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Abstract

Sequencing the first human genome in 2003 took 15 years and cost $2.7 billion.

Advances in sequencing technologies have since decreased costs to the point

where it is now feasible to resequence a whole human genome for $1000 in a

single day. These advances have allowed the generation of huge volumes of high-

quality human sequence data used to construct increasingly large catalogs of

both population-level and disease-causing variation. The existence of such

databases, coupled with a high-quality human reference genome, means we are

able to interrogate and annotate all types of genetic variation and identify

pathogenic variants for many diseases. Increasingly, sequencing-based

approaches are being used to elucidate the underlying genetic cause of

autoimmune diseases, a group of roughly 80 polygenic diseases characterized by

abnormal immune responses where healthy tissue is attacked. Although sequence

data generation has become routine and affordable, significant challenges remain

with no gold-standard methodology to identify pathogenic variants currently

available. This review examines the latest methodologies used to identify

pathogenic variants in autoimmune diseases and considers available sequencing

options and subsequent bioinformatic methodologies and strategies. The

development of reliable and robust sequencing and analytic workflows to detect

pathogenic variants is critical to realize the potential of precision medicine

programs where patient variant information is used to inform clinical practice.

INTRODUCTION

Autoimmune diseases are a group of roughly 80 polygenic

diseases characterized by aberrant immune responses where

healthy tissues, organs and cells are attacked. This is caused by

the failure of immune systems to respond appropriately to

self-antigens and results in damage to tissues and organs.

Autoimmune diseases are a heterogenous group of diseases

with regard to pathogenicity, heritability and prevalence, and

currently few effective therapies exist.1 Some of the most

common autoimmune diseases are rheumatoid arthritis, type

1 diabetes (T1D), inflammatory bowel syndrome, systemic

lupus erythematosus (SLE) and Sj€ogren’s syndrome.

Autoimmune diseases represent a global health burden

with an estimated occurrence rate of 4.5%, and

disproportionately affect females at a rate of 6.4%

compared with 2.7% for males.1 Prevalence rates of

autoimmune diseases are rising, with a recent report

from the British Society for Immunology estimating

disease incidence growth at a rate of 3%–9% annually.2

Prevalence of autoimmune diseases varies according to a

wide variety of environmental and genetic factors;

however, the influence of such factors varies considerably

across the family of autoimmune diseases. Gender is a

significant factor in some systemic conditions such as

SLE and Sj€ogren’s syndrome with 90% of cases occurring

in females, whereas T1D and Guillain–Barr�e syndrome

exhibit no gender bias.3 Geography also plays a role with

an estimated 1 in 12 people being affected by an

autoimmune disease in the Western Hemisphere,4 a
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higher estimate than the rest of the world. A smaller

study found that individuals in Finland have six times

higher rates of T1D compared with individuals from the

adjacent Karelian republic of Russia despite sharing the

same genetic background.5 Ethnicity also plays a major

role in many autoimmune diseases with significant

differences observed with regard to incidence rates and

disease severity.6 For example, African Americans are five

to nine times more likely to develop SLE than European

Americans and typically develop more severe SLE which

exhibits a greater number of manifestations and is more

damaging.7 However, other autoimmune diseases are

more prevalent in Northern Europeans, as they are more

susceptible to T1D than ethnic Chinese.8 Little is known

regarding the underlying mechanisms for the observed

disparities between ethnicities; however, differences in

human leukocyte antigen (HLA) regions are thought to

contribute.6

Although environmental factors are known to

contribute to autoimmune diseases, genetic factors are

increasingly recognized to play a key role.9 Many types of

autoimmune diseases such as inflammatory bowel

syndrome10 and SLE11 show familial clustering, and

subsequent twin studies also exhibit high concordance

rates among monozygotic twins.12 Heritability estimates

vary across autoimmune diseases, with a recent study of

pediatric age autoimmune cohorts estimating 86%

heritability for T1D at the high end compared with 43%

for Crohn’s disease at the low end.4 The high estimated

heritability and early successes in identifying pathogenic

variants from patient sequence data13 have led to

increasingly large genetic studies being undertaken. These

studies continue to link new genes to monogenic

autoimmune disorders, with the latest Inborn Errors of

Immunity report documenting 430 known defects, a gain

of 64 additional gene defects in the last 2 years alone.14

Early work to elucidate the underlying contribution of

genetic variation to autoimmune diseases focused on

increasingly large genome-wide association studies

(GWASs). GWASs successfully identified numerous risk

loci, and a review identified 819 unique loci across 136

separate GWASs.6 Although successful, GWAS was only

able to account for a small portion of the estimated

heritability in autoimmune diseases, meaning most

heritability remained unexplained. A possible explanation

for the missing heritability arises from a limitation of

GWAS, as it only examines common single-nucleotide

variants (SNVs). The advent of cheap sequencing allows

other variation types to be interrogated, with results

showing significant contribution to autoimmune diseases

from rare SNVs,15,16 indels,17 somatic mosaicism18 and

structural and copy number variation.19 In addition,

immune system–specific applications such as the

sequencing of HLA regions,20,21 T-cell receptors (TCR)18,22

and B-cell receptors (BCR)23 have helped to better

understand their unique role in autoimmune diseases.

Autoimmune diseases are also variable in response to

treatment and increasingly these differences are being

attributed to genetic variation.24 Individual patient

sequencing can help inform clinical practice, yet this

requires increasingly sophisticated bioinformatics software

and methodologies to reliably detect pathogenic variants.

This review focuses on the sequencing options and

bioinformatics methodologies currently used to discover

pathogenic variants that drive autoimmune diseases.

While sequence data generation is now routine, strategies

to effectively reduce the search space for pathogenic

variants are critical to the development of successful

personalized medicine programs for autoimmune diseases.

SEQUENCING OPTIONS

There is a wide variety of affordable high-throughput

sequencing technologies available to help identify variants

contributing to autoimmune diseases (Table 1).

Sequencing options for Mendelian disorders are

numerous and the most common approach is short-read

DNA-based methods that sequence either custom gene

panels, exomes or whole genomes. Gene panel sequencing

yields high-depth coverage across preselected genes of

interest by performing an initial capture step. However,

such approaches are limited as they presume an existing

knowledge of disease-implicated genes and limit novel

discoveries. Exome sequencing can capture over 95% of

all exons and splice site regions across all known genes

and is an extremely popular option, costing roughly one-

third of the cost of genome sequencing. The disadvantage

of exome sequencing is the inability to identify most

noncoding variants and the failure to reliably detect types

of variation larger than SNVs and small indels. Whole-

genome sequencing offers the most comprehensive and

unbiased view across all variation types; however, the

associated cost with this method is the highest among

available methods.

All high-throughput sequencing options generate large

volumes of raw data that make pathogenic variant

detection identification challenging. Additional options to

reduce the variant search space are often deployed

alongside short-read DNA-based methods. These include

sequencing patient RNA, adding unique molecular

identifiers (UMIs) to individual molecules, employing

single-cell technologies to detect somatic and immune

system subset–specific variation and utilizing long-read

technologies such as Oxford Nanopore or PacBio.

UMI sequencing is commonly used to sequence

heterogenous cell populations containing mixtures of
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both wild-type and disease-causing cells. The technology

works by affixing a UMI to each individual input DNA

molecule, often prior to PCR amplification. After

sequencing, the software deconvolutes the UMIs and

reads sharing UMIs are pooled together for analysis, with

each group representing an individual input DNA

molecule.25 UMI sequencing is often combined with

single-cell omics technologies, which are able to analyze

large numbers of individual cells simultaneously. Single-

cell technologies are changing our understanding of

immunology by allowing us to examine many aspects of

the immune system subsets in great detail, including their

inherent variation.26 For example, a recent study

identified lymphoma driver mutations in a specific cell

lineage that was producing pathogenic autoantibodies.18

RNA sequencing is increasingly employed in tandem

with DNA sequencing to identify potential noncoding

pathogenic variants. The functional information provided

by RNA sequencing identifies dysregulated genes, many

of which result from genetic changes, which allows the

closer examination of the small number of candidate

genes of interest. A recent study increased diagnostic

rates by 35% relative to genome sequencing alone by

identifying pathogenic variants responsible for exon

skipping, exon expansion and intronic splice gains.27

With RNA sequencing, it is critical to only sequence

disease-specific tissue and to only compare samples across

identical tissue types. This is not possible for all diseases,

which limits its widespread applicability.

Long-read sequencing is increasingly recognized as a

valuable tool to resolve larger complex genetic variants

such as repeat expansions, copy number and structural

variation and also for sequencing the TCR/BCR and HLA

regions. While pathogenic variation detection using long-

read sequencing has been most successful in cancer and

neurological disorders detection thus far,28 researchers are

now applying this approach in autoimmune diseases.

Long-read sequencing may also be used in pseudogene

discrimination, with a recent study developing a

robust diagnostic application that is able to

unambiguously sequence three autoimmune diseases

genes (IKBKG, IRAK4 and MYD88) while bypassing the

IKBKGP1 pseudogene.29 Currently, the major issues that

prevent the uptake of long-read sequencing are the

increased per-base cost and the higher error rates relative

to short-read sequencing. However, both cost and error

rates are continually improving.

Several sequencing applications are specific to the

immune system. Deep sequencing of the HLA, TCR and

BCR regions is now possible, with variation in these

regions implicated in causing autoimmune diseases.18,20,21

Although it is possible to identify HLA, TCR and BCR

sequence using standard approaches, these applications

yield better results with additional capture steps and

bespoke software. For example, resolving HLA types is

challenging using standard approaches because of low

HLA sequence coverage and the incomplete

representation of the HLA region in the human reference

genome, resulting from its highly polymorphic nature. As

such, many companies now offer deep sequencing of the

HLA region by providing specific capture assays able to

yield high-resolution phased HLA sequences. Similarly,

deep-sequencing TCR and BCR clonotypes require

additional steps including target enrichment, multiplex

PCR or molecular tagging prior to sequencing. TCR/BCR

sequencing is further confounded as a result of the full-

Table 1. Sample of sequencing options available for variant detection in autoimmune diseases

Sequencing type Detectable variation Advantages Limitations

GWAS Loci on GWAS chip Cheap/large studies possible Only common SNVs

Whole genome All variant types: coding and noncoding All variant types detectable Expensive relative to targeted

approaches

Exome SNV and small indel in coding regions Capture most coding regions No noncoding or large variation

Gene panel SNV and small indel in panel genes High-depth coverage for panel genes Nothing novel is detectable

Molecular

tagging

Somatic and cell subset–specific variants Analyze individual input molecules Additional library

preparation / custom software

Single cell Somatic and cell subset–specific variants Analyze individual cells Additional library

preparation / custom software

HLA typing HLA genotypes High-resolution phased HLA genotypes Immune system specific

BCR B-cell clonotypes Construct and observe changes in BCR Immune system specific

TCR T-cell clonotypes Construct and observe changes in TCR Immune system specific

Transcriptome Aberrant splicing/gene fusions/coding SNV Observe effect of variants on genes Miss rare transcripts/added expense

Long reads All variant types: coding and noncoding Resolve large variants/full gene transcripts Higher error rate and higher

per-base cost

BCR, B-cell receptor; GWAS, genome-wide association study; HLA, human leukocyte antigen; SNV, single-nucleotide variant; TCR, T-cell

receptor.
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length V(D)J chain being 330 bp; this is longer than

individual short reads and thus requires custom software

to accurately reconstruct B- and T-cell clonotypes.

SAMPLE SELECTION STRATEGIES

In addition to sequencing options, careful patient sample

selection has been shown to increase the success rates in

pathogenic variant identification. While sample selection

is not always an option, studies have shown that for

singleton samples it is optimal to focus on early onset

cases with extreme phenotypes and a clearly defined

clinical phenotype.30 These strategies have been used to

identify a growing number of pathogenic variants in

singleton samples which are deposited into clinical

repositories that serve to link patient data from around

the world. Searching across samples is a powerful

approach, with a recent study describing a new immune

dysregulation resulting from the linking of two singleton

studies from unrelated cohorts in Australia and Japan.31

Compared with singleton sequencing, the most

effective method for detecting pathogenic variants is

sequencing multiple individuals within a family or

pedigree. Sequencing a pedigree generates family-wide

variant information, such as disease inheritance pattern,

compound heterozygosity and genome phasing, later used

for additional variant prioritization.32 Another immediate

benefit of this approach is the ability to catalog familial

variation, often incorrectly assumed to be pathogenic

because of its absence in databases of population-level

variation. The greatest successes with pedigree sequencing

come from sequencing trios, which consist of an affected

child and unaffected parents. In such cases, it is likely the

causal variant will be a de novo mutation in the affected

child, which serves to greatly reduce the variant search

space. This approach is also informative, with larger

pedigrees exhibiting complex inheritance patterns, as

variants shared between affected individuals are

prioritized and variants shared with unaffected family

members are deprioritized. Collectively, these sample

selection strategies are able to greatly reduce the causal

variant search space.

VARIANT DETECTION WORKFLOW

A typical variant detection analysis workflow consists of

six major analysis steps: data quality control/adapter

trimming, read alignment, alignment file preprocessing,

variant detection, variant annotation and variant

prioritization. The early workflow steps generally require

more computation time and work with larger data sets,

whereas the later workflow steps require more domain-

specific analyses and offer a greater variety of software

choices (Figure 1).

Figure 1. Variant detection workflow. SNV, single-nucleotide variant.
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While there is currently no accepted end-to-end gold-

standard methodology for identifying pathogenic variants,

analysis steps leading to the generation of variant calls

have become relatively standardized. By contrast, variant

annotation and prioritization are specific to individual

variant detection workflows and often contain analysis

steps specific to the disease being studied. A sample of

common open-source software packages for each

workflow step is listed in Table 2.

The first analysis step is sequence data quality control

and adapter trimming. Trimmomatic33 is a popular tool

used for this purpose, which identifies and removes

adapter sequence, trims low-quality bases from the end of

reads and removes reads with a high total fraction of

low-quality bases using a sliding window approach.

Following data quality control, reads are aligned to the

gold-standard reference human genome GRCh38.p13

using a short-read aligner such as Burrows-Wheeler

Aligner (BWA).34 BWA first constructs an index of the

reference genome and aligns individual reads to the index

by anchoring small seed subsequences that allow base

mismatches and gaps to account for sequencing errors.

Local read alignments are expanded as far as possible

around each matching seed and the highest scoring

alignment is selected. Aligners output a compressed

alignment file in binary alignment map (BAM) format

which is then optimized for variant calling. This consists

of marking potential duplicate reads, realigning reads

around candidate indels to account for local

misalignments and recalculating the base qualities to

account for systematic errors made by the sequencing

machine during the estimation of base call accuracies.

The processed BAM file is used as input to the variant

calling algorithms where different types of variation are

detected relative to the human reference genome. Variant

detection algorithms aim to differentiate real genetic

variation from experimental error by employing statistical

methodologies specific to each type of variation, with the

exception being the simultaneous detection of SNVs and

small indels by algorithms such as Genome Analysis

Toolkit (GATK).35 Most variant detection algorithms

assign a variant quality score and apply a hard cut-off

when generating a list of true variants. However, an

increasingly popular approach is to perform variant

“group calling,” where variants are detected

simultaneously across a larger cohort. Group variant

calling can be used to identify missed variants that would

otherwise fall just below the quality cut-off scores because

of issues such as low base coverage or skewed allele

frequency ratios. Another increasingly common approach

shown to improve variant calling quality is to run

multiple algorithms and then take a consensus of variant

calls.39,40 This approach is particularly relevant in clinical

variant detection workflows where false-negative variants

are of the greatest concern.

Variant detection algorithms output raw variant lists in

variant call format which are filtered to remove candidate

false positives. Variants are generally filtered based on

variant context characteristics such as low-quality

alignment scores, low read depth, low-quality base scores

or variant clustering. Yet, some algorithms such as

Variant Quality Score Recalibration (VQSR) from GATK

employ a machine learning approach that uses a variant

truth set to differentiate true- and false-positive variants.

Generating raw variant lists for large sequence data sets

(such as whole genomes) requires large computational

resources and storage, typically 1000 CPU hours and 500-

GB storage. In terms of variant numbers, a genome

contains roughly 4 million SNVs, 400 000 small indels

and 100 000 copy-number variations/structural

variations. While generating these high-quality variant

calls requires significant computational resources, the

workflow is relatively standardized: the challenge is in

reducing the variant search space to identify the variants

most likely to be pathogenic. The approaches for

annotating and prioritizing variants are less standardized

Table 2. Common software options for analysis steps in variant detection workflow

Analysis step Example software URL

Data quality control/trimming Trimmomatic33 http://www.usadellab.org/cms/?page=trimmomatic

Read alignment BWA34 http://bio-bwa.sourceforge.net/

BAM preprocessing Picard https://broadinstitute.github.io/picard/

Variant calling (SNV/indel) GATK35 https://gatk.broadinstitute.org/hc/en-us

Variant calling (UMI tags) DeepSNVMiner25 https://github.com/mattmattmattmatt/DeepSNVMiner

Variant calling (structural variation/copy-number variation) Manta36 https://github.com/Illumina/manta

Variant calling (Pedigree) VASP32 https://github.com/mattmattmattmatt/VASP

Variant annotation Variant Effect Predictor37 https://ensembl.org/info/docs/tools/vep/index.html

Variant prioritization PolyPhen-238 http://genetics.bwh.harvard.edu/pph2/

SNV, single-nucleotide variant; UMI, unique molecular identifier.
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than earlier steps and often combine publicly available

software and data sets with custom code and annotations.

Collectively, software-based strategies to prioritize

pathogenic variants are combined with sequence-based

and sample selection strategies that enrich for pathogenic

variants to form the basis of a successful pathogenic

variant detection workflow (Figure 2).

The first step in variant annotation is to determine the

impact of the variant on genes or other important

genomic features. This requires a reliable gene model

such as Ensembl or RefSeq along with a variant

annotation tool such as Ensembl’s Variant Effect

Predictor.37 For SNVs, those classified as missense,

nonsense or splice sites mutations are prioritized, with

missense mutations further run through software such as

PolyPhen-2,38 which predicts the likely impact of the

amino acid substitution on protein function. These

predictive algorithms consider factors such as

evolutionary sequence conservation, protein structure and

overlap with protein features such as binding sites. While

these algorithms generally have low false-negative rates,

they suffer from high false positives, with a recent study

finding that over 50% of predicted damaging missense

mutations being functionally benign.41 For other variant

types, small indels are prioritized if they overlap genes

and cause frameshift mutations, whereas larger variants

are examined in terms of knocked out genes/exons or

potential gene fusions. Variants are also compared with

catalogs of both population-level variation (e.g. dbSNP42/

gnomAD43) and disease-specific variants (e.g. ClinVar44).

With population-level variant repositories, comparing

with ethnically matched allele frequencies is critical to

account for the often-large allele frequency differences

observed between ethnic groups. The prioritization

strategy differs depending on the nature of the data set

with variants’ overlapping entries in disease databases

taken forward while variants found to occur at high allele

frequency in the general population removed from

further consideration.

The final step in the process is amalgamating all the

information into prioritized ranked lists that contain the

variants most likely to be pathogenic. Software such as

GEMINI45 attempts to generate prioritized variant lists;

however, in general, this process is largely unsuitable for

external software because of the development of custom

in-house methodologies employed throughout the

workflow. Ultimately any successful workflow will score

true pathogenic variants highly which allows domain

experts to identify pathogenic variants through manual

interrogation of a small number of candidates.

Figure 2. Strategies to reduce the variant search space for pathogenic variants. HLA, human leukocyte antigen; TCR, T-cell receptor.
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Such workflows are increasingly forming the basis of

personalized medicine programs, such as the Centre for

Personalised Immunology in Australia or the Relent

Project in Europe. Precision medicine programs are

broader in scope than variant detection workflows and

begin with patient recruitment and culminate in the

creation of a concise clinical variant report used to

inform clinical decision making (Figure 3).

For complex diseases with heterogenous genetic causes

and confounding environmental factors, such as

autoimmune diseases, the default resultant variant lists

are often large and unsuitable for manual interrogation

and require additional custom analyses to further reduce

the variant search space. Additional measures to further

reduce the variant search space for autoimmune diseases

include immune system–specific annotation, sequencing

the HLA region and sequencing the TCR/BCR regions

(Table 3).

The most common approach in autoimmune diseases

is to annotate variants with immune system–specific
data sets such as ImmGen,54 InnateDB,55 IMSEQ,52

Immuno Polymorphism Database,56 Infevers57 and

locus-specific LOVD databases.58 These databases

contain information covering a variety of aspects of the

Figure 3. Personalized medicine workflow. SNV, single-nucleotide variant.

Table 3. Resources to reduce variant search space in autoimmune diseases

Analysis type Software/database URL

HLA sequencing HLAminer46 https://www.bcgsc.ca/resources/software/hlaminer

HLA sequencing seq2HLA47 https://bitbucket.org/sebastian_boegel/seq2hla/src/default/

HLA sequencing OptiType48 https://github.com/FRED-2/OptiType

HLA sequencing PHLAT49 https://sites.google.com/site/phlatfortype/

TCR/BCR sequencing MiXCR50 https://mixcr.readthedocs.io/en/master/

TCR/BCR sequencing VDJPuzzle51 https://github.com/simone-rizzetto/VDJPuzzle

TCR/BCR sequencing IMSEQ52 http://www.imtools.org/

BCR sequencing IgDiscover53 https://github.com/NBISweden/IgDiscover/

Annotations ImmGen54 http://www.immgen.org/

Annotations InnateDB55 http://www.innatedb.com

Annotations Immuno Polymorphism Database56 https://www.ebi.ac.uk/ipd/index.html

Annotations Centre for Personalised Immunology https://database.cpi.org.au/cpi28/

Annotations Infevers57 https://infevers.umai-montpellier.fr/web/

Annotations LOVD 2.058 http://www.lovd.nl

BCR, B-cell receptor; HLA, human leukocyte antigen; TCR, T-cell receptor.
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immune system which can be used to prioritize

pathogenic autoimmune diseases variants. For example,

ImmGen contains gene expression data for immune cells

in mouse, whereas Infevers contains information on

hereditary autoinflammatory disorder mutations.

Although such resources are useful, an overreliance on

any single data source is ill advised, as entries are often

inconsistent because of evaluations made using

incomplete functional evidence. To illustrate, a follow-

up study of 239 annotated disease-causing variants listed

in the Human Gene Mutation Database59 was only able

to recapitulate the results for 7.5% of the entries. This

lack of reproducibility highlights the importance of

working as much as possible with up-to-date resources

that are expertly curated and rigorous in their inclusion

criteria such as the Inborn Errors of Immunity report.14

Sequencing applications such as deep sequencing of the

BCR, TCR and HLA regions are unique to studies of the

immune system and require application-specific software.

While software specific to these applications is maturing,

recent benchmarking reviews of the available software for

both HLA sequencing60 and TCR sequencing61,62 report

high levels of variability in overall software performance.

Recent reviews of BCR sequencing also discuss available

software; however, individual algorithms were not

benchmarked in these studies.63,64 Both reviews stress the

importance of using the extensive IMGT database56 for

clonotype assignment and the importance of constructing

a complete catalog of all allelic variants using algorithms

such as IgDiscover.53 In the review of HLA typing

software, six algorithms were run across a “gold-

standard” data set, and found OptiType48 to be the most

accurate at 99%. However, the algorithm only detects

Class I HLA genotypes, thus limiting its clinical utility.

Among algorithms able to detect both Class I and II HLA

genotypes, PHLAT49 had the highest accuracy at 81%: it

was noted that this is likely insufficient for clinical utility,

and a consensus software approach was proposed as a

possible hybrid solution.40 In the review of TCR

sequencing software, the first study generated an in silico

data set and assessed clonotype detection, CDR3

identification, error correction and gene segment

assignment accuracy.61 This study found that not all

algorithms were able to run all four subanalyses and that

the performances varied greatly across individual

algorithms, particularly for gene assignment and error

correction. The second study performed a similar

analysis62 and concluded that no single tool performed

optimally for all types of analyses but recommended

MiXCR50 if limited to a single analysis. All review studies

note that superior results can be obtained using UMIs;

however, none of the software assessed in the previous

studies was able to incorporate this information.

Lastly, an illustrative example is described where a

novel pathogenic variant resulted in the description of a

new syndrome characterized by global immune

dysregulation. The variant was added to the Inborn

Errors of Immunity database in 2019. In this study, two

unrelated patients from Australia and Japan exhibited

similar phenotypes resulting in the destruction of

lymphocytes that lead to excessive inflammation.31 Both

patients were exome sequenced and analyzed using an

existing variant detection pipeline32 which identified a

candidate causal heterogeneous variant in the IKBKB

gene (inhibitor of nuclear factor kappa-B kinase subunit

beta). The variant was prioritized as it was novel, resulted

in a missense mutation that was predicted to be

damaging and occurred in an active site of IKBKB, a gene

which was previously implicated in causing combined

immune deficiency.65 The variant was confirmed with

Sanger sequencing to replicate the result using the

current gold-standard sequencing method. Further

evidence was provided for the Australian patient by

sequencing the unaffected parents which, following

confirmation of paternity, demonstrated that the

mutation had arisen de novo in the patient. While the

evidence was substantial, functional validation was

required using CRISPR–Cas [clustered regularly

interspaced short palindromic repeats (CRISPR)–
CRISPR-associated] technology to engineer the exact

mutation into a mouse model which generated a similar

immunodeficiency phenotype to the observed patients.

This example highlights the value of using sequencing

technologies to elucidate the underlying genetic cause of

autoimmune diseases.

FUTURE APPROACHES

This review discusses the current landscape in high-

throughput sequencing and bioinformatic workflows for

pathogenic variant detection in autoimmune diseases.

Sequence-based approaches continue to grow, with an

increasing number of precision medicine initiatives

around the world focused on autoimmune diseases.

While such initiatives are currently limited to short-read

DNA-based sequencing that use either gene panels,

exomes or whole genomes, increasingly long-read

sequencing, single-cell technologies, transcriptome

sequencing, immune profiling and molecular tagging

techniques are being incorporated. Looking beyond the

current approaches, researchers are now recognizing the

impact of the epigenome66 and the microbiome67 on

autoimmune diseases and in the future will integrate

these data types into workflows. Combining the disparate

data types will require a new generation of complex

bioinformatics software and statistical methodologies able
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to quickly and efficiently elucidate the cause of

autoimmune diseases.
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