
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Conference papers School of Computer Sciences 

2020 

Modelling Interleaved Activities using Language Models Modelling Interleaved Activities using Language Models 

Eoin Rogers 
Technological University Dublin, eoinrogers@gmail.com 

Robert J. Ross 
Technological University Dublin, robert.ross@tudublin.ie 

John D. Kelleher 
Technological University Dublin, john.d.kelleher@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon 

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons 

Recommended Citation Recommended Citation 
Rogers, E., Ross, R.J. & Kelleher, J.D. (2020). Modelling interleaved activities using language models. 
InProceedings of the 34th International ECMS Conference on Modelling and Simulation, ECMS 2020, 
pages 183--189.DOI: 10.7148/2020-0183 

This Conference Paper is brought to you for free and 
open access by the School of Computer Sciences at 
ARROW@TU Dublin. It has been accepted for inclusion in 
Conference papers by an authorized administrator of 
ARROW@TU Dublin. For more information, please 
contact arrow.admin@tudublin.ie, 
aisling.coyne@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


MODELLING INTERLEAVED
ACTIVITIES USING LANGUAGE

MODELS
Eoin Rogers, Robert J. Ross, John D. Kelleher

Applied Intelligence Research Centre
Technological University Dublin

Dublin, Ireland
eoin.rogers@tudublin.ie, robert.ross@tudublin.ie, john.d.kelleher@tudublin.ie

KEYWORDS

Activity discovery ; Activity Recognition ; Interleav-
ing ; Neural language modelling ; Behaviour modelling

ABSTRACT

We propose a new approach to activity discovery,
based on the neural language modelling of stream-
ing sensor events. Our approach proceeds in multi-
ple stages: we build binary links between activities us-
ing probability distributions generated by a neural lan-
guage model trained on the dataset, and combine the
binary links to produce complex activities. We then
use the activities as sensor events, allowing us to build
complex hierarchies of activities. We put an emphasis
on dealing with interleaving, which represents a major
challenge for many existing activity discovery systems.
The system is tested on a realistic dataset, demonstrat-
ing it as a promising solution to the activity discovery
problem.

INTRODUCTION

Given the increasing ubiquity of computer systems in
our everyday lives, using them to model, monitor and
analyse human behaviour becomes increasingly possible
and useful. The field of activity recognition studies the
design and implementation of such systems (Kwapisz
et al., 2011; Kim et al., 2009), which can be useful for
applications as diverse as elder care and security.

One persistent issue facing activity recognition is the
difficulty in finding suitably annotated datasets. La-
belling such datasets can be time consuming, and in
many cases is quite difficult due to differences in lev-
els of abstraction and ambiguities about the precise
start and end times of activities. In order to address
this, the field of activity discovery (AD) has proposed
the unsupervised extraction of plausible human activi-
ties from unannotated datasets (Gjoreski and Roggen,
2017; Cook et al., 2013; Rogers et al., 2016).

Real-word activities are often interleaved, meaning
that they take place at the same time. This results
in sensor readings for multiple activities showing up in
quick succession on the data stream. Recognising that
this is happening, separating the activities from each
other, and recognising that sensor events that do not

occur adjacent to each other may be part of the same
activity is a significant challenge for existing activity
discovery systems.

In this paper, we propose a novel approach to activ-
ity discovery that makes use of neural language models,
developed by the natural language processing (NLP)
community, to model the sensor feeds from activity
discovery systems and extract useful activities from
them. This work builds upon a previous related sys-
tem presented in (Rogers et al., Forthcoming), but with
major changes including the discovery of proper, non-
binary activities, and clustering of activities into dis-
tinct types. Our approach is also designed to be aware
of, and disentangle, interleaved activities. This pa-
per is divided into five remaining sections, outlining
the activity discovery problem in more detail, covering
prior work in the field, a description of our approach,
a description of the experiments we ran to test our ap-
proach, and a presentation of our results respectively.

ACTIVITY DISCOVERY

In order to have a clean model description, it is neces-
sary for us to briefly introduce the terminology that we
will use later. Formally, an activity discovery system
can be modelled as a 5-tuple (Σ, D,A, f, g), where:
• Σ is a set of event types;
• D is an ordered sequence of events, D =
〈d1, d2, . . . , dL〉 of length L, such that each di ∈ D is
drawn from the set Σ. We call this the dataset ;
• A is a set of activity types;
• f is a mapping f : D → X∗, which takes a sequence
of events D as input, and returns a set of (possibly
non-contiguous) sub-sequences of D as output; and
• g is a mapping g : X → A, where X ⊂ D∗, which
takes a sub-sequence produced by f as input, and re-
turns an activity type a ∈ A as output.

This definition can be made clearer with a con-
crete example. Supposing we have a dataset D =
〈d1, d2, . . . , dN 〉. Each di ∈ Σ is a sensor event drawn
from Σ, our full set of sensor events. In an environment
where sensors have been set up in a home, for instance,
Σ could consist of events such as open front door, turn
oven on, flush toilet and similar domestic events. An
activity, then, is simply a sub-sequence of D consisting
of events that appear to the activity discovery system



to be semantically related. For instance, we would ex-
pect that events such as turn oven on, open kitchen
cupboard, open refrigerator might occur in an activity
together, since they tend to occur together temporally.
It should be noted that D is not a set of sequences as
might be the case in a supervised learning setting; D is
a single large dataset from which we extract activities.

Multiple similar activities can then be clustered
or lifted into one type. The activity discovery sys-
tem might notice that an activity similar to the one
mentioned in the previous paragraph seems to occur
nightly, and may cluster them all into a single making
dinner activity type. The concrete sub-sequences of D
are referred to as the instances of the making dinner
activity.

Note that we don’t generally expect an activity dis-
covery system to operate with human-like semantic
knowledge or expectations in the basic case. Thus, it
would not be expected to be able to name the new
activity type as making dinner, only to identify that
the instances involved can be sensibly clustered to-
gether. A commercial activity discovery system might
well be supplemented with real-world knowledge, with
the intention of biasing towards the sort of activities
we would expect to find in the environment in which it
operates. For instance, knowledge that events relating
to a fridge or oven indicates activities relating to food
preparation such as making dinner are taking place.
In many ways this would stray over into being a form
of activity recognition as well as discovery. For this
reason, we stick to a pure form of activity discovery
without any real-world knowledge. We do still expect
to be able to discover making dinner as an activity, just
not to be able to give it a label (making dinner) that
would be semantically meaningful to a human observer.

PRIOR WORK

A number of existing approaches to activity discov-
ery exist in the literature. Cook et al. (2013) provides
a good overview of the field. This paper also intro-
duces an activity discovery system that applies a beam
search algorithm using an operator called ExtendSe-
quence to discover activities in an unlabelled dataset.
Like a number of other systems in the field, this algo-
rithm utilises the minimum description length (MDL)
principle (Rissanen, 1978, 1989), which proposes evalu-
ating machine learning models by measuring the degree
to which they compress their input dataset. This is an
important principle, and one which will turn out to be
useful to our own work also.

Activity discovery can also be carried out by rela-
tively simple systems that utilise topic models (Huynh
et al., 2008). Here, the latent Dirichlet allocation
(LDA) topic model (Blei et al., 2003) is used to model
the relationship between sensor events and latent vari-
ables which are presumed to represent activities. The
model is shown to have good performance, even on a
complex dataset. More recently, other models based
on statistical models have been proposed: for example,
Fang et al. (2019) proposes activity discovery by means

of a hierarchical mixture model. Saives et al. (2015)
propose using activity discovery to build a model of
normal behaviour patterns of a person in order to de-
tect anomalous behaviours that may be of interest to
medical professionals.

Related fields also provide an important source of
ideas. Grammar induction is a concept from computa-
tional linguistics which refers to the derivation of gram-
mar productions for a language given only a dataset.
Some forms of grammar induction require labelled in-
put, distinguishing positive and negative examples, but
others require only positive examples. In the general
case, grammar induction is not a tractable problem, re-
gardless of whether the dataset is labelled or not (Gold,
1967), but tractable approximations have been demon-
strated which solve the problem to a degree (Cramer,
2007). This problem is by no means equivalent to activ-
ity discovery (and is in fact in many ways harder), but
it does involve the induction of structure from a one-
dimensional input vector. Adios (Solan et al., 2005)
induces a grammar by loading a dataset into mem-
ory as a graph, with words represented as vertexes
and sentences represented as directed edges between
these. This representation allows for the identification
of equivalence classes between words and phrases which
share the same input and output edges, which can then
be added to the graph as nonterminals. A variant of the
Adios approach, which supplements the basic grammar
induction algorithm with logical predicates to allow for
more accurate induction in a limited linguistic domain
is presented by (Gaspers et al., 2011).

The eGrids grammar induction algorithm (Petasis
et al., 2004) bears a resemblance to the beam search-
based system mentioned previously from (Cook et al.,
2013). It also uses an MDL-based objective function
to guide the search. An interesting deep learning-
based grammar induction model using convolutional
networks to determine syntactic distance (the degree
to which two neighbouring words or symbols belong to
the same POS phrase) is similar to the approach we
present in this paper (Shen et al., 2017). Finally, our
approach can also be understood as a non-local vari-
ant of the tree structure induction algorithm Sequitur
(Nevill-Manning and Witten, 1997), which groups in-
put symbols together even if they do not appear con-
tiguously.

Alshammari et al. (2017) present a 3D simulation
of a house that can be used to automatically generate
datasets for use in activity discovery, activity recog-
nition and related fields. This could prove useful for
validating activity discovery systems.

APPROACH

We will now outline the approach that we have taken
to activity discovery. From the perspective of some-
body using our system, we assume that the input is
a dataset consisting of a finite series of discrete sen-
sor events D = 〈d1, d2, . . . , dL〉. Each individual sensor
event has an associated type from a fixed set of types T .
We write the type of di as t(di) ∈ T . The primary out-



put from the system is a series of discovered activities
〈Act1, Act2, . . . , ActN 〉, where each activity is a tuple of
the form (IndexesActj , T ypeActj ). IndexesActj is a set
of indexes into the dataset D, {x1, x2, . . . , xActSize(j)},
of length ActSize(j), which can be different for each
activity output by the system. TypeActj is a type as-
sociated with the discovered activity, analogous to the
type of a sensor event discussed above. Actj and Actk
may share the same type, but they may not share the
same set of indexes.

The basic internal operation of our model proceeds
according to the following three steps:
• We build a probabilistic model by analysing the
dataset. Given a subset of the dataset Di:i+n−1, which
we call the sliding window, we use the model to pre-
dict the probability distribution over sensor events
P (di+n+l|Di:i+n−1) for all l ∈ {0, 1, . . . ,m−1}. We call
the subset of the dataset Di+n:i+n+m−1 the lookahead
window, m the lookahead length, and l the lookahead
offset.
• We use the probabilistic model to construct links
between sensor events if the model is confident that
one event can be predicted from the other. Links are
grouped together to create the IndexesActj part of the
output described above.
• Activities are then clustered together based on the
similarity of the sensor types present within them. The
clusters are used as the TypeActj part of the output
described above.

A more detailed outline of these stages now follows.
NLP practitioners will of course recognise that the

probabilistic model that we describe is a form of lan-
guage model. As is now common in that field, we use
a neural language model (Bengio et al., 2003) or NLM.
We use a modern recurrent design – specifically the
LSTM-based (Hochreiter and Schmidhuber, 1997) ap-
proach described in (Zaremba et al., 2014) (which is it-
self adapted from (Graves, 2013)), which allows for the
modelling of long-distance dependencies and robustness
to noise. The LSTM consists of an input gate i, a forget
gate f , and an output gate o. If hl

t denotes the output
of layer l at timestep t, g denotes the modulated input
and clt denotes the value of an LSTM cell in layer l at
time t, activation of the gates is defined as:

i
f
o
g

 =


sigm
sigm
sigm
tanh

W

(
hl−1
t

hl
t−1

)
+ b (1)

We then update the value in the cell:

clt = f � ctt−1 + i� g (2)

Where � denotes the Hadamard product (i.e. ele-
mentwise multiplication, as opposed to matrix multi-
plication). The output hl

t is then:

hl
t = o� tanh(clt) (3)

We train m networks, one for each lookahead offset.
As a result, one network is responsible for predicting

Fig. 1: In this example, events A and B are inside the sliding

window, and are fed as input into two LSTMs. Each LSTM has

to predict a probability distribution over the corresponding

offset within the lookahead window containing C and D.

the first item in the lookahead window, another for pre-
dicting the second and so on. This process is illustrated
in Fig. 1.

Building links between activities is carried out in two
stages: building simple binary links, and grouping the
links together to form activities. The binary links are
built using the NLM. First we run the networks over
the entire dataset. We build a binary link between
the final event in the sliding window and the lth event
in the lookahead window if the lth LSTM successfully
predicts the lth event from the sliding window (for ex-
ample, between events B and D in Fig. 1 if LSTM 2
predicted event D). Doing this naively would make the
system vulnerable to building links between common
events. In the NLP community, this approach is usu-
ally solved by removing common words (stop words),
but this could reduce the quality of the resulting activ-
ities discovered.

As a result, we don’t work with probabilities directly,
but rather with probability deltas. Again looking at Fig.
1, this is the average probability that LSTM 2 predicts
D when event B is present in the sliding window minus
the probability when it isn’t present. Thus, we only
build a link between B and D if the presence of event
B makes the LSTM more confident that event D is to
follow. The exact calculation we use is presented in
equation 4, where P l

i+n denotes the probability vector
produced by the lth LSTM of the i + nth item in the
dataset (which we denote above as P (di+n+l|Di:i+n)).

delta(P l
i+n) =

∑i+n+n−1
k=i+n P l

k

k
−

P l
i + P l

i+n+n

2
(4)

A link is built between di+n and di+n+l if and only
if this probability delta exceeds a certain threshold. The
thresholds are computed at runtime, since different
event types need different associated thresholds for the
link-building to work correctly. We experimented with
a number of automatic discretisation algorithms. One
commonly used method to compute a binary thresh-
old is Otsu’s method, which is commonly used in the
image processing community. This works by convert-
ing an image to greyscale, and then producing a his-
togram over its pixel intensities. The threshold is the
point in the histrogram where the integral of pixel den-
sities to both the left and right of the threshold are
equal. This is mathematically equivalent to comput-
ing the k-means clustering with k = 2 for the pixel



Fig. 2: Links are built between events if an LSTMs probability

delta passes a threshold. This threshold is computed

dynamically at runtime.

intensities and then taking the average of the two cen-
troids as a threshold. However, this method assumes
that the histogram in question has two distinct humps,
one for light pixels and another for dark pixels. This
is unlikely to be the case for our dataset. In this case,
thresholds can be computed automatically by apply-
ing Otsu’s method, dividing the image into bright and
dark sub-images based on the threshold, running Otsu’s
method over both sub-images, and then using the av-
erage of these two thresholds as the threshold for the
next iteration. We stop iterating when the threshold
begins to converge, i.e. when the threshold computed
in two iterations falls below a certain epsilon. This is
the method we used to automatically compute thresh-
olds per event type, using probability deltas in place of
pixel intensity values. The linking process results in a
tangle of binary links between events, as illustrated in
Fig. 2.

The links are then grouped together to form activi-
ties. For example, if a link is built between the sensor
events at indexes 1 and 5, and another link is built
between 5 and 8, the system will output an activity
consisting of 1, 5 and 8.

The final stage of the three introduced above is clus-
tering. We say two activities have the same type as
each other if they share at least 50% of the same event
types. We have looked at other, more sophisticated
types of clustering, but we have found that the type
used has surprisingly little effect on the performance of
our system.

Building Hierarchies of Activities

So far, we have maintained a sharp distinction be-
tween the types of sensor events and the types of ac-
tivities. Removing this distinction has an obvious ad-
vantage: we can replace the discovered activities in
the dataset with their activity types, producing a new
dataset that the above process can be repeated on. This
allows us to produces activity hierarchies, where ac-
tivities can contain previously discovered activities as
members, which allows for the modelling of activities
that contain other activities. These are abundant in the
real world: for example, a making dinner activity could
contain a smaller activity such as chopping vegetables.

Fig. 3 presents a possible output from such a process.
If events B, D, F and G are all found to belong to the
same activity, they can be removed and replaced with a
new event representing the discovered activity. We can
then train and run the system again, which allows this

Fig. 3: If events B, D, F and G are all part of the same activity,

we can remove these events from the dataset and replace them

with a new activity. We can then train and run the system from

scratch again, allowing us to build rich hierarchies of activities.

activity to be detected as belonging to other activities.
This allows for the building of complex hierarchies of
activities, such as the one described in the previous
paragraph.

Note that the discovered activity includes events that
are not adjacent to each other in the original dataset.
For example, event B does not directly neighbour the
other events in the activity. This is one of the major
strengths of our approach: it does not assume or require
that the activities discovered are contiguous. This al-
lows us to deal with one of the must pressing issues in
the field of activity discovery, which is that of interleav-
ing, where the person or people under observation are
carrying out multiple activities in parallel. From the
viewpoint of an activity discovery system, interleaved
activities usually look like a person switching back and
forth between activities, in much the same way that
a modern operating system context switches between
running processes to allow multitasking. Our approach
aims to explicitly address interleaving by disentangling
interleaved activities from each other.

One non-obvious aspect of this process is why the
new event was placed after activity E. For example,
event B was also part of the discovered activity the
event is replacing, so would it not make equal sense to
place the new event between A and C? We decide where
to place the new event based on the number of events it
removes from various locations of the original dataset.
The event in Fig. 3 removed one event between A and
C (event B), one between C and E (event D), and two
after E (F and G). Thus, we place the new event after
event E.

The process can be repeated as many times as needed
to produce a many-layered hierarchy of activities.

EXPERIMENT SETUP

We implemented our system in Python using the
TensorFlow (Abadi et al., 2015) machine learning li-
brary. We used a four-layer neural language model,
with 150 cells per layer for the lowest level of the hi-
erarchy. As we ascended the hierarchy we found that
the size increase of the vocabulary due to the addition
of discovered activities was straining the network. As
a result, we increased the size of the network by 50%
for each level: level 1 had 150 LSTM cells, level 2 had
225, level 3 had 337 and so on.

We use the Kyoto 3 dataset from the CASAS
smarthome project (Cook and Schmitter-Edgecombe,
2009). This dataset consists of readings from a range of



sensors installed in a small apartment. The dataset was
gathered by asking a number of participants to perform
activities of daily living (ADLs) in a natural manner in
the apartment. Most of the sensor readings are either
binary (they have a simple on/off state), or can only
enter one of a handful of states. This means they can
be easily converted to the sequence of events format
our system expects by creating event types of the form
SensorName SensorState. For example, one of the
sensors are referred to as M17 in the dataset, and can
take the state ON , so M17 ON becomes an event type
in the dataset. For the few sensor types that did have
continuous values, we used the Jenks natural breaks al-
gorithm (Jenks, 1967) to discretise the data. Our sys-
tem does not take temporal distance into account, so
it cannot, for instance, see large gaps between events.
This makes the system’s task substantially harder, but
it allows us to put our system through much more chal-
lenging testing than most activity discovery practition-
ers settle for.

RESULTS

Evaluating activity discovery systems can be a chal-
lenge for a number of reasons. Human annotators may
not come to an agreement with each other over the
start and end points of activities, which makes working
from a gold-standard ground truth quite difficult. For
example, when does the activity of Making Dinner
start? When a person enters the kitchen? When they
turn on the oven? In many cases, a ground truth may
not even be available (although that isn’t an issue for
the Kyoto dataset). The output from an activity dis-
covery system may be on a different level of abstrac-
tion from the ground truth: for example the system
may discover an activity that could be called something
like chop vegetables, but the ground truth instead has
an activity called make dinner, which chop vegetables
would be a constituent of. A good overview of evalua-
tion for activity discovery can be found in (Cook and
Krishnan, 2015).

Since we do have access to a ground truth in this
experiment, it makes sense to use it, although we must
keep the above issues in mind. Because of the abstrac-
tion issue mentioned before, we argue that both raw
accuracy and F-measures are inappropriate for evalu-
ating this system. Instead, we compare each new event
type from each level of the hierarchy using the preci-
sion metric, i.e. the true positives divided by the sum
of the true and false positives. Each event type is then
matched with the ground truth activity with which it
achieves the highest associated precision.

Given a window length n and lookahead length m
of 10, and building a hierarchy of 4 levels, the average
precision per level is shown in Table I.

We can see that the results improve the higher up
through the hierarchy we ascend. This is expected,
since the events become more abstract and thus closer
to the (very abstract) activities in the ground truth.
We also compute the results per discovered activity
(the results presented in Table I is the average over

Level number Average precision
Level 1 0.7694124354455739
Level 2 0.8183002393181837
Level 3 0.82831171138164
Level 4 0.8341719705663135

TABLE I: Average precision score achieved for a 4-level

hierarchy

Event type Precision
new event 45 1.0
new event 46 1.0
new event 47 0.75
new event 48 1.0
new event 49 0.5
new event 51 0.5

TABLE II: Extract of the full results, showing the precision of

each activity type found

these scores.) These are too large to be presented in
full in this paper, but an extract of the full results are
presented as Table II.

We also experimented with different hyperparameter
values. In particular, we studied the effect of adjust-
ing both the window and lookahead lengths. Increasing
the window length has a moderate negative impact on
the observed results, as shown in Table III. This indi-
cates that the extra information provided in the longer
sliding window actually ends up confusing the LSTM
networks, since they observe conflicting signals as a re-
sult of now having multiple activities visible in their
input at any one point in time. Most activities, even
when highly interleaved, tend to be very “local”, with
events that constitute the activity being located quite
close together in the dataset.

Perhaps less surprising is the strong negative correla-
tion observed between lookahead length and precision,
shown in Table IV. This is also to be expected: our sys-
tem is very good at linking nearby events, but struggles
to confidently link distant events, which is very much
to be expected when processing sequential data, but
the extent of the negative correlation is worth pointing
out.

A particularly interesting and encouraging result is
the difference in performance when dealing with inter-
leaved and non-interleaved datasets. Table V shows
the average precision for the system when given a non-
interleaved dataset as input. Compared to the results
for the interleaved dataset (Table I) we see the lack

Window length Average precision
10 0.80
15 0.80
20 0.79
25 0.77

TABLE III: Relationship between window length and precision



Lookahead length Average precision
10 0.80
15 0.64
20 0.56
25 0.48

TABLE IV: Relationship between lookahead length and

precision

Level number Average precision
Level 1 0.7376020200520275
Level 2 0.7744498540343416
Level 3 0.7964471494200084
Level 4 0.8018082799378542

TABLE V: Average precision score achieved when using a

non-interleaved dataset

of interleaving is actually confusing the system, which
is the opposite to what is usually observed in activity
discovery systems. This demonstrates that we have a
strong reason to claim that this system is well suited
to dealing with interleaved datasets. It also means that
performance could likely be boosted further by an en-
semble of this system and traditional activity discovery
systems, since these results demonstrate that they ar-
guably have different strengths, and combining models
with different strengths is generally a good idea when
carrying out ensemble learning.

We have already mentioned minimum description
length (MDL) in the prior work section on this paper
on page 2. (Cook et al., 2013) suggest using this as the
basis for another metric for activity discovery systems,
namely that of compression ratio. Since our system
is constructing a hierarchy of activities by removed the
sensor events that are found to belong to the discovered
activities, the dataset reduces in size over time. Com-
pression ratio alone can serve as a metric, since having
a high compression ratio can be a sign that the sys-
tem is correctly finding activities present in the dataset.
Our system compresses the original Kyoto3 dataset to
around 36% if its original size.

(Cook and Krishnan, 2015) proposes that the concept
of compression ratio could be converted into a more
principled metric by measuring how well compression
ratio generalises. In traditional machine learning, we
may be more concerned with how a system deals with
novel input compared to how it deals with input seen in
the dataset. This allows us to be sure it is learning a sig-
nal present in the dataset, rather than just memorising
the contents of the dataset. This is typically measured
using techniques like holding out a validation dataset
from the main dataset. If a system is generalising well,
its performance on the testing dataset should be similar
to the performance on the training dataset. Likewise,
if an activity discovery system compresses the dataset
by a certain amount, it should also compress a testing
dataset by the same amount. We tested our system
using ten-fold cross-validation. The results, presented

Cross-validation Compression ratio
Fold 1 0.3927149342694845
Fold 2 0.32898505905289627
Fold 3 0.3363159811817841
Fold 4 0.34688667906136067
Fold 5 0.35323690998006696
Fold 6 0.38618623218659726
Fold 7 0.315419492673265
Fold 8 0.32600179330230683
Fold 9 0.4082227112380515
Fold 10 0.3370837650161199

TABLE VI: Ten-fold cross validation of the compression ratio

produced by the system

in Table VI, show clearly that the system is finding
activities that generalise well to the test dataset.

CONCLUSION

This paper introduced a deep learning-based activ-
ity discovery system. We have described the system,
and also presented results illustrating its performance
on a realistic dataset, and an analysis of how the results
change in response to a change in the system’s meta-
parameters. We feel that these results show that the
system performs favourably compared to other systems
in the field, and could be adapted for use in real-world
activity discovery applications.

A number of changes could be made to this system to
improve its performance and further test it. We have al-
ready mentioned the work of (Alshammari et al., 2017)
as a possible means to generate datasets for very in-
depth testing. Testing using the Opportunity dataset
(Chavarriaga et al., 2013) could also be useful. Chang-
ing the design of the network to take into account the
temporal information included in the Kyoto dataset,
but not utilised by our model, is another possible way
to improve the system in the future.

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. URL https://www.tensorflow.

org/. Software available from tensorflow.org.

N. Alshammari, T. Alshammari, M. Sedky, J. Cham-
pion, and C. Bauer. Openshs: Open smart home sim-
ulator. Sensors, 17(5):1003, 2017.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin.
A neural probabilistic language model. Journal of ma-
chine learning research, 3(Feb):1137–1155, 2003.

https://www.tensorflow.org/
https://www.tensorflow.org/


D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of machine Learning research, 3
(Jan):993–1022, 2003.

R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digu-
marti, G. Tröster, J. d. R. Millán, and D. Roggen. The
opportunity challenge: A benchmark database for on-
body sensor-based activity recognition. Pattern Recog-
nition Letters, 34(15):2033–2042, 2013.

D. J. Cook and N. C. Krishnan. Activity learning: dis-
covering, recognizing, and predicting human behavior
from sensor data. John Wiley & Sons, 2015.

D. J. Cook and M. Schmitter-Edgecombe. Assessing the
quality of activities in a smart environment. Methods
of information in medicine, 48(05):480–485, 2009.

D. J. Cook, N. C. Krishnan, and P. Rashidi. Activity
discovery and activity recognition: A new partnership.
IEEE transactions on cybernetics, 43(3):820–828, 2013.

B. Cramer. Limitations of current grammar induction
algorithms. In Proceedings of the 45th annual meeting
of the ACL: student research workshop, pages 43–48.
Association for Computational Linguistics, 2007.

L. Fang, J. Ye, and S. Dobson. Discovery and recogni-
tion of emerging human activities using a hierarchical
mixture of directional statistical models. IEEE Trans-
actions on Knowledge and Data Engineering, 2019.

J. Gaspers, P. Cimiano, S. S. Griffiths, and B. Wrede.
An unsupervised algorithm for the induction of con-
structions. In 2011 IEEE International Conference on
Development and Learning (ICDL), volume 2, pages
1–6. IEEE, 2011.

H. Gjoreski and D. Roggen. Unsupervised online activ-
ity discovery using temporal behaviour assumption. In
Proceedings of the 2017 ACM International Symposium
on Wearable Computers, pages 42–49, 2017.

E. Gold. Language identification in the limit. i nfor-
mation andcontrol, 10: 447-474, 1967.[11] s. Jain.
An infinite class of functions identifiable using minimal
programs in all Kolmogorov numberings. I nternational
J ournalofFoundationsofComputer Science, 6(1):89–94,
1967.

A. Graves. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

T. Huynh, M. Fritz, and B. Schiele. Discovery of activ-
ity patterns using topic models. In UbiComp, volume 8,
pages 10–19, 2008.

G. F. Jenks. The data model concept in statistical
mapping. International yearbook of cartography, 7:186–
190, 1967.

E. Kim, S. Helal, and D. Cook. Human activity recogni-
tion and pattern discovery. IEEE pervasive computing,
9(1):48–53, 2009.

J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activ-

ity recognition using cell phone accelerometers. ACM
SigKDD Explorations Newsletter, 12(2):74–82, 2011.

C. G. Nevill-Manning and I. H. Witten. Identifying
hierarchical structure in sequences: A linear-time al-
gorithm. Journal of Artificial Intelligence Research, 7:
67–82, 1997.

G. Petasis, G. Paliouras, V. Karkaletsis, C. Halat-
sis, and C. D. Spyropoulos. e-grids: Computationally
efficient gramatical inference from positive examples.
Grammars, 7:69–110, 2004.

J. Rissanen. Modeling by shortest data description.
Automatica, 14(5):465–471, 1978.

J. Rissanen. Stochastic complexity in statistical inquiry.
World Scientific, 1989.

E. Rogers, J. D. Kelleher, and R. J. Ross. Towards
a deep learning-based activity discovery system. In
AICS, pages 184–191, 2016.

E. Rogers, J. D. Kelleher, and R. J. Ross. In Pro-
ceedings of the Second IFIP International Conference
on Machine Learning for Networking. Springer, Forth-
coming.

J. Saives, C. Pianon, and G. Faraut. Activity discovery
and detection of behavioral deviations of an inhabitant
from binary sensors. IEEE Transactions on Automa-
tion Science and Engineering, 12(4):1211–1224, 2015.

Y. Shen, Z. Lin, C.-W. Huang, and A. Courville. Neu-
ral language modeling by jointly learning syntax and
lexicon. arXiv preprint arXiv:1711.02013, 2017.

Z. Solan, D. Horn, E. Ruppin, and S. Edelman. Un-
supervised learning of natural languages. Proceedings
of the National Academy of Sciences, 102(33):11629–
11634, 2005.

W. Zaremba, I. Sutskever, and O. Vinyals. Recur-
rent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.


	Modelling Interleaved Activities using Language Models
	Recommended Citation

	tmp.1604413112.pdf.7a9bt

