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Predicting Quality of Delivery Metrics for Adaptive
Video Codec Sessions

Obinna Izima, Ruairı́ de Fréin, Mark Davis
Technological University Dublin, Ireland

Abstract—Predicting video quality will continue to be an active
area of research given the dominance of video traffic for years to
come. Network service practitioners that are poised to handle the
strain on the existing limited bandwidth constraints are better
placed to be SLA-compliant. The dynamic and time-varying
nature of cloud-hosted services require improved techniques to
realize accurate models of the systems. To address this challenge:
(1) we propose Codec-aware Network Adaptation Agent (cNAA),
an online light-weight data learning engine that achieves accurate
and correct predictions of quality of delivery (QoD) metrics,
namely jitter for video services. cNAA achieves this prediction
accuracy by leveraging the available network information in the
face of congestion and adaptive codecs; (2) we highlight the
short-comings of some baseline machine learning techniques that
fail to capture network dynamics and demonstrate their failure
in comparison with cNAA; and finally, (3) we demonstrate the
efficacy of cNAA under varying network and codec conditions
and provide evidence showing that machine learning approaches
that incorporate network dynamics are better placed to realize
accurate and correct predictions.

Index Terms—Prediction, Jitter, Adaptive Codecs.
I. INTRODUCTION

Video traffic will continue to dominate the Internet. This
is according to the Cisco Visual Networking Index [1] which
predicts that annual global IP traffic will reach 4.8 Zettabytes.
This trend presents new challenges in guaranteeing the quality
of the video content delivered over today’s Internet. This is
because video delivery deployed over best-effort IP networks
are highly dynamic in nature with bandwidth fluctuations
and time-varying delays making it a challenge to consistently
guarantee the quality of delivery (QoD) of video content over
such networks.

The authors of [2] made a timely contribution in their
work on video service-level prediction. They considered the
problem that service providers should be able to deliver on
agreed service-level agreements (SLAs). They used machine
learning (ML) techniques to predict client-side metrics for a
video streaming service, using variants of Linear Regression,
LASSO and Elastic Net.

In this paper, we propose Codec-aware Network Adap-
tation Agent, (cNAA), a light-weight online learning engine
that achieves accurate QoD metric prediction, namely Jitter
statistics for a video streaming session between a server
and client devices. Our proposed in-network agent achieves
accurate estimates of the QoD metric by incorporating network
dynamics into the data learning algorithm. We demonstrate
that ML-enabled learners that fail to build in the underlying
network dynamics fail in their bid to realize accurate QoD
predictions.

This paper is organized as follows. In Section II we place
our contribution in the context of the related literature. In
Section III we introduce the different learning strategies that
are evaluated. In Section IV we evaluate the efficacy of each
of the approaches and present our conclusions in Section V.

II. RELATED WORKS

Predicting the effect of network performance on the per-
ceived video quality is critical, as this determines the success,
failure or degradation of the video service. ML techniques
have been leveraged in linking the perceived video quality to
network- and application-level QoD metrics [3].

Vega et al. [4] investigated the prediction of perceived video
quality under QoD impairments. In the work, the authors
deployed ML models to assess the quality of video streams in
real-time. The features utilized in the study were mainly from
the video-related features (such as the bit stream, frame, inter-
frame and content) as no network QoD parameters were con-
sidered in the work. However, the QoD impairments studied
(network delay, jitter, throughput) were treated as independent
conditions. Usually, these sort of impairments usually happen
together.

In [5], Mushtaq et al. investigated the impact of network
QoD metrics, video-related features and viewer features over
the perceived video quality. The authors generated a dataset
from a controlled network environment where varying degrees
of delay, jitter and packet loss are applied to video streams
flowing through a network emulator. Network level features
such as delay, jitter, packet loss etc., and some application-
related features such as resolution, video type, and viewer-
related feature such as gender, interest etc, are fed to the ML
models and evaluated via subjective testing based on mean
opinion score (MOS). However, the work does not describe
the parameters of the models studied and also fails to indicate
the significance of the selected features. For instance the
significance of the viewer-related features was not provided.

The work in [6] characterizes the effect of the system load,
i.e. the number of concurrent users accessing a video stream
for a cloud-hosted streaming session involving a server and
client devices. The authors present evidence that demonstrate
the effects of disregarding the load on the system. Building
on these results, the authors of [2, 7] contribute adaptive
learning methods that have lower computation complexity and
yield more accurate predictions than approaches that ignored
the presence of the load in the system. In their work, the
authors consider various ML linear models and ensemble



models and demonstrate that subset selection alone reduce the
effectiveness of the prediction. They propose the load-adjusted
(LA) learning technique which demonstrate that the learners
that achieve accurate and correct predictions are the ones that
take the effect of the network dynamic, the load in this case,
into account.

Contribution: Figure 1 illustrates the purpose of our pro-
posed in-network prediction agent, cNAA. cNAA, an on-
line ML-enabled agent obtains accurate QoD predictions and
parameter estimation by leveraging information about the
underlying network dynamics present in the system. The focus
of this paper to is to demonstrate that the network conditions
hold vital sources of information that can be incorporated into
the ML-enabled data learning algorithms to realize accurate
predictions of QoD metrics for video services. We incorporate
the underlying effect of congestion and the resultant adaptive
behaviour of the codecs in our learning engine to demonstrate
that learners must incorporate these network dynamics to
achieve accurate and correct predictions.

cN
A

A

Learning 
function

Parameter 
estimation

QoD 
prediction

Congestion

Codec 
behaviour

Alert manager

Initiate remedial 
action

Fig. 1. The role of cNAA agent in the QoD prediction ecosystem. The
learning function incorporates network dynamics, namely, congestion and
codec behaviour in QoD parameter estimation and prediction. The prediction
outputs can be fed into an intermediary network device (e.g. a router) or sent
to a network manager to either take remedial or proactive action.

III. LEARNING STRATEGIES

Network congestion is one primary cause of performance
degradation and performance variability for time sensitive
applications like videos. As such, congestion control (CC) and
prediction is not only integral to networks operations but also
required to achieve fairness in resource utilization and mini-
mize packet loss [8]. More so, despite the advancements made
in compression technologies, the compression fundamentals
barely changed at all. What has changed is that new codecs
are equipped with added tools and complexity. Modern video
streaming services are codec-agnostic shifting the focus from
codecs to how to enable the codec do a better job.

A fundamental architecture for video streaming systems is
made up of two major components, a codec to encode the
video, and a transport protocol to convey the video content
from the source to the destination. Typically, the transport
protocol is responsible for figuring out the network capacity
by looking at congestion, round trip time (RTT) etc. The codec
then utilizes the network capacity to figure out what levels of
compression to apply to the video, so that it can adaptively
relay the video stream to the destination [9].

A. Experimental Methodology
Figure 2 illustrates our laboratory network set-up for a

video streaming session between a server and a client machine
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Fig. 2. A video server streams H.264 video over RTP to a streaming
client over a topology which consists of 2911 ISR routers. Different link
technologies (Gigabit Ethernet, Fast Ethernet and Serial) are used to create a
range of different physical transport media, which in turn cause variability in
instantaneous jitter values. Ostinato is used to create congestion on different
paths through the network.

using physical Cisco hardware routers between the streaming
server and a client machine. In the network, we connect
six (6) routers (R1 - R6, all Cisco 2911 Integrated Services
Routers (ISR)) between the server and the client. Both the
server and client machines are 64-bit Windows 7 operating
system computers. The clocks on the server and the client are
synchronized using the Network Time Protocol in order to
match observations from both. Samples are drawn from the
client machine every second. We set up the streaming session
on the server machine with the VLC server using the Real-
Time Transport Protocol (RTP). We use the Big Buck Bunny
mp4 animation video ≈ 10minutes long for our experiments.
We activate transcoding of the pre-encoded file to either H.264
or H.265. At this stage, we do not alter any further default
VLC encoding parameter leaving the bitrate and frame rate
etc., same as the source file.

To evaluate the efficacy of our proposed learning agent
in the face of congestion, we instrument routing changes to
force the videos streams to switch paths between the paths
offering the most bandwidth (i.e. the connections on the GE
1000Mb/s), the FE ports and serial links. Furthermore, we
introduce additional congestion in the network through bursts
of UDP background traffic ingestion via the GE interface
at router, R2 using Ostinato Packet Generator. To capture
network metrics for the streaming session, we use Wireshark,
a popular network protocol analyzer to collect traces. Our
QoD metric of interest is the interarrival jitter statistics of the
video packets. In Wireshark, the interarrival jitter is estimated
according to [10].

Figure 3 illustrates time-varying periodically falling expo-
nential curves generated as a result of the adaptive behaviour
of the codecs in response to congestion in the network. We
hypothesize that by learning in the face of network dynamics
we can realize accurate and correct predictions. Specifically,
our objective is to predict jitter statistics accurately in the face
of congestion and adaptive codecs.

The slow downward exponential curves shown in Fig. 3
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Fig. 3. Rows 1 (R1) and R2 illustrate traces depicting the adaptive behaviour
of the H.264 and H.265 codecs respectively in response to network congestion.
The maximum, minimum and mean instantaneous jitter values in R1 and R2
are (650ms, 1.17ms, 107ms) and (750ms, 3.91ms, 126ms) respectively. The
structured nature of these time series is significant.

are characterized by time varying network transit times. The
network transit times also show periodicity which significantly
varies throughout the sessions. Above all, another noticeable
feature of the traces are the ”spikes” in the network transit
times (or periods) which are due to buffering delays or out-
of-order packet arrivals [11].

B. Time Series Analysis

A time series j = (j0, j1, . . . , jT ) is an ordered sequence of
data points measured in equally spaced time intervals, where
jt ∈ R represents an element at time t, 0 6 t 6 T (T = length
of the time series). j0 represents the beginning of our time
series data, (j0, j1, . . . , jT ). Thus, our task is to estimate ĵt.

We start our analysis with the linear regression (LR) model.
It models the relationship between the current jitter value, jt,
and previous jitter values.

ĵt =

P∑
i

wijt−1 + b. (1)

The LR model consists of linear functions of P inputs pa-
rameterized in terms of P coefficients, the weights, wi, and an
intercept term, b. The LR loss function quantifies how good the
linear fit realized by the model is. This is a function L(ĵt, j)
which indicates how far off the prediction ĵ is from the actual
value j [12]. In LR, we use the squared error, defined as:

L(ĵt, j) =
1

2
(ĵt − j)2. (2)

A commonly used technique for time series prediction given
its beginning is the autoregressive (AR) model, moving av-
erage (MA) model, autoregressive-moving average (ARMA)
model and the exponential weighted moving average (EWMA)
models [13].

Given a time series and a fixed subset size n, the simple
moving average (or rolling average) model estimates are
realized by taking the average of the initial fixed subset of the
time series. Then, the subset is modified by shifting forward
in time over the series. That is, excluding the initial set of

samples and including the new values in the subset. Some
limiting factors of the SMA are that its estimates lags by the
size of the window and extreme historical values may skew
the performance. The EWMA helps reduce the lag effect from
SMA and puts more weight on recent data points (by applying
more weight to the recent values).

The AR model is actually a linear regression whereby a
value from the time series data is regressed on prior values
from the same series. A common AR model extension uses
a moving average of (MA) giving rise to the autoregressive-
moving average (ARMA) model. Similar to the AR model,
ARMA(p,q) is a linear regression of the instantaneous value
of the time series against one or more previous values of
the series and one or previous noise terms. The values of p
indicates the order of the AR part of the model and the q is
the order of the MA part of the model.

C. The Proposed Method

Figure 4 shows an extract from the data shown in Row 1,
Fig. 3. Clearly, the curves are of the form of an exponentially
decaying data. Thus, we assume the unit exponential decay
function:

J(t) = J0e
λt, (3)

where J(t) represents the jitter value at time, t, J0 is the
initial jitter value represented by the peak value or height of
the curve, and λ is the decay constant.

In addition, the curves are separated by time-varying peri-
ods, PT .

J(t) = J(t+ PT ). (4)
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Fig. 4. An extract of the data shown in Row 1, Fig. 3 showing the exponential
behavior of the curves.

Consequently, our goal is to realize a model that estimates
all three important parameters, namely, J0, λ and PT . To fit
an individual curve, Equation 3 can be expressed as a linear
model in the form of Equation 1 by taking the natural log of
both sides:

ln Jt = ln J0 + λt. (5)

To solve for the parameters, J0 and λ, we can apply the LR
model loss function in Equation 2 and obtain a solution using
the LR normal or closed form equation. However, we need
to realize a model that can reliably estimate all parameters
including the period, PT as any solver that fails to capture all
three parameters would produce wrong estimates.
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Fig. 6. Period Estimation with the first-derivative test detects the critical points
in the signal signifying the indices at which the signal changes direction. The
threshold sets the boundary for all detected derivatives or critical points. This
can also be automated with a peak detection algorithm which can search for
maximum points surrounded by lower values.

1) Period Estimation with Auto-correlation Function: A
common tool for detecting the period in a signal is with the
auto-correlation function (ACF). Typically, the ACF sequence
of a periodic signal exhibits the same cyclic characteristics
as signal itself. Thus, the ACF can assist in determining the
presence of cycles as well as their duration [14]. Using the
ACF, we shift the signal with a time lag and compute the
correlation with the original signal. After a certain time lag,
we see the correlation exhibits a significant increase as shown
in Fig. 5. The peaks (shown as red circles) in the ACF figure
indicate the periodic signal and its corresponding time lags.

2) Period Estimation with First-Derivative Estimates:
The first-derivative criterion examines a function’s monotonic
properties (where the function is either increasing or decreas-
ing) and focuses on a critical point in its domain [15]. The test
enables us detect when the curves drastically go up or down
which reveals the periods between the curves. We compute the
first-derivative estimates for our time series data shown in Fig.
6 by taking the pairwise differences of the signal with respect
to time to detect the critical point.

The criterion requires an extra parameter (threshold) that
must be tuned accordingly to the signal specifications. Mainly
the criterion threshold will be affected by the nature and the
power of the noise on your data and the gap magnitudes
between two curves. The usage of this methodology depends
on the ability to detect curves gap in presence of noise. It will
break when the noise power has the same magnitude of the
gap we want to detect. In this series, we have set the threshold
to 105 [SignalUnits/T imeUnits]. This threshold can also
be computed using any peak detection algorithm.

The use of the first-derivative test is a reasonable one to use
in this scenario as the curves in our time series are smooth
as we believe the video server is adapting the video play-out
in a deterministic way. Armed with either technique, we can

estimate the periods, PT of the curves in the traces and fit a
model to estimate our parameters and make predictions.

D. Model Fitting

In this section, we describe two model fitting procedures
for our proposed agent. We compare the performance of our
approach against some baseline ML models LR, ARMA, SMA
and EWMA which are described in III-B.

1) Split Data and Model Fit to Independent Curves: We
begin by extracting the first 100 timestamps in our time series
data. The first step is to detect the periods of each curve in the
dataset. We estimate the periods using the first derivative test.
The next step is to divide the data using the period estimates
and fit a model to the individual curves in the dataset. To fit a
model to the subsets of the data separated by the time-varying
periods, we use the models described in Equations 3 & 4,
Section III-C to fit the independent curves. The time origin
shift is handled by the splitting methodology. The predictions
are shown in Fig. 7.
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Fig. 7. cNAA Approach 1 - Accuracy of the cNAA jitter predictions. The
predictions obtained for the independent curves are overlaid on the actual
jitter values.

2) Parameter Estimation from Historical Data: Using the
technique described in Section III-D1, we realize accurate fit
to the curves by first detecting the periods between curves.
However, if we were to predict timestamps between 60 - 65
in 7, we would do that based on timestamps from 41 - 60.
In this section, we propose model parameter estimation and
prediction based on the historical values of the data.

To do this, we overlay some curves on the time axis and
obtain a model by finding the best fit through all data points.
Specifically, with this approach, the parameter estimates could
be used to predict what the jitter estimates could be from 60
- 65. This is a reasonable assumption because the timestamps
from 0 - 10, will contain relevant information to predict what
happens from timestamps 11 - 23. Similarly, timestamps 24
- 30, will contain relevant information to predict 35 - 40. In
Fig. 8, we illustrate a model fit obtained for 3 curves overlaid
on the time axis. The thick blue line is the model fit obtained
which contains the relevant information that estimate the jitter
values for all data.

IV. EVALUATION AND ANALYSIS

Our proposed algorithm, alongside the baseline models
described in Section III-B are evaluated using the same dataset
and under same conditions as described in III-D. The model
performance are evaluated using the root mean squared error
(RMSE) and the mean absolute error (MAE).

The LR model fails to capture the network dynamic, the
time varying periodic data and the data shape. The LR records
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Fig. 8. cNAA Approach 2 - Model fit realized from parameter estimation from
historical data. This approach leverages historical data in model parameter
estimation and predictions.

the worst performance of all models compared with our
proposed approach with an RMSE and MAE of 119.66 and
91.92 respectively.

To determine the (p,q) order of the ARMA model to apply
on our time series data, we first utilize an automated grid ser-
ach using Python’s forecast tool, Pmdarima. The tool suggests
an ARMA (2,1) model. We confirm these model suggestions
by using the partial autocorrelation function (PACF) and the
ACF. The PACF can reveal the recommended AR(p) order and
an ACF plot can reveal the MA(q) order [16]. Both functions
confirm an ARMA model(2,1).
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Fig. 9. Prediction performance of
the baseline models (EWMA and
SMA) compared with the actual
data. The EWMA performs better
than the SMA. However, both algo-
rithms when compared with cNAA
offer very poor predictions.
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Fig. 10. We obtain improved pre-
diction performance in both the
EWMA and SMA by building in
network dynamics in the models.
There is ≈ 19% and 15% im-
provements for EWMA and SMA
respectively.

For both the SMA and the EWMA, we start by setting the
sliding windows with the period estimates computed from the
data. The resultant predictions are demonstrated in Fig. 9. We
then halve the periods and re-run both algorithms. Here, we
attempt to incorporate historical data in our model estimates.
Consider timestamps 0-39 in the first curve shown in Fig.
7, halving the window would enable us incorporate historical
data from 0-19 in estimating 20-39 timestamps. The resultant
predictions are shown in Fig. 10.

TABLE I
CODEC-AWARE NETWORK ADAPTATION AGENT (CNAA) VERSUS

BASELINE MODELS; COMPARED WITH THE BEST PERFORMING BASELINE
MODEL, EWMA, CNAA TECHNIQUES OFFER ≈ 95.8% AND 93.8%

PERFORMANCE IMPROVEMENTS IN TERMS OF RMSE AND MAE
RESPECTIVELY.

Method RMSE MAE

cNAA 4.82 4.07
EWMA 115.84 65.50
SMA 138.88 81.24
LR 119.66 91.92
ARMA(2,1) 119.16 89.76

A. Results and Discussion

Table I compares the performance of our proposed cNAA
technique against the baseline models. The RMSE and MAE is
≈ 95.8% and 93.8% better respectively over the best perform-
ing baseline model, EWMA. The best performing baseline
model, EWMA doesn’t even offer any close competition in
terms of both metrics compared to cNAA. The ARMA model
with 119.16 and 89.76 as RMSE and MAE respectively is ≈
114.34 and 84.94 packets less accurate than the cNAA model.
The SMA records the worst RMSE with a difference of about
134 packets. The significant performance gain of the cNAA
is obtained by incorporating the vital network dynamics. We
attempt to build in some of the dynamics in the SMA and
EWMA as demonstrated in Fig. 10 by halving the periods in
order to incorporate historical information within the sliding
windows of both algorithms.

TABLE II
SMA AND EWMA OFFER BETTER PREDICTIONS BY BUILDING SOME

NETWORK DYNAMICS INTO THE MODELS. WE RECORD ≈ 19% AND 15%
IMPROVEMENTS IN PREDICTIONS BY BUILDING IN SOME NETWORK

INFORMATION.

Method RMSE MAE

EWMA 93.71 49.48
SMA 113.16 62.41

Evidently, both algorithms computations are by far off
especially around the critical points. However, halving the
periods does improve the predictions by both algorithms as
demonstrated in Table II. We are able to realize ≈ 19%
improvement in the EWMA prediction performance by incor-
porating some dynamics in the model. Similarly, for the SMA
model, the improvement in prediction performance is ≈ 15%.
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Fig. 11. Accuracy of model fit obtained by estimating the parameters from
historical data. The jitter estimates obtained closely approximates the data.

In Fig. 11, we demonstrate the efficacy of our proposed
described in Section III-D2. We have taken some timestamps
from the second and third curves shown (indices 39-62 &
62-101) in Fig. 7 obtained a model for these data points by
estimating the parameters from historical data. We show that
we can approximate a fit for these data points.

We have given evidence that the cNAA approach offers
accurate and correct QoD metric prediction, namely jitter in
the face of congestion and adaptive codecs. We now consider
the effect of varying the congestion levels in the network on
the cNAA proposed method.

We evaluate our proposed method with the traces shown
in Fig. 12. One trace is a 2-state dataset of low and high
congestion levels. The other trace, is a 3-state dataset with
an intermediate congestion level in addition to low and high



congestion. The 2-state periods are at indices 0, 14, 27, 40,
52 and so on. The 3-state dataset periods are at indices 0, 13,
50, 56, 67 etc. Both start off at somewhat similar rate before
the jump in the 3-state trace. We also observe that the periods
in both traces are shorter with more spikes.
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Fig. 12. Data with varying levels of congestion obtained by varying the link
technologies i.e. the GE, FE and Serial links which in turn generate variability
of instantaneous jitter. By altering the paths across these links, we generate
varying degrees of congestion levels.

Next, we vary the bitrates of the codecs to evaluate the
performance of cNAA. We generate two datasets by setting
the bitrate to 56 kilobits per second (Kb/s) in one trace and
1000 kb/s in the other trace. The frame rates are set to 24
frames per second. In the 1000 kb/s trace, the audio codec
settings are same as the source file whereas we set the audio
codec bitrate at 24 kb/s in the other trace. The traces are shown
in Fig. 13.

The 1000 kb/s trace starts off slowly with a lot of small
spikes and very short periods. Generally, there are obviously
a lot of perturbations in the system. The 56 kb/s trace exhibits
the same trend we have seen before. The data starts slowly
and then spikes and maintains some periodicity in its network
transit times between the curves. We proceed to evaluate
cNAA with these traces.
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Fig. 13. Data generated by varying the encoding parameters of the codec.
We set the video bitrate to 56 kb/s and 1000 kb/s to generate varying levels
of instantaneous jitter.

We obtain an accurate model for the 56 kb/s data. The jitter
estimates generally follow the actual jitter values very well.
However, there are a few misses in the 1000 kb/s trace. The
slow and almost negligible periodicity at the beginning of the
trace is missed by our predictions. Also, timestamps between
65 - 85 show that there are about 3-4 curves almost overlap-
ping on each other. The estimates generated here attempts to
approximate all data points as one rather than as independent
curves as expected.

Based on our evaluation and analysis, the model of choice
for predicting network QoD metric, jitter is the cNAA. The
cNAA boasts the ability to overcome the limitations of the
baseline models by building in network dynamics in its learn-
ing process. Our results also demonstrate that cNAA offers
accurate predictions in the face of changing congestion and
bitrates levels. Table III lists the performance of cNAA under
varying congestion levels and bitrates. The worst performance
of the cNAA is with the 1000 kb/s model with high system ex-
citation. While the RMSE and MAE metrics are highest in this

case, the cNAA predictions are generally accurate and correct
as well. In a novel approach, we evaluated how the cNAA
technique could be applied to predict network QoD metrics
for video services. We note that the performance of the agent
offers accurate estimates of the QoD metric, jitter without
requiring any additional complexity in terms of computational
power. In future work, we will investigate how we can achieve
network state acquisition [17] and monitoring under time-
varying network conditions with our model parameters.

TABLE III
CODEC-AWARE NETWORK ADAPTATION AGENT (CNAA) PREDICTION

PERFORMANCE IN VARYING CONGESTION LEVELS AND BITRATES. CNAA
OFFERS ACCURATE AND CORRECT PREDICTIONS IN ALL CASES. THE

WORST PERFORMANCE OCCURS IN THE 1000 KB/S TRACE DUE TO HIGH
SYSTEM PERTURBATIONS.

Model RMSE MAE

2-state 7.05 6.07
3-state 5.00 4.29
56 kb/s 4.61 3.90
1000 kb/s 14.93 12.31

V. CONCLUSION

In this paper, we propose a Codec-aware Network Adapta-
tion Agent (cNAA), an in-network agent that achieves accurate
and correct predictions of QoD metrics, jitter in the face
of congestion and adaptive codecs. cNAA’s performance was
compared with some baseline ML techniques which offered
very poor predictions. The performance gain of cNAA was
achieved by leveraging the information in the network. We
demonstrate cNAA’s prediction accuracy under varying net-
work and codec conditions. We also demonstrated with some
baseline models that by incorporating network dynamics, we
realize improvements in prediction accuracy. cNAA as an
online learning engine could be deployed in a network to
assist network managers predict the network performance or
for network monitoring purposes. The model estimates could
also be passed off to some network device, for instance, a
router to effect a change in routes etc.

As part of our future work, we propose to extend the
functionalities of the cNAA towards network monitoring. We
will look towards implementing a network traffic classifier,
whose feature space the cNAA model estimates.

Furthermore, the results we present show that the cNAA
technique reacts in a deterministic way when the video de-
livery model uses an adaptive codec. We will investigate sce-
narios with multiple flows with the fundamental architecture
remaining unchanged. In such scenarios, we hypothesize that
an algorithm which builds in the relevant network information
would offer better prediction performance.

Given the increased dynamicity of modern service delivery,
this lightweight, data-learning engine offers a lot of promise
to practitioners as they show that off-the-shelves techniques
may be improved without any additional requirement for
computational power or data.
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