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Abstract—Commercially recorded music since the 1950s has
been mixed down from many input sound sources to a two-
channel reproduction of these sources. The effect of this approach
is to assign sources to locations in a stereo field using a pan-
position for each source. The Adress algorithm is a popular
way of extracting individual music sound sources from a stereo
mixture. A drawback of the Adress algorithm is that when time-
frequency components in the stereo mixture are shared between
two or more sources, calculating the inter-aural intensity scaling
parameter for each source for that time-frequency component is
challenging. We show how to obtain a good quality inverse of
the pan-mixing process in the time-frequency components which
are shared between different sources using a new method called
Redress. We demonstrate that we can estimate how much of each
source is active in time-frequency components which are shared
between sources for two and three-source music mixtures. The
consequence of this is that audible artefacts are not as prominent
in the source estimates.

Index Terms—Source Separation, Time-Frequency, Music Sig-
nal Processing.

I. INTRODUCTION

Since the 1950s commercially recorded music has been
mixed down from many input sources to a stereo reproduction
of these sources. The effect of this pan-mixing approach
is to assign sources to locations in a stereo field using a
pan-position for each source. The Adress algorithm [1] has
gained wide interest due to its success at extracting individual
music sound sources from a stereo mixture. It works by using
scaling the mixtures on each channel relative to each other
to expose nulls across a frequency-gain (frequency-azimuth)
plane. Similar to other Time-Frequency (TF) approaches,
[2]–[5] source reconstruction is difficult when two or more
sources occupy the same TF bin. Our contribution, the Redress
algorithm, remedies this short-coming of the Adress algorithm,
by de-mixing the contribution of multiple sources to a TF bin
by considering frequency-azimuth plane in its entirety. The
resulting separated sources exhibit de-mixing artefacts that are
less prominent than before.

The Redress algorithm can be classed as a member of
the Independent Component Analysis (ICA) family of Source
Separation algorithms [6]. ICA techniques are classified ac-
cording to the problem they solve: the instantaneous mixing
problem, the an-echoic mixing problem or the echoic mixing
problem. Redress addresses the instantaneous mixing problem.
The DUET algorithm [2] and related power weighted relative

This publication has emanated from research conducted with the finan-
cial support of Science Foundation Ireland (SFI) under the Grant Number
15/SIRG/3459.

attenuation and delay estimation approaches [3] are an-echoic
de-mixing approaches. Some of these approaches have been
extended to the echoic mixing case in [7].

Disjointness, or at least low frequency of overlap, in the TF
domain for the constituent sources in a mixture is a desirable
property when de-mixing mixtures using the approaches above
and [8], [9]. For example, DUET [2] relies on Windowed-
Disjoint Orthogonality (WDO), which is a requirement that at
most one source is active at any given TF point to successfully
separated sources. The WDO assumption is generally suffi-
ciently true for DUET to de-mix mixtures of up to four to five
speech sources. Similarly, Non-negative Matrix Factorization
(NMF) [9]–[11] works well when sources do not over-lap in
a high proportion of the TF bins. The Adress algorithm relies
on a similar property for music mixtures. When this property
is not evident, the authors described the problem as smearing
in the frequency-azimuth plane [1]. These ideas have a similar
root. Music sources exhibit sparsity in the frequency domain
–their energy is concentrated in a few TF bins. When sparsity
is coupled with the idea that there is an independence in the
occurrence of components, the result is the near-disjointness
required by the class of ICA algorithms described above.

What has not be discussed in the literature, is that for many
sources mixed using pan-mixing, if the sources are located
at different pan-positions, their TF components can be re-
expressed as an azimuth trajectory which will have a zero
at the position which corresponds to that pan-position. In
this paper we show how to represent mixtures using a basis
function-trajectory representation; the result of this estimation
procedure is that we can separate out the contribution of
multiple sources to individual TF bins.

This paper is organized as follows. We introduce a simple
pan-de-mixing problem in order to introduce how the Adress
algorithm functions in Section II. We introduce the main
shorting-coming of the Adress approach using this problem.
We then use this de-mixing problem to motivate Redress in
Section III. We describe our source reconstruction algorithm
in Section IV. Finally, we evaluate the performance of Redress
and compare it with Adress in Section V.

II. MIXING MODEL

We start by defining pan-mixing using a specific example
as it enables us to establish and define a number of crucial
concepts used in the rest of this paper. Two continuous-time
sound sources are recorded s1(t) and s2(t). They are com-
posed of two frequencies. The first source s1(t) is composed
of frequencies f1 and f3 and the second sound source is



composed of frequencies f2 and f3. We scale both sources
by 2 to simplify notation in the remainder of this section,

s1(t) = 2 sin(2πf1t) + 2 sin(2πf3t), (1)

s2(t) = 2 sin(2πf2t) + 2 sin(2sπf3t). (2)

Pan-mixing produces a stereo mixture of these sources by
weighting the contribution of each source on the left channel
and the right channel, the signals x1(t) and x2(t). We use two
weights 0 < α < 1 and 0 < γ < 1 and produce

x1(t) = s1(t) + αs2(t), (3)

x2(t) = γs1(t) + s2(t). (4)

The Fourier transforms of the original source signals, s1(t)
and s2(t), are denoted S1(f) and S2(f) where f denotes
frequency. We may express these transforms compactly

S1(f) = [δ(f − f1) + δ(f + f1) + δ(f − f3) + δ(f + f3)]

S2(f) = [δ(f − f2) + δ(f + f2) + δ(f − f3) + δ(f + f3)]
(5)

where, δ(·), is the delta function. The Fourier transforms of
the mixtures, X1(f) and X2(f), are

X1(f) = [δ(f − f1) + δ(f + f1) + α (δ(f − f2)+
δ(f + f2)) + (1 + α) (δ(f − f3) + δ(f + f3))] , (6)

X2(f) = [γ (δ(f − f1) + δ(f + f1)) + (δ(f − f2)+
δ(f + f2)) + (1 + γ) (δ(f − f3) + δ(f + f3))] . (7)

A. Adress

In the Adress algorithm, a frequency-azimuth plane is
constructed in order to facilitate the separation of the sources
s1(t) and s2(t), from the mixtures, x1(t) and x2(t). This
is achieved by varying an independent variable g over its
entire range, 0 ≤ g ≤ 1 and computing the magnitude of
the difference between the two frequency domain mixtures.
To preserve symmetry between the left and the right channels
it is necessary to do this scaling for both X1(f) and X2(f)

A1(f) = |X1(f)− gX2(f)|, (8)

A2(f) = |X2(f)− gX1(f)|. (9)

The frequency-azimuth plane that results is denoted A(f)
and is produced by concatenating the components, A1(f) and
A2(f),

A(f) = [A1(f)A2(f)] . (10)

Given this simple mixing problem, we only need to consider
three frequency components f1, f2 and f3 and these compo-
nents can be defined in closed form.

A1(f) =


|1− gγ|, when f = f1,

|α− g|, when f = f2,

|(1 + α)− g(1 + γ)|, when f = f3,

0, otherwise.

(11)

A2(f) =


|γ − g|, when f = f1,

|1− gα|, when f = f2,

|(1 + γ)− g(1 + α)|, when f = f3,

0, otherwise.

(12)

The maximum value that g can assume is 1. The frequency-
azimuth plane exhibits nulls at the frequencies f1, f2 and f3
for the following gains,

A(f) = 0 if


g = γ, when f = f1,

g = α, when f = f2,

g = 1+α
1+γ or 1+γ

1+α s.t.g ≤ 1 when f = f3.
(13)

We can now summarize the operation of the Adress algorithm
and introduce the challenge addressed by this paper. Adress
computes windowed Discrete Fourier Transforms, X1(k) and
X2(k), of the left and right channel mixture signals above,
which are discrete time signals, and have been sampled at a
sufficiently high sampling rate. This produces M frequency
bins, k = 0, 1, . . . ,M . The frequency-azimuth matrix is con-
structed by forming the matrix, A ∈ RM×N , which examines
the two-channel mixture in each frequency bin, k, using a set
of values of gain values, g, in the range g =

{
0
β ,

1
β , . . .

β
β

}
,

where β = N
2 . Reconstruction of the component sources is

achieved by assigning TF bins to sources depending on the
location of the nulls in the frequency-azimuth plane.

B. Problem

The frequency-azimuth plane produces nulls at g = α
which corresponds to the source s2(t) in the mixture for
frequency f2. However, for the f3 frequency component of
this source the null is generally not located at α. Instead it
is located at 1+α

1+γ or 1+γ
1+α depending on the size of α and γ.

Similarly, the frequency-azimuth plane produces nulls at g = γ
which corresponds to the source s1(t) in the mixture for the
frequency component f1, but the null is generally not located
at this scale factor for f3. Co-occupation in the f3 frequency
causes the Adress algorithm to assign all of the energy of the
frequency f3 to one of the sources and none of the energy
to the other sources in the mixture. This assignment is done
based on the distance of the null of the f3 component from the
nulls for the rest of the s1 and s2 frequency-gain nulls. The
absence of the f3 frequency component in one of the signals
causes what is sometimes called musical noise to appear in
the reconstructed source signals. In this example 50% of the
frequency components of one of the sources will be missing
and the other source will have a magnitude which is too large
for that missing frequency component. This type of problem
has been identified and called Frequency-Azimuth Smearing
in the literature but it has not been solved.

Methods for measuring the level of disjointness of two
sources in the TF domain are called WDO [2], [12]. They
have been used to determine what parametrization of the Short-
Time Fourier Transform (STFT) will give the most disjoint,
or non-overlapping representation of the source signals in the
TF mixtures. We now present a solution to the problem which
is motivated by re-considering the Adress mixing model. Our



argument is presented in the context of the simple case above.
We then demonstrate it is applicable in the more general case
of arbitrary mixtures.

III. REDRESS: DE-MIXING CO-OCCUPIED TF BINS

The Adress algorithm finds nulls in the frequency-azimuth
plane and then assigns all frequency bins, or bands, which
have nulls in similar positions to the same source signal. We
now introduce how the Redress algorithm considers the full
range of gain values as opposed to just the location of the
nulls. Redress attempts to re-express the entire frequency-
azimuth plane as a factorization in order to estimate how
much each source is contributing to each frequency. This is
important when frequencies are occupied by more than one of
the input source signals. The motivation for Redress is that the
entire set of gains that are used to examine each TF bin have
information; this information should be used to help de-mix
TF bins which are shared between multiple sources.

To explain how this is done we consider the construction
of the frequency-azimuth plane A(f), starting with the A1(f)
component. Due to the symmetry of the magnitude TF plane
we only examine the positive frequencies. The first component
A1(f) may be expressed as the difference between the Fourier
transforms of the mixtures, where the channel, X2(f), is
scaled successively by g in order to find nulls,

|X1(f)− gX2(f)| = |(1− gγ)δ(f − f1)
+ (α− g)δ(f − f2) +((1 + α)− g(1 + γ))δ(f − f3)| .

(14)

This difference can be re-expressed more compactly as

|X1(f)− gX2(f)| = |(1− gγ)S1(f) + (α− g)S2(f)| .
(15)

Similarly, for the second component we obtain,

|X2(f)− gX1(f)| = |(γ − g)S1(f) + (1− gα)S2(f)| .
(16)

Redress Magnitude TF mixing model: Working with discrete
TF mixtures, the frequency-azimuth plane may be expressed
in matrix form, A, as the product of a set of source frequency
basis functions and source azimuth activation functions,

A ≈WH, (17)

where W ∈ RM×R
+ is a set of source frequency basis functions

and H ∈ RR×N
+ is a set of source azimuth activation functions.

In short, the frequency-azimuth plane is approximated by
R = 2 frequency basis functions above. One of these basis
continuous frequency domain functions should have energy at
f = f1 and f = f3 in order to represent s1(t). The second
basis function should have energy at f = f2 and f = f3
to represent the second source, s2(t). In the example used to
motivate this argument above the source discrete frequency
basis functions are W:,1 = |S1(k)| and W:,2 = |S2(k)|, sub-
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Fig. 1. The positive frequencies of the magnitude spectra of the mixtures,
X1(k) and X2(k), and source signals, S1(k) and S2(k), are illustrated from
left to right. The frequency components in s1(t) are f1 = 1kHz and f3 =
3kHz respectively. The frequency components in s2(t) are f1 = 2kHz and
f3 = 3kHz respectively.

ject to permutation ambiguity. The source azimuth activation
functions are

H1,1:M2
= [|(1− gγ)|]0≤g≤1 (18)

H2,1:M2
= [|α− g|]0≤g≤1 (19)

H1,M2 +1:M = [|(γ − g)|]0≤g≤1 (20)

H2,M2 +1:M = [|1− gα|]0≤g≤1 (21)

We justify re-writing the absolute value of the difference in
|X1(f)− gX2(f)| as the difference of the absolute value of
the terms as follows. There are two cases to consider. In the
first case, a frequency bin is only occupied by one source.
When f = f1, then |X1(f1)− gX2(f1)| = |(1 − g)S1(f1)|
which can be written as |X1(f1)− gX2(f1)| = |(1 −
g)||S1(f1)|. The matrix approximation in Eqn. 17 is an accu-
rate approximation in this case. In the second case, a frequency
bin is occupied by two sources. |X1(f3)− gX2(f3)| = |((1+
α)− g(1+γ))δ(f −f3)|. In general the component δ(f −f3)
will be complex-valued; however, as the mixing model does
not consider relative delays between channels this complex-
valued variable will be the same for both channels and thus we
can re-write |X1(f3)− gX2(f3)| = |((1+α)−g(1+γ))||δ(f−
f3)|. Because α > 0, and γ > 0 we can express this difference
as |X1(f3)− gX2(f3)| ≈ (|(1 + α)| − |g(1 + γ)|)|δ(f − f3)|,
by appealing to the triangle inequality.

IV. RECONSTRUCTION

Basis-Activation Factorization: We now describe how to
learn this basis function-activation factorization and to re-
cover the source signals. Given the frequency-azimuth matrix
A, which has been generated from the discrete frequency
representations of the signals, we minimize the Frobenius
norm between the frequency-azimuth matrix A and the current
estimate of this matrix, WH, which is denoted DF (A||WH)
and defined as

DF (A||WH) =
1

2

∑
ik

|aik − [WH]ik|2. (22)
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Fig. 2. The intensity (white for high and black for low) of the azimugram
is illustrated. Black regions in horizontal white lines indicate nulls in the
response. The null for f1 is at .4 which indicates the pan-position of s1(t)
[vertical blue line]. The null for f2 is at −.2, (e.g. −α) indicating the pan-
position of s2(t) [vertical blue line].

A suitable step-size parameter was introduced in [10] which
resulted in an alternating, multiplicative, gradient descent
updating algorithm comprising of the two update rules

W ←W �AHT �WHHT , (23)
H ← H�WTA�WTWH, (24)

where � represents element-wise multiplication and � rep-
resents element-wise division. The authors argue that the
advantage of having multiplicative updates is that it provides
a simple update rule under which W and H never become
negative and so projection into the positive orthant of the space
is not necessary. The veracity of this statement is borne out
by the success of the algorithm and the range of extensions of
the technique [9], [13]. The alternating nature of the updates
implies that the optimization in no longer convex. As NMF is
not convex when the update rules are alternated the solution
is not guaranteed to be unique or exact [10]. The success of
the approach is evaluated for the problem introduced and then
investigated for more general mixtures.
Source Recovery: For each azimuth-frequency matrix, A,
which is generated for each position of the analysis window,
the columns of W may correspond to different sources each
time the decomposition is computed [9], [10], [13]. Recon-
struction of the magnitude spectrograms of the source signals
relies on the ability to address this permutation ambiguity.
To undo this permutation, the rows of the source azimuth
activation matrix H are searched in order to find the loca-
tions of the minima in each row. Rows with similar minima
locations, which correspond to the gains used to examine the
mixtures, are assigned to the same source. An approximation
of each source’s contribution to each windowed position of the
mixtures, either X1(k) or X2(k), is determined by minimizing
the Frobenius norm of the difference between one of the
mixtures, for example V = X1, and a low-rank approximation
of this matrix, e.g. WH. This minimization is done with
respect to H as the basis functions for each source were
learned in the previous step and with respect to each mixture.

minH

∑
ik

|vik − [WHik]|2 given W. (25)

Fig. 3. Columns of the magnitude spectra of the sources and the two frequency
basis functions, W, are illustrated. The functions, W, both contain the f3
frequency component. Adress does not allow both of the reconstructed sources
to contain this component.
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Fig. 4. Theoretical and estimated azimuth activations, H, for both sources.
The azimuth activation minima lie at the correct pan-positions.

It is achieved by running the H-update in Eqn. 23 in an
iteration and holding the W matrix fixed. Each rank-1 approx-
imation is an estimate of the magnitude spectrum of a source.
In order to produce discrete time-domain sources we use the
phase of one of the mixture signals and apply an inverse short-
time Fourier transform. For example, we approximate the first
source, Ŝ1, using the rank-1 approximation of the mixture,
W:,1H1,: and the first mixture’s phase,

Ŝ1 = (W:,1H1,:)� exp(i arg(X1)). (26)

V. EXPERIMENTS

We demonstrate the effects of overlapping sources in the
TF domain on the reconstruction achieved by Adress and on
the Redress algorithm on the audio mixtures presented above.
We then compare the performance of Adress and Redress on
real mixtures of two instruments and three instruments.

A. Redress Applied to Overlapping Audio

To evaluate the performance of Redress, we apply it to a
music example. The source, s1(t), consists of two sinusoids
with frequencies 1kHz and 3kHz. The source s2(t) consists of
two sinusoids with frequencies 2kHz and 3kHz. These sources
are rudimentary musical sounds, where each synthesised in-
strument/source does not produce harmonics. The amplitudes
of all sinusoids are 2V. The pan-mixing weights used to create
the observed mixtures, x1(t) and x2(t), are α = .2 and γ = .4.
Both Adress and Redress are applied to the pan-mixed signals
and the recovered sources are presented. Fig. 1 illustrates
the magnitude spectra of the mixture signals and the source
signals. The sampling rate is 8kHz. The mixtures examined
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Fig. 5. Rank-1 components of the frequency-azimuth plane are illustrated.
One rank-1 component has its null at the same gain for 1kHz and 3kHz. One
rank-1 component has its null at the same gain for 2kHz and 3kHz. Both
reconstructed sources are assigned some portion of the energy at 3kHz.

are 1s long. The analysis window used is .125s long and it
is advanced by 0.0625s. The Redress algorithm decomposes
the frequency-azimuth matrix with a rank-2 approximation,
R = 2, using 100 iterations. The mixtures are examined
using β = 100. Fig. 2 illustrates the resulting frequency-
azimuth plane. Negative values on the x-axis indicate the
left channel, which has been flipped left-right in order to
preserve the symmetry of the gain values, where an azimuth
of zero corresponds to a gain, g = 0, and a negative azimuth
corresponds to a positive gain on the left channel. The nulls
for the f1 and f2 components indicate the pan-positions of the
two sources, s1(t), has a null at γ = .4 and s2(t) has a null
at α = −.2. Vertical blue lines are superimposed to illustrate
these locations. Crucially the null for the f3 component is not
at the same pan-position as either of the two sources. Adress
assigns the f3 component to one of the sources, s2(t), but not
s1(t), resulting in a missing frequency, f3, in the reconstructed
spectrum for s1(t).

Fig. 3 illustrates the true magnitude spectra (at one time in-
dex) for the sources and the estimated magnitude spectra, from
W, using Redress. The estimate for source s1 has non-zero
energy at f2Hz which indicates that this source component has
not been completely de-mixed. In addition the second source
does not have the appropriate energy for the f3Hz frequency. A
significant advantage of the Redress approach over the Adress
algorithm is that both estimates of the sources have energy in
the f3Hz frequency. This demonstrates its ability to de-mix,
mixed TF bins.

We plot the theoretical azimuth activation functions and
overlay the estimated azimuth activation functions, H, in
Fig. 4. The estimates give a good approximation of the location
of the nulls in the two activation functions. The shape of the
estimated functions follow the theoretical functions closely.
Note that at the location of the null in the f3 component in
the mixture frequency azimuth plot in Fig. 2, e.g. 1+α

1+γ = .857,
that there is a sharp change in the slope of the two estimated
activation functions. Although this component has been de-
mixed, the de-mixture achieved is an estimate. Finally, we
plot rank-1 approximations of the frequency-azimuth plot in
Fig. 5 and observe that both rank-1 estimates have frequency
components at f3Hz. The nulls observed for both sources for

TABLE I
ROUNDED SNR OF INSTRUMENT ESTIMATES FOR TWO SOURCES USING

REDRESS AND ADRESS.

s1, s2 s1, s2 s1, s2
Piano, Bass Piano, Strings Bass, Strings

Redress 19.2dB, 17.9dB 11.9dB, 12.0dB 12.1dB, 9.6dB
Adress 10.6dB, 12.4dB 4.3dB, 4.2dB 6.6dB, 6.0dB

TABLE II
ROUNDED SNR OF INSTRUMENT ESTIMATES FOR THREE SOURCES USING

REDRESS AND ADRESS.

s1, s2, s3 s1, s2, s3
Piano, Bass, Strings Bass, Piano, Pads

Redress 3.1dB, 2.3dB, 1.4dB 5.2dB, 3.5dB, 5.2dB
Adress 3.7dB, 5.6dB .9dB 6dB 6.5dB, 7.7dB

the f3 component are at the same position as the f1 and
f2 frequency components respectively. We now consider de-
mixing pan-mixed instruments.

B. Redress Applied on Music
In order to evaluate Redress in a realistic scenario we

downloaded the component instrument tracks for a song, Only
Love by Shannon Hurley. These were made available here
(http://ccmixter.org/shannon-hurley) in order to solicit remixes
from the public. The instruments were sampled at 44.1kHz.
We used a 4096-sample Hamming window which is advanced
by 2048 samples in our analysis. The rank of the decomposi-
tion used was R = 2 for the two-instrument mixes and R = 3
for the three instrument mixes, and the decomposition iteration
was run for 100 steps. We set β = 100. For Adress, we used
an azimuth subspace width, H = 20, [1]. Each track was
≈ 330s long, however, in the song some instruments were only
played during certain intervals and so we evaluated Redress
using intervals where both of the instruments in the mix were
playing. In many recordings a number of instruments are
positioned at the same pan-position [1] and so we considered
mixtures consisting of instruments in two or three different
pan-positions. The Strings instrument for example was a String
section which consisted of a double bass, violins, violas, etc.
In the first case we pan-mixed two instrument mixes consisting
of: (1) Piano and Bass; (2) Piano and Strings; and finally (3)
Bass and Strings. The average Signal-to-Noise Ratio of the
source estimates over a range of pan-positions are summarized
in Table I.

The Piano and Strings sources exhibited significant overlap
in the TF domain due to the number of instruments present
in the String section. We posit that this caused the recon-
struction SNR to be reduced for Redress and Adress. De-
mixing achieved an SNR of approximately 18dB and 19dB
for mixtures consisting of the Piano and the Bass for Redress.
This was due to the relatively little overlap between TF
representation of the instruments. Adress however achieved
a lower SNR for both instruments for the same mixtures.
Although separation of the Strings and the Bass was relatively
successful –frequencies corresponding to the Bass source



were generally extracted– all of the string component sources
(violin, viola, etc.) in the mixture were sometimes not fully
separated-out from the Bass source estimate which caused
there to be significant overlap between the Bass and the
bass component of the strings section. This caused the SNR
achieved by Redress to be reduced; this SNR was still higher
than the SNR achieved by Adress. Similarly there was a high
degree of overlap between the Strings and the Piano instrument
which Redress did not fully separate. Redress did outperform
Adress with respect to SNR for this mixture.

In the second case we pan-mixed three instruments consist-
ing of: (1) Piano, Bass and Strings and (2) Bass, Piano and
Pads. As expected there was a decrease in the SNR of the
reconstructed sources as the overlap of the TF content of the
sources increased in Table II for both Adress and Redress. The
overlap of the bass component of the Strings section and the
Bass –which caused a decrease in the SNR of the de-mixtures
in the two source case– was once again evident in the three
source mixture. When both of these sources were present the
TF overlap was higher and thus the SNR of both of these
sources was lower than for the other source component. In the
Bass-Piano-Pads mixture case, the reconstruction SNR of the
sources was high because the source signals did not overlap
as frequently in the TF domain. In the three source mixtures,
the Adress algorithm outperformed the Redress approach in
terms of SNR by approximately 1− 2dB; however in the two
source case, Redress achieved an SNR which was a factor
of two better than the SNRs achieved by Adress for some
instruments. We conclude that Redress helps to de-mix TF
bins where multiple sources are present if in general this
has a low frequency of occurring in the TF representation.
However, if there is a high degree of TF overlap, the type
of hard-masking approach adopted by Adress yields better
SNRs. This result is consistent with previous analysis of the
DUET algorithm [2], [3]. In future work we will reconsider
the reconstruction approach used by Redress. One direction of
improvement lies in allowing Redress to adapt the factorization
rank, R, in response to the changing amplitudes of source
signals, in particular the Bass the examples above.

In order to give an indication of the perceptual performance
of Redress we illustrate the true piano and bass sources and
the estimates of these sources learned by Redress in Fig. 6.
In addition, listening tests of the recovered instruments reveal
that in many cases the separation achieved was good; the high
SNRs achieved in Table I support this claim.

VI. CONCLUSIONS

The Adress algorithm, which uses gain scaling techniques
to expose frequency dependent nulls across the azimuth plane,
struggles when two or more sources occupy the same TF bin.
We have proposed a method, namely Redress, to de-mix the
contribution of multiple sources to a TF bin. We believe that
performance improvement could be achieved by Redress by
reconsidering how reconstruction is performed. When there
is only one source playing, the Redress approach attempts to
learn basis functions for R source signals even though there
is only one source present. For example in the piano-bass mix
considered, when the piano is a more dominant signal in the

Fig. 6. Piano and bass: true source signals and Redress estimates. The piano
signal estimate is accurate but the bass signal estimate still has some of the
piano signal mixed in with it.

TF domain than the bass, some of the piano signal is de-
mixed into the bass. This does not occur at the onset of a
bass note, when the bass dominates, but when the amplitude
of the bass has begun to decrease. Solving this problem, by
incorporating Adress as a pre-processing step may improve
Redress reconstruction in the three source case.
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[11] R. de Fréin, “Learning and storing the parts of objects: IMF,” in IEEE
Int. Wrkshp MLSP, 2014, pp. 1–6.
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