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Abstract—This paper introduces a new time-resolved spectral
analysis method based on the Linear Prediction Coding (LPC)
method that is particularly suited to the study of the dynamics
of low Signal-to-noise Ratio (SNR) signals comprising multiple
frequency components. One of the challenge of the time-resolved
spectral method is they are limited by the Heisenberg-Gabor
uncertainty principle. Consequently, there is a trade-off between
the temporal and spectral resolution. Most of the previous studies
are time-averaged methods, and the new method is a parametric
method, which can directly extract the dominant formants. The
method is based on a z-plane analysis of the poles of the LPC
filter which allows us to identify and to accurately estimate the
frequency of the dominant spectral features. We demonstrate how
this method can be used to track the temporal variations of the
various frequency components in a noisy signal. In particular,
the standard LPC method, new proposed LPC method and
the Short-time Fourier Transform (STFT) are compared. A
noisy Frequency Modulation (FM) signal is used to compare
the performance of the different methods and we show that the
proposed method provides the best performance in tracking the
frequency changes in real time.

Index Terms—Time-resolved Morphology, LPC Filter, Fre-
quency Tracking, Multi-frequency Signals.

I. INTRODUCTION

The real-time analysis of the spectral formants in the
spectrum of speech is essential in the identification of signals
in recognition systems employing knowledge-based feature
extraction and interpretation. In particular, the measurement
of the dominant spectral information from different signals
is crucial in signal recognition techniques, such as EEG
identification, voice vowels diction etc. [1]–[3]. The novel
technique presented in the paper provides a robust method for
identifying the dominant spectral information in the different
frequency bands of short-time sampled signals.

One challenge of the time-resolved spectral methods is that
they cannot satisfy the requirements for both frequency and
time resolution which are limited by the Heisenberg-Gabor
uncertainty principle [4]. The trade-off relationship requires
that the temporal resolution ∆t of a measurement and the

The copyright notice of this paper is: 978-1-7281-9418-9/20/$31.00 c©2020
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spectral resolution ∆f of a finite energy function is bounded
according to [5]:

Time-Bandwidth Product = !t!f ≥ 1

4π
(1)

In other words, if the signal samples are short, there will be
a poor frequency resolution. The current research methods
are the short-time Fourier transform [6], [7], the continuous
wavelet transform [5] and the time-frequency representation
[8]. Most of them are time-averaged methods, the practical
consequence of this is that these methods do not scale well in
terms of frequency analysis. In this paper, a new parametric
method is proposed, which can directly extract the dominant
formants, it can easily to further processing in frequency
analysis and machine learning.

Standard LPC-based formant estimation algorithms suffer
from restrictions on the order of LPC filter which can be
used to extract the poles of signals [9]. Low order LPC
filters tend to provide poor spectral separation of the formants
in the frequency domain, whereas too high an order causes
deterioration of the noise immunity of the spectral estimator
by creating a profusion of candidate peaks in the estimated
frequency response. However, the estimation of the dominant
formants in any given analysis frame is greatly improved by
employing z-plane spectral estimation. It is well known that
the LPC method is sensitive to the presence of noise in the
signal [10] where the accuracy of the method is significantly
degraded in the presence of additive noise [11], [12].

To summarize, the spectral analysis framework proposed in
this paper has several key advantages over prior works:

• The new method is a time-resolved spectral analysis algo-
rithm which can track the various frequency components
of a signal.

• The new method is suited to the analysis of multi
frequency signals.

• The new method is a robust method that is suited to high-
noise signals.

• The new method is a parametric method which is useful
for incorporation into further analysis using machine



learning.

II. METHODOLOGY

The LPC algorithm provides a method for estimating the pa-
rameters that characterize the linear time-varying system [13],
it is based on the assumption that the current signal sample
s(n) can be closely approximated as a linear combination of
past samples

s(n) =
p∑

i=1

ais(n− i) (2)

The factor ai is the predictor coefficient which is determined
by minimizing the mean-squared error between the actual
speech samples s(n) and the linearly predicted ones ŝ(n).

A. The transfer function of the filter H(z)

We begin the discussion of linear signal models with all-
poles models because they are the easiest to analyse and the
most widely used in practical applications. We will assume an
all-pole model of the form [14]

H(z) =
G0

A(z)
=

G0

(1−
∑p

i=1 aiz
−i)

=
G0∏p

i=1(1− piz−1)
(3)

where G0 is the system gain. The direct z-transform of a time
sequence s(n) is defined as follows:

S(z) =
∞∑

n=−∞
s(n)z−n (4)

The LPC analysis operates on frames containing data samples.
At the heart of the LPC method is the linear predictor. In the
linear predictive model, it is assumed that the signal is an
autoregressive process that can be represented as

s(n) =
p∑

i=1

ais(n− i) +Gu(n) (5)

the current signal sample s(n) can be closely approximated
as a linear combination of past samples, u(n) is the excitation
signal. In this expression, G is the gain parameter that is used
to match the energy of the synthetic signal to that of the
original signal. In the z-transform domain, a pth order linear
predictor is a system of the form

P (z) =
p∑

i=1

aiz
−i =

Ŝ(z)

S(z)
(6)

where Ŝ(z) is the output of the filter. The prediction error,
e(n), is of the form

e(n) = s(n)− ŝ(n) = s(n)−
p∑

i=1

ais(n− i)

E(z) = S(z)−
p∑

i=1

aiS(z)z
−i

(7)

The prediction error is the output of a system with transfer
function

A(z) =
E(z)

S(z)
= 1− P (z) = 1−

p∑

i=1

aiz
−i (8)

If the input signal obeys the prediction model exactly, then
e(n) = Gu(n). Ŝ(z) is the output of the filter, H(z), to the
input signal, U(z) ·H(z), A(z) is an inverse filter for H(z),
the LPC synthesis filter, is given by

H(z) =
1

A(z)
(9)

In these terms, Ŝ(z) can be written as

Ŝ(z) = H(z)U(z) =
U(z)

A(z)
=

U(z)

1−
∑p

i=1 aiz
−i

(10)

We will get

H(z) =
1

1−
∑p

i=1 aiz
−i

(11)

For example, if the input signal is a low SNR synthetic
composite sinusoidal signal as shown in Fig. 1 where the LPC
order is p = 20, the spectrum response of LPC synthesis filter
H(z) can approximate the dominant spectrum as shown in
Fig. 2.
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Fig. 1. Input Signal. This input signal is composed of F1 = 20Hz, F2 =
40Hz, F3 = 60Hz sine waves where the SNR= 10dB is due to Additive
White Gaussian Noise (AWGN), the sampling frequency Fs = 160Hz, the
sampling time is 1s.
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Fig. 2. Spectrum Response. The green trace is the result from the discrete
Fourier transform and the blue trace is the LPC filter result H(z), the LPC
order is p = 20.

B. The roots/poles of the filter
The LPC model is represented by the all-pole filter H(z),

which can be represented as a ratio of polynomials in z. The
fundamental theorem of algebra tells us that A(z) has p roots,
each of these is a value of z for which H(z) = ∞, roots of
A are called the poles of H . Therefore, finding the roots of

A(z) = 0 (12)



We can get the set of results

Z = {z1, z2, z3, · · · , zp}, zi ∈ {!} (13)

where each pole zi can be expressed as

zi = γie
jωi , i = 1, 2, 3, · · · , p (14)

where ωi = tan−1[Im(zi)/Re(zi)] is the angle corresponding
to the pole. The magnitude of pole is |zi| and the correspond-
ing pole frequency Fpi as

Fpi =
ωi

2πTs
(15)

where Ts is the sample period. We can plot the results of LPC
roots Z in the z-plane as shown in figure 3. All of the roots
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Fig. 3. The z-plane system.

comprise complex conjugate pole pairs which are mirrored in
the z-plane. Here, we consider those poles with non-negative
imaginary parts

Im(zi) ≥ 0 (16)

The results are shown in Fig. 4. From the frequency domain
point of view, the predictor coefficients generated by the LPC
model contain the spectral envelope information.
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Fig. 4. LPC spectrum and LPC poles.

C. The Proposed LPC filter method
Most researchers [9] [13] [14] [15] to date have used the

roots (i.e. the poles) of H(z) to directly estimate the dominant
spectral features (i.e. the formants) of the response in the Fig.
3 and 4. However, not all of the LPC poles correspond to
dominant peaks in the spectrum. In the Fig. 4, the dominant
frequencies are 20Hz, 40Hz and 60Hz, but the LPC method
generates 11 poles. In our method, only some of the poles
correspond to the dominant spectrum features, while other
poles serve to define the location and width of dominant
spectrum, we will call these non-dominant poles.

All of the LPC poles can be categorised into dominant poles
and non-dominant poles. We use the magnitude |zi| of the LPC
poles to distinguish between the dominant and non-dominant
poles where we set a threshold value c to classify the poles

{
|zi| ≥ c, Dominant pole.
|zi| < c, Non-dominant pole.

(17)

The threshold value c is an experimental value, generally we
chose the value of c in the range 0.80 to 0.95, depending on the
intensity of the noise present. In the example, we set c = 0.95
in Fig. 5 where the red coloured poles with a magnitude greater
than c are dominant poles and the black poles with a magnitude
less that c are non-dominant poles. The non-dominant poles in
the vicinity of the dominant pole can effect the morphology of
dominant pole, we refer to these poles as local poles, we define
a factor fr to identify the local poles around the dominant pole,

|Fdominant − Fnon−dominant| ≤
fr
2

(18)

when the frequency separation between non-dominant and
dominant poles is less than fr, we consider them to be the local
poles of the dominant poles. In figure 6, we chose fr = 18Hz
where the red lines represent the frequency range around each
dominant pole where we can identify the non-dominant poles,
i.e. the local poles, associated with the dominant pole. The
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Fig. 5. Dominant and non-dominant poles.
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Fig. 6. Local poles for each dominant pole.

dominant pole and its local poles are used to form a new
(reduced order) filter transfer function H̃i(z),

H̃i(z) =
1

(1− z−1
dominant)

× 1

(1− z−1
non−dominant)

(19)

the spectrum responses of each of the local poles are shown in
Fig. 7. As the new filter transfer function H̃i(z) has a lower
order, it has fewer local maxima which makes it easier to
find the peaks. By using a maximisation technique to find the
spectral peak F̂i of H̃i(z) we obtain an improved estimate of
the frequency of the spectral peak, as shown in Fig. 7.
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Fig. 7. Local Spectrum. The prediction results are F̂1 = 19.9Hz, F̂2 =
40.04Hz, F̂3 = 60.1Hz.

D. Framework of the New LPC Method
In this paper, we propose a novel LPC filter method for

tracking the frequency changes of low SNR signals in real
time. The new tracking method for a signal involves sliding
an analysis window of length N samples over the signal and
applying the new LPC filter method to the windowed data. The
output is a set of predictions of the frequency components for
each windowed segment as shown in Fig. 8.
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Fig. 8. The overview of the new framework. The first step is to segment
the input signal with a fixed window length, then the windowed signal is
processed in 6 steps, the output results are the predicted dominant formants
at the sample window time.

III. RESULTS

In this section, a comparison is drawn between the standard
LPC method, STFT and the new LPC filter method for a low
SNR FM signal.

A. Experiment design and metrics
STFT is a classical method for time-resolved analysis, it

provides time-localized frequency information for situations in
which frequency components of a signal vary over time. In all
these comparison experiments, the number of STFT discrete
points is 128, the split window signal s(n) is windowed by
a fixed-length Gaussian function g(n), which has a time-
bandwidth product equal to the lower bound (4π)−1, and is
therefore the optimal window function for the STFT [1].

In order to test the proposed method, a varying frequency
signal was used as the input signal, i.e. a FM signal [16] was
chosen as the input signal. Frequency modulation is a form of

angle modulation in which the instantaneous frequency fi(t)
is varied linearly with the message signal m(t):

fi(t) = fc + βm(t) (20)

the term fc represents the unmodulated carrier frequency and
the constant β represents the modulation index, the message
m(t) is described in the time domain by:

m(t) = cos(2π × fm × t) (21)

where fm is the frequency of message signal. To facilitate our
research, we define some new variables

fdeviation = β × fm (22)

which represent the range of the variation in the instantaneous
frequency fi(t). In all experiments described in this paper, the
FM signal is corrupted with Additive White Gaussian Noise
(AWGN) where the signal-to-noise ratio in dB is defined as
the ratio of the power of the FM signal to the AWGN power.

In order to compare the results from the different methods, a
metric called the Relative Deviation Percentage (RDP) is used.
The RDP metric has two forms: one for the LPC methods and
the other for the STFT method. The traditional LPC method
and the proposed LPC method directly generate the frequency
prediction result which allows for the calculation of the error
ferror which is defined as the absolute average error of the
prediction. So the RDP function for the parametric methods
is defined as:

RDP for LPC methods =
ferror

fdeviation
× 100% (23)

The STFT method generates the spectrum which makes it
difficult to directly estimate the prediction error. However,
as the trade-off between the temporal and spectral resolution
is a consequence of the uncertainty principle, we chose the
frequency resolution ∆f as the error for STFT method which
is determined by the window size ∆f = Fs/N . Therefore,
the RDP for time-average method is described as:

RDP for the STFT method =
∆f

fdeviation
× 100% (24)

B. The analysis of a single FM signal

To understand the operation of the LPC pole processing
method, we first chose a simple scenario of a FM signal with
SNR= 10dB, the detail of the input signal as in Fig. 9.

As we can see from the results in Fig. 10, the traditional
LPC poles are sensitive to noise, it produces many poles from
a single window of samples. For the STFT method, it cannot
accurately track the changes in frequency which are limited
by the size of window and is adversely affected by noise.
However, the proposed new method can produce the correct
dominant frequency prediction over time.

Usually, the order of an LPC model p equals the number of
poles and we only consider the positive frequency poles. Fig.
11 demonstrates the effect of the LPC order on the traditional
LPC method and the proposed new method. Increasing the
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Fig. 9. Single FM Signal with SNR=10dB due to AWGN. The sampling
frequency Fs = 100Hz, sampling time is 10s, the carrier signal frequency
fc = 25Hz, the message signal frequency fm = 1Hz, the modulation index
β = 5.
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Fig. 10. The time-resolved results for a single FM signal. The black trace is
the instantaneous frequency fi(t) as a reference trace, the number of samples
in a window is N = 15, the LPC order is p = 6. For proposed LPC filter
method, the threshold value c = 0.85, the frequency range fr = 15Hz.

LPC order will generate more poles which makes it more diffi-
cult to identify the dominant frequency components. However,
as a result of our new LPC pole processing method, it can
robustly track the dominant frequency changes in high order
LPC filters. Fig. 12 shows that the new proposed method is
more robust than the traditional LPC method, the RDP of new
method can remain at around 10% which is much lower than
the traditional LPC method.

We also demonstrate the effect of the window length as the
LPC order increases from 7 to 30. As we can see in Fig. 13,
the traditional LPC method is sensitive to noise where the RDP
values remain at around 100% as the window length increases
owing to the increased number of poles making it difficult to
identify the dominant frequency components. For the STFT
method, a high spectral resolution can only be achieved with
relatively long windows, but this inevitably results in a loss of
temporal resolution. Most of the RDP values for the proposed
method are lower than 50% and are always lower than the
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Fig. 11. LPC order Analysis. The other parameters are the same as Fig. 10.
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Fig. 12. The RDP for LPC order analysis. The other parameters are the same
as Fig. 10.

traditional LPC method for the same length window size.
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Fig. 13. The RDP for window length analysis. LPC order is p = 6, the
threshold value c = 0.85, the frequency range fr = 15Hz.

The effect of the noise on the result is analysed in Fig.
14 as the SNR of the FM signal decreases from 50dB to
1dB. The spectrum resolution of the STFT is affected only
by the number of samples in one window. For the traditional
LPC method and the new method, the RDP values decrease
as the noise level is increased, but all of the RDP values in
the traditional LPC are greater than 50%, and much higher
than the new proposed method. This demonstrates that the
LPC filter method has the best performance of the methods
considered here.
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Fig. 14. The RDP for SNR due to AWGN in dB. The number of samples is
N = 15, LPC order is p = 6, the threshold value c = 0.85, the frequency
range fr = 15Hz.

C. Multi-frequency Signal

In this part, a more complex situation is considered where
the input signal is a multi-frequency signal comprising three
low SNR FM signals, it has the characteristic of multi-
frequency wave, high noise and fast frequency changing. The
input signal comprises 3 carrier frequencies where Fc1 =
10Hz, Fc2 = 25Hz and Fc3 = 40Hz, all of them have same
message signal frequency fm = 1Hz, the modulation index
is β = 5, and the SNR= 10dB. A comparison of the results
in Fig. 15 shows that the traditional LPC method produces
too many poles making it difficult to accurately identify the
dominant frequency components. It can also be seen from the
STFT result that the STFT is not good for the spectral analysis
of multi-frequency signals. However, the proposed method can
still track the dominant frequency changes in real time even
in this complex scenario.
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Fig. 15. The time-resolved results for a multi FM signal. The black trace is
the instantaneous frequency fi(t) as a reference trace. The duration window
are N = 15 samplings. For the LPC method, the LPC order p = 12, the
threshold value c = 0.85, the frequency range fr = 15Hz.

IV. CONCLUSION

The research work of this paper proposes a new robust time-
resolved method to extract and track the dominant frequency
components from multi-frequency signals. Firstly, it is a time-
resolved method and can track the variations in frequency
in real time. Secondly, it is capable of analysing signals

composed of multiple signals. For example, it is suited to
biomedical signals, especially EEG signals which have differ-
ent frequency bands assigned to the response of different brain
functions. Thirdly, it can identify the dominant spectral fea-
tures in noisy environments. Finally, it is a parametric method,
it can support further processing of the signals using machine
learning techniques, which is a big advantage in helping to
develop new analytical techniques. In future research, this
technique can be used for biomedical research, voice synthesis,
mechanical vibration and image processing etc. We believe
that it has the potential to become a universal application tool
in the field of signal processing.
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