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Abstract 

Optical fibers play important roles in telecommunication, imaging, sensing, 

lasers and amplifiers. The rapid development of fiber optics over the past 

decades has been underpinned by various designs of the optical fibers and by the 

rapid improvement of the understanding of the waveguiding mechanisms and 

associated models. According to the cross-section refractive index distribution, 

optical fibers can be generally classified into four basic types: two-layer step-

index fiber, three-layer step-index fiber, three-layer depressed-core fiber and 

hollow-core fiber. Among these four basic fiber types, the mode properties and 

the applications of the three-layer step-index and depressed-core fibers have not 

been sufficiently investigated. This thesis presents a detailed mode analysis in 

three-layer step-index and depressed-core fibers and their applications. 

A complete dispersion diagram including the core and cladding modes in a three-

layer step-index optical fiber has been developed for the first time, using both 

analytical method and full-vector finite element method. Mode transition from 

the cladding-type to core-type modes as a function of the core radius was studied 

as a contribution to deepening the knowledge of conventional step-index optical 

fibers. 

Based on the developed complete dispersion diagram for the three-layer step-

index optical fiber, it was found that a small-core fiber with a nano/micro-sized 

core supports only cladding-type modes. The self-imaging phenomenon of the 

pure cladding modes in the small-core fiber has been studied, and its comparison 

to the behaviour of the core-type modes in the conventional multimode fibers has 
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been carried out. The discrete nature and the exponential growth behaviour of the 

self-imaging of the cladding-type modes was established for the first time. The 

results provide new insights and design rules for a number of multimode 

interference devices such as optical couplers, optical modulators, multimode 

fiber lasers and space-division multiplexing devices.  

The depressed-core fiber, consisting of a low-index solid core and a high-index 

cladding surrounded by air, is in effect a bridge between the conventional step-

index fiber and the tube-type hollow-core fiber from the point of view of the 

index profile. In the research, a complete dispersion diagram of the depressed-

core fiber has been obtained for the first time by solving the full-vector 

eigenvalue equations. The waveguiding in the depressed-core fiber was analyzed 

using the theory of anti-resonant and the inhibited coupling guiding mechanisms. 

An asymmetric planar anti-resonant reflecting optical waveguide model 

(asymmetric planar ARROW model) was proposed for the depressed-core fiber. 

A high-index polymer-coated no-core fiber as an example of the depressed-core 

fiber has been studied theoretically and experimentally. The appearance of the 

periodic transmission loss dips in the spectrum of a long or bent polymer-coated 

no-core fiber samples reflects the anti-resonance nature of the depressed-core 

fiber. The experiments show that the overall change in spectral loss is greater 

than 31 dB at the dip position around 1550 nm and the average sensitivity is up 

to 14.77 dB/m-1, as the bend radius changes from ∞ (straight) to 47.48 cm. The 

results indicate that the polymer-coated no-core fibers have the potential to be 

used in many devices including curvature sensors and tunable loss filters. 



VI 
 

While the superposition of the spectra of multiple modes led to broad dips, it has 

been found that an individual mode can cause sharp dips in the transmission 

spectra of a polymer-coated no-core fiber. As a result of this phenomenon and 

the large thermo-optical and thermal expansion coefficients of the polymer 

coating, a compact (length < 10 mm), high sensitivity and linear response 

temperature sensor with the sensitivity as high as -3.784 nm/C has been 

demonstrated experimentally. 
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Chapter 1 

Introduction 

In this chapter the relevant properties and applications of optical fibers are 

briefly introduced and the aim and objectives of this thesis are formulated. 

1.1 Optical fibers and their applications 

An optical fiber is a cylindrical waveguide (in a shape of dielectric wire or a rod) 

with a diameter only slightly larger than a human hair, carrying light along its 

longitudinal axis. A fundamental element of understanding and applying optical 

fiber technology, also referred to as “fiber optics” involves the study of the 

behaviour of light traveling in the fiber typically by an analysis of the optical 

modes carried by the fiber. The development of laser and optical 

communications have accelerated progress in the use of fiber optics since the 

1960s, particularly in the late 1970s when the first live telecommunications 

traffic was carried by optical fiber systems. In addition to optical 

communications, optical fibers have been applied in the fields of fiber lasers and 

amplifiers, optical imaging, optical manipulation, and fiber optic sensing. Optical 

fibers offer numerous advantages compared to earlier traditional technologies, 

including an immunity to electromagnetic interference, small size, light weight, 

durability, remote operation and multiplexing capabilities. Along with an 

increasingly wide range of applications, novel fibers and waveguiding theories 

have also seen a rapid development.   
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1.1.1 Optical fibers for communication networks  

In 1854 John Tyndall, an Irishman, demonstrated that sunlight can be guided by 

a curved flow of water due to total internal reflection, in effect predicting over a 

century later the emergence of optical fiber technology. In the early 20th century, 

un-cladded optical fiber bundles were used to collect optical images of body 

cavities [1,2]. The first cladded optical fiber was proposed in 1954 by Dutch 

scientist Bram van Heel to improve light transmission through fibers and to 

reduce the interference from the surrounding medium for the application using 

fiberscopes [3]. At that time, the very high loss of the optical fibers hindered 

their application in long-haul optical communications. In 1966, Charles K. Kao 

(who was awarded Nobel prize in Physics in 2009) theoretically demonstrated 

that the low-loss single-mode guidance and broad bandwidth can be achieved by 

reducing the level of impurities in the silica optical fiber [4]. In 1970, F.P. 

Kapron et al. created the first low loss optical fiber (below 20 dB/km) [5]. The 

first live traffic demonstration of optical fiber transmission took place in the 

USA in 1977. Since then studies of fiber optics including both fundamental 

theories and technologies accelerated [6-8]. Fig. 1.1(a) shows a stylised 

photograph of an optical fiber, while Figs. 1.1(b)-1.1(d) illustrate schematically 

the cross-sections of an un-cladded multimode fiber (MMF), a cladded MMF and 

a cladded single-mode fiber (SMF) respectively.  
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Figure 1.1  (a) Light in optical fibers. Schematic cross section of (b) un-cladded multimode 

fiber (MMF); (c) cladded MMF, and (d) cladded single-mode fiber (SMF). 

SMF does not suffer from modal dispersion and thus it offers a far higher 

transmission bandwidth than MMF. For this reason SMF is the dominant type of 

fiber currently used in optical communication networks, although MMFs are also 

used in some shorter range cases, for example in building cabling [9,10]. The 

transmission information capacity of SMF has also been greatly increased by the 

development of the wavelength-division multiplexing (WDM) [11] and 

improved dispersion management [12]. However currently conventional SMF 

technology is approaching its limits [13], for example in the ultimate bandwidth 

available over a single fiber, the minimum loss possible and the ability to deal 

with large optical power densities in highly multiplexed environments. In order 

to overcome such limits new innovations including the few-mode fibers, the 
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MMFs, and the multi-core fibers have been investigated to increase the capacity 

of optical communications along with the recent technologies such as the space-

division multiplexing (SDM) [14,15] and the mode-division multiplexing (MDM) 

[16-18]. In addition, the hollow-core photonic crystal fibers such as the photonic 

bandgap fiber [19], inhibited-coupling fiber [20] and anti-resonant fiber [21] 

have also been studied intensively due to their intriguing optical properties such 

as ultralow optical nonlinearity, high mode quality, excellent power handling 

capabilities, low latency, broad bandwidth, low bending loss, ultralow losses 

both at conventional wavelengths (e.g., around 1550 nm) and at longer 

wavelengths (i.e., into the mid-IR and THz) [22,23]. Fig. 1.2 shows the cross 

sections of several fiber configurations for increasing communication bandwidth 

[14]. 

 

Figure 1.2  Different approaches for realization of space-division multiplexing (SDM) to 

increase the communication bandwidth. (Figure is reproduced from D. J. Richardson et al. 

Nat. Photonics, vol. 7, no. 5, pp. 354-362, 2013; E. Agrell et al., J. Opt., vol. 18, p. 063002, 

2016.) 
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1.1.2 Optical fibers for lasers and amplifiers 

A wide variety of functional devices have been developed for optical 

communications and sensing systems. Among the most valuable are devices 

based on optical fiber itself, not only because such devices are compact in nature 

but because low attenuation coupling to and from transmission fibers can be 

easily implemented by comparison to other solutions, such as integrated optics. 

Fiber based lasers and amplifiers, fabricated by doping the fiber core with rare 

earth elements, are an important example of such fiber devices. The first fiber 

laser was proposed in 1961 [24,25] soon after the first demonstration of the 

solid-state ruby laser [26]. In the early days performance of fiber lasers was 

limited by high losses within the active materials in the fiber core [27]. The first 

low-loss Nd-doped fiber laser was fabricated and demonstrated in 1985 [28]. 

Soon after that, a low noise erbium-doped fiber amplifier (EDFA) was invented 

in 1987 [29,30], which offered amplification in the near-IR transmission window 

of silica fiber circa 1550 nm. Since then, fiber lasers and amplifiers have 

experienced rapid development, which has enabled all-optical long-haul 

communication systems and resulted in a revolution in the telecommunication 

industry, for example EDFA can provide for ultra-long global transmission 

distances, without the need for complex electronic repeaters and thus fully 

unlocking the potential of fiber optics for communications [31,32].  

Cladding pumping in double clad fiber lasers was proposed in 1988 by E. Snitzer 

[33] and has proved to be most powerful enabling technique for increasing the 

power of fiber lasers. The general schematic of a cladding pumping fiber laser is 

shown in Fig. 1.3, where the pump light is coupled firstly into the inner cladding 
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and then can be efficiently coupled into the active fiber core [34]. High-power, 

double-clad fiber amplifiers have similar configurations with the double-cladded 

fiber laser [32]. 

 

Figure 1.3  Schematic of the cladding pumping principle of fiber-laser operation. (Figure is 

reproduced from the website: https://en.wikipedia.org/wiki/Double-clad_fiber) 

Since 1988, the average output power of continuous-wave, nearly diffraction-

limited fiber lasers have been increasing exponentially. Ultrashort-pulse fiber 

lasers have been developed at a similar rate, attaining average powers of almost 1 

kW by 2009 [35]. The increase of the output power of a fiber laser depends on 

both the pump efficiency and the effectiveness of heat dissipation management 

[35-37]. Nonlinear effects such as stimulated Brillouin scattering (SBS) [38], 

stimulated Raman scattering (SRS) [39], self-focusing [40], and thermally 

induced mode instability [41-43] impose limitations on the average power and 

peak power output of a fiber laser. One way to reduce the nonlinear effects is to 

use large-mode-area (LMA) fibers [44-52], some examples of which are shown 

in Fig. 1.4: such as a step-index MMF [44], photonic crystal fiber [46], large-

pitch fiber [47], multi-core fiber [50], multi-quench fiber [51] and hollow-core 

photonic crystal fiber [52]. 
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Figure 1.4  Large-mode-area fibers: (a) step-index MMF (reproduced from J. P. Koplow et 

al., Opt. Lett., vol. 25, no. 7, pp. 442-444, 2000); (b) photonic crystal fiber (reproduced from 

T. T. Alkeskjold et al., Nanophotonics, vol. 2, no. 5-6, pp. 369-381, 2013); (c) large-pitch 

fiber (reproduced from F. Stutzki et al., Opt. Lett., vol. 36, no. 5, pp. 689-691, 2011); (d) 

multi-core fiber (reproduced from M. M. Vogel et al., Opt. Lett., vol. 34, no. 18, pp. 2876-

2878, 2009); (e) multi-quench fiber (reproduced from D. Jain et al., Opt. Express, vol. 21, no. 

2, pp. 1448-1455, 2013); (f) hollow-core photonic crystal fiber (reproduced from J. P. Uebel 

et al., Opt. Lett., vol. 41, no. 9, pp. 1961-1964, 2016). 

1.1.3 Optical fibers for imaging applications 

Optical fibers are excellent tools for optical imaging. As mentioned at the 

beginning of this chapter, optical fiber bundles started to be used for medical 

imaging from middle of the 20th century [2]. Today, fiber bundles have become 

well-known standard parts of commercial flexible endoscopes and thus have 

been widely used for visualizing hard-to-reach areas of the human body [53-56]. 

However the imaging resolution of a fiber bundle based endoscope is dependent 

on the number of fibers in the bundle, where one fiber represents a single pixel 
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and thus there is a tradeoff between the diameter and the resolution of the 

endoscope, as large pixel counts increase the overall fiber bundle diameter. A 

MMF supports multiple spatial modes, which can be considered equivalent to the 

individual fibers in the fiber bundle, and thus MMFs have been intensively 

studied as the new form of fiber endoscope [57-60]. Fig. 1.5 shows a sketch of a 

MMF-based super-resolution and super-speed endo-microscope [60]. Compared 

to a fiber bundle, the diameter of the fiber endoscope can be significantly 

reduced. However, the quality of imaging with a MMF is more readily affected 

by the fabrication defects, bends and temperature changes [61]. Therefore a 

better understanding of the modal behaviour within the MMFs is critically 

needed [62-65]. 

 

Figure 1.5  Schematic of a MMF-based super-resolution and super-speed endo-microscopy, 

consisting of three main components: a continuous-wave laser source with a scanning 

system, a MMF probe, and a single-point detector. Pump light is scanned across the fiber 

input facet, creating different illumination patterns on the fiber output. The total fluorescent 

response from the sample is collected by the same fiber probe, propagated back, and 

measured by the single-point detector. (Figure is reproduced from L. V. Amitonova and J. F. 

de Boer, Light: Sci. Appl., vol. 9, no. 1 pp. 1-12, 2020) 
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1.1.4 Optical fibers for manipulating micro/nano- particles 

Contactless displacement and levitation of micron-sized dielectric particles by 

optical tweezers was firstly demonstrated using bulk optics methods in the early 

1970s. Light in an optical tweezers provides a very low level force due to the 

radiation pressure of the light. Optical tweezers based on the bulk optics methods 

such as axicons [66] and computer-generated holograms [67] have several 

disadvantages such as the large size of the setup, high cost, difficulties with 

beam misalignment, etc. All-fiber optical tweezers with their very compact size 

are attractive due to their capability of being integrated with other equipment, 

while offering alignment-free operation, high flexibility, and remote delivery 

[68-71]. Therefore, optical fibers have been widely studied as the optical 

tweezers to manipulate micro/nano- particles for applications in the biological, 

medical, and physical fields [66,72-75]. Fig. 1.6 conceptually illustrates trapping 

of nanoparticles and biological cells with fiber optic tweezers [71]. 

  

Figure 1.6  Trapping and biosensing: parallel photonic nano-jet array can be used to 

selectively trap and detect nanoparticles and biological cells. (Figure is reproduced from Y. 

Li et al., ACS Nano, vol. 10, no. 6, pp. 5800-5808, 2016) 
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The balance between light scattering and the light intensity gradient, resulted 

from reflections and refractions, provides the force to control, trap, and 

manipulate the neutral dielectric particles and atoms [76]. The mode field profile, 

polarization, and the on-axis intensity distribution of the beams have proven to 

be of great importance to the performance of the optical fiber tweezers [77]. 

Fiber modes modified by a lensed fiber tip or a micro axicon directly written on 

the fiber core can generate Bessel-like beams in a similar fashion to bulk optic 

equivalents [78-80]. Bessel-like beams can be generated by on-axis illumination 

of a MMF via multi-path interference [81], or by higher-order cladding mode 

excitation in a SMF with a long period fiber grating [68]. In addition, 

holographic control of light propagation in MMFs has recently been used for the 

three-dimensional optical manipulation [82,83]. Fig. 1.7 shows several kinds of 

optical fiber tweezer profiles based on SMFs and multi-core fibers and fabricated 

with methods such as polishing, thermal pulling, chemical etching and  

 

Figure 1.7  Schemes of the optical fiber tweezer profiles using different fabrication methods: 

(a) Polishing (b) Heating and Pulling (c) Chemical Etching (d) High Resolution Techniques. 

(Figure is reproduced from R. S. Rodrigues et al., J. Lightw. Technol., vol. 33, no. 16, 2015) 
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micromachining [77]. 

1.1.5 Optical fibers for sensing 

Changes in fiber parameters such as refractive index and length due to external 

perturbations lead to variations of the phase and intensity of the output light from 

an optical fiber, which is the fundamental mechanism underpinning the operation 

of fiber optic sensors. Fiber optic sensors have been intensively studied for a 

wide range of applications involving the measurement of physical, chemical, and 

biological parameters [84,85]. Almost all types of the optical fibers, which at 

first were designed for other applications such as telecommunications, lasers and 

amplifiers, imaging and tweezers, can be used for optical sensing. However a key 

advantage of optical fiber when used for optical communications is its immunity 

to the local environment but such immunity, while it is essential for reliable 

communication, is a major disadvantage for sensing which by definition 

demands interaction with the local environment. Therefore to utilise fibers for 

sensing with high sensitivity, resolution, and dynamic range, the sensing fibers 

typically need to be specially modified by optical writing [86,87], tapering [88], 

twisting [89,90], coating [91,92], hetero-structure splicing [93,94], etc. Fig. 1.8 

shows schematically a fiber Bragg grating, a tapered SMF, a coated no-core fiber, 

and a typical SMF-MMF-SMF (SMS) hetero-structure. It is worth mentioning 

that fiber optic sensors based on fiber Bragg gratings (FBGs) shown in Fig. 1.8(a) 

are among the most mature fiber sensing technologies and have been used for 

real-time in-situ monitoring of bridges, tunnels and airplane structures [95]. 

Micro/nano-fibers shown in Fig. 1.8(b) can guide light with low optical loss, 

possess outstanding mechanical flexibilities, tight light confinement, enhanced 
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evanescent fields and large waveguide dispersions, which makes them a versatile 

platform for optical sensing on a micro-/nano-meter scale [96]. Coating the no-

core fiber with metals or semiconductor materials shown in Fig. 1.8(c) can 

induce surface plasmon resonance [97] or lossy mode resonance [98], which can 

be used to design highly sensitive bio-chemical sensors. SMS optical fiber 

interferometers shown in Fig. 1.8(d) have been widely investigated as 

refractometers, temperature and curvature sensors [99,100].  

 

Figure 1.8  Schematics of (a) fiber Bragg grating, (b) tapered fiber, (c) coated fiber, and (d) 

SMF-MMF-SMF hetero-structure.  

1.2 Optical fiber classification 

The rapid development of fiber optics over the past decades has been 

underpinned by various designs of the optical fibers and by the rapid 

improvement of the understanding of the waveguiding mechanisms and 

associated models. Although there are many types of optical fibers, with different 

cross-section profiles, almost all optical fibers can be classified into four basic 

fiber model types with distinct refractive index profiles as shown in Fig. 1.9. 
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Figure 1.9  The index profiles of (a) two-layer step-index fiber, (b) three-layer step-index 

fiber, (c) hollow-core fiber (HCF), and (d) depressed-core fiber (DCF).  

• Two-layer step-index fiber 

Figure 1.9(a) illustrates a two-layer step-index fiber model, consisting of a high-

index core and an infinite cladding, where the refractive indices of the core and 

the cladding region are n1 and n2, with n1 > n2. The two-layer step-index fiber 

model is a logical starting model for modal analysis, which can be used to 

represent un-cladded fibers, conventional step-index SMFs and MMFs in the 

case that only the core modes are considered.  

• Three-layer step-index fiber 

Core modes play a key role in carrying energy or information, while the cladding 

modes are more important in fiber optic sensing, high-power double-cladded 

fiber lasers and amplifiers. Therefore, in addition to the core modes, an intuitive 

interpretation of the qualitative and quantitative characteristics of cladding 

modes is important. To study the cladding modes, a more complex three-layer 

step-index fiber model shown in Fig. 1.9(b) is required, where the first finite 

cladding region with the radius of r2 is surrounded by an infinite second cladding 
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region. The relationship between the refractive indices in the three-layer step-

index fiber model is n1 > n2 > n3 (n3 is the refractive index of the second cladding 

region). 

The cladding region of the conventional SMF and MMF (without protective 

polymer coating) can support multiple cladding modes. Unfortunately, cladding 

modes usually coexist alongside with the core modes, making it impossible for 

the cladding modes to be studied independently from the core modes. If the 

radius of the core in a three-layer step-index fiber is small enough, as in the case 

of a small-core fiber (SCF), the core mode will be cancelled out leaving only the 

cladding modes [101,102]. Therefore, the SCF provides a unique opportunity for 

experimentally investigation of pure cladding modes in fiber optics.  

The SCF is in effect a bridge between the no-core fiber (NCF) and the SMF from 

the point of view of the index profile. The fundamental mode in both no-core 

fiber and SMF is a core-type mode while in a SCF the fundamental mode is a 

cladding-type mode. Increasing the core radius of the small-core fiber will lead 

to transfer of the fundamental mode from a cladding-type to a core-type as the 

cutoff condition is met.  

Overall, the investigation of the three-layer step-index fiber especially the SCF 

can deepen the understanding of the cladding modes. 

• Three-layer hollow-core fiber 

The refractive index of the core region can be smaller than that of the cladding 

region, especially for most of novel fibers such as the photonic bandgap fiber 
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[19], inhibited-coupling fiber [20] and anti-resonant fiber [21]. The fiber with a 

low-index core and a high-index finite cladding is a three-layer inversed-index 

fiber. The tube-type hollow-core fiber (HCF) with n2 > n1 = n3 shown in the Fig. 

9(c) is the simplest optical fiber with a three-layer inversed-index profile. 

The waveguiding in the conventional step-index fibers with n1 > n2 shown in 

Figs. 1.9(a) and 1.9(b) is based on total internal reflection effect. Compared to 

the conventional step-index fibers, the waveguiding mechanism in the three-layer 

HCFs is expected to be based on the anti-resonance effect [21]. 

• Three-layer depressed-core fiber 

Figure 1.9(d) shows another kind of three-layer inversed-index fiber named as a 

depressed-core fiber (DCF) with n2 > n1 > n3. For a DCF the core refractive index 

is lower than the next outermost region but does not need to take on the lowest or 

minimum value in a three-layer fiber model as in the HCF shown in Fig. 1.9(c).  

DCFs have been studied for various applications including pulse compression in 

fiber lasers [103-105], generation of supercontinuum [106] and top-hat beams 

[107], due to their manageable waveguide dispersion and exceptional modal field 

changes. The DCF can represent a high-index material coated fiber structure, 

such as the lossy mode resonance (LMR) fiber structures [108]. LMR fiber 

structures have been extensively studied as a key element of the design of 

various devices such as optical sensors, filters and modulators. The analysis of 

the DCF can contribute to a better understanding of the resonant phenomenon in 

LMR fiber structures. 
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The three-layer DCF (Fig. 1.9(d)) is in effect a bridge between the conventional 

three-layer step-index fiber (Fig. 1.9(b)) and the tube-type HCF (Fig. 1.9(c)) 

from the point of view of the index profile. The investigation of the DCF can 

deepen the understanding of the mode properties in the three-layer inversed-

index fibers and their difference compared to the modes in the conventional step-

index fibers and the HCFs. 

1.3 Aim and objectives of the research 

The investigation of the waveguiding characteristics in these four basic fiber 

types in Fig. 1.9 is important for the understanding of the fibers with more 

complex structures. However, a complete modal dispersion diagram for neither 

the DCF nor the three-layer step-index fiber has ever been reported in the 

literature to date, although the modal characteristics equations have been derived 

by several different groups [109-111]. 

The primary aim of research presented in this thesis is to 

Investigate the three-layer step-index optical fiber and the three-layer 

depressed-core fiber from a modal and spectral perspective and to develop 

high performance fiber optic devices based on these types of fibers. 

The objectives of this research are: 

• To develop deep understanding of the mode transitions between the core 

and the cladding type modes of a three-layer step-index fiber by 

calculating and analyzing the dispersion diagram of such fiber. 
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• To experimentally investigate the self-imaging characteristics of cladding 

modes in the SCFs, in comparison with those of the core modes. 

• To develop waveguiding mechanisms of inversed-index optical fibers by 

constructing and simulating dispersion diagram for the three-layer DCFs. 

• To experimentally investigate the transmission spectral characteristics of 

the DCFs in comparison with other type of fibers. 

• To investigate the spectral response of the SCFs and DCFs to external 

stimulus such as temperature and fiber bending for applications. 

1.4 Research methodology 

The findings presented in this thesis are a result of a combination of numerical 

and analytical simulations along with experimental investigations. The fiber 

types employed in the research include NCFs, SCFs and polymer-coated NCFs 

(PC-NCFs, in effect represents DCFs). The research methodology employed was 

as follows: 

1) Acquire a fundamental knowledge of the operation of optical waveguides, 

along with relevant experimental and simulation methods. 

The optical fiber interferometer based on a fiber hetero-structure: SMF-MMF-

SMF (SMS) has been widely investigated and applied in sensing and waveguide 

devices. Therefore the SMS structure was chosen as a good starting point for 

studies of multimode interference phenomenon and its relation to the modal 

properties of conventional MMFs.  
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2) Experimental investigations. 

In the experiments a SCF, an NCF and a PC-NCF were used as a replacement for 

the MMF in an SMS structure, to form the SMF-SCF-SMF (SSCS), the SMF-

NCF-SMF (SNCS) and the SMF-PC-NCF-SMF (PC-SNCS) structures.  

3) Numerical simulations to verify the experimental results and to determine 

the general rules which describe the experimental phenomenon. 

The numerical simulations for calculating the transmission spectrum of the SSCS 

and SNCS structures were performed by the scalar Beam Propagation Method 

(BPM). The scalar BPM simulations were followed by the full-vector Finite 

Element Method (FEM) simulations in order to calculate the modal dispersion 

diagrams of the three-layer step-index fibers and the three-layer DCFs.  

4) Analytical derivation of the corresponding dispersion diagrams with a 

comparison to the numerical results. 

In order to get a clear understanding of the waveguiding mechanisms in the 

three-layer SCF and the three-layer DCF, an analytical method of solving the 

eigenvalue equation of the three-layer fiber was developed and employed.  

5) Modify the fiber parameters and investigate the corresponding changes of 

the modal and spectral characteristics.  

The modifications of fiber parameters (states) can change the modal and spectral 

characteristics, which bring opportunities to the design of fiber optic sensors and 

devices.  
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1.5 Structure of the thesis 

The content of the chapters is briefly outlined below: 

• Chapter 2 presents the fundamentals of light guiding mechanisms 

including total internal reflection, anti-resonance, inhibited coupling, 

photonic bandgap, and their typical dispersion diagrams. This chapter also 

briefly describes the different waveguide analysis methods such as the 

analytical method, the BPM and the FEM.  

• Chapter 3 presents the dispersion diagram of a three-layer step-index 

optical fiber, calculated by both the full-vector FEM and the analytical 

method. The distributions of the cladding modes and the transitions 

between the core and cladding modes are analyzed. 

• Chapter 4 presents the study of the self-imaging phenomenon for the 

cladding modes in small-core optical fiber interferometers. The analytical 

and numerical simulations and experiments show that unlike the self-

imaging of core modes, self-imaging of cladding modes only appears at a 

set of discrete positions along the interferometer axis with an equal 

spacing corresponding to some discrete values of fiber core radius. This is 

the first observation of the discrete self-imaging effect in multimode 

waveguides. 

• Chapter 5 presents the dispersion diagram of a DCF obtained by solving 

the full-vector eigenvalue equations and analyzed using the theory of the 

anti-resonant and the inhibited coupling mechanisms. An asymmetric 

planar anti-resonant reflecting optical waveguide (asymmetric planar 

ARROW) model is proposed.  
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• Chapter 6 presents the study of the transmission spectra of the straight and 

bent PC-NCFs, which are measured and analyzed from a modal dispersion 

perspective. The study details the general principles of the anti-resonant, 

inhibited coupling and total internal reflection guidance in the formation 

of the transmission loss dips in fiber optics. 

• Chapter 7 presents a high-sensitivity temperature sensor fabricated by a 

bent SMF-PC-NCF-SMF hetero-structure. It shows that the bending of 

fiber can suppress the multimode interference and can break the spectral 

superposition, resulting in the dominance of the anti-resonance of an 

individual mode and thus periodic sharp transmission dips in the spectrum. 

• Chapter 8 presents the key conclusions from the research undertaken and 

the thesis and suggests some possible future research related to possible 

practical applications of the three-layer SCFs and DCFs. 
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Chapter 2 

Waveguiding Mechanisms and Modal 

Dispersion Diagrams of Optical Fibers 

This chapter describes the fundamental knowledge and insights about 

waveguiding mechanisms and modal dispersion diagrams in fiber optics needed 

in subsequent chapters. This chapter also presents computational methods for 

three-layer fibers including the analytical method, Finite Element Method (FEM) 

and the Beam Propagation Method (BPM). 

2.1 Light guiding mechanisms and dispersion diagrams 

As discussed in Chapter 1, in addition to the silica-based step-index fibers such 

as the SMF and the MMF, a wide variety of new types of optical fibers with 

generally more complex structures have been developed in recent years. These 

fiber structures correspond to a variety of waveguiding mechanisms and modal 

characteristics. In this section the total internal reflection (TIR), photonic 

bandgap (PBG), inhibited coupling (IC) and the anti-resonant (AR) guiding 

mechanisms are introduced. 

2.1.1 Total internal reflection in two-layer step-index fibers 

Light passing through the interface between two dielectric media obeys the rules 

of reflection and refraction in ray theory [1-4]. In accordance with Snell’s law, 

the relationship between the angle of incidence (𝜃1) for a light beam in the 
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medium with a refractive index n1 and the angle of refraction (𝜃2) in the medium 

with n2 is as follows: 

sin𝜃1

sin𝜃2
=

𝑛2

𝑛1
                                                     (2.1) 

If n1 > n2, there is a critical incidence angle 𝜃𝑐 making a right angle with the 

refracted beam (𝜃2 = 90°): 

𝜃𝑐 = sin−1
𝑛2

𝑛1
                                                  (2.2) 

When the incidence angle is greater than 𝜃𝑐, there is no refracted beam and the 

total internal reflection occurs at the interface between the two dielectric media. 

The TIR effect is used as the basis to describe propagation in a conventional 

step-index optical fiber. As an example Fig. 2.1 shows successive reflections of a 

beam propagating within a section of a bent unclad silica glass fiber, where the 

refractive indices of the glass and the surrounding medium are n1 and n2, with n1 > 

n2. The unclad glass fiber is a two-layer step-index fiber as shown in Fig. 1.9(a). 

At point P1, the incidence angle 𝜃1 is equal to the critical angle 𝜃𝑐, the refracted 

beam travels along the outer boundary of the fiber. At point P2, the incidence 

angle 𝜃3 is smaller than 𝜃𝑐, partial light will refract out of the boundary of the 

fiber. At point P3, the incidence angle 𝜃5 is larger than 𝜃𝑐, the light will totally 

reflect into the glass fiber. In this case of TIR, light energy is mainly confined 

within the fiber. TIR is the fundamental mechanism of light guidance in the 

conventional step-index optical fibers. Commercial SMF-28, one of the most 

common fiber types, can maintain TIRs even where the bend radius is small. The 
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bend loss of the SMF-28 from Corning Inc. is less than 0.5 dB at the wavelength 

of 1550 nm when the bend radius is equal to 16 mm. 

  

Figure 2.1  Ray trajectories in a bent silica fiber.  

2.1.2 Dispersion diagram of two-layer step-index fibers 

In conventional MMFs and SMFs, the guided light field in the core region is 

governed by the TIR at the interface between the core and the cladding of the 

fibers. The dispersion properties of core modes in MMFs and SMFs can be 

calculated with a two-layer step-index fiber model as shown in Fig. 1.9(a), where 

the cladding is considered as an infinite region. 

Figure 2.2 shows ray trajectories in a straight MMF and a straight SMF, where 

one light path represents one optical mode. The MMF can support multiple 

guided modes represented by multiple light paths, while the SMF supports only 

one guided mode.  

One mode in a 3-dimensional cylindrical fiber can be characterized by one 

longitudinal propagation constant β, which accounts for the translational 

invariance of the fiber along its axis. As shown in Fig. 2.2(a), the ray with the 
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Figure 2.2  Examples of ray trajectories in (a) a multimode fiber and (b) a single-mode fiber.  

wavevector 𝑘⃗  (shown in yellow) creates a constant angle θ with respect to the z-

direction, and its β is determined by: 

𝛽 = 𝑘 cos 𝜃 = 𝑛1𝑘0 cos 𝜃                                        (2.3) 

where 𝑘0 = 2𝜋 𝜆⁄  is the wavenumber in vacuum. A mode can also be 

represented by an effective refractive index neff, defined as  

𝑛eff =
𝛽

𝑘0
= 𝑛1 cos 𝜃                                             (2.4) 

In addition to the longitudinal propagation constant β or 𝑛eff , in order to fully 

describe the behaviour of one mode the transverse constants, including the 

azimuthal mode number ‘m’ and the radial mode number ‘n’, are required. There 

are four kinds of vector modes to describe the light field in a conventional step-

index fiber, known as TE0,n, TM0,n, HEm,n, and EHm,n. The hybrid HE or EH 

modes are two-fold degenerate modes. Under the weakly guiding condition (n1 ~ 

n2), the longitudinal components of the fields are negligible compared to the 

transverse ones and the transverse intensity distribution of the degenerated vector 

modes are almost identical [1-3]. Therefore, the degenerated vector modes can be 

Multimode fiber Single-mode fiber

θ z z

n2

n1

r

(b)(a)

𝑘

  0o
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simply represented by the linear polarization (LP) scalar modes LPm,n under the 

weekly guiding condition. 

Figure 2.3(a) shows the dispersion diagram (neff vs. r1) of the core modes in a 

two-layer step-index fiber, with r2 = ∞, n1 = 1.4504 and n2 = 1.4447 at the 

wavelength of λ = 1550 nm (similar to the parameters of SMF-28). In this case,  

  

Figure 2.3  Dispersion diagrams of a two-layer step-index fiber: (a) neff vs. r1, where n1 = 

1.4504, n2 = 1.4447 and λ = 1550 nm; (b) neff vs. λ, where n1 = 1.4504, n2 = 1.4447 and r1 = 

10 μm, r2 = ∞.  
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the curves of the vector modes overlap with that of scalar LP modes due to weak 

guiding (n1 ~ n2). The relationship between the vector and scalar modes is shown 

on the right from the Fig. 2.3(a). 

The neff of the core modes lies between the refractive index of the cladding and 

the core regions (n2 < neff < n1), as indicated by two black horizontal dashed lines. 

As the core radius r1 increases, the number of modes supported by the fiber 

increases. The total number of core modes ‘N’ in a fiber depends on the V-

parameter, defined as: 

𝑉 =
2𝜋𝑟1

𝜆
√𝑛1

2 − 𝑛2
2                                             (2.5) 

𝑁 =
𝑉2

2
                                                         (2.6) 

The fundamental mode is LP0,1 or HE1,1, which always exists in a two-layer step-

index fiber. The cutoff point for LP1,1 (TE0,1, TM0,1 and HE2,1) is at about r1 = 

4.618 μm (V = 2.40483), which is the single-mode condition of the optical fiber. 

The core radius of the commercial SMF-28 is circa 4.3 μm, smaller than the 

single-mode cutoff radius. The example of SMF-28 indicates that a modal 

dispersion diagram plays an important role in the design of optical fibers. 

The neff also changes with the wavelength λ. Figure 2.3(b) shows the dispersion 

diagram (neff vs. λ) of core modes in a step-index fiber, with n1 = 1.4504, n2 = 

1.4447, and r1=10 μm. As can be seen from the diagram, at 1550 nm, the optical 

fiber supports 16 vector modes. At 1400 nm, the optical fiber supports 20 vector 

modes. 
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2.1.3 Anti-resonant guiding and dispersion diagram 

Figure 2.4(a) shows a tube-type HCF, consisting of an air core, a tube-type first 

cladding with an outside air acting as a second cladding, which is one of the 

simplest fiber designs with a three-layer inversed index profile. Due to the fact 

that the refractive index of the core is smaller than that of the cladding, TIR is 

not present in the case of the HCF, as shown in Fig. 2.4(b). Rays incident from 

the core to the cladding will partially refract into the cladding, regardless of the 

incident angle 𝜃1 . The rays experience multiple successive reflections and 

refractions at both the inner and outer boundaries of the tube-type (first) cladding. 

  

Figure 2.4  (a) and (b) show the cross-section of the refractive index profile and the ray 

trajectories within the tube-type HCF, respectively. (c) and (d) show respectively the ray 

trajectories and the reflection spectrum of a Fabry-Perot resonator. 
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During this process, the light partially leaks out through the outer boundary of 

the tube-type cladding with the same angle 𝜃1 as the incident ray, due to the 

presence of the same medium (air) at both sides of the tube-type cladding. 

The tube-type cladding of the HCF can be seen as analogous to those in a Fabry-

Perot resonator as shown in Fig. 2.4(c) [5,6]. The symmetric planar waveguide 

acts as a Fabry-Perot resonator, where the anti-resonant light is reflected back 

while the resonant light is allowed to propagate forward, forming a reflected 

spectrum with periodic transmission dips and windows, as shown in Fig. 2.4(d).  

Similarly, the tube-type HCF can confine the light energy in the air core when 

the anti-resonance occurs in the high-index tube-type cladding in a range of light 

wavelength away from the resonance. The guiding mechanism in the tube-type 

HCFs can be described by the anti-resonant reflecting optical waveguide 

(ARROW) model [5,6]. In this model, the resonant wavelengths can be 

determined by Eq. (2.7). 

𝜆m =
2𝑑

m
√𝑛2

2 − 𝑛1
2, m = 1, 2, …                                  (2.7) 

where d is the thickness of the first cladding. 

Light propagating within a tube-type HCF has a complex propagation constant 𝛽, 

as follows, 

𝛽 = 𝛽𝑟 + 𝑗𝛽𝑖                                                     (2.8) 
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where the real part 𝛽𝑟 represents the longitudinal propagation constant and the 

imaginary part 𝛽𝑖  corresponds to the modal attenuation. The complex 

propagation constant 𝛽 corresponds to the complex effective refractive index: 

𝑛eff = 𝑅𝑒(𝑛eff) + 𝑗𝐼𝑚(𝑛eff)                                         (2.9) 

Figure 2.5 shows the dispersion curves of the real and imaginary parts of the neff 

of three lowest-order core modes in a tube-type HCF with r1 = 20 μm, d = 0.7 

μm, n1 = 1 and n2 = 1.45, calculated based on the reflection of a wave in a single 

planar waveguide [7]. These curves have discontinuities at the resonant 

wavelengths, which is a distinct characteristic compared to that of the step-index 

optical fiber as shown in Fig. 2.3(b). The resonant bands and the anti-resonant 

bands correspond to the dips and windows of the transmission spectrum, 

respectively. The nomenclature and mode profiles of the core modes in the 

middle region of the anti-resonant bands are similar to those of the step-index 

optical fibers [8,9]. 

 

Figure 2.5  Dispersion curves of the real (a) and imaginary (b) parts of the effective mode 

index of three lowest-order core modes supported by the tube-type HCF. In both plots, the 

dark yellow vertical dashed lines indicate the resonances with the corresponding order. 

(Figure is reproduced from M. Zeisberger and M. A. Schmidt, Sci. Rep., vol. 7, no.1, pp. 1-

13, 2017) 
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2.1.4 Photonic bandgap guiding and dispersion diagram 

The concept of PBG in optics is analogous to the concept of electronic bandgap 

in semiconductor physics, which originates from the periodic arrangement of two 

different dielectrics (namely, photonic crystals) and describes a range of 

frequencies where the propagation of photons is forbidden in the structure [10-

12]. In 1991 Philip Russell conceived the idea of a hollow-core waveguide based 

on a 2D out-of-plane PBG [13,14]. The PBG formed in the periodic photonic 

crystal structure of the fiber cladding provides an opportunity to confine the light 

in a low-index (air) core, avoiding the need for TIR.  

The dispersion curves and spectral characteristics of a PBF can be seen in Fig. 

2.6. Fig. 2.6(a) shows the cross section of a solid-core PBF, consisting of a 

cladding region with periodic high-index Ge-doped rods embedded in a low-

index pure-glass foundation and a central core region in form of a low-index site 

resulting from a missing rod [15,16]. Fig. 2.6(b) shows a hexagonal unit cell of 

the photonic crystal. 

Figure 2.6(c) shows the band structure of the solid-core PBF. The grey bands of 

the density of photonic states (DOPS) are separated by the red bandgaps. The 

yellow curve in the bandgaps is the “fundamental” guided core mode. The 

transmission windows and the high-loss dips shown in Fig. 2.6(d) correspond to 

the periodic bandgaps and the bands of high photonic density of states (Fig. 

2.6(c)), respectively. 
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Figure 2.6  (a) SEM image of a bandgap fiber. (b) A rod in a hexagonal unit cell. (c) Plots of 

band structure for the bandgap fiber. The bandgaps are shown in red. The rod modes from 

which the bands arise are labelled along the top. The yellow curve is the “fundamental” 

core-guided mode. (d) Transmission spectra of 2 m of the fiber. (Figure is modified from T. 

A. Briks et al., Opt. Express, vol. 14, no. 12, pp. 5688-5698, 2006 and T. A. Briks et al. Opt. 

Express, vol. 14, no. 20, pp. 9483-9490)  
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2.1.5 Inhibited coupling guiding and dispersion diagram 

Another guiding mechanism was proposed in the Kagomé lattice hollow-core 

photonic crystal fibers (HC-PCFs) invented by Benabid et al. (2002) [17], as 

shown in Figs. 2.7(a)-2.7(c) [18]. The Kagomé lattice exhibits no bandgap in its 

dispersion diagram but does possess periodic low and high DOPS bands, as 

shown in Fig. 2.7(d). The low and high DOPS bands correspond to low-loss and 

high-loss transmission bands of the measured spectrum as shown in Fig. 2.7(e). 

Figs. 2.7(f) and 2.7(g) show the real and imaginary part for the neff of the HE1,1-

like core mode, respectively. The bands with large imaginary part of neff 

correspond to high transmission loss bands in Fig. 2.7(e), while the bands with 

the small imaginary part for neff correspond to low transmission loss bands.  

   

Figure 2.7  (a) The cross-section of a Kagomé-lattice HC-PCF. (b) Optical micrograph of 

the field intensity pattern at the output of a few cm of the fiber. (c) Primitive unit cell of the 

Kagomé lattice. (d) Calculated DOPS diagram as a function of the real part of the effective 

index and normalized frequency. (e) Measured transmission spectrum. Calculated (f) real 

and (g) imaginary parts of the effective index neff of the HE1,1-like core mode. (Figure is 

reproduced from F. Couny et al., Science, vol. 318, no. 5853, pp. 1118-1121, 2007, 

supporting online material) 
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Figure 2.8  Nature of the Kagomé lattice HC-PCF cladding modes. (a) The first two 

columns show the core mode and a cladding mode, respectively, for a frequency k = 50 

and k = 100. The third column shows the mode of an infinite Kagomé lattice, which 

corresponds to the cladding mode in the second column. (b) Same as in (a) for k = 68. 

(Figure is reproduced from F. Couny et al. Science, vol. 318, no. 5853, pp. 1118-1121, 2007) 

The waveguiding in the Kagomé lattice HC-PCF was explained by F. Couny et 

al. as being based on the inhibited coupling effect [18]. In this mechanism, the 

guided core modes and cladding modes in a Kagomé lattice HC-PCF can coexist 

even at the same frequency k and effective index neff. The “inhibited interaction” 

between the hollow-core guided modes and the cladding continuum is explained 

by the high degree of the transverse-field mismatch between the core and 

cladding modes, as shown in Fig. 2.8. At the normalised frequencies of 50 and 
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100 in the high transmission bands, the overlap of the core modes and the 

cladding modes (silica struts modes) is very small, as shown in Fig. 2.8(a). At the 

normalised frequency of 68 in the low transmission bands, the overlap of the 

core modes and the cladding modes (silica struts modes) is very high as shown in 

Fig. 2.8(b), indicating the high efficiency of mode coupling (resonance) between 

them and the high loss.  

The dispersion diagram of core modes in the AR, PBG, and the IC guiding fibers 

show periodic characteristics. The reason for this phenomenon is that both the 

photonic bandgap fibers and the inhibited-coupling fibers have the same anti-

resonant nature [18,19]. The AR and IC effects also play a role in the depressed- 

core fibers (DCFs), for which a completed dispersion diagram will be introduced 

in Chapter 5.  

2.2 Three-layer fiber waveguide analysis methods 

As discussed in Section 2.1, optical fibers are characterized by the modal 

dispersion diagrams (neff vs. λ or r1). This section will introduce briefly several 

waveguide analysis methods to calculate the dispersion diagrams of the three-

layer fibers, including the ray-optics approach, analytical method and numerical 

methods. A comparison of the different methods is also provided and discussed. 

2.2.1 Ray-optics approach 

The ray-optics approach, belonging to the classical geometrical optics, can 

provide an approximate description of light propagation in a homogeneous 

optical medium [1]. It is well-known that the most direct and conceptually 

simple way to describe light propagation in fiber waveguides is by tracing rays 



45 
  

along the core [2]. A ray is reflected from the interface back into the core at an 

angle regardless of whether partial or total reflection occurs. If this procedure is 

repeated at successive reflections from the interfaces, the zig-zag paths, or 

trajectories are constructed, as shown in Figs. 2.1, 2.2, and 2.4(b). Using the laws 

of ray optics such as the Snell’s law, the eigenvalue equations of the mode 

guidance in some simple waveguides such as a planar waveguide and a two-layer 

step-index optical fiber can be obtained [1,2]. 

The ray-optics approach can help to analyse the field distributions of the core and 

the cladding modes in the three-layer optical fibers. However, it is very difficult 

to build the eigenvalue equations for complex waveguide structures. For example, 

the ray-optics approach is generally not suitable for photonic crystal fibers.  

2.2.2 Wave-optics approach 

Light is an electromagnetic wave, whose behaviour in a medium without electric 

charges can be described exactly by Maxwell’s equations, as follows: 

∇ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
                                                (2.10-1) 

∇ × 𝐻⃗⃗ = −
𝜕𝐷⃗⃗ 

𝜕𝑡
                                               (2.10-2) 

∇ ∙ 𝐷⃗⃗ = 0                                                    (2.10-3) 

∇ ∙ 𝐵⃗ = 0                                                   (2.10-4) 

where 𝐸⃗  is the electric field (in Volts per meter), 𝐻⃗⃗  is the magnetic field (in 

Amperes per meter), 𝐷⃗⃗  is the electric flux density (in Coulombs for square 
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meters), and 𝐵⃗  is the magnetic flux density (in Amperes per square meter). The 

relationship between 𝐸⃗ , 𝐷⃗⃗ , 𝐻⃗⃗  and 𝐵⃗  is through the equations 

𝐷⃗⃗ = 𝜀0𝜀𝑟𝐸⃗                                                    (2.11-1) 

𝐵⃗ = 𝜇0𝜇𝑟𝐻⃗⃗                                                   (2.11-2) 

where 𝜀0 and 𝜇0 are the permittivity and permeability of vacuum, and 𝜀𝑟 and 𝜇𝑟 

are the relative permittivity and permeability of the material. The velocity of 

light in vacuum is 𝑐0 = 1/√𝜀0𝜇0 . For non-magnetic materials, 𝜇𝑟 = 1. Their 

relation to the refractive index of the material is 𝑛 = √𝜀𝑟𝜇𝑟 = √𝜀𝑟. 

For an electromagnetic field oscillating at a single angular frequency 𝜔  (in 

radians per second), the phasor expressions for the electric field 𝐸⃗ , magnetic 

field 𝐻⃗⃗ , electric flux density 𝐷⃗⃗  and magnetic flux density 𝐵⃗  are as follows: 

𝐸⃗ (𝑟 , 𝑡) = 𝐸⃗ (𝑟 )𝑒𝑗𝜔𝑡                                             (2.12-1) 

𝐻⃗⃗ (𝑟 , 𝑡) = 𝐻⃗⃗ (𝑟 )𝑒𝑗𝜔𝑡                                             (2.12-2) 

𝐷⃗⃗ (𝑟 , 𝑡) = D(𝑟 )𝑒𝑗𝜔𝑡                                             (2.12-3) 

𝐵⃗ (𝑟 , 𝑡) = 𝐵⃗ (𝑟 )𝑒𝑗𝜔𝑡                                             (2.12-4) 

Using Eqs. (2.10)-(2.12), the Helmholtz equations for 𝐸⃗  and 𝐻⃗⃗  can be deduced as: 

∇2𝐸⃗ + 𝑛2𝑘0
2𝐸⃗ = 0                                                (2.13) 

∇2𝐻⃗⃗ + 𝑛2𝑘0
2𝐻⃗⃗ = 0                                                (2.14) 
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where 𝑘0 = 𝜔√𝜀0𝜇0 = 𝜔 𝑐0⁄  is the wave number in vacuum. 

The boundary conditions required for the light fields in a dielectric waveguide 

are as follows: 

a) Tangential components of the electric fields are continuous at the 

interface and hence: 

𝐸1𝑡 = 𝐸2𝑡                                                   (2.15) 

b) Tangential components of the magnetic fields are continuous at the 

interface and hence: 

𝐻1𝑡 = 𝐻2𝑡                                                  (2.16) 

c) Normal components of the electric flux densities are continuous at the 

interface and hence: 

𝐷1𝑛 = 𝐷2𝑛                                                 (2.17) 

d) Normal components of the magnetic flux densities are continuous at the 

interface and hence: 

𝐵1𝑛 = 𝐵2𝑛                                                (2.18) 

In the wave-optics approach, the light field vectors 𝐸⃗  and 𝐻⃗⃗  in the waveguide are 

obtained by using the analytical method or the numerical method to solve the 

Helmholtz Eqs. (2.13) and (2.14).  
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2.2.2.1 Analytical method 

Analytical methods aim to solve problems in “closed form”, that is in terms of 

standard functions such as polynomial, rational, trigonometric, exponential or 

logarithmic. Analytical methods usually provide the most meaningful answer 

because the obtained solution determines an exact behaviour for each variable or 

parameter. The eigenvalue equations for the guided modes in an optical fiber are 

derived by employing the Helmholtz equations (2.13) and (2.14) in cylindrical 

coordinates with boundary conditions as shown by Eqs. (2.15)-(2.18)  

 

Figure 2.9  Cross section of a three-layer optical fiber. The light field in different regions is 

denoted by different Bessel functions.  

Figure 2.9 shows a cross section of a three-layer fiber, which can represent both 

the three-layer step-index fiber with n3 < n2 < n1 shown in Fig. 1.9(b) and the 

three-layer depressed-core fiber with n3 < n1 < n2 shown in Fig. 1.9(d). The 

eigenvalue equations and the deduced procedure for these two kinds of fibers are 

similar.  
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The electromagnetic fields 𝐸⃗ = 𝑒 exp(𝑗𝛽 ) and 𝐻⃗⃗ = ℎ⃗ exp(𝑗𝛽 ) can be derived 

from the scalar potentials Φ = Φ𝑎exp(𝑗𝛽 ) and Ψ = Ψ𝑎exp(𝑗𝛽 ), known as the 

Debye potentials, through the well-known relations [3]:  

𝑒 = [
𝜕Ψ𝑎

𝑟𝜕𝜙
− (

𝛽

𝜔𝜀𝑖
)
𝜕Φ𝑎

𝜕𝑟
] 𝑟0⃗⃗  ⃗ − [

𝜕Ψ𝑎

𝜕𝑟
+ (

𝛽

𝜔𝜀𝑖
)
𝜕Φ𝑎

𝑟𝜕𝜙
 ] 𝜙0
⃗⃗ ⃗⃗  

− [(
1

𝑗𝜔𝜀𝑖
) (𝑘0

2𝑛𝑖
2 − 𝛽2)Φ𝑎]  0⃗⃗  ⃗ 

(2.19) 

ℎ⃗ = [
𝜕Φ𝑎

𝑟𝜕𝜙
+ (

𝛽

𝜔𝜇
)
𝜕Ψ𝑎

𝜕𝑟
] 𝑟0⃗⃗  ⃗ − [

𝜕Φ𝑎

𝜕𝑟
− (

𝛽

𝜔𝜇
)
𝜕Ψ𝑎

𝑟𝜕𝜙
 ] 𝜙0
⃗⃗ ⃗⃗  

+ [(
1

𝑗𝜔𝜇
) (𝑘0

2𝑛𝑖
2 − 𝛽2)Ψ𝑎]  0⃗⃗  ⃗ 

(2.20) 

where 𝑟0⃗⃗  ⃗ , 𝜙0
⃗⃗ ⃗⃗   , and  0⃗⃗  ⃗ is respectively the unit radial, angular, and axial axis in a 

cylindrical coordinate system. The wavenumber in a vacuum is: 𝑘0 =
𝜔

𝑐
=

2𝜋

𝜆
, 

where 𝑐 =
1

√𝜇𝜀
 is light speed, 𝜆 is the wavelength. The longitudinal propagation 

constant is: 𝛽 = 𝑘0𝑛eff. The scalar potentials Φ and Ψ are the solution of the 

usual Helmholtz wave equation 

{∆𝑡 + (𝑘0
2𝑛𝑖

2 − 𝛽2)}{Φ
Ψ
} = 0                                   (2.21) 

where ∆𝑡 denotes the transverse Laplacian: ∆𝑡=
𝜕2

𝜕𝑟2
+

𝜕

𝜕𝑟
+

𝜕2

𝑟2𝜕𝜙2. 
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For a three-layer fiber shown schematically in Fig. 2.9, the solution of the 

Helmholtz wave equation in Eq. (2.21) is as follows: 

Φ𝑎 = {

𝐴1𝐽m(𝑢1𝑟)exp(𝑗m𝜙), 𝑟 < 𝑟1                                   
[𝐴2𝐽m(𝑢2𝑟) + 𝐵2𝑌m(𝑢2𝑟)]exp(𝑗m𝜙), 𝑟1 < 𝑟 < 𝑟2
𝐵3𝐾m(𝑤3𝑟)exp(𝑗m𝜙), 𝑟 > 𝑟2,                                 

 

(2.22) 

Ψ𝑎 = {

𝐶1𝐽m(𝑢1𝑟)exp(𝑗m𝜙), 𝑟 < 𝑟1                                   
[𝐶2𝐽m(𝑢2𝑟) + 𝐷2𝑌m(𝑢2𝑟)]exp(𝑗m𝜙), 𝑟1 < 𝑟 < 𝑟2
𝐷3𝐾m(𝑤3𝑟)exp(𝑗m𝜙), 𝑟 > 𝑟2                                 

 

(2.23) 

where 𝑢𝑖
2 = 𝑘2𝑛𝑖

2 − 𝛽2 = −𝑤𝑖
2 , i = 1, 2, or 3, the functions 𝐽m , 𝑌m  and 𝐾m 

denote the Bessel function of the first kind, the Bessel function of the second 

kind and the modified Bessel function of the second kind. The field coefficients 

𝐴𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖 are introduced for the purpose of weighting the field at various 

regions and thus are related to each other. 

For TE modes, Φ𝑎 ≡ 0, substituting Eqs. (2.22) and (2.23) into Eqs. (2.19) and 

(2.20), the electromagnetic field components of TE modes are determined as: 

Core region: 𝑟 < 𝑟1 

𝑒𝑟 = (
𝑗m

𝑟
) 𝐶1𝐽m(𝑢1𝑟)exp(𝑗m𝜙),                                     (2.24-1) 

𝑒𝜙 = −𝑢1𝐶1𝐽m
′ (𝑢1𝑟)exp(𝑗m𝜙),                                      (2.24-2) 

𝑒𝑧 =  0,                                                                             (2.24-3) 
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ℎ𝑟 = (
𝛽𝑢1

𝜔𝜇
)𝐶1𝐽m

′ (𝑢1𝑟)exp(𝑗m𝜙),                                   (2.24-4) 

ℎ𝜙 = (
𝛽

𝜔𝜇
) (

𝑗m

𝑟
)𝐶1𝐽m(𝑢1𝑟)exp(𝑗m𝜙),                           (2.24-5) 

ℎ𝑧 = (
𝑢1
2

𝑗𝜔𝜇
)𝐶1𝐽m(𝑢1𝑟)exp(𝑗m𝜙),                                   (2.24-6) 

First cladding region: 𝑟1 < 𝑟 < 𝑟2 

𝑒𝑟 = (
𝑗m

𝑟
) [𝐶2𝐽m(𝑢2𝑟) + 𝐷2𝑌m(𝑢2𝑟)]exp(𝑗m𝜙),                (2.25-1) 

𝑒𝜙 = −𝑢2[𝐶2𝐽m
′ (𝑢2𝑟) + 𝐷2𝑌m

′ (𝑢2𝑟)]exp(𝑗m𝜙),                 (2.25-2) 

𝑒𝑧 =  0,                                                                                  (2.25-3) 

ℎ𝑟 = (
𝛽𝑢2

𝜔𝜇
) [𝐶2𝐽m

′ (𝑢2𝑟) + 𝐷2𝑌m
′ (𝑢2𝑟)]exp(𝑗m𝜙),              (2.25-4) 

ℎ𝜙 = (
𝛽

𝜔𝜇
) (

𝑗m

𝑟
) [𝐶2𝐽m(𝑢2𝑟) + 𝐷2𝑌m(𝑢2𝑟)]exp(𝑗m𝜙),      (2.25-5) 

ℎ𝑧 = (
𝑢2
2

𝑗𝜔𝜇
) [𝐶2𝐽m(𝑢2𝑟) + 𝐷2𝑌m(𝑢2𝑟)]exp(𝑗m𝜙),             (2.25-6) 

Second cladding region: 𝑟 > 𝑟2 

𝑒𝑟 = (
𝑗m

𝑟
)𝐷3𝐾m(𝑤3𝑟)exp(𝑗m𝜙),                                    (2.26-1) 

𝑒𝜙 = −𝑤3𝐷3𝐾m
′ (𝑤3𝑟)exp(𝑗m𝜙),                                     (2.26-2) 

𝑒𝑧 =  0,                                                                               (2.26-3) 

ℎ𝑟 = (
𝛽𝑤3

𝜔𝜇
)𝐷3𝐾m

′ (𝑤3𝑟)exp(𝑗m𝜙),                                  (2.26-4) 
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ℎ𝜙 = (
𝛽

𝜔𝜇
) (

𝑗m

𝑟
)𝐷3𝐾m(𝑤3𝑟)exp(𝑗m𝜙),                           (2.26-5) 

ℎ𝑧 = − (
𝑤3
2

𝑗𝜔𝜇
)𝐷3𝐾m(𝑤3𝑟)exp(𝑗m𝜙),                              (2.26-6) 

Applying the boundary conditions 𝑒𝜙|𝑟=𝑟1−
= 𝑒𝜙|𝑟=𝑟1+

, 𝑒𝜙|𝑟=𝑟2−
= 𝑒𝜙|𝑟=𝑟2+

, 

ℎ𝑧|𝑟=𝑟1− = ℎ𝑧|𝑟=𝑟1+, and ℎ𝑧|𝑟=𝑟2− = ℎ𝑧|𝑟=𝑟2+ to Eqs. (2.24)-(2.26), it yields: 

−𝑢1𝐶1𝐽m
′ (𝑢1𝑟1) = −𝑢2[𝐶2𝐽m

′ (𝑢2𝑟1) + 𝐷2𝑌m
′ (𝑢2𝑟1)]                 (2.27-1) 

−𝑢2[𝐶2𝐽m
′ (𝑢2𝑟2) + 𝐷2𝑌m

′ (𝑢2𝑟2)] = (
𝑢2
2

𝑗𝜔𝜇
) [𝐶2𝐽m(𝑢2𝑟2) + 𝐷2𝑌m(𝑢2𝑟2)]    (2.27-2) 

(
𝑢1
2

𝑗𝜔𝜇
)𝐶1𝐽m(𝑢1𝑟1) = (

𝑢2
2

𝑗𝜔𝜇
) [𝐶2𝐽m(𝑢2𝑟1) + 𝐷2𝑌m(𝑢2𝑟1)]             (2.27-3) 

(
𝑢2
2

𝑗𝜔𝜇
) [𝐶2𝐽m(𝑢2𝑟2) + 𝐷2𝑌m(𝑢2𝑟2)] = −(

𝑤3
2

𝑗𝜔𝜇
)𝐷3𝐾m(𝑤3𝑟2)         (2.27-4) 

The Eqs. (2.27) forms a 4 × 4 matrix and its determinant must be zero: 

||

𝑢1
2𝐽m(𝑢1𝑟1) −𝑢2

2𝐽m(𝑢2𝑟1)

𝑢1𝐽m
′ (𝑢1𝑟1) −𝑢2𝐽m

′ (𝑢2𝑟1)
−𝑢2

2𝑌m(𝑢2𝑟1)           0                 

−𝑢2𝑌m
′ (𝑢2𝑟1)          0                  

         0           𝑢2𝐽m
′ (𝑢2𝑟2)

         0           𝑢2
2𝐽m(𝑢2𝑟2)

𝑢2𝑌m
′ (𝑢2𝑟2) −𝑤3𝐾m

′ (𝑤3𝑟2)

𝑢2
2𝑌m(𝑢2𝑟2) 𝑤3

2𝐾m(𝑤3𝑟2)

|| = 0     (2.28) 

which yields the eigenvalue equation for the TE0,n modes, as shown in Appendix 

A. Similarly, the eigenvalue equations for the TM0,n, HEm,n and EHm,n modes can 

be deduced and shown in Appendix A. These eigenvalue equations can be solved 

by a graphical method [3] to obtain the longitudinal propagation constant β or 

𝑛eff of modes in a three-layer optical fiber. 
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Under the weakly guiding approximation, the light field in three-layer step-index 

fibers can be denoted by scalar modes LPm,n, whose eigenvalue equations were 

deduced by M. Monerie, as shown in Appendix B. 

2.2.2.2 Finite element method 

In a finite element method (FEM), the fiber cross-section and wave equation are 

meshed (divided) into a huge number of elements as shown in Fig. 2.10. Each 

element has its own function, and the sum of the discretized functionals for all 

elements form the matrix eigenvalue equations by the variational or the weighted 

residual methods [20]. In process the boundaries of the inner regions of the fiber 

do not need to be specially considered, which indicates the FEM can be 

employed to solve more complex fiber structures. 

 

Figure 2.10  The FEM analysis region for the calculation of the core and cladding modes in 

a three-layer optical fiber. The analysis region is meshed by triangular elements. 
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2.2.2.3 Beam propagation method 

The Beam propagation method (BPM) used in the research is a finite-difference 

BPM. This technique uses finite-difference methods to solve the well-known 

parabolic or paraxial approximation of the Helmholtz equation [21,22]. In the 

finite-difference approach, the field in the transverse (x-y) plane is represented 

only at discrete points on a grid, and at discrete planes along the longitudinal or 

propagation direction (+z), as shown in Fig. 2.11. Given the discretized field at 

one z plane, the goal is to derive numerical equations that determine the field at 

the next z plane. This elementary propagation step is then repeated to determine 

the field throughout the structure [22].  

 

Figure 2.11  The meshing of analysis region in beam propagation method: (a) transverse (x-

y) plane, (b) along the z direction.  

Both the FEM and the BPM are numerical methods, where the wave equations 

are not directly solved, as opposed to the analytical method described in the 

previous section. These two numerical methods can be used for computing the 

propagation of light waves in waveguides with arbitrary cross-section. 
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2.2.3 Comparison of the waveguide analysis methods 

The waveguide analysis methods are compared in Table 2.1. The ray-optics 

approach can provide a direct and conceptually simple way to describe the light 

field in the waveguide, but it is generally inconvenient to build the eigenvalue 

equations for the modes. 

Table 2.1  Comparison of the waveguide analysis methods. 

 

The wave-optics approach uses the electromagnetic wave theory to characterize 

the light field in optical waveguides. The FEM and the BPM provide a simple 

way to simulate and calculate the propagation constants of the modes in the 

waveguide, especially in a complex structure. Therefore, it is easy to use the 

numerical methods to investigate complex, unknown, or unexplored systems. 

Compared to the numerical methods, the analytical method that uses specific 

functions to build the eigenvalue equations, can provide physically meaningful 

description of the field in a waveguide. 
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2.3 Conclusion 

This chapter has reviewed the fundamentals of waveguiding mechanisms, 

dispersion diagrams, and mode analysis methods in fiber optics. The 

waveguiding mechanisms include TIR, AR, PBG and IC guiding effects. The 

fiber mode analysis methods include the ray-optics approach and the wave-optics 

approach, where the latter includes the analytical method, the FEM and the BPM. 

Although the modal characteristics equations for the three-layer fibers have been 

derived in previous works [3], a complete modal dispersion diagram based on 

these equations has not been reported in the literature to date. In the following 

chapters, complete dispersion diagrams of both core and cladding modes in the 

three-layer step-index fiber and the depressed-core fiber will be introduced. 
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Chapter 3 

Mode Transition in Conventional Three-

Layer Step-Index Optical Fibers1 

The modal dispersion diagram shown in Section 2.1.2, calculated based on a 

two-layer step-index fiber model, provides only the information for the core-type 

modes. Using a three-layer step-index fiber model, the modal behaviour of both 

the core and the cladding modes can be obtained. 

In this chapter, the dispersion diagrams of the vector modes (TE0,n, TM0,n, HEm,n 

and EHm,n) and of the related scalar modes LPm,n for a three-layer step-index 

optical fiber are calculated using both an analytical method and a full-vector 

finite element method (full-vector FEM). The cladding mode distributions and 

the transitions between the core and cladding modes are analyzed. This work 

aims to enrich the knowledge and understanding of modal characteristics of 

conventional three-layer step-index optical fibers. 

3.1 Research background 

Silica-based solid-core step-index optical fibers such as the single-mode optical 

fiber (SMF) are widely used as the fundamental component in the 

telecommunications industry. Their single-step index profile is the simplest fiber 

design and provides a logical starting point for the study of fibers with more 

complex designs [1-5]. For example, the classification of the modes in the 

 
1Lian, Xiaokang, Gerald Farrell, Qiang Wu, Wei Han, Fangfang Wei, and Yuliya Semenova, 

“Mode Transition in Conventional Step-Index Optical Fibers,” In 18th IEEE International 

Conference on Optical Communications and Networks (ICOCN), pp. 1-3, 2019. 
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complex hollow-core photonic-bandgap fibers is similar to that in the step-index 

optical fibers, although the guidance mechanism in the former is the photonic 

bandgap effect unlike the total internal reflection effect in the latter [6]. 

Most of the research relating to step-index optical fibers has focused on the 

studies of the core modes. The two-layer model (the single-step index profile) 

used in studies of the core modes assumes that the cladding region is infinite, 

therefore, the information related to the cladding modes cannot be obtained. The 

cladding modes could be studied with a three-layer model (a double-step index 

profile) and their modal characteristic equations have been derived by several 

different groups [2-4]. The cladding modes can be excited by fiber Bragg 

gratings (FBGs) and long-period fiber gratings (LPFGs), by coupling the energy 

of core modes into cladding modes. The theory relating to the mode coupling in 

the fiber gratings has been well described in literature [4,5]. However, an 

intuitive interpretation of the qualitative and quantitative characteristics of the 

cladding modes is still lacking. In this chapter, a complete dispersion diagram 

including the core and cladding modes is developed, which should deepen the 

understanding of light propagation in the step-index optical fibers. 

3.2 Ray trajectories of the core- and cladding-type modes 

Figure 3.1(a) shows the cross section and the index profile of a three-layer step-

index optical fiber. The refractive index of the fiber core n1 is higher than that of 

the fiber cladding n2, where the radius of the core is r1 and the cladding radius is 

r2. The surrounding medium is air, with the minimum refractive index n3. The 

effective refractive index neff of the core-type modes lies within a range defined 

by n1 > neff > n2 while for the cladding modes it is n2 > neff > n3. In the ray optics 
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model as shown in Figs. 3.1(b) and 3.1(c), the ray of the core mode is confined 

inside the core region by total internal reflections at the interface between the 

core and cladding regions. For the cladding modes, the ray can partially penetrate 

the core-cladding interface in a fashion of multi-path reflections while the total 

internal reflection only occurs at the interface between the cladding region and 

the surrounding medium (air). 

  

Figure 3.1  (a) Refractive index profile of a three-layer step-index optical fiber. (b) Ray 

trajectory of a core-type mode. (c) Ray trajectory of a cladding-type mode (0 ≤ r1 ≤ 62.5 µm, 

n1 = 1.451, r2 = 62.5 µm and n2 = 1.445, λ = 1550 nm). 

In the calculations, the fiber parameters used are: n1 = 1.451, n2 = 1.445, r2 = 

62.5 µm, n3 = 1.000 and the light wavelength is λ = 1550 nm. The core radius r1 

is the only variable, covering the range of radii from 0 µm to 62.5 µm. The linear 

polarization (LP) approximation is reasonable due to a relatively small difference 

between the core and cladding refractive indices, n1 (1.451) and n2 (1.445). It is 
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also suitable for the no-core fibers (NCFs) due to the mode fields far from cutoff 

approximation [7], although the difference between n2 (1.445) and n3 (1.000) is 

relatively large. The neff of the scalar LPm,n modes are calculated by solving the 

scalar eigenvalue equations in Appendix B. The neff of the vector modes (TE0,n, 

TM0,n, HEm,n and EHm,n) are calculated by the full-vector FEM. The subscript m 

is the azimuthal number and n is the radial number. 

3.3 Dispersion diagram of the scalar and vector modes in 

three-layer step-index fibers 

The calculated dispersion diagrams (neff vs. r1), including the first 17 vector 

modes (TE0,n, TM0,n, HEm,n and EHm,n) and the first 9 scalar LPm,n modes, are 

shown in Fig. 3.2. The neff of the scalar LPm,n modes calculated by the analytical 

method are shown as the solid lines while those of vector modes calculated by 

the full-vector FEM are shown as the scattered lines. The vector modes are only 

calculated in a small range of the core radii 0 µm ≤ r1 ≤ 15 µm for the sake of 

conciseness, in order to show the relationship with the scalar LPm,n modes. LP0,n 

is a doubly degenerate mode of two HE1,n modes; the LP1,n is a four-fold 

degenerate mode of TE0,n, TM0,n, and two HE2,n modes; LPm,n (m > 1) is a four-

fold degenerate mode of two HEm+1,n and two EHm-1,n modes. The neff of every 

vector mode in each group are almost the same as those of the corresponding 

LPm,n modes, as seen from the overlapped scatter lines and the solid lines in Fig. 

3.2. The excellent match between the neff of the scalar modes and the vector 

modes verifies the LP approximation. The mode distribution of the vector modes 

is the same as for the corresponding LPm,n modes.  
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Figure 3.2  (a) Dispersion curves (neff vs. r1) of the modes in step-index optical fibers; (b) is 

an enlarged part of graph (a), indicated by a black dash rectangle. Scalar LPm,n modes 

indicated by the solid lines are calculated by the analytical method. The vector modes (TE0,n, 

TM0,n, HEm,n and EHm,n) indicated by the scattered lines are calculated by the full-vector 

FEM. 

Figure 3.2(a) is divided into two regions by the red horizontal dashed lines 

located at n1 and n2. The region with n2 < neff < n1 corresponds to the fiber core 
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modes while the region with neff < n2 (r1 ≠ 0 µm) corresponds to the fiber 

cladding modes. All the modes in NCFs with r1 = 0 µm or r1 = 62.5 µm are 

classified as core modes, since there are no guided modes in the infinite air 

cladding region. The distribution order of core modes does not change 

throughout the r1 range as: LP0,1, LP1,1, LP2,1, …, with decreasing neff as shown 

in the region between two red horizontal dashed lines in Fig. 3.2(a). 

The mode reorganization phenomenon for the LP0,n mode is shown in Fig. 3.2, 

where when one cladding-type mode LP0,n becomes a core-type mode, the 

remaining cladding modes LP0,n are reorganized (when one LP0,n mode transfers 

to a higher order mode, the lower LP0,n mode will take its original neff position). 

The phenomenon also occurs for the remaining LPm,n modes. The mode 

reorganization causes the step-like changes in the neff values for the cladding 

modes, as shown in Fig. 3.2(b). Compared to the core modes, the distribution 

order of the cladding modes changes with the core radius r1. It should be noted 

that only the modes with the same azimuthal number m are reorganized with the 

transition of the lower order mode. For example, when the cladding-type LP0,1 

(m = 0) becomes a core-type mode, all the LP0,n (m = 0, n > 1) modes are 

reorganized while the other LPm,n (m ≠ 0) modes are not affected. In the entire 

range from r1 = 0 µm to the cutoff point as shown in the dispersion region below 

the red dash horizontal line at n2, the number of times such reorganizations occur 

(the number of neff step changes on the diagram Fig. 3.2(b)) for a single cladding 

mode LPm,n is the same as the radial number n. For example, LP0,1 experiences a 

single mode reorganization process, while the LP0,2 mode experiences a 

reorganization twice.  
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The cutoff point for the LP0,1 (HE1,1) mode is at r1 = 1.3 µm (V = 0.7214), as 

shown as the point intersection between the dispersion curve and the horizonal 

line at neff = n2. Clearly, there is no core-type modes when r1 < 1.3 µm (V < 

0.7214). The cutoff point for LP1,1 (TE0,1, TM0,1 and HE2,1) is at r1 = 4.5 µm (V = 

2.40456), which is near the value (V = 2.40483) calculated with a two-layer step-

index fiber model. 

Figure 3.3 shows the intensities and electric field vector distributions of the 

vector modes HE1,1 (corresponding to the scalar mode LP0,1), TE0,1, HE2,1, and 

TM0,1 (corresponding to LP1,1) for several core radii, calculated by the full-vector 

FEM. The core-type mode field distributions are highlighted with red frames, 

while the remaining unhighlighted contour plots represent cladding-type modes. 

All the modes in an NCF (r1 = 0 µm) are core-type modes as shown in Figs. 

3.3(a1), 3.3(b1), 3.3(c1) and 3.3(d1), where the intensity is extended throughout 

the whole fiber cross section. As the value of r1 increases from 0 to 1 µm, the neff 

of mode HE1,1 increases while its central intensity area reduces as shown in Figs. 

3.3(a1) and 3.3(a2). The mode HE1,1 becomes a core-type mode beyond the value 

of r1 = 1.3 µm. As shown in Figs. 3.3(a3)-3.3(a6), the energy of the HE1,1 mode 

is concentrated mainly inside the fiber core. The intensity distributions of modes 

TE0,1, HE2,1, and TM0,1 change very little for r1 < 4 µm, corresponding to the 

almost horizontal dispersion line in Fig. 3.2(b). They become core modes as the 

core radius r1 increases up to 4.5 µm. Modes TE0,1, HE2,1 and TM0,1 have similar 

intensity distributions and neff, therefore, they can be grouped as an LP1,1 mode.  
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Figure 3.3  Modal intensities and electric field vector distributions of HE1,1, TE0,1, HE2,1 and 

TM0,1 modes, with several different r1 as indicated on the left. The modes in the no-core 

fibers (r1 = 0 µm), shown in a1, b1 c1 and d1, are core-type modes; the modes shown in a3-

a6, b6, c6 and d6 are also core-type modes for neff > 1.445; the remaining are cladding-type 

modes with neff < 1.445. (Core-type modes are indicated by the red frames). 
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3.4 Conclusion 

The effective refractive indices of both core and the cladding modes in three-

layer step-index optical fibers as a function of core radius were calculated 

independently by the analytical method and the full-vector FEM. Due to the 

fields being far from the cutoff approximation in the case of the no-core fiber and 

the small index difference between the core and cladding in the other cases, the 

vector modes (TE0,n, TM0,n, HEm,n and EHm,n) are perfect degeneracies and can 

be grouped into the corresponding LPm,n modes. The transition from a cladding-

type to a core-type mode has been studied. Compared to the unchanged 

distribution order of the core-type modes, the distribution order of cladding-type 

modes changes with the core radius r1.  

The cladding modes show mode reorganization characteristics, indicating a 

different dispersion behaviour compared to that of the core modes. To further 

investigate the difference between the core and the cladding modes in three-layer 

step-index optical fibers, a multimode self-imaging phenomenon will be 

investigated theoretically and experimentally in the next chapter. 
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Chapter 4 

Discrete Self-Imaging in Small-Core 

Optical Fiber Interferometers2 

As demonstrated by the calculations presented in Chapter 3, the cladding modes 

show a different dispersion behaviour to that of core modes in three-layer step-

index fibers. A small-core three-layer step-index fiber can support pure cladding-

type modes, providing an opportunity to study the properties of cladding modes. 

In this chapter, the difference between the core and the cladding modes is further 

investigated. 

In this chapter, a study of the self-imaging of the cladding modes in small-core 

optical fiber interferometers is presented. The results of the analytical and 

numerical simulations and experiments show that unlike the self-imaging of core 

modes, self-imaging of cladding modes only appears at a set of discrete positions 

along the interferometer axis with an equal spacing corresponding to some 

discrete values of the fiber core radius. This is the first observation of a discrete 

self-imaging effect in multimode waveguides. More strikingly, the self-imaging 

period of cladding modes grows exponentially with the fiber core radius, unlike 

the quadratic relationship in the case of core modes. The findings bring new 

insights into mode propagation in an optical fiber with a core at the 

micro/nanoscale, which may open new avenues for exploring MMF technologies 

in both linear and non-linear optics. 

 
2  Lian, Xiaokang, Qiang Wu, Gerald Farrell, Changyu Shen, Youqiao Ma, and Yuliya 

Semenova, “Discrete self-imaging in small-core optical fiber interferometers,” J. Lightw. 

Technol., vol. 37, no. 9, pp. 1873-1884, 2019. 
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4.1 Research background 

Multimode fibers (MMFs) have acquired significant popularity in 

telecommunications [1,2], microscopic imaging [3], optical manipulation [4,5], 

fiber lasers and amplifiers [6,7]. Moreover, MMFs provide new degrees of 

freedom and opportunities in linear and the non-linear optics, which are not 

possible with single-mode fibers (SMFs) [8-10]. Most of the research relating to 

single-core step-index MMFs [3,4], no-core fibers (NCFs) [5], graded-index 

fibers [2,10] and multicore fibers [1] has focused on studies of the core modes, 

which propagate mainly in the core region. In fact, the cladding region of an 

optical fiber can also act as a waveguide and can support multiple cladding 

modes, which can be excited in a standard SMF by a fiber Bragg grating (FBG) 

or a long-period grating [11]. Cladding modes are useful in many applications 

such as sensing and integrated optical devices [12,13]. For example, in sensing 

cladding modes can interact much more readily with the surrounding 

environment. Mathematically the core modes and the cladding modes are 

characterized by different functions arising from different solutions of the Bessel 

equations [11,14]: Jm and Km for the core modes and functions Jm, Ym and Km for 

the cladding modes. Therefore, the cladding modes may have some distinct 

characteristics compared to core modes. Unfortunately, cladding modes excited 

by FBGs usually coexist alongside with the core modes, making it impossible for 

the cladding modes to be studied independently from the core modes [11,15], 

[16]. It is a commonly held belief that there are no principal differences between 

the cladding modes and the core modes in optical fibers, except that they have 

different transverse intensity distributions [11].  
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The modal distribution in a step-index optical fiber depends on the value of the 

V-parameter, defined by Eq. (2.5) in Chapter 2. When V < 1, the core modes are 

cancelled out leaving only the cladding modes, and thus create a unique 

opportunity for the investigation of pure cladding modes [17-19]. To satisfy the 

condition V < 1, the core radius r1 should reach micro/nanoscale, which occurs in 

a small-core fiber (SCF). In an SCF, a very small core surrounded by a much 

larger silica cladding is analogous to optical microfibers and nanofibers which in 

effect possess an air cladding. Microfibers and nanofibers can offer numerous 

favorable properties such as strong evanescent fields, tight light confinement and 

large and manageable waveguide dispersion for manipulating light at 

micro/nanoscale, which has shown to be advantageous in a wide range of 

applications such as optical communications, sensors, lasers and non-linear 

optics [20-22]. An SCF with a core at micro/nanoscale may have different 

properties than those of the commonly used SMF and MMF. However it has not 

been sufficiently explored in literature to date [23,24]. 

The fundamental mode in both NCF and SMF is a core-type mode. However in 

an SCF the fundamental mode is a cladding-type mode because the core radius in 

the SCF is too small to support any core modes. Increasing the core radius of the 

SCF will lead to transfer of the fundamental mode from a cladding-type to a 

core-type as the cutoff condition is met. The mode transition phenomenon is 

usually relevant to many techniques such as single-mode operation, mode 

selective excitation and evanescent coupling, which are important to the design 

of fiber lasers, sensors and devices for optical networks [25-31].  
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Self-imaging is a property of multimode waveguides by which an input field 

profile is reproduced as single or multiple images at periodic lengths along the 

propagation direction of the waveguide [32]. The self-imaging effect is widely 

employed in design of multimode waveguide devices such as power 

splitters/combiners, Mach-Zehnder switches/modulators, high power laser diodes 

and semiconductor optical amplifiers [32-40]. Self-imaging is also important for 

studies of the exciting physical phenomena recently found in multimode 

nonlinear fiber optics such as the geometric parameter instability [41], spatial 

beam self-cleaning [10], multimode solitons and ultrabroadband dispersive 

radiation [42]. Self-imaging in multimode waveguides is closely related to the 

propagation constants of the guided modes. Based on the approximate expression 

for the propagation constants of the core modes, the self-imaging period (LZ) for 

an optical fiber interferometer (OFI) utilizing a fiber hetero-structure SMF-

MMF-SMF (SMS) is a quadratic function of the r1 of the MMF section, 

presented by W. S. Mohammed et al. in Ref. [33] as: 

𝐿Z =
8𝑛1𝑘0𝑟1

2

𝜋
                                                   (4.1)  

where k0 = 2π/λ is the wavenumber. This quadratic relationship is also suitable in 

the case of the OFI consisting of the fiber combination SMF-NCF-SMF (SNCS) 

[34-37]. Studies of self-imaging in a small-core optical fiber interferometer 

SMF-SCF-SMF (SSCS) may be an effective way to investigate the properties of 

cladding modes. 

In this chapter, a comparative study of the self-imaging of core modes and 

cladding modes in SSCS, SNCS and SMS structures is presented. The modal 

characteristics of core modes and cladding modes are analyzed. The discrete 
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nature and exponential growth behaviour of the self-imaging in the SSCS are 

predicted independently by both analytical and numerical simulations and 

verified by spectral measurements. The discrete nature is analyzed based on the 

constructive interference of adjacent radial modes. The implications of the results 

for linear and non-linear MMF optics are discussed. 

4.2 Methods 

Figure 4.1 shows three different types of OFIs: SNCS (a), SSCS (b) and SMS (c).  

 

Figure 4.1  (a), (b) and (c) are the SMF-NCF-SMF (SNCS), SMF-SCF-SMF (SSCS) and 

SMF-MMF-SMF (SMS), respectively; (d) transverse intensity profiles of fundamental 

modes in the input and output SMFs, and partial LP0,n modes in the middle fiber section; (e) 

experimental setup for characterization of the multimode interference spectra; (f) and (g) are 

respectively the refractive index profiles along the cross-section radius for an optical fiber 

placed in air without (NCF) and with a fiber core (SMF, SCF and MMF). 
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In an OFI, the fundamental mode of the input SMF is at first coupled into the 

guided modes in the middle fiber section and after propagating through the 

middle fiber section light is then re-coupled into the output SMF. The guided 

modes in the middle fiber section can be represented as radial LP0,n modes for 

the on-axis excitation, as shown in Fig. 4.1(d). Due to the difference in the 

propagation constants (phase) of LP0,n, constructive or destructive modal 

interferences occur along the middle fiber section. At the periodic self-imaging 

positions, the input field is replicated along the middle fiber section in both 

amplitude and phase. The structure and material features of the middle fiber 

section can be determined by measuring its transmission spectrum using an 

experimental setup shown in Fig. 4.1(e). 

The cross-sectional view of the NCF is shown in Fig. 4.1(f) while a general 

model for the SMF, SCF and MMF is shown in Fig. 4.1(g), where we have 

assumed that the fibers are placed in air. In the simulations, the r1 of the middle 

fiber section of the OFI is the only variable, covering the range of radii from 0 

µm to 62.5 µm. The other parameters for the middle section fiber are: r2 = 62.5 

µm, n1 = 1.451 and n2 = 1.445 (λ = 1550 nm). The parameters of the input/output 

SMFs are r1 = 4.15 µm, r2 = 62.5 µm, n1 = 1.4504 and n2 = 1.4447. The 

refractive index of the surrounding medium (air) is n3 = 1. It should be noted that 

both the fibers with r1 equal to 0 µm and 62.5 µm are NCFs (bare fibers, which 

in effect possess an air cladding). In this work, the refractive index of NCF with 

r1 = 0 µm is equal to n2 = 1.445 (same as the n2 of SCF) as shown in Fig. 4.1(f), 

while the one with r1 = 62.5 µm is equal to 1.451 (the n1 of SCF).  
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The simulations were carried out by both analytical and numerical methods, 

including the effective refractive index (neff), the transverse intensity profile 

(TIP), the longitudinal intensity distribution (LID), the on-axis intensity, and the 

transmission spectra. In the analytical method, a mode propagation analysis 

(MPA) was employed, with the field functions and the eigenvalue equations for 

three-layer step-index optical fibers (shown in Fig. 4.1(g)). In the numerical 

method, a 3-dimensional finite difference beam propagating method (FD-BPM) 

was used. All the simulations were performed in the scalar mode, under the 

assumption that the linear polarization (LP) approximation is valid for the fiber 

due to a relatively small difference between the core and cladding n1 (1.451) and 

n2 (1.445). The LP approximation is also suitable for the NCF (SNCS), due to 

the fields far from cutoff approximation [35], although the difference between n1 

and n3 is relatively large. In the BPM simulation of the neff, TIP, LID and on-axis 

intensity, the mesh size is 0.05 µm along the X and Y directions and 1 µm along 

the Z direction. In the BPM simulation of transmission spectra, the mesh size is 

0.2 µm along the X and Y direction and 4 µm along the Z direction. 

In the experiments, the broadband light source (Thorlabs S5FC1005s, 1030 nm-

1660 nm) and the optical spectrum analyser (OSA, Agilent 86142B) were used. 

The middle fiber section in the OFIs were cleaved and the length was measured 

manually. The error of the length between calculated and experimental value was 

controlled to within 0.5 mm. The OFIs were fabricated by automated fusion 

splicing. 

4.3 Scalar modes in optical fiber interferometers 

The first 10 LP0,n modes, calculated by solving the eigenvalue equations in 
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Appendix B, are shown as a functions of r1 in Fig. 4.2 (solid curves). The neff 

(LP0,n) (n = 1, 2, …, 8) calculated by BPM are also shown in Fig. 4.2 (scattered 

circles). Clearly, the results from the analytical method and the BPM are 

consistent with each other. The corresponding V-parameter values are shown as 

 

Figure 4.2  Effective refractive index of LP0,n modes as a function of fiber core radius. Solid 

curves calculated by the analytical method, while the scattered circles are results calculated 

by the BPM. Inset plot shows that the cutoff of the LP0,1 mode changing from cladding-type 

to core-type is r1 = 1.30 µm (analytical method) and r1 = 1.35 µm (BPM). 
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the top axis of the graph. 

Figure 4.2 is divided into two parts by the red horizontal dashed lines located at 

n1 and n2. The region with n2 < neff < n1 corresponds to the fiber core modes 

while the region with neff < n2 (r1 ≠ 0 µm) corresponds to the cladding modes. All 

the modes in no-core fibers (NCFs) with r1 = 0 µm or r1 = 62.5 µm are classified 

as core-type modes, since no guided mode can exist in an infinite air cladding 

region. The difference in their values of neff is due to the different refractive 

indices of the bare fiber, as mentioned in Section 4.2. When a micro/nano- core 

exists in the central region of the fiber, the fiber is SCF. The SCF studied in this 

work has a core radius smaller than the cutoff radius of LP0,1, where all the 

guided modes LP0,n are cladding-type modes due to neff < n2. As the r1 increases, 

the LP0,n modes change from cladding-type modes to core-type modes following 

the order from low to high. The behaviour of curves in the region neff < n2 shows 

a feature of mode reorganization (as one cladding mode becomes a core-type 

mode, the remaining cladding modes are reorganized), which is similar to the 

mode reorganization in overlay-coated long-period gratings and SMS [25,26].  

The cutoff of LP0,1 calculated by the BPM is found at about r1 = 1.35 µm as seen 

in the inset graph of Fig. 4.2. This is slightly larger than the value calculated by 

the analytical method (r1 = 1.30 µm). The difference between these two results 

may be attributed to the mesh size used in the former method. The mesh size in 

the numerical simulation may affect the accuracy. In this work, several different 

mesh sizes were tried but in the end the value that provided the best tradeoff 

between accuracy and computational time was selected. It should be noted that 

the mesh size in the simulation here is the same as that in the simulation of on-
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axis intensity, from which the self-imaging period is determined. The V-

parameter is smaller than 0.7214 for the optical fibers with r1 < 1.35 µm. 

Figure 4.3 shows the field distributions for the modes LP0,1, LP0,2, and LP0,3 for 

several core radii, calculated by the BPM. The core-type modes are indicated by 

red frames, while the remaining modes are cladding-type modes. The field 

profiles in Fig. 4.3 show that the energy of core modes is concentrated mainly 

inside the fiber core while the part distributed inside the cladding region 

decreases exponentially with increasing distance from the core as demonstrated 

in Ref. [27]. The field energy in the cladding modes can extend throughout the 

core and cladding regions. All the modes in the NCF indicated by r1 = 0 µm are 

core-type modes as shown in Figs. 4.3(a1), 4.3(b1) and 4.3(c1), where the field is 

extended throughout the whole fiber cross section. As the r1 increases from 0 to 

1.1 µm, the neff of modes LP0,1, LP0,2 and LP0,3 increase while their central 

intensity (bright circle) area reduces. The LP0,1 becomes a core-type mode 

beyond the value of r1 around 1.3 µm. As shown in Figs. 4.3(a4)-4.3(a7), the 

energy of LP0,1 is concentrated mainly inside the fiber core. The LP0,2 changes 

into a core-type mode as soon as the core radius becomes large enough. Fig. 

4.3(b7) shows the field distribution of the core-type LP0,2 mode with r1 = 13 µm, 

where the energy distribution area including both the central circle and the outer 

ring is concentrated mainly inside the fiber core. When r1 increases to 62.5 µm, 

the fiber becomes an NCF again, for which all the modes belong to core-type 

modes similar to NCF with r1 = 0 µm, shown in Figs. 4.3(a8), 4.3(b8) and 

4.3(c8).  
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Figure 4.3  Field distributions of the modes LP0,1 (a1-a8), LP0,2 (b1-b8), and LP0,3 (a1-c8) 

for several different r1 calculated by the BPM. The modes a1, b1 c1, a8, b8 and c8 in the no-

core fibers are core-type modes; a4-a7, b7 are also core-type modes for neff > 1.445; the 

remaining are cladding-type modes with neff < 1.445. (Core-type modes are indicated by red 

frames.) 
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4.4 The self-imaging periods 

The field of the fundamental mode of the input SMF is denoted by 𝐸s(𝑟). The 

excited optical field in the middle fiber section of OFIs can be represented by the 

superposition of 𝐸0,n(LP0,n) and shown as: 

𝐸s(𝑟, 0) = ∑ 𝑐n𝐸0,n(𝑟)
N
n=1                                            (4.2) 

where 𝐸0,n is expressed by Eqs. (B.1) and (B.2) in Appendix B, and 𝑐n is the 

excitation coefficient between the fundamental mode of SMF and the LP0,n in the 

middle fiber section, which is calculated as follows: 

𝑐n = √𝜂n                                                        (4.3) 

𝜂n =
|∫ 𝐸s(𝑟)𝐸0,n(𝑟)𝑟𝑑𝑟
∞
0 |

2

∫ |𝐸s(𝑟)|
2𝑟𝑑𝑟

∞
0 ∫ |𝐸0,n(𝑟)|

2
𝑟𝑑𝑟

∞
0

                                      (4.4)  

The field propagating along the middle fiber section can be written as follows: 

𝐸(𝑟,  ) = ∑ 𝑐n𝐸0,n(𝑟)
N
n=1 exp (𝑗𝛽0,nz)                               (4.5) 

where 𝛽0,n = 𝑘0𝑛eff(LP0,n) is the longitudinal propagation constant of LP0,n. The 

starting point along the Z-axis is at the splice between the input SMF and the 

middle fiber section. The on-axis intensity (normalized to the input power) along 

the propagation distance ‘Z’ inside the middle fiber section can be calculated as 

follows: 

𝐼( ) =
|∫ 𝐸s(𝑟,0)𝐸(𝑟,z)𝑟𝑑𝑟
∞
0 |

2

∫ |𝐸s(𝑟,0)|
2𝑟𝑑𝑟

∞
0 ∫ |𝐸(𝑟,z)|2𝑟𝑑𝑟

∞
0

.                                     (4.6) 

Figures 4.4(a), 4.4(b) and 4.4(e) show respectively the TIP of the optical field in 

X-Y plane, the LID in X-Z plane and the on-axis intensity along the propagation 
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distance in the middle fiber section (NCF) of the SNCS. The light field is 

focused at the center of the TIP at the position Z = 58.64 mm, coinciding with 

the profile of the input field (the fundamental mode of the input SMF) at the 

position Z = 0, as shown in Fig. 4.4(a). The on-axis intensity peak at the position 

Z = 58.64 mm (indicated by the black diamond symbol in Fig. 4.4(e)) is equal to 

0.98 of the input power, which is clearly larger than those of the neighboring 

maxima, corresponding to bright points at the same position in Figs. 4.4(a) and 

4.4(b). It should be noted that achieving 100% perfect self-imaging (the 

normalized power is equal to 1) is impossible due to phase mismatches [36]. 

These features are consistent with the results in Refs. [34,35], indicating that an 

explicit self-imaging of the input field is formed and the self-imaging period LZ 

for SNCS is equal to 58.64 mm. The result of LZ = 58.64 mm is in reasonable 

agreement with the result of LZ = 58.24 mm calculated by Eq. (4.1). 

One self-imaging period of the SNCS can be divided into four segments with 

equal lengths of LS (= LZ/4). Unlike the light field focused at the center of the 

TIP (point-like image) at the self-imaging position (Z = 4LZ) shown in Fig. 4.4(a), 

light fields at positions Z = 1LS, 2LS and 3LS are mainly focused within a ring 

area with a certain width (ring-like image), according to the results of lateral 

field profiles calculated analytically in Ref. [34].  

Similarly, it can be deduced from Figs. 4.4(c), 4.4(d) and 4.4(i) that the other 

explicit self-imaging point is formed at Z = 5LS (73.12 mm) in the case of SSCS  
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Figure 4.4  Analytical results: (a), (b) and (e) are respectively the transverse intensity profile 

(TIP), the longitudinal intensity distribution (LID) and the on-axis intensity along the 

propagation distance inside the NCF of SNCS (r1 =0 µm). (f), (g) and (h) are respectively 

the on-axis intensities inside the SCF of SSCS with the r1 equal to 0.35 µm, 0.45 µm and 

0.55 µm. (d), (c) and (i) are respectively the simulated TIPs, the LIDs and the on-axis 

intensities inside the SCF of SSCS with the r1 equal to 0.71 µm. 
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with r1 = 0.71 µm. For the intermediate transition state where 0 µm < r1 < 0.71 

µm as shown in Figs. 4.4(f)-4.4(h), no self-imaging point exists. The decision 

was based on the following considerations. As the r1 increases above 0 µm, the 

intensity of the peak at the position Z = 4LS (indicated by the black diamond 

symbols) decreases monotonically while the value of the peak at Z = 5LS 

(indicated by the black dot symbols) increases monotonically, as shown in Figs. 

4.4(e)-4.4(i). When the critical point (r1 = 0.71 µm) is reached, the intensity 

value at Z = 5LS achieves its maximum while the value at Z = 4LS decreases as 

shown in Fig. 4.4(i). 

For clarity, the intensities of the peaks around the positions Z = 4LS and Z = 5LS 

as shown in Figs. 4.4(e)-4.4(i) are respectively redrawn in Figs. 4.5(a) and 4.5(b) 

as a function of r1. The r1 of the peak point for the curve in Fig. 4.5(b) 

corresponds to the self-imaging radius (r1 = 0.71 µm). Based on the monotonic 

and deterministic evolution of the on-axis intensity, it can be deduced that the 

explicit self-imaging is only formed at a critical core radius such as r1 = 0.71 µm. 

In other words, the explicit self-imaging in the SSCS only occurs at certain 

discrete values of the core radius of the SCF. 

As the r1 increases, the LZ will also increase. Another set of values for r1 

allowing one to achieve explicit self-imaging are shown in Fig. 4.6, where the LZ 

grows up to 6LS, 7LS, 8LS, 9LS and 10LS for r1 equal to 0.91 µm (Fig. 4.6(a)), 

1.02 µm (Fig. 4.6(b)), 1.11 µm (Fig. 4.6(c)), 1.18 µm (Fig. 4.6(d)) and 1.23 µm 

(Fig. 4.6(e)). These self-imaging points respectively correspond to the peak 

points for the curves shown in Figs. 4.5(c), 4.5(d), 4.5(e), 4.5(f) and 4.5(g). 

Beyond the value of r1 = 1.23 µm, the intensity of the peak around Z = 10LS 
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decreases as the r1 increases, as shown in Fig. 4.5(g). The intensity of the peak 

around the position Z = 11LS shown in Fig. 4.5(h) is always smaller than the 

value at position Z = 10LS in Fig. 4.5(g). These features indicate that there is no 

explicit self-imaging at the position Z = 11LS.  

 

Figure 4.5  Analytical results: (a)-(h) show the intensity ‘I’ of peak around the positions Z = 

nLS, n = 4, 5, …,11 as a function of r1. The peak points in (a)-(g) respectively correspond to 

the self-imaging points as shown in Figs. 4.4(e), 4.4(i) and 4.6(a)-4.6(e). 
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Figure 4.6  Analytical results: the on-axis intensities inside the SCF of SSCS with the r1 

equal to (a) 0.91 µm, (b) 1.02 µm, (c) 1.11 µm, (d) 1.18 µm and (e) 1.23 µm. 

The discrete self-imaging phenomenon was also confirmed by the BPM. The 

results are shown in Fig. 4.7, where the LZ grows as 4LS, 5LS, 6LS, 7LS, 8LS, 9LS 

and up to 10LS for r1 equal to 0 µm (SNCS, Fig. 4.7(a)), 0.73 µm (Fig. 4.7(b)), 

0.92 µm (Fig. 4.7(c)), 1.04 µm (Fig. 4.7(d)), 1.12 µm (Fig. 4.7(e)), 1.20 µm (Fig. 

4.7(f)) and 1.27 µm (Fig. 4.7(g)). Both the analytical and the BPM results 

indicate that the self-imaging period of the SSCS is discrete and is closely related 

to that of the SNCS (r1 = 0 µm): LZ(SSCS) = (1+q/4)LZ(SNCS) = (4+q)LS, where 

“q” is a positive integer and 1 ≤ q ≤ 6. 
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Figure 4.7  BPM results: the on-axis intensities inside (a) the NCF of SNCS, the SCF of 

SSCS with the r1 equal to (b) 0.73 µm, (c) 0.92 µm, (d) 1.04 µm, (e) 1.12 µm, (f) 1.20 µm 

and (g) 1.27 µm. 

The values of the discrete self-imaging periods calculated both analytically and 

using BPM were extracted and fitted with an exponential function, as shown in 

Fig. 4.8. The fitting function can be written as:  
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𝐿Z = 𝐿Z0 + B1exp (
𝑟1

t1
)                                            (4.7) 

For the case of analytical method, the R-squared value is 0.99976; B1 = 1.53093 

± 0.10829; t1 = 0.30396 ± 0.00511; LZ0= 57.15441 ± 0.54124 mm. For the case 

of BPM, the R-squared value is 0.99804; B1 = 2.17781 ± 0.40074; t1 = 0.3404 ± 

0.01606; LZ0 = 55.92114 ± 1.62183 mm. In both cases, r1 is a set of discrete 

values. The LZ0 in both cases is close to the LZ of SNCS (r1 = 0 µm). The results 

calculated independently by two different methods are highly consistent, 

although there is a slight difference between the results at the relatively large r1. 

The difference may be due to the mesh size, which affects the accuracy of the 

numerical results. 

  

Figure 4.8  Discrete and exponential growth of the self-imaging period LZ for the SNCS (r1 

= 0 µm) and the SSCS versus r1, calculated both analytically and using BPM. 
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4.5 Physical interpretation of the discrete self-imaging  

The light field in the middle fiber section of the OFI is a superposition of all the 

guided modes LP0,n. At a self-imaging position, constructive interference occurs 

for all of the modes. The self-imaging period LZ in SMS is closely related to the 

constructive interference length Ln of two adjacent guided modes [33]. Ln is 

calculated for two adjacent modes (LP0,n-1 and LP0,n) when their phase difference 

equals 2π: 

𝐿n =
2𝜋

(𝛽n−1−𝛽n)
=

𝜆

[𝑛
eff
(LP0,n−1)−𝑛eff

(LP0,n)]
, n = 2, 3, . ..                   (4.8) 

These two adjacent guided modes will also experience constructive interference 

at the position qLn (q = 1, 2, … is an integer number). It is noted that the LZ is an 

integer multiple of Lp: LZ = (4p-3)Lp, where the mode number p is related to the 

mode LP0,p holding the highest coupling efficiency [33]. However, the LZ may be 

not restricted to the mode with the highest coupling efficiency. Using Ln of any 

two adjacent modes, the corresponding length LZn is calculated as:  

𝐿
Zn
= (4n − 3)𝐿n, n = 2, 3, . ..                                        (4.9) 

Applying the neff calculated by the analytical method, the results for LZn are 

shown in Fig. 4.9(a), with a comparison to LZ calculated by Eq. (4.1) (indicated 

by the diamonds). It is interesting that the part of the curves below the red dashed 

line overlaps with the LZ calculated by Eq. (4.1). The overlapped part as redrawn 

in Fig. 4.9(b) corresponds to the pure core modes (the range of n2 < neff < n1 in 

Fig. 4.2). The equation (4.1) is derived from the 2-layer fiber model, where only 

the core modes are considered. The results indicate that the superposition of the 

pure core modes obeys the quadratic relationship between LZ and r1 shown in Eq. 
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(4.1) and the rule of 𝐿Zn = (4n − 3)𝐿n. 

 

Figure 4.9  (a) LZn calculated by Eq. (4.9): LZn = (4n-3)Ln with the neff(LP0,n) determined 

from the analytical results in Fig. 4.2. The main graph of (b) shows the parts extracted from 

(a), related to the pure core modes. Inset of (b) shows the part extracted from (a), related to 

the cladding modes of SCF with 0 µm < r1 < 1.3 µm and the core modes of NCF with r1 = 0 

µm. 

On the other hand, those parts of the curves in Fig. 4.9(a) that deviate from the 

LZ represented by Eq. (4.1) correspond to the cladding modes. The curves above 
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the red dash line are separated from each other and these phenomena may be due 

to the mode transition and the mode reorganization shown in Fig. 4.2. The part of 

Fig. 4.9(a) for r1 < 1.3 µm is shown in the inset of Fig. 4.9(b), where the lines of 

LZn (n = 2, 3, …, 10) become closer as the r1 decreases. At the point (r1 = 0 µm), 

the lines converge to the value of 𝐿Z = (4n − 3)𝐿n, the self-imaging period of 

NCF. The results indicate that the cladding modes in SCF with the micro/nano- 

core (0 µm < r1 < 1.3 µm) do not obey the quadratic relationship between the 

self-imaging period of the core modes and the core radius. 

The derivation of Eqs. (4.1) and (4.9) is based on an approximate expression for 

the neff of the core modes related to the roots of equation 𝐽0 = 0 [33]. Although 

there are some improvements, the simulations of SMS and SNCS in most 

publications are still based on approximate expressions for the core modes [35], 

[37]. To the best of author’s knowledge, there has been no (approximate) 

analytical expression for the cladding modes in optical fibers to date. The reason 

may be due to the complexity of the field function and the eigenvalue equation 

for the cladding modes as discussed in Appendix B, which is closely related to 

the function Y0 in addition to J0 and K0.  

Although there has been no explicit analytical expression for neff of cladding 

modes until now, some indications can be obtained from the simulation results. 

The arguments Dn (LZ = DnLn), between the value of self-imaging period LZ from 

analytical results in Fig. 4.8 and the Ln calculated by Eq. (4.8), are shown in 

Table 4.1. Clearly, Dn is close to an integer ‘round (Dn)’ as shown in Table 4.2, 

where the degree of deviation: |Dn − 𝑟𝑜𝑢𝑛𝑑(Dn)| Dn⁄ < 1% . The degree of 

deviation (the difference between Dn and ‘round (Dn)’) may be attributed to two  
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Table 4.1  The arguments between the discrete self-imaging periods and the constructive interference lengths 

r1 (µm) LZ (mm) D2 = LZ / L2 D3 = LZ / L3 D4 = LZ / L4 D5 = LZ / L5 D6 = LZ / L6 D7 = LZ / L7 D8 = LZ / L8 D9 = LZ / L9 D10 = LZ / L10 

0  58.636 5.00941 8.97887 12.99934 16.98053 20.99547 25.00504 29.02002 33.04142 37.06998 

0.71  73.116 6.03221 10.99033 15.9949 20.99286 25.99331 31.00182 36.0065 41.03591 46.04113 

0.91 87.562 7.0293 12.98382 19.0031 24.99515 30.99758 36.99459 43.00676 49.0406 55.05314 

1.02 101.953 8.04557 14.97467 22.00988 29.00472 35.99829 42.99714 50.00864 57.03445 64.05008 

1.11 116.331 9.01812 16.97317 25.01795 32.99923 40.99165 48.99595 57.00807 65.01083 73.03617 

1.18 130.702 10.03411 18.95392 28.0204 37.01572 45.9954 54.98189 63.98647 73.01578 82.03356 

1.23 145.141 11.08954 20.92305 31.00198 41.01084 50.99464 61.00377 71.01788 81.03748 91.07236 

Table 4.2  The integer arguments between the discrete self-imaging periods and the constructive interference lengths 

r1 (µm) Round (D2) Round (D3) Round (D4) Round (D5) Round (D6) Round (D7) Round (D8) Round (D9) Round (D10) Round (Dn) 

0  5 9 13 17 21 25 29 33 37 (4n-3) 

0.71 6 11 16 21 26 31 36 41 46 (5n-4) 

0.91 7 13 19 25 31 37 43 49 55 (6n-5) 

1.02 8 15 22 29 36 43 50 57 64 (7n-6) 

1.11 9 17 25 33 41 49 57 65 73 (8n-7) 

1.18 10 19 28 37 46 55 64 73 82 (9n-8) 

1.23 11 21 31 41 51 61 71 81 91 (10n-9) 
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causes: one is the errors in the calculation of the effective refractive index; the 

other is the phase mismatches among the excited modes, which always exist 

although they are quite small [36]. The 100% perfect self-imaging is impossible 

due to phase mismatches [36], therefore 100% integer may be also impossible. 

From Table 4.2, it is easy to obtain the expressions similar to Eq. (4.9), as 

follows: 

𝐿Zn = (5n − 4)𝐿n, n = 2,3, . . . ,10, for 𝐿Z = 5𝐿S                           (4.10) 

𝐿Zn = (6n − 5)𝐿n, n = 2,3, . . . ,10, for 𝐿Z = 6𝐿S                           (4.11) 

𝐿Zn = (7n − 6)𝐿n, n = 2,3, . . . ,10, for 𝐿Z = 7𝐿S                           (4.12) 

𝐿Zn = (8n − 7)𝐿n, n = 2,3, . . . ,10, for 𝐿Z = 8𝐿S                           (4.13) 

𝐿Zn = (9n − 8)𝐿n, n = 2,3, . . . ,10, for 𝐿Z = 9𝐿S                           (4.14) 

𝐿Zn = (10n − 9)𝐿n, n = 2,3, . . . ,10, for 𝐿Z = 10𝐿S                      (4.15) 

The groups of lines calculated by Eqs. (4.9)-(4.15) are plotted together in Fig. 

4.10. As with the group of lines converged at the position (r1 = 0 µm, LZ = 58.64 

mm) characterized by (4n-3)Ln, each of other groups also has one intersect point 

indicated by a violet triangle symbol. The violet triangle symbols and the violet 

dashed line are respectively the calculated and the exponential fitting values of 

the self-imaging points (radius and period) shown in the Fig. 4.8.  

The difference between any two adjacent LZn among Eqs. (4.9)-(4.15) is equal to: 

∆𝐿Zn = (n − 1)𝐿n, n = 2,3, … ,10.                             (4.16) 

For n = 2, ∆𝐿Zn = 𝐿2, which is one constructive interference length of LP0,1 and 

LP0,2. L2 is longer than Ln (n > 2), deduced from Eq. (4.8). As shown in Eqs. 
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(4.10)-(4.16) and Table 4.2, the self- imaging period grows as 5L2, 6L2, ..., and 

up to11L2. Therefore, it can be deduced that L2 is the shortest distance change 

possible if self-imaging is to occur. Larger distance changes of the self-imaging 

period must be an integer multiple of L2. The results indicate that there is no 

other self-imaging position between any two adjacent periods indicated by Eqs. 

(4.9)-(4.15). For example, there is no self-imaging with a period between LZ = 

4LS = 5L2 and LZ = 5LS = 6L2, from Eqs. (4.9) and (4.10). Therefore, the self-

imaging of pure cladding modes in SSCS is discrete. 

 

Figure 4.10  LZn calculated by Eqs. (4.9)-(4.15). The violet triangle symbols and the violet 

dashed line are respectively calculated and exponential fitting values of self-imaging (radius 

and period) the same as in Fig. 4.8. The color of lines LZn with the same mode number ‘n’ is 

consistent with that in Fig. 4.9. 
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4.6 Experimental investigation 

To verify the above results, simulations and the experimental measurements of 

the transmission spectra were carried out for both the SSCS and the SNCS 

structures. The BPM were used in this part for its convenience and 

straightforward simulation of the spectrum. In the experiments, fiber type 

SMF28TM (from Corning) was used as the SMF, fiber type FG125LA (from 

Thorlabs) was used as the NCF (r1 = 0 µm) and fiber type SM450 (Thorlabs) was 

used as the SCF. The r1 of SM450 is about 1.1 µm, which is close to the discrete 

value of self-imaging radius r1 = 1.12 µm (in BPM results), of which the self-

imaging period is LZ = 8LS as shown in Fig. 4.7(e). The remaining fiber 

parameters for the SMF28TM, the FG125LA and the SM450 are same as those 

used in simulations, shown in Section 4.2. Figs. 4.11(a) and 4.11(b) are the on-

axis intensity along the propagation distance inside the middle fiber section of 

the SNCS (r1 = 0 µm) and SSCS (r1 = 1.1 µm), respectively. The LZ of the SSCS 

(r1 = 1.1 µm) is equal to 116.66 mm (8LS, LS = 14.58 mm), which is nearly 

double the LZ for the SNCS equal to 58.76 mm (4LS, LS = 14.69 mm). 16 

samples were studied in two groups for the SNCS/SSCS with the lengths of the 

middle fiber sections (NCF/SCF) equal to the integer multiples of LS: 1LS, 2LS, 

…, 8LS. The TIPs of the middle fiber section were also calculated for the 

SNCS/SSCS at the positions L = nLS (n = 1, 2, …, 8), where the light wavelength 

was set at 1550 nm, as shown in the Figs. 4.11(c0)-4.11(c8) and 4.11(d0)-

4.11(d8). The transmission spectra were simulated (red lines) and measured 

(black lines and circles) in the wavelength range from 1450 nm to 1650 nm, as 

shown in Figs. 4.11(e1)-4.11(e8) and 4.11(f1)-4.11(f8). 
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Figure 4.11  (a) and (b) are respectively the on-axis intensities inside the middle fiber 

section of SNCS (r1 = 0 µm) and SSCS (r1 = 1.1 µm). (c0)-(c8) and (d0)-(d8) show the TIPs 

in the middle fiber section of the SNCS and SSCS samples at the positions Z = nLS (n = 1, 

2, …, 8), where the light wavelength was set at 1550 nm. (e1)-(e8) and (f1)-(f8) show the 

simulated and measured transmission spectra of the samples, where the lengths of the middle 

fiber section are equal to the integer multiples of LS: 1LS, 2LS, …, 8LS. 

The presence of self-imaging means that the input field profile is reproduced at 

periodic lengths along the middle fiber section of an OFI. For the SNCS, the 

reproduced input profile (single point-like image) can be found in Figs. 4.11(c4) 

and 4.11(c8) for the lengths L = 4LS and L = 8LS, respectively, corresponding to 

the transmission peak appearing around the 1550 nm as shown in Figs. 4.11(e4) 

and 4.11(e8). At the other lengths L = LS, 2LS, 3LS, 5LS, 6LS and 7LS, a single 
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ring-like image is observed as shown in Figs. 4.11(c1)-4.11(c3) and 4.11(c5)-

4.11(c7), corresponding to the transmission notch appearing around the 1550 nm 

in Figs. 4.11(e1)-4.11(e3) and 4.11(e5)-4.11(e7). The transmission peak and the 

notch result from the constructive and destructive interference of the LP0,n 

modes. There are more dips and peaks in the transmission spectra along the 

second periodic interval in Figs. 4.11(e5)-4.11(e8) compared to the first periodic 

interval in Figs. 4.11(e1)-4.11(e4), due to more dense interference among the 

guided modes along the longer length of the NCF. Similarly, from the analysis of 

Figs. 4.11(b), 4.11(d0)-4.11(d8) and 4.11(f1)-4.11(f8), we can see that self-

imaging appears at about L = 8LS for the SSCS (r1 = 1.1 µm). The experimental 

results of the transmission spectra in Figs. 4.11(e1)-4.11(e8) and 4.11(f1)-

4.11(f8) match well with the simulation results. 

4.7 Discussion 

The results show two prime characteristics of self-imaging in a SSCS structure: 

one is its discrete nature, the other is the exponential growth of the self-imaging 

period with the fiber core radius. The explicit self-imaging occurs only at the 

distinct sites along the propagation direction, for only a specific set of r1 values, 

hence it is discrete. The LZ in an SSCS is an exponential function of the 

(discrete) values of r1, while in SMS and SNCS structures the LZ is a quadratic 

function of r1. Nevertheless, the self-imaging of the SSCS retains some features 

similar to those for the SNCS. Firstly, the LS is approximately the same in both 

the SNCS and SSCS structures. Secondly, the lengths for the generation of the 

single ring-like images or point-like images are still integer multiples of LS. 

Moreover, there exists a relationship: LZ(SSCS) = (1+q/4)LZ(SNCS). It can be 
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deduced that the approximately constant LS in both SNCS and SSCS is 

associated with the function J0 while the discrete growth behaviour of LZ solely 

in the SSCS is attributed to the additional function Y0. The neff of the core modes, 

obtained by solving equation J0 = 0, define the general characteristics of the self-

imaging in SMS and SNCS: the relationship between LZ and LS (LZ = 4LS) is 

satisfied for all the continuous core radii. The modulation between J0 and Y0 in 

the description of the cladding modes in a SSCS not only reflects the observed 

mode reorganization behaviour, but also results in a more complex mode 

superposition compared to that of core modes.  

The discrete self-imaging effect in an SSCS can be regarded as the first discrete 

self-imaging phenomenon found in multimode waveguides. As a counterpart in 

one-dimensional waveguide arrays, the discrete Talbot self-imaging effect was 

first found in 2005 by Robert Iwanow et al., who stated that the self-imaging of 

the input field pattern is only possible for a specific set of periodicities [44]. The 

waveguide arrays consisted of a large number (infinite in principle) of periodic 

evanescently coupled single-mode channel waveguides, which is a form of 

discrete system where the field evolution equation is effectively discretized 

(discrete diffraction) and is capable of nonlinear effects and even the discrete 

optical solitons [45,46]. Analogously, the discrete self-imaging effect in SSCS 

indicates that the SCF may be also a discrete multimode physical system. The 

SCF with pure cladding modes may be a valuable platform for studying 

multimode nonlinear fiber optics. It is also expected that the multimode solitons, 

which so far have been only experimentally observed in the graded-index 

multimode fiber [2], could be achieved in an SCF.  
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The unique light field of multiple cladding-type modes in the SCF, distinct from 

that of multiple core-type modes in the commonly used MMF and NCF, can be 

further explored in many applications. For example, compared to the Bessel 

beams generated by NCF or MMF and characterized by the function J0 [4,5], the 

pure cladding modes in a SCF can be used to generate a new kind of Bessel 

beams characterized by the combinations of J0 and Y0. Bessel beams based on a 

truncation of Y0 having higher energy over a longer range than that of J0 Bessel 

beams were theoretically predicted in Ref. [47]. Indeed, the micro/nano- core in 

SCFs can strongly modify the on-axis intensity, which is critically important to 

the performance of Bessel beams in the optical manipulation [48,49]. Therefore 

the Y0 modulated J0 Bessel beams generated with SCFs may offer a better 

performance in optical manipulation applications. 

4.8 Conclusion 

In this chapter the effective refractive index of both the core-type and cladding-

type modes LP0,n in three-layer step-index optical fibers as a function of core 

radius, was calculated independently by the analytical method and the BPM. The 

cladding modes show mode reorganization characteristics, indicating a behaviour 

different from that of core modes. The self-imaging of cladding modes in an 

SSCS was analytically and numerically calculated and confirmed by experiments 

for the first time. The self-imaging in the SSCS shows the discrete nature and the 

behaviour of exponential growth with the core radius of the middle fiber section. 

An analysis of the constructive interference of adjacent guided modes shows that 

the self-imaging must be discrete since the change in distance of the self-imaging 

period must be an integer multiple of L2 (constructive interference length of LP0,1 
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and LP0,2). The discrete nature and exponential growth behaviour found in this 

work indicate that the propagation properties of cladding modes in an SCF are 

distinct from those of the core modes in the commonly used NCF and MMF. The 

SCF may be a discrete multimode physical system, which deserves further study 

in the context of nonlinear multimode fiber optics. The distinctive physical 

characteristics of the self-imaging in the SSCS may provide new insights and 

rules in the design of the multimode interference devices such as optical couplers, 

optical modulators, multimode fiber lasers and space-division multiplexing 

systems. 
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Chapter 5 

Anti-Resonance, Inhibited Coupling and 

Mode Transition in Depressed-Core 

Optical Fibers3 

Compared to the three-layer step-index fiber studied in the last two chapters, a 

three-layer depressed-core fiber (DCF) has an inverted refractive index profile, 

where the refractive index of the core is smaller than that of the first cladding but 

still larger than the second cladding as discussed in Section 1.2. The three-layer 

DCF is in effect a bridge between the three-layer step-index fiber and the tube-

type hollow-core fiber (HCF) from the point of view of the index profile. 

In this chapter the dispersion diagram of a DCF is obtained by solving the full-

vector eigenvalue equations and analyzed using the theory of anti-resonant and 

the inhibited coupling mechanisms. While light propagation in tube-type HCFs is 

commonly described by the symmetric planar waveguide model, here it is 

proposed that an asymmetric planar waveguide for the DCFs in an anti-resonant 

reflecting optical waveguide (ARROW) model. It is found that the anti-resonant 

core modes in the DCFs have real effective indices, compared to that with 

complex effective indices in the tube-type HCFs. The anti-resonant core modes 

in the DCFs exhibit similar qualitative and quantitative behaviour as that in the 

conventional step-index fibers. The full-vector analytical results for the simple-

 
3Lian, Xiaokang, Gerald Farrell, Qiang Wu, Wei Han, Changyu Shen, Youqiao Ma, and 

Yuliya Semenova, “Anti-resonance, inhibited coupling and mode transition in depressed-

core fibers,” Opt. Express, vol. 28, no. 11, pp. 16526-16541, 2020. 
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structure DCFs can contribute to a better understanding of the anti-resonant and 

inhibited coupling guidance mechanisms in other complex inversed-index fibers. 

5.1 Research background 

Inversed-index fibers with a low-index core and a high-index cladding such as 

the tube-type hollow-core fibers and hollow-core photonic crystal fibers have 

attracted a lot of interest in the fields of high-capacity telecommunication 

networks [1-5], high-power/supercontinuum/ultrafast lasers [6-11], terahertz 

waveguiding [12,13] and high sensitivity optical sensing [14,15]. In contrast to 

conventional step-index fibers where the light is guided in the high-index core 

region by total internal reflections, light guidance in the low-index core region of 

the inversed-index fibers can be explained by other mechanisms such as the 

photonic bandgap effect, inhibited coupling effect and the anti-resonant effect. 

Generally, all optical fibers can be grouped into two types based on the effective 

refractive index (neff) -wavelength (λ) dispersion diagram [2]. For the first type, 

the neff - λ of the core modes lies outside any cladding mode continuum. The 

photonic bandgap fibers belong to this type, as their photonic bandgaps are 

formed in the periodic dielectric cladding region, the coupling between the core 

modes, which have neff within the bandgaps, and cladding modes are forbidden 

due to their separation in the neff - λ space [3]. The second type is inhibited 

coupling fibers, for which the neff - λ of the core modes lies inside the cladding 

mode continuum, but the coupling between them is minimized due to the high 

degree of transverse-field mismatch [6]. Both the photonic bandgap fibers and 

the inhibited-coupling fibers have the same anti-resonant nature, which can be 

described by an anti-resonant reflecting optical waveguide (ARROW) model 



106 
  

[2,3,6]. In this model, the planar waveguide acts as a Fabry-Perot resonator, 

which allows the anti-resonant light to be reflected back while allowing forward 

transmission of the resonant light [16-19]. 

In a manner similar to photonic bandgap fibers, conventional step-index fibers 

belong to the first type since the neff of the core modes are higher than that of the 

cladding modes, in other words, their modal dispersion space is separated [2]. 

Compared to conventional step-index fibers, inversed-index fibers have generally 

a more complex structure and modal characteristics. However, there exists a 

close relationship between them. It has been stated that the photonic bandgap 

fibers exhibit strikingly similar modal behaviour with that of the conventional 

fibers, including dispersion curves and field profiles [20,21]. The analogy to 

conventional fibers provides a convenient tool to model the modes of photonic 

bandgap fibers. The question is whether there is a connection between the 

inhibited-coupling fibers and the conventional fibers in addition to the photonic 

bandgap fibers. 

A recent publication Ref. [22] shows that the mode density of anti-resonant 

elements in an inhibited-coupling guiding single-ring hollow-core photonic 

crystal fiber is similar to the behaviour of conventional multimode fibers. The 

single-ring hollow-core photonic crystal fiber studied in Ref. [22] has a ring of 6-

8 detached thin tube-type hollow-core waveguides/fibers surrounding the hollow 

core. However, the results of the work were obtained using a scalar semi-

analytical model, which does not give sufficiently rigorous vector modal 

analysis. The tube-type hollow-core fiber has a simple structure, where the leaky 

core-type modes are supported by the anti-resonant effect [17-19]. In most of the 
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previous works, only the fundamental mode or few low-order modes of the tube-

type hollow-core fibers were obtained with different approximation methods 

[17,23-25]. 

A depressed-core fiber (DCF) is a type of inversed-index fibers, described by a 

three-layer fiber model with a low-index solid core, a finite high-index cladding, 

and surrounding air. This fiber structure is different from the M-type fiber [26], 

although in some papers it has been referred to as M-type fiber [27]. The 

refractive index of the central region of the M-type fiber has a minimum value 

set by the need for the core to have a refractive index equal to or lower than that 

of the surrounding medium, which if the surrounding region is air means that the 

core must also be air. For a DCF the core refractive index is lower than the next 

outermost region but does not need to take on the lowest or minimum value in a 

three-layer fiber model. The M-type fiber can be considered as a leaky 

waveguide with the anti-resonant structure, in which the core mode is leaky with 

a complex effective refractive index, similar to the case of the hollow-core fiber 

[17,28]. Compared to the M-type fiber, the core mode of the DCF is guided by 

both total internal reflection and anti-resonance guidance, and its core mode has 

a real effective refractive index [27,29-32]. The DCFs have been studied for 

various applications including pulse compression in fiber lasers [29-31], 

generation of supercontinuum [27] and top-hat beams [32], due to their 

manageable waveguide dispersion and exceptional modal field changes. 

However, these studies in regard to DCFs [27,29-32] were limited to the analysis 

of a few modes in the strong dispersion region. 
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In this chapter, the modal dispersion and field distributions of a DCF are 

calculated and analyzed with the vector field functions and eigenvalue equations 

for the three-layer fiber as given in Refs. [33-35]. To the best of the author’s 

knowledge, this is the first report providing a complete full-vector modal 

dispersion diagram for the DCFs. In Section 5.2, the ray method is used to 

analyze the mode characteristics in the DCFs, in comparison to asymmetric 

planar waveguides. The possibility of anti-resonant core modes and the positions 

of the mode coupling (resonances) is analyzed using the ARROW model. In 

Section 5.3, the dispersion curves and mode field distributions of the vector 

modes TE, TM, HE and EH are analyzed, along with their comparison for the 

case of conventional step-index fibers. It is found that the waveguiding 

mechanism of core-type modes in DCFs with a simple structure can be explained 

by the anti-resonant and inhibited coupling effects, similarly to the complex 

single-ring hollow-core photonic crystal fibers discussed in Ref. [22]. In Section 

5.4, the implications of the analytical results for the tube-type hollow-core fibers 

and single-ring hollow-core fibers are discussed.  

5.2 Guiding mechanism of the DCFs 

5.2.1 Anti-resonant core mode and asymmetric planar ARROW 

model 

Figure 5.1 shows a DCF and its cross section and refractive index profile. The 

radii of the rod core and the tube cladding are r1 and r2 while the surrounding 

medium (air) is unlimited. The refractive index of the rod core region n1 is 

smaller than the refractive index of the tube cladding region n2 but greater than 

that of the surrounding air n3, as n3 < n1 < n2. 
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Figure 5.1  A depressed-core optical fiber and its cross section and refractive index profile. 

The high-index tube cladding region of the DCF can be considered as an 

asymmetric planar waveguide, where a high-index core region with the same 

thickness (d = r2 - r1) as the cladding of the DCF is sandwiched between two 

different low-index regions, as shown in Fig. 5.2. It is useful to analyze the DCFs 

using a ray optics approach, which help to analyse the field distributions of the 

core and the cladding modes as discussed in Section 2.2.1. Since the asymmetric 

planar waveguide supports core modes with n1 < neff = n2*sinθ1 < n2 [36] shown 

in Fig. 5.2(b), it can be deduced that a DCF can support the annular-like 

(transverse field profile) cladding modes with n1 < neff = n2*sinθ1 < n2 guided by 

the total internal reflections at the inner and outer boundaries of the cladding 

region as shown in Fig. 5.2(a). The modes with n3 < neff = n1*sinθ1 < n1 in the 

asymmetric planar waveguide are radiation modes with power escaping into the 

higher-index (upper) region (where will form a standing wave field) [36], as 

shown in Fig. 5.2(d). In the DCF an incident ray representing a mode with n3 < 

neff = n1*sinθ1 < n1, partially reflected at the inner boundary of the cladding 

region and totally reflected at the outer boundary of the cladding region, excites 

multiple-path rays reflecting into the core region. The light field of these modes 

with n3 < neff < n1 is distributed in across the entire cross section of the DCF, 

n1

n3

r1n
o

r2n2

r

cladding

core



110 
  

which is similar to the cladding modes in conventional three-layer step-index 

fibers [37,38].  

 
Figure 5.2  (a) and (b) show the ray trajectory of a mode with n1 < neff = n2sinθ1 < n2 in a 

DCF and an equivalent asymmetric planar waveguide, respectively. (c) and (d) show the ray 

trajectory of a mode with n3 < neff = n1sinθ1 < n1 in the DCF and the equivalent asymmetric 

planar waveguide, respectively. 

Due to the inversed-index distribution in the DCF, the total internal reflection 

effect does not work at the inner boundary of the cladding region. Therefore, 

there is no core modes guided by the total internal reflections like those in 

conventional step-index fibers.  
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The high-index layers can be considered as Fabry-Perot resonators in the 

ARROW model [16]. Analogous to a symmetric planar waveguide in the 

ARROW model for the tube-type hollow-core fibers [18,19], an asymmetric 

planar waveguide is proposed for the DCFs. Indeed, the characteristics of multi-

path reflections formed in the DCF shown in Fig. 5.2(c) indicate that the 

cladding region of the DCF acts as a Fabry-Perot resonator, corresponding to an 

asymmetric planar waveguide shown in Fig. 5.2(d). In a Fabry-Perot resonator 

the resonances usually occur over a narrow band of wavelengths while the 

antiresonances are spectrally broad [16,39]. The energy of the incident ray can be 

strongly reflected back to the core region at the anti-resonant wavelengths, 

forming anti-resonant core modes in the anti-resonant reflecting optical 

waveguides [16] and the tube-type hollow-core fibers [18]. Similarly, it can be 

concluded that DCFs have anti-resonant core modes with the light field mainly 

confined in the core region, with disc-like transverse field profiles. 

The resonant wavelengths of an asymmetric planar waveguide-like Fabry-Perot 

resonator shown in Fig. 5.2(d), corresponding to the minimal total energy of all 

the reflected rays, are equal to the cutoff wavelengths of the guided core modes. 

The cutoff wavelengths for the guided core modes TEN and TMN in the 

asymmetric waveguide can be written as [36]:  

𝜆N,c =
2𝑑√𝑛2

2−𝑛1
2

[N−1+
1

𝜋
tan−1(𝜅

√𝑛1
2−𝑛3

2

√𝑛2
2−𝑛1

2
)]

, 𝜅 = {
1, TEN  
𝑛2
2

𝑛3
2 , TMN 

                       (5.1) 

where N is the mode number. The second term in the denominator of Eq. (5.1) 

arises from the asymmetry of the waveguide and vanishes for the symmetric case 

as shown in Ref. [19]. 
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5.3 Modes in DCFs 

Similar to the conventional step-index fibers, the modes in a DCF are denoted as 

TE0,N, TM0,N, HEm,N and EHm,N, where the numbers ‘0’ and ‘m’ on the left side 

of the comma in the subscript positions are the azimuthal mode number while the 

number symbols ‘N’ on the right side are the radial mode number. The 

eigenvalue equations for the vector modes in the DCFs are shown in Appendix 

A, which were solved by a graphical method. In the calculations, the fiber 

parameters of the studied DCF are assumed to be n1 = 1.445, n2 = 1.51, n3 = 1, r1 

= 62.5 µm and r2 = 125 µm. 

5.3.1 TE/TM modes in DCFs 

Figure 5.3(a) shows the dispersion diagram (neff vs. ) for the modes TE0,N with 

n1 < neff < n2. There are 38 TE0,N modes, from upper to lower as the radial mode 

number N increases, as indicated by a black arrow. All the dispersion curves of 

the TE0,N modes with the purple dashed line at n1, but only the modes HE0,N, N = 

34, 35, 36, 37 and 38 have their cutoffs in the investigated spectral range. The 

wavelengths of the intersect points are approximated as the cutoff wavelengths of 

the TEN modes in the asymmetric planar waveguide calculated by Eq. (5.1), 

indicated by the red vertical dashed lines. The difference between the wavelength 

of the intersect point for the TE0,N mode and the cutoff wavelength of the TEN 

mode is less than 1 nm. Compared to the curves above the horizontal line at n1, 

the curves bellow n1 show a step-like decrease as the  increases, showing 

periodic strong and moderate index dispersion bands. The slopes of the 

dispersion curves with a strong index dispersion are similar to those of the curves 

above the horizontal line at n1 and that in the equivalent asymmetric waveguide 
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(not shown). The slopes of the dispersion curves with a moderate index 

dispersion in DCFs are similar to those of the dispersion curves of the core 

modes in the conventional step-index fiber, as shown in Fig. 2.3(b). 

 
Figure 5.3  Dispersion curves (neff vs. ) of TE modes with neff corresponding to (a) n1 < neff 

< n2, (b) n1-0.001 < neff < n1+0.001, n1 = 1.445, n2 = 1.51. (c) shows the modal intensity and 

electric field vector distributions of TE modes whose positions (neff, 𝜆) are indicated by the 

black circle dots in (a) and (b). The red vertical dashed lines in (a) and (b) indicate the 

resonant bands. 

Figure 5.3(c) shows the modal intensities and electric field vector distributions at 

seven different points marked A-G (black circle dots) in Figs. 5.3(a) and 5.3(b). 

The electric field vector helps to distinguish between different kinds of vector 

modes and helps to compare the modes in the DCF and the conventional step-
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equal to the radial mode number N. In Fig. 5.3(c) the modal field profile of the 

mode TE0,1 at point A shows one radial maxima in the fiber cladding region r1 < 

r < r2. The TE0,2 at point B shows two radial maxima in the fiber cladding region. 

In order to count the number of radial maxima in the distributions corresponding 

to points C-G in Fig. 5.3(c), the normalized intensity distribution along the r-

coordinate is drawn, as seen in Fig. 5.4. One oscillation peak on a curve in Fig. 

5.4 corresponds to one radial maxima in a modal field profile. Similar to the 

modal field profiles at points A and B, all 37 radial maxima are distributed 

within the fiber cladding region for the mode at point C. The oscillation peaks 

shift from the cladding region to the core region one by one along the points C-

G. The modes at points D, F and G exhibit 1, 2 and 3 maxima in the core and 36, 

35 and 34 maxima in the cladding, respectively. The energy is mainly confined 

in the core region of the modes at points D, F and G, as seen in Figs. 5.4(b), 

5.4(d) and 5.4(e), where the field intensity in the cladding region is almost 

negligible compared to that in the core region. The mode at point E with a very 

strong index dispersion represents a mode in a transition state from the mode at 

point D to the mode at point F, where the energy is more evenly distributed 

between the core and the cladding regions as seen in Fig. 5.4(c). There are two 

peaks in the core region and 35 peaks in the cladding region for the mode at 

point E. 
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Figure 5.4  The left panel (a)-(e) shows the normalized intensity distributions along the r-

coordinate for the modes shown at points C-G in Fig. 5.3. The right panel (á')-(é') shows the 

zoomed-in part of (a)-(e), delineated by the vertical dashed lines. 

The following nomenclature for the modes with neff < n1, identified as TE0, n+(N-n) 

has been proposed here as follows. The subscript ‘n’ denotes the radial number 

in the core region, while the number ‘N-n’ denotes the radial number in the 

cladding region. Therefore, the modes at points D, F and G in Fig. 5.3(b) with 

moderate index dispersion can be named as TE0,1+(36), TE0,2+(35) and TE0,3+(34). 

The mode at point E in Fig. 5.3(b) can be named as [TE0,2+(35)], where the 

brackets indicate that the mode is with a strong effective index dispersion and is 

in a transition state. It is clear that the field profiles of the modes TE0,1+(36), 
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TE0,2+(35) and TE0,3+(34) are similar to that of the modes TE0,1, TE0,2 and TE0,3 in 

conventional step-index fibers, respectively. As discussed, the TE0,1+(36), 

TE0,2+(35) and TE0,3+(34) in the DCF are formed by the anti-resonant effect of the 

high-index cladding region, therefore, they represent anti-resonant core modes.  

According the above nomenclature, the modes at points I and J on the dispersion 

curve of TE36 indicated by the black triangle dots in Fig. 5.3(b) are both anti-

resonant core modes and named as TE0,1+(35) and TE0,2+(34), respectively. The 

mode transition from the core mode TE0,1+(35) at point I to the cladding mode 

TE0,36 at point H and the mode transition from the higher-order core mode 

TE0,2+(35) at point F to the lower-order core mode TE0,1+(36) at point D leads to an 

anti-crossing phenomenon near the mode [TE0,2+(35)] at point E around the 

resonant bands indicated by the red vertical dashed line. Due to mode 

reorganization [38,40-42], the anti-crossing phenomenon also takes place for the 

higher order modes. A similar phenomenon is also observed for the TM, HE and 

EH modes. The anti-crossing phenomenon originates from the resonant coupling 

between the core and the cladding modes, leading to the exceptional waveguide 

dispersion and modal field changes compared to that in the anti-resonant bands 

(similar to the conventional step-index fiber). As shown in Figs. 5.3 and 5.4 the 

modal field distribution and effective refractive index dispersion change 

drastically from the points D or F to the point E. The mode [TE0,2+(35)] at point E 

shows similar strong dispersion with the cladding modes in the DCF and the 

modes in the equivalent asymmetric waveguide. Therefore, the wavelength 

position and the dispersion shape of the anti-crossing are related to the thickness 

and the refractive index of the high-index cladding, in accordance with the 

ARROW model and Eq. (5.1) as discussed in the theory section. Due to the 
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manageable waveguide dispersion and modal field changes in a DCF, the 

generation of supercontinuum [27] and top-hat beams [32] can be achieved.  

The dispersion diagram of TM0,N modes is similar to that of TE0,N modes, as seen 

in Fig. 5.5. The positions of the intersect points between the dispersion curves of 

the TM0,N and the horizontal line at n1 can be approximated as the cutoff 

wavelengths of the TMN modes in the asymmetric planar waveguide calculated 

by Eq. (5.1), indicated by the black vertical dashed lines in Figs. 5.5(a) and 

5.5(b). Fig. 5.5(c) shows the modal intensity and electric field vector 

distributions of TM modes at points A'-G' indicated by the black squares in Figs.  

 
Figure 5.5  Dispersion curves (neff vs. ) of TM modes with neff corresponding to (a) n1 < neff 

< n2, (b) n1-0.001 < neff < n1+0.001, n1 = 1.445, n2 = 1.51. (c) shows the modal intensity and 

electric field vector distributions of TM modes whose positions (neff, 𝜆) are indicated by the 

black squares in (a) and (b). The black vertical dashed lines in (a) and (b) indicate the 

resonant bands. 
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5.5(a) and 5.5(b). 

The modes at points A' and B' are TM0,1 and TM0,2, respectively. The points C'-

G' are on the dispersion curve of TM0,37. The field intensity distributions of TM 

modes in Fig. 5.5(c) are similar with those of TE modes shown in Fig. 5.3(c). 

However, the directions of the electric field vector of TM and TE modes are 

different: the former is parallel to the radial direction while the latter is normal in 

the radial direction. 

Similarly to the nomenclature of the TE modes, the TM modes with neff < n1 can 

be named as TM0,n+(N-n). Therefore, the anti-resonant core modes at points D', F' 

and G' in Fig. 5.5(b) with a moderate effective index dispersion can be named as 

TM0,1+(36), TM0,2+(35) and TM0,3+(34), respectively. The mode at point E' in Fig. 

5.5(b) can be named as [TM0,2+(35)]. From the modal field distributions, it is clear 

that the anti-resonant core modes TM0,1+(36), TM0,2+(35) and TM0,3+(34) are similar 

to the core modes TM0,1, TM0,2 and TM0,3 in the conventional step-index fibers, 

respectively. 

5.3.2 HE/EH modes in DCFs 

The HE or EH are two-fold degenerate modes with the same effective refractive 

index but different field vector directions, similar to the HE/EH modes in 

conventional step-index fibers. Here the modal intensity and electric field vector 

distributions for one of these two-fold degenerate modes are shown. 

Figure 5.6 illustrates the dispersion curves of the modes HE1,N and EH1,N (N = 

34, 35,…, 38). Similar with the TE and TM modes in Figs. 5.3(b) and 5.5(b), the 

neff of HE1,N and EH1,N decrease linearly with the increase of  when neff > n1 



119 
  

while bellow n1 the neff decrease in a step-like fashion as  increases. The curves 

show periodic strong and moderate index dispersion bands. The positions of the 

intersect points between the dispersion curves of modes HE1,N (EH1,N) and the 

horizontal line at n1 can be approximated as the cutoff wavelengths of the TEN 

(TMN) modes in the asymmetric planar waveguide calculated by Eq. (5.1), 

indicated by the red (black) vertical dashed lines in Fig. 5.6. 

 
Figure 5.6  Dispersion curves (neff vs. ) of HE1,N (red) and EH1,N (black) modes with neff 

corresponding to (n1-0.001 < neff < n1+0.001, n1 = 1.445. The black and red vertical dashed 

lines indicate the resonant bands. 

For HEm,N or EHm,N modes, each radial mode order ‘N’ supports a larger number 

of azimuthal mode orders ‘m’. Fig. 5.7(a) as an example shows a dispersion 

diagram of the HEm,N modes with m = 1, 2, … and N = 34, 35, …, 38. The curves 

with the same radial mode order ‘N’ are shown in the same color. For the sake of 

clarity, the transparency of the curves has been increased toward higher 

azimuthal mode orders in each group. All these curves form a very dense 

dispersion diagram, where the curves with moderate slopes intersect with those 

having steeper slopes.  
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Figure 5.7  (a) Dispersion curves (neff vs. ) of HE modes with neff corresponding to (a) n1-

0.001 < neff < n1+0.001, n1 = 1.445. (b) partially enlarged image of (a), indicated by a red 

frame. (c) shows the modal intensity and electric field vector distributions of HE modes 

whose positions (neff, 𝜆) are indicated by the circles in (b). The black and red vertical dashed 

lines in (a) and (b) indicate the resonant bands. 

Figure 5.7(b) shows the zoomed view of the part indicated by a red rectangle in 

Fig. 5.7(a), showing the transition of modes HEm,37, m = 1, 2, …. The dispersion 

curve of the mode HEm,37 changing from a steep slope to a moderate slope 

indicates the formation of an anti-resonant core-type mode HEm,1+(36) (the 

nomenclature similar to TE/TM modes). For example, the modes HE1,37 at point 

H1 and HE3,37 at point H3 are transferred into the modes HE1,1+(36) at point H2 

and HE3,1+(36) at point H4, respectively. Their modal field intensity and electric 

vector distributions are shown in Fig. 5.7(c). As the azimuthal mode order ‘m’ 

increases, the transition of the cladding-type HEm,37 to anti-resonant core-type 
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HEm,1+(36) will occur at a longer wavelength and a smaller effective index at the 

point where the slope of the dispersion curve changes. Therefore, the transition 

process for the modes with large azimuthal mode orders ‘m’ may not be visible 

in the given range of the dispersion diagram. As an example, although the 

dispersion curve of the mode HE15,37 in Fig. 5.7(b) intersects the horizontal line 

corresponding to the value n1, it does not change direction abruptly, indicating no 

mode transition in the given range. Two modes at points H5 and H6 on this 

dispersion curve of the mode HE15,37 show similar modal field intensity and 

electric vector distributions as seen in Fig. 5.7(c). These two modes are both 

cladding-type modes with energy confined in the cladding region, however, their 

formation mechanisms are likely different. Compared to the cladding mode at 

point H5 with neff > n1 guided by the total internal reflections at both the inner 

and outer boundaries of the cladding region, the cladding mode at point H6 with 

neff < n1 cannot be guided by the total internal reflections at the inner boundary of 

the cladding region. The existence of the cladding modes in the dispersion space 

below the horizontal line at n1 in Figs. 5.7(a) and 5.7(b) is likely attributed to the 

inhibited coupling effects as per following discussion.  

The modal field intensity and electric vector distributions of two anti-resonant 

core modes HE1,1+(37) at points H7 and H8 are presented in Fig. 5.7(c), showing 

that for both of the modes the field energy is confined in the fiber core region. 

The intersection of the dispersion curve of HE1,1+(37) with that of HE15,37 indicates 

that the disc-like core modes and the annular-like cladding modes can exist in the 

same dispersion space (neff vs. ). The same neff indicates that the modes have the 

same longitudinal components of the light field. However, they cannot couple 
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with each other since their transverse components of the light field are different, 

corresponding to the inhibited coupling effect [6]. 

5.3.3 Mode degeneracy in DCFs 

The dispersion curves of several lower order TE, TM, HE and EH modes in the 

DCF are drawn together in the same dispersion diagram, shown in Fig. 5.8(a). 

Other higher order modes in the DCF are not shown in order to preserve clarity 

of the diagram. The dispersion diagram shows periodic resonant and anti-

resonant bands corresponding to the strong and moderate index dispersion, and 

the resonant bands are indicated by the black and red vertical dashed lines. Fig. 

5.8(b) displays one of such periodic bands, indicated by a black dashed rectangle. 

The dispersion curves of the anti-resonant core modes in the DCF such as 

{HE1,1+(36)}, {TE0,1+(36), HE2,1+(36) and TM0,1+(36)} and {EH1,1+(36) and HE3,1+(36)} 

can be respectively grouped together. In the calculation, the longitudinal 

components of the light field are very small compared to the transverse 

components of the light field for the anti-resonant core modes. Therefore, the 

modes in each group can be grouped into a single degenerate scalar mode or a 

linear polarized mode, similar to that in the conventional step-index fibers. These 

degeneracies are broken in the resonant bands, where dispersion curves of TE, 

TM, HE and EH modes are separated. 



123 
  

 
Figure 5.8  (a) Dispersion curves (neff vs. ) of a depressed-core fiber. (b) partially enlarged 

image of (a), indicated by the black dashed frame. The text labels and the corresponding 

dispersion curves are of the same color. The orange solid lines in (a) and (b) are for LPm,n 

modes in a conventional step-index fiber (nco = 1.445, ncl = 1, rco = 62.5 um and rcl = ∞). The 

black and red vertical dashed lines indicate the resonant bands. 

If the high-index cladding region is removed, the fiber becomes a conventional 

step-index fiber (a no-core fiber as discussed in Chapter 4), consisting of a bare 

core and the surrounding air acting as the fiber cladding, where nco = 1.445, ncl = 

1, rco = 62.5 um and rcl = ∞. The dispersion curves of the core modes in such a 

step-index fiber were calculated by analytical method. The vector modes in the 
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fiber such as {HE1,1}, {TE0,1, HE2,1 and TM0,1} and {EH1,1 and HE3,1} can be 

respectively grouped into linear polarization modes LP0,1, LP1,1 and LP2,1, due to 

their mode fields being far from cutoff [37,38]. Fig. 5.8 shows the dispersion 

curves of modes LPm,n in the step-index fiber in orange color, which are 

overlapped with the moderate dispersion curves of the anti-resonant core modes 

in the DCF. The results indicate that the anti-resonant core modes {HE1,1+(36)}, 

{TE0,1+(36), HE2,1+(36) and TM0,1+(36)} and {EH1,1+(36) and HE3,1+(36)} in the DCF 

show similar qualitative and quantitative behaviour with the corresponding core 

modes {HE1,1}, {TE0,1, HE2,1 and TM0,1} and {EH1,1 and HE3,1} in a 

conventional step-index fiber. In addition, the effective refractive index of the 

anti-resonant core modes in the DCF can be approximated as that of the 

corresponding LPm,n modes in a conventional step-index fiber. 

5.4 Discussion 

The dispersion diagram of the DCF shows some similar characteristics to the 

dispersion diagram of a single-ring hollow-core anti-resonant fiber reported in 

Ref. [22]. Firstly, they both show periodic resonant and anti-resonant bands. 

Secondly, they both show the inhibited coupling phenomenon between the core 

modes and the cladding modes. However, due to the complex structure of the 

single-ring hollow-core anti-resonant fibers, only an approximate scalar method 

was used in Ref. [22]. Using the full-vector analytical method in this work, the 

transition between the cladding modes and the anti-resonant core modes has been 

demonstrated. The degeneracy in the anti-resonant bands and the loss of 

degeneracy around the resonant bands make the dispersion curves of anti-
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resonant core modes merge together or separate, which may correspond to the 

narrow and wide variations in bands of anti-resonant modes in Ref. [22].  

Although the inhibited-coupling fiber is different with the photonic bandgap 

fiber from the modal dispersion perspective, both fibers can be viewed as 

analogous to the conventional step-index fibers. Ref. [20] shows that the density 

of core modes in the bandgap fibers is similar to that of the conventional step-

index multimode fibers. The work presented in this chapter verified that the 

density of the anti-resonant core modes in the DCF (a inhibited-coupling fiber) is 

equal to that of the core modes in the equivalent conventional step-index fiber, 

since the anti-resonant core modes in the former have a one-to-one 

correspondence to the core modes in the latter.  

The core modes in both DCFs and tube-type hollow-core fibers are formed by 

the anti-resonant effect, yet their properties are different. The neff of the core 

modes in DCFs is higher than the refractive index of the surrounding air, 

therefore they are guided by total internal reflections at the outer boundary of the 

cladding region and they are non-leaky modes with a real neff. Compared to the 

DCFs, the core modes in a tube-type hollow-core fiber are usually treated as 

leaky modes with a complex neff. The leaky modes can be solved by the 

eigenvalue equations in the complex plane, but it is extremely cumbersome. In 

most of the previous works, only the fundamental mode or a few low-order 

modes of the hollow-core fibers were obtained with different approximation 

methods [17,23-25]. However, the available results for the tube-type hollow-core 

fibers show some similar characteristics with those for the DCFs. Ref. [17] 

reports step-like dispersion curves for the modes HE1,n+(N-n) (n = 1, 2, 3, 4, where 
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the radial number ‘N-n’ in the cladding is not clear), which is similar to the 

behaviour of the HE1,n+(N-n) modes in the DCFs presented here. Therefore, it can 

be concluded that all other modes for the tube-type hollow-core fibers are similar 

to those in DCFs. Since the tube-type hollow-core fiber has a dispersion diagram 

similar to that of the DCF, a tube-type hollow-core fiber should be considered as 

an inhibited-coupling fiber. 

The anti-resonance derived anti-crossing phenomenon takes place both in the 

DCF and in the hollow-core photonics crystal fibers (for either the photonic 

bandgap guiding or inhibited-coupling guiding). The anti-crossing phenomenon 

has been intensively studied in hollow-core photonic crystal fibers for 

applications such as generation of the multi-octave supercontinuum [10], 

ultrafast nonlinear dynamics optics [11] and the broadband robustly single-mode 

guidance [12]. Therefore, given that DCFs can readily provide manageable 

waveguide dispersion and exceptional modal field changes, they are worthy 

further study for a wide range of applications, in addition to the few existing 

works such as the generation of the supercontinuum [27] and top-hat beams [32]. 

Furthermore high refractive index coated step-index fibers have been used for 

sensing of organic vapors, humidity, voltage, pH, and chemical/bio analytes [43] 

and have a similar refractive index profile to that of DCF which suggests the 

possibility that DCF might also be useful for sensing. Probably because the 

thickness of the coating in these structures is small, the inverted refractive index 

profile and the anti-resonant effect were not observed. 
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5.5 Conclusion 

DCFs were studied analytically in comparison with the conventional step-index 

fibers and the tube-type hollow-core fibers and were found to be a form of anti-

resonant and inhibited-coupling fibers. In this chapter an asymmetric planar 

waveguide approach was proposed for the DCFs in the ARROW model. It has 

been shown that the DCFs support annular-like cladding modes in the tube 

cladding region and disc-like anti-resonant core modes in the rod core region and 

both of them were obtained by solving a same group of full-vector eigenvalue 

equations using a graphical method. The calculated dispersion diagram shows 

periodic resonant and anti-resonant bands, where the dispersion curves of the 

anti-resonant core modes intersect with those of the cladding modes. The 

formation of core-type modes in a low-index core region can be explained by 

both the anti-resonant and inhibited coupling mechanisms. The anti-resonant 

core modes exhibit similar qualitative and quantitative behaviours as those of the 

conventional step-index fibers. The analogy to conventional step-index fibers 

may provide a convenient tool to model the modes of the DCFs (the inhibited-

coupling fibers). To the author’s knowledge, it is the first report on the complete 

full-vector modal dispersion diagram calculated analytically for an inversed-

index fiber. The results presented in this chapter provide better understanding of 

the anti-resonant and inhibited-coupling guidance mechanisms in complex 

inversed-index fibers such as hollow-core photonic-bandgap fibers, tube-type 

hollow-core fibers and single-ring hollow-core fibers. 
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Chapter 6 

Spectral Dependence of Transmission 

Losses in High-Index Polymer-Coated 

No-Core Optical Fibers4 

Chapter 5 demonstrated that the light field in a depressed-core fiber is guided by 

the anti-resonant, inhibited coupling and total internal reflection effects, and its 

dispersion diagram shows periodic resonant and anti-resonant bands. In this 

chapter experimental works are carried out to verify the theoretical results in 

Chapter 5.  

A high-index polymer-coated no-core fiber (PC-NCF) is effectively a depressed-

core fiber and in this chapter, the transmission spectra of the straight and bent 

PC-NCFs (length > 5 cm) are measured and analyzed from a modal dispersion 

perspective. For the purpose of the study, the PC-NCFs are contained within a 

fiber hetero-structure using two single-mode fiber (SMF) pigtails forming a 

SMF-PC-NCF-SMF structure. The anti-resonant spectral characteristics are 

suppressed by the multimode interference in the PC-NCF with a short fiber 

length. The increase of the length or fiber bending (bend radius > 28 cm) can 

make the anti-resonance dominate and result in the periodic transmission loss 

dips and variations in the depth of these loss dips, due to the different modal 

intensity distributions in different bands and the material absorption of the 

 
4Lian, Xiaokang, Gerald Farrell, Qiang Wu, Wei Han, Youqiao Ma, and Yuliya Semenova, 

“Spectral dependence of transmission losses in high-index polymer coated no-core fibers,” J. 

Lightw. Technol., vol. 38, no. 22, pp. 6352-6361, 2020. 
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polymer. The PC-NCFs are expected to be used in many devices including 

curvature sensors and tunable loss filters, as the experiments show that the 

change of loss dip around 1550 nm is over 31 dB and the average sensitivity is 

up to 14.77 dB/m-1 in the bend radius range from ∞ to 47.48 cm. The study 

details the general principles of the effect of high-index layers in the formation of 

the transmission loss dips in fiber optics. 

6.1 Research background 

Coating of optical fibers has been extensively studied as a key element of the 

design of various devices such as optical sensors [1-10], filters [11,12] and 

modulators [13]. Fiber coating materials include metals, metal oxides, graphene, 

polymers, and many others. These materials are either chosen to be sensitive to 

specific physical, chemical and bio- parameters in order to enhance the 

sensitivity of the sensor [14-19] or to facilitate particular waveguiding 

mechanisms [2,3,20]. For example, thin films of silver or gold deposited on an 

optical fiber can result in surface plasmon resonances due to the coupling 

between light and the surface electrons of the metal films [2]. Lossy films (i.e., 

indium-tin oxide (ITO) [20]) on the surface of no-core fibers (NCFs) can cause 

lossy mode resonance (LMR), due to the coupling between the guided modes in 

the optical fiber and the lossy modes in the fiber coating [3]. 

The high refractive index coated fibers show exceptional modal characteristics. 

The high-index coating can cause mode reorganization [14-16], when a core 

mode in the fiber is coupled into the modes of the high-index coating and other 

fiber modes are reorganized. The mode reorganization phenomenon along with 

drastic changes of the modal field distributions have also been observed 
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numerically in a LMR fiber structure [21,22], where the real part of the complex 

refractive index of the lossy coating is higher than that of the fiber and the 

surrounding medium. The energy of the lossy modes was demonstrated 

numerically to be distributed both in the fiber core and the lossy coating along 

with a mode splitting phenomenon near the resonant wavelength [23]. Although 

a number of methods have been employed to investigate the high-index coated 

fiber structure [14-23], it was rarely mentioned that a high-index coating changes 

the index distribution within a fiber. For example, an NCF is a typical 

conventional two-layer step-index fiber, which consists of a silica core 

surrounded by the low-index air acting as its cladding. Light guiding within the 

NCF is based on the total internal reflection effect. If an NCF is coated with a 

high-index material, its original index distribution changes to the inversed-index 

distribution with the high-index coating acting as the new fiber cladding, and the 

light guiding mechanism in such a fiber is also changed. This inversed-index 

structure can be considered as a depressed-core fiber [24]. 

In Chapter 5, a dispersion diagram of the depressed-core fiber was obtained by 

solving the full-vector eigenvalue equations [25]. Analysis of the dispersion 

diagram suggests that the light guiding mechanism in the fiber core is supported 

by the anti-resonant, inhibited coupling and total internal reflection effects. The 

anti-resonant effect is typically described by an anti-resonant reflecting optical 

waveguide (ARROW) model [26]. In this model, the high-index cladding region 

of the depressed-core fiber is treated as a Fabry-Perot resonator, which allows the 

anti-resonant light to be reflected back while allowing forward transmission of 

the resonant light. The inhibited coupling mechanism explains the coexistence of 

cladding- and core-type modes in the same effective refractive index- 
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wavelength (neff - 𝜆) dispersion space. To date the anti-resonant and inhibited-

coupling guiding nature of the high refractive index coated fiber structure, has 

not been exploited. 

In this chapter, a high-index polymer-coated no-core fiber (PC-NCF) is studied, 

which consists of an NCF with acrylate polymer coating. Compared to a 

semiconductor coating with a complex refractive index in the LMR fiber 

structure [20], the refractive index of the acrylate polymer is a real number [27-

29]. The PC-NCF can be used as a model for studies of the waveguiding 

properties of the depressed-core fiber, since the refractive index of the polymer 

coating (as a cladding region) is higher than that of the silica core. In Section 6.3, 

the spectra of the straight and bent PC-NCFs with several different lengths were 

measured and periodic transmission loss dips were found in the spectra of 

straight PC-NCFs with long lengths and in bent PC-NCFs. The effects of the 

multimode interference and the anti-resonance on the spectral characteristics of 

the PC-NCFs are analyzed. With the knowledge of the anti-resonant and 

inhibited-coupling guiding mechanisms, the relationship between the modal field 

distribution and the transmission loss is studied. In Section 6.4, the implications 

of the results for the LMR fiber structures are discussed. 

6.2 Method 

The PC-NCF used in this study is FG125LA from Thorlabs, which is an NCF 

coated with a layer of acrylate polymer. The microscopic image and the cross-

sectional view of the PC-NCF are shown in Fig. 6.1(a) and Fig. 6.1(b), 

respectively. The PC-NCF is described by a three-layer fiber model, where the 

silica NCF plays the role of a core region, the polymer coating serves as the 
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cladding region and the surrounding medium air acting in effect as a second 

cladding region. The refractive indices of the three layers are n1, n2 and n3 

respectively, with n2 > n1 > n3. The transmission spectra of the straight and bent 

PC-NCFs are studied, where the PC-NCF is spliced with two single-mode fiber 

(SMF) pigtails forming a fiber hetero-structure SMF-PC-NCF-SMF as shown in 

Fig. 6.4. The experimental setup is shown in Fig. 6.1(c), where the fiber is fixed 

on two translation stages and the bending curvature of the PC-NCF is controlled 

by moving the two stages toward one another. The bend radius is calculated 

based on the displacement of the translation stages [30]. 

 

Figure 6.1  (a) Microscopic image of a polymer-coated no-core fiber (PC-NCF). (b) 

Refractive index variations along the cross section of the PC-NCF (n2 > n1 > n3). (c) 

Schematic of the experimental setup for measurements of the straight and bent PC-NCF 

samples. 

In this chapter the calculations for both the straight and bent PC-NCFs were 

carried out by the full-vector finite element method, where the maximum mesh 

size is 0.4𝜆 and the relative error in the computed eigenvalues is smaller than 10-
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12. The numerical results obtained agree well with the analytical results in chapter 

5 for the straight PC-NCF. Furthermore, the waveguiding in the straight PC-NCF 

was analyzed using the ray optics approach and the transmission loss spectra 

were simulated analytically based on an asymmetric planar reflection model. 

In the calculations, the refractive indices of the silica NCF and the polymer 

coating are assumed as n1 = 1.445 and n2 = 1.51 at 𝜆 = 1550 nm, respectively. 

The radii of the silica NCF and the polymer coating are r1 = 62.5 µm and r2 = 

125 µm respectively. The thickness of the polymer coating is d = 62.5 µm. The 

surrounding medium is air with the refractive index of n3 = 1. The radii and the 

refractive indices of the core (co) and cladding (cl) regions of the input/output 

SMF-28 (from Corning) are rco = 4.15 µm, rcl = 62.5 µm, nco = 1.4504 and ncl = 

1.4447. The material dispersion was not considered in the calculations for the 

sake of conciseness.  

In the experiments, a broadband light source (Thorlabs S5FC1005s, 1030 nm-

1660 nm) and an optical spectrum analyzer (OSA, Agilent 86142B) were used. 

The polymer coating with the length of about 0.5 cm at both ends of the PC-NCF 

was removed before splicing with the SMFs, as shown in Fig. 6.1(a). Any slight 

unevenness at the end points of the remaining polymer coating does not affect 

the experimental results for the transmission spectral loss. The ends of the bare 

NCF and the SMF have the same diameter as shown in Fig. 6.4 and were axially 

aligned and spliced using a Fujikura 70S splicer in automatic mode. 
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6.3 Results 

6.3.1 Modes in straight PC-NCFs 

The modes in PC-NCFs include TE0,N, TM0,N, HEm,N and EHm,N, where ‘0’ and 

‘m’ on the left side of the comma in the subscript positions are the azimuthal 

mode numbers and ‘N’ on the right side are the radial mode numbers. Fig. 6.2(a) 

shows the dispersion diagram (neff vs. ) for the modes HE1,N, N = 34, 35, …, 38. 

The cladding modes, which are guided in the cladding region by total internal 

reflections, are depicted within the top part of the graph where neff > n1. On the 

same dispersion curve, as  increase the cladding modes HE1,N can change into 

anti-resonant core modes HE1,n+(N-n), n = 1, 2, …, where the subscript ‘n’ denotes 

the radial number in the core region while the number ‘N-n’ denotes the radial 

number in the cladding region [25]. The total radial number does not change for 

each of the dispersion curves. The step-like dispersion curves are consistent with 

the mode reorganization phenomenon [14-16]. The HE1,n+(N-n) exhibit similar 

qualitative and quantitative behaviour as the HE1,n modes of conventional step-

index fibers and can be approximated as the linear polarization modes LP0,n in 

the NCF [25]. As shown in the Fig. 6.2(a), the dispersion curves of the modes 

LP0,n shown in orange color are overlapped with that of the modes HE1,n+(N-n). 
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Figure 6.2  (a) shows the dispersion curves (neff vs. ) of modes HE1,N, N= 34, 35, …, 38 in 

the PC-NCF, which change into the anti-resonant core modes HE1,n+(N-n), n = 1, 2, … as  

increases. The orange lines are the dispersion curves of the LP0,1 (HE1,1) and LP0,2 (HE1,2) in 

the NCF. (b) is the partially enlarged image of (a), indicated by a red dashed frame. The 

black and red vertical dashed lines indicate the resonant bands. 

Figure 6.2(a) exhibits periodic strong and moderate index dispersion bands, 

corresponding to resonant and anti-resonant bands. The resonant bands are 

indicated by the vertical black and red dashed lines, which intersect with the 

horizontal purple dashed line corresponding to the value of n1. The intersect 

points can be approximated as the cutoff positions of the TMN and TEN modes in 

an equivalent asymmetric planar waveguide, calculated by [25,31]: 
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𝜆N,c =
2𝑑√𝑛2

2−𝑛1
2

[N−1+
1

𝜋
tan−1(𝜅

√𝑛1
2−𝑛3

2

√𝑛2
2−𝑛1

2
)]

, 𝜅 = {
1,     TEN  
𝑛2
2

𝑛3
2 , TMN

  
                         (6.1) 

where, N = 34, 35, …, 38. 

In order to analyze the modal field distributions in different dispersion bands, 

one dispersion period indicated by the red dashed rectangle in Fig. 6.2(a) is 

enlarged and shown in Fig. 6.2(b). The modal intensity and electric field vector 

distributions at several points indicated in Fig. 6.2(b) are shown in Fig. 6.3. It 

should be noted that the HE mode is a two-fold degeneracy mode, including the 

modes HEa and HEb, whose modal intensity distributions are identical except for 

a π/2 rotation of the electric vector as shown later in Fig. 6.8. Fig. 6.3 shows only 

one of the two degenerate modes for simplicity. For the cladding mode HE1,36 at 

point A the modal energy is mainly confined in the fiber cladding region, for the 

anti-resonant core mode HE1,1+(35) at point D the modal energy is mainly 

confined in the fiber core region, as discussed in Chapter 5. The modes at B and 

C are denoted as [HE1,1+(35)], where the brackets indicate that the modes are in a 

transition state and their modal energy is evenly distributed both in the fiber core 

and cladding regions. The modes at points E and F are also in transition states 

and denoted as [HE1,1+(35)] or [HE1,2+(34)]. Similarly, the modes at points A' and 

D' represent the low-order and high-order anti-resonant core modes HE1,1+(36) and 

HE1,2+(35), respectively. The modes at points B', C', E' and F' are in transition 

states. 
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Figure 6.3  The intensity and electric field vector distributions of modes in PC-NCF, whose 

positions in dispersion diagram are indicated in Fig. 6.2(b). 

Another modal characteristic of the PC-NCF is the coexistence of the core and 

cladding modes in the dispersion space [25]. Some cladding modes exist in the 

dispersion space below the horizontal purple dashed line corresponding to the 

value of n1 in Fig. 6.2. For example, the modes EHm,35, m = 2, 3, … 7 at points 

A"- F" with the wavelength of 1590 nm, whose modal intensities and electric 

field vector distributions are shown in Fig. 6.3(b). Although the energy of these 

cladding modes at points A"- F" with neff < n1 is mainly confined in the cladding 

region, they differ from the cladding modes with neff > n1, since the total internal 

reflection does not apply at the inner boundary of the cladding region. The 



143 
  

confinement of energy in the cladding region for the modes at points A"- F" is 

attributed to the anti-resonant and inhibited coupling effects. 

If the material dispersion is considered, the refractive index of the polymer 

coating will decrease smoothly as the wavelength increases according to the 

Cauchy–Schott equation [27]. Based on Eq. (6.1), the resonant coupling position 

is mainly dependent on the thickness and the refractive index of the coating. 

Therefore, the anti-resonance condition is maintained if an inversed-index profile 

(the refractive index of the cladding is higher than that of the fiber core) is 

maintained. The changes of the index due to material dispersion will only modify 

the resonant wavelength positions (period), which may cause the discrepancies 

between the simulated and measured results. If the inversed-index profile is 

unchanged, then the modal field distributions in both the resonant and anti-

resonant bands will not be affected by changes in the refractive index of the 

polymer coating. 

The process of mode coupling in the LMR and PC-NCF structures is different 

and depends on the overlap of modal fields and the phase-matching conditions 

(equality of real parts of the effective refractive index). As shown in the 

dispersion diagram and the mode profiles for the PC-NCF in Figs. 6.2 and 6.3 

and Ref. [25], the coupling between the cladding modes and the anti-resonant 

core modes takes place in accordance with the order of the modes and the 

symmetry of the modal field distributions, that is the fundamental core modes are 

at first coupled to the corresponding cladding modes and then the high-order core 

modes become low-order core modes due to mode reorganization. The field of 

the core modes in both fiber structures is distributed throughout the entire fiber 
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cross section. However, the parts of modal field of the core modes which 

propagate in the high-loss coating layer of the LMR structure may be absorbed 

and changed based on their symmetries. As a result, in the LMR structure mode 

coupling occurs in a less predictable manner and some high-order modes may 

couple to cladding modes before the low-order modes, as shown in the Refs. 

[21,22]. 

6.3.2 Analysis of the effects of anti-resonance and multimode 

interference on the transmission spectra of the PC-NCFs 

The complex modal dispersion diagram indicates the actual light field in the PC-

NCF is very complex, possessing both anti-resonance (AR) and multimode 

interference (MMI) properties. Fig. 6.4 shows ray trajectories within the SMF-

PC-NCF-SMF hetero-structure. The light in the lead-in SMF excites multiple 

LP0,n (HE1,n) modes in the NCF. An individual guided LP0,n mode indicated by 

the red arrows in the NCF will progressively reflect between the polymer 

coatings at a certain angle θ1, forming the multiple reflections and multi-path 

interference at the inner boundary of the polymer coating region, which 

corresponds to the anti-resonance property. All the black and red arrows in the  

 

Figure 6.4  Schematic of the ray trajectories of an excited guide mode within the SMF-PC-

NCF-SMF hetero-structure. 
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middle section fiber represent the ray trajectories of an guided mode HE1,n+(N-n) in 

the PC-NCF. After propagation within the PC-NCF the light will couple into the 

lead-out SMF. The transmitted power in the lead-out SMF is dependent on the 

coupling between its modal field and the field in the NCF. 

The neff(LP0,n) can be written as [31,32]: 

𝑛eff(LP0,n) =
1

𝑘0
√𝑘0

2𝑛1
2 −

1

𝑟1
2 [(2n −

1

2
)
𝜋

2
]
2
                       (6.2) 

where 𝑘0 = 2𝜋 𝜆⁄  is wavenumber in vacuum. The angle θ0,n (equal to θ1 in Fig. 

6.4) between the incident direction of the mode LP0,n (at the boundary) and the 

radial direction can be calculated with n1sinθ0,n = neff(LP0,n), as: 

𝜃0,n = sin−1 (
𝑛eff(LP0,n)

𝑛1
)                                            (6.3) 

The energy coupling coefficient η0,n between the fundamental mode in the SMF 

and the guided mode LP0,n in the NCF can be calculated as [32-34]:  

𝜂0,n =
|∫ 𝐸s(𝑟)E0,n(𝑟)𝑟𝑑𝑟
∞
0 |

2

∫ |𝐸s(𝑟)|
2𝑟𝑑𝑟

∞
0 ∫ |𝐸0,n(𝑟)|

2
𝑟𝑑𝑟

∞
0

                                     (6.4) 

where 𝐸s  and 𝐸0,n  represent the field profiles of the fundamental mode in the 

SMF and the LP0,n mode in the NCF, respectively. 

The multiple reflections of a ray (LP0,n) from the high-index polymer coating of 

the PC-NCF can be approximated as the multiple reflections of an unpolarized 

incident beam on an equivalent asymmetric planar waveguide as explained in 

more detail in the Appendix C. The ratio of the reflection intensity (𝑅̅) of the 

unpolarized incident beam is calculated by Eq. (C.8). Using Eqs. (6.2)-(6.4) and 



146 
  

(C.8), the transmission efficiency of the hetero-structure SMF-PC-NCF-SMF 

induced by the multiple reflections (the AR effect) can be calculated as: 

𝐼AR = 10 log10(∑ 𝜂0,n
2 𝑅̅0,n)                                     (6.5) 

where 𝑅̅0,n is corresponding to the mode LP0,n. Eq. (6.5) is a scalar superposition 

of the transmission efficiency of all individual modes HE1,n+(N-n)in the PC-NCF. 

In Eq. (6.5), the interference between different guided modes is not considered, 

which is a superposition of both the intensity and the phase of different guided 

modes HE1,n+(N-n) in the PC-NCF. The interference between different guided 

modes HE1,n+(N-n) in the PC-NCF is similar to and can be approximated as the 

multimode interference of LP0,n (HE1,n) modes in an SMF-NCF-SMF [32-34], 

since the neff and the mode field distribution of HE1,n+(N-n) modes in PC-NCF can 

be approximated by that of the LP0,n (HE1,n) modes in the NCF as discussed in 

Section 6.3.1 and Ref. [25]. 

The transmission efficiency of the straight SMF-NCF-SMF based on the MMI 

effect can be calculated by [33]: 

𝐼MMI  = 10 log10 (|∑ 𝜂0,nexp (𝑗
2𝜋𝑛eff(LP0,n)𝐿

𝜆
)|
2

)                   (6.6) 

which is related to the length L. Combining Eqs. (6.5) and (6.6), the transmission 

efficiency of the SMF-PC-NCF-SMF including both the AR and the MMI effects can 

be calculated as: 

𝐼 = 10 log10 (𝐴∑𝜂0,n
2 𝑅̅0,n + 𝐵 |∑ 𝜂0,nexp (𝑗

2𝜋𝑛eff(LP0,n)𝐿

𝜆
)|
2

)             (6.7) 
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where A and B (A + B = 1) are defined as intensity coefficients for the AR and 

MMI effects, respectively. These coefficients are used to set the relative levels of 

AR interference and MMI for the purpose of discussion below. 

Figures 6.5(a)-6.5(d) show the simulated transmission spectra of the hetero-

structure SMF-PC-NCF-SMF with L = 5.8 cm (approximately one self-imaging 

distance), calculated by Eq. (6.7). The spectrum in Fig. 6.5(a) calculated with A 

= 0 and B = 1 is as expected similar to the simulated and measured results for an 

SMF-NCF-SMF in Chapter 4, where the transmission peaks and dips are solely 

due to the MMI effect. As the intensity coefficient A increases to 0.5 in Fig.  

 
Figure 6.5  The transmission spectra of the SMF-PC-NCF-SMF hetero-structure, calculated 

by Eq. (6.7) with different intensity coefficients A and B as indicated. (a)-(d) L = 5.8 cm; 

(e)-(f) L = 75.8 cm. The black and red vertical dashed lines indicate the resonant bands. 
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6.5(b) and then to 1 in Fig. 6.5(d), the AR characteristics in the spectrum become 

more and more pronounced, showing periodic transmission dips aligned with the 

vertical black and red dashed lines. The results are similar for the hetero-

structure SMF-PC-NCF-SMF with L = 75.8 cm, as shown in Figs. 6.5(e)-6.5(h). 

It should be noted that the spectra for different values of L in Figs. 6.5(d) and 

6.5(h) are the same, indicating the AR effect (A =1, B = 0) is independent of the 

value of length L. 

The depth of the transmission loss dip around 1550 nm in Fig. 6.5(d) and Fig. 

6.5(h) is 1.97 dB in both cases, this is calculated as the difference between the 

minimum value of the transmission loss taken at the dip labelled P3 and the 

average of the two adjacent transmission levels at the points labelled P1 and P2, 

as shown in Fig. 6.5(d). 

The above analysis indicates that the MMI effect can be suppressed to obtain a 

periodic transmission spectrum due to AR. This can be achieved either by 

increasing the length of the PC-NCF or by bending the fiber as discussed in the 

sections which follow below. 

6.3.3 Measured transmission spectra of the straight PC-NCFs  

Figure 6.6 shows the experimentally recorded spectra for a straight SMF-PC-

NCF-SMF with different values of L increasing from 5.8 cm to 85.8 cm. The 

spectra as a function of length in the range from 5.8 cm to 38 cm shown in Figs. 

6.6(a)-6.6(c) display irregular shapes, where the differences are consistent with 

the presence of multimode interference. For the sample with a longer PC-NCF 

length L = 75.8 cm in Fig. 6.6(d), the transmission spectrum exhibits periodic 
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transmission dips and windows, similar to those in the simulated spectrum shown 

in Figs. 6.5(d) and 6.5(h) in terms of the spectral positions of the transmission 

dips and their depth, consistent with AR interference. The slight difference in the 

spectral period of the simulated and experimental results is due to the material 

dispersion (the refractive index changes with wavelength), which has not been 

considered in the simulation. The periodic spectral characteristics are maintained 

while the intensity of the transmission windows is reduced for the PC-NCF with 

a longer L of 85.8 cm as shown in Fig. 6.6(e). The progressive increase of loss in 

the transmission window as the length increases is related to the modal 

attenuation due to the material absorption.  

  
Figure 6.6  Measured transmission spectra of the straight hetero-structures SMF-PC-NCF-

SMF with different L. The black and red vertical dashed lines indicate the resonant bands.  

The experimental results imply that the multimode interference effect is 

suppressed in the hetero-structures with a sufficiently large L, which can be 
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explained as follows. There are multiple modes in both the anti-resonant and 

resonant bands shown in Fig. 6.2(a), therefore in principle the multimode effects 

can occur in all the bands with the result that the spectrum is dependent on the 

length L. However, the field distributions of modes in different bands are 

different, as discussed in Section 6.3.1. The energy of anti-resonant core modes 

is mainly confined in the silica core region while that of the transition modes is 

distributed in both the silica core and the cladding regions. The modes 

propagating in the fiber suffer attenuation due to the material absorption, which 

is significantly larger in the polymer cladding (with a propagation loss level of 

0.6 dB cm−1 [35]) than in the silica core (a loss level of 0.2×10-5 dB cm−1). 

Therefore, the transition modes suffer greater attenuation as a function of 

distance than the anti-resonant core modes. The transition modes will fade earlier 

than the anti-resonant core modes during the propagation process, due to the 

increase of attenuation with the length L. For larger values of L, the higher 

attenuation of the transition modes compared to the anti-resonant core modes 

leads to the suppression of the multimode interference in the resonant bands and 

the appearance of periodic transmission dips, as shown in Figs. 6.6(d) and 6.6(e). 

For shorter values of L, the difference in the modal attenuation in the resonant 

and anti-resonant bands is minor, therefore the multimode property is present for 

both bands, which in turn is why the transmission spectrum in Figs. 6.6(a)-6.6(c) 

is dependent on the length L. 

6.3.4 Modal field distortions in bent PC-NCFs 

In this section and the following Section 6.3.5 the effect of bending induced 

mode field distortions on propagation and the relative strength of AR 
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interference and MMI are considered. In the simulations, a bent PC-NCF is 

transformed to an equivalent, straight fiber by the process of conformal mapping 

[36]. The refractive index distribution in the equivalent straight PC-NCF is 

expressed as [36]: 

𝑛𝑖
′(𝑥, 𝑦) = 𝑛𝑖(𝑥, 𝑦)exp (

𝑥

𝑅
) ,   =  1 or 2                        (6.8) 

where ni(x,y) is the refractive index of the bent fiber cross section, which can be 

approximated as that of the straight fiber if the stress-optic effect is not 

considered. x is a transverse coordinate, with its origin in the center of the fiber 

and a positive value indicating the magnitude of the distance along a line joining 

the center of curvature and the center of the fiber. R is the bend radius. In the 

simulation of the bent fiber structure by the finite element method, a perfectly 

matched layer is set at the outer boundary of the polymer coating to absorb the 

possible outgoing energy. In practice, the energy loss from the outer boundary of 

the polymer coating can be neglected for the studied range (R > 28 cm), since the 

imaginary part of neff is 1010 times smaller than the real part in the simulated 

results.  

Figure 6.7(a) shows two groups of dispersion curves for the modes in the PC-

NCF with different bend radii: the upper group is for the mode HE1,1+(35) while 

the lower group is for the mode HE1,2+(35). Fig. 6.8 shows the modal intensity and 

electric field vector distributions of the HE1,1+(35) and HE1,2+(35) modes with R = ∞ 

(infinite, represents the fiber straight state) and R = 66.67 cm at the wavelengths 

of 1550 nm, 1570 nm, and 1590 nm. The HE mode is two-fold degeneracy of 

modes HEa and HEb. In a straight PC-NCF the dispersion curves of the modes 

HEa and HEb are overlapped as shown in Fig. 6.7(a). The modal intensity 
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distributions for these modes are identical except for a π/2 rotation of the electric 

vector as shown in Fig. 6.8. Under the influence of bending, the electric field 

directions of the modes HEa and HEb will change to be odd or even along the  

 
Figure 6.7  (a) Dispersion curves (neff vs. )  and (b) the fractional power in the cladding of 

HE1,1+(35) and HE1,2+(35) modes with the bend radius R = ∞ and R = 66.67 cm. The inset of (b) 

is an enlarged figure of the part indicated by the black dashed rectangle. HE1,n+(35) (n = 1 or 

2) is a two-fold degeneracy mode of HE1,n+(35)a and HE1,n+(35)b. The black and red vertical 

dashed lines indicate the resonant bands. 



153 
  

bending direction, as shown by the HE1,n+(35)a and HE1,n+(35)b (n = 1 or 2) with R = 

66.67 cm. The bending breaks the degeneracy between the HE1,n+(35)a and 

HE1,n+(35)b modes as evident by the separated dispersion curves, which is obvious 

near the resonant bands while less obvious far from them. The neff of modes 

increases as the bend radius decreases, where the increasing amplitude is higher 

near the resonant bands (around 1550 nm and 1590 nm) compared to those in the 

anti-resonant band (around 1570 nm). 

 

Figure 6.8  The modal intensity and electric field vector distributions of HE1,1+(35) and 

HE1,2+(35) modes under different bending states as indicated. 

Fiber bending skews the modal intensity distribution toward the outer edge of the 

fiber bend, with the result that light leaks from the core region into the cladding 
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region at the bend, as shown by the modes HE1,n+(35) (n = 1 or 2) with R = 66.67 

cm in Fig. 6.8. The modal field distortions are obvious at wavelengths of 1550 

nm and 1590 nm around the resonant bands while less obvious at the wavelength 

of 1570 nm in the middle of the anti-resonant band, which is consistent with the 

change of the dispersion curves shown in Fig. 6.7(a). The modes in the bending 

states show strong hybridization with the cladding modes. For example, the 

azimuthal field distribution in the cladding region of the HE1,2+(35) mode at the 

wavelength of 1590 nm with R = 66.67 cm has a pattern with six radial dark 

lines. The characteristics of the intensity distribution in the cladding region are 

similar to those of the cladding mode EH6,35 shown in Fig. 6.3(b). The 

hybridization phenomenon was also found in a hypocycloid-shaped hollow-core 

photonic crystal fiber [37], which indicates the resonant coupling between the 

core and the cladding modes.  

To quantify the change in modal intensity distribution and to compare the 

responses of different order modes to fiber bending, the fractional power in the 

fiber cladding region is calculated numerically using the following expression: 

Гcl =
∬𝑃z∙𝑑𝑠cl

∬𝑃z∙𝑑𝑠cl+∬𝑃z∙𝑑𝑠co
                                                (6.9) 

where  cl and  co represent the cross-section areas of the fiber cladding and core, 

respectively. 𝑃𝑧 is the z component of Poynting vector, calculated by: 

𝑃z =
1

2
𝑅𝑒(𝐻𝑦

 𝐸𝑥 − 𝐻𝑥
 𝐸𝑦)                                    (6.10) 

Since the HE is a two-fold degeneracy mode, the fractional power in the cladding 

is the average of the modes HEa and HEb, as follows: 
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Гcl(HE) =
1

2
(Гcl(HE𝑎) + Гcl(HE𝑏))                                (6.11) 

Figure 6.7(b) shows that the fractional power in the cladding Гcl(HE) for the 

HE1,1+(35) and HE1,2+(35) modes, with R = ∞ and R = 66.67 cm. The Гcl(HE) of 

modes in the middle region of the anti-resonant band is smaller than that near the 

resonant bands indicated by the vertical black and red dashed lines, for the 

straight PC-NCF with R = ∞. The modes near the resonant bands are more 

sensitive to the fiber bending than those in the anti-resonant bands, where the 

Гcl(HE) of both the HE1,1+(35) and HE1,2+(35) modes increases significantly near 

the resonant bands. The enlarged insert figure in Fig. 6.7(b) shows that the 

Гcl(HE) of the high-order mode HE1,2+(35) is larger than that of the low-order 

mode HE1,1+(35) in the anti-resonant bands, which means that the confinement loss 

of the former is larger than that of the latter. 

6.3.5 Measured transmission spectra of the bent PC-NCFs 

Figure 6.9 shows the measured transmission spectra for SMF-PC-NCF-SMF 

with L= 5.8 cm and 75.8 cm under different bending states, using the previously 

described experimental setup in Fig. 6.1(c). The spectrum of the structure with L 

= 5.8 cm and R = ∞ shows irregular interference dips in Fig. 6.9(a). The fiber 

bending changes the spectrum with irregular interference dips to a spectrum with 

periodic transmission dips, although the intensity of the transmission windows is 

inconsistent, as one can see for the curve with R = 58.41 cm in Fig. 6.9(a). The 

depths of the transmission dips marginally increase and the intensities of the 

transmission windows become relatively consistent as the bend radius decreases 

to R = 28.51 cm in Fig. 6.9(a). The appearance of periodic transmission dips in 

the spectrum of the bent PC-NCF with the short length L can be explained in two 
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steps. Firstly, fiber bending shifts the modal intensity distribution from the silica 

core region into the polymer cladding region, which causes an increase of loss in 

all bands since the material absorption in the polymer is higher than that in the 

silica. Secondly, the fractional power in the cladding is larger in the resonant 

bands than in the anti-resonant bands, which indicates that there is more loss in 

the former bands than in the latter bands. Therefore, fiber bending can lead to the 

formation of the periodic transmission dips and an increase of the depths in PC-

NCFs with a short length. 

 

Figure 6.9  Measured transmission spectra of the hetero-structure SMF-PC-NCF-SMF with 

(a) L = 5.8 cm and (b) L = 75.8 cm, under different bending states as indicated. The black 

and red vertical dashed lines indicate the resonant bands. 
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Similarly, the depth of the transmission dips increases as the bend radius 

decreases for the PC-NCF with a large length of L=75.8 cm, as shown in Fig. 

6.9(b). For similar bend radii, the depth of the transmission dips for the PC-NCF 

with L = 5.8 cm (around 5 dB, R = 58.41 cm, in Fig. 6.9(a)) is smaller than that 

for the PC-NCF with L = 75.8 cm (around 20 dB, R = 55.68 cm, in Fig. 6.9(b)). 

The larger depth of the transmission dips for the longer PC-NCF is caused by a 

larger propagation loss, provided that the confinement losses (the fractional 

power in the cladding) of the modes are similar for both the long and short PC-

NCFs. The intensity of the transmission windows of the PC-NCF with L = 75.8 

cm decreases strongly as the bend radius decreases from R = ∞ to R = 113.36 cm 

as shown in Fig. 6.9(b). The situation is different for the PC-NCF with L = 5.8 

cm as shown in Fig. 6.9(a), where the intensity of the transmission window does 

not decrease noticeably within the studied range of bend radius. The decreased 

intensity of the transmission windows is related to the attenuation of the anti-

resonant core modes, especially for the higher order. The fractional power in the 

cladding of the high-order modes is larger than that of the low-order modes, as 

discussed in Section 6.3.4. 

The consequence of introducing a fiber bend is that compared to the low-order 

modes, the high-order modes are more easily affected by bending, which shifts 

the modal field into the fiber cladding. Therefore, the higher-order modes 

propagating in a bent PC-NCF experience higher loss and some of them will fade 

with the decrease of the bend radius, leading to a decrease in the intensity of the 

transmission windows. The shorter the propagation length the lower the 

attenuation of the anti-resonant core modes, therefore, there is no significant 
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reduction in the intensity of the transmission windows for the short PC-NCF 

within a certain range of bend radius. 

The depth of the transmission loss dip around 1550 nm for the PC-NCF with L = 

75.8 cm increases over 31 dB from 3.54 dB to 34.65 dB as the bend radius 

decreases from R = ∞ to R = 47.48 cm (the bending curvature increases from 0 to 

2.106 m-1). The average change rate of the depth in the studied range is up to 

14.77 dB/m-1.  

6.4 Discussion 

A PC-NCF has been studied as an example of the depressed-core fiber in this 

Chapter. Compared to the more frequently studied anti-resonant guiding hollow-

core fibers, whose core modes have a leaky nature [26,38,39], the depressed-core 

fiber has the non-leaky anti-resonant core modes. The energy of the core modes 

in the hollow-core fibers tends to leak out from both the core and the cladding 

regions at the resonant bands while that of the depressed-core fibers are totally 

reflected back at the outer boundary of the cladding region although they can 

leak from the core region. Therefore, the hollow-core fibers generally show 

periodic transmission loss dips [26,39,40] while the depressed-core fiber with 

multiple non-leaky core modes are prone to showing multimode interference 

characteristics of the transmission spectrum. However, the appearance of the 

periodic transmission dips and windows in the long or bent PC-NCFs 

demonstrated in this work reflect the anti-resonant nature of the depressed-core 

fibers.  
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The LMR fiber structures are similar with the PC-NCFs, although the coating 

materials (i.e. ITO in Ref. [20]) of the former are strongly lossy and usually have 

a complex refractive index. The generation of the loss dips is related to the 

resonant coupling of the core modes and cladding modes in both the PC-NCF 

and the LMR fiber structures. The resonant coupling in both structures causes 

similar changes to the modal field distributions in the resonant bands, where the 

modal energy is evenly distributed in both the core and the cladding regions [22]. 

If the high-index coating in the LMR structure is treated as a Fabry-Perot 

resonator in the ARROW model, it is easy to understand the general rules of the 

LMR with the help of Eq. (6.1). For example, the resonant wavelengths are 

dependent on the thickness and the refractive index of the high-index layer (if 

other parameters are constant), which is near to the cutoff of the TE and TM 

modes in the high-index layer [20]. In addition, Eq. (6.1) also helps to explain 

the generation of the multiple LMRs with the thick coating and the excitation of 

the LMR by both TE and TM light [20]. It should be note that the coating 

materials such as semiconductor ITO in LMR fiber structures are usually much 

more lossy compared to the acrylate polymer in PC-NCF, therefore the loss dips 

can be formed with a much shorter length for the coating (for example the ITO-

coated fiber region is 4 cm in Ref. [20]). 

The sensing mechanism for the PC-NCF is similar to that for the LMR structure 

and relies on the change of the thickness and refractive index contrast of the 

high-index coating and the intensity of the evanescent wave generated at the 

outer boundary of the coating layer [3,5,6]. Based on the theoretical analysis in 

this work, several methods of reducing the length of the PC-NCF in practical 

devices such as curvature sensors and optical filters exist. As discussed above, 



160 
  

one method of achieving periodic transmission dips in the PC-NCF with a short 

length L is to introduce deliberate well-defined bending of the fiber, which leads 

to an increase of the fractional power in the polymer coating and consequently to 

an increase of losses in the coating. In a similar fashion, reducing the mode 

confinement by tapering the silica fiber can increase the fractional power in the 

cladding, which may allow one to shorten the length of the device. Increasing the 

losses within the polymer coating may also allow a reduction in the length of the 

fiber. In addition, previous experiments have indicated that bending of any short 

part of the PC-NCF while keeping the rest of the structure straight also allows for 

the formation of periodic transmission dips, which could reduce the length of the 

device. 

6.5 Conclusion 

Light propagation in PC-NCFs was studied experimentally and theoretically. The 

periodic loss dips were found in the transmission spectra of the PC-NCFs with a 

longer length or under bending states. The wavelength positions of the 

transmission dips can be predicted based on the ARROW model, with the 

knowledge of the anti-resonant and inhibited-coupling guiding mechanisms. The 

fractional power in the fiber cladding (polymer coating) for the modes in the 

resonant bands is higher than that for the modes in the anti-resonant bands, and 

the fiber bending can enhance this difference. Therefore, the modes in the 

resonant bands experience higher attenuation due to the material absorption 

within the polymer coating, which suppresses the multimode interference and 

displays anti-resonant characteristics. The obtained results indicate that the PC-

NCFs or the depressed-core fibers can be used in many devices including 
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bend/curvature sensors and tunable loss filters. The analysis carried out, 

regardless of the specific refractive index dispersion properties of the high-index 

fiber layers, may contribute to a better understanding of the resonant 

phenomenon in fiber optics such as the LMR in lossy film coated fiber structures. 

The transmission spectrum experiments of the PC-NCF in this chapter not only 

verify the theoretical results in Chapter 5, but also point out their distinct spectral 

characteristics compared to that of three-layer step-index fibers and hollow-core 

fibers. 
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Chapter 7 

High-Sensitivity Temperature Sensor 

Based on Anti-Resonance in High-Index 

Polymer-Coated Optical Fiber 

Interferometers5 

Chapter 6 demonstrated that an appropriate control of fiber length and the 

external stimulus such as the fiber bending can modify the light field and change 

the transmission spectral characteristics of a depressed-core fiber. Therefore, the 

depressed-core fibers deserves a further investigation for the design of fiber optic 

devices. In this chapter, an example of employing a depressed-core fiber as the 

basis of a temperature sensing is demonstrated. 

Compared to the multimode interference (MMI) effect, the anti-resonance (AR) 

effect does not rely on the multimode property of the optical waveguide. This 

chapter shows that fiber bending can suppress the MMI and can break the 

superposition of AR spectra of multiple modes in a high-index polymer-coated 

optical fiber interferometer based on a single-mode fiber-polymer-coated no-core 

fiber-single-mode fiber hetero-structure. This results in the dominance of the AR 

spectrum of an individual mode and consequently in periodic sharp transmission 

dips. As a result of this phenomenon and large thermo-optical and thermal 

expansion coefficients of the polymer, a compact, high-sensitivity and linear 

 
5 Lian, Xiaokang, Qiang Wu, Gerald Farrell, and Yuliya Semenova, “High-sensitivity 

temperature sensor based on anti-resonance in high-index polymer-coated optical fiber 

interferometers,” Opt. Lett., vol. 45, no. 19, pp. 5385-5388, 2020. 
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response temperature sensor with the sensitivity as high as -3.784 nm/C has 

been demonstrated experimentally. 

7.1 Research motivation 

Fiber temperature sensors based on the anti-resonance (AR) effect have gained 

significant popularity owing to their simple structure, periodic transmission dips, high 

spectral extinction ratio, large free spectral range and multiplexing capability [1-3]. The 

simplest design for an AR-based fiber sensor is a fiber hetero-structure, such as a single-

mode fiber (SMF)-hollow-core fiber (HCF)-SMF (SHCS). The light guiding in the low-

index air core of the HCF is based on the AR effect, which allows the anti-resonant light 

to be reflected back from the high-index cladding while allowing forward transmission 

of the resonant light [4]. The resonant coupling between the core and the cladding 

modes in the HCF results in periodic transmission dips in the spectra of the SHCS [5]. 

The typical temperature sensitivity of a silica based SHCS is around 30 pm/C in the 

range from room temperature to over 850 C [1]. With a polydimethylsiloxane (PDMS) 

coating on the middle section HCF, a sensitivity of -201 pm/C  in the range from -30 C 

to 45 C  was achieved, owing to the large thermo-optical coefficient and thermal 

expansion coefficient of the polymer coating [3]. These SHCS sensors show a highly 

linear spectral response to temperature. The positions of the spectral dips and their 

sensitivity to perturbations are independent of the length of the HCF, which could 

facilitate the miniaturization and design of compact sensors [1-3]. However, the loss 

within the HCF is high, and the hollow core is prone to collapse during fusion splicing 

with the SMFs, which can affect the spectrum and reduce the manufacturing yield [2,6]. 
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An optical fiber interferometer for use as a temperature sensor can be based on the 

multimode interference (MMI) effect [7-9]. The interferometer can be a hetero-structure, 

such as an SMF-multimode fiber-SMF (SMS), where the multimode fiber can be 

replaced by a no-core fiber (NCF), small-core fiber (SCF), or any other fiber supporting 

multiple guided modes. The transmission spectrum of an interferometer is highly 

dependent on the length of the middle section fiber, where light is guided by total 

internal reflection. The sensitivity of temperature sensors based on a silica SMS [10], 

SMF-NCF-SMF (SNCS) [11], and SMF-SCF-SMF [12] is less than 40 pm/C. An 

optical fiber interferometer for use as a temperature sensor can be based on the 

multimode interference (MMI) effect [7-9]. The interferometer can be a hetero-structure, 

such as an SMS, where the multimode fiber can be replaced by a NCF, SCF or any 

other fiber supporting multiple guided modes. Light in a multimode fiber is guided by 

the total internal reflection effect, and the transmission spectrum of the interferometer is 

highly dependent on the length of the middle section fiber. The reported sensitivity of 

temperature sensors based on a silica SMS [10], SMF-NCF-SMF (SNCS) [11], and 

SMF-SCF-SMF [12] is less than 40 pm/C. 

In this chapter, a new type of temperature sensor consisting of a bent high-index 

polymer-coated SNCS (PC-SNCS, SMF-PC-NCF-SMF) is proposed and demonstrated, 

which is based on an AR effect similar to that in an SHCS instead of the MMI effect 

present in an SNCS. The Chapter 6 has shown that periodic broad dips can appear in the 

transmission spectra of straight PC-SNCSs with a long or bent PC-NCF (length > 50 

mm) [13]. It has been demonstrated that periodic sharp dips can be achieved for the PC-

SNCSs with a millimeter order length (< 10 mm) subjected to bending. The spectral 

response of the PC-SNCSs to temperature is investigated in this chapter.  



169 
  

7.2 The modal properties of the PC-SNCS 

In the experiment undertaken, SMF28 fiber (from Corning) was used as the SMF, and 

FG125LA fiber (from Thorlabs) was used as the NCF. Figs. 7.1(a) and 7.1(b) show the 

schematic diagrams of the SNCS and PC-SNCS, respectively, for simplicity sake 

without bending. The length of the middle section fibers is L. The diameter of the silica 

NCF is 125 μm. The polymer coating is the original acrylate coating as supplied by the 

manufacturer of the NCF and has a thickness (t) of 62.5 μm. The refractive indices of 

the NCF, the polymer coating, and the surrounding air are assumed as n1 = 1.445, n2 = 

1.51, and n3 = 1 at a wavelength (λ) of 1550 nm, respectively, with n2 > n1 > n3.  

 

Figure 7.1  Schematic diagrams: (a) SMF-NCF-SMF (SNCS) structure, (b) SMF-polymer coated 

NCF-SMF (PC-SNCS) structure.  

For the SNCS in Fig. 7.1(a), when the fundamental mode of the lead-in (left) SMF is 

coupled into the NCF, multiple modes LP0,n are excited due to the on-axis alignment, 

which propagate through the NCF and are then coupled into the lead-out SMF. The 

NCF is where the MMI takes place, which determines the transmission spectrum. The 

ray trajectory of one LP0,n mode, with the effective refractive index neff = n1*sinθn, is 

indicated by the red arrows, which are confined to the NCF by total internal reflection. 
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In the PC-SNCS shown in Fig. 7.1(b), the lengths L0 of the polymer coating (~ 1.5 mm) 

at both ends of the PC-NCF are removed in order to enable the automatic splicing 

process with the SMFs. The length of the remaining polymer coating is L1 (< 7 mm). 

Using geometrical optics to illustrate propagation in the PC-NCF section, the behaviour 

of the ray in NCF on the left side is the same as that in Fig. 7.1(a), as indicated by the red 

arrows. The ray in the PC-NCF section is partially reflected at the inner boundary of the 

polymer coating and totally reflected at its outer boundary, resulting in multi-path 

interference (MPI). The partially reflected ray indicated by the dashed red arrows retains 

the same angle (θn) with the radial direction, as that in Fig. 7.1(a). The field in the 

straight PC-NCF section can be considered as a combination of MMI and MPI. The 

field in the NCF on the right side is dominated by MMI. 

The MPI will cause AR effect in the PC-NCF, and its dispersion diagram (neff vs. ) is 

different from that of the NCF [14]. Fig. 7.2 shows the dispersion curves of the modes 

HE1,N (N = 34, 35, …, 38 ) in the PC-NCF and the modes HE1,1 (LP0,1) and HE1,2 (LP0,2) 

in the NCF, calculated using an analytical method [14]. The parts with neff > n1 denote 

the cladding modes HE1,N in the PC-NCF, showing a strong index dispersion. On the 

same curve, as the  increases the HE1,N will change into the anti-resonant core modes 

HE1,n+(N-n), n = 1, 2, …, where the subscript ‘n’ denotes the radial number in the core 

while the ‘N-n’ denotes the radial number in the cladding. The HE1,n+(N-n) modes have 

moderate index dispersion similar to that of the HE1,n modes in NCF, where their 

dispersion curves intersect with each other. The resonant bands are indicated by the 

vertical black and red dashed lines, whose positions are approximated as the cutoff 

wavelengths of the TMN and TEN modes, respectively, in an equivalent asymmetric 

planar waveguide [14]: 
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where, N = 34, 35, …, 38. The neff of the modes HE1,n+(N-n) in AR bands can be 

approximated as that of HE1,n (LP0,n) in NCF. 

 

Figure 7.2  Dispersion curves for HE1,1+(N-1) and HE1,2+(N-2) (N = 34, 35, …, 38) in the PC-NCF 

(black lines) and HE1,1 (LP0,1) and HE1,2 (LP0,2) in NCF (red lines). 

7.3 The transmission spectra of the PC-SNCS 

The transmission efficiency of the straight SNCS is calculated by [7,8]: 
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where η0,n denotes the power coupling coefficient between the fundamental mode of the 

SMF and the excited modes LP0,n of the NCF. The transmission efficiency of the 

straight PC-SNCS due to the AR can be calculated based on an asymmetric planar 

reflection model described in Ref. [13]: 
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𝐼AR  = 10 log10(∑ 𝜂0,n
2 R̅0,n)                                               (7.3) 

where R̅0,n  is the ratio of reflection intensity of a ray (LP0,n) impinging on the 

asymmetric planar waveguide, which is independent of the length. The transmission 

efficiency of an individual LP0,n mode can be calculated by: 

𝐼0,n  = 10 log10(𝜂0,n
2 R̅0,n)                                                (7.4) 

Figure 7.3(a) shows the transmission spectra of the individual modes LP0,n (n = 1, 2, … , 

7) calculated by Eq. (7.4), which exhibit periodic dips and windows. Higher mode 

orders show a red spectral shift, accompanied by a change of the depth of the dips. The 

intensity of the transmission windows increases at first and then reduces in accordance 

with the power coupling coefficient as shown in Ref. [7]. The superposition of the 

spectra of individual modes LP0,n by Eq. (7.3) results in a relatively flat spectrum for the 

straight PC-SNCS, as shown by the black curve in Fig. 7.3(b), where the periodic broad 

dips are indicated by the vertical black and red dashed lines (same to Fig. 7.2). The 

spectrum with periodic broad dips was achieved experimentally in a long PC-SNCS (L 

> 50 mm) in Ref. [13].  

 

Figure 7.3  Simulated transmission spectra of (a) individual modes LP0,n calculated by Eq. (7.4); (b) 

straight PC-SNCS calculated by Eq. (7.3) and SNCS with L = 9 mm calculated by Eq. (7.2). 

1500 1550 1600

-40

-20

0

 LP
0,4

  LP
0,5

  LP
0,6  LP

0,7

(a)

T
ra

n
s
. 

(d
B

)

 (nm)

 LP
0,1

  LP
0,2

  LP
0,3

 

Individual modes, by Eq. (7.4)

1500 1550 1600

-40

-20

0(b)

T
ra

n
s
. 

(d
B

)

 (nm)

  PC -SNCS, by Eq. (7.3)

  SNCS, by Eq. (7.2)



173 
  

Equations (7.3) and (7.4) consider only the AR effect, but the actual light field in the 

straight PC-NCF also includes MMI as discussed. In order to better describe the 

situation with both AR and MMI, the Beam Propagation Method (BPM) was employed 

to simulate the transmission spectra of straight PC-SNCSs with L = 9 mm and 9.3 mm 

[9]. The results are shown in the Fig. 7.4(a). The spectrum of the PC-SNCS with L = 9 

mm shows a fringe pattern with multiple random dips and a broad valley located around 

1550 nm. The valley blue-shifts towards around 1475 nm for the PC-SNCS with a 

larger L = 9.3 mm in Fig. 7.4(a). The PC-SNCS with L = 9.3 mm shows similar spectral 

features to those of the SNCS with L = 9 mm in Fig. 7.3(b), where a broad valley around 

1475 nm is related to the destructive interference of modes in the NCF. The blue 

spectral shift for the PC-SNCSs with an increased L in Fig. 7.4(a) is consistent with the 

trend in an MMI-based optical fiber interferometer as shown in Ref. [8]. The simulated 

results are confirmed by the experiments as shown in Fig. 7.4(b). Compared to the 

simulated results, the multiple random dips are highly suppressed in the measured 

spectra, which may be due to the internal defects and the surface roughness of the 

polymer coating [15]. 

 

Figure 7.4  (a) Transmission spectra simulated by BPM for straight PC-SNCSs with L = 9 mm and 

9.3 mm. (b) Measured transmission spectra for straight PC-SNCSs with L = 9 mm and 9.3 mm (at 

~25 C). 

1500 1550 1600

-40

-20

0

Broad valley

(a)

T
ra

n
s.

 (
d

B
)

 (nm)

       

  L = 9 mm   L = 9.3 mm

BPM results

1500 1550 1600

-40

-20

0
Measured results

(b)

T
ra

n
s.

 (
d

B
)

 (nm)

  L = 9 mm   L = 9.3 mm



174 
  

The similarity of spectral characteristics of the straight PC-SNCS with those for the 

straight SNCS and the dependence of the spectral shift on the length indicate that the 

MMI effect dominates in the straight PC-SNCS with a short L.  

The resonance in PC-NCF results from the coupling between the core and the cladding 

modes. The resonant wavelengths depend only on the thickness and the refractive index 

of the high-index cladding as indicated by Eq. (7.1). It can be deduced that AR effect in 

PC-SNCS is less dependent on the collective behaviour of the LP0,n modes, compared to 

MMI. When any individual LP0,n mode meets the coupling condition with a 

corresponding cladding mode, resonance will happen. The phase and the coherence of 

the spatial eigenmodes is sensitive to the fiber bends and twists, which induce mode 

coupling and the redistribution of energy among modes in multimode fibers [16,17]. 

Therefore, the bending or twisting may break the superimposed spectrum of the multiple 

LP0,n modes in the straight fiber structures indicated by Eqs. (7.2) and (7.3). The AR 

spectrum of an individual LP0,n mode owning high energy and the resonant condition 

may stand out while the others are hidden, and thus result in periodic sharp dips as 

shown in Fig. 7.3(a). 

Figure 7.5 shows the experimental setup used to investigate the effect of fiber bending 

and temperature. The PC-SNCS fiber sample is fixed on two translation stages in 

contact with the surface of the temperature stage, with these three stages located in the 

same plane. To allow for the PC-SNCS to be bent in a controlled fashion, the bending 

curvature of the sample can be tuned by adjusting the distance between two translation 

stages. The bend radius (R) was calculated based on the displacement of the translation 

stages [13]. After adjustment of the bending states, two K-type thermocouples (T1 and 

T2) were fixed closely to the PC-NCF middle section. The measured temperature is an 
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average of the two temperatures: T = (T1+T2)/2. The samples and the stages were 

located in a sealed box, with small openings for the lead-in/lead-out wires for the 

temperature controller (25 C – 50 C), thermometer (RS 206-3738), broadband light 

source (BBS, Thorlabs S5FC1005s) and optical spectrum analyzer (OSA, Agilent 

86142B).  

 

Figure 7.5  Experimental setup for temperature and transmission spectrum measurement. 
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Fig. 7.6(b)), similar to the simulated spectra for the individual modes in Fig. 7.3(a). For a 

reduced bend radius R = 6.5 cm, the dips become broad again, corresponding to a 

further change in the modal phase and energy redistribution. The experimental results 

indicate that the superposition of the AR spectra of multiple modes led to broadening of 

dips while separate individual modes caused sharper dips. 

The spectra of the straight and bent (R = 10 cm) PC-SNCS with L = 9.3 mm are redrawn 

in Fig. 7.6(b), allow comparison with those of the straight and bent (R = 11 cm) PC-

SNCS with L = 9 mm in Fig.7. 6(c) and those of the straight and bent (R = 15 cm) PC-

SNCS with L = 7.5 mm in Fig. 7.6(d). The results suggest that periodic sharp dips can 

be achieved for all the three bent PC-SNCSs with different L, even though their spectra 

for the straight fiber states are different. This result indicates that for fabrication the 

repeatability with respect to the length of PC-NCF is relatively robust. 

 

Figure 7.6  Measured transmission spectra for bent and straight PC-SNCSs with (a) and (b) L = 9.3 

mm, (c) L = 9 mm, and (d) L = 7.5 mm (at ~25 C, ‘R’ = bend radius). 
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7.4 Sensing performance of the temperature sensor 

The transmission spectra of the straight PC-SNCS with L = 9.3 mm at 24.75 C and 

31.6 C are shown in Fig. 7.7(a). As the temperature changes the position of the spectral 

valley around 1475 nm is almost unchanged. The results indicate that the spectral valley 

due to the MMI is less sensitive to temperature. 

 

Figure 7.7  Measured transmission spectra of (a) the straight, (b) and (c) the bent (R = 10 cm) PC-

SNCS with L = 9.3 mm, at different temperatures as indicated; (d) shows the spectral shifts and the 

linear fittings of dip 1 and dip 2 in (b) and (c). 
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periodically. Conversely, the spectrum red shifts as the temperature decreases as shown 

in Fig. 7.7(c). Fig. 7.7(d) shows the linear fittings of results in Figs. 7.7(b) and 7.7(c). 

The R-squared value and the sensitivity (the slope) for dip 1 in the heating process are 

R2 = 0.99941 and -3.757 nm/C respectively, which are quite close to the values of R2 = 

0.99912 and -3.784 nm/C in the cooling process. The R2 and the sensitivity of the dip 2 

in the heating process are 0.99890 and -3.694 nm/C respectively, which are also quite 

close to the values of R2 = 0.99875 and -3.703 nm/C during the cooling process. The 

highly linear response is similar to that observed in the AR-based SHCS [1-3]. The 

sensitivity achieved with the PC-SNCS in this work is about 19 times higher than that of 

the PDMS-coated SHCS reported in Ref. [3].  

7.5 Conclusion 

In conclusion, a novel type of temperature sensor based on a bent PC-SNCS has been 

presented and demonstrated in this chapter. The sensor has a transmission spectrum with 

periodic sharp dips caused by the AR effect of an individual mode, attributed to 

breaking of the superposition effect of the multiple guided modes induced by the fiber 

bending. The sensor is easy to fabricate and has a highly linear temperature response 

with the sensitivity of up to -3.784 nm/C. This study shows that the different degrees of 

dependence of the MMI and the AR effects on the multimode property (the number of 

guided modes) can open new avenues in the design of AR-based devices such as 

sensors and filters with high-index claddings. 
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Chapter 8 

Conclusions and Future Research Work 

This chapter presents a comprehensive review of the key outcomes and 

conclusions of the research work described in this PhD thesis. Future research 

work as an extension of this thesis is also discussed. 

8.1 Conclusions from the research 

The primary aim of this thesis, as stated in Chapter 1, was to investigate the 

three-layer step-index optical fibers and the three-layer depressed-core 

fibers from a modal and spectral perspective and to develop high 

performance fiber optic devices based on these types of fibers. 

The major conclusions and insights of this thesis can be divided into five areas, 

as follows:  

1) Conclusions regarding the calculation and analysis of mode properties of 

the three-layer step-index fibers 

The effective refractive indices (neff) and modal profiles of both core and the 

cladding modes in three-layer step-index optical fibers as a function of core 

radius (r1) were calculated independently by the analytical method, scalar BPM 

and the full-vector FEM, as demonstrated in Chapters 3 and 4. The key 

conclusions from the studies in this area can be drawn as follows: 
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• For the first time a complete dispersion diagram for the dispersion curves 

(neff vs. r1) of the core and the cladding modes for a three-layer step-index 

optical fiber was developed.  

• It was shown in the dispersion diagram that the transition between cladding-

type and core-type modes occurs as a result of the changes in the core radius for 

a three-layer step-index fiber. 

• It was found that the cladding modes possess different dispersion 

characteristics compared to those of the core modes in three-layer step-index 

fibers, based on the mode reorganization phenomenon of the cladding modes 

in the dispersion diagram. 

2) Conclusions regarding the investigation of the self-imaging phenomenon 

of pure cladding modes in three-layer step-index small-core fibers 

The self-imaging of cladding modes in three-layer step-index small-core fiber 

was analytically and numerically calculated and confirmed by experiments, as 

demonstrated in Chapter 4. The key conclusions from the studies in this area can 

be drawn as follows: 

• It was shown by calculation and experimental investigations that the self-

imaging of cladding modes only appears at a set of discrete positions along the 

interferometer axis with an equal spacing corresponding to certain discrete 

values of the fiber core radius.  

• It was deduced that the research demonstrates that the small-core fiber is a 

discrete multimode physical system. 

• It was demonstrated by calculation and experiment that the self-imaging 

period of the cladding modes is an exponential function of the core radius, 
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in contrast to the quadratic relationship in the case of core modes in 

conventional multimode fibers. 

• It was found that the light field in small-core fibers with micro/nano- core is 

characterized by combinations of the Bessel functions J0 and Y0, unlike the field 

characterized only by Bessel function J0 in the core region of a conventional 

multimode fiber. 

3) Conclusions regarding the calculation and analysis of the mode properties 

of three-layer depressed-core fibers 

The dispersion diagram and modal profiles of a depressed-core fiber were 

obtained by solving the full-vector eigenvalue equations and analysed, as 

demonstrated in Chapter 5. The key conclusions drawn from the research in 

regard to the depressed-core fibers are as follows: 

• It was demonstrated theoretically that the waveguiding in a depressed-core 

fiber is governed by anti-resonance, inhibited coupling and the total internal 

reflection effects.  

• It was shown by calculation that the anti-resonant core modes of the 

depressed-core fiber have disc-like transverse field profiles while the cladding 

modes have annular-like transverse field profiles. 

• For the first time a complete dispersion diagram for the dispersion curves 

(neff vs. λ) of the core and the cladding modes in the depressed-core fibers 

was developed by calculation. 

• It was demonstrated that a depressed-core fiber has the non-leaky anti-

resonant core modes, unlike the tube-type hollow-core fiber, whose core 

modes have a leaky nature.  
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• The research demonstrates that the resonant bands in the dispersion 

diagram of a depressed-core fiber can be determined with a proposed 

asymmetric anti-resonant reflecting optical waveguide (ARROW) model. 

• It was demonstrated that the anti-resonant core modes exhibit similar 

qualitative and quantitative behaviour to those of conventional step-index 

fibers. 

4) Conclusions regarding the investigation of the spectral dependence of 

transmission losses in high-index polymer-coated no-core fibers 

A high-index polymer-coated no-core fiber (PC-NCF) was studied as an example 

of a depressed-core fiber. The transmission spectra of the straight and bent PC-

NCFs (length > 5 cm) were measured and analyzed from a modal dispersion 

perspective, as demonstrated in Chapter 6. The key conclusions from the studies 

in this area can be drawn as follows: 

• It was demonstrated that a PC-NCF is effectively a depressed-core fiber, 

where the light is guided by the anti-resonant, inhibited coupling and total 

internal reflection effects and the dispersion diagram shows periodic 

resonant and anti-resonant bands. 

• It was deduced that depressed-core fiber with multiple non-leaky core modes 

are likely to exhibit multimode interference characteristics in the transmission 

spectrum, where the anti-resonance effect is suppressed. 

• It was demonstrated by simulation that the fractional power in the cladding for 

the modes in the resonant bands is higher than that for the modes in the anti-

resonant bands in straight PC-NCFs, and that deliberate fiber bending can 

enhance this difference. 
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• It was demonstrated experimentally that periodic loss dips can be detected in 

the transmission spectra of PC-NCFs with a longer length or under bending 

conditions. 

• It was determined that the wavelength positions of the transmission dips can 

be predicted based on the proposed asymmetric ARROW model. 

• It was demonstrated that the anti-resonant transmission spectra of the PC-NCFs 

can be determined based on multiple reflections from an asymmetric planar 

waveguide. 

5) Conclusions regarding the design of temperature sensors based on high-

index polymer-coated optical fiber interferometers. 

A novel type of highly sensitive temperature sensor based on a bent optical fiber 

interferometer with SMF-PC-NCF-SMF hetero-structure was demonstrated, as 

shown in Chapter 7. The main conclusions from the studies in this area are as 

follows: 

• It was shown experimentally that periodic sharp transmission dips in the 

transmission spectrum can be achieved with a bent SMF-PC-NCF-SMF 

hetero-structure. 

• It was shown experimentally that a bent SMF-PC-NCF-SMF hetero-

structure can implement a compact (< 10 mm), high sensitivity and linear 

response temperature sensor with the sensitivity as high as -3.784 nm/C 

in a range of 25 C – 50 C. 
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• It was found that the different degrees of dependence of the MMI and the 

AR on the multimode properties can open new directions in the design of 

AR-based devices such as sensors and filters with high-index claddings. 

• It was shown that the temperature sensor is relatively easy to fabricate and 

the repeatability with respect to length of PC-NCF is relatively robust. 

Overall, this thesis has demonstrated for the first time the complete modal 

dispersion diagrams, the modal properties, and the transmission characteristics of 

two basic fiber types: the three-layer step-index optical fiber and the three-layer 

depressed-core fiber. Based on this fundamental knowledge and insights, 

additional novel devices based on these two types of fiber are expected to be 

designed in the future. 

8.2 Future research work 

The research carried out to date has given complete full-vector modal dispersion 

diagrams for both the three-layer step-index fibers and the DCFs. The research 

also demonstrated the discrete self-imaging phenomenon of pure cladding modes 

in SCFs, and the anti-resonant and inhibited coupling effects in DCFs. These 

findings could form a basis of future research, such as: 

1) Development of optical devices using the pure cladding-type mode fields 

in small-core fibers. 

The unique light field of multiple cladding-type modes in an SCF, distinct from 

that of multiple core-type modes in the commonly used MMFs, can be further 

explored in many applications. For example, compared to the Bessel beams 

generated by a MMF and characterized by the function J0, the pure cladding 
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modes in a SCF can be used to generate a new kind of Bessel beams 

characterized by the combinations of J0 and Y0. Bessel beams based on a 

truncation of Y0 having higher energy over a longer range than that of J0 Bessel 

beams were theoretically predicted in Ref. [1]. Indeed, the micro/nano- core in 

SCFs can strongly modify the on-axis intensity, which is critically important to 

the performance of Bessel beams used for optical manipulation [2, 3]. Therefore 

the Y0 modulated J0 Bessel beams generated with SCFs may offer an improved 

performance in optical manipulation applications. 

The discrete self-imaging effect indicates that the SCF may also be a discrete 

multimode physical system. The SCF with pure cladding modes may be a 

valuable platform for studies of multimode nonlinear fiber optics. It is also 

expected that multimode solitons, which so far have been only experimentally 

observed in a graded-index MMF, could be achieved in a SCF.  

2) Development of multimode optical devices based on the rule of the 

discrete self-imaging phenomenon. 

The discrete self-imaging effect in a small-core optical fiber interferometer can 

be regarded as the first discrete self-imaging phenomenon found in multimode 

waveguides, which may provide new insights and rules for the design of the 

multimode interference devices such as optical couplers, optical modulators, 

multimode fiber lasers and space-division multiplexing systems. 

3) Development of optical devices based on the anti-resonance effect in 

multimode waveguides with high-index claddings. 
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The application of high-index coatings to the surface of conventional step-index 

fiber changes its original index distribution and results in the anti-resonance 

phenomenon. Compared to the multimode interference effect, the anti-resonance 

effect does not rely on the multimode properties of the optical waveguide. The 

bending can suppress the multimode interference and can break the superposition 

of anti-resonant spectra of multiple modes. This results in the dominance of the 

anti-resonance of an individual mode and consequently in periodic sharp 

transmission dips in the spectrum of a high-index coated waveguide. Therefore, 

simple technologies such as high-index coating and bending can be used in the 

design of anti-resonant based devices for a variety of applications.  

8.3 Reference 

[1] L. Vicari, “Truncation of non-diffracting beams,” Opt. Commun., vol. 70, no. 4, 

pp. 263-266, 1989. 

[2] D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” 

Contemporary Physics, vol. 46, no. 1, pp. 15-28, 2005. 

[3] T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle 

organization by self-imaging of non-diffracting beams,” New J. Phys., vol. 8, 

no. 3, p. 43, 2006.  
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Appendix A 

Eigenvalue Equations for Vector Modes 

TE, TM, HE and EH in Three-Layer 

Optical Fibers 

This section introduces the eigenvalue equations for modes in a three-layer step-

index fiber shown in Fig. 1(b) with n3 < n2 < n1 and a three-layer depressed-core 

fiber with n3 < n1 < n2 shown in Fig. 1(d). 

The eigenvalue equations used to calculate the effective refractive index of the 

cladding modes with n3 < neff < n2 in three-layer step-index fiber (or the core 

modes with n3 < neff < n1 in three-layer depressed-core fiber) are as follows [1]: 

for the TE0,n modes: 

𝐽 (𝐾𝑝m +
𝑟m

𝛼2𝑈2
) =

1

𝑈2
(𝐾̂𝑞m +

𝑠m

𝛼2𝑈2
) ,m =  0                      (A.1) 

for the TM0,n modes with: 

𝐽 (𝐾̂𝑝m +  23
𝑟m

𝛼2𝑈2
) =

𝑠21

𝑈2
(𝐾̂𝑞m +  23

𝑠m

𝛼2𝑈2
),m =  0                (A.2) 

for the HEm,n and the EHm,n modes with: 
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𝑝m
2 + 2(

2

𝜋𝛼2𝑈2
2)

2

(
𝑛2
2

𝑛1𝑛3
)𝑥1𝑥2

+ 𝑥1
2𝑥2

2 [𝐽 (𝐾̂𝑝m +
𝑟m
𝛼2𝑈2

) −
1

𝑈2
(𝐾̂𝑞m +

 m
𝛼2𝑈2

)]

× [𝐽 (𝐾̂𝑝m +  23
𝑟m
𝛼2𝑈2

) −
 21
𝑈2

(𝐾̂𝑞m +  23
 m
𝛼2𝑈2

)]

= 𝑥1
2 (𝐽𝑝m −

𝑞m
𝑈2
) (𝐽𝑝m −  21

𝑞m
𝑈2
)

+ 𝑥2
2 (𝐾̂𝑝m +

𝑟m
𝛼2𝑈2

) (𝐾̂𝑝m +  23
𝑟m
𝛼2𝑈2

) 

(A.3) 

The fiber parameters of the depressed-core fibers shown in Fig. 2.10 are r1, r2, 

n1, n2 and n3. The wavenumber in vacuum is: 𝑘0 = 2𝜋/𝜆 , where 𝜆 is the 

wavelength. The longitudinal propagation constant is: 𝛽 = 𝑘0𝑛eff. In the Eqs 

(A.1), (A.2) and (A.3), the parameters used are as follows: 

𝛼2 =
𝑟2

𝑟1
,                                                           (A.4) 

𝑢1 = √𝑘0
2𝑛1

2 − 𝛽2 ,                                                (A.5) 

 𝑢2 = √𝑘0
2𝑛2

2 − 𝛽2,                                                 (A.6) 

  𝜔3 = √𝛽2 − 𝑘0
2𝑛3

2 ,                                                (A.7) 

𝑈1 = 𝑢1𝑟1 ,  𝑈2 = 𝑢2𝑟1 ,   𝑊3 = 𝜔3𝑟2,                               (A.8) 

𝐽 =  
𝐽m
′ (𝑈1)

𝑈1𝐽m(𝑈1)
 ,                                                     (A.9) 

 𝐾̂ =  
𝐾m
′(𝑊3)

𝑊3𝐾m(𝑊3)
,                                                  (A.10) 

𝑝m = 𝐽m(𝑢2𝑟2)𝑌m(𝑢2𝑟1) − 𝐽m(𝑢2𝑟1)𝑌m(𝑢2𝑟2),                       (A.11) 

𝑞m = 𝐽m(𝑢2𝑟2)𝑌m
′(𝑢2𝑟1) − 𝐽m

′ (𝑢2𝑟1)𝑌m(𝑢2𝑟2),                       (A.12) 
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𝑟m = 𝐽m
′ (𝑢2𝑟2)𝑌m(𝑢2𝑟1) − 𝐽m(𝑢2𝑟1)𝑌m

′(𝑢2𝑟2),                       (A.13) 

 m = 𝐽m
′ (𝑢2𝑟2)𝑌m

′(𝑢2𝑟1) − 𝐽m
′ (𝑢2𝑟1)𝑌m

′(𝑢2𝑟2),                       (A.14) 

 23 =
𝑛2
2

𝑛3
2 ,  21 =

𝑛2
2

𝑛1
2,                                              (A.15) 

𝑉12
2 = 𝑘0

2𝑟1
2(𝑛1

2 − 𝑛2
2), 𝑉23

2 = 𝑘0
2𝑟2

2(𝑛2
2 − 𝑛3

2),                        (A.16) 

𝑥1
2 =

𝑛1
2𝑈1

4𝑈2
4

𝜎0
2𝑉12

4 , 𝑥2
2 =

𝑛3
2𝛼2

4𝑈2
4𝑊3

4

𝜎0
2𝑉23

4 ,                                   (A.17) 

𝜎0
2 = (

𝛽m

𝑘0
)
2
.                                                    (A.18) 

The parameters 𝑢1,  𝑢2,  𝜔3, 𝑈1,  𝑈2,   𝑊3 are phase parameters. The functions 𝐽m, 

𝑌m and 𝐾m denote the Bessel function of the first kind, the Bessel function of the 

second kind and the modified Bessel function of the second kind. 𝐽m
′ , 𝑌m

′, and 

𝐾m
′ denote the derivatives of the corresponding Bessel functions. 

To calculate the core modes with n2 < neff < n1 in three-layer step-index fibers (or 

the cladding modes with n1 < neff < n2 in three-layer depressed-core fibers), the 

phase parameter u1 in the Eq. (A.5) needs to be modified as:  

𝑢1 = √𝛽2−𝑘0
2𝑛1

2                                                (A.19) 

and 𝐽 in the Eq. (A.9) need to be modified as: 

𝐽 =  −
𝐼m
′ (𝑈1)

𝑈1𝐼m(𝑈1)
,                                                 (A.20) 

where 𝐼m and 𝐼m
′  denote the modified Bessel function of the first kind and its 

derivative. 
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The modal intensity and electric field vector distributions can be calculated with 

the field functions shown in Refs. [1-3]. 

Reference 

[1] C. Tsao, Optical Fiber Waveguide Analysis, (Oxford University Press, 

New York, 1992).  

[2] T. Erdogan, “Cladding-mode resonances in short- and long-period fiber 

grating filters,” J. Opt. Soc. Am. A, vol. 14, no. 8, pp. 1760-1773, 1997.  

[3] Z. Zhang and W. Shi, “Eigenvalue and field equations of three-layered 

uniaxial fibers and their applications to the characteristics of long-period 

fiber gratings with applied axial strain,” J. Opt. Soc. Am. A, vol. 22, no. 

11, pp. 2516–2526, 2005.  
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Appendix B 

Eigenvalue Equations for Scalar Modes 

LPm,n in Three-Layer Optical Fibers 

In a three-layer step-index optical fiber the field profiles of the scalar modes 

LPm,n are used as in Ref. [1]: 

𝐸m,n(𝑟) =

{
  
 

  
 𝐴0𝐽m (𝑢

𝑟

𝑟1
) , 𝑟 ≤ 𝑟1              

𝐴1𝐽m (𝑢′
𝑟

𝑟2
) + 𝐴2𝑌m (𝑢′

𝑟

𝑟2
),         

                  𝑟1 ≤ 𝑟 ≤ 𝑟2

𝐴3𝐾m (𝑣
𝑟

𝑟2
) , 𝑟 ≥ 𝑟2             

if  𝑛eff < 𝑛2 

 (B.1) 

and 

𝐸m,n(𝑟) =

{
  
 

  
 𝐴0

′ 𝐽m (𝑢
𝑟

𝑟1
) , 𝑟 ≤ 𝑟1             

𝐴1
′ 𝐼m (𝑣′

𝑟

𝑟2
) + 𝐴2

′𝐾m (𝑣′
𝑟

𝑟2
),     

                      𝑟1 ≤ 𝑟 ≤ 𝑟2

𝐴3
′𝐾m (𝑣

𝑟

𝑟2
) ,        𝑟 ≥ 𝑟2            

  if  𝑛eff > 𝑛2 

(B.2) 

where Jm, Ym, Im and Km are usual Bessel and modified Bessel functions, 𝐴0, 𝐴0
′ , 

are the normalization coefficients and 𝑢, 𝑢′, 𝑣, 𝑣′, 𝐴1, 𝐴1
′ , 𝐴2, 𝐴2

′ , 𝐴3 and 𝐴3
′   are 

defined as follows: 

𝑢 = 𝑟1[𝑘0
2𝑛1

2 − (𝑛eff𝑘0)
2]1 2⁄                                     (B.3-1) 
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𝑢′ = 𝑟2[𝑘0
2𝑛2

2 − (𝑛eff𝑘0)
2]1 2⁄                                     (B.3-2) 

𝑣′ = 𝑟2[(𝑛eff𝑘0)
2−𝑘0

2𝑛2
2]1 2⁄                                       (B.3-3) 

𝑣 = 𝑟2[(𝑛eff𝑘0)
2−𝑘0

2𝑛3
2]1 2⁄  .                                    (B.3-4) 

𝐴1 =
𝜋𝐴0

2
[𝑢𝐽m+1(𝑢)𝑌m(𝑢

′𝑐) − 𝑢′𝑐𝐽m(𝑢)𝑌m+1(𝑢
′𝑐)]                  (B.4-1) 

𝐴2 =
𝜋𝐴0

2
[𝑢′𝑐𝐽m+1(𝑢

′𝑐)𝐽m(𝑢) − 𝑢𝐽m+1(𝑢)𝐽m(𝑢
′𝑐)]                   (B.4-2) 

𝐴3 =
1

𝐾m(𝑣)
[𝐴1𝐽m(𝑢

′) + 𝐴2𝑌m(𝑢
′)]                                             (B.4-3) 

𝐴1
′ = 𝐴0

′ [𝑣′𝑐𝐽m(𝑢)𝐾m+1(𝑣
′𝑐) − 𝑢𝐽m+1(𝑢)𝐾m(𝑣

′𝑐)]                  (B.5-1) 

𝐴2
′ = 𝐴0

′ [𝑣′𝑐𝐽m(𝑢)𝐼m+1(𝑣
′𝑐) + 𝑢𝐽m+1(𝑢)𝐼m(𝑣

′𝑐)]                    (B.5-2) 

𝐴3
′ =

1

𝐾m(𝑣)
[𝐴1

′ 𝐼m(𝑣
′) + 𝐴2

′𝐾m(𝑣
′)]                                             (B.5-3) 

The neff (LPm,n) is the solution of the eigenvalue equations as below: 

[𝐽m(𝑢)−𝑌̂m(𝑢
′𝑐)][𝐾̂m(𝑣)−𝐽m(𝑢

′)]

[𝐽m(𝑢)−𝐽m(𝑢
′𝑐)][𝐾̂m(𝑣)−𝑌̂m(𝑢

′)]
=

𝐽m+1(𝑢
′𝑐)𝑌m+1(𝑢

′)

𝐽m+1(𝑢
′)𝑌m+1(𝑢

′𝑐)
      if  𝑛eff < 𝑛2        (B.6) 

and 

[𝐽m(𝑢)−𝐾̂m(𝑣
′𝑐)][𝐾̂m(𝑣)+𝐼m(𝑣

′)]

[𝐽m(𝑢)+𝐼m(𝑣
′𝑐)][𝐾̂m(𝑣)−𝐾̂m(𝑣

′)]
=

𝐼m+1(𝑣
′𝑐)𝐾m+1(𝑣

′)

𝐼m+1(𝑣
′)𝐾m+1(𝑣

′𝑐)
     if  𝑛eff > 𝑛2         (B.7) 

where  

𝐹̂0(𝑥) =
𝐹0(𝑥)

𝑥𝐹1(𝑥)
                                                     (B.8)  
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(F representing the Bessel functions J, Y, I, or K) and  

𝑐 =
𝑟1

𝑟2
                                                            (B.9) 

Reference 

[1] M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. 

Quantum Electron., vol. QE-18, no. 4, pp. 535-542, 1982. 
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Appendix C 

Multiple Reflections of an Unpolarized 

Incident Beam on an Asymmetric Planar 

Waveguide 

The multiple reflections of one beam incident on an asymmetric planar 

waveguide are considered in this section. The asymmetric planar waveguide 

consists of three regions with refractive indices of n1, n2 and n3 (n2 > n1 > n3) as 

indicated in Fig. C.1(a). The angle of incidence is θ1 within n1 > n1sin θ1 > n3, 

which ensures that Fresnel’s refraction and reflection at the interface between  

  

Figure C.1  (a) Ray trajectory of a beam with angle of incidence θ1 (n1 > n1sin θ1 > n3) 

impinging on the interface of an asymmetric planar waveguide. (b) Fresnel’s refraction and 

reflection at the interface between regions I and II. (c) Total reflection at the interface 

between regions II and III, where ‘z’, ‘H’, and ‘h’ denote the Goos-Hänchen shift, the 

deviation of the reflection light, and the penetration depth of the evanescent wave, 

respectively. 

(c)
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regions I and II is as shown in Fig. C.1(b) while total reflection at the interface 

between regions II and III is as shown in Fig. C.1(c). 

The Fresnel’s (intrinsic) transmission (t) and reflection (r) coefficients for TE 

beams are [1]: 

𝑟⏊𝑖𝑗 =
𝑛𝑖 cosθ𝑖−𝑛𝑗 cosθ𝑗

𝑛𝑖 cosθ𝑖+𝑛𝑗 cosθ𝑗
, 𝑡⏊𝑖𝑗 =

2𝑛𝑖 cosθ𝑖

𝑛𝑖 cosθ𝑖+𝑛𝑗 cosθ𝑗
                      (C.1) 

 

and for TM beams are: 
 

𝑟∥𝑖𝑗 =
𝑛𝑗 cosθ𝑖−𝑛𝑖 cosθ𝑗

𝑛𝑗 cosθ𝑖+𝑛𝑖 cosθ𝑗
, 𝑡∥𝑖𝑗 =

2𝑛𝑖 cosθ𝑖

𝑛𝑗 cosθ𝑖+𝑛𝑖 cosθ𝑗
                       (C.2) 

 

where indices i = 1 (2) and j = 2 (1), denote the incident region and transmission 

region, respectively.  

The intrinsic reflection coefficient (r) and the phase change (ϕ) in the total 

reflection case are as follows. For the TE beams: 

𝑟⏊𝑖𝑗 = 𝑒𝑖2𝜙⏊ , 𝜙⏊ =  tan−1(
√sin2θ𝑖−𝑛𝑗

2 𝑛𝑖
2⁄

cosƟ𝑖
)                     (C.3) 

For the TM beams: 

𝑟∥𝑖𝑗 = 𝑒𝑖2𝜙∥ , 𝜙∥ = tan−1(
𝑛𝑖
2

𝑛𝑗
2

√sin2θ𝑖−𝑛𝑗
2 𝑛𝑖

2⁄

cosƟ𝑖
)                    (C.4) 

where index i = 2 and j = 3 denote regions II and III, respectively.  

The total amplitude of multiple reflections for TE (or TM) beams in the region II 

can be calculated as: 
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𝐴(𝑟) = [𝑟12 + 𝑡12𝑟23𝑡21𝑒
𝑖𝛿 + 𝑡12𝑟23(𝑟21𝑟23)𝑡21𝑒

𝑖2𝛿+𝑡12𝑟23(𝑟21𝑟23)
2𝑡21𝑒

𝑖3𝛿

+⋯+𝑡12𝑟23(𝑟21𝑟23)
𝑝−2𝑡21𝑒

𝑖(𝑝−1)𝛿] 𝐴(𝑖)

= {𝑟12 + 𝑡12𝑟23𝑡21 [
1 − (𝑟21𝑟23𝑒

𝑖𝛿)
𝑝−1

1 − 𝑟21𝑟23𝑒
𝑖𝛿

] 𝑒𝑖𝛿} 𝐴(𝑖) 

 (C.5) 

where 𝛿  is the phase difference between the two adjacent reflected beams in 

region I: 𝛿 =  
4𝜋𝑛2𝑑𝑐𝑜𝑠𝜃2

𝜆
. p is number of reflected beams: 𝑝 =

𝐿

2𝑑𝑡𝑎𝑛𝜃2
. 𝐴(𝑖) is the 

amplitude of the incident beam. Given d = 62.5 µm, n1 = 1.445, n2 = 1.51, and a 

waveguide length L > 0.5 cm, the p is large enough for the total reflected 

amplitude to be approximated as: 

𝐴(𝑟) = (𝑟12 +
𝑡12𝑟23𝑡21

1−𝑟21𝑟23𝑒
𝑖𝛿 𝑒

𝑖𝛿)𝐴(𝑖)                                   (C.6) 

And the ratio of reflection intensity can be calculated as:  

𝑅 =
𝐴(𝑟)𝐴(𝑟) 

𝐴(𝑖)𝐴(𝑖) 
= |𝑟12 +

𝑡12𝑟23𝑡21

1−𝑟21𝑟23𝑒
𝑖𝛿 𝑒

𝑖𝛿|
2
                                (C.7) 

Substituting the intrinsic reflection and refraction coefficient for the TE (or TM) 

beams calculated by Eqs. (C.1)-(C.4) into Eqs. (C.6) and (C.7), the ratio of 

reflection intensity of the TE and TM beams are calculated respectively as 𝑅⏊ 

and 𝑅∥. The ratio of reflection intensity of an unpolarized incident beam is the 

average of 𝑅⏊ and 𝑅∥ thus: 

𝑅̅ =
𝑅⏊ +𝑅∥

2
 .                                                  (C.8) 

Reference 
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