
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 27, Num. 04 (2020) 127-138

RESEARCH ARTICLE

Iracema: a Python library for audio content analysis
Iracema: biblioteca Python para a análise de conteúdo em áudio
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Abstract: Iracema is a Python library that aims to provide models for the extraction of meaningful information
from recordings of monophonic pieces of music, for purposes of research in music performance. With this
objective in mind, we propose an architecture that will provide to users an abstraction level that simplifies the
manipulation of different kinds of time series, as well as the extraction of segments from them. In this paper we:
(1) introduce some key concepts at the core of the proposed architecture; (2) describe the current functionalities
of the package; (3) give some examples of the application programming interface; and (4) give some brief
examples of audio analysis using the system.
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Resumo: Iracema é uma biblioteca Python que visa fornecer modelos para a extração de informações de
gravações de peças musicais monofônicas, para fins de pesquisa em performance musical. Com este objetivo
em mente, nós propomos uma arquitetura que fornece aos usuários um nı́vel de abstração que simplifica
a manipulação de diferentes tipos de séries temporais, bem como a extração de segmentos destas. Nesse
paper nós: (1) introduzimos alguns conceitos essenciais do núcleo da arquitetura proposta; (2) descrevemos as
funcionalidades atuais do pacote; (3) apresentamos alguns exemplos da interface de programação do aplicativo;
e (4) oferecemos breve exemplos de análise de áudio utilizando o sistema.
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1. Introduction
Iracema is a Python package for audio content analysis aimed
at the empirical research on music performance. It aims to pro-
vide to researchers in the field of music performance analysis
tools for extracting patterns of manipulation of duration, en-
ergy, and spectral content from monophonic audio, especially
for instruments such as clarinet, flute, trumpet, and trombone.
Its development was motivated by research projects conducted
at CEGeME1, and was strongly inspired by a previous Matlab
tool developed by the group, called Expan [1], which was
not released for public use. Iracema is licensed under the
GNU General Public License v3.0, and its source code can be
freely obtained at 〈https://github.com/cegeme/iracema〉. To
obtain more detailed information about the library, like us-
age examples, more information about the feature extractors
available, library modules, and extensive documentation of
the API, check the online documentation, which is available

1〈http://musica.ufmg.br/cegeme/〉

at 〈https://cegeme.github.io/iracema〉.
Iracema uses NumPy arrays to store and manipulate data,

providing a new level of abstraction on top of such objects [2].
It also wraps some functionalities from SciPy [3] to provide a
more natural interface for audio content extraction.

1.1 Empirical study of Music Performance
People frequently choose to listen to a piece of music not
just because of the composition itself, but for the different
possibilities of rendition of the piece. Sometimes they seek
a specific interpretation by their favorite musician or band,
maybe from one particular concert or recording session. That
is a consequence of the fact that every music performance
is unique2. There is a significant amount of information in
a performance that does not depend only on the underlying
structure of the piece, but instead, on several other factors,
like individual playing style, performance traditions, the mood
of the performer, or expressive choices made by him. Other
factors are the environment where the performance took place,
the instrument played, random manipulations that might occur

https://github.com/cegeme/iracema
http://musica.ufmg.br/cegeme/
https://cegeme.github.io/iracema
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by chance, etc. In the face of such idiosyncrasies, listeners
establish their individual preferences, often favoring a specific
rendition of a piece as more compelling, for some reason, than
others. This scenario gives rise to many questions regarding
the complex process by which a performer shapes a musical
composition into its actual rendition.

Despite the fact that music performance is an intrinsic
element to nearly every culture, its empirical study is rela-
tively recent, with the seminal works dating back to the turn
of the twentieth century. As stated by 5, p. 77, “only once
methods had been developed to record either the sounds of
performance, or the actions of instruments, was any kind of
detailed [empirical] study possible — and so the piano roll,
record, magnetic tape, and computer have all played their part
at different stages in the short history of empirical studies of
performance”. Undoubtedly, the twentieth century’s techno-
logical developments progressively extended our capacity to
measure relevant information from the performance. 6, 7, 8,
and 9 provide excellent surveys on the topic that indicate the
field’s large growth in the last few decades. The availability
of new tools and technologies that enable the extraction of
information from performances have played a pivotal role in
this surge. The contributions in audio analysis by researchers
from the Music Information Retrieval community were greatly
beneficial to the field, as 9, p. 1-2 points out, even though
most of them were not motivated by the interest in conducting
research in music performance, but by other tasks, such as
retrieving information from large music databases.

Since data acquisition is a fundamental step in the study
of music performance, we believe that the continuous devel-
opment of purpose-oriented and specialized tools to extract
information from audio recordings of performances will be
of crucial importance for the research on the field. Equally
important will be the development of better techniques for
obtaining more meaningful representations of musical content,
like higher-level descriptors of musical expressiveness in the
performance, for example.

1.2 Monophonic instruments
In many musical instruments, the excitation that produces
sound happens only during a short interval at the beginning
of a note (i.e., the plucking of strings in a guitar or a hammer
hitting the strings of a piano). Contrastingly, in woodwind
and brass instruments, the player continuously feeds energy
into the system, employing high-pressure air from his lungs.
Therefore, due to the dynamic control that the player has
over the instrument’s acoustic properties, a single note will
contain over its duration a substantial amount of expressive
information, e.g., timbral manipulations or dynamic intensity
variations. It is harder to extract this kind of information from
polyphonic music signals, such as a full orchestral record-
ing, than from signals of a single source, especially when

24, p. 239 mentions that “[n]o two performances of the same work are
exactly alike, and this is often true even for repeated renditions of the same
piece.”

one cannot afford to lose any relevant expressive information
pertaining to individual instruments/performers. For example,
to analyze the timbral manipulations that a single clarinetist
performs in some specific notes on a full orchestral recording,
it would be necessary to isolate the information pertinent to
that single clarinet. This approach would probably depend
on a highly sophisticated source separation algorithm, which
would have to be absolutely precise in retrieving only the data
belonging to that clarinetist from a highly complex stream
containing all the other instruments. This level of precision is
still unfeasible, taking into account that any loss would impact
the subsequent timbral analysis.

While there are several examples of scientific works that
use polyphonic recordings as a source of investigation [10, 11,
12], for the reasons aforementioned, Iracema’s scope has been
intentionally limited to analyzing monophonic recordings3.

2. Architecture
This section will discuss some aspects of Iracema’s architec-
ture and offer an overview of the elements that compose the
main functionalities of the library.

Audio content analysis systems rely on the manipulation
of dynamic data, i.e., data that represent an attribute’s changes
over time. Thus, the time series is a fundamental element in
Iracema’s architecture. The starting point for any task per-
formed by the system is the audio time series, from which
other kinds of time-related data will be extracted. The trans-
formation of time series into other time series to obtain more
meaningful representations of the underlying audio is a com-
mon behavior of audio content analysis systems, usually called
feature extraction. The implementation of such extractors
usually depends on some recurrent types of operations, like
applying sliding windows to a series of data, for example. In
Iracema, these operations are called aggregation methods.

Sometimes it will be necessary to deal with a specific
excerpt of a time series, such as a musical phrase or a note.
Another important element in the architecture, called segment,
can be used to delimit such excerpts. A user may sometimes
label the start and end of such segments manually; however,
most of the time, users will expect the system to identify
such limits by itself, a common kind of task in audio content
extraction, known as segmentation. Since segments are delim-
ited by two points, this is another important element in the
architecture.

Some aforementioned elements, like audio, time series,
points, and segments were implemented as classes, since they
have intrinsic attributes (e.g., the samples of the time series,
and the start/end of the segments) and behavior (e.g., gen-
erating time vectors in time series or calculating indexes

3Notice that the scope is limited to monophonic recordings, but it is still
possible to study polyphonic compositions, as long as the individual voices
that constitute are recorded and analyzed separately. Although this simplifi-
cation could be questioned from the perspective of gestalt, or criticized for
relying on sonic material that lacks the context of a real performance situa-
tion, it enables a more precise investigation of attributes related to individual
instruments/performers.
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Figure 1. Diagram showing the core classes of Iracema.

in segments). Figure 1 shows those classes in a diagram.
The class Audio inherits the functionalities from Time-
Series, and add some specific behaviors (such as loading
wave files). The classes Point, Segment, PointList
and SegmentList provide a handy way to extract corre-
sponding excerpts from time series of different sampling rates,
since it performs all the necessary index conversion operations
to extract data that coincide with the same time interval.

Other elements have been implemented as methods that
take objects of those classes as input and output another ob-
ject. For example, the method fft takes as input an audio
object, a window size, and a hop size, and generates a
time series in which each sample contains all the bins of the
FFT (Fast Fourier Transform) for the interval corresponding
to hop size. Another example, the method spectral -
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Figure 2. Extracting features from an audio file.

flux will take a time series containing the result of an FFT
operation as input and generate another time series containing
the calculated spectral flux. Figure 2 shows a diagram that
illustrates the typical workflow for performing basic feature
extraction from audio files.

Segmentation methods will usually take time series
objects as input to output a list of segments (Figure 3). Then,
these segments can be used to extract excerpts from time
series objects easily (Figure 4), using square brackets (the
same operator used in Python to perform indexing/slicing
operations).
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Figure 3. Extracting segments from time series.

3. Modules and functionalities
These are the modules that compose Iracema, and their re-
spective functionalities:
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Figure 4. Using a segment to slice a time series.

◦ core.timeseries: contains the definition of the
class TimeSeries;

◦ core.audio: contains the definition of the class Au-
dio.

◦ core.segment: contains the definition of the classes
Segment and SegmentList.

◦ core.point: contains the definition of the classes
Point and PointList.

◦ spectral: contains methods for frequency domain
analysis (currently the FFT);

◦ pitch: a few different models for pitch detection.

◦ harmonics: a model for extracting harmonic compo-
nents from audio.

◦ features: contains methods with the implementa-
tion of several classic feature extractors.

◦ segmentation: methods for automatic audio seg-
mentation.

◦ plot: contains several different methods for plotting
time series data.

◦ aggregation: contains some common aggregation
methods that can be useful for implementing feature
extractors.

◦ io: subpackage containing IO methods, for loading /
writing files, playing audio, etc.

◦ util: subpackage containing some useful modules for
unit conversion, DSP, windowing operations,etc.

3.1 Core modules
Contains modules that implement the core classes of the
library. To make these classes easily available for users,
they are all already imported into the namespace iracema.
For instance, the class Audio is available in the module
iracema.core.audio, but it can be accessed using the
shorter name iracema.Audio.

3.2 Pitch detection
The module pitch contains pitch detection methods. At the
time this paper was finished, two methods had been imple-
mented, as well as an extra method that wraps a model from
an external library.

3.2.1 Harmonic Product Spectrum
Measures the maximum coincidence for harmonics, based
on successive down sampling operations on the frequency
spectrum of the signal [13]. It is based on successive down-
sampling operations on the frequency spectrum of the signal.
If the signal contains harmonic components, then it should
contain energy in the frequency positions corresponding to
the integer multiples of the fundamental frequency. So by
down-sampling the spectrum by increasing integer factors
(1,2,3, ...,R) it is possible to align the energy of its harmonic
components with the fundamental frequency of the signal.

Then the original magnitudes of the spectrum are multi-
plied by its downsampled versions. This operation will make
a strong peak appear in a position that corresponds to the
fundamental frequency. The HPS calculates the maximum
coincidence for harmonics, according to the equation:

Y (ω) =
R

∏
r=1
|X(ωr)| (1)

where X(ωr) represents one spectral frame and R is the
number of harmonics to be considered in the calculation. After
this calculation a simple peak detection algorithm is used to
obtain the fundamental frequency of the frame.

This implementation modifies this approach adding an
offset of 1 to the magnitude spectrum of the signal before ap-
plying the product shown in the equation above. This makes
the algorithm more reliable in situations where some harmon-
ics have very little or no energy at all. Also, alternatively to the
original approach, it is possible to choose between different
interpolation methods, using the argument ‘decimation’.

3.2.2 Expan Pitch
Based on the algorithm implemented in Expan [1]. The
method consists in choosing the n highest local peaks in the
spectrum of a signal (above a certain minimum relative thresh-
old) as potential candidates, and then calculating the expected
position of their theoretical harmonics. A local search for
peaks is performed around this theoretical position, within
a tolerance interval. This step is important to account for
some inharmonicity, which is quite frequent in higher har-
monic components. After performing this procedure for all
the candidates, their harmonic energies are calculated. The
candidate with the highest harmonic energy is chosen as the
pitch values.

3.2.3 CREPE
This method is based on a deep convolutional neural network
operating directly on the time-domain waveform [14]. It was
developed by the Music and Audio Research Laboratory, at
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the New York University, and is available in iracema as a
wrapper over their published Python package. It uses six
convolutional layers connected to a densely connected output
layer. The output produced by this layer is a 360-dimensional
vector, from which the pitch estimate is calculated determinis-
tically. The frequencies that correspond to the output follow a
logarithmic scale, and cover six octaves with 20-cents inter-
vals. The model was trained on two large datasets containing
synthesized audio, for which it is possible to have very precise
target annotations. The method produces excelent pitch esti-
mations (according to the authors, state-of-the-art as of 2018),
but it is highly demanding in terms of computational power
when set to its maximum capacity. Lowering the capacity of
the model (it is one of its input arguments) it is possible to
find compromise between accuracy and processing time.

3.3 Feature extractors
These are the methods available in the module features:

3.3.1 Peak Envelope
Extracts the envelope of the waveform by extracting the peaks
in the amplitude for each analysis window.

PE = max(|x(n)|),1 <= n <= L (2)

Where L is the length of the window.

3.3.2 RMS
Calculate the root-mean-square of a time-series. This is usu-
ally a better choice for extracting the envelope of an audio
signal, since it is more closely related to our perception of
intensity that the peak envelope.

RMS =

√
1
L

L

∑
n=1

x(n)2 (3)

Where x(n) is the n-th sample of a window of length L.

3.3.3 Zero-crossing
The zero crossing is a measure of how many time-series a sig-
nal crosses the zero axis in one second. It gives some insight
on the noisiness character of a sound. In noisy / unvoiced
signals, the zero-crossing rate tends to reach higher values
than in periodic / voiced signals.

ZC =
1

2L

L

∑
n=1
|sgn [x(n)]− sgn [x(n−1)]| (4)

Where

sgn [x(n)] =

{
1, x(n)≥ 0
−1, x(n)< 0

(5)

3.3.4 Spectral Flatness
Gives an estimation of the noisiness / sinusoidality of an audio
signal. It might be used to determine voiced / unvoiced parts of
a signal [15]. It is defined as the ratio between the ‘geometric
mean’ and the ‘arithmetic mean’ of the energy spectrum:

SFM = 10log10

(∏N
k=1 |X(k)|

) 1
N

1
N ∑

N
k=1 |X(k)|

 (6)

Where X(k) is the result of the FFT for the k-th frequency
bin.

3.3.5 HFC
Measures of the amount of high frequency content of a time-
series spectrum. It produces sharp peaks during attacks tran-
sients [16] and might be a good choice for detecting onsets in
percussive sounds.

HFC =
N

∑
k=1
|X(k)|2 · k (7)

Where X(k) is the result of the FFT for the k-th frequency
bin.

3.3.6 Spectral Centroid
The spectral centroid is a well known timbral feature that is
used to describe the brightness of a sound. It represents the
center of gravity of the frequency components of a signal [17].

SC =
∑

N
k=1 |X(k)| · fk

∑
N
k=1 |X(k)|

(8)

Where X(k) is the result of the FFT for the k-th frequency
bin.

3.3.7 Spectral Spread
Gives an estimation of the spread of the spectral energy around
the spectral centroid [15].

SSp =

√
∑

N
k=1 |X(k)| · ( fk−SC)2

∑
N
k=1 |X(k)|

(9)

Where X(k) is the result of the FFT for the k-th frequency
bin and SC is the spectral centroid for the frame.

3.3.8 Spectral Flux
Measures the amount of change between adjacent spectral
frames [18].

SF =
N

∑
k=1

H(|X(t,k)|− |X(t−1,k)|) (10)

Where H(x) = x+|x|
2 is the half-wave rectifier function,

and t is the temporal index of the frame.
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3.3.9 Spectral Skewness
Measures how symmetric is the distribution of the values for
the spectral magnitudes around their arithmetic mean [19].

SSk =
2 ·∑N

k=1
(
|X(k)|−µ|X |

)3

N ·σ3
|X |

(11)

Where X(k) is the result of the FFT for the k-th frequency
bin, µ|X | is the mean value of the magnitude spectrum and
σ|X | its standard deviation.

3.3.10 Spectral Kurtosis
Measures if the distribution of the spectral magnitude values
is shaped like a Gaussian distribution or not [19].

SKu =
2 ·∑N

k=1
(
|X(k)|−µ|X |

)4

N ·σ4
|X |

(12)

Where X(k) is the result of the FFT for the k− th fre-
quency bin, µ|X | is the mean value of the magnitude spectrum
and σ|X | its standard deviation.

3.3.11 Spectral Rolloff
The spectral rolloff is a measure of the bandwidth of the
spectrum [19]. It is defined as the point in the spectrum bellow
which a percentage k of the spectral energy is contained.

3.3.12 Spectral Irregularity
The spectral irregularity measures the irregularity between
consecutive FFT frames, based on the differences of amplitude
between the current FFT frame and the average between the
current, previous and next frames.

SI =
N−1

∑
k=1
|20log(X [k])− [20log(X [k−1])+

20log(X [k])+20log(X [k+1])]/3| (13)

3.3.13 Spectral Entropy
The spectral entropy is based on the concept of information
entropy from Shannon’s information theory. It measures the
unpredictability of the given state of a spectral distribution
[20].

SEpy =−
N

∑
k

P(k) · log2 P(k) (14)

Where

P(i) =
|X(i)|2

∑
N
j |X( j)|2

(15)

3.3.14 Spectral Energy
The total energy of a frame of the spectrum.

SE =
N

∑
k=1
|X(k)2| (16)

Where X(k) is the result of the FFT for the k− th fre-
quency bin.

3.3.15 Harmonic Energy
The total energy of the harmonic partials of a time-series.

HE =
H

∑
k=1

A(k)2 (17)

Where A(k) represents the amplitude of each harmonic partial.

3.3.16 Inharmonicity
Determines the divergence of the time-series spectral compo-
nents from an ideal harmonic spectrum.

Inh = k f0

√
1+λ (k2−1) (18)

Where k represents the index of the partial and λ is the
inharmonicity factor.

3.3.17 Noisiness
The ratio of the noise energy to the total energy of a signal.
Represents how noisy a signal is (values closer to 1), as op-
posed to harmonic (values close to 0) [15].

Ns =
SE−HE

SE
(19)

3.3.18 Odd-to-Even Ratio
It is the ratio between the energy of the odd and even energy
harmonics of a signal.

OER =
∑

H/2
h=1 A(2k−1)2

∑
H/2
h=1 A(2k)2

(20)

Where A(k) represents the amplitude of the k-th harmonic
partial.

3.4 Segmentation
The module segmentation contains the implementation
of methods of onset detection, and in the future will also
include methods for other segmentation tasks. The current
implemented methods are based on pitch and RMS. Other
implementations are currently under development.
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3.4.1 Adaptative RMS
This method was proposed by [21], and consists on the calcu-
lation of two RMS curves: one with a short window lenght,
and another with a large window length. These curves will
intersect each other along the audio signal, and the onsets
will tend to occur in the valleys of the interval between two
intersections, when the values for the RMS calculated with
the shorter window are smaller than the values calculated for
the other curve. So the difference between these curves can
be calculated and used as an onset detection function (ODF).
The peaks of this curve are extracted to obtain the points
corresponding to the note onsets.

3.4.2 Pitch change
This method is based on the detection of changes in the pitch
values for adjacent frames. It calculates the ratio between
adjacent frames to generate an ODF. The peaks in this curve
will correspond to instants with fast changes in pitch. It is
necessary to establish a threshold to consider a peak in the
ODF as an onset. The cons of this method are: (1) it is highly
dependent on a good pitch detection method, possibly with a
good post processing method for smoothing the pitch curve;
and (2) it usually fails to detect consecutive notes of the same
pitch.

3.4.3 Derivative of the RMS
Since note onsets usually result in energy increases in the
audio signal, the derivative of the RMS can be used to estimate
the note onsets. It can be used as the ODF, since the peaks in
this will correspond to instants of rapid variation in the energy
of the signal. This method tends to produce false negatives
in legatto phrases, since there might be little or no energy
variation in the audio signal.

4. Examples
This section introduces some basic code examples for us-
ing iracema. All the examples will assume that the package
iracema has been imported using the convention shown bel-
low.

1 import iracema as ir

Listing 1. Importing iracema

The audio files used in the next code examples can be
found in the repository iracema-audio4. The examples
will assume that the current working directory (CWD) set in
the Python interpreter contains those audio files.

4.1 Loading audio files into audio objects
Iracema uses the package audioread [22] to load audio files,
which can handle a wide range of different audio formats. This
package wraps a few different backend libraries to load the
audio files, so the supported file types will depend on which
backend the user has installed. Depending on the operating

4〈https://github.com/cegeme/iracema-audio〉

system of the computer and the format of the file to be loaded,
it might be necessary to install one of the backends listed in
the audioread website5. However, the default audio libraries
available in most contemporary operating systems will prob-
ably provide native support for reading a few uncompressed
audio formats, such as wave, aifc or sunau, and possibly for a
few compressed formats too.

To load an audio file, the user must provide a string con-
taining the location where it is stored. Iracema accepts file
system paths to load files stored locally or HTTP URLs to
download them from remote locations. The class method
ir.Audio.load() can be used to load the content of an
audio file into a newly instantiated audio object.

1 flute = ir.Audio.load(
2 ’00 - Flute - Iracema.wav’
3 )
4
5 # playing audio
6 flute.play()
7
8 # resampling audio to 16KHz
9 flute_resampled = flute.resample(16000)

10
11 # chaining methods to create a pipeline
12 flute_processed = (
13 flute.filter(
14 160, filter_type=’highpass’
15 )
16 .normalize()
17 .resample(22050)
18 )

Listing 2. This example demonstrates how to load an audio
file into an audio object, and the functionalities implemented
in some of its methods label

The example shown above loads the audio and assigns
the instantiated audio object to the variable flute (lines 1
through 3). This object is equipped with methods for things
like playing the audio, plotting its waveform, resampling and
filtering the audio, among several other functionalities.

The instance method play(), in line 6, will play the
audio on the computer that is running the Python interpreter,
using the package sounddevice [23]. However, if the code
is being executed in a Jupyter Notebook or IPython session,
iracema will display an embedded HTML audio player, which
allows users to play audio even when the kernel is running on
a remote computer.

Next, the method resample() will downsample the au-
dio to the specified sampling rate (16KHz), using the package
resampy[24], and return a new audio object. There are other
methods that return new objects of the same class. Those
methods can be chained, creating a sequential pipeline of data
processing. An example of three chained methods follows
in lines 12 through 18: filter(), normalize(), and

5〈https://github.com/beetbox/audioread〉
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resample(). The resulting audio object is attributed to the
variable flute processed.

4.2 Plotting data, extracting RMS and calculating
the FFT

The next example will demonstrate the extraction of some
features and the calculation of the FFT for an audio object.

1 clarinet = ir.Audio.load(
2 ’02 - Clarinet - Long Notes.wav’
3 )
4
5 window = 2048
6 hop = 512
7
8 clarinet_rms = ir.features.rms(
9 clarinet,

10 window,
11 hop,
12 )
13
14 clarinet.plot();
15 clarinet_rms.plot();
16
17 clarinet_fft = ir.spectral.fft(
18 clarinet,
19 window,
20 hop,
21 fft_len=4096,
22 )
23
24 ir.plot.spectrogram(
25 clarinet_fft,
26 logfft=False,
27 fftlim=(0, 10000,),
28 );

Listing 3. Extracting the RMS and plotting data

In the first lines of example shown above, a different
audio file is loaded into the variable clarinet. Then, in
lines 5 and 6, two variables are set: window and hop. Both
will be passed as arguments to feature extraction methods,
to ajust the parameters of the sliding window applied to the
audio signal. The first variable will define the length of the
sliding window, and the second the number of samples to be
skipped between successive windows. The method rms(),
from the module features, will apply a sliding window to
the clarinet object and calculate the Root Mean Square
values for each window, returning a time series with a lower
sampling frequency.

The plot() method of both objects is called in lines
14 and 15, to generate a line plot for the time series. The
resulting plots are shown in Figures 5 and 6. This method
automatically sets some basic plot parameters, such as axis
labels, legend and title, by using metadata from the audio time
series.

In lines 17 through 22 , the method fft, from the mod-
ule spectral will apply a sliding window to the signal

Figure 5. Audio waveform plotted for the object
clarinet.

and calculate the FFT for each window. It will generate the
time series object clarinet fft, which will contain mul-
tiple values per sample, one corresponding to each bin of the
FFT. Subsequently, the object will be passed to the method
ir.plot.spectrogram(), to obtain the visualization
shown in Figure 7.

4.3 Extracting pitch and harmonics
This next example will demonstrate how to extract pitch, har-
monics and a few other features from an audio signal. A
shorter audio file containing a faster passage with alternat-
ing ascending and descending melodies will be used for this
purpose.

1 clari_fast = ir.Audio.load(
2 ’03 - Clarinet - Fast Excerpt.wav’
3 )
4
5 window = 1024
6 hop = 512
7
8 clari_fast_fft = ir.spectral.fft(
9 clari_fast,

10 window,
11 hop,
12 fft_len=4096,
13 )
14
15 args = {
16 ’minf0’: 140,
17 ’maxf0’: 3000,
18 }
19
20 # extracting data
21 clari_fast_pitch = ir.pitch.expan(
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Figure 6. Plotted values for the object clarinet rms.

22 clari_fast_fft,
23 **args,
24 )
25
26 clari_fast_harm = ir.harmonics.extract(
27 clari_fast_fft,
28 clari_fast_pitch,
29 **args,
30 )
31
32 sflux = ir.features.spectral_flux(
33 clari_fast_fft
34 )
35 sflat = ir.features.spectral_flatness(
36 clari_fast_fft
37 )
38 sc = ir.features.spectral_centroid(
39 clari_fast_fft
40 )
41 no = ir.features.noisiness(
42 clari_fast_fft,
43 clari_fast_harm[’magnitude’])
44 hfc = ir.features.hfc(clari_fast_fft)
45
46 # plotting the extracted data
47 ir.plot.waveform_spectrogram_pitch(
48 clari_fast,
49 clari_fast_fft,
50 clari_fast_pitch,
51 fftlim=(0, 10000),
52 );
53 ir.plot.waveform_spectrogram_harmonics(
54 clari_fast,
55 clari_fast_fft,
56 clari_fast_pitch,
57 clari_fast_harm[’frequency’],
58 );

Figure 7. The resulting spectrogram.

59 ir.plot.waveform_trio_and_features(
60 clari_fast,
61 features=(sflux, sflat, sc, no, hfc),
62 );

Listing 4. Extracting pitch, harmonics and other features

First, the audio file is loaded and its FFT is calculated.
In lines 21 through 24, the method expan() from the mod-
ule pitch is employed to extract the pitch for the melody.
Then, to extract the harmonics of the signal, the method
extract(), from the module harmonics is used. The
method for extraction of harmonics will extract 16 harmonics
by default, but a different number could be specified, using the
optional argument nharm. Both of these methods receive the
arguments minf0 and maxf0, which represent the frequency
interval in which the methods will look for a fundamental fre-
quency.

Then, in lines 32 through 44, five different spectral fea-
tures will be calculated for the whole audio signal: spectral
flux, spectral flatness, spectral centroid, noisiness and high
frequency content (HFC).

The last lines of the example (47 through 62) contain the
methods used to plot the extracted data. The resulting plots
are shown in Figures 8, 9, 10.

4.4 Extracting onsets
This next example will demonstrate the extraction of note
onsets using a method called adaptative RMS. The same audio
excerpt from the previous example will be used.

1 onsets = ir.segmentation.onsets\
2 .adaptative_rms(
3 clari_fast,
4 min_time = 0.01,
5 display_plot = True,
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Figure 8. The extracted pitch plotted over the spectrogram
for a fast excerpt played on the clarinet.

6 )
7
8 clari_fast.play_with_clicks(onsets)

Listing 5. Note onset detection using the method adaptative
RMS.

The method adaptive rms (lines 1 through 6), from
the module segmentation.onsets, receives only one
positional argument, which is the audio object for which the
note onsets will be extracted. There are a few other optional
arguments, but the only being used in this example are min -
time, which is the minimum time in seconds between two
consecutive onsets and display plot, which controls if
the plot of the onset detection function used should be dis-
played or not. Figure 11 shows the resulting graph. In the last
line of this example, the method play with clicks()
from the object clari fast is called, receiving as argu-
ment the variable onsets, which is a list of points, each
corresponding to an instant in the audio object. This method
will play the audio mixed with click sounds in the instants
corresponding to the extracted onsets.

5. Future perspectives
The library’s functionalities will move towards feature extrac-
tors that can provide more meaningful representations of the
information from music performance, from a musical point of
view. The architecture proposed for Iracema and the feature
extractors mentioned in this article form the basis for the de-
velopment of such representations, which will be included in
the future stages of development of the tool.

Good models for note segmentation are essential for audio
content extraction, so this is our primary concern at the time.
Although we have already implemented some basic models

Figure 9. The extracted frequencies of the harmonics plotted
over the spectrogram.

that use pitch and energy information to detect note onsets,
they sometimes produce false positives. Therefore, we are
working on a better model, using machine learning techniques,
which should be included in a future release. Such robust
note segmentation is essential for obtaining good articulation
descriptors, and we have already developed a legato index
descriptor that relies on such robustness. We also plan to
include, in a future version of Iracema, a vibrato descriptor,
which was previously proposed and described in [25].

6. Acknowledgement
The development of this work has been supported by CAPES /
Brazil (Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior) and CNPq/Brazil (Conselho Nacional de Desen-
volvimento Cientı́fico e Tecnológico).

Author contributions
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[25] MAGALHÃES, T. N. et al. Análise do vibrato e
bending na guitarra elétrica. In: Anais do XV Simpósio
Brasileiro de Computação Musical. [s.n.], 2015. p. 36–
47. Disponı́vel em: 〈http://compmus.ime.usp.br/sbcm/2015/
papers/sbcm-2015-3.pdf〉.
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