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Abstract 

This study measures in vivo head accelerations in Mixed Martial Arts (MMA) and applies 

them to a finite element head model to determine the levels of strain within the corpus 

callosum, thalamus, midbrain and brain stem. Twenty-two elite amateur and professional 

MMA athletes took part in the study. Ethical approval was granted by the Institute of 

Technology Tallaght Ethics Committee (REC-STF1-201819). 

 

Participants were fitted with the Stanford University instrumented mouthguard (MiG2.0), 

a 6 DOF device with a tri-axial accelerometer and gyroscope. The lower threshold for 

recording data was 10g.  All events were video recorded to allow for the confirmation of 

any impact recorded. The measured head accelerations were applied to a partially 

validated, 50th percentile male human model managed by the Global Human Body 

Modelling Consortium (GHBMC). 

 

434 head impacts have been recorded at fourteen out of competition sessions and eight 

competitive events. No injuries were sustained during the out of competition sessions, 

while five of the competitive events resulted in an mTBI diagnosis. The mean impact 

sustained by participants in out of competition sessions was 29.2g and 4917 rads/s2 while 

the mean impact in competitive events was 43.5g and 5969 rads/s2. 

 

The best predictors for strain in the corpus callosum and thalamus were peak linear 

acceleration in the Y axis and peak rotational velocity combined (R2 (adj) = 0.48 and 

0.493 respectively), in the mid brain and brainstem were peak linear acceleration in the 

Y axis and peak rotational acceleration about the Z axis combined (R2 (adj) = 0.741 and 

0.805 respectively). The best predictor for a concussive diagnosis was found to be impact 

duration. Eight of the simulated impacts had durations greater than 15ms for linear 

acceleration or 25 ms rotational acceleration duration, seven of these sessions resulted in 

a concussion diagnosis. These results may aid future work in the prediction of mTBI’s in 

sport.  
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Chapter 1 Introduction 



 

2 

 

“… People are uneducated about traumatic brain injury. They don’t recognize it when 

it happens to them or their loved ones; they don’t know the extent of the public health 

problem… Without accurate data, how can we begin to address the problem?” 

 

The quote above is from a traumatic brain injury (TBI) survivor, taken at the 

Congressional Brain Injury Task Force in 2001. Almost twenty years later it still holds 

true. As of 2018, at least 1.4 million Americans suffer a TBI every year, 235,000 of these 

require hospitalisation and 50,000 die as result of their injuries [1].  There are many forms 

of TBI, ranging from severe (skull fracture) to mild (concussion) [2]. The fifth 

International Conference on Concussion in Sport has defined concussion as a “complex 

pathophysiological process affecting the brain, induced by traumatic biomechanical 

forces.” [3].  

 

Sports and recreation activities are one of the main sources of TBI in the United States of 

America, with 90% of these injuries being classified as mild traumatic brain injuries 

(mTBI). In the period 2001-2012, 3.42 million emergency department visits were 

recorded as a result of a sport related TBI in the US, with the rate at which these injuries 

occurred increasing throughout the period [4]. MTBI’s are particularly difficult to 

diagnose, as medical imaging techniques show no physical damage to the brain post 

injury [5]. Several studies have postulated that increased levels of strain in the brain are 

the cause of mTBI, with several regions being of particular interest [6] [7] [8]. This study 

investigated that hypothesis by collecting in vivo head impact data and applying it to a 

finite element model to determine the levels of strain in the brain during an impact. In 

order to do this, several procedures had to be put in place.  

 

• A procedure for collecting the in vivo data was be developed, as well as a 

procedure to analyse this data.  

• Once a procedure for collecting data was developed and the data had been 

analysed, in order to rule out any false positives, data collection could begin.  

• A procedure to apply this data to the finite element model and to run the simulated 

impacts was then developed. 

• A method of analysing the simulation data was developed 

• Investigate of predictors for strain and concussion from simulation results 



 3 

An instrumented mouthguard has been viewed as a one of the more accurate options for 

recording the velocity and acceleration of the head following an impact. This is due to the 

fact that the coupling of the mouthguard, via the test subjects’ dentition, allows for direct 

recording of the kinematics of the head. As opposed to the recording of data incorporated 

in an instrumented helmet, for example. 

 

Mixed Martial Arts (MMA) was chosen as the sport to collect data from as it offers a near 

unique opportunity to collect large numbers of impacts. This is because MMA is a 

competitive, full-contact sport that involves an amalgamation of elements drawn from 

boxing, wrestling, karate, taekwondo, jujitsu, Muay Thai, judo, and kickboxing [9]. The 

fighters wear 110g to 170g gloves and do not wear head protection. A ten-year review of 

injuries in MMA by Buse et al., in 2006, found that head trauma was the single biggest 

reason for match stoppages (28.3%) [10]. This is one of few studies to measure in vivo 

head accelerations in an unhelmeted sport [11] [12] [13].  
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Chapter 2 Literature Review 
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2.1 Introduction 

The following chapter will document the research literature reviewed for this study.  

 

• Anatomy of the human skull, the regions of the brain and their functions.  

• Traumatic Brain Injuries (TBI) and the diagnosis of concussion. 

• Instrumented devices including helmet mounted systems, devices that are worn 

on the body and instrumented mouthguards.  

• Finite Element (FE) models used in concussion research. 

• Brain injury predictors. 

• Mixed Martial Arts (MMA), its history, rules and the justification for choosing it 

for this study. 
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2.2 Anatomy 

In this section the anatomy of the human head and brain will be discussed. This will 

include the anatomical arrangement, operation and function of the skull, major regions of 

the brain and some of the areas of the brain that are of particular interest in the study of 

TBI. Anatomical plane and axes will be defined and their relative directions of 

motion/rotation will also be discussed. 

 

Particular attention will be paid to the regions that have been highlighted as important in 

the field of TBI [6] [8] [7]. These include the corpus callosum, mid-brain, brain stem, falx 

cerebri, cerebellar tentorium and diencephalon.  

 

2.2.1 Skull 

The adult human skull consists of 22 bones, 8 forms the cranium and 14 forms the facial 

structure. The 8 cranial bones create the cranial cavity, which houses the brain. The 

cranial bones are the occipital, parietal (x2), frontal, temporal (x2), sphenoid and ethmoid, 

shown in Figure 1. These bones protect the brain from external forces and dictate the 

overall shape of the brain within. 

 

 

Figure 1: Cranial Bones [14] 
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Connections between these bones in adults consist of dense fibrous connective tissue 

called sutures, Figure 2 shows these sutures. There are 4 suture types in the cranial cavity: 

 

1. Lambdoid suture: Connects the occipital and parietal bones in the posterior of the 

skull. One or more Wormian bones, which are small non-uniformly shaped bones 

not unlike jigsaw pieces, form part of this suture. 

2. Coronal suture: Connects the frontal and parietal bones on the superior of the 

skull. 

3. Sagittal suture: Connects the parietal bones, running from the lambdoid suture to 

the coronal suture. 

4. Squamous suture: Connects the temporal and parietal bones on each side of the 

skull. 

 

 

 

 

Figure 2: Bones and sutures of the skull in posterior view [14] 
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2.2.2 Brain 

The human brain is mainly comprised of a left and right hemisphere, cerebellum, brain 

stem and the corpus callosum. It is protected internally by the cranial meninges and 

cerebrospinal fluid.  

 

The matter of the brain is made up of neurons; these neurons send and receive electrical 

and chemical signals to and from the brain. The makeup of these neurons can be broken 

down into “grey” and “white” matter. “Grey” matter consists of the cell bodies of neurons 

and makes up the cortex of the brain. “White” matter is made up of millions of nerve 

fibres called dendrites and axons, axons are the medium through which the signal travels 

and connect the cell body to the dendrite. Dendrites are located at the area at which the 

signal is to be sent and have a branched structure to allow for the signals to be passed to 

the area required, shown in Figure 3.   

  

 

Figure 3: General arrangement of a neuron [14] 
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2.2.3 Brain Regions 

The anatomical structure of the human brain is made up of 6 main regions; the (1) cerebral 

hemispheres, (2) cerebellum, (3) diencephalon, (4) midbrain, (5) pons and (6) medulla 

oblongata, with the midbrain, pons and medulla oblongata making up the brain stem, 

shown in Figure 4.  Each region is associated with different functions and has varying 

cellular structures. Brain size varies by gender, with male brains being approximately 

10% larger on average due to the difference in average body size.  

 

 

 

 

Figure 4: Major regions of the brain [14] 

 

1. Cerebrum: The largest region of the brain consisting of 2 cerebral hemispheres, 

the left and right hemispheres. The outer surface of the cerebrum is known as the 

cerebral cortex. The surface of the cerebral cortex is covered in Gyri, raised ridges, 

and Sulci, shallow depressions, which increase the surface area of the brain. The 

cerebral hemispheres are made up of 4 lobes; the frontal, parietal, occipital and 

temporal lobes. 

 

 

1 

4 

5 

6 

3 
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2. Cerebellum: The second largest region of the brain, located posteriorly to the 

cerebrum. The cerebellum also has 2 hemispheres and is covered by a ridged 

cerebellar cortex. The function of the cerebellum is to receive signals from the 

sensory systems of the body and regulate motor function. 

 

3. Diencephalon: Located in the centre of the brain below the cerebral hemispheres, 

provides the link between the cerebral hemispheres and the brain stem. Consisting 

of the thalamus and the hypothalamus. The thalamus is the processing centre for 

sensory signals. As well as being involved in the delivery of sensory and 

emotional information between the spinal cord and the cranial nerves. And the 

hypothalamus is the centre for hormone production, emotion control and 

autonomic functions. 

 

4. Midbrain: Uppermost portion of the brain stem located directly below the 

diencephalon. It is the processing centre of visual and auditory data, maintains 

consciousness and generates the reflexive motor responses.  

 

 

5. Pons: The mid portion of the brain stem, named from the Latin for bridge, the 

pons is the connection between the cerebellum and the brain stem. It sends sensory 

data to the cerebellum and thalamus and is the centre for subconscious somatic 

and visceral motor functions.   

 

6. Medulla Oblongata: The lowest portion of the brain stem, the medulla oblongata 

connects the brain stem to the spinal cord. It sends sensory data to other portions 

of the brain stem and is the autonomic centre for regulating the body’s visceral 

functions. 
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2.2.4 Lobes of the Cerebrum 

The cerebrum is physically split into 2 hemispheres; each hemisphere has 4 distinct lobes. 

These lobes are separated by sulci that are common to all adult human brains. The central 

sulci separate the frontal and parietal lobes, the horizontal lateral sulci separate the 

temporal and frontal lobes and the parieto-occipital sulci separate the parietal and 

occipital lobes. While these sulci are found in all adult human brains, the exact formation 

of the gyri and sulci of every brain are entirely unique.  

1. Frontal Lobe: Located anteriorly, the frontal lobe has many functions including 

voluntary movement and speech. The pre frontal cortex is a subdivision of the 

frontal lobe; its functions are in relation to memory, intelligence, temperament 

and personality. 

2. Parietal Lobe: Located posteriorly to the frontal lobe the parietal lobe is the 

primary sensory cortex. It handles how the brain perceives pain, pressure, heat, 

taste and vibration. 

3. Occipital Lobe: Located at the posterior of the skull the occipital lobe is the visual 

cortex of the brain. It handles the interpretation of visual stimuli. 

4. Temporal Lobe: Located laterally in the cranial cavity the temporal lobe is the 

auditory and olfactory cortex. It deals with the perception of sounds and smells. 

Although these lobes have been listed with certain functions it should be noted that they 

do not function separately, they have highly complex relationships and function as a 

whole. Information is passed between lobes and hemispheres, and each lobe could be 

further divided into specialised areas for each function, shown in Figure 5.  

 

 

Figure 5: Functions of the Lobes of the Brain [14] 
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2.2.5 Corpus Callosum 

 

The corpus callosum is a fibrous band of nerves that spans part of the longitudinal fissure 

of the brain, shown in Figure 6. Located beneath the cerebral cortex it connects the left 

and right hemispheres and allows each hemisphere to communicate with each other. 

Comprised of approximately 200 million axons, it is the largest white matter fibre bundle 

in the brain. Its main functions are: 

 

• Passing of information between left and right hemispheres 

• Perception of touch and tactile localisation 

• Combining visual data from left and right hemispheres 

• Identification of visual data and connecting with language centre  

 

Figure 6: The Corpus Callosum highlighted in red [15] 

2.2.6 Cerebrospinal Fluid 

Cerebrospinal fluid (CSF) surrounds the entirety of the central nervous system (CNS), 

with the CNS encapsulating the brain and spinal column. It has a number of functions, 

including but not limited to the following: 

 

1. Acts as a damper for the delicate surfaces of the CNS 

2. Provides support to the brain by surrounding it completely 

3. Acts as an exchange medium for nutrients, waste and chemical signals 
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2.2.7 Cranial Meninges 

Within the cranial cavity the brain is protected by the cranial meninges. The cranial 

meninges are made up of 3 layers; the dura, arachnoid and pia, shown in Figure 7. The 

main function of the cranial meninges is to provide a protective layer within the cranial 

cavity. 

 

1. Dura: The outermost layer of the cranial meninges. It is comprised of 2 layers; 

the outer periosteal and the inner meningeal. The periosteal layer is directly 

connected to the periosteum of the cranial cavity, meaning there is no space 

within the cranial cavity superior to the dura matter. Between the 2 layers there 

is a small gap that contains tissue fluids and allows the veins of the brain to open 

into the sinuses that direct blood from the brain to the jugular veins in the neck. 

 

2. Arachnoid: An epithelial membrane that covers the brain but does not follow the 

curvature of the brains surface. It is in direct contact with the inner layer of the 

dura and has a void, the sub-arachnoid space, between it and the pia layer. The 

sub-arachnoid space houses Cerebrospinal fluid, which has a damping effect 

when the cranium is impacted. 

 

3. Pia: The pia is a thin layer that is directly connected to the brains surface, 

following every fold of the brain and covers cerebral blood vessels where they 

penetrate the brains surface.  

 

Figure 7: Layers of the Meninges [16] 
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2.2.8 Falx Cerebri  

A meningeal layer of dural matter, the falx cerebri is a sickle shaped layer that separates 

the cerebral hemispheres vertically in the longitudinal fissure. It is connected anteriorly 

proximal to the cribform plate and the frontal sinus. In the posterior it connects to the 

upper surface of the tentorium. Shown in Figure 8.   

2.2.9 Cerebellar Tentorium 

A further extension of the dural matter, the cerebellar tentorium derives its names form 

the Latin for “tent of the cerebellum”. It separates the cerebellum and the cerebrum in the 

transverse fissure. It gets its name from its tent like shape, which wraps around the 

cerebellar hemispheres. Shown in Figure 8.  

 

 

Figure 8: The skull and position of Flax Cerebri and Cerebellar Tentorium [17] 
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2.2.10 Anatomical Planes and Axes 

Shown in Figure 9 are the standard anatomical planes and axes. 

Planes: 

• The frontal plane divides the body into front and back (dorsal and ventral). 

• The sagittal plane divides the body in to left and right (anterior and posterior). 

• The transverse plane divides the body in to upper and lower (superior and 

inferior). 

Axes: 

• The frontal axis’ direction of motion is left to right. 

• The sagittal axis’ direction of motion is posterior to anterior. 

• The transverse axis’ direction of motion is inferior to superior.  

 

Figure 9: Standard Anatomical Planes and Axes [18] 

2.2.11 Anatomy Summary 

In this section the regions of the brain that are of interest in TBI have been investigated 

in terms of their function and operation. Those regions are the corpus callosum, the 

diencephalon, the midbrain, brainstem, meninges, falx cerebri and the cerebellar 

tentorium. Some of these regions will be investigated further by performing finite element 

analysis with in vivo impact data.   
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2.3 Traumatic Brain Injury 

In this section TBI will be investigated in terms of its rate of occurrence, severity, 

symptoms, how it is diagnosed, and long-term effects. Traumatic brain Injury (TBI) is a 

worldwide health problem, with approximately 2.8 million TBI related visits to hospital 

in The United States of America in 2013 alone. This includes 2.4 million accident and 

emergency department visits. Approximately 10% of those resulted in a stay in hospital 

and there were over 50,000 TBI related deaths. In the period 2001-2010 the rates of TBI 

related visits to hospital, hospitalisation and deaths have increased by 70%, 11% and 7% 

respectively. TBI can present in several ways, ranging from the very severe (skull 

fracture/haemorrhage) to mild (concussion) [2]. 

2.3.1 Mild Traumatic Brain Injury 

Concussion is a mild form of Traumatic Brain Injury (mTBI), the fifth International 

Conference on Concussion in Sport has defined it as “a complex pathophysiological 

process affecting the brain, induced by traumatic biomechanical forces.” [3]. The 

symptoms of mTBI are wide ranging and can greatly affect the quality of life of the 

sufferers, with symptoms persisting for weeks or even years in some patients. Sports and 

recreation activities are one of the main sources of TBI in the United States of America, 

with 90% of these injuries being classified as mTBI’s [4].  Symptoms can be divided 

broadly into 3 categories; Physical, Emotional and Cognitive.  

 

Table 1: Symptoms of Concussion [2] 

Physical Emotional Cognitive 

Headache 

Blurred Vision 

Irritability Cognitive Lethargy 

Nausea/Vomiting 

Dizziness 

Depression Difficulty in recalling new 

information 

Photo and/or Audio-

sensitivity 

Increased Emotionality Difficulty in concentrating 

Lethargy Anxiety  

Difficulty maintaining 

balance 

Insomnia  
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As can be seen in Table 1, the symptoms of concussion can have wide ranging effects and 

long terms issues. Some research has shown that as many as 15% of people diagnosed 

with a concussion may still have symptoms 1 year after injury [19]. MTBI’s, such as 

concussion, are particularly difficult to diagnose as no physical damage to the brain can 

be observed with conventional imaging methods [5]. Therefore, the diagnosis relies 

heavily on the self-reporting of symptoms by sufferers. This will be discussed in the next 

section. 

2.3.2 Post-Concussion Syndrome 

As well as the symptoms listed above in the Table 1, there are some further diagnoses 

that can be attributed to an mTBI. The most common of these is Post-Concussion 

Syndrome (PCS). PCS is defined as the prolonged appearance of the symptoms affecting 

the sufferer physically, emotionally and/or cognitively. It is thought that PCS effects 

between 40 and 80% of sufferers of an mTBI, with up to 15% retaining symptoms for up 

to a year [20] [21]. 

 

Although PCS is a relatively common diagnosis, there is to the writer’s knowledge no 

general consensus in the medical world of a clear definition of exactly what PCS is. A 

study was performed in which physicians who are members of the American College of 

Sports Medicine (ACSM) were asked to complete a survey related the minimum duration 

of symptoms and the minimum number of symptoms required to result in a diagnosis of 

PCS. Respondents had a wide variance in both these questions, with 26% opting for a 

duration of 2 weeks, 20.4% for between 2 weeks and 1 month, 33% requiring 1 to 3 

months and 11% over 3 months. When responding in relation to the number of symptoms 

required, the variation was wide. 55.9% requiring just 1 symptom, 17.6% requiring 2 

symptoms, 14.6% and 3.2% requiring 3 and 4 symptoms respectively [22]. Clearly a 

general consensus would greatly benefit both those working in the field of diagnosis and 

those in the concussion research field.  
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2.3.3 Methods of Concussion Diagnosis 

 

Due to the fact that no physiological changes are visible with conventional imaging 

techniques, the clinical diagnosis of concussion is entirely based on symptom reporting, 

cognitive function and neurological screening. The most common test is the Sport 

Concussion Assessment Tool (SCAT), a standardised concussion evaluation tool, 

developed in 2004 by the Concussion In Sport Group (CISG). The assessment combines 

a graded symptom checklist, cognitive tests (five-word recall, delayed recall and 

Maddocks’ questions) and neurological function tests (speech, eye motion/pupil reaction, 

gait assessment and pronator drift) [23]. It is recommended that a base-line SCAT 

assessment should be taken for comparison to an assessment taken post impact. The latest 

version of the SCAT test is the SCAT5, revised at the 5th International Consensus 

Conference on Concussion in Berlin 2016, can be found in Appendix 1.  

 

Concerns have been raised in the sporting community about this method of diagnosis, as 

participants could quite easily intentionally perform poorly on their base-line assessment. 

This means that the difference between base-line results and the results in the post injury 

assessment are less pronounced and as such could potentially mask injuries. Furthermore, 

the under-reporting of symptoms is a serious concern, with as many as 45% of athletes 

not reporting concussions [24]. The reasons given by the athletes for not reporting 

symptoms was that they did not consider it a serious injury and that they did not want to 

leave the game. Under-reporting or not reporting symptoms is a serious problem in the 

world of sport and drives the need for a rigorous method of diagnosing concussion.  

 

2.3.4 Traumatic Brain Injury Summary 

In this section sports and recreation have been highlighted as one of the main causes of 

TBI, with the vast majority of these being mTBI’s. The method of diagnosis, symptoms, 

and potential long-term effects have been examined and as such highlights the need for 

research in the field. This study aims to investigate mTBI’s as a result of sports and 

recreational activities.    
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2.4 Instrumented Devices 

 

Various devices for recording head impact data in sports have been used over the last 60 

years following the Committee on the Medical Aspects of Sports of the American Medical 

Association’s recommendation in 1961. They varied in design from instrumented head 

bands, skin patches, helmet mounted systems, and instrumented mouthguards. The most 

popular of these different instrumented devices will be discussed in this section.  

 

Some of the earliest devices were developed in the early 1970’s, with Moon et al. (1971) 

developing a headband that was worn under a helmet in American Football [25]. Several 

iterations of this design were developed over the next 10 years, all having serious issues 

with accurately measuring kinematics. These issues including recording many 400g+ 

impacts recorded that did not result in an injury for the wearer, highlighting the difficulty 

in accurately measuring in vivo impact data [25].  Similarly, in 1983 Morrison, 

investigated head impacts in American Football with an instrumented helmet. As with the 

previous studies impacts, extremely large linear accelerations (500g+) were recorded 

[26]. It wasn’t until 2000 that instrumented helmets were utilised in a study again, when 

Naunheim et al., compared data from high school ice hockey, American football and 

soccer. Naunheim found that peak accelerations from heading a soccer ball were far 

greater than those recorded from non-injurious ice hockey and American football impacts 

[27].  

 

As well as helmet mounted devices, wearable devices have also been tested over the 

years. Some of these designs include instrumented headbands and skin patches. Reebok 

developed an instrumented head band, the Checklight [28]. It utilises a traffic light system 

for reporting the severity of impacts, indicating that the impacts were either 

“Mild/Intermediate/Severe”. Although the manufacturers did not disclose how these 

impacts were classified. Similar to the Checklight device, Triax Technologies developed 

an instrumented head band. In validation studies performed by the manufacturers they 

found good agreement with reference devices. Although further studies discovered that 

the accuracy diminishes as the impacts become more severe and that root mean square 

(RMS) errors range from 18 – 85% depending on the impact location [28].  
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The X-Patch is a skin patch system developed by X2 Biosystems, Seattle WA. It is 

designed to be attached behind the ear, directly on the mastoid bone of the wearer. Data 

is gathered with 3 gyroscopes and 3 single axis accelerometers. Linear acceleration data 

is transformed to the head CoG by way of rigid body transformations, while rotational 

acceleration is calculated by five finger differentiation of rotational velocity data [29]. 

 

Several studies have called the accuracy of this device into question. In 2015, Siegmund 

et al. performed a cadaveric validation study using the X-Patch. Three helmeted cadavers 

were fitted with an X-Patch and dropped onto three different impact locations (forehead, 

side and rear boss) and from a range of heights (3 to 142cm). They found that the X-Patch 

overestimated PLA by 64+/-41% and PAA by 370+/-456% across all tests [30]. Also, in 

2015 Nevins et al. performed further validation work with the X-Patch. An unhelmeted 

Hybrid III head and neck was fitted with an X-Patch and mounted on a sled. It was 

impacted with different sports balls (softball, lacrosse ball and soccer ball) that were fired 

at the dummy with a pneumatic cannon at a range of velocities (10 – 31m/s). They found 

linear acceleration results were promising for the softball and soccer ball experiments, 

while the lacrosse ball and rotational acceleration results were poor. The authors stated 

that this was likely due to the low sampling rate of the X-Patch    [31]. To the best of this 

authors knowledge, this system is no longer in production and the company that produced 

it has ceased to exist. 

 

Give this area of research was started in the United States of America, the vast majority 

of the published work in the area is from the US. There is a lack of data in Europe, with 

some work being done in Australia and New Zealand [32] [33]. This work will be 

discussed in this section and section 2.7.5, Head Accelerations Recorded in Sports.   
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2.4.1 Head Impact Telemetry System 

In 2003 Greenwald et al. developed a helmet mounted system, the Head Impact Telemetry 

System (HITS), the first commercially available system of its kind [34]. Developed by 

Simbex; Lebanon, New Hampshire, it records in vivo impact data by means of a nine-

accelerometer array that is mounted in an American football helmet. The system includes 

hardware for the acquisition of the data and for radio frequency (RF) telemetry. These are 

mounted within commercially available American football helmets, thus removing the 

need for customised apparatus. Figure 10 shows the cost difference between HITS and a 

customised approach. As the accelerometer array is mounted in the helmet, an algorithm 

is used to transform the linear and rotational impact data to the head CoG, this data is 

transmitted wirelessly to the acquisition system in real time [34]. 

 

 

Figure 10: HITS vs. Custom 6DOF helmet arrangement [35] 

 

 

The HITS has been validated in many studies, in both laboratory and real world conditions 

[36] [37] [38] [39] [40] [41] [42] [43] [44]. Many of these laboratory-based validation 

studies were conducted using a Hybrid HIII anthropomorphic test device (ATD). With 

Rowson et al. (2001) finding just a 4% difference in linear acceleration between HITS 

and measured values from a nine-accelerometer array placed at the CoG, this study also 

found there to be a 17% difference in angular accelerations. This resulted in the 

development of a new algorithm and the implementation of a 12 accelerometer array [41]. 

Furthermore, Jadischke in 2013 conducted a study investigating the role the size of the 

helmet may play in the transference of impacts [44]. This study, unlike the previously 

mentioned ones, examined various helmet sizes on a Hybrid Head III. Linear impactor 

tests were conducted using a medium and large helmet equipped with 3-2-2-2 array of 

accelerometers. It found the RMS error for linear accelerations was 59.1%, and the 

absolute error was greater than 15%.  
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Although this system’s accuracy has been called into questions in several studies such as 

these discussed above, it is still the most commonly used system. It has been used in 

studies of American Football [36] [45] [46] and boxing [47]. Having been in use since 

2003, this system has recorded a huge database of impacts [48] and will continue to be 

used until a more accurate system is developed for helmeted sports.  

 

2.4.2 Instrumented Mouthguards 

Many different arrangements for instrumented mouthguards have been tested over the 

last 50 years, with much of the early work being conducted by Hertz and Ewing in relation 

to car crash kinematics. In more recent years work has been carried out to investigate 

head impacts in sport and the skull/brain kinematics involved.  

 

An instrumented mouthguard has been viewed as a potentially more accurate option for 

the recording velocity and acceleration of the head during an impact as the coupling of 

the mouthguard, via the test subjects’ dentition, allows for direct recording of the 

kinematics of the head, rather than the recording of sensors incorporated in an 

instrumented helmet, for example.  

2.4.2.1 Custom Mouthguards 

 

In 2007 Higgins et al. conducted a study to determine whether attaching an accelerometer 

to a custom-built instrumented mouthguard, fitted to a Modified National Operating 

Committee on Standards for Athletic Equipment (NOCSAE) headform, would provide a 

more accurate representation of the linear acceleration experienced than an instrumented 

helmet [49]. No significant differences in acceleration or severity were shown between 

the headform and mouthguard. Helmet mounted sensors were shown to greatly 

overestimate acceleration and severity of impacts. It should be noted that only linear 

acceleration was recorded in this study, although the authors noted that rotational 

acceleration has been previously reported as a potential cause of Traumatic Brain Injury 

(TBI). 
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Paris et al (2010) conducted a study to investigate the accelerations of the head during the 

heading of a soccer ball by means of a custom-made mouthguard containing an AD 

ADXL250 Dual Axis Accelerometer Chip with the X-axis oriented anteriorly and the Y-

axis superiorly. Four launch speeds and distances were tested and compared to a soccer 

ball being dropped onto a sphere, made of resin, fixed to a force plate. The results of this 

found a good correlation with experimental results for impact force, duration and velocity 

[50]. 

 

A similar study was conducted by Kara et al. (2012) using a custom-made mouthguard, 

fitted with a tri-axial accelerometer, to measure linear and angular acceleration of the 

head during the heading of a soccer ball [51]. The subject was tasked with heading the 

soccer ball launched at a range of velocities, up to 12m/s; this was recorded using a high 

frame rate camera. From this visual data ball velocity pre and post impact was calculated, 

which allowed for the calculation of the impulse force. 

 

2.4.2.2 X2 Impact Mouthguard 

 

Created by X2 Biosystems, this mouthguard has been used in a study to investigate head 

impact accelerations in amateur rugby union players across a season, King et al. 2015 

[11]. It can compute peak linear acceleration (PLA), peak angular acceleration (PAA), 

Head Injury Criterion (HIC), the azimuth and elevation of the PLA. For this study the 

players were fitted with a mouthguard instrumented with a low power, high-g tri-axial 

accelerometer (H3LIS331DL) and a tri-axial gyroscope (L3G4200D; ST 

Microelectronics). Impacts were defined as having a linear acceleration greater than 10g, 

100 milliseconds of data were recorded, 25 pre impact and 75 post impact. The measures 

of impact severity were defined by impact duration, linear acceleration and angular 

acceleration. Linear acceleration was sampled at 1 kHz and angular velocity at 800Hz. 

Angular velocity was then interpolated to 1 kHz and filtered. Linear acceleration values 

were transformed to the centre of gravity of the head, while angular acceleration was 

calculated using the 5-point stencil method from recorded angular velocity values.  
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Thirty-eight players, mean age 22 years +/- 4 years, in 19 matches over the 2013 season 

experienced a total of 20687 impacts, ranging from 10 to 165g with no concussions 

recorded. Players were subjected to a mean of 77 impacts per game or 1379 impacts per 

players per season, mean linear acceleration was 22g, mean angular acceleration 3990 

rads/s2 and the mean impact duration was 12 milliseconds. Mean linear and angular 

acceleration was found to be similar to that of High school American football and some 

collegiate American football, though lower than female youth soccer players. The 

majority of impacts recorded in this study were categorised as mild severity impacts and 

no concussions were recorded.  

2.4.2.3 Cleveland Mouthguard (IMG) 

The Cleveland Clinic began work in 2008 on an Intelligent Mouthguard (IMG) in order 

to provide the medical field with a way of accurately gathering head impact data for sport 

and military applications. The IMG measures 3 degrees of freedom (DOF) linear 

acceleration, 3 DOF angular velocity, impact duration and direction. Capture time is 

125ms and samples at a rate of 4kHz with a bandwidth of 22kHz. IMG linear acceleration 

is filtered with a low-pass 4-pole Butterworth filter at 250Hz, post filtering the angular 

velocity was differentiated with a finite difference algorithm in MATLAB to compute 

angular acceleration.   

 

Bartsch et al. 2013 conducted a study to determine the accuracy of the IMG printed circuit 

board (PCB) in benchtop validation tests. 2 single DOF drop tests were conducted, linear 

and angular acceleration, tested at impacts ranging from 10g to 175g and 850rad/s2 to 

10,000rad/s2 respectively [52]. Linear drop tests were conducted on a custom-built 

aluminium drop tower. The IMG PCB was mounted on a rail and dropped on to 12 foam 

pads of differing stiffness. Angular acceleration tests were conducted by mounting the 

PCB on a stationary rotating block, which was then struck with a pad. The padding, 

striking and struck weight and inertia were held constant to generate a range of impact 

durations. Reference measurements for linear acceleration were collected by a single axis 

500g linear accelerometer, sampled at a rate of 10kHz and filtered with a four-pole low-

pass Butterworth filter at a bandwidth of 250Hz. Angular acceleration reference 

measurements used a pair of 500g linear accelerometers and two 210rads/s angular rate 

sensors, filtered similarly with a bandwidth of 160Hz.  
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These tests showed that the IMG PCB had a high level of correlation to the reference 

measurements, with R2 > 0.99 for linear acceleration and R2 = 0.98 for angular 

acceleration. Despite this high level of correlation angular acceleration measurements 

showed high levels of inaccuracy, 17%, when averaged over the ranges of impacts. 

Further validation testing of the IMG gyroscopes and accelerometers was conducted, 

again by Bartsch (2014). 3 experiments were conducted; a benchtop level drop test 

incorporating linear and angular tests, in vitro linear impacts and in vivo tests in boxing 

and American football [53]. The benchtop tests were conducted in a manner similar to 

that of the previous work detailed above, utilising reference measurements for 

comparison. Multiple impacts were conducted at different impact heights for linear and 

angular tests. On this occasion the authors created a gyroscopic correction factor to deal 

with insufficient gyroscope bandwidth, increasing it from 110Hz to 370Hz. Following 

this correction both linear and angular tests fit the linear regression models well, R2 = 

0.99 for linear and R2 = 0.99 for angular following the application of the gyroscopic 

correction factor.      

 

In vitro linear impacts were compared to a “gold standard” reference 3-2-2-2 

accelerometer package in a modified Hybrid III headform. The modified headform was 

fitted with a custom moulded IMG and an American football or boxing headgear. A linear 

impactor powered by compressed air was propelled at the headform at velocities up to 

8.5 m/s and impacted the headform at varying angles, in increments of 22.5° around the 

z axis. In vivo tests on American football players and boxers was also conducted, with the 

football players taking part in three 15 to 30-minute practice sessions and the boxers 

taking part in five 3-minute sparring sessions while wearing the custom moulded IMG. 

The lower threshold for triggering data recording was set at 15g and the participants were 

recorded throughout the sessions. The authors of this paper determined that the IMG can 

be used as a single event head impact dosimeter when certain conditions are met; the 

mouthguard – skull coupling is maintained; the skull is treated as a rigid body and the 

harmonics fall within the ranges used in the study. It should be noted that the writer of 

these validation studies is an employee of the Cleveland Clinic.   
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2.4.2.4 Stanford Mouthguard 

 

Developed in Stanford, this mouthguard is a 6 DOF device designed for in vivo data 

collection. The mouthguard is moulded to the wearer’s upper dentition by way of a 

custom dental mould. The most recent version, with published results, incorporates a tri-

axial gyroscope (ITG3500A) to detect angular rotation and a tri-axial accelerometer 

(H3LIS331DL) to measure linear acceleration, sample rate of 800-900Hz for linear 

acceleration is and 900-1000Hz for rotational acceleration respectively and a bandwidth 

of 184Hz and 500Hz respectively. 

 

In order to ensure that only data from true impact events is collected, this device utilises 

a proximity sensor (AMS TMD2771) with an infrared receiver-emitter pair to confirm 

the guard is coupled with the test subject’s upper dentition. A support vector machine 

(SVM) method, trained using frequency domain features, is also used to differentiate 

impact and non-impact events. A lower threshold of 10g has been set to trigger recording 

data along with a time period of 50ms pre impact and 150ms post impact. Rotational 

acceleration is calculated by differentiating the rotational velocity data using the five-

point stencil method. Also contained in the device is a microprocessor (ST STM32L151) 

and a memory chip (STM25P16) to allow for wireless processing and storage of the data. 

Only when all conditions are met will the device record data, the data is transformed 

linear acceleration data is transformed to the centre of gravity (CG) of the 50th percentile 

male human head. This is achieved in post processing.  

 

Validation testing of an earlier iteration of this device was conducted by Camarillo et al 

2013. The tests were carried out using an Anthropomorphic Test Device (ATD) which 

was fitted with a Riddell Revolution Speed Classic helmet. The ATD was impacted with 

a horizontal linear impactor across five impact sites (2 facemask and 3 helmet locations) 

and varying impact velocities were tested (2.1 to 8.5m/s). The ATD was fitted with a tri-

axial accelerometer at the CoG, with 3 single axis accelerometers offset perpendicularly 

from the CoG and 3 single axis angular rate gyroscopes aligned with the axes of the tri-

axial accelerometer for all impact tests [54]. 
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Peak linear and angular acceleration and peak angular velocity from all impact tests for 

the ATD and mouthguard were compared by means of linear regression analysis. Peak 

linear acceleration measurements were close with r2=0.96 and m=1.01. Peak angular 

acceleration measurements were under predicted by the mouthguard with r2=0.89 and 

m=0.90, while individual impact sites had r2=0.71 to 0.98. Peak angular velocity had a 

close correlation across all impact sites with r2=0.98 and m=1.00. Results for linear and 

angular acceleration had a greater variation across impact sites. 

 

A further study was conducted by Kuo, Calvin et al 2016, into the effect that the mandible 

has on results. They conducted drop tests on a helmeted ATD and PMHS, from varying 

heights and impacting various sites. They introduced 3 mandible states; no mandible, 

unconstrained mandible and clenched mandible [55]. 

 

When testing the ATD all 3 mandible conditions were used; no mandible had the 

mandible removed entirely, unconstrained had the mandible articulating freely and 

clenched had the mandible had a preload force of 300N applied. When testing the PMHS 

only the unstrained state was tested so as to test the worst-case scenario. All tests were 

conducted with both ATD and PMHS wearing a Riddell Steed Helmet. 6 locations and 3 

heights were tested, with accelerations ranging from 15g to 150g. 

 

These tests determined that the no mandible and unclenched states performed the best, 

with m ranging from 0.79 – 0.997 and r2 from 0.87 – 0.994, Table 2 details these results 

in full. The results from the unclenched mandible series of tests showed poor results, with 

m ranging from 1.15 – 1.72 and r2 from 0.16 – 0.82.   

 

Table 2: Effect of the mandible on bench-top tests [55] 

 No 

Mandible 

Unclenched 

Mandible 

Clenched 

Mandible 

Peak magnitude angular velocity m=0.997 

r2=0.994 

m=1.15 

r2=0.72 

m=0.99 

r2=0.99 

Peak Linear acceleration m=1.04 

r2=0.96 

m=1.45 

r2=0.82 

m=1.1 

r2=0.96 

Peak Angular acceleration m=0.76 

r2=0.91 

m=1.72 

r2=0.16 

m=0.79 

r2=0.87 
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Location specific results determined that impact site location can have a large bearing on 

mouthguard accuracy, with vertex, frontal and frontal oblique impacts in the 

unconstrained mandible state resulting in the highest overestimation. This may be due to 

the direction of the acceleration vector being aligned with the pre-dominate mandible 

direction of movement. This direction of movement potentially increases the movement 

of the mandible and, in turn, increases the loading of the mouthguard. The results of these 

2 studies have shown that mandible state and impact location play a large role in the 

accuracy of mouthguard results, with helmeted/unhelmeted also having an impact. 

Although mandible state is problematic to determine in vivo, it is important to be aware 

of and will be discussed in later sections of this study.  

 

Further validation of the mouthguard sensors was conducted by Wu et al 2016 [56]. 3 

model systems were tested, helmeted cadaver head drop (no neck), unhelmeted cadaver 

head drop (no neck) and dummy head linear impact (with neck), at medium to high linear 

acceleration levels at common impact locations. For each impact high bandwidth 

accelerometer and gyroscope measurements were recorded and they were defined as 

ground truth skull kinematics.  

 

Having first determined injury criteria and bandwidth requirements for both skull 

kinematics and brain deformation, bandwidth requirements for accelerometer and 

gyroscope were then determined. Analysis of the accelerometer found that a bandwidth 

of greater than 500Hz is required for most kinematics-based injury criteria, unhelmeted 

> 500Hz and helmeted 200-400Hz. For deformation-based criteria a bandwidth of < 

200Hz for helmeted and 400Hz for unhelmeted is required. In short, unhelmeted systems 

require a bandwidth of greater than 500Hz which may also be sufficient for helmeted 

systems. Analysis of the gyroscopic data found that a bandwidth of greater than 1000Hz 

is required for several of the tested kinematics-based injury criteria, with the helmeted 

dummy model demonstrating that a bandwidth of 500Hz is required for angular velocity 

and 740Hz is required for angular acceleration. 
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2.4.3 Instrumented Devices Summary 

In this section several different types of instrumented devices have been investigated. The 

most used of these is the HITS, which is a helmet mounted system. This is unsuitable for 

this study as MMA participants do not wear helmets, the same applies to any of the 

headband type systems. The X-Patch was a skin mounted patch and as it is no longer in 

production it is also unsuitable for this study. 

 

Instrumented mouthguards prove to be an excellent option in MMA, as all participants 

must wear a mouthguard while competing/training. The Stanford mouthguard is solely a 

research tool, is one of the most recently developed systems and has several validation 

studies published with good levels of accuracy and performance. Although it is not 

without its disadvantages, validation studies have shown mandible states play an 

important role as well as the bandwidth required for accelerometers and gyroscopes.  The 

Stanford mouthguard was chosen for this study based on this.   
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2.5 Brain Models 

Due to the ethical issues with performing in vivo head impact tests in human subjects, 

finite element analysis (FEA) provides an excellent alternative. Much of the early work, 

automotive and military fields, used very simplified models. FEA allows for the creation 

of detailed models of the human head/body and this will continue to improve as 

computational power increases.  

 

Many models have been created over the last 50 years, with one of the first being created 

by Hardy and Marcal in 1971 [57]. They created a 2-dimensional human skull model for 

use in the automotive industry, in order to predict the deformation of the skull in a car 

crash. As the adoption of PC’s has increased, in the time since the Hardy and Marcal 

model, the complexity of models has grown. This is even more so in recent years as the 

use of virtual machines with many CPU’s allowing for more complex models. 

 

This section will cover some of the most popular models in use today. As will become 

apparent in the following chapter, the models are all validated from the same historical 

cadaver tests. Nahum and Trosseille are used intracranial pressure validation for 

comparison, while Hardy is used for displacement validation [58] [57] [59]. 
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2.5.1 Global Human Body Modelling Consortium Model 

A full body model which was developed by The Global Human Body Modelling 

Consortium (GHBMC). It was designed for use in the automotive industry. The 

consortium is made up of 7 automotive manufacturers; Fiat Chrysler Automotive LLC, 

General Motors Co., Honda R&D Co., Hyundai Motor Co., Nissan Motor Co., Groupe 

PSA, Renault S.A., and Takata Corp. The GHBMC M50 Detailed Occupant, version 4.5 

released on September 1st 2016 is the model used for this study and is shown below in 

Figure 11.  

 

The geometry for the model is based on computed tomography (CT) and magnetic 

resonance imaging (MRI) scans of an adult male who met the criteria for height and 

weight of the 50th percentile adult male of the United States of America, criteria shown 

in Table 3 [60]. A total of 72 scans were completed of the individual, containing a total 

of 15,622 images. Averages of the morphology of an average male was found from 

literature and compared to the individual. The model itself is sagittally symmetric and is 

made up of 418 individual parts, including but not limited to: bones, muscles, ligaments, 

organs, tendons, blood vessels and skin. The total volume and area of the subsequent 

model was compared to the literature and was found to closely agree [61]. 

 

 

Figure 11: M50 – Detailed Occupant Model and M50 – Head/Neck isolated Model 

 

 

Age (years) Weight (kg) Height (cm) BMI (kg/m2) 

26 78 174.9 25.7 

Table 3: GHBMC Subject Data 
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The M50 GHBMC model is made up of 2.19 million elements, 1.26 million nodes and 

1036 individual parts. The head model, which is of particular interest to this study, is 

partially validated by way of 35 sets of experimental data. Table 4 details these validation 

cases [60]. Due to the fact that the whole body has been shown to have little effect on 

short duration impacts, an isolated head and neck model is being utilised for this study 

[62]. This greatly reduces the computational time for simulations. As this study utilises 

an isolated head and neck model, the focus will be on the validation, contact definitions 

and material properties of the head and neck. The isolated head and neck model is shown 

in Figure 11. It is made up of 488,453 elements, 510,501 nodes and 436 individual parts. 

The material properties for the entire model are too numerous to list in their entirety, 

material properties for all the brain parts are listed in Appendix 2. 

 

Mao et al. 2013 simulated a total of 35 cases in order to validate the head and neck model 

for brain pressure, brain motion, skull response and facial response. [60]. Brain pressure 

validation was conducted by simulating 6 cases from Nahum (1977), the study re-

pressurised the head of a post mortem human subject (PMHS)  and impacted it with a 

rigid impactor, which was covered in a variety of different materials, and at a variety of 

velocities [58] [60]. Case 37 from Nahum’s study was chosen as the baseline case to 

compare with, as it had reported the details of contact force and head accelerations. The 

acceleration profile from case 37 was morphed in order to generate acceleration profiles 

for the 5 remaining cases. The results of these simulations are shown in Table 4.  

 

Table 4: Brain Pressure comparison of Nahum (1977) to experimental data [58] 

Case 

Number 

Peak Acceleration 

(km/ss) 

Front (kPa) Parietal (kPa) Posterior Fossae 

(kPa) 

  Exp. Model Exp. Model Exp. Model 

36 2.3 136 169 79 97 -64 -77 

37 2 141 143 74 75 -60 -69 

38 2.42 139 179 66 103 -65 -79 

43 2.23 271 164 222 94 -18 -75 

44 1.52 102 103 20 51 -3 -52 

54 2.34 275 173 180 100 -64 -78 
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As can be seen above, the simulated results from the 6 Nahum cases matched the 

experimental data quite well, Table 4. Further validation of brain pressure was conducted 

by recreated one case from Trosseille (1992), MS-428-2, [59] in which a PMHS was 

suspended in a sitting position and impacted at a velocity of 7m/s with an impactor of 

23.4kg [59]. Pressure transducers were placed in the sub-arachnoid space and the 

ventricular system in order to measure pressure in these regions [60]. 

 

The results of these tests are shown in Figure 12. Pressure in the frontal, lateral ventricle 

and 3rd ventricle regions matched well but not in the occipital region [60]. 

 

 

Figure 12: Comparison of experimental and simulated results for Trosseille MS482-2 [60] 

 

Mao et al. 2013 also validated brain motion by recreating 8 impacts that were performed 

by Hardy et al. (2001, 2017), these impacts utilised an X-ray system in order to track the 

movement of neutral density targets (NDT’s) that had been placed in the brain of a PMHS 

[63] [64]. The results from these simulations demonstrated that the motion of the brain 

matched that of the Hardy experiments, with magnitudes differing by a maximum of 

2.6mm between simulations and experimental data [60].  As this study is concerned with 

mTBI’s the validation studies for skull response and facial response will be omitted, as 

they deal with fractures of the skull and facial bones. The details of these validations are 

in Table 5. MTBI's are in the mild range of head impacts, injuries which do not normally 

result in bone fractures. 
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2.5.1.1 GHBMC Material Properties 

Since the advent of FE models many studies have attempted to measure the material 

properties of human and animal brain tissue, both in vivo and in vitro, in order to improve 

the response of models. Beginning in the 1960’s with Dodgson 1962 who conducted in 

vitro creep tests on samples of mouse brains [65]. Testing of human brain tissue began in 

the 1970’s with Galford and McElhaney 1970 who examined both monkey and human 

brain in vitro, also with creep tests. They found that the brain tissue could be considered 

as a viscoelastic material for strains in the region of 30% +/- 10% [66]. Several studies 

agree with this finding and based on these many modern FE models utilise a linear 

viscoelastic material model for brain tissue [67] [68] [69].  In the development of the 

GHBMC, a viscoelastic material model in combination with a large deformation theory 

was chosen for brain tissue. This material model can be considered elastic in compression 

and viscoelastic in shear. Equation 1 shows the expression for the shear modulus of a 

viscoelastic brain material [70]. 

 

𝐺(𝑡) =  𝐺∞ + (𝐺𝑂 − 𝐺∞)𝑒
−𝛽𝑡  

Equation 1: Shear Modulus of a Viscoelastic Material [70] 

 

Where:  𝐺𝑂 is the short-term shear modulus 

  𝐺∞ is the long-term shear modulus 

  𝛽 is the decay constant 

  𝑡 is the duration 

 

The values for the material properties of the GHBMC were defined by reviewing a 

historical data set of mechanical tests on human and animal brain tissue [60]. This data 

set contained a wide variety of testing methods including tension/compression, shear and 

indentation [71] [72]. As well as this data set, the writers Mao et al. 2013 had access to 

an in-house set of data, which is unpublished to the best of this writer’s knowledge. From 

this they defined the short-term shear modulus of grey matter to be 6KPa and the long-

term modulus to be 1.2KPa. The white matter was defined as being 25% stiffer than the 

grey matter. 
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The CSF, a fluid that occupies the subarachnoid space has been modelled as layer of brick 

elements using a viscoelastic material model despite the fact that it is a fluid. In reality, 

its density and viscosity are similar to water. In order to best replicate the behaviour, a 

bulk modulus of 2.19GPa was chosen. As well as a short-term shear modulus of 500Pa 

and long-term shear modulus of 700Pa. Table 6 details the material properties for all of 

the viscoelastic parts in the GHBMC head model [60].  

 

The skull bones were modelled as piecewise material model. A study by Wood et al. 1971 

found that there were no changes in the elastic modulus, breaking strain and breaking 

stress for any of the bones of the skull due to age, layer or type of bone [73]. Due to these 

findings, no regional differences are present on the material properties for any of the 

bones of the skull in the GHBMC. The bones of the skull, both inner and outer, we defined 

as having an elastic modulus of 10GPa based on early work by McElhaney et al. 1970 

[74]. The elastic modulus for the diploe layers of the skull were based on the work of 

Melvin et al. 1970 and was defined as 0.6GPa [75]. The data for the bridging veins was 

determined based on the work of Delye et al. 2006, who conducted tensile tests of the 

bridging veins taken from cadavers. The elastic modulus for the bridging veins was 

defined as 0.03GPa [76]. Table 8 details the material properties for all piecewise parts in 

the GHBMC head model.  

 

The remaining parts of the brain were defined using an elastic material model, this 

includes the skin, falx, tentorium and meningeal layers. Table 7 details the materials 

properties for the elastic parts of the GHBMC brain.   
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Table 5: Experimental Data for Head Model Development 

Model 

Development 

Target 

Literature first 

author, year 

Description Number of 

experiments used for 

model development 

Loading case numbers 

(i.e. – Simulation 

setting numbers) 

Brain Pressure Nahum, 1977 [58] Frontal impact on forehead Test ID: 36, 37, 38, 43, 44, 54 6 6 

Trosseille, 1992 [59] Frontal impact Test id: MS 428_2 1 1 

Brain Motion or 

pressure if 

motion not 

reported 

Hardy, 2001 [64] Sagittal plane, offset to CG Test id: C383-T3, C755-T2 2 2 

Hardy, 2007 [63] Sagittal plane, aligned to CG Test id: C241-T1, C241-T6 2 2 

Sagittal plane, aligned to CG Test id: C241-T1, C241-T6 2 2 

Coronal plane, offset to CG Test id: C380-T4, C393-T4 1 1 

Coronal plane, aligned to CG Test id: C380-T3 1 1 

Horizontal plane, offset to CG Test id: C380-T5 1 1 

Skull response Yoganandan, 1995 

[77] 

Frontal 45-degree impact, head constrained Test id: 8 1 1 

Vertical impact, head constrained Test id: 7, 9, 11, 12 4 4 

Occipital 35-degree impact, head constrained Test id: 10 1 1 

Hodgson, 1970 [78] Frontal horizontal impact Cadaver number: 1504, 1536, 1581, 1582, 

1589, 1615 

5 3 

Facial response Nyquist, 1986 [79] Nasal impact Test id: 20, 29, 34 3 3 

Allsop, 1988 [80] Zygoma impact, head constrained 8 1 

Allsop, 1988 [80] Maxilla impact, head constrained 6 1 

Brain contusion Nahum, 1976 [81] Frontal impact Test ID: 17, 18, 19, 26, 27, 31 6 6 

  



 

 37 

Table 6: GHBMC Viscoelastic Brain Parts Material Properties 

Part Material 

Type 

Material 

Model 

Density 

(kg/m
3
) 

Bulk 

Modulus 

(GPa) 

Short Time Shear 

Modulus (GPa) 

Long Time Shear 

Modulus (GPa) 

Decay 

Constant 

Cerebellum Viscoelastic Kelvin Maxwell 1060 2.19 6.00e-6 1.20e-6 0.0125 

Cerebrum Gray Lower Viscoelastic Kelvin Maxwell 1060 2.19 6.00e-6 1.20e-6 0.0125 

Cerebrum Gray Upper Viscoelastic Kelvin Maxwell 1060 2.19 6.00e-6 1.20e-6 0.0125 

Corpus Callosum Viscoelastic Kelvin Maxwell 1060 2.19 7.50e-6 1.50e-6 0.0125 

Thalamus Viscoelastic Kelvin Maxwell 1060 2.19 6.00e-6 1.20e-6 0.0125 

Lateral Ventricle Viscoelastic Kelvin Maxwell 1040 2.19 5.00e-7 1.00e-7 0.0125 

Mid Brain Viscoelastic Kelvin Maxwell 1060 2.19 1.20e-5 2.40e-6 0.0125 

Brain Stem Viscoelastic Kelvin Maxwell 1060 2.19 1.20e-5 2.40e-6 0.0125 

Cerebrospinal Fluid - Cerebrum Viscoelastic Kelvin Maxwell 1040 2.19 5.00e-7 1.00e-7 0.0125 

Basal Ganglia Viscoelastic Kelvin Maxwell 1060 2.19 6.00e-6 1.20e-6 0.0125 

Cerebrospinal Fluid - Cerebellum Viscoelastic Kelvin Maxwell 1040 2.19 3.00e-6 6.00e-7 0.0125 

Third Ventricle Viscoelastic Kelvin Maxwell 1040 2.19 5.00e-7 1.00e-7 0.0125 

Sagittal Sinus Viscoelastic Kelvin Maxwell 1040 2.19 5.00e-7 1.00e-7 0.0125 

Sagittal Sinus Anterior Viscoelastic Kelvin Maxwell 1060 2.19 5.00e-7 1.00e-7 0.0125 

Cerebellum White Viscoelastic Kelvin Maxwell 1060 2.19 7.50e-6 1.50e-6 0.0125 
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Table 7: GHBMC Elastic Brain Parts Material Properties 

Part Material type Material Model Density (kg/m3) Young’s Modulus 

(GPa) 

Poisson’s Ratio 

Pia Elastic Elastic 1100 0.0125 0.35 

Tentorium Elastic Elastic 1100 0.0315 0.3 

Arachnoid – Cerebrum Elastic Elastic 1100 0.012 0.35 

Arachnoid – Cerebellum Elastic Elastic 1100 0.012 0.35 

Falx Elastic Elastic 1100 0.0125 0.35 

Dura Elastic Elastic 1100 0.0315 0.35 

Dural Sinus Elastic Elastic 1100 0.0315 0.35 

 

 

Table 8: GHBMC Piecewise Brain Parts Material Properties 

Part Material 

Type 

Material Model Density 

(kg/m3) 

Young’s Modulus 

(GPa) 

Poisson’s 

Ratio 

Yield Stress 

(GPa) 

Tangent 

Modulus 

Bridging Veins Bi-Linear Piecewise 1130 0.03 0.48 0.00413 0.0122 

Dipole Bi-Linear Piecewise 1000 0.6 0.3 0.004 0.02 

Skull Outer Bi-Linear Piecewise 2100 10 0.25 0.09 0.5 

Skull Inner Bi-Linear Piecewise 2100 10 0.25 0.09 0.5 
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2.5.2 Simulated Injury Monitor Model 

The Simulated Injury Monitor Model (SIMon) was developed in 2003 as a tool for 

assessing the potential for TBI’s in car crashes [68]. SIMon was designed with the target 

of simulating an impact of less than 150ms, on a high-end PC in less than 2 hours, in 

order to reduce computational cost. To achieve this model has been reduced to contain as 

few different parts as possible, thus reducing the number of calculations being run per 

simulation. A head only model, consisting of the following parts: 

 

• Rigid Skull (Hexagonal Elements) 

• Dura-CSF layer (Hexagonal Elements) 

• Brain (Hexagonal Elements) 

• Falx Cerebri (Hexagonal Elements) 

• Bridging Veins (Beam Elements) 

 

When compared to the GHBMC, the SIMon model has far fewer parts. The 50th percentile 

model SIMon has a total mass of 4.7Kg, with the brain comprising 1.5Kg of this. It is 

made up of 10475 nodes and 7852 elements (7776 hexagonal solid and 76 beam 

elements). A soft tie-break contact type was chosen for the skull to dura-CSF and from 

the dura-CSF to the brain.  

 

Model validation was again carried out by comparing with Hardy’s brain displacement 

experiments. Some refinement of the brain properties was made in order to better fit the 

Hardy results, with the following properties being those that correlated best with Hardy’s.    

 

Go = 2.4kPa, G∞ = 1.2kPa and τ = 0.01 sec 

 

The development of this model has shown that a simplified model can be utilised in the 

study of TBIs. The study also found that impacts received laterally result in more brain 

damage and may experience greater accelerations (both linear and rotational). Several 

improvements have been made including, using a quasi-linear constitutive model for the 

brain tissue and modelling the falx cerebri with shell elements.  



 

 40 

2.5.3 Kungliga Tekniska Högskolan Model 

The Kungliga Tekniska Högskolan model (KTH) was developed in the Kungliga 

Tekniska Högskolan (Royal Institute of Technology), Sweden in conjunction with Wayne 

State University, USA,  in 2002 [82]. The aim was to create a scalable FE model of the 

human head and to validate it against 3 sets of data from cadaveric experiments for 3 

impact directions; lateral, frontal and occipital. The model is broadly made up of the 

following parts and tissue properties: 

 

Table 9: Tissue properties for KTH development [82] 

Tissue Young’s Modulus (MPa) Density (kd/dm
3
) Poisson’s ratio 

Outer table/face 15000 2.00 0.22 

Inner table 15000 2.00 0.22 

Diploe 1000 1.30 0.24 

Neck Bone 1000 1.30 0.24 

Neck Muscles 0.1 1.13 0.45 

Brain Hyperelastic/Viscoelastic 1.04 0.4999994 - 0.4999997 

Cerebrospinal 

Fluid 

K=2.1 GPa 1.00 0.5 

Sinuses K=2.1 GPa 1.00 0.5 

Dura Matter 31.5 1.13 0.45 

Falx/tentorium 31.5 1.13 0.45 

Scalp 16.7 1.13 0.42 

Bridging Veins EA=1.9N   

Where: K=Bulk Modulus and EA=load/unit strain 

 

The model is comprised of 19350 nodes, 11454 brick elements, 6940 shell and membrane 

elements and 22 truss elements. As this is a scalable model, the size of the head and neck 

can be scaled to better suit the subject being studied. The other models discussed in this 

section have been 50th percentile approximations, whereas the the KTH model allows for 

the study of the 50th percentile and any subset of the population and even subject specific 

cases. 
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The dura and skull are modelled with a tied-node contact definition. The CSF is modelled 

with a sliding contact that allows no separation. This was achieved by modelling a further 

pia matter layer, tied to the dura matter. Doing so allowed for sliding in the tangential 

direction and transferring loads radially.  

 

This model was again validated by comparing with Hardy’s and Nahum’s experiments. 

The results of some of these experiments are shown below in Figures 13 and 14 [82].  

 

 

Figure 13: Comparison of Nahum exp. 37 and KTH contact definition experiments [82] 

 

Figure 14: Summary of Nahum pressure experiments vs KTH simulations [82] 
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2.5.4 University College Dublin Brain Trauma Model 

Developed by Horgan and Gilchrist in University College Dublin (UCD) in 2003, the 

UCD Brain Trauma Model (UCDBTM) is used to simulate pedestrian accidents. The 

model was generated from Computed Topography (CT), Magnetic Resonance 

Topography (MRT) and colour images [83].  

 

The model is comprised of several parts; scalp, skull, dura, pia, CSF, falx, tentorium, right 

and left hemispheres, cerebellum and brain stem. The material properties of the parts are 

shown in Table 10. While the physical properties of the model are reported as skull weight 

of 4.017kg, as per experiment 37 from Nahum, with the brain being 1.422kg [58]. 

Table 10: UCDBTM material properties [83] 

Material Young’s Modulus (MPa) Poisson’s Ratio Density (kg/m
3
) 

Scalp 16.7 0.42 1000 

Cortical Bone 15000 0.22 2000 

Trabecular Bone 1000 0.24 1300 

Dura 31.5 0.45 1130 

Pia 11.5 0.45 1130 

Falx and Tentorium 31.5 0.45 1130 

Brain Hyperelastic 0.499981 1040 

Facial Bone 5000 0.23 2100 

 

The model is again validated by comparing with Nahum’s experiments. It should be 

mentioned that there were several iterations of this model generated in order to investigate 

varying contact definitions and material properties. The model described above is known 

as the “Baseline” model, 5 further versions were created. They are: sliding boundary, 

grey-white ventricular matter, 3 element CSF, and projection mesh and morphed. The 

“Baseline” model is comprised of 10192 hexahedral elements, with 7318 making up the 

brain matter and 2874 making up the CSF. 

 

Further versions of the skull were generated with varying element densities, ranging from 

9000 to 50000 elements. These versions have varying mesh densities, element types and 

CSF thicknesses. They are as follows: 
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1. Fine mesh – brick element with CSF thickness of 1.3mm 

2. Medium mesh - brick element with CSF thickness of 1.3mm 

3. Thick mesh - brick element with CSF thickness of 1.3mm 

4. Fine mesh - brick element with CSF thickness of 3mm 

5. Fine mesh – shell element with CSF thickness of 1.3mm 

6. Fine mesh – shell element with CSF thickness of 1.3mm 

7. Shell element with CSF thickness of 3mm 

Versions 5 and 6 have varying mass which is unreported and the mesh quality of version 

7 is also unreported. Validation was carried out on version 2, Medium mesh – brick 

element with CSF layer of 1.3mm.  

 

2.5.6 Brain Model Summary 

All of the models investigated in this section were developed in the same time period and 

have some similarities; in that all attempt to approximate the 50th percentile male and are 

validated using the same Hardy, Nahum and Trosseille datasets for intracranial pressure 

and displacement. The differences are clear when the complexity of the models is 

examined. 

 

The SIMon model was created with one of the main objectives being that a simulation 

could be run on a high-end pc in under 2 hours. In order to achieve this, the model has as 

few parts as possible. Reducing the computational times and costs. The KTH model was 

developed to be a scalable representation of the human head and as such the complexity 

is reduced to allow for this. While the UCDBTM has several versions, with different 

setups in terms of mesh densities and CSF thicknesses. These SIMon, KTH and 

UCDBTM models have tens of thousands of nodes and 7852, 18416 and 9000-50000 

(depending on the version of UCDBTM) elements each respectively. 

 

Whereas the GHBMC head and neck model has 488,453 elements, 510,501 nodes and 

436 individual parts. Making it the most detailed of the models in use today. Given it is 

also a head and neck only model, the computational time required is comparable to that 

of the SIMon model. This level of detail as well as the option of obtaining a head and 

neck only model was the reasoning behind choosing the GHBMC model for this study.    
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2.6 Brain Injury Predictors 

Various methods of predicting brain injury have been proposed over the last 50 years, 

some based on kinematics and some based on FE measures of regions in the brain. 

Kinematic measures can be 3 degree of freedom (DoF), based on linear translation only 

or rotational only. They can also be 6 DoF based, including both linear and rotational. FE 

measures attempt to make a prediction based on the mechanical behaviour of the brain in 

a FE model and may include but are not limited to; strain, strain rate and intra-cranial 

pressure.  Both FE and kinematics-based measures will be discussed in the next section. 

2.6.1 Wayne State Tolerance Curve 

Some of the earliest work in this area was conducted at Wayne State University, and 

investigated the effects of concussive impacts on anesthetised animals. The animals were 

subjected to accelerations for a given period of time. This resulted in what is now known 

as the Wayne State Tolerance Curve (WSTC), shown below. This curve found that the 

human head can withstand high accelerations for a short duration and lower accelerations 

for a longer duration.  

 

 

Figure 15: Wayne State Tolerance Curve [84] 

 

Figure 15 above shows the Wayne State Tolerance Curve, with any point above the line, 

within the Life-Threatening area of the graph, being potentially injurious [84]. 
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2.6.2 Gadd Severity Index 

Building on the work of the Wayne State, Gadd developed a mathematical equation in 

order to determine the severity of an impact. The equation is shown below. 

𝑆𝐼 =  ∫ 𝑎2.5 𝑑𝑡 

Equation 2: Gadd Severity Index equation [85] 

 

In this equation SI is the Severity Index, α is the weighted acceleration to the power of 

2.5 and t is the time duration of the acceleration. A score of >1000 for SI would mean the 

subjects life is at risk. This index received some criticism due to the fact that low 

accelerations over a long period of time were not accounted for. It was expanded upon by 

Versace from the Ford Motor company in conjunction with the National Highway Traffic 

Safety Administration; this became known as Head Injury Criterion (HIC).  

 

2.6.3 Head Injury Criterion 

A continuation of the previous work by Gadd, the Head Injury Criterion (HIC) is based 

on the WSTC and the Gadd Severity Index. The equation is shown below. It treats the 

head as single mass structure.  

 

𝐻𝐼𝐶 = max
(𝑡1,𝑡2)

{(𝑡2 − 𝑡1) [
1

𝑡2 − 𝑡1
 ∫ 𝑎(𝑡)𝑑𝑡

𝑡2

𝑡1

]

2.5

} 

Equation 3: Head Injury Criterion Equation [86] 

 

Where a is the resultant linear acceleration at the head CoG. The main difference between 

this and the Gadd Severity Index equation is that the impact duration is calculated in the 

term: (𝑡2 − 𝑡1), although it is not without its own issues. Namely, a study by Hodgson et 

al. (1972) showed that this equation is only applicable to short durations [86]. Both HIC 

and Gadd’s equation only take linear acceleration into account, despite the fact that it has 

been shown that rotational acceleration plays an important role in TBI’s [87]. 
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2.6.4 Head Impact Power 

 

Developed by Newman et al (2000), Head Impact Power (HIP) treats the head as a single 

mass structure, much like HIC [88]. It is calculated using linear and rotational 

accelerations that are measured at the head CoG of a Hybrid III anthropomorphic test 

device (ATD). The equation is shown below.  

 

𝐻𝐼𝑃 =  𝐶1𝑎𝑥∫𝑎𝑥𝑑𝑡 + 𝐶2𝑎𝑦  ∫ 𝑎𝑦𝑑𝑡 + 𝐶3𝑎𝑧  ∫𝑎𝑧𝑑𝑡⏟                            
 

Linear Contribution 

+ 𝐶4𝑎𝑥∫𝑎𝑥𝑑𝑡 + 𝐶5𝑎𝑦  ∫ 𝑎𝑦𝑑𝑡 + 𝐶6𝑎𝑧  ∫𝑎𝑧𝑑𝑡⏟                              
 

Rotational Contribution 

Equation 4: Head Impact Power Equation [88] 

 

The 𝐶𝑛 coefficients represent approximations of the mass and the moment of inertia for a 

50th percentile human head [89]. 𝑎𝑥,𝑎𝑦, 𝑎𝑧  are the linear and rotational components. 

 

Where:   𝐶1, 𝐶2, 𝐶3 = 4.5𝑘𝑔 

  𝐶4 = 0.016𝑁𝑚𝑠
−2  

  𝐶5 = 0.024𝑁𝑚𝑠
−2 

  𝐶6 = 0.022𝑁𝑚𝑠
−2 

 

The calculation is time dependent and the HIP score will be based on a 50th percentile 

human head, which makes it a of particular interest for this study as both the FE model 

and instrumented mouthguards being used assume a 50th percentile human head. Equation 

4 outputs a maximum value for HIP during the entire impact and the units are in kilowatts 

(kW).  
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2.6.5 Head Accelerations Recorded in Sports 

 

Many studies have recorded the magnitude of linear and rotational accelerations induced 

in participants of sports. Mean values for peak linear acceleration (PLA) and peak 

rotational acceleration (PRA) from the studies that include concussion data will be 

reported, although the number of these studies is limited. Many studies report PLA and 

PRA but do not report concussion data.  

 

In one of the largest data sets of its kind, Duhaime et al. 2012 recorded 486,594 impacts 

from 3 collegiate football teams and 4 ice hockey teams using the HITS. Forty-eight 

concussions were reported, 31 of which could be linked to an individual impact. Of those 

that were linked to an individual impact the PLA and PRA was found to be 86.1g (+/-

42.6g) and 3620 rads/s2 (+/-2166 rads/s2). 

 

Beckwith et al. 2014 conducted a study using the HITS system where 1,208 high school 

and collegiate football players were tracked [45]. 105 injury cases were reported in this 

study, impacts received directly prior to a concussion diagnosis were found to have a PLA 

of 112.2g (+/- 35.4g) and PRA of 4253 rads/s2 (+/- 2287 rads/s2). Similarly, Broglio et al. 

2010 conducted a study using the HITS system and recorded 54,247 impacts from high 

school football players, 13 concussions were recorded [90]. From these impacts they 

determined that a PLA of > 96.1g and PRA of > 5582.3 rads/s2 increased the probability 

of a concussion in a high school athlete. Eckner et al. 2011 [91] conducted a similar study, 

where 95 high school football players wore the HITS system for 4 years [91]. Over 

100,000 impacts were recorded and 19 concussions were reported. Unfortunately, they 

did not report the PLA or PRA for the impacts recorded or for the impacts that resulted 

in a concussive diagnosis.  

 

Several studies utilised the HITS system to record impacts in American football, 

Beckwith et al. 2011 instrumented the helmets of 314 collegiate football players and 

recorded 286,636 impacts [92]. They reported a 50th percentile PLA and PRA of 20.5g 

and 1400 rads/s2 respectively, and the 95th percentile PLA and PRA of 62.7g and 4378 

rads/s2. In a further study using the same data set Rowson et al. 2012 examined 57 

concussive impacts and determined that the non-concussive impacts had a mean PRA of 
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1230 rads/s2 and mean peak rotational velocity (PRV) of 5.5 rads/s [48]. Concussive 

impacts had a mean PRA and PRV of 5022 rads/s2 and 22.3 rads/s respectively. 

 

Zhang et al. 2004  conducted a study where 24 helmet to helmet collisions from 

professional American football were reconstructed using the WSUBIM, they reported 

tentative linear acceleration thresholds of 66g, 82g and 106g for a 25%, 50% and 80% 

probability of a concussion respectively [93]. They also reported rotational based 

thresholds of 4600 rads/s2, 5900 rads/s2 and 7900 rads/s2 for a 25%, 50% and 80% 

probability of a concussion. 

2.6.6 Strain 

Long postulated as a potential predictor for TBI, strain in the tissue of the brain is 

particularly difficult to measure in vivo and as such has been the focus of many decades 

of research.  Shear strain was first proposed as a cause of TBI by Holbourn et al. in 1943. 

They conducted a study where a physical model of a human skull was created, with the 

brain tissue being modelled as a gel. This model was subjected to large angular 

accelerations and a shearing deformation of the gel was observed [94]. The first to attempt 

to observe the motion of brain tissue directly were Pudenz and Shelden in 1946. They 

removed the upper skull bone of a Macaque monkey and replaced it with a transparent 

window and recorded the motion using high speed footage. From these experiments they 

postulated that rotation of the brain was the most important factor in a brain injury [95].  

 

Following these early studies, much research was conducted utilising X-ray technology 

to attempt to directly measure the relative motion of the brain tissue and skull. In 1966 

Hodgson et al. used flash X-Ray technology, in conjunction with an intravascular contrast 

and lead targets implanted in the brain, to observe the motion in anesthetised canines. The 

patterns of motion they observed indicated that the response of the brain was mainly 

driven by shear forces. They also observed that the targets all returned to their original 

positions, indicating that the deformation was elastic in nature [96]. In 1974 Shatsky et 

al. utilised X-ray technology to investigate brain motion in primates. They observed 

motions in the region of 2-3mm and estimated strain of 8.6% for a temporoparietal impact 

[97].  
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More recently, in 1992 Trosseille et al. conducted a cadaveric study where they implanted 

accelerometers into the brains of five cadavers. The cadavers were placed in a sitting 

position and were impacted, high speed video footage was taken. Head accelerations, 

cerebral tissue accelerations and CSF pressures were recorded. This study provides the 

data for many of the most popular FE models in use today, including the model used for 

this study [98]. Following this, in 2001 Hardy et al. attempted to directly measure the 

motion of the brain tissue in re-pressurised cadavers, by implanting neutral density targets 

(NDAs) into the brain. They then used x-ray technology to track the NDAs during an 

impact. They determined that peak displacements were in the order of 5mm and that 

motions were either a loop or figure of eight patterns. This study is also used for FE model 

validation [64].  

 

In 2000, Meaney et al. conducted a study where they investigated the mechanism behind 

axonal injuries, by straining the optical nerve of a male guinea pig. Based on these tests 

and statistical analysis, they determined that Lagrangian maximum principal strain (MPS) 

was the best predictor of axonal injury and were one the firsts to propose MPS based 

injury thresholds [99]. Since then, MPS has been widely used in many studies that 

investigate TBI and several other injury thresholds has been proposed. These will be 

discussed in the upcoming sections.  

 

2.6.6.1 Maximum Principal Strain 

The first of the FE based brain injury predictors; Maximum Principle Strain (MPS) is the 

maximum first principle Green-Lagrange strain in an element within a region or part of 

the brain model. It is widely used as the main metric for finite element based brain injury 

predictors; it is the maximum tensile strain in the longitudinal direction [6] [87] [100] 

[101] [8] .  
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2.6.7 Cumulative Strain Damage Measure 

 

The second of the FE based brain injury predictors, Cumulative Strain Damage Measure 

(CDSM) is a predictor based on the volume fraction of a region of brain tissue that 

exceeds a certain value for MPS. The most commonly used versions of this predictor are 

CSDM15 and CSDM25, which calculate the volume fraction of the region that have MPS 

values over 15 and 25% respectively.  

 

2.6.8 Published Injury Thresholds  

 

In 1998 McIntosh et al. conducted a study to investigate the dynamics involved in mTBI’s 

in Australian Rules Football, Rugby Union and Rugby League. 100 medically diagnosed 

concussion cases were studied, 97 of which involved direct impacts to the head. None of 

the sports in their study require protective head gear. The dynamics of the impacts were 

determined by analysing video footage, from which the impact location, type of impact 

and velocities of bodies before and after the impact were calculated. Using these values, 

they then determined the initial and final momentum, the change in velocity and head 

impact energy. They determined the mean change in velocity and head impact energy for 

the 97 head impact cases were 4m/s and 56J [102].   

 

In 2009 Frediche et al. reconstructed 27 of the impacts from the previous study in 

MADYMO in order to further improve the understanding of the dynamics involved in 

sports related TBI. Full human body models were used to reconstruct the impacts in 

MADYMO, allowing the full dynamics to be captured including; initial velocities of the 

subjects, morphometric analyses, and estimates of masses of the bodies involved. The 

outputs to be investigated from these simulations were HIP, HIC15, PLA, PRA, change in 

peak linear and rotational velocity. Based on the results of the 97 simulations they found 

mean values of 13,715W, 103g, and 8020 rads/s2 for HIP, PLA. and PRA respectively 

[103].  

 

Using the same 27 concussive cases from the previous study and 13 non-concussive cases 

Patton et al. used the accelerations determined by Frediche et al. and applied them to the 
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head CoG of the KTH brain model. The level of maximum principle strain in the grey 

and white matter, brain stem, thalamus, midbrain, corpus callosum, and cerebellum were 

recorded. Univariate logistical regression was performed on the simulation results and 

tentative thresholds for a 50% probability of a concussion occurring were found to be; 

15%, 15% and 27% in the thalamus, corpus callosum and grey matter respectively. The 

study also determined mean levels of strain for the cases where a concussion had occurred 

of; 25%, 26%, 31% and 47% in the midbrain, thalamus, corpus callosum and grey matter 

respectively, Table 11 [6]. 

 

Viano et al. (2005) conducted a study where 28 National Football League (NFL) impacts 

were recreated and simulated using the Wayne State Head injury Model (WSUHIM), with 

22 concussions [8]. Impacts were recreated using a Hybrid HIII ATD and the resulting 

accelerations were applied to the WSUHIM. This study found that strain in the thalamus 

and midbrain were the best predictors for symptoms such as memory loss and general 

cognitive problems. Tentative thresholds for mean strains to cause a concussive injury in 

these regions were determined to be; strains of 38% and 34% in the thalamus and 

midbrain respectively. And the mean strain for non-injury in the thalamus and midbrain 

were determined to be 23% and 21% respectively [8].  

 

Kleiven et al. (2007) conducted a study where 58 impacts from the NFL were 

reconstructed and simulated using the KTH model [7]. Several regions of the brain were 

investigated; brainstem, midbrain, corpus callosum, thalamus, white matter and grey 

matter. The strain in each of these regions was reported and further tentative thresholds 

for mean strain in the corpus callosum and the grey matter for a 50% probability of a 

concussion occurring were 21% and 26% respectively [7]. 

 

Further work conducted by Hernandez et al. into many different FE and kinematic based 

brain injury predictors found that maximum principle strain in the corpus callosum had 

the lowest deviance across all the predictors analysed. In this study they also found that 

of the 6 DoF kinematic based predictors, HIP performed the best and had the 3rd lowest 

deviance of predictors examined [101]. Post et al. examined the relationship between 

impact duration and strain in the corpus callosum and discovered that as the duration of 

an impact increases, the magnitude of rotational acceleration required to cause injury 

decreases [87].  
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In the development of HIP, Newman et al. reconstructed 12 helmet to helmet impacts 

from American Football. Impacts were reconstructed in a laboratory setting, using Hybrid 

III ATDs instrumented with nine accelerometers allowing for the calculation of both 

linear and rotational accelerations. One of the ATDs was mounted on a carriage and 

dropped vertically into another. From these reconstructions they produced a MTBI-HIP 

risk curve. From this curve they calculated a HIP of 12.8kW correlated with a 50% 

probability of a concussion [89].  

 

Based on the combined work of McIntosh, Frediche and Patton in determining the 

thresholds, as well as the analysis by Hernandez, the maximum principle strain in the 

corpus callosum has been selected as the main FE based TBI predictor for this study. The 

strain in the midbrain, brain stem and thalamus will also be compared with the published 

thresholds. Table 11 summarises these thresholds. Furthermore, as highlighted by Post, 

the impact duration will also be analysed. Based on the work by Newman, Hernandez and 

Frediche, HIP will be investigated as the main kinematic based TBI predictor.  

 
Table 11: Summary of Published Strain Based Injury thresholds 

Study Model Region % Strain Comment 

Patton 

[6] 
KTH 

Midbrain 25% 

Mean for Concussive 

injury 

Corpus callosum 31% 

Thalamus 26% 

Grey matter 47% 

Midbrain 13% 
Mean for non-

concussive injury 
Corpus callosum 12% 

Thalamus 10% 

Midbrain 15% 
50% probability of 

concussion 
Corpus callosum 15% 

Grey Matter 27% 

Viano 

[8] 
WSM 

Midbrain 34% Mean for Concussive 

injury Thalamus 38% 

Midbrain 23% Mean for non-

concussive injury Thalamus 21% 

Kleiven 

[7] 
KTH 

Corpus callosum 21% 50% probability of 

concussion Grey matter 26% 

 

  



 

 53 

2.6.9 Brain Injury Predictors Summary 

In this section several different metrics from brain injury predictors have been examined, 

some being based on kinematics. With GSI and HIC using linear acceleration only and 

not taking impact duration into account. And HIP, taking linear and rotational 

acceleration into account but only being applicable to the 50th percentile human head.  

 

MPS is a metric based on FE model outputs and is independent of kinematic based 

metrics. It is the most widely used metric of its kind, with many studies utilising it across 

many sports and in accident recreation [6] [7] [8] [87] [100] [101] [104]. CSDM is a 

further FE model output-based metric derived from the levels of MPS exceeded in regions 

of the brain during a simulated impact. As MPS is the fundamental metric and that much 

of the work in concussion has been utilising it, with several thresholds for concussion 

published in terms of MPS, it was chosen as the main FE based predictor to be 

investigated for this study.   

 

HIP is a time dependent formula, which takes both linear and rotational acceleration into 

account. The equation also uses anthropometric data for a 50th percentile human head, 

aligning with the FE model and instrumented mouthguards used in this study. For these 

reasons it has been chosen as the main kinematic based TBI predictor.  
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2.7 Mixed Martial Arts 

Mixed Martial Arts (MMA) is a combat sport that incorporates several different 

disciplines including but not limited to; striking, grappling, Brazilian Jiu Jitsu, wrestling, 

boxing and Muay Thai. MMA style competitions have been recorded as far back 648BC 

[105], while MMA in its current form started in the United States of America in 1993 

with Ultimate Fighting Championship (UFC) 1. It wasn’t until 2001 when the UFC was 

acquired by a new owner (Zuffa LLC) that the health of the participants was addressed 

more fully and a set of unified rules and weight classes were implemented. Since 2001 

MMA has seen a massive increase in the number of participants and fans, with it now 

being one of the fastest growing sports in the United States. News reports suggest some 

5.5 million teenagers and 3.2 million children under 13 are actively participating in the 

sport in the United States alone [106]. 

 

Amateur MMA is governed by the World Mixed Martial Arts Association (WMMAA) 

and the International Mixed Martial Arts Federation (IMMAF). These federations were 

founded independently, with the WMMAA being founded in 2012 by Vadim Finkelchtein 

and the IMMAF by August Wallen. In 2018 in an effort to push for Olympic recognition 

the federations merged to form the IMMAF – WMMAA [107]. 

 

In 2014 the IMMAF produced the first set of unified rules for amateur MMA, latest 

revision March 2017, which lays out how fights would be judged; a system of warnings, 

definitions of fouls and forbidden techniques, weight divisions, medical requirements for 

participants, the personal protective equipment to be used, the dimensions of the cage, 

scoring techniques and how the winner of a fight would be decided. This document is 

available in full in Appendix 2.  

 

Also created was a set of unified rules for youth participants, latest revision February 

2019 rev B, it is similar to the previously mentioned rules but also defining the age ranges 

in which youth participants would compete.  
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Further medical requirements have been implemented in Ireland for participants of MMA, 

with the formation of Safe MMA in 2012.  Safe MMA regulates the medical standards 

for MMA in the UK and Ireland, working closely with the Irish Amateur MMA 

Association, the Ulster Amateur MMA Association, the United Kingdom Mixed Martial 

Arts Federation and the International Mixed Martial Arts Federation. To participate in an 

event organised by any of these federations or associations medical clearance must be 

provided by Safe MMA, known as a “passport”. There are several different types of 

“passports” provided by Safe MMA (Table 12). As well as the requirements listed in 

Table 8 blood tests are also required, with confirmation of the participant being clear of 

the following blood borne diseases: HIV, Hepatitis B and Hepatitis C [108]. Safe MMA 

addresses the issue of competitor safety practically and in the simplest way possible, with 

its system of standardised and voluntary, fighter medical clearance. A Safe MMA 

passport includes: 

• Confidential database for competitors’ well-being and current medical status 

• Member promotions only using athletes found within the registered database 

• Listed promotions upholding medically advised suspensions 

• Affordable cost: Not-for-Profit medically led project with specially negotiated 

blood test rates. 

• Access to sports based medical advice that fighters can trust 

As part of the Safe MMA regulations, “at event” medical examinations are required for 

all participants. In Ireland these are conducted by Code Blue, a team of medical 

professionals that provide medical support. Code Blue is made up of professionals in 

emergency medicine and the ambulances services. They provide an on-site medical 

centre, where all participants will be examined pre- and post-fight, medical support ring 

side and transfers to hospital as required. They are fully accredited by the Irish Medical 

Council, An Bord Altranais and The Pre-Hospital Emergency Care Council (PHECC) 

[109]. 
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Table 12: Safe MMA fighter medical requirements 

Professional Amateur 

Type Requirements Type Requirements 

M1 • Yearly medical 

examination 

• Six-monthly blood tests 

• Pre and post-fight medical 

examinations (at event) 

M1 • Yearly medical 

examination 

• Yearly blood tests 

• Pre and post-fight 

medical examinations 

(at event) 

M3 • Yearly medical 

examination 

• Six-monthly blood tests 

• Pre and post-fight medical 

examinations (at event) 

• Dilated pupil eye tests 

• One-off MRI of the brain 

• MRI of the brain every 3 

years 

  

M5 • Yearly medical 

examination 

• Six-monthly blood tests 

• Pre and post-fight medical 

examinations (at event) 

• Dilated pupil eye-tests 

• One-off MRA of the brain 

and neck 

• Yearly MRI of the brain  

M5 • Yearly medical 

examination 

• Yearly blood tests 

• Pre and post-fight 

medical examinations 

(at event) 

• One-off MRI of the 

brain 
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2.7.1 MMA Summary 

As MMA involves a more diverse physical interaction among athletes than boxing, it may 

result in higher injury rates yet with less significant head trauma [110] [111]. Boxers are 

limited to hitting their opponent in the head and body whereas MMA fighters can use a 

multitude of fighting techniques with the inclusion of wrestling and Brazilian jiu-jitsu. In 

a 10-year review of professional MMA matches, head trauma was found to be the single 

most common reason for match stoppage at 28.3% [10]. 15% of the 115 MMA athletes 

surveyed, by Heath and Callaghan in 2013, reported a history of at least 1 knockout [112]. 

Ngai and colleagues found during a 5-year period, regulated MMA event injuries were 

similar to other combat sports, with only 3% of matches ending in concussion [113]. 

 

As MMA participants are required to wear a mouthguard at all times during practice or 

competition, it was seen as an excellent opportunity to collect in vivo impact data by way 

of an instrumented mouthguard. A further consideration was that MMA is an individual’s 

sport and as such makes recording of video footage considerably easier than that of an 

American Football team, for example. Focusing the camera on a single participant allows 

for confirmation of impacts to be considerably simpler, as just a single camera is likely 

to capture most impacts. It was with this in mind that MMA was chosen as the sport to 

conduct this study, as MMA provides a unique opportunity to gather in vivo head impact 

data.  
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2.8 Literature Review Summary 

In this chapter several important topics for investigation have been defined, as well as 

some of the methods to be used. This includes the brain regions of interest, the definition, 

symptoms, effects and diagnosis of mTBI, the device being utilised for collecting in vivo 

impact data, the model being utilised for simulating data the predictors for predicting an 

mTBI and the sport in which data was collected.  

 

The regions of interest have been chosen based on their function and previous studies, 

which have highlighted their role in mTBI study. They are the corpus callosum, brain 

stem, midbrain and thalamus. 

 

The Stanford mouthguard was chosen due to the fact that it provided a unique opportunity 

to collect in vivo data in an unhelmeted sport and because it is one of the best performers 

of all instrumented devices available.  

 

The GHBMC model was chosen as it is one of the most detailed models available, with 

good validation studies in the literature and was possible to utilise an isolated head and 

neck model which reduces the computational power and cost.  

 

MMA was chosen as it provides an excellent opportunity to gather in vivo head impact 

data. Competitors are required to wear a mouthguard during all bouts and training 

sessions, meaning there was little change required in the participants behaviour. MMA 

also provides an excellent arena to gather head impact data due to the fact that up to 25% 

of all MMA bouts end as a result of head trauma. Also due to the fact that the sport itself 

is 1-on-1, this make recording of video footage considerably easier than other sports 

commonly studied in mTBI studies.  

 

These combinations of factors are the driving force behind the design and decisions made 

for this study.   
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Chapter 3 Study Design 
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3.1 Introduction 

The aim of this study is to measure and simulate head impacts in MMA. The measurement 

of these impacts is achieved by way of an instrumented mouthguard. The section below, 

3.2 Mouthguards, will describe in detail the process. The head accelerations recorded by 

the mouthguards will be applied to a head simulated model. This process will be described 

in the next chapter, Chapter 4. 

 

The study had 22 participants, all of whom gave their written consent to take part; ethical 

approval was granted by the Institute of Technology Tallaght Ethics Committee (REC-

STF1-201819). The consent form is available in full in Appendix 3.  

 

While the purpose of this particular study is to measure and simulate head impacts, this 

study is part of a much larger project. The author of this thesis is part of the Concussion 

Research Interest Group (CRIG). CRIG is a multi-discipline, multi-institute group of 

science, engineering and medical researchers working in the field of concussion research. 

Along with the measurement and simulation of impacts there are other aspects of the 

project. Our partners in the Smurfit Institute of Genetics, Trinity College Dublin, 

postulate that damage to the blood brain barrier (BBB) is a contributing factor in the 

mechanism behind concussion. In order to investigate this, participants are asked to make 

themselves available to have a gadolinium contrast injection MRI, to capture a baseline 

of their “uninjured” brain. It is important that this baseline scan is as clean as possible, in 

that it should take place as long as possible after any previous head impact. Then when 

the participant has taken part in a competitive event, they will have a further MRI, in 

order to compare to the baseline scan. These scans are provided by St. James Hospital, 

Dublin radiology department and are supervised by an emergency medical professional. 

The research in this area is on-going.  

 

Further testing is carried out on the participants in the form of cognitive testing, 

undertaken by neurologists from Beaumont Hospital, Dublin. They are investigating the 

potential link between eye tremors and the diagnoses of concussion. Research in this area 

is also on-going.  
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Also, as part of the project, there is a physiotherapist who is conducting SCAT 5 tests on 

the participants after each event. This has just recently begun and the data from this is 

limited.  

 

The final aspect of the project is to investigate the existence of a blood bio marker that 

indicates whether a concussive injury has occurred. The discovery of a bio marker would 

be the “holy grail” in this field. As it would be the least intrusive and most cost-effective 

method of diagnoses.  This research is conducted in Trinity College, Dublin and is also 

ongoing.  

 

In this chapter the processes developed to take manufacture and configure the 

mouthguards, field data collection and review video footage of events will be detailed. In 

the final section the statistical techniques being used in this study will be explained.  
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3.2 Mouthguards 

All participants in this study have been provided with 2 mouthguards; developed in 

Stanford as discussed in Chapter 2. One is a fully instrumented mouthguard and the other 

has no instrumentation. Both mouthguards are created using the same unique dental 

mould taken from the participant, the non-instrumented version is the property of the 

participant. The non-instrumented version allows them to become comfortable with the 

design and feel of it prior to wearing the instrumented version. The aim is that the 

participants wear the non-instrumented version when training and sparring and on the day 

of an event it is replaced with the instrumented version.  

 

 

Figure 16: An instrumented and non-instrumented mouthguard 

 

Shown in Figure 16 on the right is the instrumented version, with the power switch on the 

left, printed circuit board in the centre and battery on the right. On the left of Figure 16 is 

the non-instrumented version, with the switch, circuit board and battery being replaced 

with dummy components, thus ensuring both instrumented and non-instrumented version 

feel exactly the same for the participant.  

 

The mouthguards are manufactured by Opro, Hertfordshire, United Kingdom, from a 

custom dental mould taken from the participants. The dental impression process takes 

approximately 5 minutes in total and is a 5-step process, with the process detailed below 

in section 3.2.1.  
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3.2.1 Mouthguard Impression Procedure 

Shown in Figure 75 below is the home impression kit supplied by Opro. The participant 

or the person conducting the study will carry out the impression procedure. To take a 

dental impression the following materials are required:  

 

• Protective gloves 

• Tape for labelling tray 

• Timer 

• Impression kit 

 

Impression Kit contains: 

• Impression Kit 

• 2 putties 

• Return bad 

Figure 17: Opro home impression kit 

The procedure for taking dental impressions is as follows: 

1. Assemble materials required: putty, impression tray, protective gloves, tape, bag 

to place completed impression in, timer. 

2. Put on protective gloves. 

3. Place small piece of tape on the end of the impression tray to mark the ID of the 

participant. This number also should be written on the outside of the bag for 

sending to Opro. 

4. Mix the putties until no streaks are visible i.e. – one colour (40 seconds). 

5. Mould the impression material into the tray, ensuring complete coverage. 

6. Have the participant place the impression tray into their mouth and tell them to 

bite down firmly. (2 ½ minutes). 

7. Remove the impression tray from the participant’s mouth, ensuring it is a 

complete impression with no gaps and that all teeth have made an impression, 

including molars. 

8. Rinse the impression tray and allow to dry. 

9. Place the impression tray into the bag to be returned to Opro. 

10. Impression is now complete, clean up all materials and change gloves if taking 

another impression to ensure no cross contamination.  
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3.2.2 Mouthguard Setup Procedure 

Setup and data collection from the mouthguard are achieved via Bluetooth, by way of a 

custom Apple Mac OS app. The app is called Bite App and was developed alongside the 

mouthguards.   

 

Figure 18: Bite App main interface 

To setup a mouthguard, the plus in the top right of Figure 18 must be pressed. That will 

show all mouthguards that are powered on and in proximity, Figure 20. In order to 

communicate with the app, the mouthguard must be in the charging station and the blue 

LED must be illuminated. All mouthguards have a unique alpha-numeric device 

identifier; this ensures only the correct mouthguards are configured. When a mouthguard 

has been added it will appear in the list, as shown in Figure 21. It is imperative that the 

“Delete Data” box be ticked if the mouthguard had been used previously, to ensure that 

no unwanted data from another session is saved.  

 

 

Figure 20: Adding a mouthguard in Bite App Figure 19: Setting up Bite App 
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Figure 21: Mouthguard added in Bite App 

 

When the app has discovered the mouthguard, it can be setup to collect data. This is done 

by selecting the Bite App in the top left and selecting preferences, shown in Figure 19. 

Selecting this opens a new menu, where we can set the acceleration range, Gyroscope 

frequency, Gyroscope range, the duration of impacts to be recorded, lower threshold for 

recording an impact and the time and date for the mouthguard to power on. This menu 

and the settings used for this study are shown in Figure 22. 

  

 

Figure 22: Bite App preferences menu 
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• Accel. Range (g): Is the max linear acceleration that will be recorded by the 

mouthguard. Default is 400g. 

• Gyro rate (Hz): Is the frequency at which the gyroscope will sample data. Set to 8 

KHz. 

• Gyro Range: Is the maximum angular velocity that will be recorded by the 

mouthguard. Set to 4000 rads/s. 

• Window Pre/Post (ms): Is the time, in milliseconds, the mouthguard will record before 

and after the impact has been received. Set to 50ms pre and 150ms post. 

• Threshold (mG): The minimum linear acceleration threshold to record data. Set to 

10g. 

• Next practice: Is the time and date at which the mouthguard will power to collect data. 

 

The mouthguards have 3 power modes: 

1. Powered on but not setup with a time and date to record data (Green LED flashes 

every second) 

2. Powered on and setup with a time and date to record data (Green LED flashes 

every 10 seconds) 

3. In data recording mode (Green LED only flashes when an impact is recorded) 

Turning the power on and off is achieved by way of a magnetic wand, which has to be 

passed by the switch embedded in the mouthguard.  
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3.2.3 Field Data Collection 

Once the mouthguard has been setup with a time and date for a sparring session or 

competitive event, it can be handed over to the participant. All sparring 

sessions/competitive events are video recorded in 1080p. At the start of the video 

recording, an atomic clock showing the current time is shown on screen, this ensures all 

impact timestamps can be cross-referenced with the time shown on the video. An example 

of a typical impact recorded in a sparring session with the video timestamp visible, shown 

in Figure 23.  

 

When the sparring session/competitive event is finished, the mouthguard can be collected 

from the participant and powered off. Prior to collecting the data from the mouthguard, it 

must be cleaned. The next section will cover the procedure for cleaning mouthguards so 

they are safe to handle.  

 

 

 

 

 

 

 

  

Figure 23: Image taken from sparring session with timestamp visible 
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3.2.4 Procedure for Cleaning Mouthguards 

Before handling used mouthguards, it is recommended that any individual that is likely 

to come into contact with blood and/or saliva has a Hepatitis B vaccination. This is to 

ensure that no blood borne pathogens can be transmitted during the handling of 

mouthguards. 

 

Prior to cleaning the mouthguards, ensure there is a clean area in which they can be 

cleaned. The following will be needed: 

 

• Shallow tub/basin that fits into the sink 

• Small bucket 

• Detergent soap 

• Household bleach 

• Soft bush 

• Absorbent pad 

• Apron/Lab coat 

• Protective gloves 

• Protective glasses 

 

The procedure for cleaning mouthguards is as follows: 

 

• Put on PPE (lab coat, protective gloves and glasses) 

• Put the basin in the sink and fill part way with warm water and detergent.  Fill 

the bucket with warm water and add 10% bleach. Have a bin nearby. 

• Turn on the hood and place a new absorbent pad in the hood. 

• Turn on the tap and get a small stream of warm running water. 

• One at a time, open each Ziploc bag containing a mouth guard over the sink.  

Take out the mouth guard, rinse it under the running water, and put it into the 

basin with the soap water.  Put the used Ziploc bag in the bin.  

• Gently use the brush on the mouth guard for 10 seconds.  Rinse the mouth guard 

under the running water and put it into the bucket of bleach solution. 
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• Repeat this for all the mouth guards.  As you add each mouth guard give them 

all a swirl to make sure all the surfaces are exposed to the bleach. 

• Once you have finished all the mouth guards, rinse off the gloves, empty the 

soap water and clean the basin and set it on the counter to dry. 

• Leave the mouth guards in the bleach solution for 10 minutes (timing from the 

last mouth guard to be put in). 

• After 10 minutes take out the mouth guards one at a time, rinse them off under 

running water and place them on the absorbent pad to dry.  Place the 

mouthguards top side down so that the water runs out of the space where the 

teeth fit. 

• You can swirl the gloves to disinfect them in the remaining bleach solution 

before emptying the bleach into the sink.  Be careful not to splash the bleach 

solution as it will stain your clothes. 

• Rinse out the bucket, rinse off the gloves and put them both aside to dry. 

• From this point on, you can treat the mouth guards as “clean” but you should 

still wear gloves when handling them so as not to transfer anything from your 

finger to the mouth guards. 

• After the mouth guards are dry each one should be put on/in a charging station.  

You can then start the download process. 

• After charging and downloading the data, you need to prepare the mouth guards 

for delivery back to the participants. 

• Each mouth guard should be placed in a Ziploc bag and given a spray of 

Listerine. Seal each bag and put them all in a large clean bag for transporting to 

the participants.   
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3.2.5 Mouthguard Data Collection 

Once the mouthguards have been cleaned and are safe to handle, the data can be retrieved. 

This is achieved by way of the Bite App. Mouthguards must be switched on and in the 

charging station for the transfer of data. Figures 25 and 24 show the charging station with 

a mouthguard while in the charging station and when empty. 

 

The mouthguard must now be linked to the Bite App again to retrieve the data collected. 

This is achieved by adding the mouthguard, when switched on, to the app as detailed in 

the mouthguard section previously. Once the mouthguard is linked again, the Sync 

Overnight button must be pressed. This will start the transfer of data. This can be seen in 

the list of mouthguards in the app. The number of events to be downloaded will be 

indicated on screen. When all events have been downloaded the process can be stopped.  

 

Downloaded data is stored locally on the MacBook in the form of a comma separated 

value file (CSV). This is the raw, unprocessed data. An example of this data, with some 

explanations of the function of each part is shown in Figure 26. 

 

Figure 24: Charging station empty Figure 25: Charging station with mouthguard charging 
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Figure 26: Raw, unprocessed data from mouthguard 

 

This data has been filtered and differentiated. Filtering is achieved with a Butterworth 

CFC180 filter, while differentiation is achieved by way of a 5-point-stencil derivative for 

high precision. In order to format this data in a readable manner, several MATLAB 

programmes were created. These programmes were created by and run by the supervisor 

of this project. The different programmes used are: 

 

Infrared history – produces a graphical summary of IR readings. Figure 27 shows the 

output from the IR History file, it is a bar chart and indicates the IR readings and the 

number of impacts with that value. A higher IR reading indicates the mouthguard was 

being worn when the impact was received, meaning that impacts recorded when the 

mouthguard was not worn can be easily identified.  

 

Figure 27: IR History output 
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Single Event – produces csv files for a single event for applying to a simulation. Figure 

29 shows an excerpt from a Single event file output, the left-hand column is the time in 

milliseconds, with the right-hand column showing the relevant acceleration for the impact 

chosen. Data here has been formatted so that the units are correct and will allow for direct 

upload into simulation software  

 

Range – produces an Excel file, shown in Figure 28, this gathers the data for each impact 

and formats it in a way that is user friendly. It categorises the impacts in terms of direction, 

elevation, severity and the location on the head where it was received. As well as that, it 

reports the max resultant linear acceleration, max resultant rotational acceleration and 

max resultant rotational velocity. The additional sheets in this file have the raw data for 

each impact recorded.  

 

Severity is divided into 6 categories, which were defined for this study based on the data 

collected in the first sessions. These categories detailed below first in terms of linear 

acceleration and then in terms of rotational acceleration. Elevation is split in to 4 

categories. While direction is split into 7 categories, with the vertical axis of the 

mouthguard being 0° and rotating around the head counter-clockwise.  

 

Linear Acceleration (g): 

1. Low:   10 – 30g 

2. Moderate:  30 – 60g 

3. Serious:  60 – 90g 

4. Very Serious: 90 – 120g 

5. Severe:  120 – 150g 

6. Very severe:  150 – 400g 

Rotational Acceleration (rads/s2): 

1. Low:   0 – 5000 

2. Moderate:  5000 – 10000 

3. Serious:  10000 – 15000 

4. Very Serious: 15000 – 20000  

5. Severe:  20000 – 25000 

6. Very severe:  25000 and above

 

Elevation:   

1. Top: The crown of the head 

2. Upper: The top half of the head 

3. Lower: The lower half of the 

head 

4. Neck:  The neck 

 

Direction: 

1. Front:   -45° to 45°  

2. Front Left: 45° to 90° 

3. Left:  90° to 135° 

4. Back Left: 135° to 180° 

5. Back:  180° to -135° 

6. Back Right: -135° to -90° 

7. Right:  -90° to -45° 

 



 

 73 

 
 

Figure 28: Example of Range data output 

  

Figure 29: Example of Single event data output 
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3.2.6 Video Review 

Prior to reviewing the footage, it may be necessary to add a timestamp to the recorded 

video footage. This is achieved with Visual MP4/MOV Time Stamp (vMTS or vMTS64), 

a free piece of software that allows for the timestamping of video footage [114]. The exact 

time of the start of the fight is recorded, an atomic clock is shown in the recorded footage 

and this known time is then used to timestamp the footage.  

 

Review of video footage is conducted with Kinovea, a video player with such features as 

the ability to slow down footage, make measurements and annotate [115]. Designed for 

use in the sports industry, it is free to download and is fully open source. Videos taken 

during sparring/competition are loaded into the player and it allows the user to move 

through the footage frame by frame. Figure 30 shows an example of a confirmed impact, 

with the timestamp from the video shown and the corresponding impact from the 

mouthguard.  

 

 

Figure 30: Impact viewed through Kinovea video player 
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Figure 31: Impact confirmed using Kinovea 

 

In Figure 30, the participant wearing the mouthguard is on the right, in black and yellow 

shorts. As can be seen, the impact occurs at 12:40:23; it is received to the front of the face 

and is in the upper part of the head. This matches the data recorded by the mouthguard, 

shown in Figure 31. Unfortunately, the mouthguards do not take daylight savings into 

account, so it is up to the user to take this difference into account when reviewing footage. 

All impacts reported have been video confirmed in this manner.  

 

It should be noted that video footage reviewed with Kinovea is not used to confirm any 

acceleration values recorded in this study, it is only used to confirm the impact time, 

direction, and location. 

 

3.3 Statistical Techniques 

In order to determine the best predictors for mTBI diagnoses and strain in the regions of 

interest, two statistical techniques will be used. The first is examining whether any single 

input is a good predictor for strain in the regions of interest. This has been achieved by 

comparing the levels of one input, peak linear acceleration for example, and graphing it 

against one of the outputs, MPS in the corpus callosum for example. Once the input and 

output have been graphed against each other, a linear trendline is added. This trendline is 

created using Microsoft Excel’s in-built linear trendline function, an example of one of 

these graphs is shown in Figure 32.  

 

The results in Figure 32 are split into 3 types; the blue diamonds are impacts from sessions 

that did result in a concussion diagnosis, the orange squares are from sessions that did 

not. The blue line indicates the linear trendline for the mTBI sessions, the orange line for 

the no injury sessions. A further black line is included, which demonstrates the linear 

relationship between input and output for all the simulated impacts. Each trendline has an 

r2 value associated with it. r2, also known as the co-efficient of determination, is a measure 

of how much of the variance in the output can be explained by the input. In Excel, r2 is 

calculated using Equation 5.  
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Figure 32: Example of Graph to Investigate Linear Relationship between Input and Output 

 

Equation 5: Calculation of r^2 in Excel 

𝑟 =  
∑(𝑥 − 𝑥) (𝑦 − 𝑦)

√∑(𝑥 − 𝑥)2 (𝑦 − 𝑦)2
 

 

From Figure 32 we can see that for the combined data set, all simulated impacts, r2 is 

0.143 or 14.3%. This indicates that peak resultant linear acceleration can account for 

approximately 14% of the variance in MPS in the corpus callosum. This technique will 

be used to examine the predictive qualities of all model inputs. As this function can only 

take a single input into account and the fact that in this study several inputs are being 

examined, a more sophisticated technique will also be employed.  

 

The 2nd statistical technique employed is a Best Subset Regression analysis. This is a type 

of analysis that is conducted through the Mintab, a statistical software tool developed by 

the State College in Pennsylvania, U.S.A. A Best Subsets regression analysis is used to 

create models from the chosen inputs and outputs, allows the comparison of these models 

and outputs some statistical values to determine which is the best model. An example of 

a Best Subset analysis is shown in Figure 33. The response (output) being investigated is 

listed at the top, while listed vertically are the predictors (inputs). Each new line shows 

the best model for that number of predictors, with the predictors in that model being 

denoted by the x, until the best model for the total number of predictors has been reached.   

y = 0.0015x + 0.0437
R² = 0.2595

y = 0.001x + 0.117
R² = 0.0879
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0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 50 100 150 200 250 300 350

St
ra

in
 (

%
)

Resultant Linear Acceleration (g)

CC Max v Peak Resultant Linear Acceleration

mTBI No Injury Linear (mTBI) Linear (No Injury) Linear (Combined)



 

 77 

 

Figure 33: Example of Best Subset Analysis Output 

 

On the left, each column represents a statistical measure, they are: 

• R-Sq: How well the input models the output, a general measure of goodness of 

fit.  

• R-Sq (Adj): An adjusted R-Sq value which can take multiple predictors into 

account. R-Sq (adj) will continue to increase until the addition of a new predictor 

does not improve the model by more than chance.  

 



 

 78 

• R-Sq (pred): A further adjusted R-Sq value, calculated by removing each output 

data point systematically, recalculating the regression equation without that data 

point and then determining how well it would have predicted the removed data 

point.  

• Mallows Cp: A measure that can be used to determine the fit of the model, a value 

close to the number of predictors plus 1 or a small number indicates a relatively 

precise model.   

• S: The Standard error of Regression, a measure of the average distance between 

the output values and the regression line. Smaller values for S are better, units are 

the same as the units for the response (output).  

In the example shown in Figure 33, the model that would be chosen as the best would be 

2 predictors, PLA Y and PRV. This model is the point at which R-Sq (adj) begins to fall 

and has the lowest value for S. This method of choosing the best models for prediction 

will be used throughout.  

 

When data from session types, or injury types, is presented it will be shown in a Box and 

Whisker plot. This technique is employed as it shows the full range of the data, includes 

the mean, median, 1st quartile, 3rd quartile, local maximum and outliers. An example of 

this graph type is shown in Figure 34. The variables are defined in Table 13.  

 

Table 13: Box and Whisker plot variable definitions 

Variable Definition 

Mean The average of all impacts 

Median 50% of data is greater than this  

1st Quartile 25% of data is less than this 

3rd Quartile 25% of data is greater than this 

Minimum Lowest value, excluding outliers 

Local Maximum Greatest value, excluding outliers 

Outlier Greater than 3/2 times the 3rd quartile OR less than 3/2 times 1st quartile 
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3.4 Study Design Summary 

In this chapter the processes developed for manufacturing, cleaning/handling, operating 

and programming the mouthguards have been detailed. Further processes for collecting 

and reviewing data were also developed and detailed. It is these processes that ensure any 

impact considered for simulation has been confirmed by cross referencing the collected 

mouthguard data with the recorded video data. Confirmed impacts then will be examined 

and processed in order to output 6 DoF data for input into the FE model simulation. 

Simulations require inputs of linear acceleration in the x, y and z. As well as rotational 

acceleration in the x, y and z. All confirmed impacts have 200ms of data points for each 

of the 6 DoF. This process will be detailed further in the next chapter.  

 

The statistical techniques employed have also been detailed, with the values being used 

to determine the best predictors being defined. These techniques will be utilised in the 

upcoming results chapters.  

 

Mean 

Median 

3rd Quartile 

1st Quartile 
Minimum 

Local 

Maximum 

Outliers 
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Chapter 4 Computational Setup
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4.1 Introduction  

LS-Dyna, was used in this study to run simulations on the GHBMC model, discussed in 

Chapter 2. This chapter will cover the computational setup, the loading conditions used 

within the solver, and the model arrangement.  

 

Ls-Dyna is a multi-purpose programme used for finite element model simulations, it is 

made up of 3 sections; a pre-processing environment, an explicit solver and a post-

processing environment. It has functions that are applicable in many industries including 

automotive, military, manufacturing and bio-engineering to name but a few.  It is capable 

of highly non-linear and dynamic finite element analysis, allowing for dynamic boundary 

conditions and large deformations and is particularly suited to high speed, short duration 

events. 

 

LS-PrePost is a pre and post processor that is a part of Ls-Dyna, it has been used in this 

study to setup simulations, i.e. - applying boundary/loading conditions, and to analyse 

simulation results. Some of the features available in Ls-PrePost are listed below. 

 

Pre-processing: 

• Meshing Tools – surface, solid, tool, 2d, tet, block and mesh morphing 

• Metal Forming 

• Roller Hemming 

• Airbag folding 

• Dummy positioning 

• Model Checking 

Post-processing: 

• Results animation 

• Fringe Plotting 

• ASCII Plotting 

• Particle/Fluid Visualisation 
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4.2 Virtual Machine  

Simulations were run using an Amazon Web Service (AWS) virtual machine, supplied 

by CADFEM UK & Ireland. The instance used was a standalone Linux Cluster Head 

Node, using Ansys 19.0. The instance type was a c5.18xlarge with 36 cores, 144GB Ram 

and a 3.0GHz Intel Xeon Platinum 8124M. This instance costs approximately $3.456/Hr, 

in order to keep these costs at a minimum spot pricing was used. This brought the cost 

down to $1.24/Hr. Each simulation took approximately 2 to 3 hours to run, meaning the 

cost per simulation was approximately $2.48 to $3.72, depending on the total run time.  

 

4.3 Model and Mouthguard Planes and Axes 

In order to ensure mouthguard output data is in the same frame of reference as the model, 

the positive direction in each axis and plane was found. This was then compared to the 

known positive direction the mouthguards record. The model and mouthguard positive 

directions are detailed in the following sections.  Figure 34 details the standard anatomical 

planes and axes [18]. 

 

 

 

Figure 34: Anatomical regions of the human body [18] 
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4.3.1 Mouthguard Planes and Axes 

• X axis (sagittal axis) linear positive direction: posterior to anterior 

• Y axis (frontal axis) linear positive direction: right to left 

• Z axis (longitudinal axis) linear positive direction: inferior to superior 

4.3.2 Model Planes and Axes 

• X axis (sagittal axis) linear positive direction: posterior to anterior 

• Y axis (frontal axis) linear positive direction: left to right 

• Z axis (longitudinal axis) linear positive direction: superior to inferior 

 

As there is a difference in linear positive directions between the model and mouthguards, 

the mouthguard linear outputs in the Y and Z directions are inverted prior to applying 

them to the model. Positive directions of rotation are about the axes from which they are 

defined. i.e. – positive X rotation is clockwise about the X axis (sagittal axis) when 

viewing the axis in the positive linear direction. The mouthguard and model agree in the 

directions of positive rotation; therefore, no changes are made to these outputs.  

 

4.4 Model Loading Conditions 

The method for applying the loads to the head and neck model is as follows.  

1. Define the load curves 

2. Apply the loads 

3. Define the Local Coordinate System 

4. Define the Boundary Conditions 
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4.4.1 Define Load Curves 

The keyword manager in LS-PrePost is used to define the data for the loads to be applied, 

as shown in Figure 36. From the toolbar on the right the keyword manager button is 

selected, the “Define” card is expanded and the “Curve” dialog box is opened. Shown in 

Figure 35 is the Curve dialog box.  

 

Figure 35: Curve dialog box in LS-PrePost 

6 curves are added for each of the degrees of freedom that the mouthguards record; linear 

x, y and z and rotational x, y and z. The format for this data is comma separated values 

(CSV), with each data point representing a 1ms time-step. Each curve is given a unique 

name and load curve id (LCID), this LCID is then used in the boundary conditions to 

apply the load. 

 

Figure 36: Keyword Manager in LS-PrePost 



 

 85 

4.4.2 Applying the Loads 

The GHBMC skull is not a rigid part, so loads cannot be applied to it directly. Therefore, 

an alternative method for applying loads and constraining the motion to the head CoG 

must be used. The method developed was: 

 

• Head CoG is tied to the Neck Muscle Activation Plate (part id 2090001) which 

is a rigid part. 

• Load is applied to the Neck Muscle Activation Plate using the local co-ordinate 

system of the head CoG node. 

• *BOUNDARY_PRESCRIBED_MOTION_RIGID_LOCAL* is used to apply 

the loads, it uses the co-ordinate system associated with the rigid body that the 

loads are applied to.  

• Motion of the loads is then driven about the head CoG node. 

 

 

Figure 37: Mat card in LS Pre-Post 
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4.4.3 Defining the Local Coordinate System 

Figure 37 is the LCO option, this is where the local coordinate system for the outputs can 

be defined. The node ID shown, 1000002, is the head CoG. CMO is set to -1.0; this tells 

the programme that constraints are applied in the local directions. CON1 defines the local 

coordinate system for which the motion will be based; again, this is the head CoG. CON2 

represents the constraints on the motion, with each number representing a degree of 

freedom. 100000 is linear X only and 111111 is linear X, Y, Z, and rotational X, Y and 

Z.  

 

Figure 38: Boundary Keyword card in LS Pre-Post 

 

4.4.4 Defining the Boundary Conditions 

Once the coordinate system and constraints have been defined for this part, the loads in 

the “Boundary” keyword option can be defined. This is shown in Figure 38. The 

highlighted red box shows the rigid part the loads are being applied to, in this case part 

ID 2090001, which is the “Neck Muscle Activation Plate”. DOF option defines the degree 

of freedom for the applied loads, for this load curve it is linear X. With linear X being 1, 

linear Y being 2 and so on. VAD defines whether we are applying a velocity, acceleration 

or displacement. With 0 being velocity, 1 being acceleration and 2 being displacement. 

Part ID, degree of freedom and type of load we are applying for each load curve can be 

defined. Once this is complete, the simulation can be run. 
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4.5 Running a Simulation 

As discussed in the Virtual machine section above, simulations were run in a Linux based 

virtual machine. The setup described in the above Model Loading Conditions section is 

conducted on a local machine, in order to keep the cost per simulation down. Once a 

cluster has been created and a connection has been made the simulations can be run. 

 

Files are copied from the local machine to the virtual machine. Then using the console 

commands, a simulation can be started. First the directory that the files are in must be 

located; in this case it is the Documents folder. An example of the console command to 

run a simulation is shown below.  

 

lsdyna192 i=GHBMC_M50-O_Main.dyn ncpu=36 memory=100m 

 

Where: 

lsdyna192: specifies the LS-Dyna solver 

i: is the file to run 

ncpu: is the number of cores to use 

memory: indicates the amount of memory allocated to run the simulation 

 

Running this command in the console will begin the simulation. The total time of the 

simulation depends on the number of timesteps defined. The timestep for the output of 

results is 1 ms. Assuming no errors, the simulation will finish after the last timestep and 

will respond with “Normal Termination”. This generates several output files, which can 

then be transferred to the local machine for analysis. 
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4.6 Model Material Models 

In an earlier section we discussed three separate materials model that are used in the 

GHBMC brain model parts; elastic, piecewise and viscoelastic. We will examine these 

material models and define how they calculated in this section. 

 

Elastic Material Model 

An isotropic elastic material model. The co-rotational rate of the deviatoric Cauchy stress 

tensor is calculated by: 

𝑠𝑖𝑗
Δ
𝑛+

1
2 = 2𝐺𝜀 ′̇𝑖𝑗

𝑛+ 
1
2 

Equation 6: Elastic Material Model Stress Formula [116] 

 

And the pressure by: 

𝑝𝑛+1 = −𝐾 𝑙𝑛 𝑉𝑛+1 

Equation 7: Elastic Material Model Pressure Formula [116] 

 

Where:  G is the Elastic Shear Modulus 

  K is the Bulk Modulus 

  V is the relative Volume 

 

Viscoelastic Material Model 

A classical Kelvin-Maxwell material model for viscoelastic bodies. The shear relaxation 

behaviour is described by Equation 1 above. A Jaumann rate of stress formulation is used: 

𝑠′𝑖𝑗
∇
= 2 ∫𝐺(𝑡 −  𝜏) 𝜀𝑖𝑗′  (𝜏)𝑑𝑡̇

𝑡

0

 

Equation 8: Viscoelastic Material Model Jaumann Rate of Stress Formula [116] 

 

Where the prime denotes the deviatoric part of the stress rate 𝑠′𝑖𝑗
∇

 and 𝜀𝑖𝑗
′ is the deviatoric 

stress rate.  

 

 

 

The evolution of the stress for the Kelvin model is given by: 
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𝑠̇𝑖𝑗 + 
1

𝜏
 𝑠𝑖𝑗 = (1 + 𝛿𝑖𝑗) 𝐺0𝜀𝑖𝑗

′ + (1 + 𝛿𝑖𝑗)
𝐺∞
𝜏
 𝜀𝑖𝑗
′  

Equation 9: Viscoelastic Material Model Stress Evolution Formula [116] 

 

Where:  𝛿𝑖𝑗 is the Kronecker delta 

  𝐺0 is the instantaneous shear modulus 

  𝐺∞ is the long-term shear modulus 

  τ is the decay constant 

 

Pressure is calculated from the bulk modulus and volumetric strain: 

𝑝 =  −𝐾𝜀𝜈  

Equation 10: Viscoelastic Material Model Pressure Formula [116] 

 

Where: 

𝜀𝜈 = ln (
𝑉

𝑉0
)  

Equation 11: Viscoelastic Material Model Volumetric Strain Formula [116] 

 

This defines the logarithmic volumetric strain. The Bandak calculation for the total strain 

tensor for output uses an incremental rate based on the Jaumann rate: 

 

𝜀𝑖𝑗
𝑛+1 =  𝜀𝑖𝑗

𝑛 + 𝑟𝑖𝑗
𝑛 + 𝜀

𝑖𝑗

∇ 𝑛+
1
2  ∆𝑡𝑛+

1
2 

Equation 12: Viscoelastic Material Model Bandak Total Strain Tensor Formula [116] 

Where: 

∆𝜀𝑖𝑗
𝑛+1 = 𝜀

𝑖̇𝑗

𝑛+
1
2 ∆𝑡𝑛+

1
2 

 

And 𝑟𝑖𝑗
𝑛 gives the rotation of the strain tensor at time 𝑡 𝑡𝑛 to the configuration at 𝑡𝑛+1 

𝑟𝑖𝑗
𝑛 =  (𝜀𝑖𝑝

𝑛  𝜔
𝑝𝑗

𝑛+
1
2 + 𝜀𝑗𝑝

𝑛  𝜔
𝑝𝑖

𝑛+
1
2) ∆𝑡𝑛+

1
2 
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Piecewise Material Model 

This material model gets its name piecewise due to the fact that 8 pairs of values for the 

Plastic Strain and Yield Stress can be defined in order to approximate a realistic non-

linear stress-strain behaviour by way of a set of linear segments. It can also take strain 

rate effects in to account [116]. The pressure (p), deviatoric strain rate (𝜀𝑖̇𝑗
′ ), deviatoric 

stress rate (𝑠𝑖𝑗) and volumetric strain rate (𝜀𝑣̇) are defined in the following set of equations 

[116]: 

𝑝 =  −
1

3
𝜎𝑖𝑗𝛿𝑖𝑗 

𝜀𝑖̇𝑗
′ = 𝜀𝑖̇𝑗 −

1

3
 𝜀𝜈̇ 

𝑠𝑖𝑗 = 𝜎𝑖𝑗 + 𝑝𝛿𝑖𝑗 

𝜀𝑣̇ = 𝜀𝑖̇𝑗𝛿𝑖𝑗 

 

Deviatoric stresses must satisfy the following set of equations for the yield function: 

 

𝜙 =  
1

2
𝑠𝑖𝑗𝑠𝑖𝑗 −

𝜎𝑦
2

3
≤ 0 

Equation 13: Piecewise Material Model Yield Function [116] 

Where: 

𝜎𝑦 =  𝛽[𝜎0 + 𝑓ℎ(𝑒𝑒𝑓𝑓
𝑝 )] 

 

If the deviatoric stresses are calculated and the yield function is satisfied, then those 

values are accepted. Otherwise, an incremental increase in plastic strain is calculated by: 

 

∆𝜀𝑒𝑓𝑓
𝑝

= 
(
3
2 𝑠𝑖𝑗

∗ 𝑠𝑖𝑗
∗ )

1
2
− 𝜎𝑦

3𝐺 + 𝐸𝑝
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4.7 Computational Outputs 

As discussed in earlier sections, the main FE based predictor being investigated in this 

study is Maximum Principal Strain (MPS). Here the method of measuring this model 

output will be detailed. The type of strain used in LS-PrePost is Green-St. Venant Strain, 

which has been discussed in earlier sections. Once a simulation has been run and finished 

without errors, it is then possible to examine the results. This is achieved by opening a 

Binary Plot file, which the software outputs upon completing a simulation. The Binary 

Plot file allows for many different variables to be viewed graphically, it also allows for 

selecting your variable and stepping through each timestep to view the calculated results. 

Also being investigated is Mean Adjacent Strain (MAS), which was defined in an earlier 

chapter. It is the mean maximum principal strain of all elements adjacent to the element 

in which the maximum occurred.  

4.7.1 Maximum Principal Strain 

Shown in Figure 39 is the first screen upon opening of a binary plot file, with 1st principal 

strain chosen as the variable and time at 0. Using the buttons at the bottom, it is now 

possible to step through the entire simulation, moving forward in increments of 1ms. 

Simulations will all be run for 50ms, therefore there are 50 timesteps to view for each 

simulation. Each region of interest will be examined across the entire simulation in order 

to determine the MPS in that region. The values for each will be recorded and analysed. 

An example of the method of examining and recording the MPS in a region will now be 

shown.  

 

 

Figure 39: LS-PrePost Binary Plot 
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First to determine the MPS in a region, the region must be isolated. This is easily achieved 

using the software. Figure 40 shows an isolated Corpus Callosum, with 1st principal strain 

selected as the variable and time at 0. 

 

 

Figure 40: LS-Prepost Corpus Callosum 

 

Now the time is advanced by 1ms and the MPS in any element in the region is shown. 

The simulation is then advanced through the full 50 steps and the MPS is recorded, Figure 

41 shows the step at which the maximum was reached for this example. In the top right 

of the screen, the maximum and minimum 1st principal strain for this step is shown. The 

element in which the maximum was reached is indicated by the black arrow. This process 

is the repeated for each of the other regions of interest; midbrain, thalamus and brain stem. 

The MPS in each region is recorded and will be compared to the published injury 

thresholds in a later chapter.  

 

 

Figure 41: Ls-PrePost Corpus Callosum MPS Example 
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4.7.2 Mean Adjacent Strain 

The process for determining the MAS for a region of interest follows on from the previous 

section. Once the MPS has been determined for the region, it is then possible to utilise 

the software to select any element adjacent to the one in which the maximum was reached. 

Figure 42 shows this.  

 

 

Figure 42: LS-PrePost Mean Adjacent Strain 

Once the adjacent elements have been selected, it is then possible to plot and output the 

strain in these elements for the entire simulation. It is then important to take note of the 

time at which the maximum has occurred, as this is needed in order to find the values for 

each adjacent element at the same time. In the example shown in Figure 42, the maximum 

occurs at time step 23. The strain for each of the highlighted elements at time step 23 is 

recorded and the mean is determined. The MAS for each region will be calculated and 

recorded, in a later chapter it will be compared to published injury thresholds.   

 

4.8 Computational Setup Summary 

In this chapter the methods for setting up the computational simulations were detailed. 

This includes the virtual machine setup, run time and costs. Defining the planes and axes, 

as well as the direction of positive motion/rotation. The method for defining the model 

inputs (x, y and z linear and rotational), applying the inputs to the FE model and 

constraining the motion of the model were explained. The methods for calculating the FE 

based brain injury predictors, MPS and MAS, was also detailed. This data represents the 

model outputs and as such, the main variables that will be investigated in this study.  
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Chapter 5 Head Acceleration Results
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5.1 Introduction 

This chapter will report all video confirmed impacts from all sparring sessions and 

competitive events that were attended. Twenty-two participants in total have signed up to 

this study and there have been 13 sparring sessions and 8 competitive events during which 

data was collected. The participants will be referred to as Fighter 1, Fighter 2 etc. Fighter 

1 is always the same participant; they will retain this title throughout. Ethical approval 

was granted by the Institute of Technology Tallaght Ethics Committee (REC-STF1-

201819).  

 

Data will be reported first by session type, as detailed below. Then sessions that resulted 

in an mTBI diagnosis will be compared to those that did not. Finally, the full data set will 

be analysed in terms of impact frequency and impact duration.   

MMA Sparring 

MMA Sparring sessions are typically 3 rounds of 5 minutes each and take place in an 

official MMA cage, in the gym where the participants train. The entire sessions were 

video recorded and timestamped to allow for the confirmation of any impact recorded. 

Boxing Sparring 

One of the participants was preparing for a boxing fight and thus 4 sessions of boxing 

sparring data were collected. This will be reported separately to MMA sparring sessions 

as the round length and number of rounds differed.  

MMA Training 

One participant took part in what can be best described as a long training session, as 

opposed to the more regimented sparring sessions described above. This training session 

took place over almost 2 hours and was essentially a series of training fights. This data 

will also be reported separately.  
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Competitive Events 

Both professional and amateur competitive bouts took place at large MMA events. They 

are typically 3 rounds of 5 minutes. Although the fight may be shorter if the participant 

loses. Video footage is also recorded at these events, although professional video may 

also be available from video streaming services. It is imperative that the precise start time 

of the fight is known. This allows for recorded impact data to be aligned to timestamped 

video.  

 

Impact direction is specified as front, right, left and back as shown in Figure 43.  

 

Figure 43: Sectors for Impact Directions 

Table 14 summarises the sessions from which data was recorded sorted by the fighter and 

the session type.  

Table 14: Summary of sessions attended by sorted fighter 

Fighter Competitive Bouts MMA Sparring Sessions MMA Training Boxing Sparring Sessions 

Fighter 1 1 0 0 0 

Fighter 2 1 2 0 0 

Fighter 3 2 2 0 0 

Fighter 4 2 0 0 0 

Fighter 5 1 2 0 0 

Fighter 6 1 0 0 0 

Fighter 7 0 1 0 0 

Fighter 8 0 0 1 0 

Fighter 9 0 1 0 0 

Fighter 10 0 0 0 4 

Total 8 8 1 4 
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5.2 Competitive Bouts 

Six participants have taken part in competitive events to date, with fighters 3 and 4 taking 

part in 2 events each. Therefore, there are 8 competitive bouts from which data has been 

gathered. Professional bouts are a maximum of three 5-minute rounds, although many 

end before that. Table 15 details the number of impacts each fighter received during these 

bouts, the mean linear and rotational accelerations and standard deviations. Fighter 3 – 

Bout 1 received the fewest number of impacts (3), while Fighter 2 – Bout 1 received the 

most (18). The mean number of impacts received per competitive bout is 10.5 with a 

standard deviation of 4.8. Competitive events are required to have medical professionals 

on site at all times. Table 16 details the post-fight medical diagnoses for each of the 

fighters.  

 

It is recognised that the standard deviations in these results are very large, sometimes 

larger than the mean. This is due to the fact that the vast majority of impacts are in the 

low range, but there are some very high magnitude impacts (outliers) that skew the 

standard deviation calculation. In order to avoid reporting these standard deviations, box 

and whisker plots have been employed to better represent the range of impacts received. 

Table 17 shows the data taken from the box and whisker plots.  

 

Table 15: Summary of Competitive Bout Stats 

 

 

 

 

Fighter Bout Total 

Confirmed 

Impacts 

Linear 

Acceleration 

Mean (g) 

Standard 

Deviation 

(g) 

Rotational 

Acceleration 

Mean 

(rads/s
2
) 

Standard 

Deviation 

(rads/s
2
) 

Fighter 1 Bout 1 13 40.5 37.1 3729.8 4261.9 

Fighter 2 Bout 1 18 61.6 67.1 4537.4 4780.2 

Fighter 3 Bout 1 3 42 1.4 3173.7 816.4 

Fighter 3 Bout 2 7 26.7 10.6 8738.7 7605.4 

Fighter 4 Bout 1 11 26.4 8.1 2220 1028.1 

Fighter 4 Bout 2 7 80 56.1 8091.5 8296.8 

Fighter 5 Bout 1 15 40.2 29 11162.3 9022.1 

Fighter 6 Bout 1 10 26.2 13 4167.9 2641.7 
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Table 16: Competitive Bouts Medical Diagnoses 

Fighter Bout Win/Loss Injury 

Fighter 1 Bout 1 Lose mTBI – Migraine aura for 48 hours 

Fighter 2 Bout 1 Lose mTBI – Post event symptoms of vertigo and dizziness 

Fighter 3 Bout 1 Lose 
mTBI – Transient loss of consciousness < 1 second. No 

Post-concussion syndrome (PCS) 

Fighter 3 Bout 2 Win No Injury 

Fighter 4 Bout 1 Lose mTBI – Post event/ No PCS 

Fighter 4 Bout 2 Lose No Injury 

Fighter 5 Bout 1 Lose mTBI – Post event/No PCS 

Fighter 6 Bout 1 Lose No Injury 

 

5.2.1 Impact Severity 

In Table 17 the mean rotational velocity, linear and rotational accelerations for all 

competitive bouts are detailed. The mean impact received in competitive bouts is 43.5g 

and 5969.2 rads/s2. Only 2 fighters experienced a higher linear mean than this; Fighter 2 

– Bout 1 and Fighter 4 – Bout 2. Of those diagnosed with an mTBI, only Fighter 2 – Bout 

1’s mean peak linear acceleration was greater than the mean for all competitive events. 

Three fighters; Fighter 3 – Bout 2, Fighter 4 – Bout 2 and Fighter 5 – Bout 1 had a mean 

rotational acceleration higher than that of the overall mean for all competitive bouts. Of 

these, only Fighter 5 was diagnosed with an mTBI.  

 

Table 17: Competitive Bouts stats summary 

Competitive 

Bouts  

Mean  Median 1st Quartile 3rd Quartile Local Maximum 

Linear 
Acceleration (g) 

43.53 31.83 19.78 44.34 81.11 

Rotational 

Acceleration 
(rads/s2) 

5969.19 3910.13 2071.68 6023.89 10014.27 

Rotational 

Velocity (rads/s) 
18.22 14.65 11.55 20.64 33 

 

Tables 18, 19 and 20 categorise the impacts for each event in terms of severity, linear and 

rotational acceleration, and location. A total of 86 impacts were recorded across all 

competitive bouts; with 45% in the “Low” linear acceleration range and 66% being in the 

“Low” rotational acceleration range. Just 4.7% of the linear accelerations were in the 

”Very Severe” range and 2.35% were in the “Very Severe” rotational acceleration range. 
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5.2.2 Impact Direction 

It was found that front left impact direction was the location that most impacts were 

received (35%). This may indicate the dominant hand of the fighter’s opponent. Lateral 

impacts, from the right and left, were the second predominant impact direction. These 

lateral impacts both left and right (16 from the left and right), comprised 37% of all 

impacts. Striking fighters in the back of the head is illegal in MMA and our results reflect 

this, with no impacts being recorded in that direction. Just 6% of impacts were received 

to the back left or right of the head. Figures 44 and 45 show the distribution for all impacts 

in terms of linear acceleration, rotational acceleration and location.  

 

Table 18: Summary of Competitive Bouts sorted by Severity of Linear Acceleration 

Severity - Linear Acceleration 

Fighter Bout 
Low 

10-30g 

Moderate 

30-60g 

Serious 

60-90g 

Very 

Serious 

90-120g 

Severe 

120-150g 

Very 

Severe 

150-400g 

Fighter 1 Bout 1 7 3 1 2 0 0 

Fighter 2 Bout 1 4 9 3 0 1 1 

Fighter 3 Bout 1 0 3 0 0 0 0 

Fighter 3 Bout 2 3 4 0 0 0 0 

Fighter 4 Bout 1 1 2 1 1 1 1 

Fighter 4 Bout 2 7 4 0 0 0 0 

Fighter 5 Bout 1 10 3 1 0 1 2 

Fighter 6 Bout 1 7 3 0 0 0 0 

Total 39 31 6 3 3 4 

 

 
Table 19: Summary of Competitive Bouts sorted by Severity of Rotational Acceleration 

Severity – Rotational Acceleration 

Fighter Bout 

Low 

0-5k 

rads/s
2
 

Moderate 

5k-10k 

rads/s
 

Serious 

10k-15k 

rads/s
2
 

Very 

Serious 15k-

20k rads/s
2
 

Severe 

20k-25k 

rads/s
2
 

Very 

Severe 

25k-50k 

rads/s
2
 

Fighter 1 Bout 1 11 0 2 0 0 0 

Fighter 2 Bout 1 14 3 0 0 1 0 

Fighter 3 Bout 1 3 0 0 0 0 0 

Fighter 3 Bout 2 2 3 1 0 1 0 

Fighter 4 Bout 1 11 0 0 0 0 0 

Fighter 4 Bout 2 4 1 0 1 1 0 

Fighter 5 Bout 1 5 5 2 2 1 2 

Fighter 6 Bout 1 7 2 1 0 0 0 

Total 57 14 6 3 4 2 
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Table 20: Summary of Competitive Bouts sorted by Direction of Impact 

Location 

Fighter Bout Front 
Front 

Left 

Front 

Right 
Right Left Back 

Back 

Left 

Back 

Right 

Fighter 1 Bout 1 3 6 1 2 0 0 1 0 

Fighter 2 Bout 1 1 9 1 2 4 0 0 1 

Fighter 3 Bout 1 0 1 0 0 1 0 1 0 

Fighter 3 Bout 2 1 1 1 3 1 0 0 0 

Fighter 4 Bout 1 1 2 0 4 0 0 0 0 

Fighter 4 Bout 1 1 0 1 3 4 0 1 1 

Fighter 5 Bout 1 3 6 3 0 5 0 0 0 

Fighter 6 Bout 1 2 5 0 2 1 0 0 0 

Total 12 30 7 16 16 0 3 2 

 

 

Figure 44: Summary of Competitive Bouts by Severity 

 

Figure 45: Summary of Competitive Bouts by Location 
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5.3 MMA Sparring Sessions 

Five fighters took part in a total of 8 MMA sparring sessions from which data was 

collected. Sparring sessions are typically three 5-minute rounds. Data from the confirmed 

impacts in these sparring sessions is reported including: total number of impacts received, 

mean linear and rotational acceleration, standard deviation and mean number of impacts 

per sparring session.  135 confirmed head impacts occurred during MMA sparring 

sessions. The tables and graphs that follow detail them.  

 

Table 21: MMA Sparring Session Stats 

 

Table 22: MMA Sparring Session stats summary 

MMA Sparring 

Sessions  

Mean  Median 1st Quartile 3rd Quartile Local Maximum 

Linear 
Acceleration (g) 

29.41 20.94 14.31 30.65 53.44 

Rotational 

Acceleration 

(rads/s2) 

5577.09 2150.67 1251.15 5095.36 10311.3 

Rotational 

Velocity (rads/s) 
15.52 10.75 7.32 17.55 32.54 

 

As Table 21 shows, Fighter 3 – Session 2 received the fewest number of impacts (10). 

The mean number of impacts received during MMA sparring sessions was 18.75. There 

were 2 sessions where the fighter received more impacts than this; Fighter 7 – Session 1 

and Fighter 9 – Session 1. Table 22 shows the mean linear and rotational accelerations, 

and rotational velocity for all impacts received during sparring sessions. 

 

Fighter  Bout Total 

Confirmed 

Impacts 

Per Event 

Linear 

Acceleration 

Mean (g) 

Standard 

Deviation 

Rotational 

Acceleration 

Mean 

(rads/s
2
) 

Standard 

Deviation 

Fighter 2 Session 1 16 22.8 10.3 2018.3 1314.4 

Fighter 2 Session 2 18 27.5 18.5 2508.2 2070.9 

Fighter 3 Session 1 12 25.2 15.1 2376.3 1476 

Fighter 3 Session 2 10 26.9 21.8 2952.2 3330.1 

Fighter 5 Session 1 16 23.8 15 11526.2 10872.9 

Fighter 5 Session 2 15 40.5 27.1 19044 14540.7 

Fighter 7 Session 1 28 21.9 12.1 1898.5 1354 

Fighter 9  Session 1 20 47 56.8 4709.5 5906 
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5.3.1 Impact Severity 

Just 2 sparring sessions resulted in an average linear acceleration greater than that of the 

mean; Fighter 5 – Session 2 and Fighter 9 – Session 1. Fighter 5 – Session 1 and Session 

2 also had a mean rotational acceleration greater than that of the mean for all sessions. 

  

Tables 23, 24 and 25 detail the video confirmed impacts from each MMA sparring 

session, they have been categorised by severity (linear and rotational acceleration) and 

location respectively. Impacts defined as a low severity in terms of linear acceleration are 

the most common impact received, with 73% of all impacts being in this range. Just 4 

impacts across all sessions are above the serious severity (90g+), representing just 3% of 

all impacts. Rotational acceleration is similar, with 74% of all impacts in the low severity 

for range. A total of 17 impacts being above the serious severity (15krads/s2+), 

representing 13% of all impacts.  

5.3.2 Impact Direction 

 

When the impact direction was investigated (Table 24), it was found that 26% of all 

impacts were to the front left. Similar to the competitive bouts, this may only indicate the 

dominant hand of the fighter’s opponent. Lateral impacts from the left and right sides 

accounted for 24% of all impacts.   
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Table 23: MMA Sparring Sessions Impact Severity sorted by Linear Acceleration 

Severity – Linear Acceleration 

Fighter Session 
Low 

10-30g 

Moderate 

30-60g 

Serious 

60-90g 

Very 

Serious 

90-120g 

Severe 

120-150g 

Very 

Severe 

150-400g 

Fighter 2 Session 1 14 2 0 0 0 0 

Fighter 2 Session 2 14 3 1 0 0 0 

Fighter 3 Session 1 8 4 0 0 0 0 

Fighter 3 Session 2 8 1 1 0 0 0 

Fighter 5 Session 1 12 3 1 0 0 0 

Fighter 5 Session 2 8 5 1 1 0 0 

Fighter 7 Session 1 23 5 0 0 0 0 

Fighter 9 Session 1 12 4 1 0 0 3 

Total 99 27 5 1 0 3 

 

Table 24: MMA Sparring Sessions Impact Severity sorted by Rotational Acceleration 

Severity – Rotational Acceleration 

Fighter Bout 

Low 

0-5k 

rads/s
2
 

Moderate 

5k-10k 

rads/s
 

Serious 

10k-15k 

rads/s
2
 

Very 

Serious 15k-

20k rads/s
2
 

Severe 

20k-25k 

rads/s
2
 

Very 

Severe 

25k-50k 

rads/s
2
 

Fighter 2 Session 1 15 1 0 0 0 0 

Fighter 2 Session 2 16 2 0 0 0 0 

Fighter 3 Session 1 11 1 0 0 0 0 

Fighter 3 Session 2 8 1 1 0 0 0 

Fighter 5 Session 1 6 3 2 2 2 1 

Fighter 5 Session 2 2 4 0 3 2 4 

Fighter 7 Session 1 27 1 0 0 0 0 

Fighter 9 Session 1 15 2 0 2 1 0 

Total 100 15 3 7 5 5 
 

Table 25: MMA Sparring Sessions Impact Severity sorted by Location 

 

Location 

Fighter Session 
Front 

Front 

Left 

Front 

Right Right Left Back 

Back 

Left Back Right 

Fighter 2 Session 1 1 6 3 1 2 1 2 0 

Fighter 2 Session 2 4 4 1 3 2 1 2 1 

Fighter 3 Session 1 2 4 1 0 4 0 0 1 

Fighter 3 Session 2 0 5 1 2 0 2 0 0 

Fighter 5 Session 1 3 7 4 1 1 0 0 0 

Fighter 5 Session 2 4 5 1 0 5 0 0 0 

Fighter 7 Session 1 2 2 1 4 1 5 6 7 

Fighter 9 Session 1 8 2 2 2 4 0 0 2 

Total 24 35 14 13 19 9 10 11 
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Figure 46: Summary of MMA Sparring Sessions by Severity 

 

 

Figure 47: Summary of MMA Sparring Sessions by Location 
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5.4 MMA Training Sessions 

As was mentioned in the introduction, Fighter 8 took part in a training session that was 

less regimented than those in Section 5.2. This training session took place over 

approximately 2 hours and was a rolling, ongoing sparring/training session with 

intermittent breaks. This data has been separated from the previous data as the number of 

impacts received here it would have skewed the means and standard deviations for the 

previously discussed sessions.  

 

Table 26: MMA Training Session Data 

MMA Training 

Sessions  

Mean  Median 1st Quartile 3rd Quartile Local Maximum 

Linear 

Acceleration (g) 27.13 17.17 12.62 29.54 54.41 

Rotational 
Acceleration 

(rads/s2) 1960.99 1482.55 784.81 2253.01 4411.17 

Rotational 

Velocity (rads/s) 11.57 10.96 9.6 13.29 17.59 

 

5.4.1 Impact Severity 

 

As shown in Table 26, this marathon training session resulted in 79 confirmed impacts 

for Fighter 8. The mean linear acceleration was 27.1g, this is comparable to those found 

in the type of session discussed in the previous section (29.4g). The number of impacts 

received is more than 4 times the mean received during the sessions in the previous 

section (18.75 impacts). The mean rotational acceleration is also comparable with the 

results found in the previous section.  

 

Tables 27, 28 and 29 detail the linear and rotational accelerations severity of the impacts 

received by Fighter 8 in this session. 75% of all impacts are in the low linear acceleration 

severity range and just 2.5% are greater than 90g. The overwhelming majority of these 

impacts fall into the low rotational acceleration severity range (94%). None of the impacts 

recorded was greater than 10k rads/s2.  
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5.4.2 Impact Direction 

Similar to the data in Section 5.2, front left was the location at which most impacts were 

received (44%). Lateral impacts from the left and right sides accounted for 22% of all 

impacts.   

 

 

Table 27: MMA Training Session Fighter 8 Impact Severity sorted by Linear Acceleration 

Severity – Linear Acceleration 

Fighter Session 
Low 

10-30g 

Moderate 

30-60g 

Serious 

60-90g 

Very 

Serious 

90-120g 

Severe 

120-150g 

Very 

Severe 

150-400g 

Fighter 8 Session 1 59 16 2 1 0 1 

 

 

Table 28: MMA Training Session Fighter 8 Impact Severity sorted by Rotational Acceleration 

Severity – Rotational Acceleration 

Fighter Session 

Low 

0-5k 

rads/s
2
 

Moderate 

5k-10k 

rads/s
 

Serious 

10k-15k 

rads/s
2
 

Very 

Serious 15k-

20k rads/s
2
 

Severe 

20k-25k 

rads/s
2
 

Very 

Severe 

25k-50k 

rads/s
2
 

Fighter 8 Session 1 74 5 0 0 0 0 

 

Table 29: MMA Training Session Fighter 8 Impact Severity sorted by Location 

 

 

 

  

Location 

Fighter Session 
Front 

Front 

Left 

Front 

Right Right Left Back 

Back 

Left Back Right 

Fighter 8 Session 1 15 35 7 11 6 0 2 3 
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5.5 Boxing Sparring Sessions 

Fighter 10 was preparing for a professional boxing event, so we have separated these 

results in order to ensure that the data presented is comparable. Boxing sparring typically 

is in the format of 2-minute rounds, with the number of rounds varying depending on how 

close to a competitive event the session is.  As boxing is a sport where only punching is 

involved, as opposed to the multi-discipline MMA, the gloves worn are substantially 

larger. MMA gloves are typically 4oz (approximately 113g), with very little padding. 

While boxing gloves can be up to 18oz (approximately 510g), with the size depending on 

the weight class of the fighter, they come with a considerable amount of padding. Four 

boxing sparring sessions were studied; the data from these is detailed below.  

 

Table 30: Boxing Sparring Session Fighter 10 Data 

5.5.1 Impact Severity 

 

Table 30 details the number of impacts and the average impacts received per session. The 

mean number of impacts received is greater than that of MMA sparring sessions as only 

punching is allowed in boxing. The mean linear and rotational impact for boxing sparring 

sessions is comparable to those recorded in MMA sparring sessions, with a mean of 30.1g 

and 5979.8 rads/s2 across all these sessions. The mean impact received in session 4 was 

considerably higher than those recorded in any other session, the opponent for session 4 

was an internationally recognised boxer. The mean impact data received across all boxing 

sessions is detailed in Table 31.  

 

 

Fighter  Bout Total 

Confirmed 

Impacts 

Linear 

Acceleration 

Mean (g) 

Standard 

Deviation 

Rotational 

Acceleration 

Mean 

(rads/s
2
) 

Standard 

Deviation 

Fighter 10 Session 1 30 18.1 6.4 6619.1 5038.5 

Fighter 10  Session 2 36 20.3 10.3 5064.6 4837.3 

Fighter 10 Session 3 36 16.9 9.6 5596.4 6697.4 

Fighter 10  Session 4 34 65.0 72.6 6790.4 7363.0 



 

 108 

Table 31: Boxing Sparring Session Fighter 10 Data 

Boxing Sparring 

Sessions  

Mean  Median 1st Quartile 3rd Quartile Local Maximum 

Linear 

Acceleration (g) 
30.1 18.92 12.67 28.75 52.45 

Rotational 

Acceleration 

(rads/s2) 

5979.79 4140.52 2597.84 6877.88 13045.94 

Rotational 
Velocity (rads/s) 

19.55 17.1 13.39 23.03 36.97 

 

The linear acceleration, rotational acceleration and location are detailed in Tables 32, 33 

and 34. Table 32 shows that 76% of impacts were in the Low severity range, and just 4% 

of all impacts were in the very serious range or higher (90g+). 59% of all impacts were 

in the low severity rotational acceleration range, with just 6% of all impacts being the 

very serious range or higher (15k rads/s2+).  

 

5.5.2 Impact Direction 

Most impacts during the boxing sparring sessions were lateral impacts, both from the left 

and right (50%). 31% of all impacts were directly to the front of the face. 
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Table 32: Boxing Sparring Session Impact Severity sorted by Linear Acceleration 

Severity – Linear Acceleration 

Fighter Session 
Low 

10-30g 

Moderate 

30-60g 

Serious 

60-90g 

Very 

Serious 

90-120g 

Severe 

120-150g 

Very 

Severe 

150-400g 

Fighter 10 Session 1 29 1 0 0 0 0 

Fighter 10 Session 2 30 6 0 0 0 0 

Fighter 10 Session 3 33 3 0 0 0 0 

Fighter 10 Session 4 12 13 2 3 0 4 

Total 104 23 2 3 0 4 

 

 

Table 33: Boxing Sparring Session Impact Severity sorted by Rotational Acceleration 

Severity – Rotational Acceleration 

Fighter Session 

Low 

0-5k 

rads/s
2
 

Moderate 

5k-10k 

rads/s
 

Serious 

10k-15k 

rads/s
2
 

Very 

Serious 15k-

20k rads/s
2
 

Severe 

20k-25k 

rads/s
2
 

Very 

Severe 

25k-50k 

rads/s
2
 

Fighter 

10 

Session 1 
14 9 5 1 1 0 

Fighter 
10 

Session 2 
26 5 3 0 2 0 

Fighter 

10 

Session 3 
21 12 2 0 0 1 

Fighter 
10 

Session 4 
19 10 2 0 2 1 

Total 80 36 12 1 5 2 

 

Table 34: Boxing Sparring Session Impact Severity sorted by Location 

 

 

 

Location 

Fighter Session 
Front 

Front 

Left 

Front 

Right Right Left Back 

Back 

Left Back Right 

Fighter 
10 

Session 1 
11 4 1 11 1 1 0 1 

Fighter 

10 

Session 2 
4 5 2 17 5 0 2 1 

Fighter 
10 

Session 3 
8 9 6 12 0 0 0 1 

Fighter 

10 

Session 4 
19 5 3 3 3 0 0 1 

Total 42 23 12 43 9 1 2 4 
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Figure 48: Summary of Boxing Sparring Sessions by Linear Acceleration 

 

 

 

Figure 49: Summary of Boxing Sparring Sessions by Location 
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5.6 Summary of Results by Type 

Tables 17, 22, 26 and 30 summarise the stats for each type of session from which data 

was recorded. The following set of graphs and tables summarise the data for each session 

type. Table summarises the number of impacts received in each session and any relevant 

injury diagnosis. There was no medical professional present for any sparring or training 

session, therefore there is no diagnosis available for these sessions. Table 35 details the 

mean, median, 1st quartile, 3rd quartile and local maximum PLA, PRA and PRV for each 

session type. 

 

This study has found that the PLA for competitive events are 49% greater than those 

recorded in out of competition sessions. When the mean PRA and PRV of the out of 

competition bouts and competitive events are compared, there is an increase of 21.4% 

and 12.35% respectively. These increases are as expected as the level of performance of 

the opponent is likely to be greater in a competitive event than when compared to a 

sparring session. Figures 48-50 show the range of impacts for each session type, in terms 

of rotational velocity, linear and rotational acceleration.    

 

Out of competition data is examined first, followed by competition data.  Boxing sparring 

sessions resulted in the greatest number confirmed impacts, despite only having 4 

sessions from which to collect data. This is to be expected as boxing only involves 

punching, with the vast majority of punches being aimed at the head. The mean number 

of impacts received per boxing sparring session is 34 and the 4th of these sessions resulted 

in the single highest out of competition mean impact, at 80g. As was discussed in the 

previous section, 5.4, this large difference in the mean impact can be accounted for by the 

fact that the opponent from this session was an internationally recognised professional 

boxer. The mean linear acceleration across all of these sessions is comparable to that 

recorded in both the MMA training data and the MMA sparring data; 30.1g for boxing 

sparring, 29.4g for MMA sparring and 27.1g for MMA training.  
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Table 35: Summary of number of impacts received and injury cases 

 
Table 36: Summary of Data by Session Type 

Data Type Session Type Mean Median 

1st 

Quartile 

3rd 

Quartile 

Local 

Maximum 

Linear 

Acceleration (g) 

Competitive Bouts 43.53 31.83 19.78 44.34 81.11 

MMA Sparring Sessions 29.41 20.94 14.31 30.65 53.44 

MMA Training Sessions 27.13 17.17 12.62 29.54 54.41 

Boxing Sparring Sessions 30.1 18.92 12.67 28.75 52.45 

Rotational 

Acceleration 

(rads/s^2) 

Competitive Bouts 5969.19 3910.13 2071.68 6023.89 10014.27 

MMA Sparring Sessions 5577.09 2150.67 1251.15 5095.36 10311.3 

MMA Training Sessions 1960.99 1482.55 784.81 2253.01 4411.17 

Boxing Sparring Sessions 5979.79 4140.52 2597.84 6877.88 13045.94 

Rotational 

Velocity (rads/s) 

Competitive Bouts 18.22 14.65 11.55 20.64 33 

MMA Sparring Sessions 15.52 10.75 7.32 17.55 32.54 

MMA Training Sessions 11.57 10.96 9.6 13.29 17.59 

Boxing Sparring Sessions 19.55 17.1 13.39 23.03 36.97 

 

Session Type Fighter Bout Total Confirmed 

Impacts 

Injury 

Competitive Bouts 

Fighter 2 Bout 1 18 mTBI 

Fighter 1 Bout 1 13 mTBI 

Fighter 5 Bout 1 15 mTBI 

Fighter 4 Bout 1 11 mTBI 

Fighter 6 Bout 1 10 No Injury 

Fighter 3 Bout 2 7 No Injury 

Fighter 4 Bout 2 7 No Injury 

Fighter 3 Bout 1 3 mTBI 

MMA Sparring Sessions 

Fighter 2  Session 1 16 N/A 

Fighter 2  Session 2 18 N/A 

Fighter 3  Session 1 12 N/A 

Fighter 3 Session 2 10 N/A 

Fighter 5 Session 1 16 N/A 

Fighter 5 Session 2 15 N/A 

Fighter 7 Session 1 28 N/A 

Fighter 9 Session 1 20 N/A 

MMA Training Sessions Fighter 8  Session 1 79 N/A 

Boxing Sparring Sessions 

Fighter 10 Session 1 30 N/A 

Fighter 10 Session 2 36 N/A 

Fighter 10 Session 3 36 N/A 

Fighter 10 Session 4 34 N/A 
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Figure 50: Summary of Sessions by Type - Linear Acceleration 

 

 

Figure 51: Summary of Sessions by Type - Rotational Acceleration 
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Figure 52: Summary of Sessions by Type - Rotational Velocity 

 

 

The rotational mean impact data from the boxing sparring sessions is comparable to the 

MMA sparring and competition mean, approximately 5980 rads/s2 for boxing, 5577 

rads/s2 for MMA sparring and 5969 rads/s2 for MMA competition. MMA sparring 

sessions resulted an average of half the number of head impacts recorded when compared 

to boxing. In MMA sparring sessions fighters received between 10 and 28 impacts per 

session, with a mean of 18.75 impacts per session.  

 

Fighter 7 – Session 1 had the lowest linear acceleration mean of 21.9g. Fighter 9 – Session 

1 had the largest, at 47g. The mean for all of these sessions (29.4g) is detailed in Table 

32. Again Fighter 7 – Session 1 had the lowest rotational mean acceleration impact, at 

1899 rads/s2. The highest recorded rotational mean acceleration across all data recorded 

was for Fighter 5 – Session 2, at 19044 rads/s2. This rotational mean acceleration is 

alarmingly high and is at odds with almost all other data recorded. Fighter 5 has had some 

issues with the fit of the mouthguard and as such this could be a contributing factor for 

the relatively high impact data recorded. This is will be discussed further in Chapter 7.  
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In the single MMA training data set, which took place over 2 hours, the number of impacts 

recorded was 79. This is over 4 times the mean number of impacts recorded in all training 

sessions, 18.75. This number of impacts in the single session is very large when compared 

to all other sessions recorded and highlights the need for a better understanding of the 

potential cumulative effect of many non-injurious impacts in a short timeframe. While 

the number of impacts was far higher than any other session, the mean linear acceleration 

impact is comparable to other out of competition sessions, at 27.1g. While the mean 

rotational impact was far lower than those recorded for other out of competition sessions; 

at 1961 rads/s2 for MMA training, compared to 5577 rads/s2 for MMA sparring. Across 

the entire out of competition sessions no TBI’s were recorded, although it should be noted 

that no medical professional was present at any of these sessions. This means that any 

symptoms would have to be self-reported at a later time. As was discussed in the early 

chapter 2.3.3, self-reporting of injuries is a serious concern with studies showing as many 

as 45% of injuries going unreported [24].  

 

A total of 84 impacts were recorded during competitive bouts across 8 events. Fighters 

received between 3 and 18 impacts with a mean linear head acceleration of 43.5g. A mean 

of 10.5 impacts per competitive bout was recorded, which is lower than all those recorded 

in training sessions. This mean linear acceleration mean is 61%, 48% and 43% larger than 

MMA training, MMA sparring and boxing sparring respectively.  The largest mean linear 

acceleration was recorded in a competitive bout, Fighter 4 – Bout 2 of 80g from 7 impacts 

received. The highest mean rotational impact received was once again Fighter 5 – Bout 

1. Some probable causes for the unusually high magnitudes recorded from this participant 

will be discussed in the upcoming Chapter 7.  
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5.7 Data Analysis   

All impacts from any session which resulted in a concussive diagnosis were compared to 

those from all sessions that did not result in a concussive diagnosis. Table 37 summaries 

these findings. An increase of 47% was found in PLA for impacts in a session that resulted 

in a concussion diagnosis, a 13.5% increase in PRA and a 3.7% increase in PRV. 

 

Figures 53 and 54 summarise the data from all sessions, in terms of severity and location. 

A similar trend is apparent when examining the impacts in terms of severity, 

approximately 60% of all impacts recorded were in the Low severity range for both linear 

and rotational acceleration.   

 

Front left was again the most common impact location, 25% of all impacts. With the 

lateral impacts when combined being the next most common, 27% of all impacts 

recorded. 

 

Table 37: Summary of Mean Impact Data for all Session Types 

Data Type Session Type Mean Median 1st Quartile 
3rd 

Quartile 

Local 

Maximum 

Linear 

Acceleration 

(g) 

All Sessions 32 20.78 13.62 34.26 62.18 

mTBI Sessions 44.1 32.02 19.82 44.34 81.11 

No Injury 29.99 19.9 13.15 31.26 58.08 

Rot 

Acceleration 

(rads/s^2) 

All Sessions 5124.83 2805.21 1503.82 5443.77 11151.88 

mTBI Sessions 5707.41 3536.3 1953.09 5645.35 7795.04 

No Injury 5028.25 2751.45 1444.94 5397.77 11151.88 

Rot Velocity 

(rads/s) 

All Sessions 16.6 13.39 10.1 19.6 33.62 

mTBI Sessions 17.11 13.52 11.34 18.68 26.16 

No Injury 16.51 13.3 10.06 19.62 33.62 
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Figure 53: Summary of All Events by Severity 

 

 

Figure 54: Summary of All Events by Location 
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5.7.1 Impact Frequency 

There are some differences in total time spent participating in an event, as competitive 

events may end before the maximum time due to a referee stoppage. Thus, the frequency 

of impacts received will be examined. Impacts per minute is calculated as the total number 

of impacts in a session/bout divided by the total time the session/bout lasted for. Table 38 

details these findings. 

 

Table 38: Impacts/Minute received by Event 

Fighter Event Type Impacts/minute Injury 

Fighter 1 – Bout 1 Competitive Event 0.87 mTBI 

Fighter 2 – Bout 1 Competitive Event 1.3 mTBI 

Fighter 3 – Bout 1 Competitive Event 1.66 mTBI 

Fighter 3 – Bout 2 Competitive Event 1.07 No Injury 

Fighter 4 – Bout 1 Competitive Event 0.96 mTBI 

Fighter 4 – Bout 2 Competitive Event 3.95 No Injury 

Fighter 5 – Bout 1 Competitive Event 3.89 mTBI 

Fighter 6 – Bout 1 Competitive Event 0.67 No Injury Mean = 1.80 

Fighter 2 – Session 1 MMA Sparring 1.33 No Injury 

Fighter 2 – Session 2 MMA Sparring 1.2 No Injury 

Fighter 3 – Session 1 MMA Sparring 1 No Injury 

Fighter 3 – Session 2 MMA Sparring 0.66 No Injury 

Fighter 5 – Session 1 MMA Sparring 1.07 No Injury 

Fighter 5 – Session 2 MMA Sparring 1 No Injury 

Fighter 7 – Session 1 MMA Sparring 2.33 No Injury 

Fighter 9 – Session 1 MMA Sparring 2.22 No Injury 

Fighter 8 – Session 1 MMA Training 1.33 No Injury Mean = 1.35 

Fighter 10 – Session 1 Boxing Sparring 2 No Injury 

Fighter 10 – Session 2 Boxing Sparring 2.4 No Injury 

Fighter 10 – Session 3 Boxing Sparring 2 No Injury 

Fighter 10 – Session 4 Boxing Sparring 2.43 No Injury 
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5.7.2 Impact Duration 

The duration of the linear acceleration of an impact has been defined as the time in 

milliseconds (ms) that the PLA is greater than 10g, i.e.  the time for the PLA to first go 

above 10g and then return below 10g. The rotational acceleration duration is defined as 

the time in ms that the PRA is greater than 1000 rads/s2, i.e. the time for the PRA to first 

go above 1000 rads/s2 and then return below 1000 rads/s2. Examples of each method are 

shown in Figures 53 and 54, PLA duration in Figure 55 is 20ms and PRA duration in 

Figure 56 is 18ms.  

 

 

Figure 55: Example of calculating linear acceleration duration 

 

Figure 56: Example of calculating rotational acceleration duration 
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Using the method as described above, Table 39 was created detailing the duration of 

simulated impacts in terms of both linear and rotational acceleration duration. And from 

this Figure 57 was created. It indicates a potential link between a longer duration and an 

increased probability of an mTBI diagnosis. This will be discussed further in the 

upcoming Discussion chapter.  

Table 39: Linear and rotational acceleration durations 

Fighter/Session 
Linear Acceleration 

Duration (ms) 

Rotational Acceleration 

Duration (ms) 
Injury 

Impact 1 (Competition: Fighter 1 – Bout 1) 20 18 mTBI 

Impact 2 (Competition: Fighter 2 – Bout 1) 19 31 mTBI 

Impact 3 (Competition: Fighter 3 – Bout 1) 16 11 mTBI 

Impact 4 (Competition: Fighter 3- Bout 2) 8 17 No Injury 

Impact 5 (Competition: Fighter 4 – Bout 1) 26 25 mTBI 

Impact 6 (Competition: Fighter 4 – Bout 2) 12 33 No Injury 

Impact 7 (Competition: Fighter 5 – Bout 1) 10 32 mTBI 

Impact 8 (Competition: Fighter 6 – Bout 1)  9 13 No Injury 

Impact 9 (Competition: Fighter 5 – Bout 1) 10 15 mTBI 

Impact 10 (Competition: Fighter 5 – Bout 1)  11 31 mTBI 

Impact 11 (Sparring/Training: Fighter 8 – Session 1) 8 10 No Injury 

Impact 12 (Sparring/Training: Fighter 9 – Session 1) 5 5 No Injury 

Impact 13 (Sparring/Training: Fighter 3 – Session 2) 7 7 No Injury 

Impact 14 (Sparring/Training: Fighter 8 – Session 1) 9 9 No Injury 

Impact 15 (Sparring/Training: Fighter 9 – Session 1) 15 15 No Injury 

Impact 16 (Sparring/Training: Fighter 9 – Session 1) 15 15 No Injury 

Impact 17 (Sparring/Training: Fighter 5 – Session 2) 10 10 No Injury 

Impact 18 (Sparring/Training: Fighter 10 – Session 4) 14 19 No Injury 

 

Figure 57: Linear Acceleration Duration v Rotational Acceleration Duration 
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5.7.3 Head Impact Power 

As was discussed in the earlier section, 2.6.4 Head Impact Power, HIP was calculated for 

each of the simulated impacts. Equation 4 shows how these values were reached.  

𝐻𝐼𝑃 =  𝐶1𝑎𝑥∫𝑎𝑥𝑑𝑡 + 𝐶2𝑎𝑦  ∫ 𝑎𝑦𝑑𝑡 + 𝐶3𝑎𝑧  ∫𝑎𝑧𝑑𝑡⏟                            
 

Linear Contribution 

+ 𝐶4𝑎𝑥∫𝑎𝑥𝑑𝑡 + 𝐶5𝑎𝑦  ∫ 𝑎𝑦𝑑𝑡 + 𝐶6𝑎𝑧  ∫𝑎𝑧𝑑𝑡⏟                              
 

Rotational Contribution 

Equation 4: Head Impact Power Equation [88] 

The 𝐶𝑛 coefficients represent approximations of the mass and the moment of inertia for a 

50th percentile human head [89]. 𝑎𝑥,𝑎𝑦, 𝑎𝑧  are the linear and rotational components. 

 

Where:   𝐶1, 𝐶2, 𝐶3 = 4.5𝑘𝑔 

  𝐶4 = 0.016𝑁𝑚𝑠
−2  

  𝐶5 = 0.024𝑁𝑚𝑠
−2 

  𝐶6 = 0.022𝑁𝑚𝑠
−2 

 

Table 40 shows the values for HIP for each of the simulated impacts in kW. The largest 

HIP score was Impact 2, Fighter 2 – Bout 1, 60.8kW. This was an in-competition bout 

and was the impact with the largest PLA, 308g. This bout did result in an mTBI diagnosis. 

The second largest HIP score was found in Impact 7, Fighter 5 – Bout 1, 41.2kW. As with 

Impact 1, this impact was from an in-competition bout and the participant was diagnosed 

with an mTBI. The largest value for HIP in a session that did not result in an mTBI 

diagnosis was Fighter 4 – Bout 2, 35.9kW.  

 

When the mean values for mTBI and No Injury are calculated, it was found that the mean 

for a session/bout that did result in an mTBI diagnosis was 22.7kW. And those taken from 

a session/bout that did not result in an mTBI diagnosis was 12.7kW. This represents a 

78.7% increase. Newman et al. proposed a threshold of 12.8kW for a 50% probability of 

an mTBI diagnosis, 9 impacts from 7 sessions/bouts in this study exceeded this threshold 

[89]. Three of the participants in those sessions/bouts were diagnosed with an mTBI.  
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These results will be investigated as predictors for strain in the regions of interest for this 

study. HIP scores will be plotted against strain values recorded during the simulations 

and any possible linear relationships will be determined. This will be conducted in the 

upcoming section, 6.4 Data Analysis.  

 

Table 40: HIP results for simulated impacts 

Impact Number Fighter/Bout Head Impact Power (kW) Injury Case 

1 Fighter 1 - Bout 1 16.6 mTBI 

2 Fighter 2 - Bout 1 60.8 mTBI 

3 Fighter 3 - Bout 1 3.9 mTBI 

4 Fighter 3 - Bout 2 6.4 No Injury 

5 Fighter 4 - Bout 1 9.8 mTBI 

6 Fighter 4 - Bout 2 35.9 No Injury 

7 Fighter 5 - Bout 1 41.2 mTBI 

8 Fighter 6 - Bout 1 1.2 No Injury 

9 Fighter 5 - Bout 1 18.0 mTBI 

10 Fighter 5 - Bout 1 8.5 mTBI 

11 Fighter 8 - Session 1 1.2 No Injury 

12 Fighter 9 - Session 1 15.2 No Injury 

13 Fighter 3 - Session 2 3.1 No Injury 

14 Fighter 8 - Session 1 2.9 No Injury 

15 Fighter 9 - Session 1 10.0 No Injury 

16 Fighter 9 - Session 1 13.1 No Injury 

17 Fighter 5 - Session 2 18.7 No Injury 

18 Fighter 10 - Session 4 31.7 No Injury 
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Chapter 6 Computational Results
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6.1 Introduction 

This chapter reports the results from simulations of individual head impacts, focusing on 

the brain regions and published thresholds as discussed in section 2.6. Simulations were 

undertaken using the method described in Chapter 4.   

 

Confirmed impacts with the highest rotational accelerations were chosen to simulate, 

50ms was simulated to fully capture each impact. Maximum principal strain for each of 

the regions has been compared to published injury thresholds. Table 41 reports these 

thresholds. The maximum principal strain is the maximum strain that is found in any 

element, at any time during the simulation. 

 

Table 41: Published Threshold for likelihood of a Concussion [6] 

 

 

To avoid reporting high peak strains for individual elements, a parameter we have named 

Mean Adjacent Strain (MAS) has been used. Mean adjacent strain was determined by 

first finding the max principal strain in an element, in the region being investigated, and 

the time at which it occurs. Then all adjacent elements are selected and the strain values 

are plotted for the entire simulation time. The mean is calculated for all those elements at 

the time when the maximum occurred. This was used as the maximum principal strain in 

a single element is not representative of how strain would occur in the brain. The method 

for calculating MAS has been described in more detail in the earlier section, 4.7.2 Mean 

Adjacent Strain. 

 

Figures 58-62 show an example of the strain as reported in the FE model software and 

represents how the simulation results will be presented.  

  

Brain region Mean Strain for 

No Injury 

50% Probability 

for Concussion 

Mean Strain for 

Concussion 

Corpus Callosum 12% (0.12) 15% (0.15) 31% (0.31) 

Thalamus 10% (0.10) 13% (0.13) 26% (0.26) 

Midbrain 13% (0.13) 15% (0.15) 25% (0.25) 

Brain Stem 12% (0.12) 14% (0.14) 21% (0.21) 
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Figure 58: Impact 15 (Fighter 9- Session 1) Transverse Brian Slice (165g and 15994 rads/s^2) 

 

  

  
Figure 59: Impact 15 Corpus Callosum strain (MPS 8.3%) Figure 60: Impact 15 Brainstem strain (MPS 6.6%) 

  

Figure 61: Impact 15 Midbrain strain (MPS 4.05%) Figure 62: Impact 15 Thalamus strain (MPS 3.2%) 
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6.2 Competitive Bouts 

To date 6 of the participants have taken part in competitive bouts, both professional and 

elite amateur. Some of the participants have taken part in more than one event, resulting 

in a total of 8 competitive bouts from 6 participants. Ten impacts with the highest 

rotational acceleration were selected from these bouts to simulate. Details of these 

impacts are shown in Table 42. Mouthguard output acceleration data used for each of 

these simulated impacts can be found in Appendix 5.  Table 43 details the strain results 

for each of the simulations, both the max principle strain and the mean adjacent strain in 

the regions of interest are reported.  

 

Five of these events resulted in a concussive diagnosis; Fighter 1 – Bout 1, Fighter 2- 

Bout 1, Fighter 3 – Bout 1, Fighter 4 – Bout 1 and Fighter 5 – Bout 1. Of those diagnosed 

with a concussion just Fighter 2 and Fighter 5’s simulated impacts resulted in strain levels 

greater than the published thresholds. Both of these impacts resulted in strain levels 

greater than the mean strain for a concussion in the corpus callosum, thalamus and brain 

stem. Furthermore, the levels of strain found in the mid brain also exceeded that of the 

mean strain for a 50% probability for a concussion. Fighter 5 – Bout 1 also received 2 

impacts that resulted in large rotational accelerations, neither of these impacts resulted in 

levels of strain that exceeded the published thresholds; although they may have 

contributed to the diagnosis. 

 

The cumulative effect of sub-concussive head impacts is unclear at this time, with 

conflicting reports in the literature. Some studies indicate there is no effect [91] [117]. 

While others report that there is an effect [118] [119]. Fighter 3 – Bout 1 and Fighter 4 – 

Bout 1’s results may provide potential evidence of the effect of cumulative sub-

concussive impacts. Each of these bouts largest impacts not resulting in strain that 

exceeded the thresholds but did result in a concussive diagnosis. In contrast to this; 

Fighter 3 – Bout 2 and Fighter 4 – Bout 2’s impacts with the largest rotational 

accelerations did result in strain that exceeded the thresholds but they were not diagnosed 

with an mTBI. These results highlight the need for further research into the potential 

cumulative effects of repeated sub concussive impacts.
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Table 42: Competitive Bout Impact Data 

 

Fighter 1 

– Bout 1  

Fighter 2 

- Bout 1 

Fighter 3 

- Bout 1 

Fighter 3 

- Bout 2 

Fighter 4 

- Bout 1 

Fighter 4 

- Bout 2 

Fighter 5 

- Bout 1 

Fighter 6 

- Bout 1 

Fighter 5 

- Bout 1 

Fighter 5 

- Bout 1 

Impact Number 1 2 3 4 5 6 7 8 9 10 

Peak Resultant Linear Acceleration (g) 110 308 41 32 141 163 109 52 104 71 

Linear Acceleration Duration (ms) 20 19 16 8 26 12 10 9 10 11 

Peak Linear Acceleration X (g) 83 224 30 12 110 90 84 17 27 51 

Peak Linear Acceleration Y (g) 39 115 31 14 55 16 6 7 103 52 

Peak Linear Acceleration Z (g) 72 232 15 29 106 148 95 52 27 13 

Peak Resultant Rotational Acceleration (rads/s2) 13191 21881 2906 23479 13609 23757 33315 10014 27212 15984 

Rotational Acceleration Duration (ms) 18 31 11 17 25 33 32 13 15 31 

Peak Rotational Acceleration X (rads/s2) 4579 8713 1711 17594 4817 6522 1774 2771 8778 12139 

Peak Rotational Acceleration Y (rads/s2) 13097 9853 1870 15332 12719 21268 33305 10004 25192 14105 

Peak Rotational Acceleration Z (rads/s2) 1852 19918 2542 4441 4440 15565 5548 830 10877 9962 

Peak Rotational Velocity (rads/s) 45.3 37.7 15.6 39 20.4 74.4 72.3 10.7 42.6 28.4 

Direction F FR FL F BL F F L L FL 

Sim Duration (ms) 50 50 50 50 50 50 50 50 50 50 

Head Impact Power (kW) 16.6 60.8 3.9 6.4 9.8 35.9 41.2 1.2 18.0 8.5 

 

(Simulation input data for each of the impacts can be found in Appendix 5) 
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Table 43: Summary of Simulation Results for Competitive Bouts 

Region 
Fighter 1 – 

Bout 1 

Fighter 2 – 

Bout 1 

Fighter 3 – 

Bout 1 

Fighter 3 – 

Bout 2 

Fighter 4 – 

Bout 1 

Fighter 4 – 

Bout 2 

Fighter 5 – 

Bout 1 

Fighter 6 – 

Bout 1 

Fighter 5 – 

Bout 1 

Fighter 5 – 

Bout 1 

Impact Number 1 2 3 4 5 6 7 8 9 10 

CC MPS 6.00% 55.00% 10.50% 53.00% 5.30% 32.50% 13.00% 3.30% 67.50% 9.00% 

CC MAS 3.05% 23.00% 4.70% 20.00% 2.73% 13.60% 6.50% 1.47% 26.95% 4.40% 

Thalamus MPS 3.20% 32.00% 6.60% 29.00% 2.50% 18.00% 7.70% 2.12% 37.50% 5.20% 

Thalamus MAS 2.60% 20.00% 4.10% 17.00% 2.10% 11.10% 6.45% 1.73% 23.45% 4.50% 

Midbrain MPS 2.40% 21.00% 3.70% 10.50% 2.90% 10.50% 5.00% 1.25% 15.90% 6.40% 

Midbrain MAS 2.14% 15.50% 3.40% 8.15% 2.20% 9.00% 4.60% 1.14% 9.40% 4.70% 

Brainstem MPS 3.20% 31.40% 3.80% 11.00% 3.80% 17.00% 6.50% 2.00% 26.80% 7.80% 

Brainstem MAS 1.00% 9.00% 1.18% 3.30% 1.15% 4.70% 2.00% 0.60% 7.25% 2.60% 

Injury 

mTBI 
48 hour 

symptoms: 

migraine 

aura 

 

mTBI 
Post Event 

Symptoms: 

vertigo and 

dizziness 

 

mTBI 
Transient 

LOC < 1 

sec, no PCS 

 

No Injury 

 

mTBI 

Post Event, 

no PCS 

 

No Injury 

 

mTBI 

Post Event, 

no PCS 

 

No Injury 

 

mTBI 

Post Event, 

no PCS 

 

mTBI 

Post Event, 

no PCS 

 

 
Legend 

Mean Strain for No Injury   
50% Probability for Concussion  
Mean Strain for Concussion  
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6.3 Sparring/Training Sessions 

To date 7 of the participants have taken part in training sessions from which data was 

gathered. These include MMA sparring, boxing sparring and MMA training sessions. 

Some of the participants have taken part in more than one event, giving a total of 13 out 

of competition sessions from 7 participants. From this data 8 impacts with the highest 

rotational acceleration were selected to be simulated. Details of these impacts are shown 

in Table 44. Mouthguard output acceleration data for each of these impacts can be found 

in the Appendix 6.  Table 45 details the strain results from each of the simulations, 

reporting both the max principle strain and the mean adjacent strain in the regions of 

interest.  

 

None of the out of competition sessions resulted in a concussive diagnosis, as was 

discussed previously, the fact that there was no medical professional present may be a 

factor. The impacts that were simulated from these sessions had linear accelerations 

ranging from 70g to 225g and rotational accelerations ranging from 6679rads/s2 to 47407 

rads/ss. The largest of the rotational accelerations occurred in Fighter 5 - Session 2, this 

acceleration was the highest single magnitude of all impacts recorded. And as was 

discussed in the previous section there is some concern about the validity of these 

unusually large magnitudes. It will also be discussed further in Chapter 7. 

 

Impact 18 from Fighter 10 – Session 4 was the only impact that resulted in strain greater 

than the published thresholds. This impact had the largest peak linear acceleration in X, 

Y and Z, the second largest peak rotational acceleration. The levels of strain found from 

the simulation of this impact were greater than the thresholds for MPS in the corpus 

callosum and in the thalamus. The mean adjacent strain levels were greater than the 

thresholds for 50% probability of concussion in the corpus callosum, thalamus and brain 

stem. The fighter reported no symptoms to the knowledge of the writer, so it can only be 

assumed that no injury occurred.  Although none of these impacts resulted in a concussive 

diagnosis, the levels of strain recorded are similar to those recorded from the competitive 

bouts.  
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Table 44: Sparring/Training Session Impact Data 

 

Fighter 8 - 

Session 1 

Fighter 9 - 

Session 1 

Fighter 3 - 

Session 2 

Fighter 8 - 

Session 1 

Fighter 9 - 

Session 1 

Fighter 9 - 

Session 1 

Fighter 5 - 

Session 2 

Fighter 10 

- Session 4 

Impact Number 11 12 13 14 15 16 17 18 

Peak Resultant Linear Acceleration (g) 89 195 78 70 165 162 102 225 

Linear Acceleration Duration (ms) 8 5 7 9 15 15 10 14 

Peak Linear Acceleration X (g) 46 160 11 50 122 121 57 167 

Peak Linear Acceleration Y (g) 33 57 77 27 25 32 42 81 

Peak Linear Acceleration Z (g) 69 131 10 44 112 108 90 151 

Peak Resultant Rotational Acceleration (rads/s2) 8732 21297 10311 6679 15994 15483 47407 22762 

Rotational Acceleration Duration (ms) 10 5 7 9 15 15 10 19 

Peak Rotational Acceleration X (rads/s2) 2139 5834 10290 3546 4262 3863 33995 15169 

Peak Rotational Acceleration Y (rads/s2) 8189 20103 2120 5672 15742 14955 35255 20971 

Peak Rotational Acceleration Z (rads/s2) 3007 3926 1487 803 3284 1753 14467 7299 

Peak Rotational Velocity (rads/s) 9.6 36.1 25.6 11..2 38.3 35.8 53 52.6 

Direction FR F R FR F F FL F 

Sim Duration (ms) 50 50 50 50 50 50 50 50 

Head Impact Power (kW) 1.2 15.2 3.1 2.9 10.0 13.1 18.7 31.7 

 

(Simulation input data for each of the impacts can be found in Appendix 6) 
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Table 45: Summary of Simulation Results for Sparring/Training Sessions 

Region 
Fighter 8 - 

Session 1 

Fighter 9 - 

Session 1 

Fighter 3 - 

Session 2 

Fighter 8 - 

Session 1 

Fighter 9 - 

Session 1 

Fighter 9 - 

Session 1 

Fighter 5 - 

Session 4 

Fighter 10 - 

Session 4 

Impact Number 
11 12 13 14 15 16 17 18 

CC MPS 
3.40% 10.00% 11.20% 1.40% 8.30% 8.30% 10.70% 59.00% 

CC MAS 
1.70% 4.80% 5.40% 0.70% 4.23% 4.18% 5.50% 23.40% 

Thalamus MPS 
2.10% 6.00% 6.30% 0.73% 4.95% 4.60% 6.00% 34.50% 

Thalamus MAS 
1.70% 5.20% 3.90% 0.65% 4.30% 2.90% 5.96% 21.60% 

Midbrain MPS 
1.60% 3.90% 4.20% 0.63% 4.05% 3.30% 9.80% 13.90% 

Midbrain MAS 
1.23% 3.60% 3.77% 0.46% 3.00% 2.90% 6.20% 8.60% 

Brainstem MPS 
2.40% 7.10% 5.50% 1.00% 6.60% 4.30% 10.20% 19.60% 

Brainstem MAS 
0.74% 2.10% 1.64% 0.30% 1.93% 1.30% 3.50% 5.70% 

Injury No Injury No Injury No Injury No Injury No Injury No Injury No Injury No Injury 

 

 

 Legend 

Mean Strain for No Injury   
50% Probability for Concussion  
Mean Strain for Concussion  
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6.4 Data Analysis 

MPS and MAS in the corpus callosum, thalamus, midbrain and brain stem have been 

recorded and compared to published thresholds. The levels of strain recorded in these 

regions have been plotted against a range of recorded and derived data in order to 

determine whether there is a linear trend.  Complete tables and plots which detail the 

relationships that were found are available in Appendix 7 and 8 respectively. Also 

included is an analysis of HIP as a predictor for strain in the regions of interest, along 

with investigating HIP as a predictor for mTBI. As with MPS and MAS, HIP values 

have been plotted against strain in the regions of interest to determine whether there is 

a linear relationship between the two. The result of this investigation is shown in Table 

46, in the form MPS (MAS). Complete plots for this data is available in Appendix 9.   

Table 46: Summary of HIP vs strain in brain regions results 

Brain Region TBI Cases No Injury Cases All Cases 

Corpus Callosum  0.2427 (0.2744) 0.3345 (0.3847) 0.2834 (0.3262) 

Thalamus 0.2635 (0.2865) 0.3469 (0.4008) 0.3003 (0.3383) 

Midbrain 0.4482 (0.5808) 0.6008 (0.6123) 0.5245 (0.6087) 

Brain Stem 0.4025 (0.4266) 0.7209 (0.7714) 0.5409 (0.5562) 

 

HIP performed the best when predicting the strain in the Midbrain, R2 = 0.5245 and 

0.6087 for MPS and MAS respectively. The predictive qualities of HIP ranged from 

0.2834 for MPS in the corpus callosum to 0.6087 for MAS in the midbrain. Table 47 

below shows that this represents the 2nd best single predictor examined in this study. 

With only PRA about the Z-axis outperforming HIP, with R2 = 0.7245 and 0.7053 for 

strain in the midbrain and brain stem respectively. HIP performs similarly to the 

kinematic predictors in the corpus callosum and the thalamus, R2 = 0.3262 and 0.3383 

for HIP v corpus callosum and thalamus respectively. While, PLA in the Y-axis and 

PRA about the Z-axis resulted in R2 between 0.3424 and 0.3682 for the corpus callosum 

and thalamus. 

  

The strain in each brain region for the five events which resulted in a concussive injury, 

Fighter 1 – Bout 1, Fighter 2 – Bout 1, Fighter 3 – Bout 1, Fighter 4 – Bout 1 and Fighter 

5 – Bout 1 is reported in the following sets of images (Figures 63 - 83). In the case 

where several impacts from the same event were simulated, the impact that resulted in 
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the largest strain will be reported. Also reported is the strain distribution in the entire 

brain. 

 

The scale in the transverse slices of the brain maximum is set to 47% equal to the 

published threshold for grey matter [6]. For the images of each region, the scale is set 

to the default. For the images of each region the default scale is set to the maximum 

found in the region. All these events resulted in a concussive injury, although just 

Impact 2 and Impact 9 (Figures 68 - 72 and 83 - 87) resulted in strain greater than the 

published thresholds in any of the brain regions. These impacts have resulted in the 

largest distribution of strain throughout the entire brain.  

 

The best predictors for strain for each of these regions investigated in this study based 

on the simulation results will be examined. i.e. the best linear relationship found 

between strain in the region and a recorded acceleration. For example: Peak Linear 

Acceleration in the X axis vs MPS in the corpus callosum. Table 46 details the 

relationships that were determined when all simulation results were plotted. R2 for MPS 

and MAS in each region is reported in the form MPS (MAS).   

 

Table 47: Summary of Single Best Predictor for Strain in each Brain Region 

Brain region Linear Acceleration Rotational Acceleration 

Axis R2 Axis R2 

Corpus Callosum Y 0.3146 (0.341) Z 0.3195 (0.3577) 

Thalamus Y 0.3262 (0.3424) Z 0.3242 (0.3682) 

Midbrain Y 0.4351 (0.3469) Z 0.6992 (0.7245) 

Brain Stem Y 0.4954 (0.493) Z 0.6659 (0.7053) 

 

 

Utilising the new metric proposed in this study, MAS, has improved the prediction of 

almost all variables examined. The differences ranged from; a small decrease in R2 for 

PLA in the Y-axis v midbrain and brain stem, to large increases in R2 for HIP v 

Midbrain strain (16% increase).    
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Further statistical analysis was conducted in order to determine if any combination of 

the inputs proved to be a better predictor of strain in a region, this analysis was a Best 

Subset Regression analysis. The predictors that were tested are: peak resultant linear 

acceleration, peak resultant rotational acceleration, peak linear acceleration X, peak 

linear acceleration Y, peak linear acceleration Z, peak rotational acceleration X, peak 

rotational acceleration Y, peak rotational acceleration Z, linear acceleration duration, 

rotational acceleration duration, HIP and peak resultant rotational velocity. These 

predictors were used as free predictors for the analysis and the responses were: MPS 

and MAS in the corpus callosum, thalamus, mid brain and brain stem. The results of 

these analyses follow in Table 47. Data is reported in the form MPS (MAS) for each 

region. These results will be discussed in the next chapter, Chapter 7 Discussion. 

 

Table 48: Results of best subset regression analysis 

Region Number 

of 

Variables 

Variables R2 R2 (adj) R2 

(pred) 

Mallow’s 

Cp 

S 

Corpus 

Callosum 

2 PLA Y 

PRV 

0.49 

(0.541) 
0.422 

(0.48) 
0.299 

(0.37) 
-5.6 

(-5.7) 
0.16857 

(0.062) 

Thalamus 2 PLA Y 
PRV 

0.5 

(0.553) 
0.434 

(0.493) 
0.316 

(0.388) 
-5.6 

(-5.6) 
0.0944 

(0.053) 

Midbrain 2 PLA Y 

PRA Z 

0.792 

(0.771) 
0.764 

(0.741) 
0.722 

(0.674) 
-5.0 

(-3.3) 
0.028 

(0.02) 

Brain Stem 2 PLA Y 

PRA Z 

0.799 

(0.828) 
0.772 

(0.805) 
0.707 

(0.759) 
-4.4 

(-4.7) 
0.042 

(0.011) 
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Figure 63: Impact 1 (Fighter 1 - Bout 1) Transverse brain slice (110g and 13,191 rads/s^2) 

 

  

  
Figure 64: Impact 1 Corpus Callosum strain (MPS 6%) Figure 65: Impact 1 Brainstem strain (MPS 3.2%) 

 
 

Figure 66: Impact 1 Midbrain strain (MPS 2.4%) Figure 67: Impact 1 Thalamus strain (MPS 3.2%) 
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Figure 68: Impact 2 (Fighter 2 - Bout 1) Transverse brain slice (308g and 21,881 rads/s^2) 

 
 

 
Figure 69: Impact 2 Corpus Callosum strain (MPS 

53%) 

Figure 70: Impact 2 Brainstem strain (MPS 31.4%) 

  

Figure 71: Impact 2 Midbrain strain (MPS 21%) Figure 72: Impact 2 Thalamus strain (MPS 32%) 
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Figure 73: Impact 3 (Fighter 3 - Bout 1) Transverse brain slice (41g and 2906 rads/s^2) 

  

 
 

Figure 74: Impact 3 Corpus Callosum strain (MPS 10.5%) Figure 75: Impact 3 Brainstem strain (MPS 3.8%) 

  

Figure 76: Impact 3 Midbrain strain (MPS 3.7%) Figure 77: Impact 3 Thalamus strain (MPS 6.6%) 
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Figure 78: Impact 5 (Fighter 4 - Bout 1) Transverse brain slice (141g and 13609 rads/s^2) 

 

 

 
  
Figure 79: Impact 5 Corpus Callosum strain (MPS 

5.3%) 

Figure 80: Impact 5 Brainstem strain (MPS 3.8%) 

  

Figure 81: Impact 5 Midbrain strain (MPS 2.87%) Figure 82: Impact 5: Thalamus strain (MPS 2.45%) 
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Figure 83: Impact 9 (Fighter 5 - Bout 1) Transverse brain slice (104g and 27212 rads/s^2) 

  
Figure 84: Impact 9 Corpus Callosum strain (MPS 67.5%) Figure 85: Impact 9 Brain stem strain (MPS 26.8%) 

 
 

Figure 86: Impact 9 Midbrain strain (MPS 15.9%) Figure 87: Impact 9 Thalamus strain (MPS 37.5%) 
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Chapter 7 Discussion 
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The purpose of this study was to measure and simulate in vivo head impacts in MMA 

with an instrumented mouthguard developed in Stanford University, California [120]. A 

total of 434 in vivo impacts were recorded. All impacts have been confirmed by 

comparing timestamped video footage of each session against the timestamp on the 

mouthguards data record. Further confirmation was achieved by ensuring the direction of 

the impact data matches the direction that the mouthguard recorded.  

 

Data from a total of 434 impacts were recorded across 4 distinct types of combat sports 

sessions; MMA sparring, boxing sparring, MMA training and competitive MMA events. 

The majority of impacts fall into the “Low” linear acceleration range (69.36%), those in 

the “Very Serious” range or higher represent a very small percentage of all impacts 

(5.3%). Similarly, the majority of the rotational accelerations are in the “Low” range 

(71.66%) and those in the “Very Serious” range or higher are also a small percentage of 

the total (7.83%). Impacts recorded in the “Very Severe” linear range (2.77%), > 150g, 

are recognised as being unusually high and there are 3 possible reasons for this. It is 

possible that the mouthguard fit is not ideal and when an impact is received the 

mouthguard moves slightly while in the participants mouth. This could result in very high 

acceleration values. It is also possible when an impact is received the lower jaw comes 

into contact with the mouthguard, again this may result in very high acceleration values. 

The final and most likely reason for these very high accelerations is that the mouthguard 

takes a direct impact, resulting in large spikes in the accelerations recorded. Confirming 

or rejecting this outside of a laboratory setting is problematic, as the quality of video 

footage is not always high enough to clearly see where exactly the impact occurs. This is 

due, in part, to the fact that the impacts duration is short and could take place in as few as 

2 video frames. In order to confirm or reject these impacts several camera angles of each 

fight would be required, using high resolution and frame rate cameras. Impacts recorded 

> 150g have been confirmed in the way described in the introduction to this section and 

as such they are treated as true impacts.  

 

The impacts in the “Very Serious” rotational acceleration range, > 25000 rads/s2, are 

treated the same as above. They have been confirmed in the method described in a 

previous section but it is possible that they too have recorded very high accelerations due 

to a direct mouthguard impact, an ill-fitted mouthguard or an impact from the lower jaw. 

The Stanford mouthguard has been validated for American Football impacts but it is not 
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validated for MMA impacts [121]. Validation for these kinds of impacts is on-going but 

is as yet unpublished.   

 

When the direction of the impacts is examined, the most common location is “Front Left” 

(28.3%), i.e. the front left of the fighter’s face. Following that is impacts received directly 

to the “Front” of the face of the fighter (21.42%). Combined impacts from the “Left” and 

“Right” represent a large portion of the total impacts (30.65%). Impacts received directly 

to the rear of the head are illegal in both MMA and boxing and as expected these impacts 

represent a very small percentage of the total (2.3%).  

 

When the frequency of the impacts is examined for competitive events, it was found that 

the fighter that received the lowest frequency was uninjured (Fighter 6 – Bout 1). Fighter 

5 – Bout 1 had the highest frequency of all the participants that were diagnosed with a 

concussive injury (3.89), while the highest frequency of all events (Fighter 4 – Bout 2) at 

3.95 was not diagnosed with a concussive injury. The mean impacts/minute for each event 

type has been calculated and indicates that competitive events result in the average rate 

increasing by 0.45 impacts/min. This represents an increase of 37% when compared to 

MMA Sparring and MMA Training events types. Although these means differ by 37%, 

when the range for each session type is examined (competitive events 0.67 to 3.95 and 

out of competition events 0.66 to 2.33) it is found that impact frequency is not a good 

predictor of injury.  

 

The sessions from the Boxing Sparring events have not been included when calculating 

the mean for each event type as it was in a different sport which only allows for punches 

to the head and body. Meaning the increased frequency at which they received head 

impacts is to be expected and as such is not comparable to MMA data.  When the 

participants that took part in competitive events are ranked by the total number of impacts 

received, four of the top five are participants who were diagnosed with a concussive 

injury; this is shown in Table 39. Fighter 3 – Bout 1 received just 3 impacts which were 

all in the “Moderate” severity range with a high impact frequency, all others that received 

more than 10 impacts in their bout were diagnosed with a concussive injury.  

 

Four of the five participants that were diagnosed with a concussive injury have the longest 

durations. Table 40 details the impact durations recorded. Simulation input data for these 
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impacts can be found in Appendices 6 and 7. The only participant who was diagnosed 

with a concussive injury but did not have a longer linear acceleration duration, Fighter 5 

– Bout 1 (Impacts 7, 9 and 10), did have two impacts with the longest rotational 

acceleration duration. A plot of linear acceleration duration vs rotational acceleration 

duration is shown in Figure 50. This would indicate that duration of the impact, as well 

as PLA and PRA are important factors to take into account when attempting to predict 

the likelihood of a concussive injury being diagnosed. This agrees with a study conducted 

by Gilchrist et al., who found that the magnitude of PLA and PRA required to cause a 

concussive injury decreases as the impact duration increases [87].   

 

As it is not always possible to associate a single impact to a diagnosis, the linear and 

rotational acceleration duration for the impact which resulted in the largest rotational 

acceleration in a session was plotted (Figure 57).  It shows that all the impacts with a PLA 

duration greater than 15ms resulted in a concussive diagnosis for the participants. It also 

shows that three of the four impacts with a PRA duration greater than 25ms resulted in a 

concussive diagnosis. This may indicate an increased likelihood of a concussive injury 

for impacts with a PLA duration greater than 15ms or PRA duration greater than 25ms. 

In total of the six impacts that exceeded these durations, five of those resulted in a 

concussive diagnosis for the participant.  

 

When the results from this study are compared to the literature, Duhaime and Beckwith 

reported a mean PRA  of 3620 rad/s2 and 4253 rad/s2 respectively for impacts that could 

be directly linked to an concussion [45] [122]. This study has found that in MMA the 

PRA is considerably higher, 5707 rad/s2 for mTBI and 5028 rads/s2 for no injury. The 

studies by Duhaime and Beckwith were conducted in American Football and Ice Hockey 

and as such the higher magnitudes of PRA in MMA are expected as the majority of 

impacts are due to direct head impacts, as opposed to collision-based impacts in American 

Football and Ice Hockey.  Broglio reported that a PLA of greater than 96.1g and PRA of 

greater than 5582.3 rads/s2 increasing the probability of a concussion in high school 

American Football players [90]. These rotational acceleration magnitudes are similar to 

those found in this study.  
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In a further study Beckwith reported a 50th percentile impact PLA of 20.5g and PRA of 

1400 rads/s2 and 95th percentile PLA of 62.7g and PRA of 4378 rads/s2 [92]. In this study 

the 50th percentile impact was found to have a PLA of 20.78g and PRA of 2805.2 rads/s2 

and the 95th percentile PLA of 90.6g and PRA of 20579.47 rads/s2. The 50th percentile 

impact PLA is very similar to that found by Beckwith, the 50th percentile PRA is 

considerably higher. The 95th percentile impact PLA and PRA are also considerably 

higher than those found by Beckwith. This can be explained by the difference in the types 

of impacts received in the different sports, MMA impacts are direct head impacts and as 

such larger magnitudes would be expected. Using the same data set as Beckwith, Rowson 

found that concussive impacts had a mean PRA of 5022 rads/s2 and a PRV of 22.3 rads/s 

[41]. These are similar to those found in this study.  

 

To summarise, these head acceleration results indicate that the best predictors for a 

concussive injury are impact duration (both PLA duration and PRA duration), which has 

also been found in other studies [87] [123]. Furthermore, given that the magnitudes of 

PLA and PRA were the main difference between those that were diagnosed with a 

concussive injury and those that were not, this indicates that there may be thresholds for 

PLA and PRA in sub-concussive impacts. It also indicates that there may be a cumulative 

effect of sub-concussive impacts. This due to the fact that the concussed and non-

concussed groups received a similar impact frequency, while those that received more 

impacts total were more likely to be diagnosed with a concussive injury.    

 

When examining the simulation results overall, it was found that the best single predictor 

for strain across all of the variables examined was PRA about the Z axis when plotted 

against MAS in the midbrain, R2 = 0.7245. None of the kinematic inputs were found to 

be a good predictor for concussion. When HIP was investigated as a predictor for mTBI, 

it was compared to the study by Newman et al. [89]. Newman found that a HIP value of 

12.8kW represented a 50% probability of an mTBI. In this study, nine simulated impacts 

exceeded this threshold and 3 of those resulted in an mTBI (33%). Given the small sample 

size, this is not unexpected. The mean HIP values for simulated impacts from a session 

that did result in an mTBI were 78% greater than the impacts that were received in a 

session that did not (22.7kW and 12.7kW respectively).  
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HIP was shown to be the 2nd best single predictor for strain in all brain regions 

investigated. It performed as well as, or better than, any of the kinematic based strain 

predictors. R2 values for HIP found in this study ranged from 0.2834 – 0.5409 for MPS 

and 0.3262 – 0.6087 for MAS. As with the kinematic based predictors, the worst 

prediction was found in the corpus callosum and the best was in the brain stem for MPS 

and midbrain for MAS. Only PRA about the Z-axis outperformed HIP as a predictor for 

strain.  

 

The results from the set of best subset regression analyses indicate that using an additional 

predictor for each region shows an improvement over using a single predictor. As R2 (adj) 

will be reported as it is an adjusted value that takes the number of predictors into account. 

R2 (adj) for each region shows an increase when compared to R2 from the single 

predictors’ tests. In the corpus callosum an increase from 0.3577 for MAS and PRA about 

the Z axis to 0.48 when PLA in the Y axis and PRV. The same 2 predictors improve the 

predictions for the thalamus, going from 0.362 for a single predictor to 0.493 for 2 

predictors. When the results for the midbrain and brain stem are compared, it indicates 

that PLA in the Y axis and PRA in about the Z axis show an improvement when compared 

to a single predictor. The midbrain increases from 0.7245 for a single predictor to 0.764 

for 2 predictors and brain stem from 0.7053 for a single predictor to 0.805 for 2 predictors. 

Although HIP was the 2nd best predictor for strain investigated in this study, it was not a 

part of one of the best subsets in this statistical analysis.  

 

Mean adjacent strain was proposed as an alternative metric in this study and it has shown 

some encouraging results. Sixteen different relationships were examined in this study; 

PLA, PRA, HIP, PRV and duration were compared to MPS and MAS in the brain regions 

of interest. In all but three of these examinations, MAS saw an improvement in the 

prediction of strain. Just one of these three saw a substantial reduction, (20%, 0.4351 for 

MPS and 0.3469 for MAS). This was found in the relationship between PLA in the Y-

axis and strain in the midbrain. All other relationships examined saw an improvement in 

the predictions, with an average of 6.43% increase. The largest increase was found when 

HIP and strain in the midbrain (16%) were examined.  
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To summarise, these results indicate that the best predictors for strain is PLA in the Y 

axis and PRA about the Z axis across all regions. With HIP being the 2nd best single 

predictor examined across all regions. Whereas, when the corpus callosum and thalamus 

are examined it can be seen that the addition of PRV to PLA in the Y axis improves the 

predictions for strain. In the midbrain and brain stem the combining PLA in the Y axis 

and PRA about the Z axis improves the predictions for strain. PLA in the Y axis being a 

good predictor across all regions indicates that impacts received laterally result in 

increased levels of strain in the brain, similar to that found in other studies that examined 

impact direction as a predictor for strain [70] [124] [32] [125].  
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Chapter 8 Conclusion
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This study’s purpose was to measure and simulate in vivo head impacts in MMA, 434 in 

vivo MMA head impacts were recorded and 18 impacts with the largest rotational 

accelerations were simulated. Several kinematic based inputs have been examined in 

order to determine if they are a good predictor for strain and concussion diagnosis. This 

study found that some of the kinematic based inputs are reasonable predictors for strain 

in certain regions of the brain, with PRA about the Z axis and PLA about the Y axis being 

the best single predictors for strain in the regions examined in this study. When combined, 

these 2 predictors provide an improved prediction in the midbrain and brain stem. When 

combined PRV and PLA in the Y axis improve the prediction for strain in the corpus 

callosum and thalamus. PLA in the Y axis has been shown to be a good predictor for 

strain in all brain regions investigated, indicating that these regions are particularly 

sensitive to lateral impacts. Although, these kinematic based inputs do not appear to be 

good predictors for a concussion diagnosis. 

 

Five concussions were recorded in this study, of those five cases, just two of the simulated 

impacts resulted in strains greater than the published thresholds. There are many factors 

that may influence the probability of a person being diagnosed with a concussion; linear 

acceleration magnitude, rotational acceleration magnitude, impact direction, impact 

duration, concussion history, number of impacts received and gender  among others [87] 

[85] [88] [118] [119] [126] [127] [80]. Only when all of these factors can be addressed, 

can the full picture be seen. Overall it can be stated that the participants who were 

diagnosed with a concussive injury received more impacts per minute (37%), increased 

mean PLA (47%), increased mean PRA (13%), a small increase in mean PRV (3.7%) and 

longer impact durations when compared to those that were not diagnosed with a 

concussive injury. Impact duration (both PLA and PRA) have been shown to be the best 

predictor for a concussive diagnosis, eight of the simulated impacts had durations greater 

than 15ms for PLA or 25ms for PRA and seven of these resulted in a concussive 

diagnosis. Of the five events that resulted in a concussive diagnosis, four of those 

participants received the most impacts in competitive events; this would indicate that 

there is a cumulative effect of multiple sub-concussive impacts that increases the 

likelihood of a concussive diagnosis.   
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The magnitudes of rotational acceleration found in this study for concussed participants 

are similar to those found in other sports, PRA and PRV of 5707 rads/s2 and 17.11 rads/s 

in this study and PRA and PRV of 5022 rads/s2 and 22.3 rads/s in collegiate American 

Football [41]. The 50th percentile impact in this study was found to be very similar to the 

50th percentile impact found in collegiate American Football and Ice Hockey, 20.5g for 

American Football and Ice Hockey and 20.78g in this study [92]. 

 

The human tolerance to short duration, high magnitude impacts in unhelmeted sports 

remains unknown, but the data in this study is important to help understand the magnitude 

and variation of these tolerances. This study shows that not only the peak resultant 

acceleration magnitude of the impacts is an important factor but it is also necessary to 

examine the direction from which it was received, the number of impacts received, the 

impact duration and the profile of the component parts of the impacts in order to best 

predict the probability of a concussive diagnosis. The number of fighters and events in 

this study is limited, but the study is on-going. 
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8.1 Limitations 

There are several limitations to this study that need to be addressed. The GHBMC is a 

partially validated human body model. It has been validated for displacement [60] but has 

not been validated for strain. Furthermore the model itself is a 50th percentile model, 

which is based on a person who fit some dozen anthropomorphic measures [61]. This 

means the model is unlikely to accurately represent the mass, volume or response of the 

brain of any of the participants and as such is an approximation. Some of the materials 

properties of this model could also be improved, for example the modelling of the CSF 

as a fluid, rather than as a solid as it currently is. A recent study into the mechanical 

behaviour of the dura matter in the meninges, with a porcine brain, has shown the dura 

has regional differences in thickness and is not homogenously stiff. Furthermore the dura 

matter and sagittal sinus were shown to have anisotropic behaviour [128]. The addition 

of these material properties to FE models could improve the overall response and 

behaviour.   

 

The Stanford mouthguards also have some limitations. These devices have been validated 

for American Football impacts but have not been validated for MMA impacts, which are 

typically much shorter durations and higher magnitudes than those found in helmeted 

sports [121]. The higher magnitude impacts recorded in this study, > 150g and/or > 

25krads/s2, are unusually high and may be due to three possible reasons. Firstly, the 

mouthguard itself may not fit correctly. Meaning that an impact may result in the 

mouthguard moving in the participant’s mouth, this could result in excessive acceleration 

data. Secondly, the lower jaw state has been shown to play an important role in the 

accurate recording of accelerations [55]. And as such, if the lower jaw impacts the 

mouthguard when an impact is received it could also result in excessive acceleration. 

Lastly, and the most likely cause, is that the mouthguard itself takes a direct impact. 

Confirming or reject this can be extremely problematic outside of laboratory setting. 

When sessions are recorded for video, the short duration impacts are over in a very small 

number of frames and there is just one angle of the session. This means it is very difficult 

to see exactly where the impact occurs. Validation for the short duration, high magnitude 

impacts is ongoing but is as yet unpublished.  
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When confirming impacts through video footage they often need to be timestamped with 

external software. The best effort is made when ensuring that all timestamps and impact 

locations are matching, although this is not always possible due to poor angles and/or 

video quality. Any impacts that cannot be seen clearly or their direction cannot be 

confirmed, are not treated as true impacts. Therefore, it is possible that some real impacts 

have been missed.  

 

Furthermore, as was discussed previously medical professionals attend all competitive 

events and the participants are examined and diagnosed post fight. Unfortunately, SCAT5 

tests were not carried out by the medical professionals at any event to date. Therefore, the 

ability to correlate the severity of symptoms or the change in function is severely limited. 

SCAT5 tests have begun with the participants for future events, with the recent 

introduction of a physiotherapist to the research group.  
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8.2 Future Work and Recommendations 

 

Based on the development of this study’s design and results, there are several areas that 

future work that can investigate and improve upon. Firstly, increase the participant count. 

Increasing the number of participants would greatly increase the amount of opportunities 

to collect data and in turn increase the overall number of recorded impacts. Doing so will 

only improve the quality of any further conclusions drawn.  

 

In relation to the dental moulding process, this study found that up to 50% of moulds were 

rejected by the manufacturer due to them being low quality impressions. Many of the 

participants were also quite uncomfortable with the impression process. This could be 

improved upon by utilising 3-d dental scanning technology. It is less invasive than taking 

an imprint of the teeth and would reduce the possibility that opportunities to collect data 

may be missed due to low quality impressions.  

 

As discussed in the previous section, the Stanford mouthguard is as yet unvalidated for 

MMA impacts. Conducting validation studies into short duration, high magnitude impacts 

will be essential to the future of work in this area. Also discussed in the previous section, 

obtaining high quality video of events was problematic. Further studies using this study 

design could investigate obtaining several angles of high-quality video at an event. Doing 

so would also increase the accuracy of confirmed impacts, as all impacts cannot be 

confirmed through footage from a single, fixed angle video.  

 

In this study 434 confirmed impacts were recorded and 18 were simulated. Increasing the 

number of simulated impacts would help to better understand which kinematic inputs 

have the largest influence on strain in the brain. Developing a system where all confirmed 

impacts are formatted as simulation files by Matlab once processed and then a further 

system for running batches of simulations at once would greatly increase the efficiency 

of the study. And as such, would greatly improve the knowledge base and predictive 

qualities of research in this field. 
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In order to minimise the computational cost of simulations in this study, 50ms of the full 

200ms data for each impact was used. Future work with this data set could, in conjunction 

with the previous recommendation, examine the full 200ms of data for each simulation. 

This would be to ensure that the complete response from any confirmed impact could be 

examined in full.   

 

The falx and tentorium have been highlighted by research as potential areas of interest in 

mTBI research. They have been shown to potentially influence the level of strains in the 

corpus callosum and brain stem recorded in simulated impacts [129]. The falx was not 

included in this study as in the GHBMC model, it is a 2-d part made of shell elements. 

Introducing this topic would require investigating a different type of strain due, which 

was outside of the scope in this study. The tentorium is not included in the GHBMC 

model at all. It would be an interesting area of future research with this data set.  

 

The orientation of axons in the white matter has been highlighted by recent studies as an 

important factor in the prediction mTBI [130]. It was not possible to investigate this area 

of research as the GHBMC model is isotropic and does not account for axonal direction. 

A potential area of future work would be to investigate anisotropic material models and 

apply them to the white matter parts of the brain model.  

 

This study focused on MMA exclusively, it could be opened up to other sports. Rugby 

Union, American Football, Rugby League, Boxing, Ice Hockey and Lacrosse are some 

other sports that have been studied previously, mainly through recreating impacts as 

discussed earlier in this study. Collecting in vivo data from these sports and comparing 

them to the data collected from MMA, would better inform this field of research to 

understand what the potentially most dangerous or injurious impacts would be. As each 

different sport would have a different impact profile, duration, magnitude, as well as 

different concussion incident rates.   
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Appendix 1 

SCAT5 

Full document available at: 

https://bjsm.bmj.com/content/bjsports/early/2017/04/26/bjsports-2017-

097506SCAT5.full.pdf  
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Appendix 2 

IMMAF Unified Rules of Amateur Mixed Martial Arts 

Full document available at: 

 http://www.immaf.org/wp-content/uploads/2015/08/IMMAF-Unified-Amateur-3x3-

Rule-Set_15.11.15.pdf 
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Unified Rules of Mixed Martial Arts 

Full document available at: 

https://www.dca.ca.gov/csac/forms_pubs/publications/unified_rules_2017.pdf 

 

 

 

https://www.dca.ca.gov/csac/forms_pubs/publications/unified_rules_2017.pdf
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Appendix 3 

Study Consent Form 

 

 

 

 

 

 

 

Department of Mechanical Engineering 

 
Participant Information Sheet and Consent 
Form 

 
Research title:  
The investigation of head impacts in Sport 

Why is this study being performed?  

The primary aim of this project is to measure the severity and rate of head impacts in 

sport. Participants will be asked to wear a mouthguard with embedded sensors, they will 

be individually molded from dental impressions. When the mouthguards have been 

fabricated, they will be tested for comfort and fit, and if necessary modified. Head linear 

and rotational acceleration will be measured by the devices during events. The data 

collected will be used primarily as input data to a simulation model of the brain; to aid 

in the understanding of the biomechanics of the brain during impact. Your participation 

in this study is entirely voluntary. 

  

Why have I been chosen? 

Your invitation to participate is based on you having met the criteria.  

• Active sports participant  

 

Suitable candidates will not fall into any of the categories mentioned below: 

• suffer from any physical or mental impairment.  

 

Technological University of Dublin 

 

Olldcsoil Teicneolaíochta Bhaile Átha Cliath 
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What is required for participation? 

Prior to an event or training session instrumented mouthguards will be switched with the 

un-instrumented mouthguard. Following a competition or training session the 

mouthguards will be taken for a time to download the data from them. Participation in the 

study will not affect performance or selection. All mouthguards are molded from dental 

impressions and are therefore individual fitted to participants.  

 

Video 

We will use video of the event (video recorded or taken from online sources such as 

YouTube) to correlate data from the mouthguard device with observed head impacts.  

Who will have access to your information?  

The researchers, research partners and the supervisors on the project will have access to 

all of the data.  The information will be stored on a computer. In addition to the 

accelerometer data, any incidents during an event, the date and time, and location of the 

event will also be recorded.  It is intended that the data will be analysed and condensed 

and may be used in a scientific publication or conference presentation. It will not be 

possible to identify individual participants in any presented or published data.  

 

Anonymised data will also be stored on FITBIR (United States Federal Interagency 

Traumatic Brain Injury Research Informatics System). This is a US database that allows 

researchers to analyse head impacts across a range of sports. This information is important 

in studying the rate and severity of head impacts in sport and it will not be possible 

through this system to trace the data back to individual participants.  

What will happen to the results:  

The anonymised data will be keep on FITBIR indefinitely. Data at ITT Dublin will be 

retained for a minimum of 5 years (as required by the data protection policy) in a secure 

computer location only accessible by the researchers and supervisors. 
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How will the results be disseminated?  

Results will be disseminated through Journal Publications and conference proceedings. 

The identities of individuals will not be included.  

Will you receive any compensation? 

No 

 

Risks: 

The risks associated with this study are irritation from wearing the instrumented 

mouthguard. The mouthguard device used in the proposed study is made of the same 

material as mouthguards currently worn in sports. The device used in this study serves 

the same function as typical mouth guards of protecting the teeth and will be 

manufactured by OPRO who are the main manufacturers of mouthguards for many sports.  

With electronics situated in the mouth, there may be a heightened probability for device 

breakage and component short circuiting. These may cause heating, and 

chemical/electrical irritation. An allergic reaction to the material is possible and might 

also cause irritation. We view this risk as low due to the thick hypoallergenic ethylene 

vinyl acetate bi-layer encompassing electronics, the low total power of the battery used 

(3.7V, 30mAh), that all electronics and battery will be fully hermetically sealed as a 

moisture and dielectric barrier. Please notify us if you experience any adverse effects. 
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PARTICIPANT CONSENT FORM 

With permission, this form has been based on that produced by the RCSI Research 

Ethics Committee 

 

 

Study title:  The investigation of head impacts in Sport 
 

I have read and understood the Information Leaflet about 

this research project.  The information has been fully 

explained to me and I have been able to ask questions, all of 

which have been answered to my satisfaction. 

Yes  No  

I understand that I don’t have to take part in this study and 

that I can opt out at any time.  I understand that I don’t have 

to give a reason for opting out and I understand that opting 

out won’t affect my future medical care. 

Yes  No  

I am aware of the potential risks, benefits and alternatives of 

this research study. 

Yes  No  

I give permission for researchers to look at my medical 

records to get information.  I have been assured that 

information about me will be kept private and confidential. 

Yes  No  

I have been given a copy of the Information Leaflet and this 

completed consent form for my records. 

Yes  No  

I consent to take part in this research study having been fully 

informed of the risks, benefits and alternatives. 

Yes  No  

I give informed explicit consent to have my data processed as 

part of this research study.  

Yes  No  

I consent to be contacted by researchers as part of this 

research study. 

Yes  No  

 

 

     |      |  

Participant Name (Block Capitals) | Participant Signature | Date 



 

 174 

To be completed by the Principal Investigator or nominee.  

 

 

I, the undersigned, have taken the time to fully explain to the above participant the nature 

and purpose of this study in a way that they could understand. I have explained the risks 

involved as well as the possible benefits. I have invited them to ask questions on any 

aspect of the study that concerned them. 

 

----------------------------------------------------------------------------------------------------------

----------------Name  (Block Capitals) |  Qualifications *  | Signature | Date 

 

* If the nominee is a student researcher studying at the Institute of Technology Tallaght, 

please write the name of the programme in place of the qualifications in the above 

declaration  
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Appendix 4 

Mouthguards Raw Data 

Competitive Bouts 
Fighter 1 Bout 1 

Fighter 1 

- Bout 1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 
89.88 4385.98 12.51 275.02 9.56 Serious R Upper 

107.37 12546.23 35.01 117.21 24.38 Very Serious BL Upper 

42.55 4458.08 11.37 40.52 -31.14 Moderate FL Lower 

11.11 746.39 11.92 291.87 8.93 Low R Upper 

37.11 2709.43 12.95 49.00 10.29 Moderate FL Upper 

14.70 728.48 6.09 61.10 -3.23 Low FL Lower 

25.25 3094.85 13.40 315.10 -26.59 Low FR Lower 

13.10 1904.84 8.22 338.78 -31.79 Low F Lower 

109.88 13190.78 45.34 15.83 -40.97 Very Serious F Lower 

11.51 480.16 4.38 35.74 -4.21 Low FL Lower 

15.36 1240.00 7.16 49.34 3.59 Low FL Upper 

35.76 1942.94 18.06 66.88 0.07 Moderate FL Upper 

12.75 1059.16 3.34 350.27 -3.35 Low F Lower 

Fighter 2 Bout 1 

Fighter 2 

- Bout 1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

31.69 1983.53 13.17 24.76 -17.71 Moderate FL Lower 

49.96 4107.37 13.40 24.50 -27.99 Moderate FL Lower 

49.00 6527.42 23.61 272.20 10.76 Moderate R Upper 

17.54 1120.42 14.51 40.17 -6.34 Low FL Lower 

32.08 2152.40 10.41 71.77 -22.20 Moderate L Lower 

307.65 21881.43 37.70 336.67 -37.70 Very Severe FR Lower 

120.84 7795.04 28.53 62.59 1.46 Severe FL Upper 

25.91 2305.84 15.61 80.38 -15.24 Low L Lower 

72.79 6987.49 17.18 14.31 -43.00 Serious F Lower 



 

 176 

38.35 3672.11 7.87 46.59 -4.72 Moderate FL Lower 

42.54 2577.95 8.46 227.90 -40.93 Moderate BR Lower 

15.13 986.96 5.40 58.73 -4.77 Low FL Lower 

44.62 4813.19 14.79 260.79 24.63 Moderate R Upper 

30.80 2046.91 13.65 67.56 -24.82 Moderate L Lower 

16.52 930.38 6.07 55.64 -28.96 Low FL Lower 

81.11 4185.67 17.67 72.59 3.15 Serious L Upper 

52.48 4197.76 11.34 37.26 -5.18 Moderate FL Lower 

79.13 3400.48 11.88 61.46 -17.50 Serious FL Lower 

 

Fighter 3 

Bout 1 

Fighter 3 
- Bout 1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

40.92 2524.68 16.43 69.42 -41.45 Moderate L Lower 

41.48 2906.15 15.55 43.64 -1.67 Moderate FL Lower 

43.50 4090.38 15.60 128.91 31.01 Moderate BL Upper 

 

Bout 2 

Fighter 3 

- Bout 2 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

20.99 5430.82 15.25 267.19 -0.97 Low R Lower 

31.69 23479.27 39.05 4.71 68.49 Moderate F Top 

17.34 14273.09 19.12 284.90 -41.33 Low R Lower 

10.68 1538.03 8.00 334.38 23.70 Low FR Upper 

40.66 6704.79 20.22 69.76 -9.24 Moderate L Lower 

30.09 5949.25 21.41 254.46 -3.10 Moderate R Lower 

35.10 3795.80 21.24 59.83 -9.46 Moderate FL Lower 
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Fighter 4 

Bout 1 

Fighter 4 

- Bout 1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

17.11 1859.39 10.84 120.22 -11.82 Low BL Lower 

27.36 2645.28 12.20 220.32 -2.41 Low BR Lower 

33.44 4930.53 17.12 82.91 -1.03 Moderate L Lower 

32.40 1775.34 8.71 257.22 -58.69 Moderate R Neck 

23.89 1794.14 12.60 70.81 -4.59 Low L Lower 

19.19 1242.61 11.74 261.07 -6.12 Low R Lower 

26.87 2340.07 8.31 89.92 -4.38 Low L Lower 

19.47 1611.71 6.66 101.14 -10.92 Low L Lower 

16.33 1216.70 12.30 350.67 -1.96 Low F Lower 

31.96 2618.48 16.33 285.74 9.32 Moderate R Upper 

41.93 2385.81 16.93 297.16 4.75 Moderate FR Upper 

 

Bout 2 

Fighter 4 

- Bout 2 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

137.95 15369.99 44.40 272.33 10.04 Severe R Upper 

101.63 4086.47 20.27 55.12 -18.73 Very Serious FL Lower 

60.01 3721.35 17.33 284.18 17.31 Serious R Upper 

163.01 23757.35 74.44 2.99 -61.54 Very Severe F Neck 

54.53 5406.82 20.78 275.14 -1.25 Moderate R Lower 

10.37 1239.18 7.04 25.43 -30.59 Low FL Lower 

32.64 3059.36 12.33 284.70 -5.89 Moderate R Lower 
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Fighter 5 Bout 1 

Fighter 5 

- Bout 1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

108.80 33315.12 72.34 5.03 -60.36 Very Severe F Neck 

37.53 6048.77 20.92 73.37 -4.08 Moderate L Lower 

26.17 15903.80 32.63 41.87 -79.96 Low FL Neck 

38.94 13289.73 34.51 72.61 10.31 Moderate L Upper 

27.17 4044.44 18.89 298.20 -13.01 Low FR Lower 

24.77 5563.90 20.13 299.77 -9.74 Low FR Lower 

17.27 5435.42 14.16 24.76 -17.38 Low FL Lower 

21.24 4207.10 13.31 311.26 -21.36 Low FR Lower 

14.86 4024.46 13.04 32.86 7.83 Low FL Upper 

17.13 20546.81 29.16 343.44 -15.77 Low F Lower 

104.35 27212.00 42.61 84.59 -5.75 Very Severe L Lower 

20.88 14673.17 16.53 352.77 -33.21 Low F Lower 

59.67 6081.34 21.56 81.32 1.22 Serious L Upper 

70.66 15984.03 28.36 47.37 4.51 Severe FL Upper 

37.54 5672.50 9.11 65.86 -16.67 Moderate FL Lower 

29.44 4591.39 19.75 77.61 -10.79 Low L Lower 

27.61 3164.55 11.58 55.40 -6.46 Low FL Lower 

Fighter 6 Bout 1 

Fighter 6 

- Bout 1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

32.93 6591.34 33.00 62.44 -14.06 Moderate FL Lower 

17.10 1802.98 11.23 61.50 -11.44 Low FL Lower 

51.98 10014.27 10.68 79.82 83.53 Moderate L Top 

26.03 4430.64 11.54 33.11 -54.36 Low FL Neck 

20.72 2481.67 13.58 345.05 -31.48 Low F Lower 

42.00 5869.50 20.76 46.61 -25.08 Moderate FL Lower 

11.90 1790.34 12.02 286.05 -14.87 Low R Lower 

11.04 2145.96 12.72 32.77 -36.72 Low FL Lower 

22.84 3381.19 22.30 11.70 -44.54 Low F Lower 

25.94 3171.39 17.23 280.84 1.61 Low R Upper 
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Sparring Sessions 
 

Fighter 2  

Session 1 

Fighter 2 

- Session 

1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

23.52 1609.66 9.15 294.04 -17.88 Low FR Lower 

20.36 1273.95 8.30 46.83 -0.61 Low FL Lower 

53.15 5638.49 11.90 37.06 -26.95 Moderate FL Lower 

36.42 3312.85 9.32 348.14 -30.72 Moderate F Lower 

24.23 3497.41 9.77 313.69 -32.93 Low FR Lower 

27.67 2256.13 8.09 279.21 2.83 Low R Upper 

22.40 1109.82 5.31 65.15 5.32 Low FL Upper 

15.70 1105.37 5.89 65.05 6.73 Low FL Upper 

23.79 1110.90 5.73 135.33 -28.63 Low BL Lower 

17.77 1182.58 6.99 171.62 -15.92 Low B Lower 

20.72 1395.10 5.07 62.70 -2.09 Low FL Lower 

12.83 2631.92 19.62 328.97 -25.11 Low FR Lower 

11.90 772.89 4.09 144.40 -18.69 Low BL Lower 

16.33 1317.26 6.78 61.09 -5.14 Low FL Lower 

12.95 995.87 5.37 87.83 22.60 Low L Upper 

24.29 3082.75 6.46 89.77 -0.67 Low L Lower 

 

Session 2 

Fighter 2 
- Session 

2 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

58.08 6685.63 26.97 1.99 -40.26 Moderate F Lower 

80.44 8425.89 16.87 4.10 -45.01 Serious F Neck 

18.36 1249.98 5.21 280.11 8.65 Low R Upper 

27.66 2492.70 13.89 134.28 -10.54 Low BL Lower 

13.34 986.66 4.29 36.14 -15.68 Low FL Lower 

10.37 702.40 5.81 285.23 2.26 Low R Upper 

16.76 1405.74 6.84 54.81 -7.38 Low FL Lower 

20.06 2488.90 7.79 295.69 -34.42 Low FR Lower 
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14.91 1518.33 9.69 43.27 -27.07 Low FL Lower 

47.15 4256.33 16.67 274.63 12.63 Moderate R Upper 

27.07 1512.02 15.30 68.67 -2.16 Low L Lower 

16.10 1308.79 6.22 342.44 5.02 Low F Upper 

24.81 2602.59 6.46 9.13 -22.17 Low F Lower 

25.57 2963.49 17.78 68.68 14.49 Low L Upper 

42.93 2821.78 12.98 239.18 -30.12 Moderate BR Lower 

13.08 1581.28 12.71 127.31 -15.88 Low BL Lower 

15.04 686.55 4.96 184.82 -6.44 Low B Lower 

23.13 1458.92 6.91 41.24 -5.77 Low FL Lower 

 

Fighter 3 

Session 1 

Fighter 3 

- Session 

1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

14.32 1407.63 6.20 314.46 21.79 Low FR Upper 

32.57 2484.35 13.24 243.53 6.42 Moderate BR Upper 

19.34 1810.95 11.77 40.19 -33.47 Low FL Lower 

26.04 2083.79 8.43 58.54 11.84 Low FL Upper 

23.43 2000.60 12.30 68.51 -12.97 Low L Lower 

13.89 1500.83 11.44 61.49 -4.92 Low FL Lower 

10.56 1504.82 9.72 88.59 -14.16 Low L Lower 

59.34 3390.18 13.67 74.11 -10.97 Moderate L Lower 

12.38 814.71 8.99 17.69 -3.33 Low F Lower 

30.63 5847.99 41.02 45.68 9.54 Moderate FL Upper 

46.25 4416.69 7.43 338.98 -33.19 Moderate F Lower 

13.29 1253.58 12.15 73.69 -14.74 Low L Lower 
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Session 2 

Fighter 3 

- Session 

2 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

14.38 1201.48 6.57 268.74 0.73 Low R Upper 

23.13 3144.24 5.91 24.33 -37.45 Low FL Lower 

15.82 857.82 8.58 304.00 7.00 Low FR Upper 

10.31 970.04 10.98 45.33 -4.04 Low FL Lower 

53.44 7722.22 33.62 59.30 -16.33 Moderate FL Lower 

11.47 1212.32 10.44 180.93 -3.25 Low B Lower 

77.89 10311.30 25.60 275.09 -3.94 Serious R Lower 

16.94 990.04 12.90 49.33 -4.86 Low FL Lower 

27.91 2150.67 9.83 47.52 -8.00 Low FL Lower 

18.01 961.98 6.40 165.48 10.09 Low B Upper 

 

Fighter 5 

Session 1 

Fighter 5 

- Session 

1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

13.14 2140.53 16.48 60.76 -4.62 Low FL Lower 

14.30 5167.60 15.16 309.60 14.37 Low FR Upper 

14.82 4867.77 11.95 307.00 -5.35 Low FR Lower 

42.73 13863.32 23.25 356.14 74.88 Moderate F Top 

28.38 21492.29 34.06 299.92 -88.67 Low FR Neck 

11.44 3726.81 28.77 51.60 -8.27 Low FL Lower 

11.39 3285.05 7.29 38.24 -2.53 Low FL Lower 

60.81 41843.69 73.61 283.91 -65.59 Serious R Neck 

17.21 1595.11 12.42 66.37 -3.20 Low FL Lower 

10.04 2030.94 6.55 67.16 -6.62 Low FL Lower 

25.79 19784.09 28.18 337.09 -34.97 Low FR Lower 

21.28 15568.71 32.54 70.59 71.10 Low L Top 

10.17 8795.83 18.41 45.29 -31.26 Low FL Lower 

21.13 10894.08 14.19 356.70 -34.39 Low F Lower 

30.67 6117.63 27.67 63.11 -6.88 Moderate FL Lower 

47.11 23245.34 31.16 351.50 54.64 Moderate F Top 
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Session 2 

Fighter 5 

- Session 

2 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

14.76 1824.44 7.09 67.69 -3.91 Low L Lower 

52.73 15406.37 34.40 62.06 -18.08 Moderate FL Lower 

15.48 2500.26 7.73 69.75 0.67 Low L Upper 

26.74 15508.80 29.59 12.75 75.03 Low F Top 

102.58 47406.96 53.01 46.93 -61.69 Very Serious FL Neck 

83.28 39561.61 57.31 348.42 77.31 Serious F Top 

19.42 17684.82 28.93 23.57 -61.22 Low FL Neck 

58.95 31226.29 51.87 97.70 78.16 Moderate L Top 

14.40 7429.99 10.37 297.41 24.32 Low FR Upper 

57.58 7000.59 11.53 2.70 2.11 Moderate F Upper 

20.08 6043.53 9.98 109.55 -33.83 Low L Lower 

52.23 39312.17 54.50 17.06 65.21 Moderate F Top 

17.57 9116.81 18.23 57.60 -20.34 Low FL Lower 

29.63 23727.09 71.83 36.23 -55.89 Low FL Neck 

41.62 21910.21 37.90 80.62 82.82 Moderate L Top 
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Fighter 7 

Session 1 

 

Fighter 7 

- Session 

1 

 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

30.11 3613.54 12.27 155.69 37.38 Moderate BL Upper 

12.23 1036.67 11.27 237.01 -9.09 Low BR Lower 

11.92 861.41 11.07 238.69 1.29 Low BR Upper 

10.73 844.13 10.75 246.90 -0.19 Low BR Lower 

13.99 1252.33 6.15 340.85 -31.81 Low F Lower 

11.91 560.50 6.94 191.20 0.88 Low B Upper 

21.00 1341.63 7.40 117.94 13.04 Low BL Upper 

15.52 1445.67 8.59 219.47 -11.94 Low BR Lower 

21.96 1071.13 21.36 277.28 -4.97 Low R Lower 

49.40 5206.73 9.46 24.28 -40.01 Moderate FL Lower 

29.79 2174.02 9.04 136.16 10.11 Low BL Upper 

19.82 1208.62 9.80 234.13 -3.74 Low BR Lower 

48.75 4533.03 8.82 318.13 -40.45 Moderate FR Lower 

39.88 3221.76 15.05 270.92 -6.69 Moderate R Lower 

49.97 4859.89 21.69 233.31 24.11 Moderate BR Upper 

13.09 1521.31 10.10 245.73 9.18 Low BR Upper 

29.09 3563.75 12.19 21.69 -24.91 Low F Lower 

18.18 838.19 7.11 106.09 4.43 Low L Upper 

25.48 2558.96 4.94 60.99 -19.37 Low FL Lower 

12.01 247.24 2.13 175.77 -77.74 Low B Neck 

11.86 1416.20 7.36 291.29 15.11 Low R Upper 

20.94 2001.87 4.14 138.95 33.54 Low BL Upper 

17.28 1300.57 8.78 269.06 -3.12 Low R Lower 

14.06 1444.69 4.39 135.40 -3.85 Low BL Lower 

10.81 838.44 9.42 166.34 -57.43 Low B Neck 

17.83 741.92 5.92 173.06 -25.63 Low B Lower 

11.05 1122.41 26.85 181.71 60.61 Low B Top 

24.79 2331.93 4.92 119.04 27.56 Low BL Upper 
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Fighter 9 

Session 1 

 

Fighter 

9 - 

Session 

1 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

165.14 15994.05 38.27 357.04 -42.54 Very Severe F Lower 

17.61 2594.50 14.94 224.11 -41.38 Low BR Lower 

34.48 2765.96 21.12 57.93 -3.56 Moderate FL Lower 

10.83 1188.63 12.10 330.40 -17.59 Low FR Lower 

10.49 703.36 8.63 345.66 23.48 Low F Upper 

15.59 775.27 9.00 8.99 13.86 Low F Upper 

162.80 15483.06 35.83 352.49 -41.57 Very Severe F Lower 

10.28 914.20 6.55 244.50 -21.38 Low BR Lower 

47.33 4114.80 14.90 8.91 -36.16 Moderate F Lower 

12.33 1681.44 8.49 333.66 -17.11 Low FR Lower 

45.84 5023.12 17.31 258.39 30.03 Moderate R Upper 

195.14 21297.25 36.08 19.54 -29.55 Very Severe F Lower 

58.49 7765.76 29.99 7.47 -39.19 Serious F Lower 

31.69 4051.64 18.73 25.12 -49.40 Moderate FL Neck 

14.92 1796.13 12.94 286.41 -15.99 Low R Lower 

11.04 729.13 10.29 71.28 20.06 Low L Upper 

26.15 2097.00 14.01 350.32 6.76 Low F Upper 

25.72 2295.18 11.05 80.26 21.38 Low L Upper 

21.89 1237.14 8.87 69.88 -9.66 Low L Lower 

21.48 1682.55 10.29 86.13 0.37 Low L Upper 
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MMA Training Sessions 

Fighter 8 

Fighter 

8 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

15.49 861.31 10.01 36.51 -32.52 Low FL Lower 

17.71 1403.89 10.48 6.66 -41.38 Low F Lower 

10.66 475.56 9.62 41.66 -15.67 Low FL Lower 

11.87 626.65 9.97 48.29 -9.70 Low FL Lower 

11.56 632.41 10.32 44.26 -12.44 Low FL Lower 

13.15 556.71 11.59 40.18 -17.57 Low FL Lower 

12.82 569.60 9.07 23.31 -29.06 Low FL Lower 

12.15 560.42 11.41 23.25 -22.15 Low FL Lower 

11.76 642.38 8.67 28.03 -22.83 Low FL Lower 

12.35 724.42 9.55 38.83 -19.02 Low FL Lower 

13.04 830.24 11.71 53.77 -13.79 Low FL Lower 

13.56 632.26 11.65 36.16 -21.66 Low FL Lower 

12.86 770.75 6.38 35.88 -14.18 Low FL Lower 

13.94 770.56 11.23 51.59 -13.36 Low FL Lower 

58.95 4315.13 11.04 35.12 -39.20 Moderate FL Lower 

39.41 3597.46 10.40 88.41 -0.16 Moderate L Lower 

13.41 1230.73 13.03 19.37 -26.34 Low F Lower 

11.49 520.88 8.69 10.95 -33.69 Low F Lower 

13.56 923.18 12.56 25.89 -18.02 Low FL Lower 

13.35 991.02 10.83 33.60 -29.08 Low FL Lower 

11.38 509.13 9.38 19.56 -31.24 Low F Lower 

11.87 605.13 9.81 38.36 -25.94 Low FL Lower 

13.15 655.85 11.52 29.27 -21.38 Low FL Lower 

12.12 392.12 7.59 35.68 -17.30 Low FL Lower 

12.09 721.46 11.47 43.98 -17.81 Low FL Lower 

23.36 4710.47 9.26 93.07 2.59 Low L Upper 

12.43 546.34 10.68 32.90 -17.49 Low FL Lower 

22.92 3096.33 10.53 278.45 -5.03 Low R Lower 

12.34 932.24 12.26 59.19 -6.45 Low FL Lower 
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17.11 1086.28 10.96 37.77 -21.30 Low FL Lower 

34.21 3429.60 10.13 33.07 -38.55 Moderate FL Lower 

17.95 1351.36 7.04 335.43 -39.41 Low FR Lower 

10.06 696.10 3.87 12.90 -36.37 Low F Lower 

13.47 872.70 3.51 68.56 -5.89 Low L Lower 

55.43 3613.56 25.26 63.48 -14.92 Moderate FL Lower 

22.98 1322.29 9.74 51.57 -14.47 Low FL Lower 

10.03 1102.41 7.73 281.02 -1.44 Low R Lower 

26.49 2007.77 9.49 345.32 -33.97 Low F Lower 

12.01 2261.49 14.06 246.84 10.03 Low BR Upper 

24.96 1997.78 19.71 61.52 -13.19 Low FL Lower 

17.57 1715.18 13.46 264.24 12.36 Low R Upper 

21.73 1353.02 5.28 267.49 -16.00 Low R Lower 

24.91 1482.55 15.39 62.68 -14.07 Low FL Lower 

28.69 2244.53 11.47 359.02 -25.33 Low F Lower 

17.18 714.59 10.85 31.13 -15.26 Low FL Lower 

89.08 8732.03 9.59 324.82 -50.49 Serious FR Neck 

26.61 3283.16 10.41 355.54 -32.82 Low F Lower 

20.54 1700.16 15.36 62.77 -17.94 Low FL Lower 

34.23 3186.70 15.55 38.40 -29.58 Moderate FL Lower 

70.74 6678.94 11.20 334.51 -38.66 Serious FR Lower 

15.07 2221.96 16.36 68.48 -4.94 Low L Lower 

26.99 2865.70 15.93 237.56 30.92 Low BR Upper 

41.96 5069.00 15.64 42.74 -31.11 Moderate FL Lower 

44.47 1801.18 11.84 346.42 -18.35 Moderate F Lower 

106.85 4489.91 16.31 274.56 26.01 Very Serious R Upper 

13.62 1024.25 8.81 130.03 20.20 Low BL Upper 

57.43 5468.81 21.38 91.87 -1.85 Moderate L Lower 

43.04 3554.21 7.90 336.70 -32.77 Moderate FR Lower 

30.40 3269.03 11.27 207.60 3.00 Moderate BR Upper 

40.31 2240.73 14.88 357.74 -20.94 Moderate F Lower 

17.22 1847.32 17.59 269.97 10.27 Low R Upper 

11.14 1052.97 8.42 313.66 -6.37 Low FR Lower 

18.67 1201.53 11.17 272.89 -4.56 Low R Lower 



 

 187 

35.04 2027.71 10.66 2.71 -11.03 
Moderate F Lower 

11.95 1440.51 10.05 259.85 -40.89 Low R Lower 

18.62 1966.45 6.09 323.01 -26.73 Low FR Lower 

45.15 4411.17 14.12 6.32 -34.58 Moderate F Lower 

14.46 798.87 10.10 349.97 -32.62 Low F Lower 

32.03 1867.90 10.80 270.29 13.14 Moderate R Upper 

17.79 2027.18 8.72 42.12 -9.94 Low FL Lower 

54.41 5313.76 17.19 140.53 11.24 Moderate BL Upper 

20.08 1432.36 11.36 346.56 -8.37 Low F Lower 

241.79 1600.29 13.13 14.87 -33.13 Very Severe F Lower 

11.10 1931.41 13.69 281.65 7.39 Low R Upper 

19.66 1584.85 15.04 321.52 -35.52 Low FR Lower 

25.75 2389.61 14.23 274.32 0.37 Low R Upper 

25.13 1598.21 19.49 53.05 -24.73 Low FL Lower 

11.49 1800.61 10.28 81.75 10.92 Low L Upper 

31.05 1983.57 11.16 51.68 -26.49 Moderate FL Lower 
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Boxing Sparring Sessions 
Fighter 10 Session 1 

 
Fighter 

10 - 

Session 
1 

 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

11.54 1334.34 12.22 49.42 -4.08 Low FL Lower 

28.22 2746.04 11.79 74.76 -5.80 Low L Lower 

14.64 6365.88 13.35 290.94 12.63 Low R Upper 

11.20 3704.67 9.03 186.60 59.30 Low B Top 

27.07 3298.46 17.71 279.95 2.76 Low R Upper 

22.21 11151.88 17.06 56.85 -18.01 Low FL Lower 

11.59 1447.07 15.73 275.39 -13.60 Low R Lower 

15.52 2886.57 20.25 266.29 57.10 Low R Top 

13.65 4272.88 17.14 64.57 -0.32 Low FL Lower 

11.97 5003.24 17.31 14.34 5.66 Low F Upper 

19.21 7792.05 13.18 2.68 -34.77 Low F Lower 

10.59 4001.45 12.12 287.14 -11.83 Low R Lower 

20.91 6891.48 15.44 340.73 -8.59 Low F Lower 

20.12 13045.94 27.30 357.90 -47.99 Low F Neck 

19.98 12163.29 28.25 5.97 -49.72 Low F Neck 

33.60 22443.84 31.07 338.77 -78.11 Moderate F Neck 

22.78 12913.65 20.14 275.41 -44.15 Low R Lower 

13.59 2112.99 23.20 282.85 10.87 Low R Upper 

12.10 9655.72 23.40 10.92 -58.09 Low F Neck 

26.26 6760.50 25.77 273.91 15.59 Low R Upper 

10.34 4446.31 13.24 352.78 -38.61 Low F Lower 

18.21 5370.63 16.82 283.55 0.28 Low R Upper 

13.63 2366.54 9.63 357.12 -28.07 Low F Lower 

16.18 6658.83 18.89 311.26 -48.40 Low FR Neck 

13.41 2358.45 15.76 238.27 -3.99 Low BR Lower 

28.89 5523.19 23.36 284.47 -7.51 Low R Lower 

18.91 2032.77 10.31 66.46 -2.31 Low FL Lower 

16.20 2530.68 11.91 264.72 11.19 Low R Upper 

13.94 10171.14 25.26 357.34 -61.00 Low F Neck 

26.73 17122.39 27.37 356.48 -67.08 Low F Neck 
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Session 2 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Fighter 

10 - 
Session 

2 

 

 
 

 

 
 

 

 
 

 

 

 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

21.69 3285.18 32.00 264.62 11.52 Low R Upper 

12.52 4089.98 13.39 268.78 8.89 Low R Upper 

16.19 4520.91 10.76 281.59 -22.28 Low R Lower 

22.86 11093.61 29.15 25.86 -52.94 Low FL Neck 

21.01 2741.26 13.84 76.43 -11.04 Low L Lower 

26.89 12473.84 34.51 357.31 67.13 Low F Top 

12.08 2418.77 15.33 68.67 -9.11 Low L Lower 

13.14 2595.52 10.14 212.44 59.65 Low BR Top 

17.10 2656.95 28.03 271.91 -7.74 Low R Lower 

10.44 2219.81 10.88 341.58 -36.20 Low F Lower 

20.60 4394.56 12.29 96.94 3.61 Low L Upper 

51.98 6097.87 36.75 263.40 12.52 Moderate R Upper 

18.94 3061.03 18.59 285.63 -14.01 Low R Lower 

11.93 4221.77 14.56 63.48 -10.83 Low FL Lower 

14.17 3510.66 18.86 289.58 -14.16 Low R Lower 

19.99 5933.80 18.48 263.93 20.27 Low R Upper 

19.57 2875.07 19.93 48.62 -13.92 Low FL Lower 

13.75 7128.64 10.65 15.44 -59.37 Low F Neck 

12.63 5817.83 28.17 130.62 -26.49 Low BL Lower 

44.94 4493.27 26.37 274.72 8.08 Moderate R Upper 

20.13 2247.89 24.75 61.38 -4.09 Low FL Lower 

11.07 5152.62 19.15 316.42 69.20 Low FR Top 

16.02 2373.12 12.37 284.30 32.27 Low R Upper 

22.39 2323.39 16.57 271.62 -0.82 Low R Lower 

11.12 1423.93 10.10 277.81 -10.85 Low R Lower 

31.92 2756.85 11.13 271.54 6.58 Moderate R Upper 

20.93 2309.38 13.21 69.59 -4.87 Low L Lower 

40.75 10236.85 30.26 289.62 5.43 Moderate R Upper 

14.62 2239.49 20.76 254.02 -7.22 Low R Lower 

15.52 3187.65 11.68 125.27 11.65 Low BL Upper 
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34.36 22611.90 26.60 297.81 -29.13 Moderate FR Lower 

12.36 1422.32 14.33 276.56 -0.57 Low R Lower 

12.77 3105.99 10.59 67.29 -0.36 Low FL Lower 

12.40 2831.90 18.81 84.92 -60.71 Low L Neck 

37.67 20677.46 48.25 357.24 -49.30 Moderate F Neck 

15.28 1793.63 17.69 268.07 1.94 Low R Upper 
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Session 3 

 

 

 
 

 

 
 

 

 
 

 

 

 
Fighter 

10 - 

Session 
3 

 

 

 
 

 

 
 

 

 
 

 

 

 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

10.67 2594.85 12.03 29.59 -31.23 Low FL Lower 

10.60 1429.23 14.75 288.79 -4.85 Low R Lower 

17.46 2805.09 11.61 297.33 16.00 Low FR Upper 

13.03 3621.67 15.63 275.75 -24.02 Low R Lower 

32.14 6837.07 35.07 265.72 0.70 Moderate R Upper 

13.85 8219.58 25.00 31.35 -40.52 Low FL Lower 

10.79 2004.24 19.35 276.15 -7.37 Low R Lower 

11.09 1157.00 15.13 256.10 5.83 Low R Upper 

12.07 7203.83 20.57 347.66 -64.62 Low F Neck 

10.13 2516.86 15.49 32.53 -27.41 Low FL Lower 

11.68 7720.05 22.55 347.12 -69.03 Low F Neck 

23.87 10052.77 19.55 224.78 73.05 Low BR Top 

20.47 2570.13 18.16 45.76 -7.01 Low FL Lower 

10.22 7517.59 14.49 357.95 -37.75 Low F Lower 

12.90 2604.80 10.40 51.03 -15.62 Low FL Lower 

13.71 5206.67 21.40 38.56 -26.13 Low FL Lower 

19.44 1886.67 11.24 251.27 9.82 Low R Upper 

10.30 7239.28 15.83 330.80 -59.43 Low FR Neck 

31.33 3593.56 21.08 284.40 3.43 Moderate R Upper 

59.62 41398.47 72.78 317.62 -54.80 Moderate FR Neck 

20.36 3185.71 32.43 57.39 -9.94 Low FL Lower 

10.03 4191.06 16.51 348.00 -43.49 Low F Lower 

22.08 2840.57 15.76 58.29 -16.18 Low FL Lower 

10.32 5236.91 19.11 339.56 1.49 Low F Upper 

10.39 5330.68 13.98 7.83 -35.59 Low F Lower 

27.21 3344.70 19.10 276.30 0.59 Low R Upper 

24.95 6753.20 13.40 290.84 -16.21 Low R Lower 

19.06 2352.85 15.54 265.17 -10.84 Low R Lower 

10.62 6287.61 18.08 321.79 -12.34 Low FR Lower 

18.74 2310.93 10.20 250.97 16.08 Low R Upper 
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11.94 1030.84 8.14 265.22 6.26 Low R Upper 

11.76 4550.52 11.07 342.60 32.48 Low F Upper 

15.63 9552.70 11.82 341.36 -70.73 Low F Neck 

13.97 2759.13 13.11 33.79 82.31 Low FL Top 

14.25 11138.26 15.11 331.81 -41.40 Low FR Lower 

11.57 2424.09 12.97 292.66 -14.16 Low FR Lower 

 

Session 4 

 
 

 

 

 
 

 

 
 

 

 
 

 

Fighter 

10 - 
Session 

4 

 
 

 

 

 
 

Max Result Linear Accel (g) Max Result Rotational Accel (rads/s2) Max Result Rot Vel (rads/s) Rot Angle (°) Elev Angle (°) Impact Sector Elev 

15.83 1639.07 14.06 262.40 -42.56 Low R Lower 

20.84 3484.47 19.21 43.42 -21.85 Low FL Lower 

25.12 2805.32 15.51 346.79 -8.38 Low F Lower 

13.61 2047.59 14.23 343.44 -10.54 Low F Lower 

20.45 2676.45 19.59 352.58 -13.19 Low F Lower 

82.22 8686.76 23.05 341.05 -43.49 Serious F Lower 

51.83 5471.97 21.67 100.23 -0.92 Moderate L Lower 

55.20 4824.69 22.96 5.83 -43.35 Moderate F Lower 

30.21 2626.58 20.21 66.90 -14.50 Moderate FL Lower 

39.99 5790.75 36.97 8.95 -13.89 Moderate F Lower 

52.45 5626.52 23.56 359.91 -18.70 Moderate F Lower 

18.48 2868.81 9.73 349.14 -8.05 Low F Lower 

53.21 5551.31 24.20 345.83 -42.73 Moderate F Lower 

108.58 9994.08 21.32 338.20 -46.91 Very Serious F Neck 

97.14 10634.80 27.25 347.40 -43.31 Very Serious F Lower 

39.00 4873.39 21.92 31.12 -29.02 Moderate FL Lower 

336.29 37580.16 57.00 327.20 -37.35 Very Severe FR Lower 

187.08 9828.00 15.37 251.65 0.12 Very Severe R Upper 

43.32 4630.38 15.26 347.24 -28.34 Moderate F Lower 

225.64 22761.69 52.63 356.17 -41.95 Very Severe F Lower 

43.36 3499.76 14.31 95.53 -9.86 Moderate L Lower 

14.80 1957.16 13.78 337.95 -24.12 Low F Lower 

218.65 22145.83 38.97 358.30 -42.41 Very Severe F Lower 

33.17 3103.19 15.89 338.07 -25.25 Moderate F Lower 
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29.42 3858.51 25.76 23.98 -30.62 Low FL Lower 

22.02 2930.56 15.38 80.88 -3.44 Low L Lower 

28.36 2863.83 21.12 44.45 -23.95 Low FL Lower 

11.60 1425.07 13.17 297.38 -7.86 Low FR Lower 

62.18 7291.52 20.34 5.36 -38.95 Serious F Lower 

35.04 4891.04 13.87 262.02 16.51 Moderate R Upper 

45.23 5138.20 20.05 246.72 -1.48 Moderate BR Lower 

10.63 1438.58 14.19 9.33 -16.38 Low F Lower 

46.38 5184.73 15.29 316.84 -34.84 Moderate FR Lower 

92.76 10753.55 30.04 5.95 -52.21 Very Serious F Neck 
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Appendix 5  

Simulation Data – Competitive Bouts 
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Appendix 6 

Simulation Data – MMA Sparring Sessions/MMA Training/Boxing Sparring 
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Appendix 7  

Linear Relationships 

The following tables report the R2 values for all kinematic variables when plotted against 

strain in each of the regions of interest. Also reported is the R2 values for strains against 

HIP. Appendix 8 reports all the graphs from which these values were found. There are 3 

data sets being examined; mTBI cases, no injury cases and combined.  

Linear Acceleration 

  

Region v Measured Acceleration 

Linear 

TBI 

Cases 

No Injury 

Cases 

All 

Cases 

CC Max v Peak Resultant Linear Acceleration 0.2595 0.0573 0.143 

CC Max v Peak Linear Acceleration X 0.0617 0.0432 0.0548 

CC Max v Peak Linear Acceleration Y 0.7175 0.0436 0.3146 

CC Max v Peak Linear Acceleration Z 0.0991 0.0731 0.0808 

CC Mean v Peak Resultant Linear Acceleration 0.2819 0.0807 0.1704 

CC Mean v Peak Linear Acceleration X 0.0751 0.0586 0.0702 

CC Mean v Peak Linear Acceleration Y 0.7103 0.0585 0.341 

CC Mean v Peak Linear Acceleration Z 0.116 0.0957 0.0989 

Thalamus Max v Peak Resultant Linear Acceleration 0.274 0.0714 0.159 

Thalamus Max v Peak Linear Acceleration X 0.0712 0.0551 0.066 

Thalamus Max v Peak Linear Acceleration Y 0.7132 0.0553 0.3262 

Thalamus Max v Peak Linear Acceleration Z 0.1102 0.085 0.0917 

Thalamus Mean v Peak Resultant Linear Acceleration 0.2729 0.1037 0.1811 

Thalamus Mean v Peak Linear Acceleration X 0.0709 0.0844 0.0819 

Thalamus Mean v Peak Linear Acceleration Y 0.6855 0.0736 0.3424 

Thalamus Mean v Peak Linear Acceleration Z 0.1107 0.1232 0.1078 

Midbrain Max v Peak Resultant Linear Acceleration 0.5163 0.1221 0.3042 

Midbrain Max v Peak Linear Acceleration X 0.2653 0.0725 0.161 

Midbrain Max v Peak Linear Acceleration Y 0.7761 0.0743 0.4351 

Midbrain Max v Peak Linear Acceleration Z 0.2893 0.1841 0.2233 

Midbrain Mean v Peak Resultant Linear Acceleration 0.6176 0.1026 0.329 

Midbrain Mean v Peak Linear Acceleration X 0.3858 0.0503 0.1874 

Midbrain Mean v Peak Linear Acceleration Y 0.6707 0.0348 0.3469 

Midbrain Mean v Peak Linear Acceleration Z 0.4064 0.17 0.2737 

Brain Stem Max v Peak Resultant Linear Acceleration 0.4721 0.2849 0.3715 

Brain Stem Max v Peak Linear Acceleration X 0.2158 0.1854 0.1945 

Brain Stem Max v Peak Linear Acceleration Y 0.7996 0.0914 0.4954 

Brain Stem Max v Peak Linear Acceleration Z 0.2491 0.3637 0.2561 

Brain Stem Mean v Peak Resultant Linear Acceleration 0.4965 0.2617 0.3747 

Brain Stem Mean v Peak Linear Acceleration X 0.2411 0.1711 0.2029 

Brain Stem Mean v Peak Linear Acceleration Y 0.7929 0.102 0.493 

Brain Stem Mean v Peak Linear Acceleration Z 0.2682 0.3406 0.2638 
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Rotational Acceleration 

Region v Measured Acceleration 

Rotational 

TBI 

Cases 

No Injury 

Cases 

All 

Cases 

CC Max v Peak Resultant Rotational Acceleration 0.1074 0.2316 0.1427 

CC Max v Peak Rotational Acceleration X 0.1875 0.1389 0.0933 

CC Max v Peak Rotational Acceleration Y 0.0473 0.092 0.0692 

CC Max v Peak Rotational Acceleration Z 0.5663 0.14 0.3195 

CC Mean v Peak Resultant Rotational Acceleration 0.25 0.1309 0.1627 

CC Mean v Peak Rotational Acceleration X 0.1857 0.1552 0.0963 

CC Mean v Peak Rotational Acceleration Y 0.0521 0.115 0.0813 

CC Mean v Peak Rotational Acceleration Z 0.5915 0.1699 0.3577 

Thalamus Max v Peak Resultant Rotational Acceleration 0.2268 0.1045 0.1392 

Thalamus Max v Peak Rotational Acceleration X 0.1821 0.1346 0.09 

Thalamus Max v Peak Rotational Acceleration Y 0.0414 0.0939 0.0667 

Thalamus Max v Peak Rotational Acceleration Z 0.5874 0.1363 0.3242 

Thalamus Mean v Peak Resultant Rotational Acceleration 0.2764 0.1638 0.1923 

Thalamus Mean v Peak Rotational Acceleration X 0.1927 0.1845 0.1137 

Thalamus Mean v Peak Rotational Acceleration Y 0.065 0.1565 0.1075 

Thalamus Mean v Peak Rotational Acceleration Z 0.6031 0.1817 0.3682 

Midbrain Max v Peak Resultant Rotational Acceleration 0.1949 0.4787 0.2866 

Midbrain Max v Peak Rotational Acceleration X 0.2901 0.4434 0.2042 

Midbrain Max v Peak Rotational Acceleration Y 0.007 0.4228 0.119 

Midbrain Max v Peak Rotational Acceleration Z 0.87 0.5223 0.6992 

Midbrain Mean v Peak Resultant Rotational Acceleration 0.1783 0.4127 0.2559 

Midbrain Mean v Peak Rotational Acceleration X 0.2253 0.3299 0.1522 

Midbrain Mean v Peak Rotational Acceleration Y 0.0014 0.3529 0.0906 

Midbrain Mean v Peak Rotational Acceleration Z 0.9035 0.5423 0.7245 

Brain Stem Max v Peak Resultant Rotational Acceleration 0.2199 0.3277 0.2142 

Brain Stem Max v Peak Rotational Acceleration X 0.2796 0.2166 0.0932 

Brain Stem Max v Peak Rotational Acceleration Y 0.0173 0.3586 0.0991 

Brain Stem Max v Peak Rotational Acceleration Z 0.806 0.531 0.6659 

Brain Stem Mean v Peak Resultant Rotational Acceleration 0.2166 0.4148 0.2497 

Brain Stem Mean v Peak Rotational Acceleration X 0.3024 0.3028 0.1301 

Brain Stem Mean v Peak Rotational Acceleration Y 0.014 0.4292 0.1145 

Brain Stem Mean v Peak Rotational Acceleration Z 0.8472 0.5679 0.7053 

CC Max v Peak Rotational Velocity 0.0239 0.3475 0.166 

CC Mean Adjacent v Peak Rotational Velocity 0.0309 0.4007 0.1896 

Thalamus Max v Peak Rotational Velocity 0.024 0.3437 0.1646 

Thalamus Mean Adjacent v Peak Rotational Velocity 0.041 0.3961 0.1999 

Midbrain Max v Peak Rotational Velocity 0.012 0.6891 0.2238 

Midbrain Mean Adjacent v Peak Rotational Velocity 0.018 0.7702 0.2652 

Brain Stem Max v Peak Rotational Velocity 0.0171 0.7715 0.2075 

Brain Stem Mean Adjacent v Peak Rotational Velocity 0.0164 0.7753 0.2185 

 

Region compared with HIP 
TBI 

Cases 

No Injury 

Cases 

All 

Cases 

CC Max 0.2427 0.3345 0.2834 

CC Mean Adjacent 0.2744 0.3847 0.3262 

Thalamus Max 0.2635 0.3469 0.3003 

Thalamus Mean Adjacent0. 0.2865 0.4008 0.3383 

Midbrain Max 0..4482 0.6008 0.5245 

Midbrain Mean Adjacent 0.5808 0.6123 0.6087 

Brain Stem Max 0.4025 0.7209 0.5409 

Brain Stem Mean Adjacent 0.4266 0.7714 0.5562 
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Appendix 8 

Graphs of Accelerations/Velocities against strain in brain regions 
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Appendix 9 

Graphs of HIP against Strain 
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