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Abstract
Induced seismicity is a significant concern during fluid injection projects

such as hydraulic fracturing for shale gas, enhanced geothermal systems and

wastewater injection. With downhole microseismic monitoring, operators can

obtain large seismic datasets to detect hydraulic fracturing induced seismicity

(HFIS). Deep learning models like convolutional neural networks (CNNs)

can offer rapid event detection in these large datasets. Rapid event detection

can be useful for risk management strategies. CNNs have already displayed

success in detecting regional earthquakes. Here, we examined whether a

CNN pre-trained on regional earthquakes can also detect HFIS within high

frequency continuous downhole data. We used data from a shale gas site at

Preston New Road, UK, to assess the CNN model. The catalogue of the site,

which contains over 23,000 events (-2.839 ≤ Mw ≤ 1.155), was generated

using the coalescence microseismic mapping (CMM) method. Using confusion

matrices, we evaluated the model’s ability to pick P and S-phases on single

stations. To assess multi-station performance, we compared event catalogues

and locations determined by the model and CMM method. We found that

model performance declines with decreasing Mw. The model often misses

small Mw < -2 events but detects new events not previously catalogued (230

new events within one hour). The model detected many new events during

periods of high seismicity during injection. We infer that the CMM catalogue

is more complete during less seismically active periods as the CNN model

did not detect many new events. This study indicates that the pre-trained

CNN offers the potential of detecting most events that the CMM detects

(87.7%) in addition to more events during very active periods. The CNN

produces these results more efficiently so it is promising, however, it requires

further retraining with a dataset that represents the HFIS to improve phase

detection and accurate picking.
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Chapter 1

Introduction

Earthquakes play a crucial role in understanding the geological structures of the Earth.

They can tell us about faults, but are also the product of faults. Earthquakes are also key

to imaging the Earth’s subsurface (seismic tomography). Seismic wave imaging can re-

veal the existence of geological structures within the Earth such as fault zones, folds and

seismic stratigraphies (Romanowicz 2008). Seismic travel-time data from earthquakes

aid in event location and velocity model building (Spencer & Gubbins 1980, Zelt & Smith

1992).

Earthquake detection is important in understanding the physics of earthquake clus-

ters and triggering. The more events we are able to detect, the more observational data

we have to develop new ideas, test hypotheses and construct models after physical mech-

anisms that explain induced earthquakes. An improved earthquake detection method

can help us study the characteristics of induced earthquakes, interactions between seis-

mic events and potentially aid earthquake arrival prediction. We need to first detect

earthquakes to conduct focal mechanism studies (Nakamura 2002) and determine source

parameters (Dziewonski et al. 1981). Enhanced earthquake detection can also better

constrain the rates of seismicity, which in turn might improve seismic hazard maps and

risk management strategies.

A recent article in the Reviews of Geophysics (Schultz et al. 2020) showed that

hydraulic fracturing induced seismicity (HFIS) is common in many industrial energy-

related projects such as in deep enhanced geothermal energy systems (Baisch et al.

2006, Grigoli et al. 2018), hydraulic fracturing for shale gas exploration (Lei et al. 2017,

Clarke et al. 2014) and in wastewater disposal (Skoumal et al. 2018, Savvaidis et al.
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CHAPTER 1. INTRODUCTION

2020). These induced earthquakes pose seismic hazards to industrial activity, people and

infrastructure. Therefore, the implementation of microseismic monitoring is required

in these projects so we can observe seismic activity during the project and better under-

stand the physical mechanisms that govern induced seismicity. As the technology for

microseismic monitoring becomes more developed, instruments in large arrays can now

simultaneously record and collect large volumes of seismic data. Currently, microseismic

monitoring instruments can be deployed in boreholes and record at high sampling fre-

quencies (e.g. 2000 Hz). As a result, downhole microseismic monitoring produces high

resolution continuous datasets available for analyses.

Improved microseismic event detection could be used to optimise the injection pa-

rameters during hydraulic fracturing to ensure that operations are well within Health,

Safety, Security and Environment (HSSE) guidelines, improve real-time risk mitigation

operations and to maximise reservoir production. Additional observations during hy-

draulic fracturing operations could potentially contribute to our bigger understanding of

the Earth’s structure, the mechanics of how earthquakes are triggered, and our under-

standing of inter-earthquake interactions.

Along with microseismic monitoring, the traffic light system (TLS) has been imposed

by regulators to manage the risk of induced seismicity by adjusting the fluid injection

rate in real-time during operations (Li et al. 2019, Grigoli et al. 2017). In the UK, Green

et al. (2012) reviewed and recommended a TLS with a three stage action plan where

each stage is defined by the magnitude range of induced events. During green light

(M < 0 in the UK) injection operations can proceed as planned, during amber light (0

≤ M < 0.5) operations need to proceed cautiously with advised lower injection rates

and finally, the red light (M ≥ 0.5) is when injection operations have to be suspended.

During red light, ground velocity and seismicity also have to be closely monitored before

possibly resuming (Clarke, Verdon, Kettlety, Baird & Kendall 2019, Grigoli et al. 2017,

Mignan et al. 2017). To implement this, the TLS requires processing big data in real-time.

Therefore, computationally efficient algorithms are required for automated and fast data

analysis.

Artificial intelligence refers to machines programmed to mimic or simulate human

intelligence in order to complete tasks or perform analyses. Deep learning models are

artificial intelligence technology that are composed of multiple neural layers to learn
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general representations of input data with multiple levels of abstraction (LeCun et al.

2015). The implementation of artificial intelligence via deep learning models might be

a fast and robust solution for microseismic earthquake detection on large continuous

datasets. Deep learning models have been shown to efficiently process large datasets and

detect seismic phases for regional earthquakes (Perol et al. 2018, Ross, Meier, Hauksson

& Heaton 2018, Woollam et al. 2019) and induced seismicity from underground mining

(Huang et al. 2018, Wilkins et al. 2020). Mousavi et al. (2019) and Yang et al. (2021) have

trained deep neural networks to detect HFIS recorded on surface stations. However, we

currently do not know how well a pre-trained deep learning model will be able to detect

seismic phases of HFIS on continuous downhole data sampled at high frequency. With

this in mind, this study aims to consider and test the performance of a deep learning

model for the improved (and more efficient) detection of HFIS.

In the following chapters of this thesis, I introduce HFIS, the hydraulic fracturing site

of interest, current available methods for earthquake detection, as well as deep learning

(Chapter 2). In Chapter 3, I study the data collected from the hydraulic fracturing site.

For my study, I examine the single-station performance of a pre-trained deep learning

model to correctly classify microseismic phases in continuous downhole data from Pre-

ston New Road, UK: a hydraulic fracturing shale gas site. Additionally, I present results

from a workflow that uses model phase detections from multiple stations for phase

association, event detection and location (Chapters 4 and 5). Subsequently, I conduct a

multi-station catalogue comparison of two event detection methods: the deep learning

model and the coalescence microseismic mapping (CMM) method used for catalogue

creation during hydraulic fracturing operations in Preston New Road on different periods

of interest (defined in subsection 2.7 in the Objectives section and subsection 4.4.1 in the

Methods section). I also assess the computational runtimes of the model and compare

the model event locations against the CMM method. I further discuss these findings and

its implications in Chapter 6.
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Chapter 2

Background and objectives

2.1 Induced Seismicity

Induced seismicity is defined by McGarr et al. (2002) as “earthquakes resulting from

anthropogenic activities (e.g. fluid injections into the subsurface) that cause a change in

stress similar in magnitude to the ambient shear stress acting on a fault causing the slip

to occur”. They pose business risks to the operations but more importantly lethal risks

to people and buildings. Induced seismicity is common in fluid injection and geoenergy

projects such as hydraulic fracturing for unconventional shale gas (Bao & Eaton 2016,

Lei et al. 2017), large geothermal systems (Majer et al. 2007, Mignan et al. 2015, Grigoli

et al. 2018) and carbon capture and storage (Hitzman et al. 2012, Zoback & Gorelick 2012,

Verdon & Stork 2016). Induced seismicity and its relation to the aforementioned projects

is an increasingly controversial topic that draws public concern (Ellsworth 2013). As

fluid injection operations have the possibility of inducing large magnitude earthquakes,

residents near the injection site are understandably concerned about possible risks,

damages and the impact that geo-energy exploitation will have on their communities.

Examples of damaging human induced earthquakes include the wastewater-induced

2011 Mw 5.7 Pawnee earthquake sequence in Oklahoma, USA (Keranen et al. 2013), the

2017 Mw 5.5 earthquake in Pohang, South Korea, at an enhanced geothermal system

site (Grigoli et al. 2018, Kim et al. 2018), and the 2019 Mw 5.7 hydraulically fractured

induced earthquake in the South Sichuan basin, China (Liu & Zahradník 2020). These

geoenergy projects were either halted or disrupted as a result of these induced earth-

quakes.
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2.2. HYDRAULIC FRACTURING INDUCED SEISMICITY (HFIS)

2.2 Hydraulic Fracturing Induced Seismicity (HFIS)

Hydraulic fracturing is a well stimulation technique used to fracture rocks and thereby

increase rock permeability by injecting high-pressure fracturing fluid- typically a water-

based agent with sand grains that act as a ‘proppant’ (Hubbert & Willis 1972, Gregory

et al. 2011). The shale gas boom in the 2000s started with the ability to horizontally

drill along unconventional tight shale gas formations (Brown & Yücel 2013, Wang &

Krupnick 2015). This technique is used in unconventional shale formations and where

production is highly profitable (e.g. Canada, US). Hydraulic fracturing uses fracturing

fluid to produce fractures perpendicular to the minimum horizontal stress, SHmin (i.e.

the minimum principal stress component acting on the rock formation)- in the direc-

tion of the maximum horizontal stress, SHmax (Hubbert & Willis 1972, Ellsworth 2013)

(Figure 2.1). The aim of this is to create a connecting fracture network that increases

permeability in the rock formation.

Figure 2.1: Adapted from Herwanger et al. (2013). (A) The three principal stresses:
the vertical stress component (Sv), the maximum horizontal component (SHmax) and
the minimum horizontal component (SHmin) acting in the subsurface where the stress
components Sv > SHmax > SHmin. (B) Illustration of a horizontal well drilled in the
direction of the SHmin with hydraulic fractures growing along the SHmax (perpendicular
to the well bore).

Typically, hydraulic fracturing produces seismicity within the moment magnitude

range, -3 < Mw < 0 (Van Der Baan et al. 2013, Warpinski et al. 2013). However, Bao
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& Eaton (2016), Lei et al. (2017), Grigoli et al. (2018) and Liu & Zahradník (2020)

have shown that hydraulic fracturing can induce earthquakes with moment magnitude

up to Mw 3.9, Mw 4.7, Mw 5.5 and Mw 5.7 respectively. An important example that

illustrates the risks of induced earthquakes is the seismicity induced at a conventional

gas field in Groningen, Netherlands- the largest gas field in Europe (Whaley 2009). In

2003, seismicity increased rapidly and in 2012, the largest earthquake ML 3.6 earth-

quake significantly damaged buildings, infrastructure and prompted public protests

(van Thienen-Visser & Breunese 2015). Consequently, the Groningen gas field had to

reduce production and forewent large economic income from expected revenues. The

Netherlands Government (2014) also offered a total of 1.2 billion euros over 5 years to

compensate residents affected by the earthquakes, causing a negative impact on the

national budget. Following that, the Dutch cabinet announced reduced gas extraction

activities in 2022 and a complete shut-down of all field operations by 2030 (Vlek 2019).

This case example shows that induced earthquakes can shut down large oil and gas

production as well as associated economic benefits that come with this project.

In some countries, regulators have required the implementation of microseismic

monitoring on geoenergy projects from the beginning of operations. Partially due to

the increasing surge of induced seismicity from fluid injection projects, microseismic

monitoring implementation is very important in tracking small induced earthquakes

and imaging the subsurface during production operations (Warpinski et al. 2010). Using

surface seismometers or borehole geophones, microseismic monitoring can be a powerful

tool to obtain a picture of various geomechanical processes ongoing during fluid injection,

including: the tracking of fluid flow (Mukuhira et al. 2020), measuring changes in the

mechanical properties of the reservoir (Sone & Zoback 2013), inferring changes in the

state of stress (Kettlety et al. 2020), mapping hydraulic fractures (Maxwell et al. 2010),

and identifying fault reactivation or failures in the source rock (Rutqvist et al. 2013).

Microseismicity is expected to cluster in the direction of SHmax and along any pre-

existing faults at the hydraulic fracturing site during injection (Chen et al. 2018).

Hydraulic fracturing induced events may delineate pre-existing faults (if any) in the

hydraulic fracturing site. Thus, microseismic monitoring can be utilised to track the

opening of fractures (Pytharouli et al. 2011) and fluid migration pathways in the crust.

Learning about the pre-existing geological structures at the site and tracking the frac-

turing fluid flow is essential in any risk mitigation strategies the operator might consider.
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2.3. MECHANISMS OF INDUCED SEISMICITY

To mitigate the risks posed by HFIS, regulators have imposed traffic light schemes

(TLSs). TLSs manage the risk by having action plans for the operator in multiple stages-

often divided by the magnitude of induced events. In the UK, these stages are green,

amber and red and are respectively defined from a review by Green et al. (2012) as M
< 0, 0 ≤ M < 0.5 and M ≥ 0.5 (UK Government, Department for Business, Energy &

Industrial Strategy 2013). Operations are able to proceed during the green light stage

but when induced events exceed the green-amber magnitude threshold, it is advisable to

lower injection rates and proceed with caution. Injection operations should stop or pause

if the largest induced event exceeds the magnitude set by the amber-red stage threshold.

The implementation of a TLS with real-time monitoring helps to make informed deci-

sions and enact effective action plans to manage risks during fluid injection operations.

The microseismic monitoring of hydraulic fracturing-induced earthquakes is therefore

invaluable for illuminating subsurface processes that could aid operators to optimise

hydrocarbon recovery (Zou 2017, Le Calvez et al. 2005, 2007), identify seismic risks, and

enable risk mitigation strategies of induced seismicity (Bommer et al. 2015).

2.3 Mechanisms of Induced Seismicity

There are three main hypotheses that have been proposed to explain the mechanisms

that cause fluid injection induced seismicity. One of the proposed hypotheses involves

direct hydrological communication with the stimulated fractures and a pre-existing

fault (Raleigh et al. 1976, Bao & Eaton 2016). Azad et al. (2017) suggested that this

hydrological link between the stimulated fractures and the pre-existing fault plane have

to be directly intersecting (e.g. Figure 2.2(A)), or connected naturally via a fracture

network (Eyre et al. 2019). Fluid presence in the pre-existing fault increases the pore

pressure within the fault, causing effective stress to decrease. Figure 2.3 shows that

the decrease in effective stress shifts the Mohr stress circle laterally towards the failure

envelope. This makes it more possible for the Mohr circle to intersect the failure criterion

and thus brings the fault closer to failure (Kamei et al. 2015, Rutter & Hackston 2017).

However, the pore pressure diffusion model struggles to explain documented HFIS

that nucleate at distances away from the stimulating well (Shirzaei et al. 2016, Kozłowska

et al. 2018). Segall & Lu (2015) use the concept of poroelastic stress transfer to explain
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Figure 2.2: Illustration of three proposed hypotheses to explain the mechanisms that
cause HFIS. (A) The pore pressure diffusion model, (B) the poroelastic model and (C) the
aseismic slip model (adapted from Eyre et al. (2019).

Figure 2.3: A Mohr diagram showing that the Mohr stress circle shifts laterally towards
the failure criterion during injection (adapted from Kim & Hosseini (2017). The increase
in pore pressure results in a decrease in effective stress.

the distal induced seismicity. They propose that there is poroelastic coupling of the rock

matrix and the fluid injected hydraulic fractures so it is not necessary for the pre-existing
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2.4. SITE: PRESTON NEW ROAD, UK

fault to intersect with the stimulated fractures (Schultz et al. 2020). When fluids are

injected into the hydraulic fractures, the change in pore volume in rock mass will alter

the loading conditions on a fault- this can cause a critically stressed nearby fault to

fail (Figure 2.2(B)). Therefore, poroelasticity means that seismicity can be induced at

distances away from the injecting well and it has been suggested as the mechanism of

the induced seismicity occurring hundreds of meters from wastewater disposal wells

(Goebel & Brodsky 2018, Zhai et al. 2019).

Alternatively, Eyre et al. (2019) suggest that aseismic slip driven by pore pressure

is the triggering mechanism for HFIS. Several laboratory experiments and in-situ ob-

servations have shown inconsistencies with both the pore pressure diffusion model and

the poroelastic hypothesis- these studies show that presence of fluids (e.g. water or

fracturing fluid) in host rock that is clay-rich and contains high total organic content

(i.e. shales) will encourage stable sliding on shale-bearing faults (Kohli & Zoback 2013,

Scuderi & Collettini 2018, Cappa et al. 2019). The aseismic slip model is consistent with

rate-and-state friction theory and the velocity-strengthening behaviour in shale reservoir

rocks. For this model, Eyre et al. (2019) explain that the influence of the pore pressure

diffusion from hydrologic connections between the fault and the stimulated fractures

only cause nearby aseismic slip that propagates along the fault. Aseismic slip has been

observed to outpace the pore pressure migration front (Viesca 2015, Bhattacharya &

Viesca 2019) until it reaches more distant seismogenic zones where the earthquakes are

induced (Figure 2.2(C)).

Earthquake detection provides key insights and the observations needed to test

hypotheses about the mechanisms that induce seismicity. An improved understanding on

the characteristics and behaviour of the seismicity (e.g. clustering and event migration)

via enhanced event detection can give indications of what physical mechanisms are

in play during fluid injection operations. Knowing which mechanisms are causing the

induced seismicity may aid hazard assessment and risk mitigation of these projects.

2.4 Site: Preston New Road, UK

The first hydraulic fracturing well in the UK, Preese Hall (PH-1) was drilled near Black-

pool in April 2011. The injection activities in PH-1 led to induced seismicity up to ML 2.3
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(Clarke et al. 2014). The felt seismicity resulted in the suspension of hydraulic fracturing

activities at Preese Hall. Following this, the UK Department of Energy and Climate

Change (DECC) requires operators to implement the TLS as a risk mitigation strategy

for induced seismicity in 2013 (Schultz et al. 2020).

The Preston New Road (PNR) site is a hydraulic fracturing site at Preston New Road,

Lancashire, in the North West of England (Figure 2.4). The PNR site targets the Car-

boniferous Bowland Shale units (Clarke, Verdon, Kettlety, Baird & Kendall 2019). Two

horizontal wells were drilled at this location; the Preston New Road 1-z well (PNR-1z)

and the Preston New Road-2 well (PNR-2), both operated by Cuadrilla Resources Ltd.

(Cuadrilla) (Clarke, Soroush, Wood et al. 2019). The surface coordinates of the site given

by the PNR-1z Hydraulic Fracture Plan are approximately 432,749.50 m North and

337,433.54 m East (using the British National Grid- Ordnance Survey Great Britain,

1936) or Latitude 53° 47’ 14.2827" N, Longitude 02° 57’ 04.0278" W (Cuadrilla Bowland

Ltd. 2018).

Figure 2.4: The Preston New Road (PNR) hydraulic fracturing site at the North West of
England with coordinates from the United Kingdom (UK) Grid Reference (from Clarke,
Verdon, Kettlety, Baird & Kendall (2019)). The map shows major roads, nearby villages
and the positions of the PNR-1z and PNR-2 wells, the PNR well pad and the surface
stations in the area.
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Figure 2.5: The geological cross section at the Preston New Road site showing the wells
(PNR-1 and the horizontal well PNR-1z), lithology and the structural features on site
(adapted from Cuadrilla Bowland Ltd. (2018)).

Figure 2.5 shows the lithology at the Preston New Road site. Within the Bowland

Basin, the Lower and Upper Bowland Shale units are deposited on the Carboniferous

Hodder Mudstone. The Bowland Shale units are overlaid partly by the Millstone Grit

Group, Collyhurst Sandstone and capped by the Manchester Marl Formation (Anderson

& Underhill 2020). The Manchester Marl formation is then overlaid by the Sherwood

Sandstone group, Mercia Mudstone group and superficial deposits. Figure 2.5 also

display pre-Permian regional reverse faults (the Haves Ho Fault and the Moor Hey Fault)

intersecting the Bowland Shale units. At the PNR site, Cuadrilla Bowland Ltd. (2018)

mapped a south-east dipping local reverse fault (Fault - 1) that intersects the Hodder
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Mudstone and both the Bowland Shale units. As the horizontal well bore is anticipated

to encounter a small number of faults, Cuadrilla Bowland Ltd. (2018) implemented

downhole microseismic monitoring and the TLS as risk mitigation strategies for Preston

New Road.

2.5 Methods of Earthquake Phase Detection

As microseismic monitoring spans across a number of important industrial geo-energy

projects, it is important to have a robust method of seismic event and phase detections.

In the next few sections, I review the traditional (2.5.1) and more recent methods of

earthquake detection (2.5.2, 2.5.3, 2.5.4, 2.5.5), introduce the use of deep learning for

this purpose (2.6.1) and describe the pre-trained deep learning model used in this thesis

(2.6.3).

2.5.1 STA/LTA

Traditional automated methods such as the short-term-average/long-term-average (STA/LTA)

trigger have been used widely in microseismic monitoring (Allen 1978, Liu & Zhang

2014). The STA/LTA algorithm was developed to replicate human analyst performance

in P wave arrival detections on single seismometer traces (Allen 1978). The STA/LTA

uses the characteristic function (CF) of a single seismic trace (Allen 1978, 1982). The

most widely used characteristic function is the absolute value function defined as

CF(i) = |Y(i)|

(2.1)

where Y is the amplitude of the seismic trace and i is the ith sample of the waveform

(Allen 1982).

To make the algorithm more sensitive to sudden changes in amplitude and frequency,

Allen (1978) updated the function to include the squared difference in amplitude of the

ith sample and the previous sample, multiplied by a weighing constant. They define this

CF as
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CF(i)=Y (i)2 +K(Y (i)−Y (i−1))2

(2.2)

where Y is the amplitude of the trace, i is the ith sample of the waveform and K is a

weighting constant that varies with sample rate and station noise characteristics.

The CF is calculated for the STA and the LTA window through time. The durations

of both the STA and LTA windows are user defined. The STA window is sensitive to

seismic events whereas the LTA window provides a measure of the background noise

level (e.g. STA of 1 second and LTA of 2 seconds for microseismic applications) at that

time (Trnkoczy 2009). An event is declared when the STA/LTA ratio exceeds a threshold

specified by the user.

The STA/LTA method is highly valued for earthquake event detection because of its

general applicability, efficiency and the ability of the trigger to run on low computational

power. However, the STA/LTA algorithm may result in a high number of false positives

(false triggers) or false negatives (missed events) due to non-impulsive events, low signal-

to-noise ratio (SNR), overlapping events, or incorrectly specified trigger parameters

(i.e. trigger threshold, STA or LTA window duration) (Trnkoczy 2009, Yoon et al. 2015,

Bergen & Beroza 2018, Mousavi et al. 2019).

2.5.2 Coalescence Microseismic Mapping (CMM)

The coalescence microseismic mapping (CMM) method is a multi-station simultaneous

detection and location method that can be very effective for microseismic monitoring

(Tarasewicz et al. 2012, Bradford et al. 2013, Smith et al. 2015). In a review, Li et al.

(2020) explain that waveform-based location methods can be described in four diferent

categories; partial waveform stacking (Kao & Shan 2004, Grigoli et al. 2013), time re-

verse imaging (Gajewski & Tessmer 2005, Larmat et al. 2008), wavefront tomography

(Duveneck 2004, Bauer et al. 2017) and full waveform inversion (Michel & Tsvankin

2014, Igonin & Innanen 2018). The CMM method is an example of a partial waveform

stacking technique. This method has been applied successfully in various applications:

to monitor volcanic activity (Tarasewicz et al. 2012) and hydraulic fracturing operations

(Bradford et al. 2013). Schlumberger produced a catalogue of event origin times from the
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hydraulic fracturing activities at the PNR site using code based on the CMM method.

The CMM method is a form of continuous grid-search event detection and location

method using STA/LTA ratios, stacking the migrated signals across multiple stations and

using a Gaussian approximation on each pick as an estimate for arrival time uncertainty

(Drew et al. 2005, 2013, Pugh et al. 2016). The CMM method applies a user-defined

time window to search across the data continuously. This method uses both traveltime

inversion and imaging for event locations from continuous seismic waveforms. Drew

et al. (2013) explain that the CMM method first constructs a travel times look-up table

from each gridpoint to each receiver station using a pre-defined velocity model. Figure

2.6 illustrates that the method then uses the traveltimes look up table to migrate onset

functions back to each grid node within a 3-D subsurface grid at each user-defined time

step.

Subsequently, continuous seismic waveforms across multiple stations are transformed

into STA/LTA signals for each time window. Thus, the performance of this algorithm

strongly depends on the selection of STA/LTA parameters (i.e. the STA and LTA window

duration) and the user-defined window duration. Inappropriate parameter settings may

cause the algorithm to pick more false positives or miss real events. Within the time

window, the CMM method takes the maximum coalescence value at each time step. If

the user selects a long time window, the method can potentially miss the energy arrivals

of smaller events within this time step. If a short time window is used, executing the

algorithm will be more computationally intensive.

After migration, Drew et al. (2013) then use a Gaussian approximation to transform

the STA/LTA signals into probability density functions of the arrival times on each

node in the grid. As the STA/LTA signals are proportional to the SNR of the arrival

times (Drew et al. 2013), these signals should coalesce on grid nodes where events are

located. This exhaustive grid-search results in a catalogue of origin times along with

their respective earthquake locations.

Overall, the CMM method is a robust method for microseismic earthquake detection

with the added advantage of event hypocentre locations. It is of interest to see if we can

use deep learning neural networks to replicate or even elevate this level of robustness

for hydraulic fracturing induced microseismicity in a shorter computational runtime. A
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Figure 2.6: Schematic from Drew et al. (2013) of the 3D subsurface traveltime grid with
the blue dots as subsurface nodes and the green triangles as surface stations. The CMM
method uses the velocity model and traveltime look-up tables to backmigrate onset
functions from the seismic data (all 3 components) on each node from each station for
each time step. The onset functions are then stacked at each node point.

significant disadvantage of the CMM method is that it is a computationally intensive

program. Deep learning neural networks have the potential to overcome this barrier and

provide faster event detections than a grid-search method like the CMM method.

2.5.3 Template Matching (Waveform Cross-correlation / Match
Filtering) and Subspace Waveform Detection

Template matching can be a robust technique for induced earthquake detection- this is

exemplified by detecting wastewater disposal-induced seismicity (Skoumal et al. 2014)

and hydraulic fracturing-induced seismicity (Song et al. 2010). Template matching (also

known as match filtering) is a waveform cross-correlation method with known exam-

ples of earthquake events (Gibbons & Ringdal 2006). Yoon et al. (2015) describes this

method as a ‘one-to-many’ search comparison method that cross-correlates windows of

the continuous waveform with a template waveform to obtain normalised correlation

coefficients. Events are detected when a waveform has high similarity with the template
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waveform. Cross-correlated events that occur close together (within hundreds of meters)

are thought to have similar focal mechanisms (Schaff & Waldhauser 2005).

However, template matching requires a prior seismic catalogue and templates near

the observation site. Locations that are less seismically active may not have the required

templates. Even if the area of interest is seismically active, a catalogue may not exist, or

only the very largest events are captured by regional or global networks. The method

also suffers from a detection bias, picking similar events and missing those with different

focal mechanisms or locations.

Subspace detection is a generalised template matching method that uses Singular

Value Decomposition (SVD) to capture the general features of waveforms efficiently

(Harris 2006, Barrett & Beroza 2014). SVD represents a design set of waveforms (or a

template) from an existing event catalogue as left singular vectors that contain hypocen-

tres and possess improved SNRs compared to the actual template (Barrett & Beroza

2014, Bestmann 2020). Bestmann (2020) found that the subspace detector detects more

events than classical methods like the STA/LTA. Subspace detectors are also able to

detect non-repeating, more variable earthquakes than in template matching (Harris

2006). The drawbacks to this method are similar to those in template matching- the

subspace detector still requires a prior knowledge of the earthquake events; i.e. an event

catalogue to make their templates in vector space. Consequently, earthquake events that

have no similar templates will be completely missed by this method.

2.5.4 Autocorrelation

Another earthquake detection method that uses waveform correlation is the autocor-

relation method (Brown et al. 2008). Instead of requiring pre-existing templates, the

autocorrelation method searches for clusters of similar waveforms and can be considered

an unsupervised template-matching method. Setting the search window across continu-

ous seismic data to be as short as the duration of an earthquake event, the continuous

waveforms are divided into overlapping windows. Cross-correlation is performed on all

possible pairs of windows and the windows with high correlation coefficients are grouped

together to form a cluster (Yoon et al. 2015).
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Compared to the STA/LTA, autocorrelation detects more events and, unlike tem-

plate matching, autocorrelation can detect earthquakes with different focal mechanisms

(Bergen & Beroza 2018, Yoon et al. 2015). However, this method is very computationally

intensive and inefficient, making it unsuitable for most real-time earthquake monitoring

endeavours or detection over large continuous datasets.

2.5.5 Fingerprint and Similarity Thresholding (FAST)

FAST is an adapted data mining algorithm inspired by data mining techniques used for

audio recognition, namely, the Waveprint wavelet-based audio fingerprinting algorithm

(Baluja & Covell 2008, Yoon et al. 2015). Instead of comparing waveforms, the FAST

algorithm first undergoes feature extraction: it splits a single continuous waveform into

windows of features in the time and frequency domains (or spectral images). For each

window, it applies a 2D Haar wavelet transform and is subjected to data compression.

Subsequently, binary fingerprints are generated for a large database and is used in

a similarity search (Yoon et al. 2015). The search uses ‘Locality Sensitive Hashing’,

which groups similar high-probability waveforms into hash buckets and allows efficient

search in large datasets (Slaney & Casey 2008, Yoon et al. 2015). Correlations are then

performed exclusively on similar events to reduce the runtime of the algorithm (Skoumal

et al. 2016).

The advantage of the FAST algorithm is that it is significantly more computation-

ally efficient than autocorrelation and template matching. Additionally, this algorithm

does not need existing event templates and can detect earthquakes with different focal

mechanisms. Yoon et al. (2017) explored the method’s trade-off between speed and ac-

curacy and showed that the algorithm can detect more false positives (non-earthquake

signals) or miss more events than detected using template matching. This is because

information is lost through feature extraction, when waveforms are transformed into

binary fingerprints (Yoon et al. 2017). FAST is a single-station event detector. Bergen &

Beroza (2018) designed a robust multi-station application of the FAST algorithm in an

effort to improve the algorithm’s sensitivity and limit the number of false positives.
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2.6 Deep learning in Earthquake Phase Detection

Deep learning is a sub-field of machine learning that allows computational models

called deep neural networks to learn generalised representations of input data (which

could be vast datasets) with multiple levels of abstraction (LeCun et al. 2015). Deep

learning is especially good at tasks involving images (e.g. the detection and recogni-

tion of visual objects). Most notably, the success of AlexNet (Krizhevsky et al. 2017) in

the 2012 ImageNet competition led the renaissance of deep learning models into the

mainstream technology we are seeing today. Within the context of supervised learning,

Artificial Neural Networks (ANNs) can be used as the function that relates inputs to

outputs. ANNs are typically a composition of linear and nonlinear functions. ANNs

tend to have many parameters (or weights), sometimes in their millions, and these

parameters must be learnt from the data (LeCun et al. 2015). This is done by first

specifying a loss function (also known as a cost/error function) to estimate the errors of

the model so the weights may be tuned to minimise these errors when mapping from

input to output, and then using gradient based optimisation to obtain a set of parameters

that reduce this loss function (Patterson & Gibson 2017). One of the cornerstones of

this field is the backpropagation algorithm which allows us to efficiently compute this

gradient (Chauvin & Rumelhart 1995). LeCun et al. (2015) explains that deep learning

algorithms can ‘learn’ representations of the data by using backpropagation to adjust the

parameters on each layer (a set of nodes/neurons) of a neural network. Deep learning has

found much success in applications such as speech recognition (Deng et al. 2013), medi-

cal image analysis (Shen et al. 2017) and natural language processing (Deng & Liu 2018).

Seismology has also experienced major advances as a result of deep learning methods.

In a 2019 special issue of the Seismological Research Letters journal, Kong et al. (2019)

reviewed the current status and potential of artificial intelligence for applications in

earthquake detection (tectonic and regional) and seismic imaging of the Earth. This

review documented substantial advances in event detection and phase picking that

deep learning methods have enabled. They note that convolutional neural networks

have been developed and trained to recognise generalised representations of seismic

phases (Ross, Meier, Hauksson & Heaton 2018, Zhu & Beroza 2019), pick P-wave arrivals

and determine its first-motion polarity (Ross, Meier & Hauksson 2018). Recognition

of seismic phases helps create an earthquake catalogue for areas where there is no

existing catalogue or template for event detection methods such as template matching
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or autocorrelation. Improved picking of P-wave arrivals and the determination of first

motion polarity increases the number of detailed earthquake focal mechanisms in an

area.

2.6.1 Convolutional Neural Networks (CNN)

Bergen et al. (2019) argued in a widely cited review paper that the class of deep learning

models , convolutional neural networks (CNNs), in particular, can empower observational

seismology to efficiently detect events in a vastly larger dataset than is achievable with

classical methods. CNNs are ANNs that utilise the convolution operation within the

function. CNNs typically have two main components; convolutional layers for feature

extraction and fully connected neural networks for image classification. Convolutional

layers involve convolving the data using filters that slide across the data in order to

extract important features within the input data (feature extraction). The output from

the convolutional layers is then flattened into a 1-D feature vector and will be the input

for the fully-connected neural network (FCNN). In the training step, weights (a set of

learnable nonlinear filters) are fine-tuned and computationally optimised by repeated

convolution and pooling operations of the input data to extract features in the training

dataset (waveforms) that will aid seismic classification (Woollam et al. 2019). The FCNN

then uses the trained weights from the training phase to classify features found by the

convolutional layers.

CNNs have been developed and trained to learn generalised representations of seis-

mic phases and pick phase arrival time from continuous data (Ross, Meier, Hauksson &

Heaton 2018, Perol et al. 2018, Wu et al. 2018, Wang et al. 2019, Woollam et al. 2019).

CNNs treat seismic phase detection as a supervised object classification and 2D image

recognition task. To be able to classify seismic phases, the neural network only requires

training with large datasets of labelled seismic phases. In seismology, large labelled

datasets are readily available from decades of supervised earthquake monitoring, auto-

matic and analyst-labelled phase arrival picks.

The advantages of using CNNs for automated phase detection are their relatively

fast speed in processing large datasets in comparison with state-of-the-art detection

algorithms, and the sensitivity of a CNN phase picker in detecting more earthquake

events than the classical STA/LTA trigger (e.g. Ross, Meier, Hauksson & Heaton (2018),
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Woollam et al. (2019)). Compared to similarity based algorithms, CNN phase detectors

are more computationally efficient and have less bias in event detection as they do not

rely on waveform similarity to set templates. The CNN model should also be able to

return results faster than grid-based earthquake event search algorithms. Perol et al.

(2018) showed that their CNN produced faster results than both the autocorrelation and

FAST algorithm.

The potential of speeding up event detection in real-time processing with deep

learning phase detection models gives the advantage of adding more time to react to

human-induced seismicity and thus improving the real-time management of risk and

hazard. In addition, if the CNN can detect more induced events, the CNN will pro-

vide a more complete catalogue that may fill gaps in the spatio-temporal evolution of

induced seismicity, and may even provide unprecedented views into geological fault

zone structures. For these reasons, I have chosen to utilise CNNs for the detection of

hydraulic-fracturing induced seismicity.

There are certain challenges in processing and detecting microseismic events- one

of these challenges is the low SNR (Sabbione & Velis 2013). Sabbione & Velis (2013)

highlight that accurate picking of phase arrivals is difficult because microseismic events

have low SNR and thus these microseismic phases could easily be buried within the

noise. Even so, Zhang et al. (2018) and Huang et al. (2018) have both shown success in

detecting microseismicity using CNNs trained with microseismic event datasets.

A drawback of CNNs is that they require a large training dataset (e.g. thousands

or millions of labelled seismic samples) to achieve good generalised phase picking. To

sidestep this limitation, I have decided to utilise a pre-existing phase detecting CNN

that has already been trained with millions of labelled seismic phases and test its

general applicability to detect hydraulic fracturing-induced microseismicity. I will be

observing the robustness of a deep learning seismic phase detection model against the

CMM method that was used to collect the catalogue in the PNR site. Additionally, I will

compare computational runtimes of the CNN with other earthquake detection methods

(i.e. autocorrelation, FAST). I will also evaluate whether a deep learning algorithm that

was pre-trained on regional catalogued earthquakes collected from different tectonic

settings could perform just as well for microseismic monitoring. I will check if the CNN

needs retraining, whether it performs well off-the-shelf, or if it would be better utilised
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alongside current detection methods to make initial quick detections for real-time moni-

toring.

2.6.2 Transfer Learning

Transfer learning is taking the learnable filters (or weights) and network architecture

from a pre-existing CNN already trained on some dataset and using them as the base for

the retraining of the CNN (Shin et al. 2016). In transfer learning, the parameters in the

CNN layers are fine-tuned for better performance. Rather than starting with random

weights from scratch, transfer learning builds on the optimised weights from initial

training (Gopalakrishnan et al. 2017).

Transfer learning of CNNs is commonly used in the medical field for recognising

objects in medical images. For example, CNNs are in the detection of breast cancer on

mammograms (Huynh et al. 2016) as well as in the automatic detection of COVID-19

on x-ray images (Apostolopoulos & Mpesiana 2020). Tajbakhsh et al. (2016) found that

models that undergo transfer learning using a large dataset have shown to either out-

perform or perform as well as the models trained from scratch and off-the-shelf models.

Huang et al. (2017) also suggest that fine-tuned models perform better than off-the-shelf

models even with a limited (smaller) dataset. Huang et al. (2017) recommend strong

consideration of whether the features learnt from the off-the-shelf model are adequate or

if fine-tuning of the parameters is needed for good performance.

If the off-the-shelf model does not perform well or if it can not detect hydraulic

fracturing-induced seismicity at all, transfer learning will be required to improve model

performance. In this thesis, I will explore whether transfer learning is necessary for

microseismic event detection on a downhole geophone dataset or if the results from the

off-the-shelf CNN are adequate.

2.6.3 The Generalised Seismic Phase Detection (GPD) model

The Generalised Seismic Phase Detection (GPD) model developed by Ross, Meier, Hauks-

son & Heaton (2018) was chosen for this project because it is the most extensively

trained CNN on earthquake phases. Other seismic phase-detecting CNNs by Zhu &
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Beroza (2019), Perol et al. (2018) and Woollam et al. (2019) also exist but are not as

extensively trained as the GPD model. The GPD model was trained and validated on

4.5 million 100 Hz three-component seismic traces that were recorded by the South-

ern California Seismic Network (SCSN) (Ross, Meier, Hauksson & Heaton 2018). More

specifically, Ross, Meier, Hauksson & Heaton (2018) used 1.5 million seismograms each

for the P wave picks, S wave picks and noise windows. Each of these seismograms were

400 samples long (i.e. 4 seconds for 100 Hz data). The training set of the model had the

P waves and S waves at the centre of their respective pick and the noise windows were

chosen 5 seconds before each P wave pick.

The training and validation dataset of the GPD model were exclusively taken from

regional earthquakes in Southern California. Ross, Meier, Hauksson & Heaton (2018)

developed the model to detect local and regional earthquakes (M > 0) with magnitudes

relatively larger than most of the microseismic events catalogued at the PNR site. They

trained this model with a magnitude range of -0.81 < M < 5.7 events using seismograms

from regional surface stations. Ross, Meier, Hauksson & Heaton (2018) displayed the

adaptability of the GPD model by applying it to new datasets: during the 2016 Bombay

Beach, California swarm and the 2016 Mw 7.0 Kumamoto earthquake in Japan. They

showed that the GPD model can detect events of different magnitudes and different

locations that are not represented by the training data (Figure 2.7). The GPD model

working successfully on data not represented during training suggests the possibility of

the model detecting smaller events (induced seismicity) in the downhole dataset obtained

from hydraulic fracturing activities in PNR.

2.7 Objectives

The primary objectives of this thesis are:

Objective 1: Model classification performance

• To assess the single-station performance of an off-the-shelf (OTS) deep learning

phase detection model that was extensively trained on regional earthquakes to de-

tect hydraulic fracturing induced earthquakes (microseismicity) on the continuous

high-frequency downhole data from the Preston New Road site.
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Figure 2.7: The GPD model successfully detecting the 2016 Mw 7.0 Kumamoto earth-
quake in Japan (from Ross, Meier, Hauksson & Heaton (2018)). This displays the appli-
cability of the GPD model to detect earthquakes that are outside the region and moment
magnitude range of the training dataset.

• Evaluate the ability of the OTS model to detect and classify phase arrivals (P/S)

and noise on single stations under various conditions, including large magnitude

(Mw > 0) events, small magnitude events (Mw < -2), mid-range magnitude events

(-2 < Mw < 0) and events when there is high seismicity during injection.

Objective 2: Multi-station event detection workflow

• Construct an event detection workflow that associates phases and locates events

using the phase picks from the GPD model.

Objective 3: Multi-station event catalogue comparison

• Conduct a multi-station method comparison of the GPD model catalogue with

the event catalogue of the previous detection and location method (i.e. the CMM

method).
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• Assess whether the OTS model can detect more events during periods of interest;

event onset (when events occur) during high injection rates and during high

magnitude induced events (Mw > 0).

• Periods that include larger magnitude events (Mw > 0) are of interest to check if

the model is able detect more aftershock events or if the model can detect any type

of precursory microseismic activity.

• Periods of an event onset during high injection rates were selected to see if the

model can detect as many events or find additional events during high seismicity.

• Determine if the detection runtime of the GPD model is faster and computationally

more efficient than the previous detection method (i.e. the CMM method).
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Data

3.1 Preston New Road-1z (PNR-1z) continuous
downhole data

Injection operations on the PNR-1z well were monitored by Cuadrilla Bowland Ltd. to

obtain the PNR-1z continuous downhole dataset. Cuadrilla monitored the hydraulic

stimulations that took place from 15 October to 17 December 2018 (Clarke, Verdon,

Kettlety, Baird & Kendall 2019). Figure 3.1 shows the location of the two wells at the

PNR site. At the Preston New Road site, the PNR-1z well has 41 ’stages’ along the well

where fracturing fluid is pumped through to create the hydraulic fractures. Cuadrilla

planned to stimulate each of the 41 stages from the toe to heel on PNR-1z whilst PNR-2

was equipped with a downhole array of geophones, and was used as an observation well

during injection for microseismic monitoring. However, only 17 stages were injected

because Cuadrilla had to skip stages where hydraulic fracturing would intersect with

a pre-existing North-East orienting fault within the Bowland shale formation (Clarke,

Verdon, Kettlety, Baird & Kendall 2019). Cuadrilla proceeded to skip the stages up to

stage 37 and resumed injection operations on stages 37-41 (closer to the heel of the well).

For our study, we use data collected from the downhole array of geophones on PNR-2

during hydraulic stimulation operations on the PNR-1z well.

The continuous dataset was recorded with a sampling frequency of 2000 Hz by 24

down-the-borehole Avalon Geochain Slimline 15 Hz geophones in the observation well,

PNR-2 from 8 October to 18 December 2018. The downhole array had an average spacing

of 30 meters between each geophone. Between those dates, two periods of hydraulic stim-
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ulation operations were carried out: from 15 October to 2 November and subsequently

from 8 to 17 December 2018. A hiatus in injection operations took place from 3 November

to 7 December 2018.

The data files containing the PNR-1z continuous seismic traces are all in SEG-Y

format. One SEG-Y file contains the 3 component traces of each station, resulting in a

total of 72 traces per SEG-Y file. Each SEG-Y file is 9.2 MB and contains 16 seconds of

recorded seismic data. Thus, this continuous dataset has a total size of 3.92 TB. As the

continuous seismic data are separated into multiple 16-second SEG-Y files, continuous

data can be fed into the model by combining these SEG-Y files. An hour of continuous

seismic data is made by stitching each file into a 24 × 7,200,000 × 3 matrix that com-

bines 24 stations, 7,200,000 data points (as number of data points = sampling frequency

× duration of continuous data, i.e., 2000 Hz × 3600 seconds for one hour) and the 3

components. The resulting matrix of continuous data can then be used as input for the

GPD model.

Figure 3.1 shows that the stations were set up from the shallow part of the well (the

heel) down towards deeper part (the toe) of the well (numbered station 1 to 24). From

visually inspecting the continuous downhole waveforms, we observe that most events

above moment magnitude magnitude Mw -0.237 display amplitude clipping on at least

one station in the seismograms (Figure 3.2). Amplitude clipping occurs especially in

stations closer to the toe of the well (e.g., stations 22, 23, 24) because they are closer

to the event locations and thus have larger amplitudes. The waveforms with large am-

plitudes were strongly affected by clipping. The amplitudes of the larger events were

clipped because the gain of the recording instruments was set high in order to detect

more microseismic events during real-time monitoring of the hydraulic fracturing project.

Figure 3.3 clearly shows event clipping on the largest catalogued event (Mw = 1.155).

Assuming that all events down to Mw = -0.237 have been affected by amplitude clipping,

up to 133 events have clipped amplitudes on at least one station. This could be a potential

challenge to event detection using the trained GPD deep learning model. However, Ross,

Meier, Hauksson & Heaton (2018) have shown that their network primarily identifies

the onset of coherent phase arrivals so this should not be an issue for the deep learning

phase detector even if part of the amplitude has been clipped.
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Figure 3.1: Spatial maps of all the catalogued events, the geophone array, well stages
and wellpaths of PNR-1z (magenta) and PNR2 (black). (A) Plan view and (B) 3D plot.
The x, y and z-axis show the Easting, Northing and depth in metres, respectively.

3.2 Preston New Road-1z (PNR-1z) Event Catalogue,
Velocity Model and Injection Data

Schlumberger processed the PNR-1z continuous downhole dataset in real-time (Clarke,

Verdon, Kettlety, Baird & Kendall 2019) using the Coalescence Microseismic Mapping

(CMM) method (Drew et al. 2013) to create an event catalogue. Real-time monitoring

using the CMM method was only possible in the case of the PNR-1z site because the

continuous data were processed on a supercomputer during injection operations (Verdon

2020). This is impractical and computationally costly when compared to applying a deep

learning model on the data for rapid event detection on a CPU or a single GPU.
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Figure 3.2: Amplitude clipping on the 3-component seismogram for the Mw = -0.237
event on station 24.

The PNR-1z event catalogue lists a total of 38,452 events. This event catalogue will be

used as ground truth in the comparison of the GPD model’s event detection performance

with the CMM method (see subsection 4.3: multi-station comparison in the Methods

section). The event catalogue contains events within a magnitude range of -2.839 ≤ Mw

≤ 1.155. The upper-end of the estimated event magnitudes are likely incorrect or have

been underestimated as they have been affected by amplitude clipping (the amplitudes

were saturated). Event magnitudes of small earthquakes (microseismicity) are difficult

to accurately estimate (Kendall et al. 2019). Event magnitudes from the surface stations

at Preston New Road have an accuracy of ± 0.5, downhole measurements would have

slightly better accuracy but it would still be closer to ∼ 0.5 than 0.1 (Butcher 2021).
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Figure 3.3: Amplitude clipping on the 3-component waveforms of the largest magnitude
event, Mw = 1.155 on station 2.

Operational pumping data such as the injection rates and pressure measurements

are publicly available (Oil and Gas Authority 2018). A velocity model of the PNR site

was also provided by Cuadrilla Bowland Ltd. (2018) (Figure 3.4). Figure 3.5 shows all

catalogued event magnitudes overlaid with the injection rate data plotted against time.

By overlaying the injection rate data with the event magnitudes against time, we can

observe some interesting features of the seismicity from the CMM event catalogue. The

rate of seismicity is shown to escalate during high injection rates (see Figure 4.4(B) in

the Methods subsection 4.4.1 for a zoomed in image). From Figure 3.5, we can see that a

lot of the spikes in seismicity line up along the increase in injection rates. This period
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of event onset during high injection rates will be explored in the subsection 4.4.1 about

periods of interest in Methods.

Figure 3.4: Velocity model of the Preston New Road site. Velocity of the P wave and the S
wave are in blue and orange respectively. The lithology of the site has also been plotted
on the figure.
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Figure 3.5: CMM catalogued events from 8 October to 17 December 2018. Injection rate
in black and the events with their respective magnitude in orange. The injection hiatus
took place from 3 November to 7 December 2018. The dashed blue lines separate the
red (M ≥ 0.5), amber (0 ≤ M < 0.5) and green (M < 0) light stages of the UK traffic light
system.

3.3 Preston New Road Event Waveforms

The PNR-1z event waveforms were also processed by Schlumberger. They have provided

event associated waveforms for 30,726 earthquakes. Figure 3.6 shows the smallest cata-

logued event (Mw = -2.839) across a select number of stations (stations 2, 10, 23 and 24)

along the downhole array. This figure shows that even on the event waveforms, some

of the smaller magnitude events cannot be visibly seen on a number of stations closer

to the heel of the well (i.e. farther from the location of the events) even if they can be

seen on the traces recorded by stations closer to the toe of the well (Figure 3.6). This

may be because microseismic events have low SNR and the stations closer to the heel

of the well are farther from the locations of the events, and thus it is harder to visually

detect the amplitudes of low SNR events in those stations. The CMM method used to

create this event catalogue is a multi-station earthquake event method that uses the

hypocentre of a coalescence grid where the signals coalesce at the event origin time (see

Coalescence Microseismic Mapping subsection in Background and Objectives) and so,

the CMM method can better detect the microseismic events across all stations. When

comparing the CMM method with the GPD model, it is important to consider that the
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GPD model only detects phase arrivals on single, independent stations- making it a

single station method. Therefore, for smaller events (e.g. Figure 3.6), we note that it

would be difficult for the GPD model or even a human analyst to detect these small

events on the shallow stations.
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Figure 3.6: The smallest event, Mw = -2.839, recorded on 3-component seismograms of
multiple stations (stations 2, 10, and 23). The station near the toe of the well (stations
23) displays the event more clearly because it is closer to the events. Stations near the
heel (stations 2 and 10) do not seem to display clear phase arrivals.
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Methods

4.1 GPD model

The architecture of the GPD model consists of 6 layers: four convolutional layers for

feature extraction and two fully connected layers for image classification. In feature ex-

traction, the input data is sent through a series of layers that firstly convolves the input

data with a set of weights (or filters), decimates the data so the image can be evaluated

at different length scales (pooling)- and finally, an activation function is applied on the

data to ensure positive output (Ross, Meier, Hauksson & Heaton 2018). The output of

the feature extraction process is then concatenated into a long 1D-vector and is sent

to two fully connected layers for classification (Figure 4.1). The fully connected neural

network then produces a list of class probabilities of the waveforms through time. Figure

4.1(A) illustrates the workflow of the CNN for generalised phase detection from input

waveforms to the output class probabilities.

For each station, the GPD model defines a sliding 400-sample window that moves

through the data shifting at a pre-defined but adjustable number of samples (the nshi f t

parameter) on each component. Within each window, the model calculates three proba-

bilities at the centre of the 400 sample window: the probability of the trace being a P

phase, an S phase and a noise window. Figure 4.1(B) shows an example of the P and S

probability traces derived from the continuous data. Ross, Meier, Hauksson & Heaton

(2018) selected a 0.98 probability threshold for detecting regional events- this parameter

was changed in this study for the use of detecting smaller microseismic phases. The

model will have a trigger output when the probability of a P or S phase exceeds the

user-defined probability threshold. In the case of multiple consecutive triggers, the pick
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Figure 4.1: (A) The workflow of the GPD model from input waveforms to output class
probabilities. (B) The top panel shows continuous seismic traces of 3 components (E, N
and Z) and the bottom panel shows the probability traces of the P (red) and S (blue)
phases through time (Ross, Meier, Hauksson & Heaton 2018).

time would be the time at which probability is at its maximum value.

Ross, Meier, Hauksson & Heaton (2018) trained their Generalized Seismic Phase

Detection (GPD) model on detrended 100 Hz data filtered with a 2.0 Hz high-pass filter.

The data is then normalised by the absolute maximum amplitude on any of the E, N

or Z components. We note that the GPD model was trained on regional earthquakes

on surface stations (i.e. not higher frequency microseismicity recorded on a downhole

array of 15 Hz geophones). This can be a potential issue because HFIS is not represented

in the training data. Although the model was trained with a 2.0 Hz highpass filter,

Ross, Meier, Hauksson & Heaton (2018) found that the GPD model was still able to

detect phases for a broad frequency range above and below 2.0 Hz. The flexibility of the

model to pick phases outside the frequency range of the training data implies that it is

possible for the model to pick phases in high frequency downhole data. This possibility

will be further explored in the single station classification tests and the multi-station

comparison sections (section 4.2 and 4.3 in Methods).

A few differences should be noted about the PNR-1z continuous downhole dataset

and the GPD training dataset, namely: the sampling frequencies and filters used. The

35



CHAPTER 4. METHODS

different sampling frequencies change the duration of seismic data represented in the

400-sample sliding window. The GPD model was trained on 100 Hz data but the continu-

ous downhole data has a sampling frequency of 2000 Hz. This means that the 400-sample

sliding window feature will only contain 0.2 seconds of seismic data instead of 4 seconds

(for 100 Hz data). A 0.2 second sliding window might seem short. However, event detec-

tion should still work because Figure 4.2 shows that individual P and S phases of the

largest catalogued event are well within a 0.2 second window. For our study, we also

selected an nshi f t of 50 samples (0.025 s) for our sliding window. We specified a low value

for the nshi f t parameter so that the sampling would be sufficient enough to accurately

capture the microseismic phase arrivals. Therefore, the microseismic phases recorded in

the PNR-1z dataset are short enough to fit within a the 400-sample sliding window and

thus are suited for high frequency phase detection by the GPD model.

Figure 4.2: A horizontal section plot showing the moveout of the largest magnitude event
(Mw= 1.155) across all 24 stations. The three component traces are plotted over each
other at each station (total of 72 traces). The y-axis shows the offset, which is the distance
from the source to each receiver/station. Each individual phase is within 0.2 seconds.
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4.2 Data Pre-processing

Before running the pre-existing GPD model on the continuous downhole PNR-1z dataset,

the raw data has to undergo preprocessing to ensure optimal conditions for event de-

tection. Cuadrilla Ltd. recorded the raw continuous downhole data in their respective

station orientations. Since Ross, Meier, Hauksson & Heaton (2018) trained the GPD

model on millions of seismograms in the E, N and Z components, the continuous down-

hole PNR-1z traces (input) also have to be rotated to the E, N and Z components.

In addition, we created spectrograms of the largest and smallest magnitudes recorded

to assess the dominant frequencies of the signal and noise as well as to choose a suitable

filter for the raw data. We also conducted Fast Fourier Transform spectral analyses of the

traces on each station to highlight a range of dominant frequencies of the noise and the

signal. On the basis of these results, we chose a 50 Hz fourth-order Butterworth-highpass

filter for GPD model testing on the continuous downhole PNR-1z dataset. Figure 4.3

shows that after filtering, the events are more easily recognisable which can make phase

picking easier for the deep learning algorithm. Sufficient pre-processing can increase

efficiency of this analysis (Kislov et al. 2020).

4.3 Single Station Classification test

We conducted a classification test to achieve Objective 1: to evaluate the ability of the

GPD model to correctly classify seismic phases (P, S and noise) on single stations. This

is done by using visually inspected 400-sample phase windows from single, randomly

selected stations from the CMM event catalogue as the input for the model and observing

how many the model can classify correctly in a test dataset. We chose to provide the

model with 400-sample windows as this is primarily the input that the pre-trained GPD

model classifies. We also chose windows on random stations to not introduce bias into

this test, as the GPD model may perform better on certain stations (e.g. stations closer to

the events) or when some stations are less noisy than others. We use the event waveforms

from the CMM catalogue as ground truth.
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Figure 4.3: Continuous trace seismogram (top panel) with the respective spectrogram
(bottom panel) for the E, N and Z components on station 17 (A) before and (B) after
filtering with a 50 Hz Butterworth highpass filter.
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4.3.1 Test Dataset for Single Station Classification

For this evaluation, we run the model against a test dataset of 250 events consisting

of an equal number of P phases, S phases and noise 400-sample (0.2 second) windows.

Thus, a total of 750 phase windows (250 P, 250 S, 250 noise) were used as the input for

this classification test. The test dataset was compiled from the CMM event catalogue.

Each of the event windows have been filtered and visually quality checked (QC-ed) to

ensure that the selected phase is in the middle of the 400-sample window (where the

model computes phase probabilities) and that the phase is visible on the traces of the

randomly selected station. We need to make sure that a human analyst would be able to

detect the phase visibly on the traces so that the test for the GPD model is appropriate.

We chose 750 phase windows for this test so that it is sufficient for robust statistics and

yet manageable to visually QC. The test dataset of 250 events includes the 50 largest

magnitude events, the 50 smallest magnitude events, 50 mid-range magnitude events

(25 from -1 ≤ Mw < 0 and 25 from -2 ≤ Mw < -1) and 100 random events that occur

during injection. This is done to see if the model can detect phases of large, small and

mid-range magnitude events, and how well the model performs generally over all 250

events.

4.3.2 Confusion matrix, classification metrics and probability
thresholds

We will use the confusion matrix to represent the results of this classification test. The

confusion matrix is commonly used to measure the performance of multi-class classi-

fication algorithms (Silva-Palacios et al. 2017, Tharwat 2020). The confusion matrix

is a method that tabulates the results of a model and is a convenient way to calculate

and gauge model performance. Metrics from the confusion matrix such as precision,

recall and the F1-score of the GPD model will be crucial in qualitatively representing

the performance of the model. We can also use these metrics to aid the selection of the

probability detection threshold of the model.

The GPD model classifies each window based on the probability of the window being

a P, S or noise window. The model labels the input (400-sample window) as the class with

the highest probability that exceeds the user-defined probability threshold. We use a

3x3 confusion matrix that states the number of true positives and misclassifications for
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Model (predicted)

Catalogue (actual)

P S Noise
P TPpp εsp εnp
S εps TPss εns

Noise εpn εsn TPnn

Table 4.1: Layout of the confusion matrix table where TPxx is a true positive of a phase
and εxy is a misclassification for the phases P, S and noise. The subscripts on the labels
show the phase the model predicts followed by the actual true phase (e.g., for εps, the
model predicts a P phase arrival when the actual phase arrival is an S phase- this makes
it a misclassification).

the 3 seismic classes: P, S and noise windows (Table 4.1). During classification, when a

window containing a P phase is fed into the model and the model classifies this window

as a P, this counts as 1 TPpp in the confusion matrix. When the algorithm misclassifies

a P window as an S or noise window, the count for εsp or εnp) increase respectively. The

count applies the same for both the S phase and noise windows.

Once we construct the confusion matrix, the classification performance of the model

is further evaluated by calculating the recall (or sensitivity), precision and F1-score of

the GPD model (Sokolova et al. 2006). Recall R is defined as

R = (TP)
(TP +FN)

(4.1)

where R is the recall, TP is the number of true positives and FN are false negatives.

R gives an indication of how well the model performs with regards to the number

of false negatives (or missed events). The closer the R value approaches 1, the fewer

events the model has missed. If R = 1, the model has missed no events. A low value of R
indicates that the model has missed many known events.

Precision P is defined as

P = (TP)
(TP +FP)

(4.2)

where P is precision, TP is the number of true positives and FP is the number of falsely

predicted positives.

40



4.3. SINGLE STATION CLASSIFICATION TEST

Whereas R places more weight on false negatives, P sheds more light on how the

model is performing with regards to false positives (or false picks). A high P value is

desired as this means that the model produces a low number of false picks. Low P values

imply that the model produces a large number of false picks.

We can calculate the recall and precision for individual classes (P, S or noise). To

calculate individual recall of a phase (e.g. P), the FN for P would be the sum of the

misclassifications of the P phase (i.e. FNp = εsp + εnp). For individual phase precision

(e.g. for P), the FP for P would be the sum of misclassifications for other phases as a P

phase (i.e. FPp = εps + εpn).

The F1-score can be computed as

F1= 2TP
2TP +FP +FN

= 2× P ×R
P +R

(4.3)

where TP is the number of true positives, FP is the number of false positives, FN is the

false negatives, P is the precision and R is the recall.

The F1-score represents the harmonic mean of both precision P and recall R (Sokolova

et al. 2006) and weights P and R equally. The overall F1-score of a confusion matrix is

calculated using the average recall and precision of all three phases. F1-score values

can lie between a range of 0 and 1. Ideally, the F1-score should be close to 1 as this

means the model possesses high values for precision and recall. To determine the optimal

probability threshold for the model for microseismic phase detections, we construct

several confusion matrices over a range of detection probability thresholds. We compute

the metrics (i.e. precision, recall and F1-scores) for probabilities between 0 and 1 at 0.01

intervals. The results from the classification tests help determine the ideal probability

threshold that yields the best F1-score (i.e. the best balance of precision and recall).

4.3.3 Classification Performance Review on Different
Magnitude Bands

As the test dataset contains four different magnitude bands: the largest magnitude

events (the largest 50 Mw > 0 events), mid-range magnitude events (25 events from -1 ≤
Mw < 0 and 25 events from -2 ≤ Mw < -1, so a total of 50 events from -2 ≤ Mw < 0) and
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the smallest magnitude events (the smallest 50 Mw < -2 events). We can compute four

different confusion matrices respectively. The confusion matrix metrics (P, R, F1-score)

are also be evaluated for each matrix. For this review, we did not set a probability thresh-

old for the model and just used the classification with the highest probability for each

window label. This is to evaluate how the GPD model performs with detecting events of

different magnitude ranges.

4.4 Multi-station comparison

For multi-station comparison, we adapt a workflow of the GPD model to run the model

on the continuous downhole PNR-1z dataset, associate the phase picks, locate the events

and produce an event origin time catalogue to compare with the catalogue produced by

the CMM method.

4.4.1 PNR-1z Continuous Downhole Data Model Tests during
Periods of Interest

To assess the efficiency and multi-station performance of the GPD model, we run the

model on continuous downhole data obtained from activities on PNR-1z. The continuous

data files are firstly concatenated into a matrix. This data matrix is rotated to the E,

N and Z components, filtered with a 50.0 Hz Butterworth highpass filter and then de-

trended. A probability threshold of 0.5 was chosen for the multi-station event detection

tests because findings in subsection 5.1.1 (Results chapter) show that it is difficult to

gauge the optimum probability threshold as there is a trade-off between precision and

recall values when classifying seismic phases from HFIS. Zou et al. (2016) also suggest

that a probability threshold of 0.5 is the default value in interpreting classification using

probabilities. The resulting continuous data matrix is then used as input for the GPD

model.

These model tests were conducted on the University of Bristol’s ACRC Blue Pebble

cluster with one GeForce GTX 1080 GPU on a node with one CPU. The computational

runtimes of the model for earthquake detection on all stations will be reviewed in sub-

section 5.3.4 in the Results section. We focus on creating a catalogue of origin times of
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earthquake events during specific periods of interests. To conduct a multi-station method

comparison between the GPD and the CMM (Objective 3), we have chosen a 3-hour

continuous data period that includes 2 different periods of interest to run the model on:

• High Magnitude Period:

An hour of data that captures time around a large magnitude event (Mw > 0). This

is to assess if the GPD model is able to detect more aftershock events or if the model

can detect any more events that could be potential precursory microseismic activity.

Many early aftershocks often occur in the coda of larger events and therefore these

events might be harder for the CMM method to detect. These missed aftershocks

lead to short term aftershock incompleteness in a catalogue (Kagan 2004, Peng

et al. 2007). For this period, we have chosen to look for aftershocks after the largest

event in the CMM catalogue (Mw=1.155) on 11 December 2018 11am-12pm (Figure

4.4(A)).

• Event Onset Period during High Injection Rates:

These are periods that display increased seismicity during high injection rates.

During injection, a large number of events arrive in close temporal proximity (i.e.

high seismic rates). This period was selected to see if the GPD model can keep up

with detecting high seismicity or even detect additional events (if any) that the

CMM catalogue might have missed. We selected the period on 11 December 2018

from 9-10am to represent the event onset period (Figure 4.4(B)).

For the GPD model input, we selected a 3 hour continuous period from 9am to 12pm

on 11 December 2018 to include our periods of interest (event onset during high injection

rates period and the high magnitude period). The resulting output of the model will be a

list of phase picktimes (P and S) from each of the 24 stations for the 3 hour period.

4.4.2 Event Detection Workflow: Phase Grouping, Phase
Association and Event Location

To conduct a fair multi-station comparison of the CMM and GPD event catalogues (Ob-

jective 3), we need a workflow that converts individual lists of picktimes to an origin

time catalogue of located events (Objective 2). The workflow needs to first concatenate
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Figure 4.4: Temporal plots of injection data and events from the CMM catalogue on the
periods of interest: (A) high magnitude period and (B) the event onset period during high
injection rates. The yellow star in (A) represents the largest event in the CMM catalogue.

the lists of phase picktimes (GPD model output) for all stations, group the phase picks

into events, associate the phases and locate the events to create the origin time event

catalogue.

Before phase association, we group phase picks of the same phase and event across

the stations. For this phase grouping, we define the longest travel time for a phase of

the same event to arrive at all stations. To calculate this travel time, we used the equation
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ttpha =
xmax

Vpha(min)
(4.4)

where ttpha is the time the phase (P or S) takes to travel between the 2 furthest stations

in the array, xmax is the maximum distance between the 2 furthest stations in the array

and Vpha(min) is the velocity of a phase (P or S) at the shallowest depth of the array. We

group the P and S phase picks separately for phase association later.

The maximum distance xmax between the two furthest stations (station 1 and station

24) is estimated to be 681.81 meters. From the velocity model of PNR-1z, a lower bound

Vp of 4823.817 m/s at 1559.305 meters depth was chosen (as station 1, the most shallow

station, is located at a depth of 1561m). The maximum travel P wave travel time ttp for

this site is estimated to be 0.141 seconds. We round this ttp value to 0.2 s to take error

into account. For the S phase, we use the lower bound Vs of 2870.051 m/s around the

same depth as station 1 on the same distance xmax for a tts of 0.238 seconds. We also

round tts to 0.25 s.

Using these phase travel-time windows, the phase picks are grouped to make initial

‘event’ group lists. This is done by sorting the separate phase pick list by time and taking

the earliest picktime as the ‘head’ unique event arrival time. Picks that are within the

time window between the ‘head’ arrival time and the maximum phase travel time are

assumed to belong to the same event. It is possible for multiple picks at the same station

to be grouped into the same event. When multiple picks are made, we take the highest

probability pick from the picks of the same stations because a higher probability pick is

more likely to be an actual phase pick.

After phase grouping, we proceed to associate the two phases and obtain event loca-

tions using the NonLinLoc algorithm (see subsection 4.4.3). There are several methods

of phase pick association to consider. In this thesis we considered 3 methods; the "PS"

association, the "fixed-difference SP" association and the "fixed-difference PS" association.

The PS association is done by using only the P phase groups to create an observation

file for initial event location. We filter the P phase groups by defining an ‘event’ to have a

minimum of 4 phase picks for event location and drop groups that have less than 4 phase

picks. Once we get the list of P phase arrivals, we use this to create an initial catalogue

of origin times and locations using NonLinLoc with only the P picks. We add the initial

45



CHAPTER 4. METHODS

list of origin times to a dataframe. We then associate an S phase for each event origin

time by calculating the longest (or maximum) travel time window for the corresponding

S phase to arrive at each station. This maximum travel time window can be calculated

by using the Wadati equation, defined as

(ts − t0) =
(Vp

Vs

)
(tp − t0) (4.5)

where Vp and Vs are the P and S wave velocity respectively, tp and ts are the P and S

arrival time respectively and t0 is the event origin time.

We assume that the S phase arrives within a time window between the origin time

and the maximum S travel time calculated by using the maximum value of Vp/Vs of that

event group (t0 ≤ ts ≤ (t0 + (Vp/Vs)(tp - t0))). The maximum value of Vp/Vs is estimated

from a list of Vp/Vs ratios between the event depth and each station depth. This is done

for each event group so each event will have a unique maximum S arrival time. For the

same station, we associate each S pick with its corresponding P phase. If there are more

than one S pick associated with the P pick, we use the S pick with higher probability as

higher probability picks are more likely to be an actual phase pick. After the association,

we obtain a new list of origin times and location estimates by relocating the events with

the associated P and S phase arrival information. As a result, we obtain a final event

catalogue of origin times and locations during the selected periods of interest that we

use to compare with the CMM catalogue.

Another way to associate the P and S phases is by using the “fixed difference” PS

association method. In this method, we use the ts − tp of the largest event (Mw = 1.115)

from the furthest station as the fixed-difference time window for phase association. We

use the ts − tp of the largest event because it gives the clearest time difference between

the P and S phase. We determine the ts − tp of the Mw = 1.115 event to be 0.125 seconds.

We round the ts − tp to 0.13 seconds and define the S travel time window to fall between

the origin time and 0.13 seconds after the event origin ( t0 ≤ ts ≤ (t0 +0.13)). We use

the same window for phase association at each station. If an S phase on a station falls

within the time travel window, it will be associated with the P picktime of that same

station. Here, we only compute the locations once using NonLinLoc with both the P and

S associated phases.

The last phase associating method is the “fixed-difference” SP association. This is
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done by using the S phase groups to associate to the P phase groups. We first use the S

picks to create initial estimates of locations and origin times. We then define a possible P

phase travel time window for each S pick using the fixed-difference window (maximum

ts − tp) from the method before. We assume that the P phase can arrive between the S

arrival time and 0.13 seconds before the S arrival time at each station ((ts - 0.13) ≤ tp

≤ ts). After associating the P picks to the S picks, we use NonLinLoc to obtain event

locations and origin times.

For each association method, we compared the residual root-mean-square (RMS)

errors, horizontal and vertical error estimates in the locations to choose the most robust

phase association method. The output of this finalised workflow will be an origin time

event catalogue with their respective locations.

4.4.3 NonLinLoc Event Locations

To obtain event locations, we use the NonLinLoc (Non-Linear Location) package by

Lomax et al. (2000). This software package uses probabilistic non-linear and global

search methods to obtain absolute locations within a 3D subsurface grid. Within the

NonLinLoc package, we used the Vel2Grid, Grid2Time and NLLoc programs to obtain

event locations and origin times. We defined a 3 × 3 × 3 km model grid with node spacing

of 0.25 km and used the velocity model of the PNR-1z site provided by Cuadrilla. We

decided to use the NonLinLoc Phase file format because the input for phase pick times

can be provided to the microsecond. The resulting event origin time will also be precise

to the microsecond. This is important as several microseismic events can occur within

the same second.

The GPD model outputs a probability for each phase pick. In the phase file, we

weighted each pick by assigning each pick probability with an error window and a cor-

responding time error. Table 4.2 shows how the phase picks were weighted. We chose

relatively short error windows to capture microseismic phases because microseismic

events last for short periods of time. A further study is needed to gauge how pick proba-

bilities correspond to the error windows on the picks but for this study, we have chosen

these errors empirically. Increasing error windows were chosen with decreasing pick

probability for our 2000 Hz continuous data.
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Pick Probability Error Window
(number of samples)

Time Error
(seconds)

Prob ≥ 0.85 5 0.0025
0.85 > Prob ≥ 0.70 10 0.005
0.70 > Prob ≥ 0.60 20 0.01
0.60 > Prob ≥ 0.50 50 0.025

Table 4.2: Pick probability bands assigned to an error window around the phase pick in
samples (chosen for 2000 Hz data) and the corresponding time error in seconds.

4.4.4 Event Catalogue Comparison

After producing an event origin catalogue from the event detection workflow with the

GPD phase picks, we compare the resulting catalogue with the CMM catalogue. This

was carried out by event-associating the GPD picked events with the events in the CMM

catalogue. We impose a 0.2 second time window around each event origin time (t0) in

the CMM catalogue so that any GPD event that falls within the time window (t0 ±

0.2 seconds) will be associated with that CMM event origin time. This increases the

possibility of mis-associating events (having more than one GPD event associated with

a CMM event). Despite the long (for microseismic events) time window, the method

only mis-associates 19 times (for the fixed-difference PS association method) out of

1972 possible CMM-event associations (0.1% of the time), 24 times (1.2%) for the PS

association and 42 times (2.1%) for the fixed-difference SP method.
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Results

5.1 Model Classification Performance

5.1.1 Classification test results

We first present the model classification results without a user-defined probability thresh-

old. When a probability threshold is selected, the probability must exceed the threshold

to be classified under a phase. Here, the model does not have a set probability threshold

and thus uses the highest phase probability to classify windows into the P, S or noise

classes. Table 5.1 illustrates the confusion matrix of the GPD model classifying 750 phase

windows. From the confusion matrix, we can derive the recall, precision and overall

F1-score of the model.

TOTAL
250EV MODEL (PREDICTED)

CATALOGUE
(ACTUAL)

Phase P S NOISE TOTAL
P 64 4 182 250
S 43 41 166 250

NOISE 1 3 246 250
TOTAL 108 48 594 750

Table 5.1: The GPD model confusion matrix for 750 400-sample phase windows filtered
with a 50 Hz highpass Butterworth filter.
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Recall R is the fraction of correct phase picks detected by the model out of all known

correct picks from the catalogue. As explained in the Methods section (4.2.2), the R value

approaches 1 when the number of false negatives (missed events) decreases to zero. The

R values of the P, S and noise classes are 0.26, 0.16 and 0.98, respectively, giving a low

average R of 0.47. These low recall values of the P and S phases indicate that the model

fails to detect (misses) a large number of P and S phases.

Precision P is the fraction of all the picks made by the model that are true positives.

The P value is 0.59 for the P phase, 0.85 for the S phase and 0.41 for noise windows,

averaging 0.62. These results show that the GPD model produces fewer false positives

for the S phase than the P phase. The low precision for noise windows shows that the

model produces a large number of false positives- frequently misclassifying the P or S

phase windows as noise.

The F1-score is a value that equally weighs the precision and recall. For individual P,

S and noise classes, the model produces low F1-scores of 0.36, 0.28 and 0.58, respectively.

We estimate the overall F1-score of the model to be a low value of 0.54 from the average

R and P values of all three classes. A low F1-score indicates that the classifying ability

of the model produces low precision and recall.

Next, we present results from repeating the classification test across a range of differ-

ent probability thresholds (Figure 5.1). The optimal probability threshold is unknown a

priori and could vary from the threshold Ross, Meier, Hauksson & Heaton (2018) used

in their study (0.98 for regional earthquakes) and so we want to obtain the probability

threshold that will yield the highest model F1-score for HFIS. The GPD model produces

the best balance of precision and recall when the probability threshold equals 0.02,

attaining an F1-score of 0.51. The optimal probability threshold of 0.02 is too low for

application in our multi-station continuous model tests. Instead, we select a probability

threshold of 0.5 empirically as we expect the picks on multiple stations to strengthen

event detection. Figure 5.1(A) shows a decreasing trend of the overall F1-score with

increasing probability threshold. The F1-scores of individual classes also decrease with

the increasing probability threshold (Figure 5.1(B)).

Figure 5.2 shows a trade-off between recall and precision with increasing probability

threshold for the P and S classes. This trade-off explains the decreasing trend of F1-
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Figure 5.1: (A) Overall F1-scores and (B) F1-scores of individual classes (P, S, Noise) as a
function of the probability detection threshold.

scores with increasing probability threshold for the P and S classes. For both phases, the

precision first increases rapidly but then plateaus. Meanwhile, recall decreases steadily.

Figure 5.2 indicates that the precision for the P phase plateaus at around 0.6 whereas it

approaches 1 for the S phase. This suggests that the classified S phases tend to be true

positives, while there are a lot of classified P phases that are false positives.
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Figure 5.2: Precision (in shades of blue) and Recall (in shades of orange) as a function
of probability detection threshold for the P (filled circles) and S phase classes (empty
triangles).
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5.1.2 Classification Test on Different Event Magnitude Bands

The confusion matrix displays low recall of the P and S phases and low precision of noise

windows. A possible explanation for this is that the current model does not recognise

phase arrivals of small events (Mw < -2). To show this, we constructed confusion matrices

from subsets of the test dataset for events of random magnitudes during injection (as the

control confusion matrix) and 4 different magnitude bands: the 50 largest Mw > 0 events,

25 events from -1 ≤ Mw < 0, 25 events from -2 ≤ Mw < -1, and 50 of the smallest Mw <

-2 events. The individual confusion matrices are shown in Appendix 1 but the results

will be analysed in this section with the precision and recall values.

Subsequently, we calculate the precision and recall values for each confusion matrix

and, thus, each magnitude band (Figure 5.3). Figure 5.3 shows that the precision of each

class decreases significantly with descending magnitude bands. The figure also displays

decreasing recall for the P and S phases while the noise recall varies little.

Figure 5.3: (A) Precision and (B) Recall values of all classes (P, S, noise, and the overall
value) as a function of moment magnitude bands (Mw > 0, 0 > Mw ≥ -1, -1 > Mw ≥ -2 and
Mw < -2).

The significant proportion of low magnitude events in the test dataset may explain

why the GPD model seems not to perform well. Results for the smallest events (Mw <

-2) show that the model did not detect any P or S phases and misclassified all 100 of

the non-noise windows as noise. In the confusion matrix for all 250 events, a total of 90

events have Mw < -2 (36% of the test dataset). These results may explain the low recall

values- the model frequently misses these small magnitude events.
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The model produces higher average P and R values as the moment magnitude in-

creases. The higher recall values on the larger magnitude events indicates that the model

misses fewer events when the events are large. Although we have higher P and R values

for larger magnitude events, the model’s classifying performance is still moderate as the

model only produces overall P and R values in the 0.7 range. These values mean that

the model still produces a number of false positives and misses a proportion of Mw events.

For mid-magnitude events, the model produces an overall precision value of 0.49

and an overall recall value of 0.45. These mid-magnitude results indicate that, to some

extent, the GPD model is still able to detect events with magnitudes lower than the

magnitude range represented (-0.81 < M < 5.7) in training dataset- albeit missing a

majority of the Mw < -2 events.

5.2 Multi-station Event Detection Workflow

5.2.1 Phase Picks and Phase Grouping

The GPD model picked a total of 66,484 phases (28,922 P phases and 37,562 S phases)

over 24 stations of continuous data between 9am and noon on 11 December 2018. If we

separate the observations on 11 December 2018 into 1-hour periods, there are 34,057

picks (15,530 Ps, 18,527 Ss) for the event onset period during high injection rates (9am-

10am), 28,042 picks (11,918 Ps, 16,124 Ss) from 10am-11am, and 4,385 picks (1474 Ps,

2911 Ss) during the large magnitude period (11am-12pm). After phase grouping (where

we group phase picks on at least 4 stations into events), the phase numbers reduced to

a total of 2036 P (hourly: 1108, 826 and 102 groups) and 2,641 S groups (hourly: 1330,

1120 and 191 groups) for phase association. These results again indicate that the GPD

model picks more S phases than P phases for microseismic events.

From visual inspection, the model is able to produce accurate phase picks (Figure 5.4).

However, there is a large proportion of high probability (Prob ≥ 0.85) inaccurate phase

picks that are slightly off by a few milliseconds for an event within the 24 geophone array

(Figure 5.5). Figure 5.5 displays an inaccurate P phase pick with a low pick probability

(Prob = 0.5) and a high probability (Prob = 0.95) but inaccurate S phase pick. These in-

accurate phase picks can severely affect event locations in the later stages of the workflow.
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Figure 5.4: Accurate model picks for the P (red) and S (green) phases. Subplots from top
to bottom show the waveforms with normalised amplitude for the E, N and Z components
on station 11. The shaded areas around the pick show the assigned time error (P = 0.0025
s, S = 0.0025 s) around the pick according to pick probability (P = 0.9995, S = 0.9734).

5.2.2 Results of the Phase Association Methods

For each phase association method (PS, fixed-difference SP and fixed-difference PS), we

compare location errors and select the most robust phase association method for the

event detection workflow. We obtain the RMS of the travel time residuals, horizontal and

vertical location errors of each method from the NonLinLoc program.

Figure 5.6 illustrates the cumulative distribution functions (CDFs) of the RMS errors

between the three methods. The RMS errors indicate that the fixed-difference PS method

performs slightly better, while the fixed-difference SP method shows the worst RMS

errors. The 95th percentiles of the RMS errors for the PS, fixed-difference SP and the

fixed-difference PS method are 0.0126, 0.015 and 0.0116 seconds, respectively. However,

the differences between these errors are not very significant. Figure 5.6 shows that for

all three methods, 80% of the RMS errors are within 0.008 seconds.
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Figure 5.5: An early P phase pick (in red) and a late S phase pick (in green) on normalised
waveforms for the E, N and Z component on station 8. The shaded areas represent the
time error around each phase pick according to pick probability. The dotted lines are our
manual phase picks. Time errors for the P and S phases are 0.025 and 0.0025 seconds,
respectively (for probabilities P = 0.5 and S = 0.95).

In addition, we construct CDF plots to assess the horizontal and vertical location

errors of the association methods (Figure 5.7). Figure 5.7(A) shows that 80% of the

fixed-difference PS and fixed-difference SP locations possess horizontal errors of less

than 0.3 km whereas 80% of the PS method are within 0.4 km. Results for the vertical

errors are similar- 80% of the fixed-difference methods are within 0.2 km while the PS

method has a larger vertical error of 0.3 km (Figure 5.7(B)). All methods at the 95th

percentile share a horizontal error of 0.5 km and a vertical error of 0.3 km. Although the

fixed-difference association methods produce lower errors than the PS association, these

results are still not substantially different to select one particular method over another.

As we did not see significant differences in the phase association methods in the RMS,

horizontal or vertical location errors, we also produced CDF graphs for the absolute x,

y and z differences (Easting, Northing and depth) between the CMM and GPD event

locations (Figure 5.8). We observe that the fixed-difference methods possess lower x and

z absolute location differences than the PS method.
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Figure 5.6: Empirical Cumulative Distribution Function (ECDF) of the RMS errors for
the PS (blue), fixed-difference SP (orange) and fixed-difference PS (green) association
methods with a zoomed-in window to show the slight difference in the methods.

Figure 5.7: (A) ECDF of the horizontal location errors (ERH) and (B) ECDF of the
vertical/depth location errors (ERZ) for the PS (blue), fixed-difference SP (orange) and
fixed-difference PS (green) association methods.

Out of the phase association methods, the PS method performs the worst in the

vertical and horizontal errors as well as the absolute location differences. Although the

fixed-difference PS method produces the worst absolute location differences in the y axis,

the differences are not very considerable. Therefore, we infer that the PS association

method performs consistently the worst amongst the association methods we observed.

To decide between the remaining two association methods, we compare the event cata-
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Figure 5.8: CDF as a function of (A) absolute x, (B) absolute y and (C) absolute z location
differences the three phase association methods.

logues from the fixed-difference PS and fixed-difference SP methods. We use the resulting

catalogues from the multi-station continuous downhole model tests for comparison (3

hours of continuous data on 11 December 2018, 9am to 12pm). The CMM catalogue

lists 1972 seismic events during this period. The workflow with the fixed-difference

PS method detected 1589 events (81%) while missing 383 events (19%) of the CMM

catalogued events. This method also detected 429 new events that are not listed in the

CMM catalogue. The workflow with the fixed-difference SP method detected 1760 events

(89.2%), missed 212 events (10.8%) and found an additional 839 events.

We visually reviewed the new events detected with both phase association methods.

We selected a sample of 172 (40%) out of the 429 new events from the fixed-difference

PS association and 168 (20%) of the 839 SP associated new events. The review indicates

that 3.5% of the fixed-difference PS associated new events are false positives whereas

16% of the fixed-difference SP associated new events are false positives. Assuming these

percentages are representative for the whole sample, we can scale the results of each

method with the respective total number of new events. The fixed-difference PS method

produces approximately 414 new true positives while 15 false positives and the fixed-

difference SP method produces 704 new true positives and 135 false positives during the

three hour period.

On the basis of these results, we decided to use the fixed-difference PS association

method in the event detection workflow to minimise the number of false positive events.

Selecting the fixed-difference SP method could be equally valid if the desired objective

of the application is to achieve more events. However, this method would require per-

forming a quality check on all events to eliminate false positives. This would make

event detection more time-consuming and labour intensive- especially when the rate
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of induced seismicity escalates during injection operations. The finalised GPD event

detection workflow is illustrated in Figure 5.9.

Figure 5.9: The finalised GPD event detection workflow from multi-station phase picks
to an event origin time catalogue with locations.

5.3 Multi-station Catalogue Comparison

5.3.1 High Magnitude Period

We executed the model over one hour of continuous data of 24 stations on 11 December

2018 from 11am to 12pm (Figure 5.10). During this selected high magnitude period, the

CMM catalogue contains a total of 218 seismic events, including the largest magnitude

event (Mw = 1.155). Our workflow detected and located 96 events (44%) of the CMM

catalogued events but missed 122 events (56%). For this period, 74% of the events (161

events) have moment magnitude Mw < -2. Figure 5.10 shows that all of the missed events

are below Mw -2.

During this period, the GPD model only detected 6 new events. After the largest

event (blue star on Figure 5.10), the model detected 3 new immediate aftershocks and 2

more new aftershocks in the next 10 minutes. We visually inspected all the new events

during this period and can confirm that 5 out of 6 are real events. Figure 5.11 is an

example of a new aftershock event detected after the Mw 1.155 event. These waveforms
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Figure 5.10: A temporal plot of the GPD model events (new events as vertical orange
lines, missed events in red and identified events in blue) for the high magnitude period
on 11 December 2018 (11am to 12pm). The new events are represented by orange lines
because the respective magnitudes are not known. The star at 11:21:15.62 represents
the largest magnitude event in the CMM catalogue.

also exhibit smaller events that both the CMM method and the GPD model did not detect.

The model only detected one new aftershock event within the coda of the Mw 1.155 event

(Figure 5.12). Although it looks like there is a visible feature within the waveforms, we

classified this as a false positive event because the phases are not very clear and it is not

certain whether it is an event or just noise.

5.3.2 Event Onset Period During High Injection Rates

For this model run, we applied the model on the event onset period (11 December 2018,

9am to 10am). As the injection rate increases, the rate of seismicity escalates (Figure

5.13). A total of 986 seismic events occurred during this period according to the CMM

catalogue. The GPD model detected 865 events (87.7%) of the CMM catalogued events

but missed 121 events (12.3%). There are 190 Mw < -2 events but only 85% (103) of

the 121 missed events were Mw < -2. This suggests even though the model misses the

majority of the low magnitude events, it is still possible for the model to detect Mw < -2

events.
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Figure 5.11: E, N and Z waveforms of the new aftershock (at 11:21:26.02) after the high
magnitude event on station 24. The CMM and GPD model did not detect smaller events
after this first event.

The GPD model detected 230 additional events within the hour. We reviewed a sample

of 100 new events and determined that 97% of the events are true positives and 3% are

false positives. From this, we can interpolate that only 7 out of the 230 new events are

false. A large proportion of these new events during high injection rates are events that

occur in close temporal proximity. Figure 5.14 shows an example of the newly detected

events during high seismicity rate- i.e. when there are several events within a second.

The CMM method missed the first event in Figure 5.14, but both the model and CMM

detected the subsequent event within one second.
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Figure 5.12: E, N and Z waveforms of a newly detected aftershock (at 11:21:16.67) within
the coda of the high magnitude Mw 1.155 event on station 24. This new model event was
classified as a false positive event because the phases of the event are not clear.

5.3.3 Event Location Comparison

We determined event locations for the entire 3 hour period (Figure 5.15). The locations

derived by NonLinLoc with picks from the GPD model are less tightly clustered around

the injection well than the CMM locations. Figure 5.16(A) illustrates the features from

the additional and shared event locations. Model event locations that were also cata-

logued (blue) by the CMM method displayed the main NE-SW trending seismicity cloud

(Feature 1) dipping towards the east and a small group of events that dip along the west

(Feature 2).
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Figure 5.13: A temporal plot of the GPD model events (new events as orange lines, missed
events in red and identified events in blue) for the Event Onset Period on 11 December
2018 (9am to 10am).

The new model event locations emphasise features found in both catalogues. Ad-

ditional events (orange) in Figure 5.16(B) display another seismicity cloud that forms

more of Feature 2 that dips west-wards. With the addition of the new model events, the

seismicity better highlights a deep linear feature (Feature 3) observed in both 5.16(A) and

(B). Feature 3 lies SW of Stage 38, dipping slightly towards the east (9 degrees). In the

y-z plane (Figure 5.15(F)), we observed a streak of events that extend along the northing

in both directions. This feature can be explained by the lack of azimuthal coverage along

the North-South direction.

Figure 5.17 illustrates the RMS residuals in the GPD model picks. RMS residuals

are the root mean square of the travel time residuals (or misfits) calculated for the final

earthquake location. RMS residuals are commonly used as an indicator of how precise

the locations are. Assuming we are aiming for good microseismic event locations to be

within an error of 30 meters (average geophone spacing in the array), an event location

that has RMS error > 6 ms is categorised as a bad location (using the average Vp across

the geophone array depths = 5054 m/s). The model produces a median RMS pick residual

of 6.75 milliseconds, corresponding to 33 meters (Figure 5.17). Figure 5.17 also shows

that the 95th percentile gives an RMS error of 12.02 milliseconds, corresponding to a 60
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Figure 5.14: E, N and Z waveforms of the newly detected event followed by a catalogued
event (detected by both the CMM and GPD model) during high injection rates on station
24.

meter uncertainty. Approximately 68% of the model locations (1401 events) have RMS

error > 6 ms. Therefore, a large proportion of the events located using GPD model picks

are bad locations.

We obtained horizontal and vertical errors from the NonLinLoc program for the

located events (Figure 5.18). Figure 5.18(A) shows that the median and mean horizontal

errors on the events are 0.2 and 0.21 km, respectively. It also shows that the 95th per-

centile is within 0.5 km. The event locations have median and mean vertical errors of

0.1 km and 0.12 km, respectively. 95% of the events have vertical errors below 0.3 km.
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We can also observe comparable location errors looking at the spread of event locations

using error probability density functions (PDFs). Figure 5.19 shows the error PDFs from

2 NonLinLoc locations; subplots A,C and E display the PDFs for the high magnitude

event during the high magnitude period (also the largest event in the catalogue). The

error PDF for an event during the high injection period are in subplots B, D, F on Figure

5.19.

We produced CDF graphs as a function of distance from the well for the two sets

of event locations to compare event clustering around the injection well (Figure 5.20).

We selected Stage 38 (Easting: 336411 m, Northing 432669 m, Depth: 2323 m) of the

PNR-1z well to represent the well location because injection occurred at this stage during

this three hour period (Figure 5.15). Figure 5.20 reveals that the easting, northing and

depth (x, y, z) differences between the events and the well point for the CMM method

cover a smaller range of distances- the 95th percentile of the easting, northing and depth

differences are within 93 m, 176 m and 89 m, whereas the GPD set of locations cover a

larger range. The 95th percentiles for the model location (easting, northing and depth)

differences correspond to 310 m, 383 m and 372 m, respectively. The CMM locations

are therefore clearly more tightly clustered (in all three dimensions) and confined to a

smaller volume of the subsurface.

In addition, Figure 5.20(A) shows that more events have less event-to-well distances

along the easting than along the northing for both the model and CMM locations. The

shorter distances along the easting might be caused by the geometry of the array on

the well (PNR-2). The array and well are oriented sub-parallel along the east (seen in

Figure 5.15(A, B)). The network has a larger azimuthal coverage along the easting which

results in a larger aperture; thus, it better constrains the easting locations than in the

northing (Havskov et al. 2012). Depth locations are also more well-constrained than

locations along the northing because the array geometry is sub-vertical (Figure 5.15(C,

D)). A sub-vertical network orientation increases the aperture along depth so the array

is more sensitive to depth.

In our event locations, we assumed that all high probability phase arrival picks

within an event group are accurate. However, it is possible that during phase picking,

a proportion of high probability picks among the 24 stations are not accurate- this can

strongly influence the event locations. The location uncertainties were obtained from an
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absolute location method (NonLinLoc), further re-location could reduce relative location

errors and improve event clustering. We will discuss the results of the event locations

and future improvements further in the Discussion section (Chapter 6).

5.3.4 Computational Runtime Comparison

In this section, we compare the computational runtime of the GPD model with other cur-

rently available event detection methods (i.e. autocorrelation, FAST and ConvNetQuake).

For one hour of continuous data on 24 stations at 2000 Hz, the GPD model had a runtime

of 20 minutes and 33 seconds on a NVIDIA GeForce GTX 1080 GPU. Yoon et al. (2015)

and Perol et al. (2018) provided the runtimes of different earthquake detection methods,

namely autocorrelation, FAST and ConvNetQuake, for 1 week of continuous data (from

8 January 2011 to 15 January 2011 in Northern California) on one station at 100 Hz. We

applied the GPD model to the same dataset and compared the runtime results for event

detection in Table 5.2. All the detection methods in Table 5.2 used a CPU to generate

their respective results. Specifically, Perol et al. (2018) executed ConvNetQuake on an

Intel i5 2.9 GHz CPU, Yoon et al. (2015) ran autocorrelation and the FAST algorithm

on an Intel Xeon Processor E5-2620 2.1 GHz CPU and I ran the GPD model on an Intel

Core i5 3.1 GHz CPU.

Detection Method Autocorrelation FAST ConvNetQuake GPD
Reported Runtime 9 days, 13 hours 48 min 1 min, 1 s 11 min, 4 s

Table 5.2: Computational runtimes of the available event detection methods. Autocorre-
lation, FAST and ConvNetQuake runtime results obtained from Yoon et al. (2015) and
Perol et al. (2018).

With the exception of ConvNetQuake, the GPD model has a much shorter runtime

than autocorrelation and FAST- taking only 11 minutes and 4 seconds for 1 week of

continuous data on one station. For seismic event detection, the GPD model uses the 3

components (E, N and Z) of continuous data whereas the runtime tests for autocorrela-

tion and FAST only used only one component. The GPD model takes less time than the

acquisition time to process data, so it is presumably much faster than the beam-forming

method (CMM) used to obtain the PNR-1z catalogue (Verdon, Pers. Comm, 8 September

2020). The GPD model would be more practical as it produces fast results on a single

CPU and even faster on a GPU, rather than a supercomputer- which is required for the
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CMM method to produce near real-time results.
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Figure 5.15: Location of the PNR-1z (magenta line) and PNR2 (black line) wells with
geophones (cyan triangles) and stages (green circles) overlaid with events during the 3
hour period on 11 December 2018 (9am to 12pm). Left panels (A, C, E) display the missed
(red) and same/identified (blue) event locations using the CMM catalogued locations
whereas the right panels (B, D, F) use model locations. GPD model locations for new
events (orange) were used in all panels. The first row shows the map view of the event
locations and the subsequent two rows are cross-sections along the easting and northing,
respectively. Stage 38 is where injection took place during the 3 hour period (yellow star).
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Figure 5.16: Seismic features in the cross-section along the easting on the locations of (A)
the model events that were also catalogued by the CMM (blue) and (B) the new events
only detected by the GPD model (orange). Magenta and black lines are the PNR-1z and
PNR2 well, respectively. Red lines represent the subsurface grid set in the NonLinLoc
location algorithm. Stage 38 is the representative well location (yellow star).

Figure 5.17: Histogram of the RMS pick residuals of the located events in milliseconds.
Four events with RMS ≥ 100 ms are off the graph. The blue, orange and red lines are
the median (6.75 ms), mean (7.43 ms) and 95th percentile (12 ms) of the event picks. The
green line represents the RMS error at 6 ms.
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Figure 5.18: Histograms of the (A) horizontal (ERH) and (B) vertical error estimates
(ERZ) on the model event locations. In both graphs, the blue, orange and red lines are
the median, mean and 95th percentile.
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Figure 5.19: Error probability density functions (red points) for the locations (blue) of (A,
C, E) the largest event in the event catalogue and (B, D, F) a Mw -1.5 event during the
high injection period. The red curves on the x and y axis on all subplots are the density
curves for the PDFs.
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Figure 5.20: CDF of the event location difference to the well in the (A) easting (blue)
and northing (orange), and along (B) depth (purple). In both panels, the darker lines
represent the locations from the GPD model and the lighter shaded lines denote the
CMM locations.
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Discussion

6.1 Single Station Classification and Multi-station
Detection Performances

The GPD model’s performance deteriorated with decreasing event magnitudes in both the

classification test and the multi-station detection assessment. We observed a decreasing

trend in precision and recall values from the classification tests and did not detect a

majority of the small (Mw < -2) events in the multi-station workflow. Results from the

single-station classification test showed that even in the high magnitude bands, the

model still missed a proportion of catalogued events (recall of 0.70) and had a number of

false positives (precision of 0.74). Our values are significantly lower when compared with

those achieved by Ross, Meier, Hauksson & Heaton (2018). They showed that even with

varying probability thresholds, the GPD model can reach precision and recall values

near or above 0.90 for classifying phases. Low precision and recall values for the lower

magnitude events are expected as Ross, Meier, Hauksson & Heaton (2018) trained the

GPD model with larger magnitude Southern Californian events (-0.81 < M < 5.7). The

F1-scores derived from classification tests (a peak F1-score of 0.506 using a probability

threshold of 0.02) are also low compared to other deep learning detection algorithms,

including PhaseNet (Zhu & Beroza 2019). They showed that even with a 0.5 probability

threshold, their deep learning classifier obtained F1-scores above 0.90 for both the P and

S phases.

The multi-station workflow performed better in detecting the Mw > -2 events than the

single station classification test. This is a direct outcome of using observations (or phase
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picks) from multiple stations. The model is more likely to detect an event on stations

closer to the event as the phases will arrive more clearly. The multi-station workflow

shows that the GPD model is able to detect most (81%) of the CMM catalogued events.

Even with multiple stations, the GPD model, as in the single station classification test,

cannot detect the smaller events well. The model can detect a few Mw < -2 events, but

a large proportion of the missed events are in the Mw < -2 magnitude band. Out of the

383 missed events, 6% (21 events) of them are Mw ≥ -2 and 94% (362 events) are Mw <

-2. We used the CMM catalogue as the ‘ground truth’ for these comparisons and have

assumed that it is a fairly complete catalogue. We visually inspected the phase arrivals

of Mw < -2 events and confirm that they can be seen clearly in the waveforms. In other

words, the low magnitude (Mw <-2) events are real and the model is definitely missing

real events.

The failure to detect Mw < -2 events by both the single-station and multi-station meth-

ods may be because the signal-to-noise ratio is too low on a single station for detection.

In contrast to the GPD model, the CMM method can detect these weak phases because it

combines the observations of multiple stations by stacking the phase arrival signals. To

explain the larger missed events (Mw ≥ -2), the event waveforms may appear different

from the generalised phase arrival trained on the GPD model. Our data are sampled at

a higher frequency, were obtained from downhole geophones instead of surface stations

and contain very low magnitude (down to Mw = -2.839) events. This means that the

ability of the GPD model to classify and detect microseismic events needs to be improved

for application.

A potential solution to the low detection rates of low magnitude events is to retrain

or fine-tune the model to detect better on downhole data and smaller events in general.

Lapins et al. (2019) used fine-tuning on the GPD model to improve earthquake detection

for a seismic array at a volcanic setting. They show that the fine-tuned model can surpass

off-the-shelf model performance. Lapins et al. (2019) kept the extensively pre-trained

feature extraction layers in the convolutional neural network and fine-tuned by continual

training with a small dataset (i.e. hundreds of events instead of thousands or millions

usually needed for training a model from scratch). In the medical field, Huang et al.

(2017) and Tajbakhsh et al. (2016) also show better performance on fine-tuned models

using small datasets and large datasets respectively. If the fine-tuned GPD model is able

to detect events better in the continuous downhole data, it might be able to outperform

73



CHAPTER 6. DISCUSSION

the CMM with better event detection and shorter runtimes on large datasets.

6.2 Event Detection Workflow: Phase Picks, Phase
Associations and Event Locations

Results in subsection 5.2.1 show that the GPD model detects more S phases than P

phases. Generally, P phase arrivals for microseismic events are observed to have smaller

amplitudes than the S waves (Witten et al. 2012, Kuang et al. 2013). Weak P wave

onsets may be harder for the model to detect. A higher number of S picks affects the

number of phase associations depending on the selected phase association method. If we

associate P to S phases, we have less phase-associated pairs than when we associate S to

P phases. Therefore, more events will be detected with the fixed-difference SP association

method.The model also did not detect sufficiently many P phases (four or more stations)

to be counted as an event group. This is an issue as the model might be missing events

even though a high number of detected S phases indicate an event. This issue may also

be solved by applying transfer learning to the GPD model so it can recognise and detect

more P phases of weak microseismic events.

The phase associations of the workflow seem to be robust, producing a low number

of phase mis-associations. Phase mis-association occurs when there are more than one

S phase detected within the association window to associate with the P phase. The

workflow has a short fixed phase-associating window (0.13 seconds) so it does not mis-

associate frequently. When events occur frequently within a second, the window might

contain arrivals from multiple events.

However, we could associate more phases by taking the longest travel-time difference

between the P and S instead of the time difference of the largest event. The longest

travel-time difference (ts−tp) would be between the furthest event in the catalogue on the

furthest station. A longer phase associating window would increase the number of model

event detections. Other more sophisticated methods could improve phase association.

For example, PhaseLink by Ross et al. (2019) is a deep learning algorithm that has been

trained by millions of synthetic P and S sequences to associate seismic phases, and the

Hyperbolic Event eXtractor by Woollam et al. (2020) is a seismic phase associator for

regions with intense seismicity. These methods are more sophisticated as they do not
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depend on a fixed time window (like in our workflow) to associate seismic phases. Both

methods have also been stress tested on large synthetic datasets, demonstrated good

performances. In addition to this, both Woollam et al. (2020) and Ross et al. (2019) have

mentioned further applications to microseismic monitoring.

The GPD model phase picks resulted in more scattered event locations when com-

pared with the CMM method. The CDF of the model event locations as a function of

Easting, Northing and depth differences to the well showed that the model locations

cover a larger volume of the subsurface than the volume covered by CMM locations.

The CMM locations displayed tighter clustering with a smaller range of well distance

differences.

The proportion of inaccurate phase picks might cause the loosely scattered event

locations. The picks that were used in the event locations were weighted by probability

but the assigned time error windows have been observed to be too short for the pick

probabilities. If the time error windows on the pick are too short, they might not ac-

curately capture the phase (as seen in 5.2.1 of the Results section). Even with a high

probability phase pick, phases can arrive outside of the time error window assigned to the

model picks. We might be able to improve event locations by defining more appropriate

time errors for different pick probabilities. Thus, a proper review of the distribution of

expected time errors for different pick probability bands needs to be conducted to select

appropriate time errors. Alternatively, choosing a different property to weight individual

phase picks might help improve event locations. Instead of using pick probabilities, we

could use the time difference between manually picked phase times and GPD model

phase times to define the time error. However, this method would require manually

picked event phases.

The model also produced a large number of high probability picks that are slightly

inaccurate (by a few milliseconds) because of the phase picks represented in the training

dataset. The training dataset consists of larger magnitude earthquakes (-0.81 < M < 5.7)

and in contrast to microseismic events, these regional events usually last longer than a

second. Phase pick arrivals that are off by milliseconds would not be noticeable on large

regional events but would be significant on microseismic phase picks. These regional

phase picks would affect the model’s ability to pick on microseismic events accurately

and thus severely affect event locations. Ultimately, to produce better event locations, we
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would need to ensure that the model’s phase picking is accurate by fine-tuning the model

with accurately picked microseismic phases.

In addition to enhancing event locations by improving the model’s pick accuracy, we

could also improve event locations by enhancing relative event locations. This can be

done by using HypoDD, a double-difference earthquake location program (Waldhauser

& Ellsworth 2000), which is good at obtaining relative locations. The catalogued PNR

event locations were obtained from CMM locations and appear more clustered than the

present model event locations. Smith et al. (2015) and Drew et al. (2013) show that the

refinement of phase arrival time picks (by event SNR values), location by Hypoinverse

(Klein 2002), followed by double-difference relocation using HypoDD (Waldhauser &

Ellsworth 2000) improves event locations. They reveal geological structures more clearly

with tighter event clustering using HypoDD on manually refined (by event SNR values)

events when compared with just the CMM-derived locations (Figure 6.1). Both manually

refining events and double-difference relocation have the potential to enhance our event

locations. However, manually refining events will decrease the number of events found

by the model- especially when microseismic events have low event SNR values. If we

want to keep the same number of events, we will just have to apply double-difference

relocation on the event locations to achieve clustering with good relative event locations.

6.3 Periods of Interest

During the high magnitude period, the GPD model did detect a small number of new

aftershocks. During this period, no fluid is injected and it is relatively quiet in terms of

seismic activity when compared with the period of event onset during high injection rate.

The new events make up 6.25% of the total events found during this period. This is lower

when compared with higher seismicity during high injection rates- where 23% of the

catalogue are new events. As the GPD model did not detect a lot of new events that the

CMM missed, we can assume that the CMM catalogue is fairly complete for events Mw

≥ -2 during seismically quiet periods after a high magnitude event. This assumption is

for Mw ≥ -2 events because we know the model frequently misses small (Mw < -2) events.

It is possible that both methods could be missing the same events but it is hard to gauge

without a third event detection method.
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Figure 6.1: From Drew et al. (2013), the panels show the event clusters on a cross-section
along the strike of a dyke intrusion in Iceland located by (a) the CMM method and
(b) after manual refinement of traveltimes, Hypoinverse locations (Klein 2002) and
relocations using double-difference (HypoDD).

Disregarding missed Mw < -2 events, the GPD model is more sensitive than the CMM

method in detecting seismic events during periods of high injection. Results show that

the model produces a 10% increase of detected events. The model detects events more

frequently than the CMM method during injection- when the seismic rate is high. This

may be because the GPD model’s short 0.2 second sliding window can detect individual

phases within the continuous data with every 50-sample (0.025 s) window shift. This

highlights a shortcoming of the CMM method for monitoring injection activity. When

seismic activity is high, the CMM method cannot detect events that occur in close tempo-

ral proximity to each other.
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The CMM method missed these events because when multiple events occur within

the same time window, the algorithm only uses the maximum coalescence value (the

largest magnitude event in the window) to migrate into the 3-D subsurface traveltime

grid. When the injection rate increases, the rate of seismicity also increases so it is more

likely for several events to be within the same time step. Therefore, the CMM could

not detect these events because of the time step window defined by the user. Reducing

the duration of this window will increase the number of event detections for the CMM

on event onset periods during high injection but will make the process more costly and

computationally intensive.

6.4 Comparison of the GPD model with Other
Earthquake Detection Methods

6.4.1 Computational Runtime

The GPD model has shorter runtimes in comparison to methods like the CMM method,

autocorrelation and the FAST algorithm. Shorter runtimes can provide more time for

the operators to make more informed decisions for real-time microseismic monitoring

during injection. This is useful for optimising project operations and increasing resource

recovery rates. Faster runtimes also allow the events to be located sooner and thus will

provide vital additional time to indicate fault reactivation. Short computational runtimes

also provide advantages to post-hoc analysis. With improved fast processing on large

datasets, it is easier to re-run analysis and achieve results quickly without the use of

massive supercomputers.

6.4.2 Event Detection and New Events

We have determined that the GPD model can detect events in high frequency downhole

data. From the multi-station workflow, the model managed to detect 81% of the CMM

events. Most of the missed events were small (Mw < -2). Prior to this study, it was not

known if the surface-station trained model would be able to detect events in higher sam-

pling frequency data without first decimating the data to the same sampling frequency
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during model training (100 Hz).

Other than being applicable to high resolution downhole data, the GPD model de-

tected new events that the CMM method missed. The model has detected a lot more Mw

> -2 events than the CMM method when the seismic rate increases during injection. The

new model events can better delineate or highlight features in the subsurface quicker.

Further analyses, such as magnitude estimates and better relative event locations, are

needed for the new events. Good locations, along with magnitude estimates (which were

beyond the scope of this thesis) could potentially help us learn more about the fluid

injection and the physical mechanisms that induce these events- although this still

remains to be seen. We can track the growth of seismic fracture networks by monitoring

HFIS (Hainzl & Ogata 2005, Gale et al. 2014, Orlecka-Sikora et al. 2019). More located

events could more quickly illuminate the migration pathways of the fracturing fluid if

the induced seismicity is caused by fluid migration. This is to make sure the fracks are

well-contained, not reactivating a pre-existing fault, and that the fluid is being injected

into the target formation. Overall, it would be promising to utilise the model’s ability to

detect events during high seismic activity for the real-time monitoring of projects that

involve fluid injection.

This study has found events that were not detected by both the CMM method and

the GPD model (e.g. Figure 5.11 in subsection 5.3.2, Results). These events might not

be detected by the CMM method because it only detects the signals of the largest event

within the time step. The GPD model could not detect these events because these small

events might have Mw < -2, and we know from previous results that the model can not

detect these events well. Therefore, this gives another motivation for fine-tuning the

model: after fine-tuning, the model could potentially detect additional small (Mw < -2)

events that were not detected by the CMM method.

6.5 The GPD model, Other Deep Learning Models
and HFIS

The GPD model is suitable for detecting seismic events in continuous data recorded on

downhole geophones. It is also able to detect seismic events with smaller magnitudes

(Mw ≥ -2) than the training data the model was trained with (-0.81 < M < 5.7). This
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may be because the model works reasonably well in detecting microseismicity, where

the events are short enough to fit in the 400-sample (0.2 second) sliding window, on data

with a high sampling frequency (2000 Hz).

There are a range of other deep learning earthquake detection models that can poten-

tially perform better than the GPD model in detect HFIS (e.g. PhaseNet by Zhu & Beroza

in 2019 and ConvNetQuake by Perol et al. in 2018). Results from comparing computation

runtimes of several event detection methods suggests that the ConvNetQuake could

process large datasets faster than the GPD model. Besides ConvNetQuake, PhaseNet

is another deep learning model that could perform better than the GPD model. The

PhaseNet model takes into account the accuracy of phase picks by producing Gaussian-

shaped probability distribution peaks around each phase pick. In PhaseNet, phase

arrival times are measured from the peak of the probability distribution so accuracy does

not depend on when the probability threshold is exceeded (Zhu & Beroza 2019). Accurate

arrival times can produce absolute event locations that will be more accurate than GPD

model locations. However, we do not know how well the ConvNetQuake nor PhaseNet

model can detect microseismic events (with low SNR) in high frequency downhole data.

Therefore, the model ability to detect HFIS in high resolution downhole data should be

explored further with comparisons between the different models.

We chose the GPD model because it is one of the most extensively trained models,

and is thus expected to generalise more easily, including to high-frequency phase ar-

rivals on geophones. Extensive training helps deep learning models to better generalise

representations and recognise features that may indicate presence of a phase arrival

and correctly classify waveforms to produce picktimes. Ross, Meier, Hauksson & Heaton

(2018) showed the adaptability of the GPD model by detecting (larger) magnitudes out of

the magnitude range of the training data. On this basis, our results partially support

the general applicability of the model. The model could detect lower magnitude events

out of the trained magnitude range but also struggles to detect events below Mw < -2.

The model works reasonably well when taking into account that it has not been trained

on detecting HFIS. However, the model has the potential to improve downhole event

detection with fine-tuning.
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Conclusions

We demonstrated the flexible applicability of the GPD model- as it is able to detect

seismic events within continuous data recorded on downhole geophones even though the

original model was trained on larger events recorded on surface station data. Through

classification tests and multi-station event detection results, we found that the perfor-

mance of the off-the-shelf GPD model with high frequency downhole signals is mixed.

Although the model does manage to detect microseismic events within the continuous

data, it misses most Mw < -2 events, has a tendency to detect more S than P phases,

and only has precision and recall values of 0.7 for the largest (Mw > 0) induced events.

Tajbakhsh et al. (2016), Huang et al. (2017) and Lapins et al. (2019) have shown that

fine-tuning either with large or small datasets have improved CNN model performances.

On this basis, we conclude that the off-the-shelf GPD model needs to be fine-tuned

to improve phase classification of hydraulic fracturing induced seismicity and event

detection of microseismicity.

From the catalogue comparison between the GPD model and CMM method, we de-

termined that the model is able to find new events that went undetected by the CMM

method during the event onset period during high injection rates. The additional events

found by the GPD model reveal a weakness in the CMM model to detect rapidly increas-

ing seismicity during injection operations. Moreover, the lack of additional events (or

new aftershocks) found during seismically quieter periods (when no injection occurred)

after a high magnitude event (Mw > 0) suggests that the event catalogue of the CMM

method for Mw > -2 events is relatively complete.
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New events found during high injection rates can potentially offer insights into the

physical mechanisms that trigger induced seismicity during fluid injection. These addi-

tional events could help us track fluid flow or changes in stress more easily. We can also

more accurately constrain seismic rates and outline seismic features more clearly within

the subsurface using the additional events.

This study also showed that event locations derived from off-the-shelf GPD phase

picks produced more scattered locations compared to the more tightly clustered events

located by the CMM method. The lack of clustering in model locations can be explained

by the model’s inaccurate picks on microseismic phases. This is a further motivation for

retraining or fine-tuning the GPD model. More accurate phase picks will improve event

locations.

We also demonstrated that the GPD model has a computational runtime advan-

tage over other earthquake detection methods- such as the Fingerprint and Similarity

Thresholding (FAST), autocorrelation, and the Coalescence Microseismic Mapping (CMM)

method. The deep learning model yields a shorter computational runtime for the same

duration of continuous data (1 week of 100 Hz data on one station). The efforts of this

study show the potential of improving real-time monitoring in fluid injection operations

(e.g. hydraulic fracturing, geothermal or carbon capture and storage projects) by exploit-

ing the short runtimes offered by deep learning earthquake detection algorithms.
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Confusion Matrices from the Classification Test on
Different Event Magnitude Bands

DURING
INJECTION MODEL (PREDICTED)

CATALOGUE
(ACTUAL)

Phase P S NOISE TOTAL
P 22 0 78 100
S 10 7 83 100

NOISE 0 0 100 100
TOTAL 32 7 261 300

Table A1: Confusion matrix for 100 random-magnitude events during injection.

TOP 50
Mw > 0 MODEL (PREDICTED)

CATALOGUE
(ACTUAL)

Phase P S NOISE TOTAL
P 34 0 16 50
S 20 23 7 50

NOISE 0 2 48 50
TOTAL 54 25 71 150

Table A2: Confusion matrix for the 50 largest ‘high magnitude’ (Mw > 0) events.
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BOT 50
Mw < -2 MODEL (PREDICTED)

CATALOGUE
(ACTUAL)

Phase P S NOISE TOTAL
P 0 0 50 50
S 0 0 50 50

NOISE 0 0 50 50
TOTAL 0 0 150 150

Table A3: Confusion matrix for the 50 smallest ‘low magnitude’ (Mw < -2) events.

MID 50
-2 ≤ Mw < 0 MODEL (PREDICTED)

CATALOGUE
(ACTUAL)

Phase P S NOISE TOTAL
P 8 4 38 50
S 13 11 26 50

NOISE 1 1 48 50
TOTAL 22 16 112 150

Table A4: Confusion matrix for the 50 ‘mid magnitude’ (-2 ≤ Mw< 0) events.

MID 25
-1 ≤ Mw < 0 MODEL (PREDICTED)

CATALOGUE
(ACTUAL)

Phase P S NOISE TOTAL
P 7 0 18 25
S 9 6 10 25

NOISE 0 0 25 25
TOTAL 16 6 53 75

Table A5: Confusion matrix for the 25 (-1 ≤ Mw < 0) events.
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CONFUSION MATRICES FROM THE CLASSIFICATION TEST ON DIFFERENT
EVENT MAGNITUDE BANDS

MID 25
-2 ≤ Mw < -1 MODEL (PREDICTED)

CATALOGUE
(ACTUAL)

Phase P S NOISE TOTAL
P 1 4 20 25
S 4 5 16 25

NOISE 1 1 23 25
TOTAL 6 10 59 75

Table A6: Confusion matrix for the 25 (-2 ≤ Mw < -1) events.
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