditional LBM where a uniform 

mesh density is used throughout the computational domain. When 

Guo [34] applied preconditioning to the LBM, there was no need to 

consider the impact of preconditioning on larger convection dom- 

inated cells or relatively finer cells in the boundary layer that are 

viscous dominated. As a result the purpose of that work was to re- 

duce the stiffness of the inviscid Jacobians. In this section it will 

be shown that the PLBFS can improve the accuracy of flux calcu- 

lations in larger cells compared to the LBFS but can also have an 

adverse effect on local time-stepping in viscous dominated cells. 

An optimal choice of γ will consider both these factors while try- 

ing to reduce the CN of the system, and a strategy for making this 

choice is proposed at the end of this section. 

3.2. Influence of preconditioning on lattice streaming distance 

When choosing a lattice streaming distance δx , the preferred 

strategy is to maximise the size of the lattice while keeping all 

lattice nodes within the adjoining cells to the common cell in- 

terface. This has the effect of reducing the error in interpolating 

the macroscopic variables to the lattice nodes using Eq. (13) and 

Eq. (14) . This is due to the fact that as δx increases, the distance 

between the lattice nodes and the cell centre, from which the 

macroscopic variables are interpolated, is reduced. This increases 

the accuracy of the interpolation as the gradient is calculated at 

the cell centre and the lattice nodes are closer to the cell centre. 

However this leads to issues in relatively large cells that are 

prevalent in unstructured grids. From Eq. (22) , as δx increases τ p 

decreases. This has an adverse affect on stability as the LBM be- 

comes unstable as τ p tends to its minimum value 0.5 especially in 

the range 0.50 < τ p < 0.55 [48] . The special case of inviscid flow 

i.e. when τp = 0 . 5 is not subject to this limitation as Eq. (22) is 

satisfied for an arbitrary lattice streaming distance δx . Precondi- 

tioning is most advantageous in scenarios when the stability limit 

of τ p limits the size of δx . Decreasing γ allows an increase in δx 

for a constant τ p . The benefits are illustrated by Fig. 3 , where de- 

creasing γ allows a much larger lattice reconstruction without in- 

troducing instability by lowering the value of τ p . 

As result of this property, preconditioning allows the use of 

coarser unstructured grids than the unpreconditioned LBFS with 

increased accuracy. This allows for either a decrease in runtimes 

for similar levels of accuracy or an increase in accuracy for the 

same runtime. 

3.3. Influence of preconditioning on viscous dominated cells 

Using preconditioning can have an adverse effect on time- 

stepping in viscous dominated cells, i.e. where the viscous spectral 

radii is larger than the convective spectral radii, or can cause con- 

vection dominated cells to become viscous dominated. To illustrate 

the impact of γ on the local time step of these relatively fine cells 

employed in viscous dominated regions, the spectral radii of a cell 

is calculated using Eq.s (34) to (37) and its assumed that V → 0 

as the cell is assumed to neighbour a surface in the flow. For a 

uniform cell with edge length l , surface area S and volume V the 

convective and viscous spectral radii become: 

�c = 

1 

γ
3 ( 0 + γ c s ) S = 3 c s S 

�v = 

1 

γV 

2 μ

ρ
· 3 S 2 = 

6 μl 

γ ρ
(39) 
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Fig. 3. Local reconstruction of the lattice Boltzmann lattice for γ = 1 and γ = 0 . 02 where Re = 10 0 0 , Ma = 0 . 17 and μ = 0 . 0 0 01 . 

Fig. 4. Variation of �vc with N for different values of �. 

The ratio of the viscous spectral radius to the inviscid spectral ra- 

dius, including the constant in Eq. (34) , is given as: 

�v c = 

C�v 

�c 
= 4 

2 μ

γ c s lρ
(40) 

Re-writing in non-dimensional form and defining l relative to the 

reference length L gives: 

�v c = 

8 MaN 

γ Re 
= �N (41) 

where � is a constant and N = L/l is the number of uniform cells 

along the reference length L . Values of �vc > 1 indicate that the 

flow in a cell is viscous dominated. If �vc > > 1 this means 

that the time step in Eq. (34) is calculated based off the viscous 

spectral radius and is not optimised for the inviscid contributions. 

Fig. 4 illustrates how � and cell size influence if a cell is convec- 

tion or viscous dominated. Cells becomes viscous dominated as the 

edge length of the cell becomes smaller and the viscous thresh- 

old of edge length, where the cell changes from convection domi- 
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Table 3 

Strategy for choosing values for preconditioning on unstructured grids. 

Preconditioning Parameter Selection 

1. First attempt using the optimal precondition parameter provide by Izquierdo [37] where 

γ = 2 Ma . 

2. If no convergence acceleration is experienced, then for a given Re and mesh, investigate the 

histogram of cell sizes in the computational domain and identify the most common cell size. 

3. Using this cell size calculate �vc using Eq. (41) for uniform grids or Eq.s (35) to (37) for 

unstructured grids. 

4. If �vc > 1, then decrease Ma , increase γ or increase the size of the smallest cell in the mesh. 

5. Repeat Step 3 until an acceleration in runtime is achieved or γ = 1 

Table 4 

Individual test case parameters for 3D lid-driven cavity flow. 

Test Case No. u lid Re Ma γ CN �vc, max δx max N cells 

1 0.1 100 0.173 1 6.77 0.622 0.60 90480 

2 0.1 100 0.173 0.2 2.15 3.11 3.00 90480 

3 0.01 100 0.017 1 58.73 0.06 0.06 90480 

4 0.01 100 0.017 0.02 2.15 3.11 3.00 90480 

5 0.1 1000 0.173 1 6.77 0.062 0.06 90480 

6 0.1 1000 0.173 0.2 2.15 0.311 0.30 90480 

7 0.01 1000 0.017 1 58.73 0.006 0.006 90480 

8 0.01 1000 0.017 0.02 2.15 0.311 0.30 90480 

9 0.1 100 0.173 1 6.77 0.854 0.6 226981 

10 0.01 100 0.017 1 58.73 0.085 0.06 226981 

11 0.1 1000 0.173 1 6.77 0.085 0.06 226981 

12 0.01 1000 0.017 1 58.73 0.008 0.006 226981 

13 0.01 1000 0.017 1 58.73 0.011 0.006 531411 

Fig. 5. 3D lid-driven cavity unstructured mesh (90480 cells) and problem setup. 

nated to viscous dominated, is dependent on �. Smaller values of 

� allow finer cells to remain convection dominated. To reduce the 

value of �, the following choice of non-dimensional parameters is 

desired: 

• Reduced values of Ma . 

• Larger values of γ . 

• Larger values of Re . 

3.4. Preconditioning parameter selection strategy 

The purpose of preconditioning the NS equations is to reduce 

the stiffness of the inviscid Jacobians to accelerate convergence of 

steady flow calculations. However as shown in the previous sec- 

tions, the use of preconditioning can have advantages and disad- 

vantages when it comes to the use of unstructured grids. Precondi- 

tioning allows the use of larger cells in convection dominated flow 



10 B. Walsh and F.J. Boyle / Computers and Fluids 210 (2020) 104634 

Fig. 6. 3D lid-driven cavity flow: normalised a) u and b) v velocity profiles along 

vertical and horizontal centrelines respectively in the z = 0 plane for Re = 100 and 

u lid = 0 . 1 . 

which leads to reduced runtimes. However if the mesh contains a 

large number of viscous dominated cells, in particular cells in the 

boundary layer of a surface, this may have an adverse impact on 

the convergence rate. A good choice of preconditioning parameter 

would have 1 + 

γ
Ma → 1 whilst keeping �vc ≤ 1 for the vast ma- 

jority of cells. From Eq. (41) and Fig. 4 it can be seen that smaller 

values of Ma and larger values of Re and γ allow smaller cells to 

be used while keeping �vc ≤ 1. Setting �v c = 1 in Eq. (41) gives 

the following equation for setting γ : 

γ > 

8 MaN 

Re 
(42) 

Note that Eq. (42) will only hold for every cell in uniform grids 

only. In grids where there is a large variation in cell size, there 

Fig. 7. 3D lid-driven cavity flow: normalised a) u and b) v velocity profiles along 

vertical and horizontal centrelines respectively in the z = 0 plane for Re = 100 and 

u lid = 0 . 01 . 

will be cells that will have �vc > 1. Therefore it is recommended 

to investigate a histogram of cell size of the computational domain 

and optimise γ for the most common cell sizes. 

The impact of the choice of preconditioning parameter on sta- 

bility should also be considered. Izquierdo suggested the optimal 

choice of γ = 2 Ma [37] as this value maximises speed up while 

offering robust stability. However it was provided with the caveat 

that the optimal value increases for lower Reynolds numbers. A 

strategy for choosing a value of γ is given in Table 3 . It is prefer- 

able to decrease Ma rather than have �vc > 1 as lower values of 

Ma reduces the compressibility error at no cost in runtime when 

local time-stepping is used. It should be noted that accurately cal- 

culating the real eigenvalues in a cell is quite difficult and that 
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Fig. 8. 3D lid-driven cavity flow: normalised a) u and b) v velocity profiles along 

vertical and horizontal centrelines respectively in the z = 0 plane for Re = 10 0 0 and 

u lid = 0 . 1 . 

Eq. (41) is based on an estimate and that �v c = 1 may not be the 

exact threshold for cells becoming viscous dominated. 

4. Numerical results and discussion 

4.1. Overview 

To demonstrate the capability of the PLBFS, two flow problems 

are considered: 3D lid-driven cavity flow and 3D flow over a cir- 

cular cylinder. For both flow problems unstructured hexahedral 

Fig. 9. 3D lid-driven cavity flow: normalised a) u and b) v velocity profiles along 

vertical and horizontal centrelines respectively in the z = 0 plane for Re = 10 0 0 and 

u lid = 0 . 01 . 

meshes were used to demonstrate that the PLBFS can be effec- 

tively employed with an unstructured mesh topology. Flow prob- 

lems were solved using a variety of Reynolds and Mach num- 

bers and the impact of various values of the preconditioning pa- 

rameter γ are investigated to show the impact of precondition- 

ing on accuracy and convergence rates. All meshes were cre- 

ated with ANSYS ICEM meshing software (ANSYS Inc., Canonsburg, 

PA, USA). 

The root mean square (RMS) of the ρu -momentum residual 

was used to monitor convergence to steady-state and is defined 
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Fig. 10. 3D lid-driven cavity flow: predicted streamlines in the x = 0 plane for a) Re = 100 and b) Re = 10 0 0 , in the y = 0 plane for c) Re = 100 and d) Re = 10 0 0 and in the 

z = 0 plane for a) Re = 100 and b) Re = 10 0 0 . 

as follows: 

R RMS 

(
Q 

Iteration,t 
)

= 

√ ∑ No of Cel l s 
i =1 

R 

(
Q i,t 

)2 

No of Cel l s 
(43) 

where t is the iteration index and R ( Q i ) is the ρu residual cal- 

cualated for cell i using Eq. (31) . The calculated RMS is normalised 

relative to the initial RMS value calculated at the end of the first 

iteration. i.e 

R RMS,Norm 

= 

R RMS 

(
Q 

Iteration,t 
)

R RMS 

(
Q 

Iteration, 1 
) (44) 

The convergence criterion employed is a five order magnitude 

reduction in the normalised residual, i.e. 

R RMS,Norm 

< 1 ∗ 10 

−5 (45) 

4.2. 3D Lid-driven cavity flow 

Shear-driven flow in a square/cube cavity is a standard test case 

for validating predictions of incompressible viscous flow. It has his- 

torically been used as a benchmark flow problem to investigate the 

accuracy and the performance of CFD codes [49] . Lid-driven cav- 

ity flow is steady for a Reynolds number less than 10 0 0 0, with a 

moving lid developing the flow. The steady-state predictions by the 

PLBFS are compared to existing numerical results produced by Ku 

et al. [50] and Ding et al. [51] . The set up of the lid-driven cav- 

ity problem is illustrated in Fig. 5 . The top boundary moves with a 



B. Walsh and F.J. Boyle / Computers and Fluids 210 (2020) 104634 13 

velocity u lid . This is implemented using a Dirichlet boundary con- 

dition specifying u lid . A no-slip boundary condition is implemented 

at the remaining five boundaries. For density, a Neumann bound- 

ary condition, specifying zero change in density across the bound- 

ary, is implemented at all boundaries. The initial conditions are set 

as V = 0 and ρ = 1. Multiple test cases were run for this flow 

problem with different combinations of Reynolds number, Mach 

number, preconditioning parameter γ and mesh density. The test 

case parameters are summarised in Table 4 and were chosen as 

per Table 3 . 

Test Cases 1-8 were run using the mesh shown in Fig. 5 consist- 

ing of 90480 hexahedral cells. Test Cases 9-13, performed without 

preconditioning, were run on finer meshes consisting of 226981 

and 531411 cells. The origin of the coordinate system is located 

at the centroid of the cube and the edges on the cube have a 

reference length L re f = 10 . Predicted velocity profiles on vertical 

and horizontal centrelines respectively in the z = 0 plane for Test 

Cases 1-13 are shown in Figs. 6 , 7 , 8 , 9 . The results are compared 

to the predictions of Ku et al. [50] and Ding et al. [51] . Over- 

all there is good agreement with the literature by the precondi- 

tioned test cases and the test cases performed on finer meshes. To 

show the flow patterns of the 3D lid-driven cavity flow, 2D stream- 

lines are projected onto three centroidal planes at x = 0 , y = 0 and 

z = 0 . The flow patterns are shown for Test Cases 4 and 8 where 

Re = 100 and Re = 10 0 0 respectively. These results are shown in 

Fig. 10 and show the development of stronger secondary vortices 

and a stronger 3D impact as the Reynolds number increases. This is 

in agreement with the predictions of previous studies by Ku et al. 

[50] , Ding et al. [51] and Wang et al. [14] . Convergence histories 

are plotted in Fig. 11 and Fig. 12 . 

Using an unstructured hexahedral mesh produces excellent re- 

sults that agree with predictions by other researchers in the liter- 

ature. The previous study using a LBFS by Wang et al. [14] uses 

a 81 X 81 X 81 (531441 cells) non-uniform structured mesh and it’s 

predictions have excellent agreement with the studies of Ku et al. 

[50] and Ding et al. [51] . Using the PLBFS on a fully unstructured 

grid allows similar levels of accuracy to be attained while using 

a mesh with only 90480 cells. The results also confirm the theo- 

retical analysis in Section 3.2 . This analysis suggests that precon- 

ditioning should enable the use of large δx on lattices in relatively 

larger cells. This should reduce the interpolation error when ap- 

plying Equation. Inspecting Table 4 shows that preconditioning al- 

lows the use of larger δx in the bigger cells in the mesh. Inspecting 

Figs. 6 to 9 show that the preconditioned case with the larger δx 

is more accurate than the unpreconditioned cases with smaller δx . 

Figs. 6 to 9 also show that increasing the mesh density results in 

more accurate comparisons with the benchmark solutions. There is 

also significant convergence acceleration with the use of precondi- 

tioning at lower Ma numbers. The reduction in iterations required 

to reach convergence compared to the non-preconditioned case is 

9.72x at Re = 10 0 0 and 5.62x at Re = 100 for Ma = 0 . 017 . At the 

higher Mach number of Ma = 0 . 17 , the decrease in CN is offset by 

disproportionately larger increase in �vc, max (see Table 4 ). This ac- 

counts for the lack of significant acceleration in convergence at the 

higher Mach number. An alternative to preconditioning to improve 

accuracy is to increase the mesh density. Figs. 6 to 9 show that the 

preconditioned test cases produce results that are of similar accu- 

racy to those of the unpreconditioned test cases on finer meshes. 

This is also with the benefit of a reduction in the iterations re- 

quired to reach convergence and a reduction in the flux calcula- 

tions per iteration. As can be seen in Fig. 11 and Fig. 12 , this ef- 

fect is most prominent for high Re and low Ma . The preconditioned 

case of Re = 10 0 0 and Ma = 0 . 017 uses 5.87x less cells and 20.67x 

less iterations than the unpreconditioned case on the finest mesh. 

In this case preconditioning enables a 121x reduction in computa- 

tional effort while attaining similar levels of accuracy. 

Fig. 11. 3D lid-driven cavity flow: convergence history for Re = 100 with a) u lid = 

0 . 1 and b) u lid = 0 . 01 . 

4.3. 3D flow over a circular cylinder 

As mentioned previously, one of the motivations behind using 

the LBFS is to avoid the staircase approximation of curved bound- 

aries with the traditional LBM. To demonstrate the applicability 

of the LBFS to flow problems with curved boundaries, 3D flow 

over a circular cylinder was investigated. This is a steady flow 

for low Reynolds numbers and so the PLBFS can also be used to 

solve this flow problem. The problem is set up as in Fig. 13 , with 

the cylinder immersed in a uniform freestream. The diameter of 

the cylinder is the reference length L ref with a value of L re f = 1 
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Fig. 12. 3D lid-driven cavity flow: convergence history for Re = 10 0 0 with a) u lid = 

0 . 1 and b) u lid = 0 . 01 . 

Fig. 13. 3D flow over a cylinder problem setup. 

and spans the length of the z-domain. The boundary condition at 

the inlet boundary was set equal to the freestream density ρ∞ 

and freestream velocity U ∞ 

using Dirichlet boundary conditions. 

At the outlet boundary condition the pressure was set equal to 

static pressure by a Dirichlet boundary condition and a zero change 

in velocity at the outlet was maintained by a Neumann boundary 

condition. A no-slip boundary condition was applied to the wall of 

the cylinder and the remaining boundaries all have a zero change 

in velocity and density which are maintained by Neumann bound- 

ary conditions. The initial conditions were set as V = 0 and ρ = 1. 

The flow problem was run for different combinations of Reynolds 

number, Mach number and preconditioning parameter γ . The test 

cases parameters are summarised in Table 5 . The values of γ were 

chosen for each test case as per the approach given by Table 3 . 

All test cases were run with a variety of meshes with densities 

of 7021, 13051, 18517, 23073 and 25877 cells. For each mesh, the 

cell height of the first cell adjacent to the cylinder wall was chosen 

as 0.05 and is one cell thick in the z-direction. The mesh contain- 

ing 23073 cells is shown in Fig. 14 . For Re = 20 and Re = 40 , the 

flow is steady. The predicted streamlines and velocity contours Test 

Case 1 and 5 are shown in Fig. 15 . The streamtraces show station- 

ary recirculation regions on the lee side of the cylinder. The flow 

pattern shown is consistent with the existing studies in the litera- 

ture; however more detailed measures are required to demonstrate 

the performance of the PLBFS. To do this, a variety of parameters 

can be employed including the drag coefficient of the cylinder, the 

recirculation length and separation angle. The drag coefficient C d 
relates the force acting on a body by a fluid in the direction of the 

freestream velocity to the force of the freestream dynamic pressure 

acting on the frontal area of the body. This is calculated as follows: 

Table 5 

Individual test case parameters for 3D flow over a circular cylinder. 

Test Case No. U ∞ Re Ma γ CN �vc, max δx max 

1 0.1 20 0.17 1 6.77 4.41 0.173 

2 0.1 20 0.17 0.2 2.15 22.05 0.866 

3 0.01 20 0.017 1 58.73 0.44 0.017 

4 0.01 20 0.017 0.05 3.88 8.82 0.346 

5 0.1 40 0.17 1 6.77 2.20 0.086 

6 0.1 40 0.17 0.2 2.15 11.04 0.433 

7 0.01 40 0.017 1 58.73 0.22 0.008 

8 0.01 40 0.017 0.05 3.88 4.41 0.173 
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Fig. 14. 3D flow over a circular cylinder: a) unstructured hexahedral mesh with 

23073 cells and b) exploded view of the mesh close to cylinder surface. 

C d = 

γ F d 
0 . 5 ρ∞ 

U 

2 ∞ 

A f 

(46) 

where A f is the frontal area (the area projected onto a plane nor- 

mal to the flow direction) of the body and F d is the drag force 

which in this flow problem is calculated by integrating the pres- 

sure and viscous stresses acting in the x-direction over the surface 

of the cylinder, i.e.: 

F d = −
∫ 

S 

([
p ∗ − μ

(
2 

∂u 
∂x 

)
−μ

(
∂u 
∂y 

+ 

∂v 
∂x 

)
−μ

(
∂u 
∂z 

+ 

∂w 

∂x 

)]
· n 

)
dS 

(47) 

The pressure and viscous stresses in Eq. (47) were calculated us- 

ing Eq. (16) . The recirculation length L s is defined as the distance 

between the trailing edge of the cylinder and the stagnation point 

in the wake i.e. where V = 0 on the x-axis. The separation angle 

θ s is the angle between the trailing edge and the point where the 

Fig. 15. 3D flow over a circular cylinder: streamlines and velocity contour plots on 

the z = 0 plane for a) Re = 20 and b) Re = 40 , Ma = 0 . 17 , γ = 1 and N cells = 23073. 

boundary layer separates from the cylinder. This point is indicated 

by the wall shear stress equalling zero. 

To establish that the PLBFS is at least second order accurate, 

Test Case 5 has also been performed for a variety of mesh den- 

sities where the first cell height, number of divisions and maxi- 

mum element length are scaled in the same manner from 0.2 L ref 

to 0.02 L ref . The meshes used included:0.2 L ref , 0.1 L ref , 0.0 6 67 L ref , 

0.05 L ref , 0.04 L ref and 0.02 L ref . A further test case was performed at 

a scale of 0.01 L ref and this is used as the benchmark drag coeffi- 

cient. The percentage error in the drag coefficient is calculated for 

each test case and is plotted in logarithmic form in Fig. 16 . This 

shows that the PLBFS has an order of accuracy of approximately 

2.3 for this test case and is at least second order accurate which is 

consistent with the work of Shu et al. [10] . 

The results from the PLBFS are compared to previous numeri- 

cal studies (Shu et al. [10] , Dennis and Chang [52] , Shukla et al. 
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Fig. 16. Variation in percentage error of drag coefficient with mesh size. The percentage error is relative to a simulation with first cell height on the cylinder boundary equal 

0.01 D . All simulations were run for Re = 40 , Ma = 0 . 17 and γ = 1. 

Table 6 

3D flow over a circular cylinder: comparison of predicted drag coefficient, recirculation length and separa- 

tion angle with predictions in the literature for Re = 20 and N cells = 23073. 

Reference U ∞ γ C d L s / D θ s 

Shu et al. [10] 0.1 - 2.06 0.94 42.94 

Dennis and Chang [52] - - 2.05 0.94 43.70 

Shukla et al. [53] - - 2.07 0.92 43.30 

Pellerin et al. [11] - - 2.01 0.92 43.58 

Test Case 1 0.1 1 2.05 0.91 42.97 

Test Case 2 0.1 0.2 2.1 0.98 42.81 

Test Case 3 0.01 1 2.07 0.86 40.86 

Test Case 4 0.01 0.02 2.04 0.91 42.97 

Table 7 

3D flow over a circular cylinder: comparison of predicted drag coefficient, recirculation length and separa- 

tion angle with predictions in the literature for Re = 40 and N cells = 23073. 

Reference U ∞ γ C d L s / D θ s 

Shu et al. [10] - - 1.53 2.24 52.69 

Dennis and Chang [52] - - 1.52 2.35 53.80 

Shukla et al. [53] - - 1.55 2.34 52.70 

Pellerin et al. [11] - - 1.5 2.26 53.52 

Test Case 5 0.1 1 1.53 2.23 53.13 

Test Case 6 0.1 0.2 1.58 2.4 52.64 

Test Case 7 0.01 1 1.54 2.00 49.26 

Test Case 8 0.01 0.02 1.53 2.21 52.64 

[53] and Pellerin et al. [11] ) in Table 6 and Table 7 . The varia- 

tion of the various parameters with mesh density are also plotted 

and compared to the upperbound and lowerbound values from the 

literature in Figs. 17 , 18 , 19 . These results show that for the vast 

majority of test cases, the parameters are converged or very near 

convergence on a mesh of 23073 cells. The main differentiator in 

accuracy are the parameters �vc, max and δx max . The most accurate 

predictions are for those test cases which have reduced values of 

�vc, max while having δx max greater than the first cell height in the 

boundary layer. These parameters are dependent on the choice of 

Ma and γ and a balance has to be struck between both to ensure 

maximum accuracy. 

The convergence histories are plotted in Fig. 20 . As shown in 

Fig. 20 , the reduction in iterations required to reach convergence 

compared to the non-preconditioned case is 4.92x at Re = 20 and 

9.625x at Re = 40 for Ma = 0 . 017 . However there is an increase in 

iterations at the higher Mach number of 0.17. Due to the detri- 

mental effect on convergence rates at Ma = 0 . 17 , further test cases 
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Fig. 17. 3D flow over a circular cylinder: variation of drag coefficient with mesh 

density for varying U ∞ and γ for a) Re = 20 and b) Re = 40 . 

were run to investigate this issue. These additional test cases were 

chosen as per Table 3 and are shown in Table 8 . Test Cases 9- 

12 used the same mesh with N cells = 23073 as before but with a 

more moderate level of preconditioning. The convergence histories 

of these additional test cases can be seen in Fig. 21 . These results 

show that any level of preconditioning has an adverse effect on 

convergence rates for Ma = 0 . 17 . 

Using an unstructured hexahedral mesh produces excellent re- 

sults that agree with existing studies in the literature. The previ- 

ous studies using the LBFS were performed by Shu et al. [10] with 

a cell-centred non-uniform O-grid mesh and by Pellerin et al. 

[11] with a vertex-centred tetrahedral mesh. They achieve excellent 

Fig. 18. 3D flow over a circular cylinder: variation of recirculation length with mesh 

density for varying U ∞ and γ for a) Re = 20 and b) Re = 40 . 

accuracy using 60501 cells and 63541 vertices respectively. Using 

the PLBFS on a fully unstructured hexahedral grid allows similar 

levels of accuracy to be attained while using a mesh with 23073 

cells. Inspecting Table 5 shows that preconditioning allows the use 

of larger δx max in larger cells in the mesh. This leads to more ac- 

curate results. It can be seen that Test Cases 3 and 7, which do 

not employ preconditioning, have δx max values that are an order 

of magnitude lower than the preconditioned cases. In both cases, 

δx max is less than the cell height of the first cell in the bound- 

ary layer. This results in drag coefficients, recirculation lengths and 

separation angles which are not as accurate as in the precondi- 

tioned cases. From the initial results in Fig. 20 , preconditioning has 
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Table 8 

Additional individual test case parameters for 3D flow over a circular cylinder problem. 

Test Case No. U ∞ Re Ma γ CN �vc, max δx max 

9 0.1 20 0.17 0.5 3.88 8.21 0.346 

10 0.1 20 0.17 0.75 5.33 5.88 0.230 

11 0.1 40 0.17 0.5 3.88 4.41 0.173 

12 0.1 40 0.17 0.75 5.33 2.94 0.115 

Fig. 19. 3D flow over a circular cylinder: variation of separation angle with mesh 

density for varying U ∞ and γ for a) Re = 20 and b) Re = 40 . 
Fig. 20. 3D flow over a circular cylinder: convergence history for a) Re = 20 and b) 

Re = 40 on a mesh with N cells = 23073. 
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Fig. 21. 3D flow over a circular cylinder: convergence history for a) Re = 20 and b) 

Re = 40 for a range of γ N cells = 23073. 

a significant acceleration effect on convergence at Ma = 0 . 017 but 

has a detrimental effect on the rate of convergence for Ma = 0 . 17 . 

This can be attributed to the fact that the vast majority of the cells 

in the mesh can be considered viscous dominated for γ = 1 as the 

Reynolds number is very low in each test case. Any implementa- 

tion of preconditioning for Ma = 0 . 17 would make these cells in- 

creasingly viscous dominated and increase runtimes. 

5. Conclusion 

In this paper a preconditioned lattice Boltzmann flux solver 

(PLBFS) has been successfully used to solve flow problems on 3D 

unstructured hexahedral meshes. This is demonstrated by success- 

fully simulating 3D lid-driven cavity flow and 3D flow over a circu- 

lar cylinder. The use of a unstructured hexahedral mesh topology is 

shown to enable the use of coarser meshes than those required us- 

ing a structured mesh topology for similar levels of accuracy. This 

accuracy is also further increased by using preconditioning as it al- 

lows the use of a more optimal local lattice Boltzmann reconstruc- 

tion in larger cells. This effect is demonstrated to be more signif- 

icant at higher Reynolds numbers and lower Mach numbers. Pre- 

conditioning also has the benefit of accelerating convergence in the 

vast majority of cases. Again this effect is more beneficial at higher 

Reynolds numbers and lower Mach numbers as the unprecondi- 

tioned condition number is larger. It has also been shown that in 

certain cases, such as flow problems with low Reynolds numbers 

and very fine mesh refinement in the boundary layer as with flow 

over a circular cylinder, the acceleration due to preconditioning can 

be inimal. In such cases it is recommended to use moderate levels 

of preconditioning, so that the ratio of the viscous spectral radius 

to the convective spectral radius remains less than one, or to use a 

coarser grid where possible if sufficient accuracy can be achieved 

with such a mesh. The PLBFS has been shown to greatly enhance 

the use of unstructured meshes with the LBFS, particularly in flow 

problems with higher Reynolds numbers. 
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Appendix A. Hybrid Green-Gauss/Weighted-Least-Squares 

Gradient Operator 

The Hybrid Green-Gauss/Weighted-Least-Squares Gradient Op- 

erator is given as: 

[ βi M i + 2 ( 1 −βi ) V i I ] ∇ Q i = 

N faces ∑ 

j=1 

(
βi αw j x i j + 2 ( 1 −βi ) αG j n j 

)
S j �Q j 

(A.1) 

where I is the identity matrix, i is the index of the current cell 

where the gradient is being calculated, j is the face index of cell 

i , ∇ Q i is the gradient vector of the macroscopic variables at the 

centroid of cell i, S j is the surface area of face j, αGj is a constant 

assumed to be equal to 0.5 for all faces, n j is the normal to face 

j , �Q j is the change in macroscopic variable between the the cen- 

troid of the current cell i and the centroid of the neighbouring cell 

with shared face j, β i is the switching parameter for cell i and is 

given by: 

βi = min 

(
1 , 

2 

AR 

)
(A.2) 

https://github.com/CHRG-Developer/3D-PLFBS-GPU
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where AR is the effective aspect ratio of the cell and is given by: 

AR = 

2 · max | r j − r i | · max 
(
S j 

)
V i 

(A.3) 

r j is a position vector for the centroid of the neighbouring cell 

with shared face j , r i is a position vector for the centroid of the 

current cell i and V i is the cell volume of the current cell i . M i is a 

matrix that weights the contribution of each neighbouring cell to 

the least-squares gradient calculation and is given by: 

M i = 

⎡ 

⎢ ⎢ ⎣ 

∑ N faces 

j=1 
ω j �x �x 

∑ N faces 

j=1 
ω j �y �x 

∑ N faces 

j=1 
ω j �z�x ∑ N faces 

j=1 
ω j �x �y 

∑ N faces 

j=1 
ω j �y �y 

∑ N faces 

j=1 
ω j �z�y ∑ N faces 

j=1 
ω j �x �z 

∑ N faces 

j=1 
ω j �y �z 

∑ N faces 

j=1 
ω j �z�z 

⎤ 

⎥ ⎥ ⎦ 

(A.4) 

�x , �y and �z are the changes in location along the Cartesian 

axes between the current cell’s centroid and the j th neighbouring 

cell’s centroid. αwj is an interpolation factor given by: 

αw j = 4 

( | r k − r i | · n j 

| r j − r i | · n j 

)2 

(A.5) 

where r k is the centroid of the face j and ω j is a weighting function 

given by: 

ω j = αw j 

S j 

| r j − r i | (A.6) 

Finally x i j is given by: 

x i j = 

r j − r i 

| r j − r i | (A.7) 
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