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Abstract Page 
Microglia are a tissue-resident immune cell of the central nervous system known to possess 
functions involved in immune surveillance and tissue homeostasis. Transcriptomics has 
characterised microglia and enabled discovery of microglial heterogeneity in addition to core 
microglial transcriptional programmes. However, investigation of microglia during severe 
inflammatory contexts has been challenging because no markers reliably discriminate them 
from the monocyte populations that ingress during inflammation. Nonetheless, candidate 
markers have been identified; these show promise in specific microglial identification yet 
remain to be widely validated. 

Within the literature, there are conflicting reports on how microglia regulate or promote 
inflammation depending on the tissue insult. However, it is well-recognised that the 
homeostatic state of microglia is altered yet it remains unknown if this state is restored post-
resolution. Furthermore, understanding the plasticity of microglial responses to both acute and 
persistent inflammation within the eye will help to determine the extent to which different 
pathways are perturbed. 

The purpose of this thesis was to investigate the transcriptional changes that occur in retinal 
microglia in response to inflammation and whether the homeostatic threshold remains 
perturbed after acute and/or chronic inflammation. 

The data presented herein demonstrates how an ultra-low input mRNA-Seq approach was 
optimised and validated to permit transcriptomic assessment of low numbers of cells isolated 
from individual retinas. The Cx3cr1CreER:R26-tdTomato mouse line was then validated as 
microglial-specific during inflammation. mRNA-Seq was utilised to profile the temporal 
kinetics of the microglial transcriptome in the acute endotoxin-induced uveitis (EIU) model. 
Restoration of the microglial homeostatic state was confirmed, and key marker changes were 
orthogonally validated. Furthermore, C5AR1 was validated as a marker for differentiating 
microglial subsets during inflammation. The next steps have begun to examine microglial 
behaviour in experimental autoimmune uveitis (EAU), a model of chronic inflammation, and 
new approaches are being optimised to better understand tissue heterogeneity. 
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1.1 Intraocular Inflammation  
Chapter I: Introduction 

Intraocular inflammation, commonly described as uveitis, refers to a spectrum of autoimmune-

autoinflammatory diseases of the eye and infection locally to the eye [1]. Non-infectious uveitis 

is relatively rare, having estimated incidence rates of 17–52 individuals per 100,000 per year and 

prevalence rates of between 40–400 individuals per 100,000 [2-5] (or 1 in 250–2,500 individuals). 

It is more common in females than males [6-8]. The large variability in these estimates between 

studies could be due to the year of sampling, geographical region, or other bias in the sample 

population. Nonetheless, uveitis is estimated as the commonest cause (1 in 10 cases) of blindness 

in 20–60 year-olds (the “working-age” population) [9] and the fourth commonest cause of 

blindness overall in developed countries [1]. Visual impairment is well-characterised to restrict 

participation in daily activities [10] and lower quality of life [11], as well as increase the risk of 

mortality by more than two-fold [12]. As a common cause of blindness, uveitis represents a 

significant health problem. 

Describing and classifying uveitis has historically been ambiguous and non-standardised, 

making interpreting or comparing historical work by different authors difficult. In 2005 the 

standardisation of uveitis nomenclature (SUN) working group (a group of 45 international 

uveitis specialists) published a report of classifications, descriptors, and grading scores for 

uveitis and definitions to address these issues [13]. Uveitis is predominantly classified based on 

the primary site of inflammation (e.g. anterior, intermediate, posterior, or pan-), but a variety 

of other descriptors and grading schemes (e.g. acute, recurrent, or chronic) are important so 

that information from human studies are more readily comparable. Uveitis has a variety of 

aetiologies; these can be grouped into categories such as infectious or non-infectious, and 

systemic or local. There are at least 28 major causes of non-infectious uveitis [14, 15] and the 

majority of cases (~80%) are not associated with other systemic diseases (often referred to as 

idiopathic autoimmune uveitis) [16]. HLA-B27 is an important allele that associates with both 

idiopathic forms of anterior uveitis and some systemic-associated forms of uveitis which 

coincide with diseases such as ankylosing spondylitis, inflammatory bowel disease, and psoriatic 

arthritis [17]. The other systemic diseases most frequently associated with uveitis include 

sarcoidosis, Behçet disease, juvenile idiopathic arthritis, Vogt-Koyanagi-Harada syndrome, and 

multiple sclerosis [18]. Despite the large number of causes, it is well-recognised that 

commonality exists in disease mechanism i.e. the immune system is dysregulated, that similar 

or identical cell types participate, and patients typically have some form of persistent 

inflammation. 
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The clinical features of uveitis are primarily determined by the anatomical region in which the 

active inflammation is occurring, and therefore which tissues and structures are most likely 

altered. It can affect one or both eyes and usually has a rapid and sudden onset. Common 

symptoms include pain, redness, photophobia, and blurring or other alterations to vision. In 

severe cases cystoid macular oedema, cataracts (opacification of the lens), synechiae (adherence 

of the iris to the cornea or lens) and ultimately loss of visual acuity can occur [19, 20]. 

The National Institute for Health and Care Excellence (NICE) Clinical Knowledge Summary 

(CKS; it represents the United Kingdom’s [UKs] standard national health service [NHS] policy) 

states that glucocorticoids (steroids) are the first-line treatment for uveitis. Whilst these are 

efficacious in 60–70% of patients [21], they are well-known to cause a multitude of side effects 

that coalesce into Cushing’s syndrome, making their long-term use inappropriate. If the 

aetiology is believed to be infectious, then an appropriate antimicrobial agent would also be 

administered. Other interventions, such as cycloplegic-mydriatics, tumour necrosis factor 

(TNF) inhibitors, laser phototherapy, cryotherapy, or vitrectomy may also be administered [22]. 

Much work has recently attempted to establish where and when to use the various treatments 

available at an ophthalmologist’s disposal [23]. Nonetheless, current management of uveitis 

could be enhanced and further developed. 

Development of therapeutics that are more efficacious, and potentially have fewer side effects, 

requires a better understanding of the physiology of the eye and pathophysiology of uveitis; this 

would allow for the selection of a therapeutic target that is more specific than the generalised 

immunosuppression that glucocorticoids and other existing treatments exhibit. 
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1.2 The Eye 
The eye is a highly specialised organ dedicated to photoreception – the detection of light energy 

from the environment by rod and cone cells (types of photoreceptors). Photons of light can 

interact with these rod and cone cells (the latter being stratified into 3 subtypes in most 

humans) and become transformed into electrical signals by the process of visual 

phototransduction. This can ultimately be interpreted by specialised regions of the brain that, 

along with the eyes (including structures required for accommodation, miosis, mydriasis, 

and/or those which supporting and nourishing the visual structures) and connecting pathways 

(e.g. optic nerve [ON]), form the visual system [24]. Sight is relied upon as a principal sensory 

mechanism in a large number and variety of species, humans included, and has clear 

evolutionary advantage [25]. In humans, sight is hugely important to participation in daily 

activities [10]. 

The eye is a spheroid structure consisting of segments of two spheres. The anterior (and smaller) 

sphere has a boundary comprised primarily of the cornea and lens, whilst the posterior is 

contained within the sclera; they contain fluids termed the aqueous humour and vitreous body 

(formerly humour; VB) respectively [26]. The contents are surrounded by three layers: the 

corneoscleral (fibrous) coat, uvea (comprising the iris, ciliary body, and choroid), and the retina 

(neural layer) [27]. A diagram, highlighting key components of the human eye, is shown in 

Figure 1.2.1. 

Light is refracted by both the cornea and lens to focus an image on the retina. The cornea has a 

fixed refractive power, whilst the lens is variable and can be controlled by tension (or slack) of 

the suspensory ligaments (also known as the lens zonules or zonules of Zinn) ultimately 

controlled by the contractile state of the ciliary body – a process termed accommodation [28]. 

The size of the pupil (aperture) is altered by the iris sphincter muscle or the iris dilator muscle, 

for miosis and mydriasis respectively, and can be manipulated with pharmacological agents 

[29]. Aqueous humour is produced by the ciliary body epithelium and drains via the canal of 

Schlemm [24]. When observing a fundus image (taken from an anterior position), the optic disc 

(blind spot), fovea (and surrounding macula), and blood vessels (as well as the orange-pink 

colour of the retina) are apparent [27]. 

The retina, along with many other structures in the eye, is a complex tissue comprised of 

multiple cell types and structures. It is stratified into 10 different layers which are visualised in 

Figure 1.2.1 and 1.2.2 [30]. Each of these layers is briefly summarised in Table 1.2.1.  
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Figure 1.2.1. A schematic diagram representing the structure of the eye (top) to include 

cells and layers within the retina (bottom). Abbreviations: NFL – nerve fibre layer, GCL – 

ganglion cell layer, IPL – inner plexiform layer, INL – inner nuclear layer, OPL – outer plexiform 

layer, ONL – outer nuclear layer, IS – rod and cone inner segment, OS – rod and cone outer 

segment, RPE – retinal pigment epithelium, BM – basement membrane. Adapted from [31]. 
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Figure 1.2.2. A histological section of the retina and choroid highlighting the different 

segments and their appearances with haematoxylin and eosin staining. Haematoxylin 

stains the nuclei purple whilst eosin stains the cytoplasm and extracellular matrix pink. 

Abbreviations: NFL – nerve fibre layer, GCL – ganglion cell layer, IPL – inner plexiform layer, INL 

– inner nuclear layer, OPL – outer plexiform layer, ONL – outer nuclear layer, ELM – external 

limiting membrane, IS – rod and cone inner segment, OS – rod and cone outer segment, RPE – 

retinal pigment epithelium, BM – basement membrane. Adapted from [32] and used under licence 

(CC BY 3.0).  
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Layer Primary Components Function Reference 

NFL Ganglion cell axons 
Transmit action potentials towards the 

brain (ultimately via the ON) 
[33] 

GCL Ganglion cell bodies 

Components of the visual system 
(relating to electrophysiology) 

[26] 

IPL 
Synapses between bipolar cells and 

ganglion/amacrine cells 

INL 
Cell bodies of the amacrine, bipolar, 

and horizontal cells 

OPL 
Synapses between PRs and 

bipolar/horizontal cells 
ONL Photoreceptor cell bodies 

ELM 
Junctional complexes between PRs 

and MCs 
Mechanical strength and barrier [34] 

IS/OS PRs 
Light detection and conversion into an 

electrochemical signal 
[35] 

RPE Simple cuboidal epithelium 
Barrier, and control of substance 

movement in/out of retina 
[34] 

BM Extracellular matrix (collagen) Structural integrity [36] 

Table 1.2.1. Primary components of the retinal layers and their basic function. Abbreviations: NFL 

– nerve fibre layer, GCL – ganglion cell layer, IPL – inner plexiform layer, INL – inner nuclear 

layer, OPL –plexiform layer, ONL – outer nuclear layer, ELM –external limiting membrane, PR 

– photoreceptor, MC – Müller cells, IS/OS – inner/outer segments, RPE – retinal pigment 

epithelium, BM – basement membrane. 
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In addition to the cells which detect light, convert it into an electrochemical signal, and transmit 

this to the brain there are several other cell types present in the eye important for maintenance 

of physiological conditions. Microglia and macroglia (astrocytes and Müller cells) are important 

for supporting neurons in a multitude of ways which have been extensively reviewed recently 

[37]. Furthermore, there are an abundance of different tissue-resident immune cells, or 

sentinels, which observe the environment for danger. When required, they can manage threats 

or escalate by initiating a cascade of events which promote the infiltration of peripheral immune 

cells to assist. Tissue-resident macrophages and dendritic cells have been observed in the 

cornea, choroid, iris, and ciliary body, whereas tissue-resident mast cells have been observed in 

the iris, ciliary body, and choroid of some species [38-40]. Microglia possess an immune 

function, in addition to their supporting roles, and are discussed in greater detail later in this 

chapter [41]. The retinal pigment epithelium (RPE) also plays an important role in immune 

responses and modulation [42]. 

In addition to this, it is typical to also observe non-tissue resident lymphocytes and other 

immune cells within non-inflamed retinas; in the absence of inflammation a very small number 

can still infiltrate and egress without apparent damage or clinical features [40]. Furthermore, it 

appears possible for tissue-resident T lymphocytes to be present within normal eyes in some 

species, or for the development of tertiary (or ectopic) lymphoid structures in eyes that have 

undergone persistent inflammation [43, 44]. 

The delicate structure of the eye, and its highly important role in daily activities, has meant that 

investigation using invasive techniques in humans is greatly limited [16]. To overcome these 

challenges, investigations utilising model organisms have been performed. Mice are commonly 

employed to model human diseases of the eye and are a prime organism of choice with a variety 

of models and transgenic lines (relevant models of intraocular inflammation and transgenic 

lines are discussed later). However, it is noteworthy to highlight key differences between human 

and mouse exist as they are separated by roughly 87 million years of evolution and around 300 

genes are unique to one species or the other [45-47]. With respect to eyes, mice do not possess 

a macular or fovea, their eye is a single spheroid (still containing both the anterior and posterior 

chambers), and the lens is considerably larger (Figure 1.2.3) [48]. Nonetheless, human and 

mouse eyes exhibit a lot of similarities and many advancements in our understanding of eye 

biology have originated from studies in the mouse. 
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Figure 1.2.3. Schematic diagrams of sagittal sections of the human (top) and mouse 

(bottom) eyes to highlight their similarities and differences. The primary differences 

include a relatively larger lens in the mouse in addition to an absence of both fovea and macula. 

The mouse eye more closely represents a single spheroid as well. Abbreviation: RPE – retinal 

pigment epithelium. Adapted from [48] and used under licence (CC BY 4..0). 

  



Chapter I: Introduction 

10 
 

It is also relevant, at this point, to highlight that mouse and human immune systems also exhibit 

discrepancies despite many similarities. Generally, human blood has a high proportion of 

neutrophils whilst in the mouse lymphocytes predominate. Mice have considerably more 

bronchus-associated lymphoid tissue, and haemopoietic stem cells express markers (e.g. c-kit 

and flt-3) to varying degrees between the species [47]. Whilst many new drugs and targets have 

translated from mouse to man many others have failed, highlighting underlying differences 

between the species and/or poor disease modelling [49]. Whilst it would be self-confounding 

to experiments, there is even data to suggest specific pathogen free (SPF) conditions alter the 

mouse immune response – with data showing some bystander infections confer resistance to 

otherwise lethal infections [50]. However, it remains pragmatic to utilise mouse models in 

situations where no better alternative currently exists, and to try and normalise conditions (and 

include the proper controls) so experiments are more readily comparable – meaning that 

control of environmental pathogens and bystander infections is a necessary compromise to 

reduce confounding within experiments. 
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1.3 Murine Models of Uveitis: 
An early paper describing ocular reactions to exogenously administered substances was 

published in 1943 [51]. However, it wasn’t until the 1980s that the first models of uveitis were 

developed (in rabbits and rats): experimental autoimmune uveitis (or uveoretinitis; EAU) and 

endotoxin-induced uveitis (EIU), induced by immunisation and endotoxin respectively [52-54]. 

Since then, these models have been adapted for the mouse and multiple new variations have 

emerged: novel vaccination peptides, adoptive transfer (AT) of uveitogenic cells, transgenic 

mice which develop uveitis spontaneously, infection models with cytomegalovirus or 

M.tuberculosis, and alternative administration routes or substances (for EIU) [55, 56]. Each 

model generates a different clinical phenotype which can help in modelling different aspects of 

uveitis and correlation to patient phenotypes. However, none of these models accurately 

recapitulates human disease [57]. Despite a diverse range of induction approaches, some 

common effector mechanisms exist to cause disease [57]. 

1.3.1 Experimental Autoimmune Uveitis 

EAU is a model of local non-infectious posterior uveitis, mediated by cluster of differentiation 

(CD) 4+ T cells primarily via the T-helper 1/17 (Th1/17) axis [1]. It was first described in the mouse 

in 1988 [58]. EAU is conventionally induced by immunising the mouse against retinal antigens. 

To achieve this, a mouse is required that has a permissive background (to include possession of 

a susceptible haplotype) such as a B10.RIII or C57BL/6 strain, but also an encouraging 

environment so that autoimmune disease can develop [59]. The environment is generated by 

three major components: complete Freund’s adjuvant (CFA), pertussis toxin (PTX – this 

component is optional, but its use increases the rate of successful induction), and the 

immunising autoantigen. The peptide is not usually an exact match of a mouse retinal antigen 

and therefore this system could be considered similar in mechanism to molecular mimicry in 

terms of how it models autoimmunity. The environment is administered only once and poorly 

simulates both the burden of infection (or multiple acute events) over the lifetime of an 

organism and the relapsing nature of uveitis (see Section 1.4). 

CFA contains heat-killed and dried Mycobacterium tuberculosis of the strain H37Ra dissolved 

in paraffin oil and mannide monooleate. Adjuvants are used in vaccines and immunisation 

models as they enhance the immune response to a particular antigen; in the case of CFA, cell-

surface antigens of the M.tuberculosis strain activates TLR2, leading to MAPK/ERK activation 

and expression of TNF-α, leading to acute activation of the innate immune system and up-
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regulation of TLR2 and TLR4 [60]. Knockout of the TLR adapter protein, MyD88, results in 

resistance to EAU induction [61]; however, single or paired TLR2/4/9 knockouts did not induce 

disease resistance [62] suggesting redundancy within TLR-signalling. Interleukin-1 receptor (IL-

1R)-deficient mice are resistant to EAU induction, implying an essential role [61]; IL-1β is a pro-

inflammatory cytokine produced by monocytes, macrophages, dendritic cells, and microglia in 

response to TLR stimulation, and it causes enhanced endothelium permeability to infiltrating 

cells such as T lymphocytes [63], highlighting the vital role myeloid cells play in the initiation 

of EAU. However, TLR agonists have been shown (compared to TLR-knockout mice) to enhance 

disease severity [62], especially in less-susceptible strains or where low concentrations of 

antigen are used. This highlights how the local context can influence the sensitivity tuning of 

the T cell receptor (TCR). 

PTX is primarily useful for autoimmune disease induction in the eye because the eye is relatively 

immune privileged under physiological circumstances. PTX has multiple subunits, organised in 

a typical A-B structure. PTX raises the permeability of the blood-brain barrier (BBB) [64], which 

the blood-retinal barrier (BRB) is an extension of, enhancing temporary access of immune cells 

to the eye. The primary mechanism of action of PTX is to inhibit Gi proteins via ADP-

ribosylation via the A-promoter, although it is recognised that PTX has other pharmacological 

properties too [65]. For example, the B-oligomer acts as an adjuvant, binding to and activating 

TLR4 to enhance immune responses [66]. PTX has been shown to enhance many CD4+ T cell 

responses [67], in particular Th1 and Th17 cells indicated by increased interferon-γ (IFN-γ) [68] 

and IL-17 [69] expression. As M.tuberculosis up-regulates TLR4 expression [60], it is likely to 

have a synergistic interaction with PTX with respect to enhancing immune responses. 

The final component, the antigen, is specific to the target the mouse is being immunised against. 

The antigen chosen, the mass required, and the amino acid residues varies depending on the 

strain used because their genetic background (primarily major histocompatibility complex 

[MHC] haplotype) alters susceptibility. For example, the immunisation protocols used by our 

group for B10.RIII strains utilise RBP-3161-180 (retinol binding protein-3, also known as human 

inter-photoreceptor retinoid-binding protein [hIRBP]) whilst in C57BL/6 strains RBP-31-20 or 

RBP-3629-643 are used in a much greater final concentration instead. 

EAU is a model where, after active immunisation, the first clinical signs of disease (generally 

swelling and brightening of the optic disc) are observed around days 12–14, followed by 

perivascular sheathing and the development of spots and/or lesions – which by peak of disease 

(days 21–27) covers the vast majority of vessels in the C57BL/6 mouse. It is followed by further 
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structural damage described as a “secondary progression” or resolution phase [70, 71]. In the 

B10.RIII strain, disease develops earlier and more aggressively. Whilst EAU was originally 

considered to model posterior uveitis, features of anterior uveitis have also been observed [72]. 

Since the report of the original model, several variations have since emerged. These can include 

immunisation against different peptides or different regions of an already identified uveitogenic 

peptide [71, 73-77]. However, other variants of EAU include the AT model where lymphocytes 

with antigen-specificity for retinal peptides are injected into recipient mice [78]. The AT model 

enables the investigation/delineation of retinal-specific T cells and endogenous T cells which 

have not (before disease) been selected for retinal antigen activity, especially if allelic markers 

(such as CD45.1 and CD45.2) are used to differentiate them. The AT model generally has a much 

faster onset and severity of disease, peaking around day 11 as a more acute form of EAU. Further 

variants include induction of anterior uveitis using melanin [79, 80], humanised EAU models 

(these mice have their murine MHC-II replaced with human HLA, with a spontaneous model 

using HLA-A29 mice – which in humans has a very strong genetic association with birdshot 

chorioretinopathy [81-83]), other spontaneous models through knockout of the AIRE gene (an 

important gene for central tolerance as described later) [84]. Lastly, models which mimic 

infection (linking both the innate and adaptive immune responses), partially diverge in effector 

mechanism, and therefore are considered separate models to EAU include both primed 

mycobacterial uveitis (a more anterior disease; PMU) [85] and cytomegalovirus (CMV) infection 

in immunodeficiency [86]. Generally, the induced models of uveitis tend to have a more acute 

and greater severity of disease whereas spontaneous models initiate earlier, last longer, and 

result in a greater loss of retinal function (as measured by electroretinogram [ERG]) [87]. The 

different peptides used to induce EAU in rodents (and their protocols) have already been 

comprehensively reviewed [88]. 

1.3.2 Endotoxin-Induced Uveitis 

Endotoxin-induced uveitis (EIU) is another model of uveitis; it was originally induced by 

subcutaneous or intraperitoneal injection of lipopolysaccharide (LPS – a potent activator of the 

immune system and component of the outer membrane of gram-negative bacterial that is 

recognised by TLR4 [89]). It leads to an acute short-lived monophasic reaction that was 

originally considered synonymous to anterior uveitis [52]; however, it is now recognised to 

exhibit clinical features that are analogous to posterior uveitis as well [90]. 
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New variations on the EIU model have since emerged, such as administering LPS intravitreally 

[91]; this approach would simulate local uveitis as opposed to systemic, whilst also greatly 

reducing the amount of LPS used to induce disease in each mouse eye. Other variations include 

using different immunostimulatory molecules (such as other TLR agonists) to induce 

intraocular inflammation [92]. Comparisons between peripheral and local administration of LPS 

have been made, showing that in the mouse (in which less severe disease is seen with respect to 

the rat – the originally-described organism for this model) cellular infiltrate is poor when 

administered systemically, but alterations in cytokine levels that were broadly similar to local 

administration were observed [93]. It is also recognised that the amount of LPS required 

systemically for EIU has a multitude of serious adverse effects in the mice that is considered 

unnecessary suffering – use of local administration in addition to titrating the amount of LPS 

(or other molecule) administered is a refinement (one of the 3Rs – a framework for more 

humane animal research [94]) of the model. It is also known that a reduced disease severity 

could predictively enrich the treatment effect of potential therapies tested downstream [95]. 

This could be coupled with the recent advancements in analysis of retinal disease models via 

the development of high resolution in vivo imaging platforms and general analytical approaches 

for images (such as image segmentation [96]) that provide greater ability and sensitivity for 

detecting and classifying disease in all ocular models. For example, scoring of EIU using optical 

coherence tomography (OCT)-based methods has been recently reported [97]. Table 1.3.1 

summarises multiple different mouse models of uveitis. 
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Uveitis (Variant) 
Model 

Spontaneous vs. 
Induced 

Overview Reference 

EAU Induced Original EAU mouse model, 
immunisation against RBP-3. 

Multiple variants against other retinal 
antigens/regions have since emerged 

Original: [58] 
Variants: 

[71, 73-77] 

EAU (humanised HLA-
DR Tg mouse) 

Induced Mice with Tg (human) HLA become 
susceptible to uveitis induction 

[81] 

EAU (AT) Induced Injection of uveitogenic CD4+ T cells 
generated from donor mice 

[78] 

EAU (Melanin) Induced Immunisation against melanin, causing 
anterior uveitis 

[79, 80] 

Lens-associated 
uveitis 

Induced AT of TCR Tg lymphocytes (against HEL) 
into Tg mice where lens expresses HEL 

[98] 

PMU Induced Systemic priming with M.tub Ag followed 
by local M.tub Ag. Repeated injections 

possible for a more chronic disease form 

[85] 

CMV Induced Local administration/infection with CMV [86] 
AIRE KO Spontaneous Failure of central tolerance leads to 

systemic autoimmunity 
[84] 

HLA-A29 Spontaneous Insertion of HLA-A29 from birdshot 
chorioretinopathy patient 

[82] 

RBP-3 R161H Tg 
mouse 

Spontaneous Spontaneous EAU in mice with Tg auto-
reactive CD4+ T-cells to RBP-3 

[99] 

TrP-HEL transgenic 
mouse 

Spontaneous Spontaneous EAU, utilising HEL system, 
by crossing melanocyte-specific-HEL 

mice with HEL-specific TCR CD4+ T cells 

[100]  

HEL-transgenic 
mouse 

Spontaneous Spontaneous EAU, utilising HEL system, 
by crossing IRBP-HEL mice with HEL-

specific-TCR CD4+ T cells 

[101]  

EIU (LPS systemic) Induced Systemic LPS dosing causes widespread 
acute inflammation 

[52] 

EIU (LPS local) Induced Local LPS dosing to the eye causing acute 
inflammation 

[91] 

EIU (non-LPS) Induced Dosing with PRR agonists (such as to 
TLRs) causing acute inflammation 

[92] 

Table 1.3.1. A summary and comparison of mouse models of uveitis. Since EAU and EIU were 

first described in 1988 and 1980 respectively, many variants have since emerged. Abbreviations: 

AT – adoptive transfer, CMV – cytomegalovirus, EAU – experimental autoimmune uveitis, EIU 

– endotoxin-induced uveitis, HEL – hen egg lysozyme, HLA – human leukocyte antigen, LPS – 

lipopolysaccharide, PMU – primed mycobacterial uveitis, PRR – pattern recognition receptor, 

RBP-3 – retinol-binding protein 3, Tg – transgenic, TLR – toll-like receptor. 

 

  



Chapter I: Introduction 

16 
 

1.3.3 In Vivo Clinical Assessment of Intraocular Inflammation 

The eye permits non-invasive repeatable in vivo clinical imaging to monitor disease across a 

time course and assists in understanding changes in tissue integrity, immune cell recruitment 

and activation, and assessment of retinal function. 

Live imaging techniques have improved dramatically in the last 15 years. Before imaging 

techniques, it was usual to score retinal disease using semi-quantitative approaches such as 

histology which was a terminal assay [70]. This greatly increased the number of required mice 

for an experiment, with exponential increases as more timepoints were used. As individual eyes 

could not be tracked through disease, this also meant that greater numbers were required to 

draw conclusions with confidence due to the inherent variability of the disease models. With 

improvements, approaches such as slit-lamp examination were utilised. The slit lamp is 

effectively a microscope coupled to a light source which can be focused to shine a thin layer of 

light into the eye. It permitted scoring in the same mouse across time and cross-correlation of 

terminal assays to disease within the same mouse [102]. Scoring was based exclusively on 

anterior features, is both coarse and subjective, and performed only by the researcher(s) 

completing the examination [103]. It also means that validation of scores by other researchers is 

not possible, meaning it could be confounded by bias. 

Further developments in imaging has enabled retinal diseases to be monitored by acquiring 

images of the posterior retina (fundal imaging) using topical endoscopic fundus imaging (TEFI 

– [70, 104, 105]) or by commercial imaging platforms such as the Micron IV [106]. TEFI, put 

simply, is the attachment of an endo-otoscope to the end of a single lens reflex (SLR) camera 

but also to a light source (via fibre optic cable) for image capture and retinal illumination, 

respectively. The Micron IV is a commercial retinal imaging solution (essentially a widefield 

microscope with condensing lenses) optimised for rat and mouse imaging. These imaging 

techniques are especially pragmatic as they allow for repeated imaging and monitoring of the 

same animal, facilitating a reduced requirement in terms of numbers, but also correlation to 

other ex vivo assessments (e.g. flow cytometry and immunohistochemistry) and an ability to 

remove confounding mice before or during an experiment (i.e. through baseline imaging to 

identify abnormalities, or confirmation of disease induction before allocation to treatment or 

control groups in the case of models such as EAU [107]). Additionally, the Micron IV imaging 

platform enables acquisition of other data in addition to brightfield fundus images: it has the 

capability to perform OCT (“in vivo histology”) and utilise filters for fluorescent imaging. In 

combination with cell tagging approaches (e.g. carboxyfluorescein succinimidyl ester [CFSE] or 
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transgenic reporter lines), it would be possible to track specific cell types during disease to 

better understand their dynamics during disease, and correlation to observed tissue damage or 

other (terminal) assays. 

Additionally, with fundal imaging it is possible to score EAU disease severity using multiple 

different reviewers who can readily be blinded to treatment groups to prevent potential 

confounding through bias (without blinding, treatment effect magnitude is estimated to 

increase by nearly 20% [108]). The convenience of digital images makes it easier to blind images 

and have multiple reviewers. This makes comparisons and tests of reliability and validity much 

simpler to perform. Furthermore, other emerging approaches for image analysis have been 

described. For example, it is possible to use OCT as an unbiased linear approach for scoring 

retinas during EIU [109]. Briefly, it utilises counts or volume measurements of objects 

(presumably immune cells) observed inside the vitreous body during inflammation. There is 

potential for application to EAU and other models where immune cell infiltration occurs as well. 

Whilst the imaging techniques allow for in vivo analysis, there are limitations in the information 

they can provide. At the cellular/molecular level, they can provide only minimal information 

(due to resolution limits – in the Micron IV, this is roughly 2 µm), thus facilitating the need for 

other ex vivo assessment. Nonetheless, the imaging techniques are especially useful in indicating 

successful induction of EAU, allowing for selection of mice that were successfully induced 

(incidence of EAU is typically 89-100% [110]) but also selection at a given time-point of the 

disease (early, peak, late as there can be great variability in the kinetics) so that molecular 

techniques and/or therapeutic interventions are performed on well-controlled samples. 

Baseline imaging can also exclude mice with anomalous eyes before use in an experiment. This 

ultimately means that fewer animals are required in each group to demonstrate significance at 

a statistical level. Imaging across a time-course also permits determination of good endpoints 

for an investigation, so that expensive or complicated assays can be performed at the correct 

time in future/repeat experiments. 
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1.4 Immunity and Inflammation 
The immune system spans the entire organism to maintain health, with well-known functions 

including protection from infectious diseases and aberrant host cells that have or could form a 

tumour but additional roles that include tissue morphogenesis, tissue homeostasis, removal of 

foreign/waste substances (scavenging), wound repair, and many more [111-115]. Underpinning 

all of these functions is the ability of the immune system to recognise and respond appropriately 

to self and non-self; where this fails autoimmunity, immune deficiency or other immune 

disorders such as autoinflammation can arise [116]. 

The immune system is divided into two arms at the cellular level: innate and adaptive. Key 

stages of the differentiation of haematopoietic cells (to include leukocytes, erythrocytes, and 

platelets), in addition to their localisation during these stages, is shown in Figure 1.4.1. The 

innate immune system is comprised predominantly by cells of the myeloid lineage and is the 

first arm of the immune system to respond to infection or damage. It does this via pattern 

recognition receptors (PRRs) which can detect the presence of damage to cells or tissues 

(damage associated molecular patterns [DAMPs]) or generalised cell-surface molecules which 

associate with foreign cells i.e. those found on a pathogen (pathogen associated molecular 

patterns [PAMPs]). Whilst these have a fixed and limited repertoire, each receptor will 

nonetheless act in a specific fashion. For example, TLR4 recognises lipopolysaccharide (LPS) – 

a major component of the outer membrane of gram-negative bacteria. 

In response to activation, innate immune cells perform functions such as phagocytosis and the 

secretion of chemokines/cytokines to recruit other immune cells and transiently increase 

immunological activity in that locale; the response can also enhance immunological surveillance 

across the body. PAMPs often have critical roles in the survival and function of these foreign 

cells and therefore cannot be lost or made redundant from them [117]. This partially explains 

how the innate immune system has retained effectiveness whilst pathogens would be under 

selection pressures against expression of these molecules (from an immunological perspective). 

The repertoire of receptors enables the recognition of many different pathogens and damage 

signatures but nonetheless is limited as there are a finite number of them, pathogens may be 

capable of altering other surface receptors, and a vast diversity of pathogen species exist. 

Therefore, innate immune responses are effective, but evolution has also driven the 

development of adaptive immunity which can combat continually evolving pathogens. 

The adaptive immune system, comprised by cells of the lymphocytic lineage (mainly T and B 

lymphocytes), has the capability to recognise an almost unlimited repertoire of molecules 
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(termed antigens) and overcomes shortfalls in innate immunity. T lymphocytes act directly on 

targets whereas B cells typically are associated with differentiating into plasma cells that 

synthesise antibodies (or immunoglobulins); in short, both major types of lymphocyte assist in 

target neutralisation. In addition, the adaptive immune system has the capacity for generating 

immunological memory – where the immune system mounts both a faster and stronger 

response to subsequent antigenic exposure. However, an effective initial adaptive immune 

response takes considerably longer to mount than an innate response, and crosstalk can occur 

between the two arms via mechanisms such as antigen presentation. That said, memory has also 

been observed in innate immune cells (controlled by epigenetic changes) that can last long-

term [118-120].
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          [121] 

Figure 1.4.1. Developmental summary 

of blood cells (haematopoiesis) to 

include their localisation and 

maturation during key stages. The 

common lymphoid progenitor gives rise 

to multiple adaptive immune cells, whilst 

the common myeloid progenitor gives 

rise to multiple innate immune cells. 

Taken from [121] and used under licence 

(CC0 1.0). 
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1.4.1 Innate Immunity 

Once a foreign cell overcomes anatomical barriers (i.e. the skin and other epithelia), it enters 

the body. Many mononuclear phagocytes act as sentinels for pathogen entry, residing within 

the tissue and sensing for danger. They can be found throughout a wide variety of, if not all, 

tissues of the body and include microglia (brain and eye), Kupffer cells (liver), splenic, lymph 

node, stromal, cardiac, lung, peritoneal, ileal, and colonic macrophages to name a few [122, 123]. 

Many types of innate immune cell are also continually circulating within the bloodstream and 

possess the ability to enter injured or infected tissue as required. 

With PRRs, they can recognise generalised patterns of foreign cells or damage and enact initial 

responses. There are four major sub-families of PRR: TLRs, nucleotide-binding oligomerisation 

domain (NOD)-leucin rich repeats (LRR)-containing receptors (NLRs), retinoic acid-inducible 

gene 1 (RIG-1)-like receptors (RLRs), and C-type lectin receptors (CLRs; Figure 1.4.2) [124]. The 

different types of receptor, ligand they recognise, and their signalling pathways have already 

been extensively reviewed [125-129]. Furthermore, the context of pattern recognition (e.g. 

external surface [commensal] or internal [invading pathogen], local damage to tissues, or 

systemic spread) is utilised to determine the threat level and therefore the required magnitude 

of the immune response [130]. 

An alternative initiating mechanism of innate immunity is the complement system (Figure 

1.4.3). The main functions of complement include promoting inflammation, phagocytosis, and 

the formation of membrane attack complexes (MACs). MACs are required for the killing of 

particular species of pathogen (e.g. Nesseria meningitidis) and may enable the passage of 

degrading enzymes such as lysozyme [131]. Three pathways for complement activation exist: the 

classical, lectin, and alternative pathway. With differences in initiation, they all have the same 

downstream effects of chemoattraction, opsonisation, and the formation of MACs via a common 

signalling pathway from C3 [132]. The classical pathway is activated by antibody-antigen 

complexes, the lectin pathway activated by lectins (via receptors for unique carbohydrate 

signatures present on bacteria and fungi), and the alternative pathway initiates by spontaneous 

hydrolysis of C3 [133]. 
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Figure 1.4.2. Pattern recognition receptors (PRRs) and downstream signalling elements. 

The four major sub-families of PRRs and their signalling adapters are shown: C-type lectin 

receptors (Dectin-1), Toll-like receptors (TLRs), nucleotide-binding oligomerisation domain 

(NOD)-leucin rich repeats (LRR)-containing receptors (NLRs), and retinoic acid-inducible gene 1 

(RIG-1)-like receptors (RLRs). All PRRs couple to an important pro-inflammatory transcription 

factor: NF-κβ. Taken from [134] and reproduced with permission from Springer Nature. 
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Figure 1.4.3. A schematic of the complement system, highlighting the three initiating 

pathways and subsequent signalling cascade. The classical pathway is activated by binding 

to specific carbohydrates associated with pathogens. The alternative pathway is activated by 

spontaneous activation and binding of C3b to a pathogen, foreign material, or damaged tissues. 

Both C3a and C5a act as chemoattractants for leukocytes. Endogenous inhibitors of different 

components of the pathway are indicated in red. Adapted from [135] and used under licence (CC 

BY 4.0). 
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After activation, innate immune cells produce effector functions – i.e. phagocytosis of foreign 

material and pathogens – in addition to secretion of cytokines and chemokines to modulate the 

immune response and assist with recruitment of other (peripheral) immune cells to that locale 

respectively (Figure 1.4.4). With regards to effector functions, cytoskeletal changes permit the 

internalisation and subsequent formation of a phagosome. This fuses with lysosomes, forming 

a phagolysosome, and ultimately assist in killing the pathogen utilising reactive oxygen species 

(ROS) and lysosomes [136, 137]. With regards to secreted molecules, these can not only promote 

inflammation and attract immune cells, but also influence how other immune cells specialise 

(or polarise) in dealing with the cause of inflammation – both have been extensively reviewed 

recently [138-140]. Some chemokines are presented on the surface of endothelial cells in addition 

to other cell-adhesion molecules [141]; these assist in the binding of leukocytes and ultimately 

their ingress to the inflamed tissue – a process termed extravasation (Figure 1.4.5) [142, 143]. 

Furthermore, expression of chemokines control the homing of leukocytes between primary 

lymphoid organs in addition to secondary lymphoid organs and the periphery [144, 145]. It is 

also appreciated that leukocytes modulate expression of chemokine receptors at different stages 

of development and activation to facilitate homing. 

Phagocytes can process fragments of peptide from the killed pathogen, load it into the MHC 

and, along with expression of required co-stimulatory receptors/ligands to indicate a 

danger/damage context, present the fragment to T lymphocytes (Figure 1.4.4) [146]. This process 

is made feasible through the formation of an immunological synapse and, in addition to 

activating a T lymphocyte with a complementary TCR to the peptide, assists with T lymphocyte 

activation and polarisation towards a particular subset [147]. The overall process of loading 

peptide and exhibiting it to a T lymphocyte is termed antigen presentation, and typically occurs 

in lymphoid tissues. It is possible for exchange of peptides between different antigen-presenting 

cells [148], enabling peptide acquired by the initial response of tissue-resident cells to be 

processed in the lymphoid tissues. Lymphocytes inherently traffic via lymphoid tissue and 

therefore the probability of a productive interaction (i.e. an interaction/affinity between loaded 

peptide and TCR that results in activation of the lymphocyte) is greatly increased.  
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Figure 1.4.4. Innate immune responses to pathogen-associated molecular patterns 

(PAMPs) and the interplay with adaptive immune cells. Phagocytes can recognise pathogens 

via PAMPs via their pattern recognition receptors (PRRs), and this causes cytoskeletal re-

arrangement and engulfment of the pathogen (phagocytosis). The newly formed phagosome can 

then fuse with a lysosome to enable degradation of the pathogen. At the same time, signalling 

cascades (via PRR activation) leads to the expression and secretion of cytokines and chemokines 

that leads to inflammation. After degradation of the pathogen, fragments of peptides can be loaded 

into the major histocompatibility complex (MHC) and presented to T cells which, along with 

secreted cytokines, enables activation and polarisation towards a specific T cell subset upon 

successful interaction. Taken from [149] and reproduced with permission from the American 

Society of Nephrology. 
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Figure 1.4.5. An overview of the extravasation process. Leukocytes are well-documented to 

bind and roll alongside the endothelium under physiological circumstances, but when 

inflammation is occurring locally the presence of chemokines on the endothelium surface activate 

them and initiate a cascade of events the ultimately leads to their ingress within the tissue. 

Permission for use of this figure has been sought from the Author. Adapted from [150]. 
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Whilst many phagocytes can present antigen to an experienced T cell (one that has previously 

been activated), only the mononuclear phagocytes (monocytes, macrophages, and dendritic 

cells) and B cells have the capability to present antigen to a naïve T cell and induce activation – 

often leading to their description as professional antigen-presenting cells (APCs) [146, 151]. This 

means they are critical to initiating adaptive responses. Each of these cell types can be stratified 

into different subsets with differential responses to stimuli and function. For example, in 

humans three subsets of monocytes have been identified: classical, intermediate, and non-

classical. Classical monocytes are highly phagocytic, intermediate monocytes produce ROS and 

perform antigen presentation, and non-classical monocytes are considered mobile and often 

described as “patrolling” monocytes which search for sites of injury [152]. In the mouse, these 

subsets have also been identified but the markers used for identification are different to those 

used in humans and do not necessarily align perfectly with the human monocyte subtypes and 

function [153]. Monocytes also express markers such as C-C motif chemokine receptor 2 (CCR2), 

C-X3-C motif chemokine receptor 1 (CX3CR1), and many other chemokine receptors to varying 

degrees across the subtypes [154]. They possess the capability to differentiate into both 

macrophages and dendritic cells (DCs; these are sometimes referred to as myeloid DCs), 

although DCs and macrophages can be generated via other lineages also [155, 156]. Non-

monocyte-derived DCs are stratified into two main subtypes: conventional DCs and 

plasmacytoid DCs. It is suggested that monocyte-derived DCs are most similar to inflammatory 

DCs (a rarer and less well-understood subset) [157]. 

Macrophages comprise the majority of tissue-resident immune cells, in addition to 

differentiating from monocytes that have ingressed during inflammation; they were originally 

described as comprising two subsets: M1 (pro-inflammatory) and M2 (wound healing). 

However, it is becoming increasingly recognised that macrophages can possess sub-

specialisations depending on the tissue they localise to, and that the M1/M2 classification 

system does not fit all of the inflammatory phenotypes particularly well – with one study 

highlighting unique profiles of macrophages to many individual stimuli [158-164]. 

1.4.2 Of Monocytes and Macrophages 

As previously mentioned, monocytes are grouped into three main subsets – classical, 

intermediate, and non-classical – after discovery within humans. Whilst not perfect, broadly 

similar subsets have also been identified in the mouse. Classical (inflammatory) monocytes 

predominate in humans, and subsets are typically differentiated based on CD14 and CD16 

expression (Figure 1.4.6) [165]. In the mouse, subsets can be differentiated based on markers 
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including Ly6C, CCR2, and CX3CR1, all of which are also differentially-expressed between the 

human subtypes [166, 167]. Monocytes develop from (common) myeloid precursors located 

within the bone marrow (Figure 1.4.1), influenced by cytokines such as colony stimulating factor 

1 receptor (CSF-1; also known as macrophage colony stimulating factor [M-CSF]). Furthermore, 

multiple studies have utilised labelling techniques (some in conjunction with transfer of these 

labelled monocytes) to demonstrate that monocyte subsets retain plasticity, at least in a 

trajectory from a classical to non-classical phenotype [168-170]. 

Based on observed expression patterns (both at the gene- and protein-level), the monocyte 

subsets are believed to possess partial specialisation towards specific innate immune functions 

[171, 172]; these are summarised in Figure 1.4.6. Furthermore, specific monocyte subsets associate 

with differentiation preference: classical monocytes associate with macrophage differentiation, 

non-classical monocytes are argued as capable of macrophage differentiation, and intermediate 

monocytes are considered biased towards DC trajectories [173-176]. Despite differentiation 

potential, monocytes also play an important role in responding to both infection and 

dysregulation within the body and can remain as monocytes during the course of inflammation. 

For example, monocytes assist in apoptotic cell clearance in addition to degradation/removal of 

β-amyloid plaques (in the brain) and abnormal connective tissue [177]. Nonetheless, monocyte 

responses to injury can also exacerbate dysregulation as evidenced through their role in 

atherosclerosis development (by forming foam cells), tumour progression (acting as myeloid 

suppressor cells which inhibit T cell responses), and liver fibrosis (by accelerating scar tissue 

formation) [178]. 
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Figure 1.4.6. Monocyte subsets, defining markers, and functions. Three subsets of 

monocytes emerge from human bone marrow and are typically discriminated based on CD14 and 

CD16 expression. Classical monocytes (CMs) express proteins associated with phagocytosis and 

anti-microbial responses, whereas non-classical monocytes (NCMs) associate with directed 

phagocytosis; intermediate monocytes (IMs) possess functions relating to antigen presentation. 

Taken from [177] and used under licence (CC BY 4.0). 
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During inflammation, monocytes can differentiate into macrophages. However, macrophages 

are also recognised to develop in the bone marrow independently of monocyte-derived origin 

under the control of the transcription factor PU.1 [179, 180]. Beyond immediate inflammation, 

many macrophages are found as tissue-resident sentinels and can be found as Kupffer cells 

(liver), splenic, lymph node, stromal, cardiac, lung, peritoneal, ileal, and colonic macrophages 

to name a few [122, 123]. Many of these tissue-resident macrophages develop from embryonic 

progenitors (not monocytes or the bone marrow), are long-lived, and capable of self-replication 

[181]. 

Infiltrating macrophages have classically been described as M1 (pro-inflammatory) or M2 

(wound healing), after these polarisations were discovered in vitro [182]. M1 macrophages 

canonically express IL-1β, IL-6, and TNF-α (pro-inflammatory cytokines) whereas M2 

macrophages are associated with expression of IL-10 and arginase [183]. The two phenotypes are 

summarised in Figure 1.4.7. For these subsets to form, the macrophage requires cytokine signals: 

priming with IFN-γ and then stimulation with LPS assist in producing an M1 phenotype whereas 

M2 polarisation is considered dependent on IL-4 [184, 185]. Nonetheless, multiple studies have 

highlighted the problems associated with this simple two-state model (or even considering 

them polar ends of a spectrum) in that even in vitro macrophages receiving different stimuli fit 

the classification system poorly; some have argued for abandonment of this classification system 

in favour of a more multidimensional system which is more representative of the highly variable 

response to stimuli [186, 187]. Others have recommended more standardised nomenclature and 

reporting of the macrophages and their generation, to better describe them and try to overcome 

some of these shortfalls [188]. Lastly, 2 new macrophage phenotypes have also been described: 

regulatory macrophages (also called myeloid-derived suppressor cells [MDSCs]) and “hybrid” 

macrophages similar to both M2/wound-healing and regulatory macrophages [187]. MDSCs 

appear important in immunosuppression within the context of cancer, enabling tumours to 

develop and progress; they may also play a role in other chronic inflammatory environments 

[189]. However, these phenotypes have not been widely adopted, nor other classification 

systems beyond M1/M2. Therefore, it is evident that current classification systems leave much 

to be desired and research is required to develop them into something more reflective of in vivo 

macrophages. 

Beyond general phenotypes observed during active inflammation, it is well-recognised that the 

microenvironment can also influence the macrophage phenotype. For example, tissue-specific 

factors in addition to the disease-specific microenvironment can play a role in shaping both 

tissue-resident and infiltrating macrophages (Figure 1.4.8) [190, 191].  
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Figure 1.4.7. A proposed framework for describing M1/M2 macrophages for better 

comparability between studies. A) There are several methods for generating or isolating 

macrophages and their subsets, facilitating the need to clearly describe key features such as 

isolated cells and cytokine/s used in their generation. In the case of ex vivo macrophages, the 

anatomical location of source in addition to markers/reagents used for their identification would 

be beneficial. B) A variety of different markers (grouped based on general function) are attributed 

with varying degrees to M1- or M2-type macrophages. Taken from [188] and reproduced with 

permission from Cell Press. 
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Figure 1.4.8. The effect of homeostatic tissue signals alone and in conjunction with 

activation of pattern recognition receptors (PRRs). Macrophages located in different 

tissues will all express typical macrophage genes (including general markers such as CD45 and 

CD11b) but also genes associated with their local microenvironment (such as Clec4f, Vcam1, 

Itga6, Runx3, and others [192]). When PRRs bind their ligands and transduce pro-inflammatory 

signals, the combination of this with the homeostatic signals in the microenvironment cause the 

macrophages to adopt distinctive pro-inflammatory gene expression programmes as opposed to 

a fixed universal programme. Taken from [190] and reproduced with permission from Springer 

Nature. 
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It is well-recognised that tissue-resident macrophages are found in many tissues throughout the 

body, differentiate from embryonic progenitors (unlike peripheral monocytes and 

macrophages), and act as sentinels – observing the local environment for danger signals via 

PRRs and using chemokines and cytokines to recruit and prime peripheral immune cells when 

required to combat infection and/or tissue dysregulation. Transcriptomic assessment of tissue-

resident macrophages can identify genes differentially-expressed based on anatomical location 

of tissue residency [180]. Nonetheless, core sets of genes expressed by tissue-resident 

macrophages from different anatomical regions have also been observed [193]. Epigenetic 

analysis has suggested that the intracellular changes responsible for these observed differences 

in gene expression are primarily due to alterations in enhancer activity; AT techniques have 

shown that the vast majority of these epigenetic alterations are shaped by the 

microenvironment rather than differences during development i.e. it is the context and 

environment which conditions the macrophage phenotype [192]. 

The alterations in gene expression allow tissue-resident macrophages to adopt additional 

functions beyond immune surveillance, enabling contribution towards tissue homeostasis. 

Additional roles have been observed in many different tissue-resident macrophages and are 

summarised in Table 1.4.1. 
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Location Function Reference 
Bone (via osteoclasts, a myeloid 

lineage cell) 
Regulation of bone remodelling [194] 

Bone marrow Erythropoiesis and iron recycling [195, 196] 
Brown adipose tissue Thermogenesis [197] 

Heart Regulating cardiomyocyte 
electrical activity 

[198] 

Lung Surfactant homeostasis and 
particle clearance 

[199] 

Spleen/Liver Iron recycling [196, 200] 
White adipose tissue Insulin sensitivity [201] 

Table 1.4.1. Specialised region-specific functions of tissue-resident macrophages. In addition to 

immune surveillance throughout the body, many tissue-resident macrophages have adopted 

additional functions to support homeostasis, controlled by enhancer changes influenced by the 

microenvironment. 
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Beyond providing additional functions in homeostasis, macrophages can be influenced by the 

microenvironment to generally reduce the propensity for inflammation/activation i.e. immune 

thresholding. It is believed these immunosuppressive/thresholding functions are important in 

preserving tissue homeostasis and in minimising inflammation-mediated damage to tissues 

[202]. For example, tissue resident macrophages have been shown to extend membrane 

processes around apoptotic cells to inhibit neutrophil activation, and that clearance of apoptotic 

cells by such resident macrophages does not activate them or promote inflammation [203, 204]. 

This enables them to manage low-level threats and infrequent occurrences of cell death (in low 

numbers) within the tissue. It is regulated by the presence of factors within the 

microenvironment, often derived from other cells in the tissue. For example, in the lung alveolar 

macrophages are regulated by IL-10, surfactant proteins, CD200R, and transforming growth 

factor β (TGF-β) [205]. Knock-out of CD200R can lower immune activation thresholds and 

reduce susceptibility to secondary bacterial infections [206]. However, lack of CD200R during 

influenza infection leads to greatly increased collateral damage and greatly impaired resolution 

post-infection [207]. This highlights the importance of localised adaptations and immune 

thresholding. Within the gastrointestinal tract, macrophages exhibit inflammatory anergy that 

is orchestrated, at least in part, by TGF-β. Additionally, they possess metabolic adaptations that 

enable utilisation of locally abundant resources such as glutamine [208, 209]. However, 

immunosuppression and immune thresholding can extend beyond the tissue-resident 

macrophages. Kupffer cells (located within the liver) are recognised to express high amounts of 

membrane-bound TGF-β upon activation, and this can suppress both antigen-specific and 

antigen-nonspecific CD4+ T cell proliferation in the context of inflammation with infiltrating 

CD4+ lymphocytes [210]. 

1.4.3. Adaptive Immunity 

The adaptive immune system is comprised predominantly of two major types of cell: B and T 

lymphocytes. As with other haematopoietic cells, their progenitors reside within the bone 

marrow. B cells complete their development here, whereas T cell precursors will migrate to the 

thymus. Post-development, they enter the bloodstream and circulate through the peripheral 

lymphoid tissues (lymph nodes, spleen, and other organ-associated lymphoid tissue [e.g. Peyer’s 

patches]) [211]. There are two main types of T lymphocyte: CD4+ and CD8+ T lymphocytes, which 

can interact with MHC class II and I respectively. They both recognise targets via their TCR. 

Canonically, the CD4+ T cell is associated with orchestrating clearance of extracellular 

pathogens whereas CD8+ T cells are associated with clearance of intracellular pathogens and 
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tumour cells. CD4+ T cells will typically promote or suppress inflammation by secreting different 

cytokines required for the infectious context and its resolution. Following productive 

interaction with an APC, CD4+ T cells are polarised into several different T helper (Th) lineages 

differing in phenotype and function. They derive from a common precursor but are defined by 

expression of signature cytokines under the control of a master regulator (transcription factors). 

Various subsets of CD4+ T cell have been identified to include Th1, Th2, Th9, Th17, Th22, Tfh, and 

Treg (Figure 1.4.9) [212, 213]. It should be recognised that T cells exhibit plasticity between these 

subtypes [214]. CD8+ T cells can secrete cytokines but also directly target infected or aberrant 

cells through the use of perforin and granzymes, as well as induce apoptosis in cells [215]. On 

the other hand, B cells express a B cell receptor (BCR), can perform phagocytosis, but when 

activated (via BCR engagement) can differentiate into plasma cells which produce soluble 

versions of the BCR termed antibodies [216]. Antibodies can have a variety of roles, to include 

activating complement and enhancing the efficiency/speed of phagocytosis. Both B and T cells 

possess the capability to generate memory cell subsets, which are long-lived and enable a rapid 

and more robust immune response upon secondary exposure to the same antigen [217]. Both B 

cells and T cells possess mechanisms that enable random changes/rearrangement of their 

receptor during and/or after development to generate novel receptor structures with different 

affinities; this enables the adaptive immune system to respond to a nearly infinite repertoire of 

molecules that it may encounter, and ensures that pathogens with novel antigens could still be 

targeted by the immune system [218]. 
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Figure 1.4.9. Currently known Th cell subsets. Summary information about their differentiation, function, and expression of key markers highlights 

differences between them and their differentiation. Taken from [213] and used under licence (CC BY 4.0). 

  



Chapter I: Introduction 

39 
 

1.4.4 Immunological Challenges 

One challenge that makes the immune system different to many other bodily systems is that it 

is evolving under the influence of multiple directional pressures that can often be at odds with 

one another. Evolving to become better at killing pathogens risks greater collateral damage to 

self. Furthermore, hijack of built-in inhibitory mechanisms to protect the host from collateral 

damage can enable pathogens to survive [219]. This delicate balance of killing and suppression 

is highlighted by numerous reports identifying the side effects of autoimmunity or other 

immune-related adverse events caused by immunotherapies aimed at enhancing an anti-

tumour response using mechanisms such as checkpoint inhibition, cytokine administration or 

adoptive immunotherapy – many of which were targeted to a single molecule [220-222]. 

Therefore, a balanced response is required to both control infection and maintain homeostasis, 

and inappropriate responses (both mistargeting and excessive reaction) results in damage to 

self. 

Furthermore, the interaction between pathogens, commensals (i.e. the microbiome), and host 

and their evolution is highlighted in many examples: the complex nature of the immune system, 

with a wide variety of cell types and subtypes, complex pathogens that utilise a multitude of 

immune evasion mechanisms and frequent antigenic variation (e.g. CMV and influenza), and 

the presence of retrovirus DNA, transposons, and other elements in the genomes of many 

organisms [223-227]. This highlights the requirement for multiple compensatory mechanisms 

of activation, to cope with the wide diversity of pathogens, and the need for inherent flexibility 

(i.e. generation of an almost infinite TCR/BCR repertoire via the processes of combinatorial and 

junctional diversification, and somatic hypermutation [228]) to ensure adequate responses can 

be generated against novel antigens. However, inherent flexibility in antigenic recognition 

generates a new problem: how does the immune system cope with randomly generated 

receptors that recognise self? 

1.4.5 Tolerance 

As summarised above, it is inevitable that self-reactive lymphocytes will form in an organism 

during its lifetime. Therefore, the body requires mechanisms to ultimately prevent damage 

caused by these self-reactive lymphocytes; these are collectively termed tolerance. The first 

mechanism, which removes these autoreactive cells, is described as central tolerance and occurs 

during cell development and maturation into a naïve state (in the bone marrow and thymus [for 

B and T lymphocytes respectively]). In B cells, they can undergo apoptosis, anergy (a state of 
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permanent unresponsiveness to their antigen) or further receptor editing to see if autoreactivity 

can be ablated; where central tolerance fails immunologically ignorant B cells (which are 

autoreactive) can be generated [229, 230]. In the case of T cells, selection is a little more complex 

because the TCR must be able to interact with MHC molecules (either MHC-I or MHC-II) so 

that the TCR could activate when a foreign peptide is presented, termed positive selection. 

However, if the interaction is too strong (i.e. high avidity) then these cells undergo apoptosis or 

become regulatory T cells (Treg). This is because they will react to either MHC complexes loaded 

with self-peptide or unloaded MHC complexes [231]. There is debate in the field about whether 

T cells can undergo receptor editing if they are responsive to self-antigens [232, 233]. It is 

however evident that a single transcription factor, AIRE (autoimmune regulator), is critical in 

central tolerance and enabling expression and presentation of a wide variety of tissue-restricted 

self-peptides in medullary thymic epithelial cells (mTECs) during lymphocyte development; its 

knock-out results in spontaneous autoimmunity in mice (in humans, mutation of the AIRE gene 

leads to autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy). However, the 

symptoms and autoreactive cells generated are not invariable and highlights the stochastic 

nature of autoimmune disease [234]. It suggests any peptide not expressed, expressed in low 

quantities (i.e. cryptic self-epitopes), or spliced (or other amino acid side-chain modifications) 

so those epitopes are not present, by the mTECs could result in escape of autoreactive T cells 

from central tolerance mechanisms [235, 236]. Furthermore, low-avidity autoreactive T cells 

have been shown to routinely escape negative selection [237]. Some of this could be attributed, 

in part, to the high level of cross-reactivity of the TCR (recognition of up to 106 different 

peptides) [238], although there is evidence of TCR sensitivity tuning to nullify the effect of a 

peptide with weak binding affinity in the periphery which would (at least partially) overcome 

this, at least in naïve contexts [239]. 

Beyond lymphocyte development, multiple other mechanisms of tolerance are also observed, 

collectively termed peripheral tolerance because it occurs post-development (i.e. in the 

periphery with respect to their site of development). For example, T and B cells require 

signalling to be able to activate – from cytokines such as IL-1β, IL-6, and IL-12 to co-stimulatory 

molecules such as CD80/86 and CD40/C3b (for T and B cells respectively) – and in the absence 

of these they can undergo activation-induced death, become anergic, or differentiate into a Treg 

cell [240-246]. For expression of pro-inflammatory cytokines and co-stimulatory molecules, 

activation of PRRs that recognise PAMPs or DAMPs (by innate immune cells) is required. 

Other tissue-specific immunoregulatory mechanisms are also present. For example, certain 

regions of the body (e.g. the eye and brain) are relatively inaccessible to lymphocytes under 
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normal circumstances and it would not be possible for them to therefore engage their respective 

receptors (TCR/BCR) and induce autoimmunity – these sites are termed immunologically 

privileged, and in these regions tissue grafts or transplants can survive for extended lengths of 

time [247]. Likewise, some local environments (i.e. the microenvironment) will include factors 

that can help to prevent inflammation by functional deviation. In the retina and brain, TGF-β 

is one such factor that performs this role [248]. Additionally, tissue-resident immune cells (such 

as the microglia) also play a role in modulating responses and promoting an anti-inflammatory 

state, at least in naïve circumstances (see the microglial section of this chapter). 

Treg cells have the potential to suppress effector cells targeting the same cell or tissue (i.e. 

spatially-proximal to one another irrespective of antigen specificity) through cytokines such as 

IL-10, IL-35, and TGF-β, by inducing expression of ligands for co-inhibitory signals on antigen-

presenting cells (e.g. cytotoxic T-lymphocyte-associated protein 4 [CTLA-4]), but also through 

other routes such as killing of effector cells with granzymes, metabolic interruption via 

hydrolysis of adenosine triphosphate (ATP) to adenosine to signal via adenosine 2A receptor, 

and a plausible but controversial mechanism of competing with effector T cells for IL-2 [249-

251]. 

1.4.6 Autoimmunity and Autoinflammation 

When tolerance mechanisms fail, it creates an environment that is permissive for autoimmunity 

(such as evasion of central tolerance and survival of autoreactive cells). Likewise, a failure of 

tolerance at a checkpoint could directly lead to autoimmunity (failure to correctly abrogate an 

autoreactive lymphocyte peripherally). 

Autoimmunity is a state in which discrimination between self and non-self fails (i.e. tolerance 

mechanisms) and the immune system reacts against healthy cells or tissues. It is well-recognised 

that autoimmunity is stochastic both in humans and some animal models – it is not a 

guaranteed event even with a permissive environment or genetic predisposition. For example, 

people who possess the human leukocyte antigen-B27 (HLA-B27) allele have a 26-fold increased 

relative risk of uveitis, but nonetheless it is not inevitable [252]. Therefore, other environmental 

factors are at play for enabling autoimmunity in a permissive environment. For example, it is 

common for someone diagnosed with autoimmune disease to have a history of recent illness. 

With inflammation comes an increased density of all peptide-MHC complexes, co-stimulation 

which alters the functional TCR responses, and changes in the proteasome that could result in 

generation of novel peptide fragments for presentation [239, 253]. Changes in tissue-resident 
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immune cells can also occur, even if they are distal to the infection or site of injury [254]. 

Nonetheless, once established many autoimmune disorders undergo a relapsing-remitting 

pattern, suggesting phases of activation and subsequent immune regulation [255]. 

It was originally believed that TLRs were completely specific for PAMPs and were an ideal way 

of discriminating self from non-self. However, new evidence indicates it is possible for DNA 

fragments from apoptotic cells to activate TLRs [124] and suggests a possible role for this in 

autoimmunity – specifically systemic lupus erythematosus [256, 257]. The C-type lectin CLEC2D 

can also recognise histones released from necrotic cells and stimulate TLR9 [258]. Similarly, 

when one eye sustains injury it is possible for inflammation to occur in the contralateral eye – a 

condition termed sympathetic ophthalmia. In very rare circumstances (considering currently 

available treatments) the injured eye can be enucleated to prevent damage in the contralateral. 

This highlights how local processes such as cell death and release of DAMPs could enable the 

activation of autoreactive lymphocytes and differentiation into effector/memory phenotypes to 

drive disease in the contralateral eye [259]. Sympathetic ophthalmia can occur at least as late as 

66 years post-injury, highlighting the stochastic nature of autoimmunity and how multiple 

environmental factors – in addition to autoreactive cells – are required for its development 

[260]. Presumably in this case occurring 66 years post-injury, the initial injury generated 

memory cells which did not re-encounter the antigen (an unknown retinal antigen) until 

decades later due to anatomical sequestering. For sympathetic ophthalmia to develop, perhaps 

both co-stimulation and entry of an autoreactive T cell (or several) into the contralateral eye is 

required to induce inflammation – in addition to a failure of other tolerance mechanisms 

simultaneously (which itself becomes easier to overcome once memory cells are generated). 

It is plausible that the presence of a pathogenic organism can lead to co-stimulation of both 

pathogen-specific and autoreactive lymphocytes due to its non-specific nature [261]. The 

presence of systemic infection can activate lymphocytes which have better access through 

barriers (such as the BRB) enabling temporary lymphocyte access where it was unavailable 

previously [262]. This could also explain why many people diagnosed with autoimmune illness 

have a recent history of illness. However, activation of an autoreactive cell in this context 

depends on a vital assumption: that the antigen encountered peripherally had a 

sequence/structural similarity to a self-antigen (termed molecular mimicry or cross-reactivity) 

that would enable the T cell to be autoreactive in the first place, or that an activated antigen-

presenting cell presented a retinal-specific self-antigen (presumably in addition to pathogen 

antigens) and interacted with a lymphocyte in the periphery [263]. In the case of HLA-B27 

associated autoimmunity (ankylosing spondylitis), it has been shown that several bacterial 
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antigens exhibit molecular mimicry to a portion of HLA-B27 and that HLA-B27 itself can be 

presented – explaining why possessing a HLA-B27 allele does not guarantee development of 

autoimmunity but with certain environmental factors can lead to it [264]. 

Additionally, it is plausible that autoimmunity can be triggered by other events. For example, it 

is possible that infection locally and self-antigens being presented can trigger autoreactive 

lymphocytes – a phenomenon termed bystander activation [265]. In the case of more persistent 

inflammation, it is possible that T cells specific for other self-proteins can become activated as 

the tissue is damaged, releasing more antigen; this is termed epitope spreading [266]. A last 

mechanism includes persistent infection and activation of B cells, leading to immune complex 

formation from the various antibodies generated – as observed with hepatitis C virus infection 

and cryoglobulinemia [267]. The relationship between infection and autoimmunity was 

summarised in 10 points by Kivity et al. [265] listed below: 

1. “Infections can cause autoimmune diseases. 

2. Different infectious agents (viruses, bacteria, fungus and parasites) can trigger 

autoimmunity. 

3. An infection can trigger an individual with an underlying immune dysregulation to 

express an overt autoimmune disease. 

4. Infectious agents can determine the presence of disease-specific auto-antibodies and 

clinical manifestations. 

5. In many cases, it is not a single infection, but rather the ‘burden of infections’ during life 

that is responsible for induction of autoimmunity. 

6. Infections during childhood can be implicated in the development of autoimmune 

diseases in adulthood. 

7. Infections can protect individuals from some autoimmune diseases. 

8. The same infectious agent can induce one specific autoimmune disease and protect from 

another autoimmune disease. 

9. Molecular mimicry, epitope spreading, bystander activation and polyclonal activation 

can induce autoimmunity after infections via innate and adaptive immune responses. 

10. Genetic susceptibility might explain why only a subgroup of individuals will develop 

autoimmunity after infections.” 

In relation to point 10, genetic susceptibility refers to MHC haplotype, but also any other 

immune regulators (such as the inflammasome) – whether they be costimulatory, inhibitory 
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receptors, or have other involvement [255]. Current genetic studies implicate small independent 

effects on susceptibility of several hundred different genetic loci [268]. 

Autoinflammation refers to a group of disorders where, much like autoimmunity, the immune 

system is dysregulated. In contrast to autoimmunity (where primarily the adaptive immune 

system causes damage), autoinflammation refers to diseases (e.g. Behçets or Crohn’s disease, or 

Blau’s syndrome) where primarily the innate immune system responds in the absence of an 

infection and causes injury [269]. However, as both the innate and adaptive immune systems 

interact, and it is possible for dysregulation of both simultaneously (not necessarily to the same 

degree) this means that autoimmune-autoinflammatory disorders are generally considered a 

spectrum with frequent overlap as opposed to two discrete entities [14, 15]. IL-1β is emerging as 

a good therapeutic target for some autoinflammatory disorders due to its pivotal role in 

inflammation caused by myeloid cells [270]. However, new pathways and genes associated with 

autoinflammatory disorders – such as the stimulator of interferon genes (STING) pathway and 

deficiency of adenosine deaminase 2 (Ada2) – highlight other ways in which autoinflammation 

can manifest [271]. 

Whilst autoimmune-autoinflammatory diseases in isolation are generally relatively rare, overall 

they have a prevalence of around 1 in 20 (5%) and it is becoming increasingly recognised that 

they have common underlying mechanisms of disease, highlighting the significant burden they 

represent to society as a whole [272]. 

1.4.7 Innate Immune Memory, Adaptation, and Para-Inflammation 

Innate immune memory describes “a change in the reactivity in innate immune cells previously 

exposed to various stimuli” [273]. It is generally considered a short-term phenomenon and has 

also been described “trained immunity”. However, long-lived memory phenotypes of innate 

immune cells, with a common memory transcriptional/epigenetic programme to lymphocyte 

memory cells, have also been described [119]. It is proposed, therefore, that immunological 

memory phenotypes emerged in ancient innate immunity and was inherited when adaptive 

immunity evolved [274]. Irrespective of origin, various terms have been used to describe innate 

immune memory and its surrounding phenomena with the potential to cause confusion. 

Therefore, standardised terminology have been proposed in an effort to minimise this (Table 

1.4.2) [273]. 
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Phenomenon Old Terms Proposed Terms 
Innate immune memory Innate memory Innate immune memory 

Trained innate immunity 
Induction of innate memory Priming 

Innate immune reprogramming 
Pre-conditioning 

Priming 
Innate immune reprogramming 

Memory-induced decreased 
responsiveness 

Tolerance Tolerance, trained tolerance 
(global phenomenon) 

Contraction, decrease (individual 
effectors) 

Memory-induced enhanced 
responsiveness 

Trained immunity 
Non-specific acquired resistance 

Potentiation, trained potentiation 
(global phenomenon) 

Enhancement, increase (individual 
effectors) 

Table 1.4.2. Innate immune memory terminology. It describes different phenomena and terms 

previously used to describe them, as well as suggested new terminology to minimise confusion. 

Taken from [273]. 
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Innate immune memory has been known about for a long time in the form of priming or 

tolerisation (primarily with regards to LPS) [275-277], but the mechanisms underpinning it 

(epigenetic modifications) have only been recently discovered [278-280]. LPS tolerance has been 

well-studied and reviewed in great detail recently [279]. 

In the context of peripheral immune cells (with the exception of the possible but rare memory 

phenotype/subsets), these effects would be short-lived (in the absence of chronic inflammation) 

as these cells are replaced as part of haematopoietic turnover [281]. Alterations of the progenitor 

stem cells located within the bone marrow are possible [282]. Furthermore, innate immune 

memory has the potential for long-lasting or semi-permanent effects on long-lived innate cells 

such as tissue-resident macrophages or where peripheral immune cells are kept alive by 

inflammation-associated signals. 

Immune adaptation (or differentiation) is considered “a form of adaptation through long-term 

changes in the functional program of a system (including immune response), determined by a 

constant change in the environmental conditions or due to a chronic insult (e.g., a chronic 

infection), leading to a new functional state” [274]. It differs from conventional innate immune 

memory in that the new functional state is not transient but persists until it is set to a different 

level. The similarities and differences between the two forms of memory are shown in Figure 

1.4.10. 
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Figure 1.4.10. Immune memory and immune adaptation. A) Immune memory describes 

where the response intensity to a stimulus is altered due to previous stimuli (this can be increased 

or decreased i.e. priming and tolerance, respectively. The innate immune cells return to a state of 

homeostasis between stimulation. B) Immune adaptation describes a long-term change in the 

innate immune response which can be altered again in the future. Importantly, the innate immune 

response does not return to baseline between stimulation. Adapted from [274] with permission 

from Cell Press. 
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Currently, most studies investigating innate immune memory have done so in vitro or 

systemically in vivo. A small number have identified differential memory responses depending 

on compartmentalisation [283, 284]. However, it is suggested that innate immune memory 

could play an important role in chronic diseases (such as atherosclerosis) in addition to 

autoinflammation/autoimmunity [280, 285]. 

Para-inflammation is a different phenomenon that is considered a range of inflammation 

between a full-blown infection response and complete homeostasis; it is believed to be an 

adaptive response to tissue injury or malfunction [286]. It differs from immune adaptation in 

that there is continual low-level inflammation occurring in para-inflammation, whereas in 

immune adaptation only the response to a stimulus is altered. Nonetheless, para-inflammation 

has been shown as an important process that helps to drive the formation of a wide range of 

tumours, whilst in the eye can develop into a more chronic inflammation that causes age-related 

macular degeneration (AMD) [286, 287]. In the eye, this could be triggered by necrotic cell 

death, ROS (which are generated as part of physiological cell processes), advanced glycation 

end products, and hyaluronan fragments to name a few [288, 289]. Many age-dependent/para-

inflammatory changes have been observed in the eye, such as increases in IL-1β and TNF-α (pro-

inflammatory cytokine) concentrations, breakdown of the BRB, increased complement 

activation, as well as changes in regulatory cell localisation and morphology [289-291]. 

It is possible that the “burden of infection” (believed important in autoimmune disease [265]) 

and/or ongoing changes with age could increase the para-inflammatory state and potential for 

progression to full-blown autoimmunity or autoinflammation (as barrier integrity is 

compromised and the microenvironment becomes more pro-inflammatory), increasing the 

probabilities of leukocyte entry and costimulation of a self-reactive T cell. Furthermore, innate 

immune memory/adaptation, para-inflammation, and autoimmunity/autoinflammation could 

represent part of a spectrum of accruing changes/dysfunction to the tissue-resident immune 

cells and microenvironment (Figure 1.4.11). Whilst this is conceptualised as a spectrum, it should 

be appreciated that a para-inflammatory state is not necessarily a pre-requisite for 

autoinflammation or autoimmunity nor is it a guaranteed progression. It is intended to suggest 

how different severities/degrees of immune dysregulation from homeostasis may link to one 

another. 
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Figure 1.4.11. Immune adaptation, para-inflammation, and autoinflammation/autoimmunity may represent a spectrum of immune 

dysregulation and tissue dysfunction. Repeated challenges over time can lead to adaptation, predisposing to collateral damage and further 

adaptation, para-inflammation, and/or autoimmunity. It is possible that steps may be omitted due to other (stochastic) factors such as infection 

(leading to breakdown of anatomical barriers and expression of co-stimulatory molecules) and genetic risk. Equally, it could be possible for the tissue 

to regress or return to a homeostatic state.
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1.4.8 The Eye and Immune Regulation  

Despite multiple tolerance mechanisms to promote safe activation of the immune system 

(outlined above), the eye contains many unique features which further aid in shaping the 

immune system and pushing towards regulation – a phenomenon broadly described as immune 

privilege. For example, it is well-recognised that tissue grafts in the eye can survive for extended 

periods of time (rejection would occur at other sites) [247]. Furthermore, after a successful graft 

on the cornea it is possible to administer similar cells/tissues elsewhere in the body without 

rejection/reaction [292]. Antigens administered to the corneal surface can be tracked to 

draining lymph nodes and alloreactive T cells specific for these antigens can be detected 

systemically [293]. Yet, despite the presence of these alloreactive T cells immune responses are 

not generated. This atypical response (or deviation) has been termed anterior chamber-

associated immune deviation (ACAID) [294]. In other studies, xenografts of human uveal 

melanoma cells form considerably more hepatic micrometastases when administered via the 

posterior compartment of the eye as opposed to tail vein injection, providing further evidence 

that eye-specific systemic immune deviation mechanisms exist [295]. It is unclear whether 

ACAID itself is a physiological phenomenon or purely artificial. However, it highlights that 

immune-regulating mechanisms are present within the eye. 

As described earlier, the eye contains anatomical barriers (i.e. the BRB) which considerably 

limits the entry of leukocytes and the potential for local immune activation/reactivity. It is likely 

that considerable local damage and/or microglial activation is required for the breakdown of 

these barriers to occur to permit large-scale immune infiltration (see 1.5.2 and 1.5.4) and possible 

collateral damage. However, it is also hypothesised that relative inaccessibility (to leukocytes) 

limits the effectiveness of peripheral tolerance within the eye (i.e. allows B and T lymphocytes 

to remain immunologically ignorant) and therefore, ironically, this second defence mechanism 

could also hypothetically permit autoimmunity within the eye [296] (in conjunction with other 

circumstances such as local damage/danger context, genetic predisposition, or others as 

described earlier). 

The third main pillar of immune privilege within the eye is the microenvironment, containing 

a variety of secreted molecules (e.g. TGF-β or TRAIL, the latter promoting apoptosis), expressed 

receptors (e.g. CX3CL1 by neurons), highly-specialised tissue-resident immune cells (i.e. 

microglia, see later) or other cells capable of immune regulation (e.g. the RPE), constitutive 

expression of complement inhibitors, and the extracellular matrix – all of which help shape both 
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tissue-resident and infiltrating immune responses towards regulation or anergy [297-304] (see 

[305] for a recent review of retinal immune suppression). 

In summary, the eye has multiple additional mechanisms that help to promote anergy or a 

regulatory environment to avoid excessive inflammation and collateral damage – presumably 

because of both the delicate nature of the eye and the critical role it plays in survival. 
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1.5 Microglia 
Microglia are long-lived tissue-resident macrophage-like cells of the CNS, including the eye. 

They reside within the retina in addition to many regions of the brain each with varying 

densities and marker expression, presumably to assist in additional sub-function specialisations 

[306]. Nonetheless, all microglia express conventional myeloid cell markers. However, despite 

expression of myeloid markers they have a different origin (they are derived from the embryonic 

yolk-sac as opposed to haematopoietic progenitors) to other myeloid cells [307]. They exhibit a 

ramified morphology (unlike the amoeboid morphologies of macrophages) and are well-

recognised to express a unique TGF-β-dependent transcriptional profile different to 

macrophages [308]. Microglia can self-replicate when required but under physiological 

conditions this is to a low degree. They are incredibly versatile, known to provide immune 

surveillance of the brain and eye (via movement of the ramified processes [309]), as well as 

general homeostasis via processes such as synaptic pruning – with dysregulation of the latter 

linking to schizophrenia [115, 310]. Many microglial functions are summarised in Figure 1.5.1, 

highlighting a plethora of sub-specialisations beyond immunosurveillance that explains how 

they differ from macrophages. Furthermore, complement-dependent synapse elimination by 

microglia is required for the loss of memories, with complement knock-out resulting in reduced 

cognitive decline in mice [311]. It is well-recognised that microglia, under homeostatic 

conditions, contribute to an immunosuppressive environment that helps to prevent 

unnecessary inflammation and/or autoimmune disease [312]. 
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Figure 1.5.1. Microglia possess a variety of important roles relating to both immune 

surveillance/protection and maintenance of tissue homeostasis. Microglia play an 

important role in regulating the CNS as highlighted by their repertoire of functions. Overall, they 

are critical to maintenance of the CNS. Abbreviation: CNS – central nervous system. Taken from 

[313] and used under licence (CC BY-NC 4.0).  
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Microglia have been identified in a variety of vertebrates and invertebrates, including mammals, 

birds, frogs, fish, molluscs, and insects [314-320]. This suggests the existence of microglia 

predates the Nephrozoan divergence of organisms (into Protostomia and Deuterostomia – that 

gave rise to molluscs and insects, and chordates respectively) that dates ~600–700 million years 

ago [321, 322]. Microglia have not been observed in organisms that predate the Nephrozoa (i.e. 

in Xenacoelomorpha, a clade forming alongside the Nephrozoa from the common ancestral 

clade of Bilateria), implying their origin in Nephrozoa [323]. Furthermore, neuropeptides (NPs), 

which are well-characterised to modulate microglial activity [324-327], saw a major expansion 

in Bilaterians [328]. These events are summarised in Figure 1.5.2. and predate the development 

of complex nervous system architectures, implying microglia are a critical component or 

prerequisite for their development and maintenance, and that by extension microglial 

regulation is critical to homeostasis of the brain but also eye. 

  



Chapter I: Introduction 

55 
 

 

 

Figure 1.5.2. Phylogenetic relationships and the sequence of evolution predating complex 

nervous system architectures. Significant developments are highlighted in the boxes below, 

with an indication of which branch it formed within. Adapted from [329] and used under licence 

(CC BY 4.0). 
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Microglia development in mammals occurs in three distinct stages: “early microglia” (until E14), 

“pre-microglia” (E14 to a few weeks after birth), and “adult microglia” (from weeks after birth 

henceforth) corresponding broadly to cell cycle, synapse pruning, and immune surveillance 

functions respectively [330]. During their development, perturbation of microglia can lead to 

severe consequences. For example, administration of Poly(I:C) (a TLR3 agonist [331]) causes 

psychopathology when administered during critical gestational time-windows [332]. 

Furthermore, depletion or alterations in the microbiome can also influence microglia – whether 

induced by acute changes caused by antibiotics or long-term changes caused through the use 

of germ-free mice [333, 334]. Additional studies highlight that microglial depletion during 

development or early post-natal stages can lead to defects in both mouse behaviour and brain 

physiology [335], cementing some of their critical roles beyond immune surveillance within the 

central nervous system (CNS). 

In adult microglia a core gene expression programme – including Sall1, Mertk, purinergic 

receptor P2Y12 (P2ry12), and triggering receptor expressed on myeloid cells 2 (Trem2) – was 

observed across species spanning roughly 450 million years of evolution (from leeches to 

humans, and 16 species between). Additional expression programmes exclusive to large 

mammals and humans were also identified. It highlighted both similarities but divergences in 

microglial function in these organisms, and provided implications in the origin of particular 

neurodegenerative diseases (specific to large mammals and/or humans) and their links to 

microglia [336]. 

1.5.1 Microglial Phenotypes 

Classically, microglia were considered to possess similar phenotypes and expression patterns to 

macrophages due to expression of common myeloid markers during a naïve state. However, 

recent evidence indicates that microglia have distinctive expression patterns and phenotypes 

that poorly fit “classic” phenotypes of macrophages (i.e. M1 and M2 [158]). An investigation to 

determine differences in adult microglial expression patterns showed that microglia isolated 

from the eye were distinctive to microglia isolated from other regions of the CNS, but also that 

microglia isolated from defined anatomical brain regions have subtle differences suggesting 

localised functional adaptation [308]. Furthermore, sex differences have been observed in brain 

microglia and their reactivity; sex differences in microglia are believed important in neurological 

disorders, many of which have a sex bias in incidence [337, 338]. 
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Microglia can be classified generally as primed or acute: an acute microglia is responding to 

acute injury (such as infection), whereas in contrast a primed microglia is one which exhibits a 

greater and more prolonged response to challenge (i.e. immune adaptation) – the latter being 

observed in ageing and neurodegeneration [158, 339]. A core of primed microglial genes was 

identified, where overlap/consensus between several different models was observed. 

Nonetheless, model-specific changes were also noted [158]. Furthermore, accumulating 

evidence suggests the presence of damage- or recovery-associated microglia (DAM or RAM, 

respectively) in addition to possible transitionary phenotypes and quiescent microglia during 

disease [340-343]. Formal classification and identification of these phenotypes (e.g. specific 

marker changes) remains to be investigated, although these subpopulations are already being 

associated to core sets of gene expression changes [344]. Nonetheless, recent efforts have 

resulted in the development of a 33-module classification system of microglial expression 

patterns. It was developed using microglial responses to 96 different single stimuli in vitro and 

shows promise in both characterisation and comparability with enough dimensions to resolve 

multiple hypothetical microglial states [345]. 

A microglial homeostatic transcript signature has been identified by several groups, with a lot 

of consensus between them [158, 308, 346-351]. Highly-enriched markers that have been 

identified in common by multiple groups (such as Cx3cr1, transmembrane protein 119 

[Tmem119], and P2ry12) have become the focus of research efforts in generating transgenic 

mouse lines and antibodies for specific microglial identification. However, it is increasingly 

recognised that this signature may only be representative of homeostatic microglia as 

downregulation has been observed in a variety of disease models [158, 341, 342, 352, 353] (for 

more detail on microglial identification see Chapter IV). More recent work has characterised 

homeostatic and “reactive” microglia (as separate entities) against macrophage populations, and 

may assist in the identification of markers specific to microglia in both homeostatic and 

pathophysiological circumstances [354]. 

In Alzheimer’s disease (AD), plaque-associated myeloid cells have recently been confirmed as 

deriving from resident microglia [355]. During disease, they cluster into three main groups: 

naïve, stage 1 DAM, and stage 2 DAM. The initial key receptors and pathways which trigger stage 

1 in this model is unclear, but progression to stage 2 has been shown to be dependent on TREM2 

[340]. This dependence on TREM2 for progression was also observed in amyotrophic lateral 

sclerosis (ALS; also known as motor neurone disease) [353]. In humans, TREM2 variants (which 

decreased or markedly increased TREM2 binding affinity to its ligands) can predispose to AD 

[356]. Downstream of TREM2 signalling, expression of apolipoprotein E (Apoe) and other genes 
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associated with lipid metabolism occurs. Apoe deletion resulted in considerable normalisation 

of the transcript signal and suggests this as a specific pathway in neurodegeneration as its 

upregulation was not observed after stimulation of microglia in vivo with E.coli or zymosan 

particles [353]. Expression of Apoe was also observed in microglia during other acute and severe 

neurodegenerative models (the facial nerve axotomy [FNX] and CK-p25 models respectively) 

[343, 357]. A human allele, Apoe2, has been shown to reduce pathology in an AD mouse model 

(synucleinopathy) compared to Apoe knock-out and insertion of other human Apoe alleles, 

including those which have genetic associations to cognitive decline (Apoe4). Furthermore, 

Apoe4 had considerably more phosphorylated α-synuclein than knockout or Apoe3 mice (not 

detected in Apoe2), although the total α-synuclein burden was similar across alleles and raised 

in Apoe knock-out [358]. This highlights the dual functionality of some genes, where knock-out 

can simultaneously be better and worse than possessing a functional gene (depending on the 

allele present) – showing how some alleles confer protective function and others a gain of toxic 

function. Apoe has been implicated in amyloid-β (Aβ) aggregation and clearance, being at least 

partially accountable for >99% of late-onset AD cases [359]. 

Furthermore, lipid-droplet-accumulating microglia (LDAM; they are associated with ageing, 

but also after LPS stimulation) have been shown (using CRISPR-Cas9 screening) to be regulated 

by genes associated with neurodegeneration. They produce high levels of reactive oxygen 

species (ROS), proinflammatory cytokines, and exhibit defective phagocytosis. Furthermore, 

LDAMs were found to be increased in a dementia model [360]. It is currently unclear if the 

microglia can reset to a completely homeostatic state after these changes have occurred. As 

Apoe has functions in lipid metabolism and is important in AD pathology [361], it is likely that 

LDAMs and Apoe (known to be important in AD onset) are part of the same mechanism of 

microglial dysfunction. These LDAMs could represent a critical link between the “burden of 

infection” and autoimmunity (and perhaps also the microbiota) [265], as the immune response 

threshold – “the level of immunogenic stimulation required to elicit an immune response” – and 

the strength of response (i.e. immune adaptation) is altered by accumulating damage [362, 363]. 

However, it should be appreciated that the TREM2 pathway and lipid-accumulation is 

neuroprotective (at least in some contexts) as its loss results in increased neurone loss in the 

cuprizone model (a multiple sclerosis model that bypasses the autoimmune component) [364]. 

Therefore, it is suggestive that LDAMs themselves are protective short-term by correcting local 

abnormalities (that would otherwise cause damage) and that they could represent a microglial 

marker for accumulating damage. However, the altered microglial immune thresholds for 

activation caused by this process could then predispose towards pathology long-term. These 
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alterations could represent a key initiator of para-inflammation, although the root mechanisms 

causing LDAMs remain to be elucidated. Well-designed experiments will be required to 

demonstrate what is associated with damage (acting as a recovery portion) and what is driving 

damage in these different contexts/scenarios. 

In other AD models (and in humans) nucleic acids associated with β-amyloid plaques have been 

shown to activate microglia and induce the expression of a type-I interferon (IFN) response, and 

that exogenous interferon (irrespective of β-amyloid) is able to activate microglia and cause 

synapse loss via a complement-dependent pathway [365]. Complement component 5a receptor 

1 (C5AR1) knock-out results in improved clinical outcomes in AD models, suggesting the IFN 

response as important in AD pathology and microglial-mediated damage [366]. The 

complement system also has strong genetic associations to retinal diseases such as age-related 

macular degeneration (AMD) with most functional implications suggesting loss of inhibitory 

signals or increased activity [367] – suggesting increased synaptic pruning by microglia as 

fundamental to establishment and/or progression of these disease processes. As established 

earlier, loss of synaptic pruning has been linked to schizophrenia [115, 310] which suggests 

potential therapeutic strategies would need to reduce (but not completely abrogate) this 

pathway. Ideally biomarkers or risk stratification could inform prophylactic therapies that can 

be used before the onset of disease and loss of neurones. 

Microglia also have been implicated in a wide variety of inherited retinal degenerative diseases 

observed in mice, including in genes such as phosphodiesterase 6b (Pde6b; retinal degeneration 

1 [rd1] model), membrane frizzled-related protein (Mfrp; rd6), Crumbs cell polarity complex 

component 1 (Crb1), Cx3cr1 (polymorphisms of which associate with AMD), and prolyl 3-

hydroxylase 1 (P3h1) [368-373]. In these situations, microglia proliferate and accumulate 

proximal to areas of retinal damage, enabling phagocytosis. They secrete pro-inflammatory 

cytokines including TNF-α, IL-1β, C-C motif chemokine ligand (CCL2), and CCL3 in addition to 

ROS and nitric oxide (NO) [374, 375]. Some of these genes are expressed exclusively in the retina 

by microglia (i.e. Cx3cr1), implying that microglia can initiate and drive degeneration. However, 

in other inherited retinal degenerative diseases it appears that the microglial response is 

secondary to dysfunction. 

In autoimmune situations, TGF-β-activated kinase 1 (Tak1) has been proposed as pivotal in 

causing autoimmunity as microglial-specific knock-out demonstrated significantly suppressed 

disease in the experimental autoimmune encephalomyelitis (EAE) model (EAE models the 

disease multiple sclerosis) [376]. Further experiments have showed that microglial-specific Tak1 
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knock-out reduces TNF production, and that conditional knock-out of TNF in microglia can 

also significantly reduce disease severity in graft-versus-host disease [377]. In addition to studies 

discussed later (within the “Retinal Microglia and Uveitis” section), this implicates a central role 

for microglia in the development of autoimmune disease. 

Beyond surface markers, cytokine production, and gene expression, there is growing evidence 

of a range of microglial phenotypes at the morphological level that are now being realised. The 

simple two-state ramified or amoeboid model of microglia (sometimes described in 3 states: 

compact, longitudinal, and radial [378]) which, whilst useful, is a gross oversimplification. In 

full, microglia exhibit a multi-dimensional spectrum of morphological phenotypes that 

facilitates the need for automated analysis strategies [379]. Currently, two dominant approaches 

for analysing the microglia exist: sholl analysis, and frac-lac [380]. In brief, sholl analysis was 

developed to characterise neurone morphologies and involves counting intersections between 

dendrite processes and expanding concentric circles [381]. Frac-lac involves counting of fractal 

dimensions (which broadly corresponds to complexity) whilst lacunarity helps to describe how 

the fractal dimensions fill space (a larger lacunarity generally means more or larger gaps) [382-

384]. Both approaches can help to describe quantitatively how ramified a microglial cell is, in 

addition to other parameters such as complexity and shape [385, 386]. These approaches, whilst 

useful, tend to rely on manual segmentation of each microglia which limits the numbers which 

can be analysed. However, many more approaches are being developed to increase throughput 

(to more than 20,000 cells i.e. with phenotypic clustering [387]) or by extracting further 

information (59 parameters, 17 of which were highly discriminatory in microglial classification 

on shape [388]) using automated solutions. Despite this, such analyses tend to require technical 

or coding expertise to execute correctly and obtain results which currently limits their reach 

and usage. Furthermore, they will rely on and assume the use of a single marker which is both 

sensitive and specific for microglia along their entire membrane – ergo it tags all microglia, and 

only microglia – which during severe and chronic inflammation has not necessarily yet been 

identified or validated. 

1.5.2 Retinal Microglia and Homeostasis 

Retinal microglia have been shown to reside within both the plexiform layers, forming niches 

dependent on different cytokines for homeostatic function and survival [341]. Around 50% of 

microglia within the inner plexiform layer (IPL) depend on IL-34 (an alternative CSF1R ligand 

[389]) for survival, whilst microglia within the outer plexiform layer (OPL) are IL-34 

independent (but are CSF1-dependent as CSF1R blockade can deplete all microglia from the 
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retina [390]). Furthermore, the IL-34-dependent microglia within the IPL are believed to possess 

sub-specialisations to their niche and are suggested as key contributors to normal visual 

function [341]. 

Retinal microglia constitutively express IL-27 which stimulates photoreceptors to secrete IL-10 

[312]. IL-10 is associated with anti-inflammatory activities and has been shown to metabolically 

reprogram macrophages [391]. This suggests microglia can self-regulate through the IL-27/IL-10 

axis. Unsurprisingly, dysregulation of IL-10 increases the risk of autoimmune diseases [392]. 

Furthermore, microglia can interact with neurones directly, with receptors such as P2RY12, 

CX3CR1, and CD200R assisting with coupling [393]. These localised interactions, like with 

tissue-resident macrophages in other organs, are believed important in conditioning the 

phenotype. 

There are four major types of microglial checkpoint mechanisms which help to establish an 

immunosuppressive/homeostatic or “resting” environment: physical barriers (i.e. the BBB/BRB 

which help to seclude both peripheral immune cells and cytokines or other signalling 

mechanisms), soluble factors (paracrine signalling via neurons and other local cells e.g. TGF-β, 

but also through autocrine mechanisms such as TNF-α signalling via TNF alpha-induced protein 

3 [TNFAIP3] [394]), cell-cell interactions (e.g. through CD200 and C-X3-C motif chemokine 

ligand 1 [CX3CL1]), and microglial-specific chromatin regulators and transcription factors (e.g. 

RUNX1 and SPI1) which promote the expression of immunosuppressive factors (Figure 1.5.3) 

[395, 396]. This complex set of checkpoints and interactions highlights the critical need for well-

controlled microglial activation. 
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Figure 1.5.3. Major types of microglial checkpoint that help to establish and maintain an 

immunosuppressive environment. Soluble factors can influence microglial activity, and these 

can be via autocrine (e.g. TNF-α), paracrine (e.g. TGF-β), or paracrine loop (e.g. IL-27/IL-10) 

mechanisms. Cell-cell interactions (e.g. CX3CL1-CX3CR1 and CD200-CD200R) can aid with 

microglial localisation. Both soluble factors and cell-cell interactions can influence epigenetic 

regulation of microglia and activation state of transcription factors via cell signalling, reducing 

their propensity towards inflammation. Lastly, physical barriers (e.g. the BRB) hinder peripheral 

immune cells from accessing the retina and their ability to secrete cytokines and interact with 

microglia to promote inflammation. Abbreviation: BRB – blood-retinal barrier. 
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1.5.3 Retinal Microglia and Uveitis 

The role of microglia in EAU and uveitis are less-well understood and more speculative. 

Investigation of microglia within inflammatory disease models has been challenging due to their 

similar phenotype to monocyte-macrophage populations [397]. During early EAU microglia 

migrate from the inner and outer plexiform layers to other regions of the retina [398], and that 

during this early stage they secrete peroxynitrite and TNF-α [398, 399] to recruit and activate 

peripheral immune cells [400]. Microglia also undergo a morphological change from a ramified 

appearance into a more ameboid appearance [401], suggesting their activation as important in 

the early pathogenesis of EAU. The current understanding of microglia during early EAU is 

summarised in Figure 1.5.4. 

Studies have shown that knockout of CD200, an important regulatory glycoprotein expressed 

by neurones, vascular endothelium, and other activated immune cells, results in accelerated 

onset and severity of EAU [402]. Recent work suggests that myeloid cells can transfer 

mitochondria to neurones in a CD200-dependent manner, and this can resolve inflammatory 

pain in mice [403]. Knock-out of CX3CR1, another important microglial checkpoint/regulatory 

receptor also enhances disease severity [404]. Furthermore, IFN-γ (produced by Th1 cells, a key 

mediator of EAU) upregulates IL-27 in microglia which stimulates the production of the anti-

inflammatory cytokine IL-10 by photoreceptors [312]. IL-27 also inhibits RORc expression to 

prevent lineage commitment to Th17 and expression of IL-17 in CD4+ T cells [405, 406]. It is 

possible IL-27 could induce transformation of Th17 cells towards a Th1 phenotype (these are 

termed non-classical Th1 or ex-Th17 cells) [214]; in other contexts Th17 cells could become Treg-

like as well [407]. Moreover, IL-1β has been shown to induce IFN-γ (a typically Th1-associated 

cytokine) in Th17 cells [408]. As IL-1R knockout mice are resistant to EAU but cellular infiltration 

can still occur (expression of IL-1β is an early microglial event) [61, 409], and that IL-27R 

knockout mice exhibit more severe autoimmune disease in brain contexts [410], this suggests 

that reprogramming of T cells by microglia (or a critical role for microglia helping to drive 

uveitis) is plausible. This not only confirms that microglial dysregulation worsens EAU, 

illustrating direct involvement in disease process, but also suggests that they represent an 

excellent cellular target for therapeutics in addition to highlighting the critical role several 

different axes (e.g. IL-27, CD200, CX3CR1), or immune checkpoints, can have in regulating the 

potential inflammatory environment within the eye. 
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Figure 1.5.4. The changes between homeostatic ramified microglia and dysregulated 

amoeboid microglia during EAU. Microglia undergo a morphological transition towards a 

more amoeboid state, in addition to migration from plexiform layers to other regions of the retina. 

During this time, the threshold for activation is overcome and a pro-inflammatory environment 

generated. Microglia are known to release factors enhancing vascular permeability (e.g. NO and 

ONOO-) as well as IL-1β to activate peripheral immune cells and help to facilitate their entry into 

the retina. It is currently unknown if microglia can completely reset to their homeostatic state 

following activation in EAU. 
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Microglia are tissue-resident immune cells within the retina, meaning they could be targeted 

locally by a therapy during remission. Nonetheless, following inflammation it is recognised that 

the BRB remains permeable, that immune thresholds are altered, and tertiary lymphoid 

structures may have formed within the eye – these represent other plausible targets during 

remission also [44, 411]. Targeting microglia (and/or other immune cells that have acquired 

residency within the tissue) during remission has the potential, in a patient, to enhance the 

immunosuppressive environment – e.g. in recurrent uveitis, or in drug-induced remission i.e. 

in chronic uveitis brought under control by steroids that need to be tapered due to its adverse 

effects – to ultimately prevent relapse. This represents a preferable approach to treatment 

strategy instead of targeting the peripheral T cells; during relapse, damage and symptoms are 

already being caused and targeting during remission would likely have an increased side effect 

profile as it would affect T cells systemically – and they are responsible for adaptive immune 

responses (in conjunction with B cells) throughout the body. 

Determining the role of microglia during the late stages of EAU has been challenging because 

macrophage infiltration has occurred and reasonable discrimination between these cell types 

has not been possible (until recently). However, it is plausible that microglia could play a key 

role in re-establishing an immunosuppressive environment within the eye; for example, through 

increased secretion of IL-27 (as outlined earlier) but via other mechanisms as well. Overall, this 

suggests that microglia have both a pro- and anti-inflammatory response in EAU, and that 

careful manipulation of them with therapies could have a beneficial effect in uveitis. 

A recent study cemented the vital role microglia play in uveitis by showing their depletion 

(using CSF1R antagonism; described later) inhibited the onset of EAU in both conventional 

immunisation and AT models, yet their depletion during established EAU was relatively 

inconsequential [390]. Using the EIU model (systemic LPS administration), it was also shown 

that CSF1R antagonism could prevent BRB breakdown and subsequent immune cell infiltration 

[412]. This highlights the importance of microglia in enabling immune cell infiltration, through 

direct interaction with leukocytes through the vascular wall and/or indirect effects via the 

vascular endothelium, but how other immune cells (such as monocytes and macrophages) could 

functionally mimic them and compensate for their loss once autoimmunity was established, or 

that they were obsolete by this point. They did not observe the effects of complete microglial 

depletion (e.g. using CSF1R antagonism) long-term, and it would be interesting to see if disease 

continued with a different severity due to their loss, because their potential pro-resolution 

response would no longer be present. However (as discussed in the next section) there is 

potential for myeloid cells to adopt programmed microglial niches of residency, acquire a 
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microglia or microglial-like role, and help to also resolve disease. As this adopted residency and 

functional adaptation takes time to complete, then resolution of disease could still be delayed 

compared to an absence of microglial depletion. 

1.5.4 Monocyte Engraftment and Microglial Depletion 

The understanding of monocyte and microglial dynamics within the brain has been difficult to 

establish due to similarities between the cell types. Nonetheless, it is well-characterised that 

microglia can be replaced by monocytes in the retina and brain by a process termed 

engraftment. The monocytes/monocyte-progenitors differentiate into microglia or microglia-

like cells, adopting their function and niche of residency. Post-engraftment, tissue-resident 

CD11b+ populations have their enhancers shaped by the local microenvironment (tissue- and 

lineage-specific transcription factors in addition to the microbiome) and this enables them to 

acquire the required phenotype for the niche they occupy [192, 413]. This may also explain why 

loss of a homeostatic microglial signal is observed in many microglial cell lines and cultures – 

i.e. because they are removed from this regulatory microenvironment [414].  

It has been shown that infiltration and engraftment of monocytes (for at least 6 months post-

radiation) into the brain only occurs after total body irradiation (TBI) and not after head-

protected irradiation (HPI) [415]; engraftment by monocytes occurs in a dose- and time-

dependent manner [416].  

More recent work, using Cx3cr1CreER/+:Csf1rFlox/Flox (CSF1R signalling is a vital microglial survival 

signal, and therefore its removal results in their death) mice fed tamoxifen-containing chow, 

shows that microglia are capable of self-replication (in the presence of partial loss) to maintain 

their physiological count (as compared to Cx3cr1+/+:Csf1rFlox/Flox controls) [417]. They also showed 

that both sorted and circulating blood monocytes were able to occupy the brain only in the 

CreER heterozygotes after tamoxifen administration (in a chimera with donor cells labelled). 

Engraftment occurred with or without the presence of a CSF1R inhibitor (it was exacerbated in 

its presence) and was confirmed it as genuine through use of the Cx3cr1+/-:Csf1rFlox/Flox:R26yfp 

mouse (where microglia would express yellow fluorescent protein [YFP+] and lose Csf1r 

expression, whilst peripheral cells would be negative). It was also shown that the peripherally-

engrafted cells had a transcriptional signature that was different from microglia; the unique 

signature was similar to intestinal serosal macrophages, lung CD11b+ macrophages, and small 

intestine lamina propria macrophages determined from microarray data acquired as part of the 

Immunological Genome Project (ImmGen) [418]. However, it should be noted that the atlas has 
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a bias towards certain cell types and others are under-represented or not present at-all. For 

example, currently no microglial data is included. Overall, the data suggests that tissue-

residency of microglia or microglia-like immune cells can only occur in predetermined regions 

commonly referred to as niches, and that in the absence of free/available niches this process 

cannot occur. It is suggestive that the spatial distribution of the niches, in conjunction with 

extension/retraction of microglial ramified processes, enables adequate microglial coverage of 

the tissue to both provide total immunosurveillance and enable completion of sub-specialised 

tasks unique to each microenvironment within the CNS. 

Other studies show that wide-scale microglial depletion (using Cre recombinase [Cre]/diptheria 

toxin [DT] receptor systems) results in self-renewal of those which survive. With irradiation, 

engraftment of peripheral cells could occur [419]. Therefore, it was suggested that unless the 

BBB is disrupted (i.e. by irradiation), the “niches” (programmed regions in which a microglia or 

microglial-like cell can reside – as described by [417]) are filled by self-renewing microglia. 

Through blockade of IL-1R, it was showed that microglial renewal is significantly delayed and 

that engraftment does not occur despite the niches being empty long-term, confirming that 

disruption to the BBB to permit cellular entry is required in addition to empty niches [419]. As 

CSF1R is vital for microglia, and they die without it [420], it is suggestive that the cell death 

resulting from experiments targeting CSF1R to deplete microglia could lead to the disruption of 

the BBB through the release of DAMPs or other signals to indicate tissue damage (CSF1 would 

be produced in a typical retina, and absence of its signalling could suggest tissue abnormalities) 

– which could disrupt the BBB and permit engraftment. The mechanism of cell death via DT 

systems is apoptosis as a result of inhibition of protein synthesis [421], meaning that release of 

DAMPs or danger signalling molecules may not occur as they cannot be synthesised, and this 

may explain why engraftment does not occur in this context. Irrespective of the conflicts, both 

studies independently identified microglial unique gene signatures, that were already widely-

believed to be microglial-specific, when compared to the engrafted cells [417, 419] (e.g. P2ry12, 

Tmem119). In agreement, other reports suggest that TMEM119 marks only microglia within the 

human brain and not monocytes [422]. However, in these experiments (performed on human 

tissues post-mortem) it remains unclear whether the monocytes have persisted long-term and 

are engrafted cells or are infiltrating due to inflammation. Furthermore, during disease states it 

is becoming increasingly recognised that downregulation of the microglial transcriptional 

programme occurs, including Tmem119 [353]. Nonetheless, it is understood that engrafted 

monocytes can be morphologically indistinguishable from yolk-sac derived microglia, but that 

it is possible to fate-map them using Ccr2 transgenic mouse lines (i.e. using Ccr2Cre instead of 
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chimeric techniques) as microglia do not express Ccr2 but most monocytes/monocyte 

progenitors do [423]. It is likely that their differential transcriptomes could be due to different 

differentiation pathways and lineages (i.e. origins) leading to epigenetic differences in these 

cells that cannot be fully overcome by the microenvironment and other local regulators. 

Whether these engrafted cells are beneficial or detrimental to tissue homeostasis is likely to be 

context-dependent with research supporting both outcomes [423, 424]; further research is 

required before their role and potential can be realised. Assuming monocyte-engrafted cells 

retain some epigenetic footprint of a monocyte progenitor, it would follow that these cells are 

inherently more predisposed towards a pro-inflammatory state. This could be helpful or 

harmful depending on the context. For example, monocyte-engrafted cells could become better 

at clearing and scavenging as well as dealing with infection (beneficial) whilst at the same time 

predisposing to inflammation in unnecessary contexts that could lead to collateral damage 

(detrimental). In the context of lipid-droplet accumulation, replacement of these microglia 

(LDAMs) by the monocytes could result in a more anti-inflammatory environment; whilst this 

would certainly be context-dependent on the proportion of LDAMs present, there is potential 

for engrafted cells to be beneficial and/or detrimental to the immune state of the retina. 

Furthermore, recent research shows that partial depletion of microglia and subsequent self-

renewal results in reduced neuronal damage in models of traumatic brain injury compared to 

controls which did not perturb the microglia, and that this is an IL-6-dependent process [425]. 

Whilst these experiments were performed on microglia located within the brain, these results 

could explain observations in the retina on partial depletion as they are likely to be similar in 

mechanism. This data suggests it could be repopulation of the retina, and not necessarily a 

specific cell type or progenitor (i.e. microglia or engrafted cell), that associates with protective 

effects. Further work comparing the IL-6 repair process between self-replicating microglia and 

engrafting monocytes, in addition to the context(s) in which this is beneficial would be useful 

in delineating the finer aspects of this phenomenon. 

It should, however, be noted that the experiments involving irradiation and large-scale 

depletion of microglia may not be representative of disease processes in humans. However, 

during inflammation (either locally or systemically) the ability for engraftment to occur, as the 

BBB/BRB is disrupted, is plausible. In humans, engrafted microglia-like cells have been observed 

in AD whilst in the mouse they have been shown to express genes associated with AD DAMs in 

naïve mice (engraftment procedure aside) [426, 427]. 
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Further work to establish whether engraftment is a genuine feature of inflammatory disease 

models of the brain and retina, and the effect this has on a disease course or future inflammatory 

processes, is required. It is, however, well-recognised in ageing that cells exhibiting a microglial 

morphology are more pro-inflammatory (generally primed) compared to their younger 

counterparts – it is unclear if these are general replacement of microglia with engrafted cells 

with time, or genuine changes in the embryonically-derived microglia over the lifetime of an 

organism (such as lipid accumulation and para-inflammation). It is possible that a threshold for 

these changes (i.e. a more pro-inflammatory state) is required before autoimmunity or 

neurodegenerative disease becomes feasible and could explain why the burden of infection, 

LDAM accumulation, immune adaptation, and para-inflammation could be important to its 

onset. 
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1.6 Experimental Techniques: mRNA-Sequencing 
Messenger ribonucleic acid sequencing (mRNA-Seq) is a technique that enables the 

quantification of mRNA inside a cell or group of cells, and has the potential to identify 

differences in expression of any gene, splice variants, and/or mutations (or SNPs) in different 

experimental groups – whether that be physiological and disease groups, treatment groups, 

others, or a combination [428]. The aim is to characterise changes between experimental groups 

in an unbiased manner to determine the changes occurring to cellular behaviour at the 

molecular level. For the study of microglia, this approach has improved our fundamental 

understanding through the identification of specific candidate markers which has enabled the 

generation of transgenic microglial reporter mouse lines, compendiums of key/homeostatic 

microglial transcripts, and meta-analyses of multiple microglial datasets to identify genes 

associated with varying microglial states (e.g. acute vs. primed) in attempts to begin classifying 

different microglial subtypes [158, 308, 346-351, 376, 429] (see the microglial phenotypes section 

of this Chapter and the challenge of microglial identification section within Chapter IV). mRNA-

Seq is a powerful tool for interrogating the whole transcriptome and understanding changes to 

cellular behaviour at a broad level, and has the potential to elucidate mechanisms of action, 

signalling, and side effects induced by therapeutics. The general aspects of experimental and 

analytical pipelines for mRNA-seq are summarised and discussed herein; specifics of the mRNA-

Seq pipeline selected for the experiments conducted as part of this thesis are described within 

Chapter III and Appendix I. 

1.6.1 Experimental Pipelines 

Cell Isolation Methods 
When performing mRNA-Seq on whole tissues derived from organisms, there will inevitably be 

a mixture of cell populations. This poses several challenges, chiefly that the mRNA isolated for 

sequencing would be a mixture of all the cell-types present in that tissue or organ. This causes 

significant problems in that the signal from your population of interest will be diluted by the 

others, and any treatments or other experimental procedures you wish to investigate would 

yield a summary picture of the largest/average changes from the cells types blurred into one – 

as opposed to specific changes at given times within a defined cell population. This can become 

further complicated if there is differential transcriptional amplification between cell types – 

transcriptional amplification being when a cell expresses more mRNA (or in the case of 

repression, less), leading to potential bias in identifying differentially-expressed genes (DEGs) 
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[430]. This may also result if there are changes in the proportions of cells of the different types 

or cellular infiltration (as would be seen in inflammatory models). Despite this, and approaches 

for cell isolation being well established, studies based on whole tissue approaches are being 

published currently [102]. 

To overcome some of these limitations, two main methodologies for bulk mRNA-Seq have been 

widely-adopted: fluorescence-activated cell sorting (FACS) and laser capture microdissection 

(LCM) [431]; the former involves dissociation of cells into a single-cell suspension, staining with 

antibodies conjugated to fluorophores (or use of fluorescent tagging beforehand), and then 

sorting of populations based on a gating strategy (determined by size and fluorescence intensity 

in the channels). LCM involves fixation and sectioning of tissues, optional staining, and use of 

a microscope-guided laser to isolate the region of interest (in this case a cell or group of cells). 

It is argued by many that LCM will be more representative of the mRNA being expressed by the 

cell as fixation “flash freezes” mRNA early-on in the preparation process, whilst there is a greater 

window of opportunity for transcriptional changes to occur with FACS-isolated mRNA due to 

the length of time required for preparatory steps such as staining protocols. However, it is also 

recognised that contaminant mRNA from surrounding areas/cells can also be captured using 

LCM. Nonetheless, both are valid ways of obtaining cells for mRNA-Seq as controls within each 

experiment are likely to be confounded by the same limitations and thus change in a similar 

way – when analysing, these artefacts would then be excluded as noise which would not achieve 

the required statistical threshold, and/or not be observed as different between experimental 

groups. Furthermore, a study investigated the two methodologies head-to-head by profiling 

single cells from chicken embryos; good correlation between samples acquired using the two 

cell isolation methodologies (FACS and LCM) was observed, suggesting the two techniques are 

comparable [432]. Beyond the two initial approaches, it is possible to utilise other technologies 

such as magnetic-activated cell sorting (MACS) for mRNA-Seq [433]. However, this approach is 

less widely adopted due to limitations of lower specificity and reduced sample viability of MACS 

compared to either LCM or FACS [434, 435]. 

Sample and Library Preparation 
Following isolation, cells require careful processing and preparation for sequencing. If not 

performed initially during the isolation step, the cells need to be lysed; this can be performed 

using snap freezing but is commonly performed with a lysis buffer (usually containing an RNAse 

inhibitor). The mRNA is then isolated, stabilised, and sometimes amplified from the mixture of 

cellular contents (the latter step is required in the case of low input amounts from few or single 

cells). This can be performed through polyA selection or ribosomal/transfer RNA (rRNA/tRNA) 
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depletion. The former is considered superior for mRNA-Seq, but rRNA/tRNA depletion helps to 

retain more long non-coding RNAs (lncRNAs) and other small RNAs [436]. Other approaches, 

such as using TRIzol reagent, also exist [437]. The aforementioned approaches are not 

compatible with formalin-fixed and paraffin-embedded samples – which is the way many tissue 

banks preserve and store patient samples – and therefore specialised extraction pipelines for 

these types of samples have also been developed [438]. 

The mRNA is then converted into complementary DNA (cDNA) using reverse transcriptase (RT) 

because cDNA is considerably more stable [439]. Before proceeding to cDNA synthesis, 

protocols often test the quality of the mRNA if it was purified as part of processing; the RNA 

Integrity Number (RIN) is the gold-standard for this [440]. In the original mRNA-Seq pipelines 

developed, random hexamer primers (in addition to d[T] primers specific for the beginning of 

the poly[A] tail) are used to amplify the cDNA first-strands generated by PCR. However, this 

process leads to a strong GC bias. Enhancements to this process now include the use of template 

switching to facilitate introduction of equivalent sequences at the 5’ end of the transcript to 

overcome this limitation [441]. Other pipelines bypass the use of PCR entirely, instead utilising 

a different process called in vitro transcription, which is considered to introduce less bias and is 

used in microarray platforms (the predecessor transcriptomics platform which mRNA-Seq has 

now effectively superseded) [442]. At this point, the cDNA is usually quantified and then 

processed for library preparation (where each sample is barcoded and prepared for sequencing; 

see Appendix I for the intricacies of this process), in addition to quantification post-library 

generation. A variety of techniques are available, such as the conventional nanodrop approach, 

but Qubit and Agilent Tapestation approaches are more sensitive, accurate, and reliable, and 

remain two commonly-used approaches to this end [443]. 

From this point, the samples are then loaded onto the flow cell (sometimes called chip) and 

sequenced. A variety of sequencing machines are available, depending on the throughput or 

technology required; the vast majority of mRNA-Seq is performed using the Illumina 

technology. A small proportion of mRNA-Seq is also performed using the Ion Torrent platform. 

Both perform similarly well, but the choice of sequencing platform affects how the data should 

be processed (for example, some aligners perform better or worse for each technology) [444]. 

1.6.2 Approaches to Data Analysis 

Whilst there is no gold-standard for data analysis approaches, good practice does exist and a 

survey on best practices was recently performed to help compile these in one place [445]. Before 
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detailing the available packages, software, and/or code to carry out analysis functions it is 

important to recognise the infrastructure and technical challenges relating to these tools and 

their use. 

Bioinformatics Tools 
The majority of tools available for use have been released as packages (or plugins) within 

Bioconductor. This is an add-on platform for the open-source R statistical package and is 

specifically aimed at the analysis and visualisation of data generated from high-throughput 

biological assays (e.g. mRNA-Seq, proteomics, flow cytometry) [446, 447]. This platform enables 

anyone to author a package (a plugin/addon for Bioconductor) and holds several advantages 

such as faster and better collaboration opportunities, being open-source so that the code can be 

critiqued and edited/refined by users, and an ability to write custom code if a desired function 

does not yet exist. However, it also holds several disadvantages such as a need for experience 

with command line interfaces (CLI). Packages can also become obsolete and dysfunctional 

within the Bioconductor environment if they are not maintained because Bioconductor itself is 

continually being updated. University computer systems often restrict user permissions and this 

can make troubleshooting or running of certain packages more challenging because the R 

environment defaults to using the C: drive (restricted) and it isn’t usually possible to edit the 

java runtime environment (default installation is also to the C: drive) which R depends on. 

Additionally, writing code for novel tasks/functions is non-trivial and requires expertise with 

coding languages. 

Other tools have also been developed and released in different ways. A large compilation of 

tools have been written by the Bioinformatics group at the Babraham Institute and the Broad 

Institute, whilst many other tools and/or data repositories are integrated on websites including 

the European Bioinformatics Institute (EMBL-EBI; to include the Expression Atlas and many 

more), the Database for Annotation, Visualization and Integrated Discovery (DAVID), the 

ImmGen project, the National Centre for Biotechnology Information (NCBI, to include the Gene 

Expression Omnibus [GEO]), Mouse Genome Informatics (MGI), and Ensembl [418, 448-457]. 

Beyond this, numerous commercial packages for analysis have also been released such as the 

Partek suite of software, Ingenuity Pathway Analysis (IPA) and CLC Genomics Workbench (the 

latter two from Qiagen) – these utilise graphical user interfaces (GUIs) instead of CLIs which 

makes them considerably more user friendly. Open-source all-in-one packages with a GUI, such 

as the Visualization Pipeline for RNA-Seq, a Snakemake workflow for efficient and complete 

RNA-seq analysis (VIPER) have also been released [458]. However, these GUI-based 

applications will have functionality limited to what has been implemented within them already, 
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usually with inaccessible/protected source code meaning that users rely on new versions solely 

from the developers. This can limit the rate of adoption of the latest innovations in the field and 

available options for analysis within these environments. 

It is evident that there are a variety of bioinformatics tools at a scientist’s disposal each with 

benefits and drawbacks. A more exhaustive list of over 100 mRNA-Seq bioinformatics tools, and 

their original papers for further reading, can be found on Wikipedia [459]. A different review 

paper also summarises and discusses many ‘omics tools and their utility in systems immunology 

[460]. 

Analysis of mRNA-Seq Data – Principles and a “Good Practice” Pipeline 
Once data has been acquired, it is first quality-checked and pre-alignment processing 

performed. Tools such as FASTQC are used to check the Phred scores (defined as -10 log10P 

where P is the probability of an error in base-calling [461]), GC content (highlighting PCR bias), 

base distribution across read position (highlighting abnormalities in a sample), and many other 

parameters which can be informative about the quality of the output (e.g. adapter 

contamination) [462]. From here, bases are trimmed – typically to remove adapter sequences, 

but also to remove poor quality reads at the 3’ end – so that alignment to a reference genome or 

de novo assembly would be more accurate and valid; low-quality reads can also be discarded 

[463]. Alignment, especially of small or microRNA molecules, would be highly inaccurate if 

contaminating adapters were still present or base calling was not accurate. Adapter sequences 

are dependent on the library preparation kit used (and hence vary considerably, although a list 

of many Illumina adapters can be found at [464]), but trimming from the 3’ end of a read on a 

Phred score of ≥20 is considered good and ≥30 ideal. 

At this point, dimension-reduction algorithms (such as principal component analysis [PCA]) 

are often performed on the data to enable visualisation of broad patterns. For example, 

segregation of samples would be anticipated based on factors such as experimental group, tissue 

the sample was derived from, time, etc [465]. Samples can also be correlated to one another to 

help identify outliers for exclusion (e.g. R2 ≥0.9 for cell lines of the same experimental group). 

However, in heterogeneous in vivo disease models this is not well understood and no defined 

set of criteria for exclusion exists, possibly because each disease model is unique and could vary 

in correlation due to genuine biological variation [466, 467]. 

The reads are then mapped to an organism’s genome or transcriptome, or sometimes (usually 

in the case of a poorly annotated organism) are used to create a de novo assembly, using an 

aligner. This process associates each read with a specific region (or regions) that it matches 
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within the genome, which itself associates with a specific gene. When mapping to the genome, 

it is also possible to identify new transcripts and splice variants [468]. For the creation of an 

assembly or to identify novel splice variants, considerably more and longer paired-end reads are 

generally required1. A huge variety of different aligners exist including bowtie 2, Burrows-

Wheeler aligner (BWA), genomic short-read nucleotide alignment program (GSNAP), 

hierarchical indexing for spliced alignment of transcripts (HISAT2; a successor to the popular 

TopHat2), Isaac 2, MapSplice, RNA-Seq unified mapper (RUM), and spliced transcripts 

alignment to a reference (STAR) [469-477]. When selecting an aligner for use, the main 

considerations include available random access memory (cRAM) of the processing machine 

(some aligners require large amounts of cRAM, and would not run on smaller systems such as 

desktop personal computers), read length of your data (some aligners are optimal for only 

certain length reads [i.e. ~25, ~75, ~200, or even larger]), mapping accuracy (higher being more 

desirable), splice awareness (if using mRNA-Seq data, this is critical or reads spanning an exon-

exon boundary will align to multiple places within the genome unnecessarily and this can affect 

results), and to some extent the speed at which the algorithm can align. To this end, STAR is a 

prominent and popular aligner because it is splice aware, can be used on reads of any length, is 

comparably accurate in mapping to many other aligners, and has a fast mapping speed – it is up 

to ~55 times faster than TopHat2 [475]. Furthermore, it can utilise only 16 Gb of cRAM in sparse 

mode, which would enable its use on high-end desktop machines and all servers. 

Once alignment has been performed, quality control (QC) steps are carried-out to check various 

basic metrics including alignment rate and unique alignment rate, but also more advanced 

metrics such as coverage uniformity, mapped reads distribution, and splice junction annotation 

[478, 479]. Generally, a total alignment rate of 80–90% is considered ideal, with a unique 

alignment rate of 70–80% also desired – assuming you are mapping to a well-annotated genome 

(e.g. human or mouse). Unique alignments describe where that read mapped to only one 

position within the organism’s genome; because of some repeat sequences and similarity in 

sequence between paralogous genes, some non-unique alignments are anticipated. In some 

organisms, such as the zebrafish, whole-genome duplication events occurred in evolutionary 

history (for the zebrafish, this is termed the teleost-specific genome duplication and represents 

a third-round compared to the two observed in tetrapods) and means that a greater proportion 

 
1 Five to twenty-five million reads are required for gene expression analysis, 50–70 million reads for 
transcript-level analysis, and ≥90 million reads for identifying novel transcripts or de novo assembly. This 
rule applies well to genomes comparable to the mouse or human, but otherwise the required number of 
reads can vary depending on the size of the organism’s genome (fewer for smaller genomes and vice 
versa). 
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of non-unique alignments would be anticipated compared to other organisms [480, 481]. 

Relatively uniform coverage is expected across the genome, so over-representation of sequences 

from one region of the genome can be an indicator of QC issues in the sample or problems with 

processing steps. 

The next step requires quantification of the reads and this can occur at the gene-, transcript-, 

or exon-level. A variety of packages can perform this function, including those such as Cufflinks, 

NOISeq, exploratory data analysis and normalization for RNA-Seq (EDASeq), Sailfish, and 

HTSeq [482-486]. Unfortunately, many (if not all) appear to struggle with reliable and valid 

quantification of reads that map in a non-unique fashion – which typically correspond to 

paralogous genes – as there is no simple (if any) way of differentiating them [487]. After 

quantification, the raw reads require normalisation because normalisation, or lack of, can have 

a profound effect on expression values and the subsequent detection of DEGs [488]. There are 

many normalisation strategies, but some of the commonly-used approaches include: RPKM, 

fragments per kilobase of exon model per million reads mapped (FPKM), transcripts per million 

(TPM), trimmed mean of M values (TMM), PoissonSeq, RNA-Seq by expectation maximization 

(RSEM), eXpress, or through the use of synthetic spike-in controls (e.g. ERCC spike-ins) of 

known concentration before sample processing begins [467, 489-496]. It is also possible to 

normalise using housekeeping genes: this could include the use of one or a set of predefined 

genes. Normalisation models which assume that roughly half of the transcriptome does not 

change across experimental groups have also been developed [497]. 

Quantified reads can then be analysed by differential gene expression analysis (DGEA) to 

identify DEGs. As before, many tools can be used for this (and some provide their own 

normalisation too); two of the best currently available packages include empirical analysis of 

digital gene expression in R (edgeR) and differential expression analysis for sequence count data 

2 (DESeq2) [498-500]. Once DEGs have been identified, it is important to nonetheless validate 

them. Performing quantitative PCR (qPCR) on the samples (if there is leftover material) can 

validate both the mRNA-Seq itself and the analysis as it uses the same original material. This is 

important, because if validation at the protein level was discrepant it would be unclear if the 

mRNA-Seq and/or analysis was valid or not, and discrepancies between proteome and 

transcriptome have already been observed [501]. The best approach to confirm change at the 

protein-level (i.e. with techniques such as Western blotting, fluorescence microscopy, and flow 

cytometry to name a few) will depend on a variety of factors [502]. 
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From here, the list of DEGs can be used for secondary analysis such as gene set enrichment (or 

pathway) analysis (GSEA) [503]. Two databases predominate in this type of analysis: gene 

ontology (GO) terms, and the Kyoto encyclopedia of genes and genomes (KEGG) pathways [504-

506]. This type of analysis can help to group DEGs which are related in a specific pathway, and 

put them through a second statistical test: the proportion of DEGs in that pathway (to those 

not) are compared to the proportion of all DEGs to the list of genes in the database (in essence, 

a repeated version of the Chi-Squared test for each pathway in the list) [507]. It arguably corrects 

for DEGs which may otherwise be noise (i.e. false positives) as multiple DEGs from a single 

pathway will be required before significance is achieved, and the probability of this occurring 

by random chance becomes considerably smaller. Despite this, these approaches are limited 

because they rely on coupling data to annotated databases and pathways primarily determined 

by genes with known functions. It can lead to the loss of information relating to genes which 

have been poorly characterised or are novel. The second main limitation is that it does not show 

directionality of the pathway change and uncertainty as to whether the changes in gene 

expression correspond to activation or inhibition of the pathway, or if there is functional 

antagonism and therefore no overall change to the pathway. However, the IPA tool can perform 

a modified GSEA which predicts activation/inhibition of the pathway to help understand which 

pathways are both significant and have a directionality bias. Despite these shortfalls, GSEA 

remains a very useful tool for filtering results into meaningful changes, mechanistic/signalling 

changes, or for further lines of investigation. It can also confirm at a broad level if the results 

are in general agreement with the known pathways and processes (e.g. you would anticipate 

immune-related processes to be identified as significantly enriched if you were investigating 

transcriptional differences during an autoimmune disease). Further to this, some tools 

(including weighted gene co-expression network analysis [WGCNA]) permit the generation of 

novel clusters/gene sets and statistical comparisons between samples and clusters [508]; the use 

of such tools generally require large datasets, often compiled from multiple sources. 

Lastly, a variety of other tools can also be utilised in conjunction with mRNA-Seq data such as 

genome browsers, generation of Sashimi plots (to visualise splice junctions), gene fusion 

discovery, volcano plots, and many other types of visualisation or investigation. However, these 

are generally limited to specific or a small set of genes [445]. 

  



Chapter I: Introduction 

78 
 

1.7 Thesis Objectives 
Uveitis is a group of autoimmune/autoinflammatory conditions of the eye and is the commonest 

cause of blindness in the working-age, representing a significant health burden. EAU and EIU 

are mouse models of non-infectious uveitis that enables us to manipulate and investigate the 

mechanics and kinetics of ocular autoimmune disease. The interplay of innate and adaptive 

responses, driven by macrophages and T cells, underpins immune-mediated pathology 

associated with non-infectious intraocular inflammation. Additionally, the retina is endowed 

with regulatory networks to maintain tissue homeostasis and neuronal function and to respond 

appropriately to danger. However, when homeostasis is lost immune-mediated inflammation 

and damage can ensue. 

At the current time, it is evident that microglia are more than mere bystanders during uveitis. 

They are suggested to be critical in initiating ocular autoimmunity, with some understanding 

of basic mechanisms by which they can achieve this. Alterations in critical sensing and 

regulatory microglial proteins have been shown to have profound effects on the permissibility 

of autoimmunity and severity of inflammation. Microglia are also known to influence leukocytes 

within the eye and have the potential to restore tissue homeostasis and resolve inflammation. 

However, little is known about their role in the later stages of uveitis, whether it is beneficial or 

detrimental overall, if tissue homeostasis ever returns or how it could be modulated. 

Furthermore, no markers for microglial-specific identification have been validated despite many 

promising candidates. Conventional transgenic models such as the Cx3cr1GFP mouse strain are 

known to tag microglia in addition to subsets of monocytes and other immune cells and this 

limits its utility in microglial investigation. In contrast, the Cx3cr1CreER:R26-tdTomato mouse 

strain holds promise but is currently unclear if it will overcome shortcomings in microglial 

identification during inflammation so that the microglial role could be better investigated. 

Provided it is sensitive and specific, the Cx3cr1CreER:R26-tdTomato mouse strain would permit 

valid usage of established techniques that utilise fluorescence-based detection, and the coupling 

of these to high-throughput techniques such as mRNA-Seq for unbiased characterisation. The 

synthesis of these tools with repeatable in vivo imaging techniques should ultimately enable 

discovery of changes to microglia and more understanding about their role in uveitis. 
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In summary, the hypotheses on which this thesis is based were specifically formulated to focus 

on determining the transcriptional changes that occur in retinal microglia in response to 

inflammation, comprising both a technical and biological question: 

- An enhanced ability to transcriptionally characterise samples acquired from ultra-low 

cell numbers. 

- Use of this platform to ask whether the homeostatic threshold of retinal microglia 

remains perturbed in response to acute and chronic inflammation. 

 

To test these hypotheses, this thesis aimed to: 

- Optimise and validate a FACS-Seq pipeline that would permit isolation and 

characterisation of defined/small numbers of immune cells from a single retina. 

- Characterise whether the Cx3cr1CreER:R26-tdTomato reporter strain was a sensitive and 

specific tool that would permit the isolation of microglia from retinas with intraocular 

inflammation. 

- Determine what changes occur in the microglial transcriptome in response to acute 

challenge using the EIU model. 

- Determine what changes occur in the microglial transcriptome in response to persistent 

inflammation using the EAU model. 
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2.1 Mice 
Chapter II: Materials and Methods 

C57BL/6J drug and test naïve 7-week-old SPF female mice were obtained from Charles River 

Laboratories International, Inc. (Oxford, UK). C57BL/6 Cx3cr1CreER:R26-tdTomato mice were 

obtained from Clemens Lange (University of Freiburg, Germany) and re-derived by embryo 

transfer; breeding colonies of homozygotes were established from the offspring, and 

homozygotes were crossed with wild-type (WT) mice to generate heterozygotes for 

experiments. C57BL/6 Cx3cr1GFP/+ mice were obtained from Heping Xu (Queen’s University 

Belfast; the mice were originally obtained from The Jackson Laboratory, Bar Harbor, ME), re-

derived and bred as described for the Cx3cr1CreER:R26-tdTomato mice. Genotyping (via PCR) of 

breeding pairs was performed to validate homozygosity of breeders. Mice were confirmed as 

negative for the Rd8 mutation [509]]. The details of mice used for experiments are listed in table 

2.1.1. 

For genotyping, DNA was extracted from mouse ear notches by overnight digestion in a solution 

containing 100 mM Trisaminomethane (Tris)-Cl, 5 mM ethylenediaminetetraacetic acid 

(EDTA), 0.2% sodium dodecyl sulphate (SDS), 200 mM NaCl, and 100 µg/mL proteinase k 

(P2308-100MG; Sigma-Aldrich, Poole, UK) at 56°C. Samples were then centrifuged and 250 µL 

of supernatant was transferred to a new Eppendorf containing 250 µL ice-cold pure isopropanol. 

This was then washed with 75% v/v ethanol (diluent was distilled water [dH2O]), air-dried, and 

resuspended in 20 µL double-distilled water (ddH2O). A PCR mastermix was made, using 

Phusion Green Hot Start II High-Fidelity PCR Master Mix (F566L; Thermo Fisher Scientific) at 

1:2 and primers at 0.2 µM to a total volume of 11.5 µL per sample (adding ddH2O as necessary). 

Half a microlitre of the DNA solution was added to each sample and mixed. The samples were 

then ran through the thermocycler programme for amplification. All run batches included both 

positive and negative (water) controls for validation. The primer sequences and cycling 

conditions are detailed in Tables 2.1.2 and 2.1.3, respectively. 

After amplification, the product was separated using gel electrophoresis and visualised under 

UV light. Briefly, 1.5% w/v agarose gels (in Tris-acetate-EDTA [TAE] buffer containing 100 

ng/mL ethidium bromide [E7637; Sigma-Aldrich]) were ran for ~22 minutes at 120 V (400 mA). 

A band (using the Cx3cr1CreER primer set) 750 bp in length is observed in a WT mouse (i.e. 

without insert), and a band 304 bp in length if present. In the case of the tandem dimer tomato 

(fluorescent protein [tdTomato]) insert in ROSA, a 297 bp band is observed in a WT mouse, and 

a band of 169 bp is observed if present (Figure 2.1.1). 



Chapter II: Materials and Methods 

82 
 

 

Experiment 
(Chapter X) 

Disease Model Strain Gender 
Age (at disease 

induction) 
III EAU C57BL/6 (WT) Female 7 weeks 

IV 
EIU 

C57BL/6 
Cx3cr1CreER:R26-

tdTomato 

Male 
 

8–10 weeks 
V 

Table 2.1.1. Details of mice used for experiments. The Cx3cr1CreER:R26-tdtomato mice received a course of 
tamoxifen 4 weeks prior to disease induction. Abbreviations: EAU – experimental autoimmune uveitis, 

EIU – endotoxin-induced uveitis, WT – wild-type. 
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Primer Name Primer Set Forward/Reverse Sequence (5’->3’) 

Cx3cr1CreERF 
For genotyping the 
CreER insert (in the 

Cx3cr1 gene) 

Forward CCTCTAAGACTCACGTGGACCTG 

Cx3cr1CreERR Reverse GACTTCCGAGTTGCGGAGCAC 

Cx3cr1CreERSpec Reverse GCCGCCCACGACCGGCAAAC 

RsTom-F 

For genotyping the 
tdTomato (and stop/ 

locus of X-over p1 
[loxp] sites) insert (in 

the Rosa26 gene) 

Forward CTGTTCCTGTACGGCATGG 

RsTom-R Reverse GGCATTAAAGCAGCGTATCC 

RsTomWT-F Forward AAGGGAGCTGCAGTGGAGTA 

RsTomWT-R Reverse CCGAAAATCTGTGGGAAGTC 

Table 2.1.2. Primer details for genotyping of the Cx3cr1CreER:R26-tdTomato mouse strain. Two 

primer sets were used to determine the presence of the two genetic inserts in this transgenic 

mouse strain. 

 

 

 

 

 

Stage Temperature (°C) Length (minutes) 
Pre-heat 105 0 

Initial (Heat Activation) 94 5 
Cycles (repeats 

33 times) 
Denaturation 94 0.5 

Annealing 58 0.75 
Extension 72 1 

Final Extension 72 5 

Table 2.1.3. Details of cycling conditions used in genotyping the Cx3cr1CreER:R26-tdTomato 

mouse strain. The same conditions were used for both genotyping sets of primers. 
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Figure 2.1.1. An example gel output from the genotyping protocol for the Cx3cr1CreER:R26-

tdTomato mouse strain. Ladders flanking the samples enable confirmation of expected band 

size. Output from each of the primer mixes is indicated, and these alternate within the gel meaning 

that every 2 lanes represents results from a single biological sample. A wild-type control, positive 

control, and negative (water) control are shown in red, green, and blue, respectively. The ladder 

used has steps 100 bp in size, starting from 100 (the brightest band nearest to the bottom 

represents 500 bp). 
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The Cx3cr1CreER:R26-tdTomato mice were weaned at ~4 weeks of age. All mice were housed in 

groups of 2-5 in Tecniplast 1284L conventional cages (Tecniplast, Buguggiate [VA], Italy) on a 

12-hour light/day cycle at room temperature. They also had access to EURodent Diet 22% food 

(LabDiet, St. Louis, MO) and water ad libitum, and environmental enrichment in the form of 

cardboard play tunnels/huts, wood gnawing blocks and sizzle nests. Welfare-related 

assessments were performed at least daily. The number of mice in each experiment was chosen 

so that, despite variability in disease incidence and severity/development of EAU [110] (EIU has 

a disease incidence of 100%, although there is a rare risk of protocol failure), suitable mice could 

be selected for sequencing to provide adequate power. 

All work was performed within the Animal Services Unit (ASU) at the University of Bristol, 

where the mice are housed, in concordance with the Animals (Scientific Procedures) Act 1986 

(ASPA) and The Association for Research in Vision and Ophthalmology (ARVO) Statement for 

the Use of Animals in Ophthalmic and Visual Research. 

2.2 Tamoxifen Administration 
Tamoxifen (T5648; Sigma-Aldrich) was dissolved in corn oil (C8267; Sigma-Aldrich) to a 

concentration of 21 mg/mL or 5 mg/mL, for subcutaneous injection and topical administration 

respectively. The solutions were freshly prepared by overnight incubation in an orbital shaker 

at 42°C and 300 rpm. Mice were injected with 200 µL subcutaneously (100 µL into both the lower 

[inguinal] left and right quadrants using a 25-gauge [25G] needle) on days 1 and 3; alternatively, 

mice were administered 10 µL (using a Gilson pipette) topically to the eye 3 times daily 

(minimum gap of 2 hours between dosing) for up to 4 days (post-optimisation, a 3-day protocol 

was used). The subcutaneous regime was provided by Clemens Lange (with the Cx3cr1CreER:R26-

tdTomato mice) whilst the topical regime was obtained from a paper using CreER mice and 

induction of recombination within the eye [510]. The local method of administration was 

compared to subcutaneous in case extraocular recombination occurred within long-lived cells 

that entered the eye during inflammation. 

2.3 In Vivo Models 

2.3.1 Induction of EAU 

Female mice were immunised for disease at 8 weeks of age (typical mean weight of 19.3 ±1.0 g), 

with constrained randomisation within blocks (cages, which represent mice from the same 

litter) being performed in Excel (Microsoft, Redmond, WA) to select unimmunised mice as 
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naïve controls. An experimental unit is considered a collection of mice that were all immunised 

(or kept unimmunised) at the same time. 

Mice were immunised by injecting 500 µg/mouse hRBP-31-20 or 400 µg/mouse RBP-3629-643 in 

phosphate-buffered saline (PBS) with 2% v/v dimethyl sulphoxide (DMSO). This was added 1:1 

v/v to CFA; 1 mg/mL supplemented with 1.5 mg/mL Mycobacterium tuberculosis H37 RA (Becton 

Dickinson [BD] Biosciences, Oxford, UK), to a total volume of 100 µL/mouse, subcutaneously. 

Mice were also injected with 1.5 µg Bordetella pertussis toxin (Sigma-Aldrich), diluted to a 

volume of 100 µL in PBS, intraperitoneally. 

2.3.2 Induction of EIU 

Prior to anaesthesia, mouse pupils were dilated using topical tropicamide 1% w/v and 

phenylephrine 2.5% w/v (Minims; Chauvin Pharmaceuticals, Romford, UK). 

The mice were then anaesthetised by intraperitoneal injection of 90 µL/10 g body weight of a 

solution containing 6 mg/mL ketamine (Ketavet; Zoetis Ireland Ltd., Dublin, Ireland) and 2 

mg/mL Xylazine (Rompun; Bayer plc, Newbury, UK; diluent was dH2O). This anaesthetic 

combination and route of administration was used as it is a well-established and safe method of 

anaesthesia, used both within and beyond our group, to provide sufficient sedation for 

imaging/intravitreal injections whilst allowing for relatively quick recovery. 

Mice were selected for injection using randomisation as described before. The eye (left or right) 

was also randomised. 

Intravitreal injections were performed under an operating microscope by Dave Copland [97]. In 

summary, 2 µL volume of PBS containing 10 ng LPS from E.coli 055:B5 (Sigma-Aldrich) was 

delivered into the intravitreal space via the pars planar. The eye was proptosed and held in 

position with a pair of forceps, then carbomer eye gel 0.2 % w/w (Viscotears; Novartis 

Pharmaceuticals, Camberley, UK) was applied and a circular coverslip (7 mm diameter) placed 

over the eye. A 33G hypodermic needle, mounted on a 5 µL Hamilton syringe (CAL7633-01; 

Hamilton, Reno, NV), was inserted approximately 2 mm circumferential to the corneal limbus 

with a ~45° injection angle. The needle bevel was guided into the VB, stopping between the lens 

and the optic disc (from the relative viewpoint of the surgeon, this is above/covering the optic 

disc – approximately 1.5 mm from the site of insertion), and 2 µL of LPS (at 5 ng/µL in PBS) was 

slowly injected. The needle was held in-place briefly (to reduce the amount of reflux of injectate) 

and removed. Post-injection, the site was treated with 1% w/w chloramphenicol ointment 
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(Martindale Pharma, Romford, UK) and the globe reposited by release of the forceps. Post-

injection, mice were monitored for vital signs (breathing, movement, heart rate, reflexes) and 

kept on a heated pad until recovered. 

2.4 In Vivo Imaging Techniques 
Disease progress was monitored using the Micron IV: Retinal Imaging Microscope (Phoenix 

Research Labs, Pleasanton, CA). Imaging was performed in the morning, working in ascending 

mouse number within each cage and by alphabetical cage lettering. 

The Micron IV had the following attachment: OCT1. Prior to imaging, the Micron IV charge-

coupled device (CCD) was calibrated using the auto-white balance, and the OCT attachment 

was calibrated in accordance with the manufacturer’s protocol. For brightfield fundus images, 

the gain was set to +3 dB, frames per second (FPS) to 15, and a 544/211 exciter filter with 700 nm 

shortpass emission filter was used. For fluorescence imaging, the brightness, gain, and FPS were 

adjusted so that (using the log histogram function of the Streampix software) the brightest non-

dead pixels (representing the brightest spots of the fluorescently-labelled cells) were at an 

intensity just above 200: for tdTomato imaging, this typically required maximum brightness on 

the analogue dial, a gain of +11 dB, and FPS of 2 (or a gain of +18 dB and FPS of 4); for green 

fluorescent protein (GFP) or fluorescein imaging this typically required maximum brightness, a 

gain of +15 dB, and FPS of 4. Gain-normalised settings (to the typical parameters – for 

comparison across a time-course) were acquired for each retina, in addition to tuned settings 

for each eye so that images were not under- or over-exposed and would be suitable for 

deconvolution or other image analysis. The exciter/emission filter combinations used for 

fluorescent imaging is detailed in Table 2.4.1. For OCT, the parameters were defined according 

to the manufacturers protocol, and all scans were taken 30 times in rapid succession and 

averaged. Full-length line B-scans were taken horizontally and vertically with the optic disc 

centred; other features of interest, identified through fundal imaging, were also scanned. Full-

length circle B-scans were taken centred around the optic disc. Additionally, 512 half-length line 

B-scans running superiorly (with respect to the target box area; scans obtained without 

averaging) can be acquired in quick succession for acquisition of a 3D, or volume, scan. Images 

were stored in the tagged image file format (TIFF). 
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Filter Position 
Exciter/Emission 

(Barrier) 
Specification Λ Range (nm) Source 

1 
Exciter 544/211 bp 438.5-649.5 

Stock (Phoenix 

Research Labs) 

Emission 700 sp -700 

2 
Exciter 468/35 bp 451.5-486.5 

Emission 488 lp 488- 

3 
Exciter 550/25 bp 537.5-562.5 Edmund Optics 

(Barrington, NJ) Emission 590 lp 590- 

4 
Exciter 715 lp 715- 

Phoenix 

Research Labs 

Emission 512/30 bp 497-527 Edmund Optics 

Table 2.4.1. Filter information for the exciter/emission positions (on the filter wheel) of the Micron 

IV: Retinal Imaging Microscope. Exciter and emission filters can be used independently of each 

other. Common combinations of filters used (x-y, where x is the exciter and y is emission) 

include: 1-1 (brightfield), 3-3 (tdTomato), 2-4 (GFP/Fluorescein). Excitation filters were 25 mm 

in diameter and mounted, with a max thickness of 5 mm; emission filters were 12.5 mm in 

diameter and unmounted, with a max thickness of 3.5 mm. Filters were installed according to 

the Micron IV manual. 

 

  



Chapter II: Materials and Methods 

89 
 

Prior to imaging (both techniques), mouse pupils were dilated as described previously. 

When using the Micron IV, mice were anaesthetised (as described previously; in some cases, a 

lower dose of the anaesthetic solution was administered in conjunction with isofluorane by 

inhalation), transferred to the animal stage, and carbomer eye gel was administered for coupling 

to the objective lens. The mouse was positioned so the eye was perpendicular and near to the 

lens with the iris roughly equidistant from pupil to sclera on the viewing plane on the computer 

monitor (the ideal position is to have the optic disc centrally-positioned with an unobscured 

view of the retina surrounding – with the space between optic disc and iris equidistant – this 

roughly corresponds to the iris-sclera positioning described above, but can vary slightly based 

on anatomical variation found between mice; some optic discs are found centrally to this 

position, but are usually slightly offset). An image was captured (for QC purposes), and then 

the lens was moved closer to the eye so that the retina occupied the full image space. The focus 

and illumination were adjusted (for brightfield – for fluorescent imaging, the settings are 

described above) to obtain a good colour balance and images were captured. Videos, whilst 

slowly rotating the focus dial (starting from above the focal-plane of the retina until below) were 

also captured to assist in the acquisition of the sharpest/most in-focus images. Post-imaging, 

mice were monitored for vital signs (breathing, movement, heart rate, reflexes) and kept on a 

heated pad until recovered. 

2.5 Flow Cytometry/Fluorescence-Activated Cell Sorting 

2.5.1 Batch Processing 

Mice were euthanised by cervical dislocation, eyes enucleated and spleens dissected, and both 

were placed in PBS on ice. The eyes were dissected under a microscope to isolate the retinas; a 

27G needle was poked through the corneal limbus, 100 µL of ice-cold PBS was added, and then 

micro surgical scissors were used to cut along the remainder of the boundary. The anterior 

fragment, along with the lens, was removed and discarded. The retina was then gently teased 

apart from the RPE and, with the PBS, transferred to an Eppendorf where it was mechanically 

disrupted by scratching along the surface of an Eppendorf rack. The retinas were transferred to 

a 60 µm nylon mesh filter plate and centrifuged at 300 xg and 4°C for 5 minutes. The filtrate was 

then transferred to a V-bottom 96 well plate for staining. Spleens were prepared by mashing, 

transfer through a 70 µm cell strainer and centrifuged at 400 xg and 4°C for 3 minutes 

(subsequent centrifugation steps use these settings, unless otherwise stated). The supernatant 

was discarded, and the pellet was resuspended in 10 mL Ammonium-Chloride-Potassium (ACK) 
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lysing buffer (8.29 g/L NH4Cl, 1 g/L KHCO3, 372 mg/L Na2-Ethylenediaminetetraacetic acid 

[EDTA] in dH2O) for 3 minutes on ice (to lyse erythrocytes), centrifuged and the supernatant 

discarded, re-suspended in 5 mL PBS and 200 µL transferred to the plate. A 200 µL aliquot of 

the spleen cell suspension was killed by heating to 95°C for 15 minutes. 

For staining, the V-bottom plate was centrifuged, the supernatant discarded, and each well re-

suspended in 100 µL 2.4G2 cell supernatant (or 50 µL Fc block [#553142 (BD Biosciences)] at 1:50) 

and incubated at 4°C for 10–15 minutes. 100 µL of an antibody cocktail (or 50 µL if using the Fc 

block) containing fluorochrome-conjugated mAbs (see Table 2.5.1) was added and incubated at 

4°C for 20-30 minutes. One µL of mAbs were also added to one drop of compensation beads 

(OneComp eBeads [Thermo Fisher Scientific], Anti-Rat Ig, κ/Negative Control Compensation 

Particles Set [BD Biosciences], or AbC total antibody compensation bead kit [Thermo Fisher 

Scientific]) to prepare single-stain controls for compensation; for live-dead compensation, a mix 

of live and heat-killed spleen cells were used re-suspended in 7-aminoactinomycin D (7AAD) at 

1:500 (Thermo Fisher Scientific) diluted with staining buffer. Fluorescence minus one (FMO) 

controls were also prepared. Post-staining, the plate was centrifuged and the supernatant 

discarded, re-suspended in 200 µL staining buffer, and centrifuged with supernatant discard as 

a wash step. Cells were re-suspended in 250 µL 7AAD as before and kept on ice until sorting on 

a BD Influx Cell Sorter (in some sorting experiments DRAQ7 [DR77524; Biostatus, Shepshed, 

UK] was added instead – for flow cytometry, the 7AAD was added in conjunction with the 

antibodies); beads were re-suspended in staining buffer. Data was acquired using a BD 

LSRFortessa X-20 flow cytometer. 
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Target (synonym) Fluorophore Clone Supplier 

B220 FITC RA3-6B2 

BD Biosciences 

CD3 APC 145-2c11 

CD45 PE-Cy7 30-F11 

Gr-1 (Ly6C/Ly6G) Alexa-700 RB6-8C5 

CD11b APC-Cy7 M1/70 

Milr1 (Allergin-1) BV421 TX83 

C5ar1 BV510 20/70 

CD44 Super Bright 600 IM7 Thermo Fisher Scientific 

Siglech BV650 440c 

BD Biosciences Fas (CD95) BV711 Jo2 

Mertk (Mer) BV786 108928 

Slamf1 (CD150) FITC 9D1 
Thermo Fisher Scientific 

Bst2 (CD317) PE-eFluor610 eBio927 

Lair1 PE-Cy5.5 113 Novus Biologicals*  

P2ry12 APC S16007D Biolegend 

CD4 FITC RM4-4 BD Biosciences 

CD8 PE H35-17.2 Thermo Fisher Scientific 

Table 2.5.1. A list of monoclonal antibodies used for flow cytometry. *Novus Biologicals 

(Centennial, CO). Abbreviations: Milr1 – allergin-1 precursor, Siglech – sialic acid binding Ig-like 

lectin H, Fas – fas cell surface death receptor, Mertk – tyrosine-protein kinase mer precursor, 

Slamf1 – signaling lymphocytic activation molecule, Bst2 – bone marrow stromal antigen 2 

precursor, Lair1 – leukocyte-associated immunoglobulin-like receptor 1, FITC – fluorescein 

isothiocyanate, APC – allophycocyanin, Cyx – cyanine-x, BV – brilliant violet, PE – 

phycoerythrin. 
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Cells were sorted (using a BD Influx Cell Sorter) into 0.2 mL tubes containing 0.05 µL RNase 

inhibitor, 0.95 µL lysis buffer, and a variable amount of nuclease-free water depending on the 

number of cells collected – 9.5 − ( 𝑥𝑥
850

∗ 3) µL, where 𝑥𝑥 is the number of cells you are sorting (e.g. 

600 cells occupy 2.1 µL, so 7.4 µL ddH2O is added; components of the SMART-Seq v4 Ultra Low 

Input RNA Kit for Sequencing; Takara Bio USA, Inc., Mountain View, CA) as per the user manual 

(to calculate the volume of nuclease-free water, preliminary experiments determined the 

volume of 850 microglia to be 3.0 µL). Sorting was performed by the University of Bristol Flow 

Cytometry Facility. Samples were sorted in a constrained randomised order in blocks; blocks 

were made as small as possible and consisted of a balance of every tissue type and disease status 

(naïve or immunised) so that observable effects between groups were not due to a time-/order-

dependent effect of when they were sorted. 

Gating strategies for cells are shown and described in the relevant results sections. 

2.5.2 Single Sample (or Small Number Batch) Processing 

In a variation of the above protocol, it is possible to prepare samples as required/in batches to 

minimise mRNA sample degradation when performing FACS. Some sample degradation was 

observed in early experiments, and therefore batches of samples (for cell-surface staining prior 

to sorting) were restricted to a maximum of 8 at a time (with later batches of samples being 

staggered and prepared later [i.e. whilst the first batch was sorting]). 

For samples where sorting was performed purely using fluorescent markers (e.g. tdTomato or 

GFP), it was possible to prepare the samples by dissecting, scratching, spinning through the 

filter plate, adding the DRAQ7 and sorting with minimal preparation time. In these 

experiments, samples could be prepared individually (or a pair if taking both retinas from the 

same mouse) but it was determined that batches of 2-4 retinas worked best as single retina 

preparations were not very practicable, and that these small batches were fast enough to obtain 

high quality cDNA output for all samples. 

2.6 Sample and Library Preparation for Sequencing 
Samples were prepared for sequencing through use of the SMART-Seq v4 Ultra Low Input RNA 

Kit for Sequencing, according to the user manual, to generate cDNA from the mRNA and 

amplify by Long Distance PCR; for the latter step, 16 cycles were used (for 600 cells) as 

determined by an optimisation experiment (see Chapter III; 15 cycles was optimal for 1,000 

cells). Subsequently, the cDNA was isolated using the Agencourt AMPure XP Kit (Beckman 
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Coulter, Brea, CA) and quantified using the Agilent High Sensitivity DNA Kit on an Agilent 2100 

Bioanalyser (Agilent Technologies, Santa Clara, CA), by the University of Bristol’s Genomics 

Facility, as per the protocols in the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing user 

guide. The library was then prepared by the Genomics Facility using the Nextera XT DNA 

Library Preparation Kit (Illumina Inc., San Diego, CA), following the Nextera kit reference guide, 

using 150 pg cDNA as the starting input. 

2.7 mRNA-Sequencing and Data Analysis 
Samples were sequenced to depths of up to 33.3 million single-end 75 nt length reads per sample 

using the Illumina NextSeq 500/550 High Output v2 kit (75 cycles) on an Illumina NextSeq 500 

Sequencing System. Based on new data, and depth vs. replicates data published elsewhere (as 

described in Chapter III), a sequencing depth of ≥11.1 million reads per sample was determined 

as optimal (the SMART-Seq kits allow for preparation of samples in multiples of 12 [where kits 

can used singly to mitigate the risk of contamination from “double-dipping”], and the 

sequencing flow cell provides up to 400 million reads [400/36 = 11.1], making this choice a 

compromise between depth and kit usage). Image analysis, base calling, and generation of 

sequence reads were produced using the NextSeq Control Software v2.0 (NCS) and Real-Time 

Analysis Software v2 (RTA). Data was converted to FASTQ files using the bcl2fastq2 v2.20 

software (Illumina Inc.). 

Sequencing data was uploaded to a cluster of computers for alignment and initial analysis; the 

cluster consisted of a master (consisting of a 12-core central processing unit [CPU] and 32 Gb 

cRAM) and 2 worker nodes (consisting of a 16-core CPU and 64 Gb cRAM each) running on a 

64-bit linux operating system (v3.13.0-40-generic). The data was then processed through an 

analysis pipeline using the Partek Flow (Build version 6.0.17.0614; Partek Inc., St. Louis, MO) 

software with the following task nodes (non-default parameters are specified in brackets): Trim 

adapters (inputting Nextera XT Index Kit v2 adapter sequences as provided by Illumina [464]), 

Trim bases (From 3’ end, 1 base), Trim bases (from 3’ end with minimum quality score [Phred] 

of 30), Align reads using STAR (2.5.3a using mm10 as the reference index), Quantify to 

transcriptome (Partek E/M using mm10 – Ensembl Transcripts release 89 as the reference 

index). 

The data output from Partek Flow was then downloaded to a local computer, and further 

analysed using Partek Genomics Suite (PGS; version 6.6, Build 6.16.0812). PGS normalises data 

using the RPKM approach and performs differential gene expression analysis using an analysis 

of variance (ANOVA) model; a gene is considered differentially-expressed if it had an FDR step-
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up p value ≤0.05 and fold-change ≥±2. The fold-change and p-values were then imported into 

IPA version 01-13 and analysed according to the manual. PGS and IPA were both used to generate 

figures. A summary of the analytical pipelines is shown in Figure 2.7.1. 
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Figure 2.7.1. The bioinformatics pipeline for processing and analysing the mRNA-Seq 

data. A) The bioinformatics analysis shown starting with the unaligned reads and pre-alignment 

processing, B) alignment, alignment QC and quantification of reads, and C) differential gene 

expression analysis (DGEA) and filtering/visualisation; Partek Flow was used for pre-processing, 

alignment, and quantification of the data whilst Partek Genomics Suite (PGS) was used to 

normalise the data and perform DGEA. Both PGS and Ingenuity Pathway Analysis (IPA) were used 

for visualisations and further analysis of the data and pathway enrichment. 
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2.8 Quantitative PCR 
The remaining cDNA generated from the sorted cells was used for transcript-level validation. 

qPCR was performed using the TaqMan Universal Master Mix II, with UNG (4440038) and 

TaqMan gene expression probes (4331182) on a Quantstudio 3 Real-Time PCR system (A28137; 

all products from Thermo Fisher Scientific). Samples were run in technical duplicate, using 1 ng 

as the input amount, and analysed using the equation: 2Cq(mean (control))-Cq(sample). 

The probes used were: Bst2 (mm1609165_g1), C5ar1 (mm00500292_s1), Cd44 (mm01277161_m1), 

Fas (mm01204974_m1), Lair1 (mm00618113_m1), Mertk (mm00434920_m1), Milr1 

(mm01242703_m1), P2ry12 (mm01950543_s1), Siglech (mm00618627_m1), Slamf1 

(mm00443317_m1). 

2.9 Confocal Laser-Scanning Microscopy 
Mice were euthanised by cervical dislocation, their eyes nucleated and placed in 4% v/v PFA (in 

PBS) for 1 hour. The anterior components were removed (to isolate the “eyecup”) by dissection 

under a microscope as described previously, with the following modification: the 27G needle 

was poked through the sclera, circumferential to the corneal limbus (as opposed to at the 

corneal limbus), with micro surgical scissors used to cut the remainder. 

 After isolation, the eyecup is carefully placed into an Eppendorf containing 100 µL of a solution 

containing 1% v/v BSA and 3% v/v Triton x-100 (both Sigma Aldrich) in PBS and rocked on a 3D 

rocker at room temperature and 70 rpm for 20 minutes. The retinas were washed two more 

times, before blocking for 2 hours in the same solution containing 5% v/v normal goat serum 

(Vector Laboratories Ltd., Peterborough, UK). Eyecups were then incubated at 4°C overnight 

with a rabbit anti-mouse anti-RFP mAb (600-401-379; Rockland Immunochemicals Inc., 

Limerick, PA) and for target validation experiments a Super Bright 600-conjugated anti-mouse 

CD44 mAb was used in combination. They were washed three times, and then incubated 

overnight (as per primary antibodies) with the secondary antibody goat anti-rabbit Alexa-633 

(A21070; Thermo Fisher Scientific). Eyecups were then washed three more times. 

The retina was then isolated from the eyecup by gently teasing as described before. However, 

micro surgical scissors were used to cut the ON (as opposed to tearing it – careful handling and 

preservation of the structure is necessary for confocal preparations). The retina was then cut in 

four places by incising from the peripheral retina one-third to halfway to the ON (the incisions 

are on imaginary horizontal and vertical lines running perpendicular through the ON). They 
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were then flat-mounted in Vectashield hard-set antifade mounting media (H-1400; Vector 

Laboratories Ltd.) by placing the sample in the centre of a “sticky ring” on a microscope slide or 

coverslip and then attaching a coverslip on top. A secondary seal, using nail varnish, can be 

added to the edge of the interface between slide and coverslip. Slides were kept at 4°C until 

imaged on a Leica SP5-AOBS confocal laser scanning microscope attached to a Leica DM I6000 

inverted epifluorescence microscope (Leica Microsystems Ltd., Wetzlar, Germany). Images 

were acquired with an xy pixel size ≤200 nm, and a z-step size of ≤400 nm. 

2.10 Analysis 

2.10.1 Image Processing 

Huygens professional software (Scientific Volume Imaging B.V., Hilversum, The Netherlands) 

was used to deconvolve the Micron IV fluorescent images and fluorescence microscopy (Figure 

2.10.1). For the Micron images, the following parameters were used: lens immersion = 1.343 

(refractive index of the 0.2% w/w carbomer eye gel [511]), embedding = 1.377 [512], peak emission 

= 581 nm, numerical aperture = 1.25, and xy pixel size of 130 nm; the background was estimated 

at 2 and a signal-to-noise ratio of 15 was used. Hot pixel correction (with a sensitivity of 4) was 

used prior to deconvolution. For fluorescence microscopy, the parameters were imported from 

the microscope and the default settings were used. 
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Figure 2.10.1. tdTomato fluorescence images of a mouse retina both pre- and post-

deconvolution using Huygens software. A) Fluorescent fundal images were acquired from 

naïve Cx3cr1CreER:R26-tdTomato mice 4 weeks following tamoxifen administration. Paired raw and 

deconvolved images show how the software algorithm improves the image detail quality. Full 

fundal distribution of microglia and close-up images of cells located in B) peri-vascular, C) central 

and D) peripheral retinal regions. Due to the resolution limits of the Micron IV (2 µm) it is not 

possible to readily visualise all but the largest of the ramified processes; ramified processes are 

well-known to be typically 0.5–1.0 µm in diameter. 
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Microscopy images were processed using the Leica LAS X software (Leica Microsystems Ltd.) 

and FIJI (a distribution of ImageJ [513]). Other images, and figures, were processed using 

Photoshop (Adobe Inc., San Jose, CA) and Powerpoint (Microsoft). 

2.10.2 Statistical Analysis 

Data were analysed using GraphPad Prism 7 software (GraphPad Software Inc., San Diego, CA). 

The One-way ANOVA with Tukey’s multiple comparisons test was used to compare multiple 

groups of data to a control group. FDR step-up correction was also applied. A p value ≤0.05 was 

considered significant. For a comparison between two groups, the t-test was used. For 

correlative measures, the Pearson’s test was used. 
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3.1 Introduction 
Chapter III: Optimising mRNA- Seq 

3.1.1 The Challenge of Ultra-Low Input RNA 

It has been previously shown that the mouse retina contains approximately 1,500 microglia 

using histological-based approaches [514]. Flow cytometric analysis has indicated it is possible 

to reliably recover 1,000 microglia per retina [413]. However, it is well-recognised that cell 

sorting may recover as low as 30% of the cells present in the original sample, meaning that 

recovery numbers could be as low as 450 microglia per retina [515]. This low number limits the 

use of many mRNA-Seq sample and library preparation kits which typically require much higher 

input amounts of mRNA (corresponding to ≥10,000 cells). Furthermore, pooling of multiple 

retinas (≥10) is not feasible/practicable for several of reasons: 1) the time required isolate these 

high numbers means that the mRNA may be degraded or of poor quality for input, potentially 

resulting in very low numbers of samples obtained and poor statistical power or failure of 

experiments entirely; 2) the use of large numbers of mice to obtain limited data could be 

considered unethical/excessive and not in accordance with the principles of the 3Rs [94]; 3) the 

breeding, handling, and effective monitoring of mice with disease may not be feasible in the 

numbers required; 4) information about disease grading and the ability to associate this with 

the transcriptome will be greatly limited, reducing the utility of the hypothetical dataset. 

After careful consideration and support from the University of Bristol Genomics Facility, the 

SMART-Seq Ultra Low Input RNA kit by Clontech (with Nextera XT DNA Library Preparation 

kit by Illumina) was adopted for our requirements of low cell input mRNA-Seq [516-518]. The 

pipeline (which is recommended by Illumina for single-cell and ultra-low input) is summarised 

in Figure 3.1.1 but is discussed in greater technical detail within Appendix I.  
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Figure 3.1.1. An overview of the SMART-Seq v4 ultra low input RNA kit pipeline. Firstly, 

cells are prepared for isolation by fluorescence-activated cell sorting (FACS). From the poly(A) 

tail, copying of mRNA is performed in addition to template-switching to incorporate primer 

sequences flanking the mRNA transcript. This is then amplified – to increase yield – utilising long-

distance polymerase chain reaction (LD-PCR), purified utilising magnetic beads (Agencourt), and 

quantified utilising a high-sensitivity gel electrophoresis approach (Agilent). Lastly, the cDNA is 

processed for library preparation using the Nextera XT kit and sequenced on an Illumina machine 

ready for data analysis. This figure was prepared utilising modified images from both the SMART 

Seq v4 kit and Agencourt manuals. 
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3.1.2 Experimental Design Considerations 

Design of mRNA-Seq experiments, but also any experiments involving high-throughput 

techniques, are a subject of intense debate. It is possible (and has indeed happened) for an 

mRNA-Seq experiment to be confounded, and yet nonetheless be accepted for publication after 

vigorous peer review. Later, after replication experiments, these claims have been retracted and 

the experiment identified as confounded in some fashion [519]. More generally, problems with 

reproducibility are common within the biomedical sciences [520]. Fisher’s book on the design 

of experiments notes that the two grounds upon which evidence is disputed are “that the 

interpretation of the experiment is faulty” (i.e. that the Author is “incompetent in statistical 

technique”) or that “the experiment itself was ill designed or… badly executed” [521]. The book 

also discusses three key principles of design: randomisation, replication, and blocking. 

Approaches to data analysis are discussed later, but it holds the advantage of capability to 

repeat/permutate an unlimited number of times. Therefore, if the analysis is believed found 

wanting by reviewers it is relatively easy for an Author to correct this. 

In contrast, a possible confounder in experimental design may be difficult to identify 

(particularly in the absence of information about the experimental design within the 

manuscript), but also impossible to correct without replicating the entire experiment at huge 

cost to the Author. This high cost may have contributed to whether an Author has performed 

repeat experiments of their initial sequencing or high-throughput experiment in the initial 

instance. It is also not practicable (or expected) for an Author to validate all of the findings of 

their experiment (e.g. performing orthogonal validation on 1,000 differentially-expressed genes 

[DEGs] would be far too costly in terms of time and resources for a lab), meaning only a small 

subset of DEGs would be validated (likely the most promising DEGs identified by the high-

throughput technique). A reviewer must therefore have very strong grounds to make an 

objection based on experimental design, and criteria such as the number of replicates is relaxed 

in lieu of the fact that sequencing is both difficult and expensive to perform (for example, the 

encyclopedia of DNA elements [ENCODE] guidelines suggest two replicates for mRNA-Seq 

experiments, but that it is possible to justify only one replicate [522]). This explains how it is 

possible (or perhaps easier) for confounded studies using high-throughput techniques to be 

published. In typical studies, a minimum of three biological replicates is usually expected, and 

for randomisation to be performed. With one or two replicates, and difficult-to-obtain samples 

(e.g. human tissue from a biobank) it may not be possible to randomise or effectively block or 
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even obtain a reasonable estimate of the variation, meaning there can arguably no basis for 

inference [523]. 

Sequencing is a rapidly-developing field, and whilst attempts have been made to suggest 

standardised reporting and design/execution of experiments (e.g. depth) – i.e. the ENCODE 

guidelines [522] – these are far from complete and have become obsolete quickly (for example, 

the field of single-cell [sc-]mRNA-Seq has now emerged and only some of the ENCODE 

guidelines would be applicable/relevant to those experiments). Nonetheless, the best practices 

by other researchers – that will be incorporated into this work where possible – will be described 

herein. 

Batching Effects 
With regards to mRNA-Seq, the multiple sources of variation can be separated into 

biological/experimental variation (i.e. due to the intrinsic variability of organisms and the 

interventions being investigated) and “batch effects” – the sources of variation unrelated to the 

biological/experimental variables of the study (e.g. usage of different batches of reagents, flow 

cells, lanes on a flow cell, litters of organisms [resulting in a different microbiome], a different 

researcher or lab performing the experiment, etc) [524]. Batch effects are the variability that 

well-designed experiments attempt to minimise and/or mitigate. With highly dimensional data 

such as mRNA-Seq, batch effects can be readily identified using dimension-reduction 

visualisations (e.g. PCA, where different “batches” will separate into different regions of the plot 

as it represents a major source of variation). Batch effects can cause significant problems for the 

analysis of data, lead to artefacts, and may render the data relatively meaningless/invalid (in a 

worst-case scenario) with regards to the original biological questions being asked. 

Batch effects can be separated into three main groups: biological variation, technical variation, 

and measurement error [525]. With adequate blocking, randomisation, and replication through 

a well-designed experiment, these effects can be mitigated. Furthermore, it is possible to use 

computational methods to (at least partially) correct for batching effects, but to be successful it 

requires that a form of blocking and replication be incorporated into the experimental design 

prior to data acquisition. These approaches are further discussed later but the basic concept of 

batch effects and correction are shown in Figure 3.1.2. 
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Figure 3.1.2. Visualisation of batching effects within mRNA-Seq datasets. A) PCA plot of 

original processed mRNA-Seq data (each atlas utilised different processing strategies) highlights 

a batch effect between the two compendiums and represents most of the variability observed 

within the dataset (PC#1; GTEx and TCGA). B) PCA plot of data when processed uniformly helps 

to reduce the batch effect partially but not fully because samples isolated from the same tissue 

map with greater distance than samples isolated in the same lab (reduced variation results in 

batching effects observed on PC#2 as opposed to PC#1). Abbreviations: GTEx – genome tissue 

expression, TCGA – the cancer genome atlas, PCA – principal component analysis. Adapted from 

[526] and used under licence (CC BY 4.0). 
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Biological variation can be caused or introduced when experiments use organisms that may 

have differences prior to the experiment. For example, differences in the microbiome of 

organisms could be caused by organisms originating from different litters, or being kept in 

different cages (in the case of animal research) and this could have different effects on 

organismal response to treatments, induction of disease models (i.e. incidence and/or severity), 

and many other measurements [527]. A simple, but confounded experiment design may involve 

treatment of one cage of mice and use of a different cage of mice as a control. In this situation, 

differences in the data obtained could be due to the treatment, or due to the cage effect, or a 

combination of both; due to the experimental design it would be impossible to delineate. A 

more balanced (but complex) design would involve treatment of 50% of mice from each cage so 

that the potential cage effect is blocked (or mitigated) across the samples. This concept is 

visualised in an experimental design schematic (Figure 3.1.3). In large-scale studies with multiple 

experimental groups, experimental design could become exponentially more complicated and 

impractical (if not impossible – e.g. with organisms in cages of 4, based on litter, any experiment 

with 5 or more experimental groups would be impossible to block in a perfect manner) to 

perform adequately, and highlights a potential major issue when scaling-up. 

Technical variation refers to artefacts that are not due to biological variation but occurs prior to 

acquiring the data (i.e. introduced during mRNA isolation/amplification and other pre-

processing required). This can include a large variety of factors such as the batch of reagent 

used, when and how many times the mice were anaesthetised, and many more. It may also 

include the variability (precision) of inducing a disease model, performing a technique on the 

model organism, or differences in the ability of the researcher to isolate a tissue in a pure 

manner. The simplest way of blocking for these is to allocate samples from each experimental 

group across the various runs/experiments (if running more than one experiment – if running 

one experiment these factors will require less consideration) so that any technical variation is 

equally-spread and successfully mitigated. Where possible, organisms should be treated as 

equally as possible with all handling and interventions. Samples from an experiment could also 

be acquired in a random (or random but balanced) order as well for example. The same 

researcher/team could also be used (where possible) to help minimise the technical variation. 

Measurement error has well-established practices for its mitigation, and delve into the 

intricacies of the sequencing technology and are therefore summarised within Appendix I. 
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Figure 3.1.3. Examples of good and poor experimental design with regards to treatment 

and cage allocations. In the confounded design, experimental groups are allocated according to 

the cage in which mice reside (this typically represents the litter they were derived from). When 

performing analysis, differences between cage conditions and/or litter microbiomes could 

confound the results. In the balanced experiment, all experimental groups are allocated across 

each cage in a constrained randomised fashion and ensures results obtained are not due to litter 

or cage confounding effects.  



Chapter III: Optimising mRNA-Seq 

108 
 

 

The overall implications are that experimental design and good practices for mRNA-Seq is 

continually evolving, and that there are no formal up-to-date standardised design procedures. 

Nonetheless, there are good principles of experimental design (some adopted from the wider 

field that have been well-known for decades) that can be implemented with careful planning. 

In larger-scale experiments, it becomes increasingly difficult to satisfy all of these requirements 

in a fully balanced manner. Therefore, a compromise between the perfect experimental design 

and practicability may be pragmatic (for example, if a design became too complex the 

probability of mistakes by a researcher may increase – such as which mice receive what 

treatments/dose – which would be more confounding to an experiment than a minor design 

imperfection), and in the case of large-scale studies replication (provided the experiment is 

reasonably designed, i.e. has no major flaws) will help to mitigate these. Overall, experimental 

design should not be overlooked, and should be carefully included in any experiment using 

high-throughput technologies in particular. 

Batching Effects: Can we do Anything about them? 
It is possible to compare results obtained from different laboratories or even different 

experiments, although it should be appreciated there are challenges and limitations to using the 

data in this way. Batch (confounding) effects are effects or results observed in the data due to 

non-biological factors. This could include different reagents, laboratories, experiments, 

researcher/s, lot number of reagents, experimental pipeline used, and many other factors which 

could cause a difference in the data which isn’t due to the independent variable (i.e. 

experimental groups). In some cases, observed differences between laboratories can be larger 

than tissue differences (e.g. when comparing expression data from the same tissues generated 

by the cancer genome atlas and gene tissue expression databases; Figure 3.1.2) [526]. 

The ability to summate different datasets and perform meta-analyses of them is pertinent for 

several reasons: 1) it enables interrogation of large numbers of samples which would be 

impractical and too costly for a single experiment or series; 2) it adds additional utility to 

existing datasets and enables investigation of novel questions, reducing the need to generate 

new data which is both costly and time-consuming; 3) it could enable direct comparison of 

datasets in the same area or field and help to establish where consensus exists (for example, in 

mechanisms and pathways that are altered). This could highlight critical pathways or molecules 

altered in all variants of a disease model, or all dysregulated states of a specific cell type. In fact, 

use of datasets from different labs might be more beneficial in identifying critical pathways as 

biases that may be specific to a strain of model organism, reagents used, or processing pipelines 
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– all of which may be specific to a single research group – will be mitigated by such an analysis. 

Much like meta-analysis of clinical trials or other data, summating mRNA-Seq data could 

provide novel insight and prove to be very powerful if done in an appropriate fashion. 

For analyses wishing to compare samples obtained from multiple experiments (e.g. different 

papers published), it may be possible to compensate for/correct batching effects via different 

strategies. This can be done provided the different datasets contain equivalent samples (e.g. a 

reference sample, such as a naïve sample) and can be performed in several different ways: 1) the 

two datasets could be analysed independently, using their own internal reference/controls, and 

DEGs compared between datasets (this might be useful so that a standardised analysis approach 

– for both alignment and DEG identification – was adopted, as the two datasets may have 

undergone different analytical strategies in the original papers. This type of strategy has been 

used to create, compare, and refine consensus gene lists [158]); 2) the datasets could be analysed 

together, but by using a paired design allowing for comparison of each dataset to their own 

reference sample as part of a conglomerate (particularly useful if the experiments replicated 

conditions between them, as this type of analysis would enhance the power through increased 

numbers of biological replicates); 3) the reference sample can be used in conjunction with a 

batch effect remover (such as ComBat or surrogate variable analysis [SVA] [528-530]) – batch 

effect removers may be particularly helpful on both internal and external large-scale datasets 

that inherently need to be performed in multiple batches (i.e. availability of researchers, model 

organisms, patients, cell isolation machines, etc, may not be possible simultaneously all within 

relevant timescales for mRNA-Seq processing). The use of approaches 2 and 3 would improve 

the power of the analysis (ability to detect DEGs), and arguably increase the validity of results 

obtained. A comparison between uniform processing (1) and batch effect removal (3) can be 

seen in Figure 3.1.4. 

Batch effect removal can also include the use of QC samples (such as sequencing a specific cell 

line to sequence what should in theory produce identical results), although these have been 

shown to provide little benefit [531]. It has been shown that batch effect removers tend to 

generally perform better than analyses which do not use them [532]. Whilst useful, it should be 

noted that batch effect removal can itself lead to false discoveries. The results obtained from 

analyses utilising batch effect removal should be considered as obtained from an imperfect 

study design, and therefore identified DEGs or changes to critical pathways should also be 

validated rather than blind trust placed in the data [533]. 
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Figure 3.1.4. Visualisation of batching effects in mRNA-Seq data and processing 

strategies to normalise for non-biological differences. A) PCA plot of original processed data 

without uniform processing highlights a batch effect between the two compendiums (GTEx and 

TCGA). B) PCA plot of data when processed uniformly helps to reduce the batch effect partially. 

C) PCA plot of data when processed uniformly and normalised using a batch remover algorithm 

helps to greatly reduce the batch effect, allowing for analyses to be performed with increased 

numbers of replicates and therefore power. Abbreviations: GTEx – genome tissue expression, 

TCGA – the cancer genome atlas, PCA – principal component analysis. Adapted from [526] and 

used under licence (CC BY 4.0). 
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Power of mRNA-Seq Experiments 
For mRNA-Seq, the depth (i.e. number of reads per sample) obtained and number of replicates 

is also a topic of hot debate. The ENCODE guidelines suggest a minimum of two biological 

replicates, with a minimum of 30 million reads [522]. However, other research has suggested 

this is not necessary for experiments aiming to identify DEGs. For example, correlation 

coefficients between samples (and their various quartiles of genes based on expression level) 

plateau at 10 million reads per sample in chicken lung RNA preparations [534]. Another team 

showed that all genes fall within a 2-fold change of final expression at 10 million mapped reads, 

and that nearly all of the moderately-expressed genes (~95% – 10-99 reads per kilobase of 

transcript per million mapped reads [RPKM]) and all of the highly-expressed genes (>99 RPKM) 

were quantified within 20% of their final expression value within samples (based on the values 

obtained for the maximum depth of 45 million mapped reads utilised in this experiment), 

suggesting that a higher depth may providing diminishing returns with respect to the ability to 

identify DEGs at a considerably increased cost [535]. Whilst higher depths of sequencing allow 

for improved quantification of splice variants and isoform expression, the relatively short reads 

that Illumina sequencing provides has been superseded by different technologies which can 

sequence whole mRNA molecules without the need for polymerase chain reaction (PCR) steps 

(to introduce potential bias) or fragmentation (e.g. the nanopore technology) [536]. 

In these experiments, the number of replicates is also an important factor to consider. It is 

generally accepted that as many replicates should be used as can be afforded. Investigations 

have performed comprehensive comparisons into various algorithms used to identify DEGs but 

also into the number of replicates and how that alters both the true positive rate (TPR) and false 

positive rate (FPR), or the number of DEGs identified as a proxy. For example, one group used 

both simulated and real mRNA-Seq data to investigate 11 different algorithms and concluded 

that all the algorithms perform poorly on less than 3 biological replicates [537]. Another team 

suggested that at least 6 biological replicates were necessary [538]. However, the real data (in 

both these papers) was concatenated from various sources and may have been confounded by 

batching. Therefore, another group sought to create a high number of biological replicates (n = 

42 or 44 “clean replicates”) in a single experimental system to conclusively address the question 

of biological replicates; they also compared various algorithms for detecting DEGs [498]. They 

performed DEG analysis with each algorithm by bootstrapping the number of replicates per 

condition and making a total of 100 iterations. In agreement with others, they also suggested a 

minimum of 6 biological replicates per condition. However, the TPR for 3 replicates (for a fold-

change of ≥±2; a commonly-used criteria in the absence of calibration using spike-in controls 
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such as those made by the external RNA controls consortium [ERCC]) was close to 0.95 for many 

tools (i.e. α ~ 0.05, a commonly-used statistical threshold) [498]. They also show (within their 

system) that the likelihood of obtaining anomalous samples (when performing 48 replicates) 

was relatively low although not impossible [466]. 

However, both depth and replicates need to be considered together when designing an mRNA-

Seq experiment. Consider a hypothetical flow cell which contains a total of 400 million reads, 

and you wish to conduct an experiment involving 2 experimental groups. You have the ability 

to sequence 4 samples (n = 2) to a depth of up to 100 million reads per sample, 6 samples (n = 

3) to a depth of up to 66.6 million, 12 samples (n = 6) to a depth of up to 33.3 million, and so 

forth. An experiment ideally achieves the “golden” 80% power (β) with significance below 0.05 

(α) but irrespective of this the depth and number of replicates could be optimised to achieve 

the highest cost-efficiency – either to reduce the overall cost of the experiment to achieve power, 

or to maximise attainable power for a given cost. One research group considered the two values 

in tandem and showed that both depth and number of replicates are important; however, they 

indicated that 10 million reads per sample (allowing for more replicates – in this example 6) 

allowed detection of far more DEGs than the other permutations, and attainment of a power of 

0.8 (with a significance threshold of 0.05 after false discovery rate [FDR] step-up correction) 

[539]. Their data shows that 6 replicates at 10 million reads detected ~4,500 DEGs, 4 replicates 

at 20 million reads detected ~3,000, and 2 replicates at 30 million reads detected ~2,500 

(equivalent total numbers of reads sequenced). They also showed, with their experimental 

pipeline for performing mRNA-Seq, that having 10 million reads per sample was the most cost-

efficient for the power it provided between 2-6 replicates (at 7 replicates it was marginally out-

performed by 5 million reads) [539]. 

A major flaw of the aforementioned studies is that much of the analysis is based on cell lines 

where there is likely to be a reduced biological variability than what may be observed within a 

whole organism. Therefore, it may be possible that a higher number of biological replicates is 

required to achieve optimal power in vivo. Nonetheless, the above studies indicate that the 2 

replicates and 30 million reads suggested by the ENCODE guidelines are not optimal with 

respect to detecting DEGs in the most cost-efficient or powerful manner (for a fixed cost). 

Ideally, a pilot study should be performed using the pipeline an experimenter wishes to utilise, 

and a power analysis (as well as a cost analysis) be performed for their individual experiment as 

there are many pipelines with different costs and advantages/drawbacks, and that sequencing 

costs can greatly vary between institutions primarily depending on which sequencer machines 

are available (higher throughput sequencers provide greater cost efficiency but assumes enough 
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samples require sequencing – either within an experiment or compounded between several 

researchers). 

Published data utilising the Smartseq2 pipeline (on which the SMART-Seq v4, the selected kit 

for our pipeline, is based) indicates correlation between samples peaks at around 5 million 

uniquely mapped reads [517]. Cost estimates were compared for mRNA-Seq using the SMART-

Seq 4 kit and internal University Genomics Facility Sequencing versus the power data generated 

by Liu et al. [539]: it indicated that, in the context of the SMART-Seq pipeline (where preparatory 

costs are generally higher than most mRNA-Seq pipelines due to its specialist capabilities), the 

most cost-effective mRNA-Seq experiment overall (£ per power) contained 4 biological 

replicates per group at a depth of 10 million reads per sample. However, as advised by Schurch 

et al., at least 6 biological replicates were also considered to achieve adequate power (β = 0.8) 

[498], noting that this recommendation was based on in vitro cell lines. Ultimately, a pilot study 

and power analysis would best inform experimental design, but nonetheless existing data 

suggested sequencing 5–10 million reads per sample was optimal. 

3.1.3 mRNA-Seq Analysis 

There are no special considerations for mRNA-Seq analysis beyond what was described in the 

first chapter, and the pipeline can be analysed using the gold-standard approaches (i.e. adapter 

trimming, trimming based on quality, use of the appropriate splice-aware aligners, typical 

quantification and normalisation algorithms, etc; see Figure 2.7.1). 

For analysis, the University of Bristol’s Genomics Facility provide access to Partek Flow and PGS, 

software that can perform all aspects of the analytical pipeline (from raw data processing and 

identifying DEGs to pathway analysis and more). 

3.1.4 Summary 

The aims of this chapter were to optimise both the experimental and analytical aspects of the 

mRNA-Seq pipeline, performing QC checks and confirming expression/non-expression of 

expected genes in samples, and to determine whether it would be possible to sequence microglia 

isolated from single retinas. Having identified a pipeline that would be appropriate for the 

research objectives to investigate the transcriptome of the microglia, the results of optimisations 

for ultra-low input mRNA-Seq are presented herein. 
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3.2 Results 

3.2.1 Optimisation of mRNA Isolation and cDNA Generation 

The first experiments required involved optimising the pipeline for sorting the cells, to confirm 

the ability to generate suitable material for mRNA-Seq. For initial experiments, microglia were 

sorted based on their CD45 and CD11b expression (Figure 3.2.1). Informed by the SMART-Seq 

kit guidance, 1,000 microglia were sorted from pooled retinas (comprising the left and right eyes 

from a single mouse) to generate cDNA using a 10-cycle amplification programme with 

subsequent Agencourt AMPure isolation (magnetic beads) and quantification with the Agilent 

Bioanalyser tapestation. The rationale for pooled retinas was to ensure 1,000 microglia were 

accurately sorted into each sample tube (the recovery rate of the cell sorter was not known at 

the time, but based on existing knowledge it seemed unlikely that a single retina would yield 

1,000 sorted microglia) so that large quantities of starting mRNA could be utilised for the cDNA 

generation and amplification steps. Taking this approach allowed experimental risks to be 

mitigated until the sorting and cDNA generation was optimised. 

Unfortunately, cDNA was not detected on the Agilent bioanalyzer in the first experiment 

meaning it was unclear if kit components were functioning correctly or whether there was an 

error in a different part of the pipeline until that point. Therefore, a similar follow-up 

experiment was conducted using sorted microglia from both WT and Cx3cr1-GFP+/- mice (using 

CD45 and CD11b gating; see Figure 3.2.1); conceptually, it would allow comparison of 

hypothetical differences in the transcriptomes caused by the transgenic alteration as it was 

unknown if haploinsufficiency occurred below the detection threshold/sensitivity of 

conventional phenotyping approaches (such as fundal imaging) that had not detected gross 

abnormalities. In this experiment, the positive control RNA (from the SMART-Seq kit) and a 

negative (water) control were both included so that kit components could be validated as 

functional and the absence of contamination also confirmed. Cycle optimisation was also 

performed by running a sample from each strain for 12-, 15-, or 18 cycles, numbers higher than 

recommended in the kit manual (this was done in case low cycle number was the reason for no 

detectable yield in the first experiment). This resulted in cDNA generation from both the 15- 

and 18 cycle conditions and a barely detectable amount with 12 cycles (Figure 3.2.2), confirming 

low cycle number was the primary reason for failure in the first experiment. The cycling 

conditions for the positive control were as expected/indicated as per the manual, suggesting 

them as accurate to the amount of input RNA. In-line with the kit’s guidance, 15 cycles for 1,000 
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sorted cells was selected for subsequent experiments (as opposed to 18) as over-cycling can lead 

to amplification bias and skewing of the cDNA generated (the output from 15 cycles most closely 

resembled the exemplary bioanalyser output figures from the manual). Additionally, sorting of 

residual volumes of the samples into empty tubes indicated it was possible to isolate ~1,200–

1,500 microglia per pool, suggesting that it would be possible to reliably isolate 600 microglia 

per retina for single-eye sorting in the future.
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Figure 3.2.1. Flow cytometric gating strategy for the isolation of microglia by fluorescence-activated cell sorting (FACS) in a naïve retina. 

1) Cells are gated-for on size and granularity; 2) singlets are gated using cell area (size) and height; 3) live cells are gated using 7AAD; 4) microglia are 

gated using CD45 and CD11b. 
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Figure 3.2.2. The gel plot, produced from cDNA generated using the SMART-Seq v4 kit as part of the cycle optimisation experiment, on the 

Agilent 2100 Bioanalyser. The following lanes represent different samples and controls: A1 (ladder), B1 (positive control RNA sample [as provided in 

the kit]), C1 (negative control sample), D1–E1 (12-cycle wild-type and Cx3cr1-GFP+/- microglia respectively), F1–G1 (15-cycle wild-type and Cx3cr1-GFP+/- 

microglia respectively), H1–A2 (18-cycle wild-type and Cx3cr1-GFP+/- microglia respectively). The positive control had a peak around 2,000 nt as expected, 

whilst the samples had consistently sized peaks corresponding to just under 1,000 nt – which falls within the normal anticipated range for a sample 

generated using this kit. The green line indicates the 25 bp spike-in in each sample used for calibration purposes. 

25 

200 

500 

1,000 

2,000 
4,000 
6,000 

Size (nt) 



Chapter III: Optimising mRNA-Seq 

118 
 

 

The cDNA from the second experiment was then sequenced and QC was assessed using FastQC; 

the results demonstrated very low N content, sporadic sequence content for the first 15 bases 

with stabilisation afterwards (normal), a near-normal GC distribution, and sequence 

duplication (expected) as a consequence of the LD-PCR amplification (Figure 3.2.3). 

As there are multiple measures of sequence quality and there is no single parameter which can 

define good-quality mRNA-Seq data, quality assurance (QA)/QC measures were also performed 

using Partek Flow. The average base quality score per position (using Phred scoring) was ~35, 

with the vast majority of reads having an overall quality of 34 or 35 (Figure 3.2.4). 

The above information indicates that the sequencer was very accurate in its base calling (a Phred 

score above 30 indicates an error rate below 0.01%, low N content, expected sequence content), 

but indicates little about the quality of the input material beyond having a near-normal GC 

distribution and that it was able to generate quality reads of at least 75 bp in length. To further 

assess the quality of the input material, the alignment stats were also assessed. The total 

alignment for samples was ~90%, with a total unique alignment rate of ~80% – which are 

generally considered the ideal metrics for mRNA-Seq data (Figure 3.2.5). Comparison of the 

alignment rates between paired-end reads (what was generated in initial experiments) and 

single-end reads demonstrated negligible differences between the two; therefore, future 

experiments utilised single-end reads as an improvement in cost-efficiency. 
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Figure 3.2.3. Key quality control parameters (QC) for a representative mRNA-Seq sample 

calculated by FastQC. A) Percentage N content (y) per base position (x) for all reads (1–76). B) 

Percentage sequence content (y; TCAG) per base position for all reads (x). An unusual sequence 

content is anticipated for the first 12–18 bases, after which stabilisation (as observed) is expected. 

C) GC distribution (x; percentage content) of each read plotted as a line (red; y, number) with a 

theoretical perfect distribution line shown (blue), indicating a near-normal GC content 

distribution. D) Percentage (y) sequence duplication levels (x; duplication level) indicated with a 

blue line compared to a theoretical perfect duplication level line (by random chance; red) which 

indicates sequence duplication occurred in the sample; this was anticipated as cDNA samples were 

amplified by LD-PCR as part of the preparation process before library generation, meaning 

duplication was an inevitable part of the preparation process.    
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Figure 3.2.4. Average base score quality for a representative mRNA-Seq sample (as 

generated in Partek Flow). A) The average base quality score per position is shown, with a red 

line to indicate a Phred quality score of 30 (0.1% error rate in base-calling), with the average (and 

SD) falling above this (indicating ideal base-calling). B) The average base quality score per read is 

plotted as a histogram of frequencies; a red line indicates a Phred quality score of 30, which the 

vast majority of reads fall to the right of (indicating ideal base-calling for the vast majority of 

reads).  
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Figure 3.2.5. A representative selection of alignment statistics for mRNA-Seq data 

generated using the ultra-low input RNA pipeline. Each bar represents a different sample, 

which are colour-coded according to how the reads mapped to the mouse genome. Green 

represents unique alignment (where the read aligned to only one location of the genome), yellow 

represents non-unique alignments (where the read aligned to more than one location of the 

genome), and red represents unaligned reads (where it did not align to the genome). Non-unique 

alignments are possible because many genes may have arisen from a common predecessor via gene 

duplication events (i.e. paralogous genes), meaning that identical (or near-identical) regions of 

two paralogues will inevitably exist. Generally, a unique alignment of ~80% (with total alignment 

of ~90%) is considered the ideal/gold-standard results for mRNA-Seq. The white dots represent 

exact numbers of reads aligned, which remain relatively consistent across an experiment. 
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Using PGS, analysis indicated expression of “top microglial genes” (e.g. Slfn2, Gpr84, Bcl2, 

Olfml3), expression of many “microglial-enriched genes” (e.g. Olfml3, Siglech, Tmem119, Cx3cr1, 

Slc24a3¸Sparc) and an absence of expression for markers canonical to T cells, endothelium, and 

photoreceptors which otherwise could be suggestive of sample contamination (Cd3, Cd4, Cd31, 

Map2, Tubb3) in the four samples sequenced [158, 308, 346-348]. 

However, it became apparent during analysis that the two experimental groups were very 

similar, as few DEGs were identified and PCA was unable to delineate the groups. Robust final 

checks for QA would require samples obtained from two different experimental groups to 

enable identification of larger numbers of DEGs and run unsupervised analyses (such as PCA) 

to see if delineation between the groups occurs, both of which would indicate the ability to 

detect broad differences between experimental groups using this pipeline. However, until the 

experiment comparing microglia from different transgenic lines was performed, it was unknown 

whether microglia isolated from WT and Cx3cr1GFP/+ mice would be similar or have differences. 

For a follow-up experiment, use of the Cx3Cr1GFP mouse strain would result in samples 

containing mixed-cell populations as the strain does not retain microglial specificity during 

inflammatory contexts [540] and this would limit the utility of a dataset generated with such 

mice. Informed by publications, acquisition of a new reporter line from collaborators was 

initiated to circumvent these issues of microglial specificity (see Chapter IV) [376]. However, 

there were anticipated delays in the acquisition and rederivation process required to establish 

a colony locally. Therefore, investigation of a different cell type during retinal inflammatory 

contexts would provide data most useful in understanding the disease process of uveitis whilst 

allowing for robust final QA checks to further validate the mRNA-Seq pipeline. As EAU is a 

CD4+ T cell-mediated disease [1], investigation into these cells was performed. 
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3.2.2 mRNA-Seq of CD4+ T Cells in EAU 

Based on the preliminary work on microglia, it was evident that isolation of 600 cells per retina 

would be both feasible and reliable; therefore, this was the target for the number of sorted CD4+ 

T cells. This would enable validation of single-retina sequencing for microglia, as a proof-of-

concept, whilst simultaneously providing a representative sample of the CD4+ T cells isolated 

from an inflamed retina for insights to that aspect of disease. WT C57BL/6 mice were 

immunised for disease with the aim of taking retinas and spleens from mice exhibiting peak 

disease at day 25 (Figure 3.2.6); in C57BL/6 mice, peak disease is typically observed around days 

23–25 (following approximately 8–12 days of no clinical features) with a secondary progression 

that can last at least 100 days post-immunisation [541, 542]. Additionally, spleens from naïve 

mice were utilised as controls because CD4+ T cells are not present in large numbers in a normal 

retina. The sorting strategy is highlighted in Figure 3.2.7. The results are generated from two 

independent experiments with experimental groups balanced between them to combat 

hypothetical batching effects.
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Figure 3.2.6. Representative fundal and OCT images of a naïve mouse and at peak (D25) 

EAU from the CD4+ T cell mRNA-Seq experiment. Perivascular sheathing, lesions, and retinal 

damage are evident at D25 EAU (fundal image) with signs of cellular infiltrate on the OCT scan 

(circled red; scan line indicated in green). The naïve retina appears as expected. Abbreviations: 

EAU – experimental autoimmune uveitis, OCT – optical coherence tomography, ON – optic nerve, 

RL – retinal layers, VB – vitreous body.
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Figure 3.2.7. Flow cytometric gating strategy for the isolation of CD4+ T cells by FACS in an EAU retina. Cells are gated initially as per figure 

3.2.1 (live cells). They are then gated for CD45hi (immune cells), CD11b- (non-myeloid cells), CD3+ (T cells), and CD4+ CD8-. Abbreviations: EAU – 

experimental autoimmune uveitis, FACS – fluorescence-activated cell sorting.  
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However, in the first CD4+ T cell experiment a phenomenon we describe as “time-dependent 

RNA degradation” occurred; it describes where cDNA yield is reduced in a time-dependent 

manner across samples (i.e. the order in which they were sorted) and is likely due to RNA 

degradation due to necrotic/apoptotic processes that occur prior to the formation of holes 

within the membrane (which viability dyes could then identify cells as dead). It occurred due to 

a few factors causing time delays such as technical difficulties with the cell sorter that arose 

after mouse termination and a complicated experimental design involving preparation of 

multiple tissues simultaneously; these factors ultimately increased the time taken between 

mouse termination and sorting of cells into lysis buffer (this phenomenon was observed at 

around 3-3.5 hours post-termination) and highlights the fragility of the first protocol step to 

partial failure (Figure 3.2.8, red box). It is noteworthy to mention that the cells (according to 

the viability stain) appeared live and it was not possible to predict this outcome until after 

performing processing steps. Therefore, future experiments used a protocol amendment where 

small batches (containing samples from every experimental group where possible) of 1–5 were 

prepared and sorted in a staggered fashion to mitigate risks from this occurring in future. 

Nonetheless, the data indicates it is possible to generate high quality cDNA from 600 cells 

isolated from an individual retina as a proof-of-concept for single-eye microglial sorting in the 

future. 

The subsequent experiment adopted this refined protocol, and all samples acquired in this 

experiment were of the expected yield and quality (Figure 3.2.9). In total, 2 naïve spleens, 2 EAU 

peak disease spleens, and 8 EAU peak disease retinal samples were sequenced. PCA was able to 

readily delineate the three groups, indicating genuine and broad differences between the 

samples (Figure 3.2.10). Interestingly, retinas obtained from the same mouse clustered more 

closely together on the PCA plot than retinas obtained from different mice. The spleens, 

irrespective of disease status, clustered more closely together. A total of 991 unique DEGs were 

identified by the three comparisons in the ANOVA model (953 from naïve spleen to diseased 

retina, 147 from diseased spleen to diseased retina, and 59 from naïve spleen to diseased spleen). 

These are visualised by hierarchical clustering in Figure 3.2.11, highlighting a dynamic 

transcriptional landscape. In summary, a group of genes upregulated in CD4+ T cells in EAU 

retinas are highlighted in black; genes downregulated in EAU (spleen and retina) compared to 

naïve controls are highlighted in blue; those downregulated in EAU retinas (but not spleen) in 

green; and those upregulated in EAU spleens only in brown. 
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Figure 3.2.8. A gel plot from the experiment where time-dependent mRNA degradation of samples was observed. The gel indicates cDNA was 

generated for samples B1–H1 (a mixture of retinal and spleen samples), but a reduction in yield (resulting in almost none detected) was observed for 

samples A2–D2 (red box). The samples on this gel are arranged in the order they were sorted in (with A1 being sorted first, and hence the shortest time 

post-termination, and D2 being sorted last). The green line indicates the 25 bp spike-in in each sample used for calibration purposes.
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Figure 3.2.9. A representative gel plot, produced from cDNA generated from 600 CD4+ T cells (equivalent to single-eye mRNA-Seq of 

microglia) using the SMART-Seq v4 kit, on the Agilent 2100 Bioanalyser. A) The following lanes represent different samples and controls: A1 

(ladder), B1–E2 (16-cycle CD4+ T cells), F2 (water control loaded onto the gel to estimate background signal). B) Single gel trace for a sample, showing 

a clean peak observed at just under 1,000 nt. Green line – 25 nt spike-in; purple line – 10,000 nt spike-in. Both spike-ins assist in calibration.
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Figure 3.2.10. Principal component analysis (PCA) plot for the CD4+ T Cell mRNA-Seq 

data. The first three PCs are plotted which represent 46.7% of the variation between the samples. 

Samples are labelled according to their anatomical origin and disease status: naïve spleen (green; 

n = 2), diseased (EAU) spleen (blue; n = 2), and diseased retina (red; n = 8). Increasing loss of colour 

intensity on a sample indicates a more posterior position on PC#3. Retina pairs (obtained from 

the same mouse) are indicated with red circles. Abbreviations: EAU – experimental autoimmune 

uveitis, PCA – principal component analysis.
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Figure 3.2.11. Hierarchical clustering (heatmap) of the DEGs identified from the DGEA on samples of 600 CD4+ T cells. Comparisons were 

made between naïve spleen (yellow; n = 2), diseased (EAU) spleen (orange; n = 2), and diseased retina (red; n = 8) are highlighted with coloured boxes. 

Raw expression values (on a per gene basis) were shifted to a mean of 0 and scaled to an SD of 1 for easier comparability as part of the visualisation 

process. Genes were clustered based on their similarity in expression profile, as were samples – both to create dendrograms illustrating the relationships. 

Abbreviations: DEGs – differentially-expressed genes, DGEA – differential gene expression analysis, EAU – experimental autoimmune uveitis.
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3.3 Discussion 
The main aims of this chapter were to optimise both the experimental and analytical aspects of 

the mRNA-Seq pipeline, and to determine whether it would be possible to sequence microglia 

isolated from single retinas as a proof-of-concept for utilising this pipeline to assess mRNA 

differences in microglia before, during, and after models of uveitis. 

Initial experiments, performed with naïve microglia, highlighted several factors that can alter 

the quality of the output material. Firstly, careful optimisation of cycling conditions for the 

cDNA amplification step is required; secondly, that high-quality output depends on 

streamlining of the experimental pipeline so that optimal timing for the isolation of cells is 

maintained. Preliminary experiments using sorted microglia did not generate detectable 

amounts of cDNA. The hypothesis was that material had been generated, but it was too low a 

yield for detection. To test this, a cycle optimisation experiment was performed where the cycle 

conditions was changed from 10 to 12, 15, and 18. Upping the cycling conditions to 12 generated 

barely detectable amounts of cDNA, with greatly increased yield with 15 and 18 cycles. This 

confirmed the experimental pipeline as functional and indicates that the initial experiment 

likely generated cDNA but at a level below detection thresholds. 

The cycling conditions used were discrepant to the guidance provided in the SMART-Seq kit 

user manual. It is well-known different cell types can express different amounts of mRNA, and 

that transcriptional amplification occurs in immortalised cell lines [430, 543-545]. The SMART-

Seq kit manual indicates that the cDNA synthesis protocol was tested and validated using 

cultured cells, supporting this notion. Whilst cDNA was generated from microglia with 18 

cycles, the output from 15 cycles was sufficient to produce libraries, and the kit’s guidance 

indicates the fewest number of cycles required to construct a library should be used. This is 

because higher cycle numbers can lead to a phenomenon described as “overcycling”, which 

results in a coarse distribution of sizes and can affect downstream results. The output from 12 

cycles was barely detectable and therefore was too low to select for future experiments. 

Therefore, 15 cycles was selected for 1,000 cells henceforth. 

Whilst all care was taken to ensure high-quality mRNA products were obtained, and haste (with 

accuracy) in the protocol, on one experiment a time-dependent degradation of mRNA was 

observed. A variety of factors caused this, such as a complex experiment for preparation (lengthy 

antibody staining protocols, in addition to preparation of retina, spleen, and blood 

simultaneously) and unanticipated technical difficulties with the cell sorter which arose after 

the mice had already been terminated. As an amendment, future work will utilise small-batch 
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preparations of samples to mitigate the risk of this in the future. Experiments utilising the 

Cx3cr1CreER:R26-tdTomato line may permit sorting of microglia using tdTomato alone (provided 

the tdTomato tag is both sensitive and specific for microglia), which would considerably shorten 

the preparation time and streamline the process as no Fc block or antibody staining would be 

required. This might make future experiments at a reduced risk of failure or problems, therefore. 

There is no clear consensus in the literature about the length of time mRNA remains viable 

post-termination, other than that it is a short time and processing should be as rapid as possible. 

A recent publication suggested a maximum processing time of 5 hours for a sc-mRNA-Seq 

method [546]. However, our own findings suggest a time of 3–3.5 hours post-termination 

(following the protocol described in Chapter II with samples on-ice) as a cut-off for an 

experimental sample unlikely to yield high-quality or large amounts of cDNA suitable for 

sequencing. Other approaches that could help bypass this issue include fixation, but for this 

ultra-low input pipeline the kit manual explicitly stated it was incompatible with fixed mRNA 

and therefore fresh preparations are required for this pipeline. 

Addressing both the cycle optimisation and timing issue, the data generated possessed the ideal 

(Gold-standard) QA/QC parameters (low N content, normal base composition per position, 

near-normal GC content to a theoretical, some sequence duplication as a consequence of the 

LD-PCR, high Phred scores, and excellent alignment metrics); data generated from isolated 

microglia also had expression of both highly-expressed microglial genes and enriched microglial 

markers, and an absence of non-microglial gene expression which is suggestive of a valid and 

successful transcriptomics experimental pipeline. The near-normal GC content, in contrast to 

the heavy GC bias observed with historical mRNA-Seq protocols, is enabled due to template 

switching (which incorporates the same, or GC-equal, primer regions for amplification; 

Appendix I), allowing for unbiased selection and coverage of the transcriptome. However, the 

SMART-Seq technology does have certain limitations that should be recognised. For example, 

strand-specificity is not preserved, and the current kit format prevents multiplexing of the 

samples until library preparation – the latter driving up costs associated with an experiment. 

Additionally, in contrast to mRNA-Seq experiments using alternative preparatory approaches, 

there was no loss in Phred score at the 3’ end of the transcript. 

However, one major limitation of these initial experiments on microglia were that the 

experimental groups were too similar, meaning that unsupervised algorithms were unable to 

delineate them. To fully test the platform and validate the pipeline, isolation of cell types under 

different states (or different cell types) were required. Due to known limitations with the 
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Cx3cr1GFP model in specific labelling of microglia, and the time required to establish the 

Cx3cr1CreER:R26-tdTomato strain locally, characterisation of CD4+ T cells at EAU peak disease 

enabled validation of the pipeline whilst simultaneously generating novel and useful data in 

understanding uveitis (as a CD4+ T cell-mediated disease). Performing mRNA-Seq on 600 CD4+ 

T cells also acted as a proof-of-principle for single retina sorting of microglia (the number that 

could be reliably isolated from single-eyes). 

Hierarchical clustering also indicates that many genes are down-regulated when CD4+ T cells 

are present in the retina. Some of these could be explained by tissue factors (i.e. spleen vs. 

retina), although it is difficult to delineate this as CD4+ T cells are not tissue-resident immune 

cells and hence there is no ideal control. However, as ingress to the eye is a part of the disease 

and something inherent to uveitis, whether the changes are caused by activation or the 

microenvironment could be inconsequential provided they can be characterised and assist in 

understanding how the CD4+ T cells are altered in uveitis. Other studies investigating T cells 

also utilise use spleen preparations as controls, but sometimes include an absence of activation 

markers (e.g. CD62L+, CD25/69-, etc) to ensure the T cells are in a naïve state. This indicates a 

line of investigation equivalent to good and currently established practice was undertaken with 

regards to controls for this type of experiment. It is entirely possible there is no perfect control 

for investigating T cells in uveitis. 

Genes that up-regulate in the EAU retina have great variability, and this could be due to two 

factors: there is inherent variability in the EAU disease model itself (in terms of severity), and/or 

that the mice were at different stages of disease severity. A linear, unbiased method of scoring 

retinas for disease would permit the use of parametric correlative statistics and this could 

ultimately identify markers which associate with disease. In the spleen, there were fewer DEGs 

between a diseased and naïve state, although roughly a third of downregulated genes in the 

retina are also downregulated in the spleen simultaneously during EAU. There is also a small 

group of genes that are upregulated only in diseased spleens, indicating active changes 

occurring there in addition to the retina. As the Th1/Th17 axis is pivotal in uveitis [1], a way of 

delineating T cell phenotypes from the mRNA-Seq data (and how they change across EAU) 

would be pertinent. As the spleen samples were prepared from eyes at peak EAU disease, it isn’t 

possible to extrapolate whether these changes preclude infiltration of T cells into the retina or 

represent changes occurring from T cells that recirculated from the retina, or both. However, it 

adds to compounding knowledge that the peripheral lymphoid tissues are altered during 

inflammation, even at distal sites to the inflammation. 
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The further analysis of the experimental groups with PCA and hierarchical clustering also 

support our pipeline for transcriptomic analysis as valid, building a platform which can then be 

used for analysis of the microglial transcriptome. Unsurprisingly, the spleen samples were found 

closer together on the PCA plot than the retinal samples which indicates more similarity to each 

other than to the retinal samples. Paired retinal samples from the same mouse were also closer 

together than samples from a different mouse. This questions whether contralateral eyes are 

true biological replicates, as the peripheral immune cells which infiltrated the retinas are 

derived from the same pool. Furthermore, there is evidence to suggest untreated contralateral 

eyes can experience changes (with regards to the microglia) in the presence of pathology in the 

ipsilateral [547]. However, in both mouse and man it is well-recognised that the two eyes can 

experience different disease kinetics, with complete disease asynchrony in some rare cases 

[548]. This therefore demonstrates that they cannot be technical replicates. Overall, paired 

retinas could be considered neither biological replicates or technical replicates, and there may 

not be an existing term or statistical model that can analyse them in a completely valid manner 

in light of this (statistical models tend to assume different samples are biological replicates as 

technical replicates are commonly employed for evaluation of variability within a model, 

system, or assay). 

In summary, successful optimisation of mRNA-Seq for ultra-low input samples (equivalent to 

single-eye microglial mRNA-Seq) and an analytical pipeline were achieved, both of which will 

be utilised as a robust platform for investigation of the microglial transcriptome in the retina 

before, during, and after uveitis. 
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Chapter IV: Validation and Optimisation of the 
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4.1 Introduction 
Chapter IV: The tdTomat o Mouse  

4.1.1 The Challenge of Microglial Identification 

Investigating microglia within inflammatory diseases has been historically very challenging. 

Microglia are historically differentiated as CD45lo/CD11b+ [397]. However, there is overlap 

between CD45lo and CD45hi populations, meaning that during inflammation where infiltration 

of monocytes and macrophages (CD45hi/CD11b+) occurs discrimination is poor. 

When activated, microglial expression of CD45 has been argued to increase to CD45hi [549, 550]. 

However, there is evidence suggesting that microglia retain the ability to differentiate into other 

immune cells and this could explain the observed increase [551]. Many other groups have been 

able to modestly discriminate a CD45lo population during inflammation [348, 552, 553]. In other 

studies it has been shown that infiltrating monocytes can differentiate into microglia [554], or 

even that down-regulation of CD45 occurs in monocytes that are CD62L- as compared to 

CD62L+ [555]; CD62L loss is associated with activation of immune cells [556]. A final group used 

chimeric techniques to conclusively show that microglia can up-regulate CD45, and that 

monocytes can down-regulate CD45 [415]. This raises questions about what the population of 

CD45lo cells during inflammation might be, if there is a way to discriminate them with greater 

resolution, and ultimately discriminate microglia from that pool. 

Until recently, there have been no markers that reasonably discriminate microglia from 

monocyte/macrophage populations. One marker, Cx3cr1, is a gene that is enriched in microglia 

within naïve organisms [557]. A transgenic mouse line was generated that replaced the first 390 

bp of exon 2 of the Cx3cr1 gene with GFP (and a single LoxP site) [429] and was believed would 

allow for the isolation of microglia; however many peripheral immune cells are GFP+ in naïve 

organisms, and other immune cell populations up-regulate Cx3cr1 during EAU (and other 

inflammatory processes) making the mouse line an improvement but still 

unsuitable/inadequate for specific microglial identification [540]. CD44 is a newly-discovered 

marker [558, 559] which appears to resolve the CD11b+ CD45lo/hi populations with greater 

resolution [558]. TMEM119 is a second such marker and has been reported by several teams 

using orthogonal methods to indicate it as a promising microglial-specific marker [352, 422, 560] 

that can differentiate them from other immune cells. However, it should be noted that 

infiltrating monocytes have been shown to adopt a microglia phenotype [415, 554] and hence 

TMEM119 may not permit discrimination of microglia derived from different origins (i.e. 
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embryologically-derived [yolk-sac] vs. resident-proliferating vs. monocyte/bone-marrow 

progenitor-derived microglia). TMEM119 has been argued to specifically label embryonically-

derived microglia within the brain [422]. However, some very recent sc-mRNA-Seq data on a 

spontaneous EAU model (Aire-/-) identifies expression of TMEM119 on a subset of 

monocyte/monocyte-lineage cells identified because they mapped separately to microglia using 

dimension-reduction algorithms [561]. Additionally, loss of Tmem119 expression has been 

observed in activated microglia [340]. 

Nonetheless, the ability to label a pure population of tissue-resident microglia prior to the 

induction of inflammation (e.g. EAU/EIU) would be pragmatic and allow one to deconvolve and 

investigate the microglial kinetics. It would also allow for validation of novel microglia markers 

and activation markers, so that WT or other transgenic mouse lines could be used for further 

investigation of microglia in the future. This would bypass potential confounders of transgenic 

models (as you could utilise WT mice) or enable the use of alternative transgenic lines (e.g. 

some disease models are themselves transgenic lines, or other lines could be used to investigate 

how alterations to a molecular target changes both microglia and the model) without the need 

for complex breeding regimes to a line that tags microglia. A novel strain of mouse, called the 

“Cx3cr1CreER:R26-tdTomato” mouse, is considered to allow for binary discrimination of tissue-

resident microglia from other cells [376]. 

4.1.2 Cre/Lox Systems and CX3CR1 

Cre recombinase (Cre) is an enzyme from the P1 bacteriophage. It uses a tyrosine residue within 

the active site to recombine specific DNA sites termed LoxP sites and is used for genetic 

manipulation [562]. It can be placed downstream of DEGs to create conditional gene targeting; 

for example, if placed downstream of Cx3cr1, only cells expressing Cx3cr1 will express Cre and 

undergo recombination events at inserted LoxP sites within the genome. The Cx3cr1Cre mouse 

line has been shown as able to tag microglia, but also many other types of macrophage found 

throughout the body, similarly to the Cx3cr1GFP strain [540]. Cre and Lox systems are 

summarised in Figure 4.1.1. 

CreER is a hybrid of the Cre gene and the oestrogen receptor (ER) gene, which is only activated 

when 4-hydroxytamoxifen (and some other ER partial agonists or antagonists) are bound but 

not oestrogen at physiological concentrations [563]; this allows for control of when 

recombination events occur, rather than occurring constitutively upon Cre expression. In other 

words, recombination only occurs when the ER partial agonists/antagonists are administered, 
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and therefore only cells expressing CreER at that specific point in time will undergo a 

recombination event [563]. However, it has been noted that some tamoxifen-independent 

recombination can occur in CreER (both CreER and CreERT2 [second-generation]) systems 

[564], particularly when CreER is inserted downstream of a highly-expressed promoter by a 

specific cell type [565]. 

Another commonly-used gene in transgenic mouse models is Rosa26 because it is ubiquitously 

expressed in both embryonic and adult cells of the mouse [566]; a stop codon, flanked by LoxP 

sites, followed by the gene for a fluorescent protein are inserted downstream of the Rosa26 

promoter to create a reporter for Cre lines. Rosa26 is commonly used as any target cell will 

express the fluorescent protein (or other insert) after a recombination event because it is 

ubiquitously expressed [566, 567]. It is noteworthy to mention that daughter cells (of those 

which have recombined) formed via mitotic division will also inherit this recombined variant, 

as it is permanent. 
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Figure 4.1.1. Cre and Lox systems, and their utilisation in conditional gene targeting. 

Homozyous mice for a Cre insert (downstream of a specific promoter) can be bred to LoxP 

homozygous mice (which contain Loxp [recombination sites], typically flanking a stop codon and 

with a fluorescent reporter downstream) to create Cre LoxP mice which enable conditional gene 

targeting. Only cells which express the promoter that Cre was inserted into have the capability to 

excise the region between the LoxP sites, resulting in removal of the stop codon and expression of 

fluorescent reporter (in this example, tdTomato). This system can be very useful in the conditional 

targeting of gene disruption, and/or fluorescent tagging of cells that have expressed a promoter 

for lineage-tracing studies. 
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In the Cx3cr1CreER:R26-tdTomato mouse, CreERT2 replaced the 390 bp of exon 2 of Cx3cr1 [540]. 

Cx3cr1 is a microglial-enriched gene that is also expressed in lower amounts by other myeloid 

cells in naïve organisms [557], and therefore CreER is only expressed by myeloid cells. This 

means that only myeloid cells can undergo a recombination event and only when an ER partial 

agonist/antagonist is present. The CAG “promoter” (CMV early enhancer, chicken β-actin 

transcription start site [TSS], and rabbit β-globin intron), stop codons flanked by LoxP sites, 

and tandem dimer (td) Tomato fluorescent protein was also inserted downstream of the Rosa26 

promoter [568]. Therefore, until a recombination event occurs and the stop codon is excised, 

tdTomato cannot be expressed (in theory, although very low-levels of expression of tdTomato 

in the reporter mice – even in the absence of Cre – have been noted [569]). 

As CreER is located downstream of Cx3cr1, only myeloid cells can potentially undergo a 

recombination event. Upon tamoxifen administration, myeloid cells undergo recombination 

and express tdTomato. Because Cx3cr1 is a microglia-enriched gene [348], this genetic model 

tags microglia most effectively, although other myeloid cells are tagged too initially [376]. As 

myeloid cells are short-lived, with the exception of microglia which are long-lived with self-

replicative potential [570, 571], after 4 weeks the other cells will have perished (as part of 

haematopoietic turnover) leaving microglia as the only cells tagged. In the original describing 

study, they indicate that a large proportion (~85%) of the microglial population are tagged using 

this transgenic model (Figure 2.1.2) [376]. This means that techniques such as FACS or flow 

cytometry, confocal microscopy, or others that use fluorescence-based detection will be able to 

identify tissue-based microglia. With a combination of other markers (e.g. CD44, CD45, 

TMEM119, CD11b, etc) it could allow for discrimination between monocyte/macrophage 

populations, for validation of these cell markers, and to investigate other avenues such as 

whether monocytes can differentiate into microglia (or microglia-like cells) and whether this 

occurs during chronic inflammation (e.g. EAU). 
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Figure 4.1.2. Recombination and the kinetics of fluorescent reporter positivity in the 

Cx3cr1CreER mouse strain. A) Schematic for inducing recombination in the Cx3cr1CreER:R26-

tdTomato mouse – loxP sites are indicated with grey triangles. B) A time-course highlights 

induction of recombination in a variety of cell types, with progressive loss of all but microglial cells 

by 4 weeks post-tamoxifen in the Cx3cr1CreER:R26-eYFP mouse strain. Recombination persists in 

microglia long-term. Adapted from [376] and reproduced with permission from Springer Nature. 
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4.1.3 The Safety/Toxicity of Tamoxifen, CreER, and tdTomato 

Tamoxifen is a known chloride channel blocker and has been shown to inhibit microglial 

process formation/extension, compromising their neuroprotective function after lesions were 

formed by lasers [572]. Whilst tamoxifen administration is acute, and occurs 4 weeks prior to 

the usage of mice, it is unclear if this would have long-term effects on the microglia and their 

function. Therefore, experiments to confirm a normal disease course/process will be required 

in the Cx3cr1CreER:R26-tdTomato mouse line as altered in vivo kinetics would impact 

experimental time-points at which microglia are isolated for downstream sequencing. It is well-

recognised that CreER mouse lines can also have off-target effects and use of heterozygotes in 

experiments helps to mitigate these as it ensures that there are functional variants of all proteins 

in the organism. Nonetheless, the effect of a haplosufficient heterozygote compared to a WT 

homozygote is unknown as it is specific for each mouse strain. However, as discussed earlier, 

use of this transgenic line represents one of the only currently available approaches of 

specifically isolating microglia (until specific markers are identified, potentially through use of 

this transgenic line) which justifies its use. 

In the literature there are many reports of CreER being toxic and causing severe side-effects on 

mice via the cells they are expressed in, irrespective of whether they had received tamoxifen or 

not [573]. A different study in the eye was conducted to establish the potential toxic or other 

effects that CreER and tamoxifen administration might have. For this study, three different Cre 

mouse lines (CAGGCre-ERTM [which should tag all retinal cells, including microglia], α-Cre, and 

LMOP-Cre) were used to investigate whether Cre expression and/or tamoxifen treatment would 

alter retinal structure/function, neuronal vulnerability or glial reactivity in the mouse eye [510]. 

Ex vivo assessments included confocal laser scanning microscopy of histological tissue sections 

(to visualise potential morphological changes in individual cell types, but to also perform 

measurements of the INL thickness) and qPCR of microglial activation markers, a macroglial 

development factor, and neuroprotective factors. Additionally, clinical in vivo assessments in 

the form of fundal images and ERGs of the retina, and neuronal vulnerability to light damage 

(measured by a TUNEL assay) were performed. In summary, they showed that Cre or CreER and 

tamoxifen did not influence retinal function, expression of neuroprotective factors, macro-

/microglial reactivity, and neuronal vulnerability. This suggests that the eye is not compromised 

by Cre toxicity and/or tamoxifen treatment. There are no known abnormalities in the 

Cx3cr1CreER:R26-tdTomato mouse line, but these studies highlight the need for good controls (i.e. 

at least from the same transgenic line, but ideally littermates) but also confirmation of typical 
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disease kinetics (despite no detectable retinal abnormalities in other Cre lines) as it has been 

shown that perturbation of microglia can inhibit establishment of ocular disease in the EAU 

model [390]. 

Lastly, it is well-recognised that fluorescent proteins have the potential to be both immunogenic 

and toxic to cells [574]. tdTomato is a tandem-dimer, making it in effect a monomer with double 

the molecular weight, that was engineered not to oligomerise which has helped reduce its 

toxicity potential. It is recognised that (detectable) toxicity is rare in currently-used fluorescent 

reporters [575]. tdTomato has a relatively low potential for phototoxicity due to longer-

wavelength excitation (with respect to many other fluorophores) [576]. It is also noteworthy to 

mention that tdTomato is extremely bright and has very high photostability as well, making 

repeated in vivo imaging unlikely to cause issues with respect to our detection of the microglia 

[577]. It would be important to characterise the mice post-tamoxifen to confirm the microglia 

as physiological, and to use equivalent controls so that tdTomato presence/absence does not 

potentially confound experiments. 

The overall emerging picture from the use of transgenic mice (e.g. Cre lines), fluorescent 

reporters, and tamoxifen is that equivalent controls (if not littermates) should be used where 

possible to mitigate any possible (even if not detected) confounding caused by the transgenic 

line, tamoxifen treatment, CreER, and/or fluorescent protein. 

4.1.4 Tamoxifen Administration Routes 

Various routes of tamoxifen administration (for activating CreER systems) have been described 

previously. Research groups commonly employ subcutaneous injection [376] or oral gavage 

[540] (also in food), but topical administration (as a 4-day regime) has also been described 

recently as both safe and effective [510]. Therefore, we sought to compare the subcutaneous and 

topical administration routes of tamoxifen (200 µL of a 21 mg/mL solution on days 1 and 3, and 

10 µL of a 5 mg/mL solution to each eye 3 times daily for 4 days, respectively) – one systemic 

approach compared to the local approach – to identify whether one was superior with respect 

to both the sensitivity of inducing recombination in, and specificity for microglia (i.e. the 

proportion of microglia that are tagged using the approaches, and the frequency of 

recombination events in non-microglial cells and their presence in the retina under 

inflammatory conditions). This would enable us to determine which is the most suitable regime 

for use in our experiments in the Cx3cr1CreER:R26-tdTomato strain. 
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4.1.5 Summary 

The Cx3cr1CreER:R26-tdTomato transgenic mouse offers great potential as a tool for investigating 

microglia, but many questions needed to be asked such as whether the Cre/Lox system alters 

microglial behaviour and disease model kinetics, whether it is indeed sensitive and specific for 

microglia, and if this is universal or biased towards a particular tamoxifen administration route. 

The major aims of this chapter were to characterise the sensitivity and specificity of different 

tamoxifen administration regimes for retinal microglial tagging in the Cx3cr1CreER:R26-tdTomato 

to confirm whether it would be suitable (alone or in combination with antibody staining) for 

retinal microglial isolation and downstream transcriptomic assessment during inflammatory 

states. 
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4.2 Results 

4.2.1 Sensitivity of Microglial Tagging 

Firstly, confirmation was sought that the retina in the Cx3cr1CreER:R26-tdTomato mouse line was 

physiological and no perturbations were observed. Secondly, confirmation that it was possible 

to tag retinal microglia using tamoxifen and the Cx3cr1CreER:R26-tdTomato mouse line was 

required. Thirdly, a comparison between the different tamoxifen regimes (topical 3x daily 

lasting for 1–4 days, a subcutaneous approach with injections on days 1 and 3, and no-tamoxifen 

controls) was required to observe if they tagged microglia differentially and if one was superior 

compared to the others for use in continuing work. Brightfield fundal imaging of WT and 

Cx3cr1CreER:R26-tdTomato mice revealed no gross differences between the retinas, suggesting a 

physiological state, in a naïve context at least (Figure 4.2.1). A fluorescent fundal imaging time-

course (with gain-normalised settings) indicates that, following systemic administration, retinal 

tdTomato fluorescence has not stabilised by 2 weeks post-tamoxifen; it reaches a maximum by 

4 weeks however (Figure 4.2.2). Fluorescent imaging of retinal tdTomato undergoing the 

different tamoxifen regimes, 4 weeks post-tamoxifen, suggested (as a qualitative readout) that 

a minimum of 2 days of the topical regime was required for full tagging (Figure 4.2.3). It also 

indicated that a modest proportion of microglia can recombine in the retina independently of 

tamoxifen administration (tamoxifen-independent, or constitutive, recombination). 

However, a quantitative assay that was more absolute and sensitive would confirm whether all 

retinal microglia were tagged (sensitivity) and if other retinal cells were also labelled following 

tamoxifen administration (specificity). To assess this, flow cytometric analysis was performed 

on the retinas using a panel to include the microglial markers CD45 and CD11b (good markers 

of determining microglia in a naïve retina). This demonstrated that a 3- or 4-day topical, or 

subcutaneous (days 1 and 3) regime was required for full microglial tagging and that the other 

regimes (including 2-day topical) were insufficient (Figure 4.2.4). 

As a final confirmation confocal laser-scanning microscopy, performed on retinal flatmounts, 

permitted assessment of the spatial distribution and morphology of the tdTomatohi cells; they 

exhibited the ramified morphology typical of microglia which also suggested that there were no 

gross pertubations in the retina or microglia as a consequence of the transgenic line or 

treatments (Figure 4.2.5). 
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Figure 4.2.1. Brightfield imaging of wild-type (WT) and Cx3cr1CreER:R26-tdTomato mice 

highlight no gross perturbations as a consequence of gene editing. Representative fundal 

images are shown, where mice exhibit a typical appearance that lacks retinal scarring, 

inflammation, or degenerative phenotypes. 

  

Wild-Type CX3Cr1CreER:R26-tdTomato 
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Figure 4.2.2. Representative fluorescent fundal images of Cx3cr1CreER:R26-tdTomato 

mice before and after tamoxifen administration. A) Images pre- and 2 weeks post 

tamoxifen indicate a slight increase in fluorescence. B) Fluorescence greatly increases between 2- 

and 4-weeks post-tamoxifen. C) Fluorescence intensity does not change after 4 weeks post-

tamoxifen, indicating stabilisation. All mice (different in each panel) received a subcutaneous 

tamoxifen administration regime and were 5 weeks old when tamoxifen was administered. 

A) 

B) 
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Figure 4.2.3. Representative fluorescent fundal images of Cx3cr1CreER:R26-tdTomato mice 

undergoing different tamoxifen administration regimes 4-weeks post-tamoxifen. There 

is clear evidence of recombination and tdTomato expression in a no-tamoxifen mouse, but more 

microglia are tagged when tamoxifen is administered; it is difficult to discern differences between 

2D–4D and Sc retinas. The results are representative of two independent experiments, with at least 

4 biological replicates per group. Abbreviations: No – no tamoxifen administered, xD – x-day 

topical tamoxifen regime, Sc – subcutaneous tamoxifen regime.
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Figure 4.2.4. Sensitivity of microglial recombination induced in Cx3cr1CreER:R26-tdTomato mice using different tamoxifen administration 

regimes. A) A representative flow cytometric gating strategy used to identify microglia in a naïve retina based on CD45 and CD11b expression. B) 

Representative tdTomato histograms (unit area scaling) on gated microglia from various tamoxifen administration regimes. C) Aggregate data 

demonstrating the percentage of microglia that were tdTomatohi (as quantified by flow cytometry) shows that a 3-day and 4-day topical, in addition to 

subcutaneous, regimes result in full microglial tagging (n = 3–6). Abbreviations: None – no tamoxifen administered, 1D – one-day topical tamoxifen 

regime, 2D – two-days topical tamoxifen regime, 3D – three-days topical tamoxifen regime, 4D – four-days topical tamoxifen regime, Sc – subcutaneous 

tamoxifen regime. For statistical analysis, One-way ANOVA with Tukey’s post hoc test was used. **** = p ≤0.0001, ns = not significant. 
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Figure 4.2.5. Representative confocal microscopy maximum-intensity projection of a 

whole naïve retina highlights a physiological morphology. Retinal flatmount prepared from 

a mouse that received the 3-day topical tamoxifen regime. The microglia exhibit a physiological 

ramified morphology, suggesting no gross perturbations in the microglia as a consequence of the 

transgenic model and tamoxifen administration. Scale bar = 30 µm. 
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4.2.2 Specificity of Microglial Tagging 

Having confirmed that a 3- or 4-day topical tamoxifen regime or sub-cutaneous approach was 

required for full retinal microglia tagging, subsequent experiments sought to compare 

differences in the specificity for microglial tagging using these routes (i.e. if extraocular cells 

underwent recombination). This was important for the planned transcriptomic assessments of 

microglia before, during, and after intraocular inflammation as these would require “pure” 

populations of retinal microglia and it is well-known that other cells ingress to the retina during 

inflammation. 

Initial experiments sought to characterise the full extent of tdTomato expression following 

topical and subcutaneous administration. Tissue samples were prepared for flow cytometric 

assessment using an immunophenotyping panel (containing B220 [a B cell marker], CD3 [a T 

cell marker], CD11b [a myeloid cell marker], CD45 [an immune cell marker], and Gr-1 [an 

antibody that binds Ly6C and Ly6G with different affinities to differentiate “resting/patrolling” 

and “inflammatory” monocytes in addition to granulocytes]) to identify whether there were 

tdTomatohi cells present in non-retinal tissues (blood, bone marrow, brain, kidney, liver, lung, 

and spleen), but also whether there was a predisposition to a given cell type – as use of the tag 

in conjunction with other markers may nonetheless permit specific microglial identification. 

The sub-cutaneous approach resulted in full tagging of brain microglia due to the systemic 

administration; in comparison, the topical approach and no-tamoxifen controls resulted in 40–

50% of microglia being tagged (Figure 4.2.6). 

With the sub-cutaneous approach, there were also ~2.2 times more tdTomatohi splenic 

monocytes as compared to a topical approach (Figure 4.2.6). Furthermore, the presence of a 

small number of tdTomatohi cells were observed in other peripheral tissues (Figure 4.2.7). 

Whilst the absolute numerical differences in cells (or percentages) are low, this could be 

pertinent in the context of the eye where only a small number of microglia are found; numbers 

of tdTomatohi cells ranging in the hundreds (if they infiltrate the eye) as observed could greatly 

reduce the specificity of the mouse line. 

  



Chapter IV: The tdTomato Mouse 

152 
 

 

 

Figure 4.2.6. Flow cytometric histograms highlight tagging of brain microglia and a 

small number of splenic monocytes following subcutaneous (systemic) tamoxifen 

administration. Histograms for different tamoxifen administration regimes are displayed for 

retinal microglia, brain microglia, and splenic monocytes alongside the percentage positive of each 

cell type for tdTomato. Histograms containing a small number of positive cells are highlighted 

with circles. Abbreviations: No – no tamoxifen administered, 3D – 3-day topical tamoxifen regime, 

4D – 4-day topical tamoxifen regime, Sc – subcutaneous tamoxifen regime (n = 1). 
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Figure 4.2.7. Flow cytometric analysis of peripheral tissues indicates a small, but 

potentially significant, number of tdTomatohi cells. Tissues were gated for cells, singlets, live 

cells, and then for myeloid cells (CD45+, CD11b+). Histograms of tdTomato fluorescence intensity 

from the different tissues are shown alongside the percentage positive for tdTomato. Histograms 

containing a small number of positive cells are highlighted with circles (these samples contained 

a minimum 3-figure number of tdTomatohi cells). Abbreviations: No – no tamoxifen administered, 

3D – 3-day topical tamoxifen regime, 4D – 4-day topical tamoxifen regime, Sc – subcutaneous 

tamoxifen regime (n = 1). 
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Nonetheless, the presence of peripherally recombinant cells (including brain microglia) is not 

necessarily of concern (with respect to retinal microglial specificity) if they do not infiltrate the 

eye during inflammation. Therefore, to test this comprehensively a model where immune cell 

infiltration to the eye occurs was required. EIU, as a model of acute endotoxin-induced 

inflammation, was selected for this purpose because it has a robust and reliable onset of disease 

with peak immune cell infiltrate observed within the retina and VB at 18 hours post-induction 

(typically by intravitreal injection of LPS). 

Before testing, it was important to first confirm the EIU model kinetics in the Cx3cr1CreER:R26-

tdTomato mouse line were equivalent to the WT C57BL/6J mouse (see Chapter V, Figure 5.2.1). 

This would allow the isolation of retinas for flow cytometry during the peak cellular infiltrate 

stage of EIU (18 hours post-injection) to test the specificity. 

Flow cytometry was performed on the retinas during peak cellular infiltrate (as confirmed by 

OCT of the retinas; Figure 4.2.8) and the immunophenotyping panel was used so that various 

immune cell populations could be gated and checked for their expression of tdTomato (Figure 

4.2.9). 
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Figure 4.2.8. Representative images of a naïve and EIU 18h retina in the Cx3cr1CreER:R26-

tdTomato mouse line. Fundal images (top) show a generalised haze, including over the optic 

disc (nerve), which OCT (bottom) confirms as cellular infiltrate in the vitreous (circled). 

Abbreviations: EIU – endotoxin-induced uveitis, OCT – optical coherence tomography, ON – optic 

nerve, RL – retinal layers, VB – vitreous body. 
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Figure 4.2.9. Flow cytometric gating strategy used to differentiate immune cell 

populations present in the retina at peak EIU. Retinas were gated for cells, singlets, live cells, 

and CD45+ immune cells. They were then separated into tdTomatohi (which we hypothesised were 

microglia) and tdTomato-. The tdTomato- cells were then gated for myeloid cells (CD11b+), T cells 

(CD3+), and other (CD3-, CD11b-), with the myeloid cells further discriminated into Gr-1-, Gr-1lo 

(Ly6C+), and Gr-1hi (Ly6G+) cells. The “other” cells were gated on B220 to identify B cells. 
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To test for specificity, tdTomatohi cells were gated from live cells (as per Figure 4.2.9; Figure 

4.2.10a) and then subsequently back-gated for microglia based on CD45 and CD11b expression. 

In the 4-day topical and subcutaneous approaches, the presence of non-microglial cells in the 

tdTomato gate was observed (Figure 4.2.10b, circled), indicating a slight reduction in specificity. 

Gating for microglia without first gating for tdTomatohi cells results in the inclusion of many 

tdTomato- cells which are not microglia, and greatly compromises the specificity (Figure 4.2.10c, 

blue). The results indicate that a 3-day topical approach had the highest specificity (equivalent 

to a no-tamoxifen control, where incomplete microglial tagging but no peripheral tagging has 

occurred), followed by the 4-day topical approach and lastly sub-cutaneous (Figure 4.2.10d). 

Nonetheless, use of any tamoxifen administration regime considerably trumped the use of 

conventional CD45/CD11b gating. 

However, a possible limitation to this approach for distinguishing the retinal microglia (CD45int 

CD11b+ tdTomatohi) from the tdTomatohi group is that non-retinal microglial or non-microglial 

cells which possess a similar transcriptional profile (e.g. infiltrating monocytes or brain 

microglia) could be falsely identified as retinal microglia. Therefore, the total counts of the 

tdTomatohi group, from naïve and peak EIU retinas (3-day topical tamoxifen regime), were 

compared and no significant difference was observed confirming a pure retinal microglial 

population (Figure 4.2.11). All subsequent experiments used the 3-day topical tamoxifen regime.
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Figure 4.2.10. The specificity of different tamoxifen administration regimes for microglial tagging in the Cx3cr1CreER:R26-tdTomato mouse 

strain during active inflammation. A) Peak EIU retinas following different tamoxifen administration regimes were prepared for flow cytometry. 

Live, cell singlets were gated based on tdTomatohi expression. B) tdTomatohi cells were gated based on CD45int and CD11b+ expression, and in the 4-day 

and subcutaneous tamoxifen treated groups, non-microglial cells (CD45hi, CD11b-) were present (circled). C) Gating microglia based on CD45 and CD11b 

expression alone results in the inclusion of infiltrating immune cells (tdtomato-, blue) in addition to retinal microglia (tdTomatohi, orange) but exclusion 

of cells not fitting the microglial expression profile (CD45hi/-, red). D) Aggregate data on the percentage specificity for microglia demonstrates that the 

3-day topical route results in high specificity for microglia using tdTomato. The CD45int/CD11b+ group uses the microglial gating strategy (from live cell 

singlets without using tdTomato) shown in panel B for a comparison of the mouse strain to conventional microglial identification strategies (n = 2–5). 

Abbreviations: None – no tamoxifen administered, 3D – three-days topical tamoxifen regime, 4D – four-days topical tamoxifen regime, Sc – 

subcutaneous tamoxifen regime. For statistical analysis, One-way ANOVA with Tukey’s post hoc test was used. ** = p ≤0.01, ns = not significant. 
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Figure 4.2.11. EIU-mediated inflammation does not alter the number of tdTomatohi cells. 

The retinas from naïve and EIU 18h mice were processed for flow cytometry and gated for live 

tdTomatohi singlets. All mice underwent a 3-day topical tamoxifen regime. For statistical analysis, 

the t-test was used. Ns = not significant (n = 6–8). 
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4.3 Discussion 
The Cx3cr1CreERR26-tdTomato mouse line is both highly sensitive and specific for microglia, and 

irrespective of tamoxifen administration routes is a considerable improvement on the 

previously available methods of microglial isolation (whether that be by cell-surface markers 

such as CD45 and CD11b, through use of the CX3CR1GFP/+ mouse line, or other approaches). This 

is especially important as a clear marker to distinguish long-lived, yolk-sac derived microglia 

from infiltrating myeloid cells is critical to our future investigation into the transcriptome of the 

microglia. 

In concordance with previously published work, our results suggest that the Cx3cr1CreER:R26-

tdTomato mouse strain do not possess any gross abnormalities and that the microglial 

morphology (as identified using confocal laser-scanning microscopy) is physiological 

(ramified). The use of appropriate controls (transgenic mice under the same tamoxifen regimen) 

is necessary to mitigate any potential confounding effect of the transgenic line and/or tamoxifen 

treatment; this will be implemented for future experiments as there could be perturbations in 

the mice which are beyond the detection limits of these assays. Further investigation of this 

might be possible through comparison of microglial morphologies (between Cx3cr1CreER:R26-

tdTomato and WT C57BL/6 strains) using Frac-Lac or Sholl analysis on microscopy images. 

Nonetheless, despite this potential caveat other studies that used more sensitive approaches to 

assess functionality within the retina (e.g. ERG, qPCR, and cell death due to a light-induced 

damage model) were unable to detect perturbations due to the presence of CreER and/or 

tamoxifen administration [510]. 

The results showed a high level of tamoxifen-independent (constitutive) recombination in the 

microglia. Whilst this was unexpected, it has been reported in CreER models previously and so 

is certainly not exclusive to this CreER line or investigations – it is suggested that high 

expression of the CreER, dependent on which promoter it is inserted downstream of, can lead 

to tamoxifen-independent (or constitutive) recombination [564, 565]. Constitutive 

recombination is a well-recognised phenomenon within the field of receptor biology [578], and 

in a simple two-state (active or inactive; on or off) model of receptors an equilibrium between 

these two states (with the position, in the absence of an agonist, being far to the inactivated 

side) is present. This means that it is entirely possible for a receptor to be in an active 

conformation even in the absence of a ligand. Therefore, the higher the expression of CreER 

(but also the longer the time the expression persists, or the receptor lasts before recycling, for) 

the greater probability of a tamoxifen-independent recombination event occurring. As 
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microglia highly express Cx3cr1, this explains why we observe this phenomenon. Nonetheless, 

this phenomenon is of no major concern with regards to microglial tagging as full tagging occurs 

after a tamoxifen regime. A more pertinent question is whether chronic inflammation (and 

possible engraftment of monocytes/bone marrow progenitors) leads to sustained expression of 

Cx3cr1 in and survival of other cells (whether this be non-yolk sac-derived microglia – or 

microglia-like cells – or in other immune cell populations) and if this may lower the specificity 

of the Cx3cr1CreER:R26-tdTomato mouse line for microglia. Based on the current observations, 

this does not appear to be the case for the EIU model but remains to be seen for the EAU and 

other disease models and necessitates testing on a per-model basis. It also raises the question 

of what exactly a microglia is, and whether stratification based upon their origin, or clarification 

of their origin (when isolated for downstream assays) may be necessary for future work so that 

studies can be better compared to one another, particularly if conflicting results are obtained 

due to different isolation strategies. 

As indicated by the imaging, the tdTomato fluorescence intensity does not stabilise until 4 

weeks post-tamoxifen in naïve microglia. This suggests that even if non-microglial cells were to 

undergo a constitutive recombination event, they would not necessarily have the tdTomato 

fluorescence intensity equivalent to a microglial cell unless they survived/persisted for lengthy 

periods of time. This assumes expression of the CAG promoter is not greatly altered by 

inflammation (which we have not tested). The only way to conclusively confirm this hypothesis 

would be using a high-throughput method (such as mRNA-Seq, proteomics, etc) with single-

cell resolution, and even this carries the underlying assumption that the yolk-sac derived 

microglia remain different to the infiltrating cells to enable unsupervised delineation of them 

using a dimension-reducing algorithm. 

The 3-day topical regime is fully sensitive and highly specific for microglia during EIU. Whilst 

other approaches also fully tagged the microglia (e.g. 4-day topical and subcutaneous regimes), 

they are associated with a reduced specificity in the context of immune cell infiltration. The 

non-microglial CD45+ tdTomatohi cells identified in the eye were negative for the full panel of 

markers (which covered all the major types of immune cell). They may represent a population 

of innate lymphoid cells (ILCs). ILCs do not express the typical cell-surface markers of other 

lymphocytes (such as B220 or CD3), but some ILC subtypes are known to express high amounts 

of Cx3cr1 and can also be long-lived [579-582]. This may explain how they could be tagged, 

survive more than 4 weeks, and subsequently be observed within the retina during EIU after a 

course of subcutaneous tamoxifen. It is unclear whether the tagging in a 4-day topical regime is 

due to systemic reabsorption of tamoxifen to a concentration above a threshold to activate 
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recombination in a smaller fraction of these cells, or if activation is happening locally to the site 

of administration. 

Whilst the specificity data is calculated based upon back-gating of microglia using CD45 and 

CD11b expression (and it is possible that non-retinal microglial or non-microglial cells could 

have similar levels of expression of these markers and be incorrectly classified), we are confident 

that the 3-day topical regime in this Cre line is specific because the total numbers of tdTomatohi 

cells did not vary from a naïve organism through to the peak cellular infiltrate phase of EIU; it 

is well-known that microglia do not egress from the retina, but can migrate to different retinal 

layers or the subretinal space (which would still allow for isolation using our approach), upon 

inflammation [341]. This data also supports recent studies of microglia that highlight the need 

to confirm the specificity for microglia in their disease model and employ techniques with 

single-cell resolution to resolve the non-microglial cell populations [341, 583]. 

Lastly, this series of experiments have also enabled us to explore the possibility of implementing 

the 3Rs in our work (principles of animal welfare [94]), specifically refinement. We showed that 

the optimal tamoxifen administration regime is both beneficial to the sensitivity/specificity for 

microglia but also for the animal’s welfare via reduced confounders of handling and procedures; 

a topical regime is a sub-threshold technique resulting in only the inherent stress that handling 

brings as opposed to the mild severity that a sub-cutaneous injection would bring. Furthermore, 

we showed it was possible to shorten the originally published regime to 3 days. 

In summary, we show that a 3-day topical tamoxifen regime results in complete and specific 

tagging of microglia in the Cx3cr1CreER:R26-tdTomato mouse line before, during, and after EIU 

that permits valid investigation of them using fluorescence-based detection and isolation 

approaches such as the mRNA-Seq pipeline (using FACS) that was optimised and described in 

Chapter III. 
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Chapter V: Characterising the Temporal 
Kinetics of the Microglial Transcriptome in EIU 
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5.1 Introduction 
Chapter V: Microglia and EIU  

EIU is a self-resolving model of acute TLR4-mediated ocular inflammation, that following a 

single inflammatory insult generates acute immune cell infiltration [52, 584]. It typically has the 

kinetics of an acute short-lived monophasic reaction. 

Microglial activation by LPS has been characterised before, with co-expressional meta-analysis 

identifying a core set of microglial “LPS” genes in addition to generic activation markers of 

microglia in various pathological states [158]. A common microglial transcriptional signature 

has been described by several groups [158, 308, 346-348]. Furthermore, the microglial 

transcriptional signature is well-documented to be disrupted during an activated state – with 

many homeostatic genes downregulated including P2ry12, Siglech, Cx3cr1, and Tmem119 – 

whether that be due to ageing, neurodegeneration, acute responses (such as to LPS), and many 

others [158, 341, 342, 352, 353]. Depending on the context and kinetics, microglia can promote 

or regulate inflammation [390, 585]. 

Developing our understanding further, both inherent and acquired heterogeneity (i.e. during a 

response) are being observed within microglial populations. Microglia are known to exist in two 

distinct niches within the retina and exhibit differential regulation because of inherent 

microglial heterogeneity [341]. Microglial heterogeneity has been observed in LPS responses 

(brain microglia following a systemic dose), AD, and ocular light-damage models in vivo [340-

342, 344, 586]. C5ar1 was identified as a DEG between microglial subtypes during an LPS 

response [342], making it a candidate marker for differentiating microglial subtypes; other 

reports showed that C5AR1 is required for microglial polarisation to a pro-inflammatory state 

with deficiency of C5AR1 signalling resulting in reduced activation/induction of inflammatory 

genes and improvements in outcomes from an AD model [366]. 

Furthermore, it is now recognised that other similar cell types (i.e. macrophages) exhibit a 

highly-plastic transcriptome during an LPS response [587]. The transcriptional kinetics have not 

been investigated in microglia nor the microglial behaviour/activity post-“resolution”, and the 

degree to which homeostatic restoration is achieved or if they remain permanently altered 

(whether this be more pro- or anti-inflammatory) after an insult. 

Therefore, the aims of this chapter were to utilise the knowledge from the previous chapters to 

characterise the plasticity of the microglial transcriptome over time during an LPS response but 

also to see if the homeostatic state was restored after resolution. 
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5.2 Results 

5.2.1 The Kinetics of EIU in the Cx3cr1CreER:R26-tdTomato Mouse 
Line 

For investigation of EIU, the kinetics needed to be characterised to observe if they were 

consistent with reports in WT mice so that appropriate timepoints could be selected for 

microglial isolation and sequencing [97]. To this end, imaging was performed on mice to obtain 

a time-course which confirmed the kinetics as typical, with peak cellular infiltrate at 18 hours 

post-injection and resolution by 2 weeks (Figure 5.2.1). Clinical assessment demonstrated few 

changes in the microglia at 4 hours post-injection, although a slight widening of vessels was 

apparent. By 18 hours, the uniform distribution of microglia was altered, cell bodies possibly 

appeared larger suggesting retraction of ramified processes to form a more amoeboid 

morphology, and vessels were larger still. Cognisant that the Micron IV imaging platform does 

not possess the high resolution required to reliably detect changes to the microglial ramified 

processes, retinal flatmounts were prepared for acquisition by confocal laser-scanning 

microscopy to visualise these in high-resolution (Figure 5.2.2). Microglia were observed to have 

a ramified-to-amoeboid transition by 4 hours which persisted through to 18 hours but resolved 

to a ramified state by 2 weeks. With evidence of microglial perturbation at 4 hours post-

injection, we sought to then characterise the microglial transcriptome during the early stages 

of EIU, peak cellular infiltrate, and after resolution. 
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Figure 5.2.1. The kinetics of EIU in the Cx3cr1CreER:R26-tdTomato mouse strain. A) OCT images showing disease-course in a single mouse 

demonstrates the presence of infiltrating cells in the vitreous body at 18 hours post-injection with resolution by 2 weeks. B) Deconvolved fluorescent 

fundal images acquired simultaneously show few changes in the distribution of microglial cells at 4 hours post-injection, but clear changes in their 

distribution and brightness (in addition to vessel dilation) at 18 hours which have resolved by 2 weeks. 
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Figure 5.2.2. Confocal laser-scanning microscopy shows changes in microglial morphology over time in EIU. High-resolution images reveal 

retraction of ramified processes (indicator of activation) between a naïve organism and EIU 4 hours, with resolution after 18 hours but by 2 weeks. Scale 

bars = 30 µm. 
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5.2.2 mRNA-Seq 

Initially, a pilot study to include the naïve (no injection), 18 hours EIU, and 2 weeks EIU groups 

in addition to the contralateral (uninjected) eyes was performed so that a power analysis (with 

an α of 0.1 and β of 0.8; standard parameters) could be completed to further inform the 

subsequent experiments and the required numbers per groups. The power analysis indicated 

that to detect changes in 50% of genes with a fold-change of 2, 6.92 samples were required (50th 

percentile of a given fold-change is the most-commonly used metric according to the PGS 

software documentation). This agreed with published reports on power analysis that suggested 

6 biological replicates were required for adequate power when detecting DEGs with a fold-

change criterion of ≥±2 (at a depth of 10 million reads per sample) [498]. Furthermore, 

unanticipated changes in gene expression between the contralateral eyes and naïve controls 

indicated that true naïve controls were more appropriate than using the contralateral eyes. In 

agreement with our findings, a single report in the literature also identified changes to microglia 

in eyes contralateral to a procedure inducing glaucoma, suggesting a mechanism of microglial 

or general communication between eyes [547]. 

Following the pilot study, a new study was initiated that included the 4-hour EIU group and 

utilised naïve eyes as controls. It was split into two independent blocked experiments with the 

aim of at least 6 biological replicates per group; cDNA was generated from samples with a 93% 

success rate, resulting in 5–10 biological replicates per group from these experiments. The 

analysis identified 1,069 unique DEGs (613 at 4 hours, 537 at 18 hours, and 0 at two weeks; all 

compared to naïve controls) visualised by hierarchical clustering that highlights a highly-plastic 

transcriptome with most up-regulated genes being mutually exclusive at different timepoints 

but a common/core set of downregulated genes (Figure 5.2.3). Boxes highlight clusters of genes 

that were normal at 4 hours but up-regulated at 18 hours (yellow), those which were up-

regulated at 4 hours but not 18 hours (brown), those which were up-regulated at both time-

points (green), those which were down-regulated at 4 hours but recovered to pre-EIU levels by 

18 hours (light blue), and those which were down-regulated at both 4- and 18 hours (black). 

Restoration back to a homeostatic signal was observed by 2 weeks because unsupervised 

clustering failed to discern between samples in the naïve and 2-week post-injection 

experimental groups.
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Figure 5.2.3. mRNA-Sequencing of microglia during and after EIU reveals transcriptional alterations that fully resolve. Hierarchical 

clustering of DEGs shows differences in the kinetics of the microglial transcriptome during EIU. Boxes highlight clusters of genes with different kinetics, 

and a restoration back to a homeostatic signal by 2 weeks (n = 5–10).
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Despite all of the previous QC checks, it was nonetheless important to compare this dataset to 

the published literature to observe whether this data was concordant or not. Therefore, gene 

lists generated from a co-expression meta-analysis and other consensus lists of microglial 

homeostatic genes were checked against gene expression values from this dataset. Gene lists 

included those representing microglial homeostatic genes (e.g. G protein-coupled receptor 34 

[Gpr34], v-maf musculoaponeurotic fibrosarcoma oncogene family protein B [avian] [Mafb]), 

microglial activation (generic) genes (e.g. C-X-C motif chemokine 10 [Cxcl10]), microglial LPS 

activation genes (e.g. Map3k8), and “primed microglia” response genes (e.g. axyl receptor 

tyrosine kinase [Axl]) [158, 342, 588]. On this basis, downregulation of homeostatic genes, 

upregulation of activation genes, and no expression of primed genes were expected. For 

clarification, the “primed microglia” response genes were observed and characterised in 

neurodegenerative conditions but not in acute activation. The expected changes were observed 

within the dataset; a representative selection of RPKM scatterplots, highlighting this agreement, 

is displayed in Figure 5.2.4. 

Consensus on these select genes was encouraging but it was also important to compare the data 

at a broader level using pathway analysis. This was performed using the GO terms, KEGG 

pathways, and IPA canonical pathways. Enriched canonical pathways when naïve and 4 hours 

EIU groups were compared included: TREM1 Signaling, iNOS Signaling, Th17 Activation 

Pathway, TNFR2 Signaling; for the naïve and 18 hours comparison, enriched pathways included: 

EIF2 Signaling, Interferon Signaling, Gαq Signaling (Figure 5.2.5). No enriched pathways were 

identified between the naïve and 2 weeks EIU groups because it is not possible to perform 

pathway analysis without DEGs. To better represent the time dimension of the dataset a 

heatmap of the significantly-enriched canonical pathways over time was created, highlighting 

how both the p value and z-score (directionality score) change across the timepoints with 

resolution/homeostatic restoration to baseline by 2 weeks (Figure 5.2.6). LPS was found to be a 

“master regulator” by IPA as expected. 

Enriched GO terms (enrichment score) when naïve and 4 hours EIU groups were compared 

included: immune system process (60.9), regulation of cytokine production (56.0), and response 

to stress (52.7). Similarly, the enriched KEGG pathways included: NF-Kappa B signaling pathway 

(34.1), toll-like receptor signaling pathway (31.7), and TNF signaling pathway (25.3). For the 

naïve and 18 hours EIU comparison GO terms included: cytosolic part (89.7), extracellular 

organelle (70.7), translation (65.8), and immune system process (29.8); enriched KEGG 

pathways included: ribosome (58.8) and proteasome (42.9).
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Figure 5.2.4. The transcriptome of microglia during EIU identifies expected changes in previously described microglial genes. Scatterplots 

show expression levels of a homeostatic gene (Gpr34), a homeostatic transcription factor (Mafb), a generic microglial activation gene (Cxcl10), an acute 

LPS-response gene (Map3k8), and “primed microglia” gene (Axl). The observed changes in expression (or absence of) are consistent with previously 

published reports (n = 5–10).

2100 150 2400 250 20 
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Figure 5.2.5. IPA software identifies canonical pathways that are 

significantly altered in microglia during EIU. A) Significantly altered 

pathways at 4 hours post-injection and B) 18 hours post-injection are shown. 

A p value threshold of ≤0.05 is indicated by the horizontal line. The shading 

intensity of the bars indicates how strongly positive (orange) or negative 

(blue) the z-score (directionality score) was for each pathway. There were no 

significantly-enriched pathways at 2 weeks post-injection. 
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Figure 5.2.6. A heatmap shows changes in both z-score and p value over time for 

significantly-enriched IPA canonical pathways. The pathways are arranged in ascending 

order based on their overall (summary) p value with colour-coding to indicate the magnitude of 

change in z-score (red representing an increase in pathway activity, and blue representing a 

decrease in pathway activity). All pathways resolved to the equivalent of a naïve state by 2 weeks 

post-injection.
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5.2.3 Orthogonal Validation of Selected Markers 

Identification of recognised DEGs and canonical pathways reported in the literature was 

encouraging, but orthogonal validation of the dataset (to include at the protein-level) was 

required as the transcriptome and proteome do not necessarily correlate. A full proteomics 

assessment was not feasible in the current study as very limited numbers of specialised pipelines 

can handle low cell input (<10,000) and require custom-made reagents and/or equipment (e.g. 

microfabrication of glass chips using photolithography) [589, 590]; utilising one of these 

pipelines would have considerably increased the cost of experiments beyond the current budget 

in addition to requiring further extensive optimisation. Whole retinal protein-level analysis 

could identify differentially-regulated proteins but would be unable to distinguish the 

individual contribution of distinct cell types and validate them as altered in microglia [591]. 

Therefore, a limited number of key markers would need to be selected for validation testing. 

Flow cytometry was chosen as the technique of protein-level validation as it has single-cell 

resolution and would enable the assessment of potential microglial heterogeneity that is 

becoming increasingly recognised. Nonetheless, a hypothetical discrepancy between the 

mRNA-Seq data and flow cytometric data could question the accuracy and validity of the 

sequencing, and therefore direct validation of the mRNA-Seq on the same material used to 

generate the libraries was required to confirm if sequencing results were inaccurate or a genuine 

discrepancy between gene-level and protein-level was present. For this qPCR, using highly 

sensitive and specific TaqMan probes, was utilised. As flow cytometry can be performed on 

samples with limited numbers of markers in parallel and low amounts of cDNA remained from 

the original samples for qPCR (limiting the number of runs that could be performed), a selection 

process for determining a small number of key markers for validation was required. 

Furthermore, not all DEGs identified had commercially available antibodies suitable for flow 

cytometric analysis or fluorophore conjugations that were compatible in the same panel. 

Markers were initially screened by systematic assessment based on magnitude of the relative 

change in expression, membrane localisation, and the availability of testing reagents. The final 

markers were selected based on novelty, lack of prior validation at the protein level, whether 

they were a previously suggested microglial marker, and/or were in contrast to or appeared 

crucial in light of other reports. A total of 10 markers were selected (from a total of 44 suitable 

candidates), to include one identified from the pilot study (Figure 5.2.7). 
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Figure 5.2.7. A flow-chart demonstrating the selection process of markers for orthogonal 

validation. One thousand and sixty-nine DEGs identified (possible targets) were screened for 

membrane localisation (for simple flow cytometric validation), large RPKM difference, and 

availability of conjugated antibodies. Targets were selected based on whether they were novel with 

respect to describing microglial activation (Milr1) or without validation beyond the transcript level 

(Bst2, Fas, Lair1, Slamf1) [592-596], whether they were a previously specific or enriched microglial 

marker (P2ry12, Siglech) [308, 348], whether our data was in contrast to previous reports (Mertk) 

[597], or appeared crucial in light of other reports (C5ar1) [342]. The other marker (Cd44) was 

selected for testing based on results of a pilot study and its previous description as a possible 

microglial marker [558]. This diagram was generated using the PRISMA word document template 

[598]. Abbreviations: DEG – differentially-expressed gene, MAG – membrane-associated gene, 

MAP – membrane-associated protein, FC – flow cytometry. 
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In line with published reports and an activated state, pro-inflammatory markers (Slamf1, C5ar1, 

Fas, and Cd44) were all upregulated at 4 hours following LPS challenge. In addition, a novel 

microglial associated transcript, Milr1 (a negative regulator of mast cell activation) and Bst2 (a 

previously validated marker of late activation) were elevated by 18 hours. In contrast, 

constitutively expressed microglial genes, including homeostatic genes, (e.g. P2ry12, Siglech, 

Mertk, and Lair1) were downregulated at the early timepoint. RPKM values for the markers are 

shown in scatterplots within Figure 5.2.8. 

In general, qPCR analysis validated the transcript-level changes observed at each timepoint, 

confirming resolution and return to baseline levels by 2 weeks (Figure 5.2.9). However, markers 

such as C5ar1 and Siglech did not reach statistical significance despite following the same trend 

(with regards to up- or downregulation). 
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Figure 5.2.8. Changes in expression of markers selected for orthogonal validation, as determined by mRNA-Seq of microglia, during EIU. 

RPKM values show how expression of selected markers change during the course of EIU (n = 5–10). *** = p ≤0.001, **** = p ≤0.0001 (comparisons to 

naïve). For statistical analysis, ANOVA (with FDR step-up correction) was performed on the full mRNA-Seq dataset.

*** *** *** 

**** 

**** **** 
**** **** 

**** 

**** 

**** 
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Figure 5.2.9. qPCR validates microglial transcriptomic changes, identified by mRNA-Seq, at the gene-level. Remaining cDNA from 600 

microglia used for bulk mRNA-Seq was used for qPCR validation with Taqman probes. Fold-changes (FC) relative to the naïve baseline are shown for 

each of the 10 selected markers, demonstrating changes in expression during the course of EIU. For statistical analysis, One-way ANOVA with Tukey’s 

post-hoc test was used. * = p≤0.05, **** = p≤0.0001, ns = not significant (n = 3).
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With the transcripts validated at the gene-level, validation at the protein level was then required 

by utilising flow cytometric assessment. Increased expression of SLAMF1, MILR1, C5AR1, CD44, 

BST2, and LAIR1 was observed at 18 hours post-injection (Figure 5.2.10). Furthermore, 

differences in the proportion of marker-positive cells were evident, with C5AR1, CD44, and BST2 

upregulated in the majority of microglia (>50%), in contrast to the other markers which were 

elevated in a smaller fraction (<20%) of cells. Whilst P2RY12 was highly expressed in naïve 

microglia (>80%), no change in expression in response to LPS was observed. Similarly, low-level 

SIGLECH, MERTK, and FAS expression in naïve populations remained unchanged and 

restricted to a small percentage of the microglia (<10%). The upregulation of CD44 was also 

confirmed in retinal flatmounts at 18 hours post-injection using fluorescence microscopy 

(Figure 5.2.11). 

Expression of P2RY12 and SIGLECH was compared between microglia and CD45+ cells, as both 

of the former are previously suggested markers that differentiate microglial populations from 

other immune cells [308, 348]. Flow cytometric analysis clearly demonstrates that both markers 

are equally expressed on some CD45+ infiltrating cells and microglia, indicating these markers 

exhibit poor specificity for retinal microglia during the acute response (Figure 5.2.12). 
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Figure 5.2.10. Changes in protein expression of selected markers in microglia, as determined using flow cytometry, over a time-course of 

EIU. A, C) A representative flow cytometric histogram is shown for the 10 selected markers B, D) in-line vertically with matching scatterplots of the 

aggregate flow cytometry data summarising the percentage of microglia positive for each marker at each timepoint. Gates were drawn with the 

assistance of fluorescence minus one (FMO) controls (light blue). For statistical analysis, One-way ANOVA with Tukey’s post-hoc test was used. ** = 

p ≤0.01, **** = p ≤0.0001, ns = not significant (n = 8).
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Figure 5.2.11. Confocal-laser scanning microscopy highlights upregulation of CD44 in 

microglia at peak EIU, compared to naïve controls. Separate channel images and a merge 

highlight the upregulation of CD44 and colocalisation with the tdTomato signals from microglia. 

Scale bars = 30 µm. 
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Figure 5.2.12. Flow cytometric analysis demonstrates P2RY12 and SIGLECH expression on 

CD45+ tdTomato- non-microglial immune cells (blue) and CD45lo tdTomato+ microglia 

(red) at 18 hours EIU. The gating strategy to generate these plots is as described previously (cells, 

singlets, live cells, CD45+). 
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5.2.4 Stratifying Microglia using C5AR1 Identifies Both Generalised 
and Restricted Microglial Responses 

Recent reports show that C5ar1 was one of several markers that was enriched in a subset of brain 

microglia (identified by sc-mRNA-Seq data) responding to systemic LPS challenge in vivo [342]. 

Furthermore, mounting evidence from numerous reports identify heterogeneity in the 

microglial response during other pathological states [340, 341, 344, 586]. We therefore examined 

whether stratifying microglia based on C5AR1 expression would delineate differences in the 

markers selected for validation, highlighting specificity to this subset of C5AR1-expressing cells 

or generalised expression across the whole population of microglia. 

Microglia were stratified into three main groups: C5AR1neg, C5AR1lo, and C5AR1hi. The C5AR1-

expressing microglia were sub-stratified based on whether the C5AR1 expression was equivalent 

to microglia observed within a naïve mouse (C5AR1lo) or whether expression was elevated 

(C5AR1hi; Figure 5.2.13a). C5AR1hi expression correlated to the extent of immune cell (CD45+ 

tdTomato-) infiltrate within the retinas and represents a potential microglial marker for disease 

scoring (Figure 5.2.13b). 

Flow cytometric analysis compared expression of the other surface markers in C5AR1neg and 

C5AR1hi subsets, as two distinctive populations, in naïve and peak EIU retinas. Delineating the 

two populations on this basis demonstrates elevation of several markers (SLAMF1, FAS, MILR1, 

and LAIR1) which are restricted to the C5AR1-expressing microglia, including a marker that 

previously did not achieve statistical significance (FAS). In contrast, CD44 and BST2 were 

enriched within the C5AR1-expressing population but also expressed by a large proportion of 

the C5AR1neg microglia, thus representing more generalised markers of microglial perturbation 

(Figure 5.2.14).
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Figure 5.2.13. Microglia can be stratified based on C5AR1 expression and this correlates with the amount of immune cell infiltrate. A) A 

histogram shows microglial C5AR1 expression in a fluorescence minus one (FMO) control (blue), naïve retina (purple), and at 18 hours EIU (orange). 

Microglia can be subsequently classified on whether they are C5AR1-, C5AR1lo (equivalent to positive populations in the naïve retina), or C5AR1hi 

(expression above the baseline level observed in a naïve retina). B) Immune cell infiltrate correlates with C5AR1hi expression in microglial populations 

(p = 0.0298). For statistical analysis, Pearson’s test was used.
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Figure 5.2.14. Stratifying microglia using C5AR1 expression identifies both exclusive and generalised responses to LPS in vivo. A) Stratifying 

microglia into C5AR1- and C5AR1hi identifies changes in cell-surface protein expression that are exclusive to C5AR1-expressing microglia, B) but also 

changes in proteins which are generalised microglial responses (not exclusive to, but somewhat enriched in, the C5AR1-expressing microglia). For 

statistical analysis, One-way ANOVA with Tukey’s post-hoc test was used. **** = p ≤0.0001, ns = not significant.
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5.3 Discussion 
Having confirmed the EIU kinetics as synonymous to prior work, it was then possible to 

investigate changes to the microglia using a variety of techniques. Confocal microscopy 

demonstrated an amoeboid-to-ramified transition in morphology which broadly corresponds 

(but is not exclusive) to an activated state. This then enabled investigation of the microglial 

transcriptome at different stages of their activation with LPS. 

Single eye mRNA-Seq revealed inflammation-responsive transcriptional changes in retinal 

microglia following LPS simulation which resolve within two weeks, confirming the potential 

for these cells to reset their homeostatic state. Hierarchical clustering of the 1,069 DEGs 

highlights a consensus group of downregulated genes at both 4- and 18 hours EIU (black box) 

but reveals a highly plastic transcriptome of upregulated genes (brown and yellow boxes, Figure 

5.3). It calls into question the validity of curated lists of “microglia activation” genes as their 

expression may be time dependent in addition to stimulus dependent. This highlights a need 

for further stratification of gene groups based on the kinetics of microglial activation in addition 

to existing stratification measures (such as exact model/stimulus, or “acute/primed microglia” 

groups as determined by co-expressional meta-analyses). This is further evidenced by multiple 

examples of altered pathways at only 4- or 18 hours EIU, but not at both timepoints. 

Nonetheless, our data was also in agreement with curated lists for transcript-level data, whether 

these be microglial-specific lists (as published by other groups) or generalised pathways relating 

to changes in immune function or signalling (GO terms, KEGG pathways, and IPA canonical 

pathways). 

As expected, due to the generally promiscuous role of many proteins (or even isoforms), some 

significant pathways were identified which do not necessarily translate perfectly into the 

microglial inflammatory context of our dataset (e.g. dendritic cell maturation, FAT10 cancer 

signaling, and osteoarthritis). However, most of these involve changes in immune cell function, 

which is what our data shows, and highlights why pathway analysis should always be interpreted 

with caution as a broad method of interrogating the data. In support of this, alterations to the 

TREM1 signaling pathway were observed, and published reports already indicate that microglia 

signal via the TREM2 pathway [599-601]; it is likely that overlap between the TREM pathways 

allowed for identification of enrichment of the TREM1 pathway (whereas no such pathway for 

TREM2 currently exists) – it is one example highlighting one of the most pertinent challenges 

surrounding pathway analysis. 
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Orthogonal validation by qPCR of the 10 markers, selected as they represent key and novel 

transcripts, confirmed the mRNA-Seq findings. However, altered expression of some of these 

membrane-associated markers did not translate to changes at the protein level as determined 

by flow cytometry. In part, this may reflect the presence of intracellular protein that our flow 

cytometric approach did not detect or represents genuine discrepancies between the 

transcriptome and proteome as these are not always in direct proportion [602-604]. Our results 

emphasise caution in reading out mRNA-Seq results alone as a true representation of the cell’s 

activity and highlight the need for orthogonal validation. Despite this, the single eye mRNA-

Seq approach identified key and novel transcriptional changes which informed subsequent 

testing on a smaller number of markers via low-throughput approaches. Ideally and for future 

work, use of integrated ‘omics’ (epigenetics, transcript, protein, and other data [e.g. 

phosphoproteomics]) would enable investigation of multiple different levels of cellular state, 

and for cross-comparison to identify key overlapping pathways or discrepancies where the use 

of low-throughput orthogonal approaches for further investigation could be warranted. 

Cutting-edge ‘omics’ techniques can currently couple two or three different assays in tandem, 

with some techniques incorporating single-cell resolution for the most powerful analysis [605-

609]. Single-cell resolution with one or several of these ‘omic’ approaches would greatly enhance 

the understanding of cellular heterogeneity within the tissue. Despite this, ‘omics’ approaches 

currently have limited capacity to decipher information in the time dimension, and as existing 

assays are terminal it is not possible to follow the same cell or tissue across time with these 

techniques. Nonetheless, mRNA-Seq currently remains the most widely used high-throughput 

and sensitive approach used to decipher molecular changes occurring in cells and enables the 

sampling of vast amounts of information about the cellular phenotype. 

Irrespective of when the transcript was perturbed, no significant changes were identified at the 

protein-level by 4 hours EIU. For example, multiple markers (SLAMF1, C5AR1, FAS, CD44, 

LAIR1) were changed at the transcript level by 4 hours EIU, but no change was observed using 

flow cytometry until 18 hours. This is likely explained by the delay between transcript generation 

and translation (and subsequent folding and transport to the plasma membrane). 

Conflicting with previous reports investigating LPS-responses and EAE, we did not find 

significant down-regulation of P2RY12 upon microglial activation [342, 352]. In EAE, the 

microglia exhibit a chronic inflammatory state different to the acute LPS response, whilst the 

report investigating the LPS response used a systemic dose 400 times greater than our own local 

dose and had an endpoint 24 hours post-injection which could explain the discrepancy. We 

suggest microglial loss of P2RY12 as context-dependent, for example when subject to a 
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significant immune stimulus or persistent inflammation – it could be utilised as one of several 

markers to classify the severity/persistence of inflammation. P2RY12 has been classified as 

important in microglial motility and response, so perhaps its downregulation is part of a 

negative feedback mechanism to help inhibit excess and/or persistent inflammation [610]. 

Our report conflicted with previous evidence that suggested MERTK was upregulated in 

microglia following LPS stimulation [597]. This study was performed in the BV-2 microglial cell 

line; it is generally well-recognised that immortalised cell lines are not necessarily 

representative of an in vivo environment because: 1) they have been modified as part of the 

immortalisation process and 2) they grow in culture conditions which are very different to an 

organ where multiple cells and the extracellular matrix (ECM) interact in a dynamic fashion as 

part of a complex microenvironment. Other transcriptomic studies have shown that freshly-

isolated microglia and primary cultures are more similar to one another and that the BV-2 cell 

line, whilst useful, is not completely synonymous in responses to microglia or microglial 

primary cultures [611]; most strikingly, there is loss of TGF-β secretion in the BV-2 cells which 

has previously been characterised as critical to the microglial programme [308]. It should also 

be noted that the study involving BV-2 cultured the cells for 24 hours, as opposed to our 

timepoints of 4- and 18 hours, that BV-2 cells have been characterised as predisposed towards 

more activation generally, and that these factors may also explain the discrepancy [597, 611]. In 

macrophages, expression of MERTK was required for resolution of inflammation at 72 hours in 

a peritonitis model in vivo. MERTK expression was also observed in vivo in microglia but only 

by 3 days post-ischaemia; its blockade resulted in better clinical outcomes [612, 613]. Lastly, 

missense mutations in MERTK can cause a retinal degenerative disease called retinitis 

pigmentosa [614]; this may link to aberrant microglial regulation. Other recent work suggests 

MERTK is important for efferocytosis of dying cells and promoting immune tolerance. Blockade 

of MERTK results in STING activation (a pathway associated with autoinflammation) and IFNβ 

secretion via a purine receptor-dependent process, suggesting an important role in negative 

regulation of an immune response [615]. Overall, this suggests that downregulation of MERTK 

enables greater microglial responses, and that its upregulation may occur at a later stage of 

inflammation (e.g. 3 days EIU) to assist in resolution. Short-term loss of MERTK has been shown 

to enhance neurogenesis [616], although it is evident (as exemplified by the missense mutations) 

that long-term loss is detrimental as MERTK represents an immune checkpoint. 

The data shows that three previously suggested markers (P2RY12, CD44, and SIGLECH) exhibit 

poor specificity for microglia. The studies suggesting P2RY12 as microglial-specific did so based 

on bulk mRNA-Seq data, where different proportions of immune cells positive for P2RY12 would 
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result in differential RPKM (or other normalised count) values. As only a proportion (~30%) of 

various immune cell types were observed as P2ry12+, compared to a large fraction (~80%) of 

microglia, this explains why it was previously identified and suggested as a microglia marker; 

transcript-level work will always identify it as an enriched marker, highlighting why protein-

level validation is essential before it is confirmed as a specific marker. Furthermore, it has 

already been reported that loss of P2RY12 on the microglia can occur in some contexts, making 

it more suitable as a type of activation marker (severe and/or persistent inflammation), even if 

this loss was not observed in our study [342, 352]. 

For CD44, the poor specificity is because the microglia do not retain a CD44lo signature, 

meaning that CD44lo cells in the retina observed during inflammation (that were hypothesised 

as microglia in another report [558]) are infiltrating immune cells and not microglia. 

In the case of SIGLECH, we did not find evidence of expression at the cell surface in more than 

a small proportion of microglia. This could be a reflection of possible intracellular protein not 

measured by our assay, or poor correlation between transcript and protein in this example. It 

could also represent poor binding by the antibody; for example, if the microglia express a 

different isoform to the receptor it was generated against or our positive control to test the 

antibody (spleen preparations containing SIGLECH+ dendritic cells). 

Nonetheless, with the Cx3cr1CreER:R26-tdTomato line, it remains possible to validate potential 

markers assuming the line retains specificity for microglia across disease contexts; the hunt 

continues. 

Flow cytometric analysis confirmed and validated some of the transcriptional changes but also 

found that the differences were enhanced, and an additional marker (FAS) was identified as 

significantly different, when microglia were first stratified based on their C5AR1 expression as 

suggested via a transcripts-led report [342]. The percentage of C5AR1hi-expressing microglia also 

had a moderate positive correlation with the number of infiltrating immune cells, representing 

a potential score for disease – with greater microglial activation comes greater inflammation 

and immune cell infiltration. Conversely, when microglia are depleted inflammation within the 

retina is considerably reduced if not completely prevented [390]. C5AR1 is a G protein-coupled 

receptor (GPCR) for C5a (generated as part of the complement cascade), that enables 

chemotaxis of myeloid cells towards an area of complement activation via one of the three 

pathways [617, 618]. C5AR1 expression is also controversial, with models of spinal cord injury 

showing an absence of C5AR1 resulting in clinical improvements in the early stages, but an 

ultimately worsened outcome later-on [619]; in contrast, C5AR1 loss resulted in clinical 
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improvements in AD models, showing how its expression and the role of microglia (and 

neuroinflammation) in different pathologies can be potentially beneficial, harmful, or both 

depending on context and timing [366]. 

Nonetheless, further work could be performed to validate changes in expression in addition to 

determining the cellular localisation of different proteins (using immunohistochemistry). 

Quantification of fluorescence (in addition to sampling of a greater volume and performing 

statistical analysis) would enhance the validity and robustness of the microscopy data. 

Furthermore, morphological analysis of microglia across EIU would provide insight; 

unfortunately, the tdTomato fluorescence was discontinuous within the microglia and this 

meant that pre-processing required for morphological analyses such as frac-lac and sholl 

analysis (e.g. skeletonisation) was unsuccessful. Without an alternative marker (such as IBA-1) 

it would not be possible to perform this type of analysis in a robust fashion. 

With C5AR1 stratification, markers which were exclusive to the C5AR1-expressing microglia 

were identified (SLAMF1, FAS, MILR1, and LAIR1) in addition to generalised markers which were 

slightly enriched but certainly not exclusive (CD44 and BST2). Other reports suggest that C5AR1 

is needed for microglial polarisation to pro-inflammatory states, with its knock-out improving 

outcomes in an AD model [366]. Polymorphisms in complement components also associate 

with AMD in addition to evidence for complement association with drusen, potentially 

implicating microglia as key players in neuronal loss when homeostasis is perturbed [620]. 

Furthermore, microglial heterogeneity has already been reported in AD disease, light-damage 

models, EAE, and in response to LPS stimulation in vivo [340-342, 344, 586]. Understanding 

microglial heterogeneity, permitting identification of changes which are exclusive to 

subpopulations (which are yet to be fully realised), is critical for developing targeted therapies. 

Further work to understand the differences between C5AR1+ and C5AR1- microglia could 

potentially uncover therapeutic targets but also assist in understanding the mechanisms of 

microglial changes; ergo, whether they are responding to a stimulus or happen to be in the 

microenvironment. 

Expressed by C5AR1+ microglia, the protein SLAMF1 plays a role in activation of lymphocytes. 

In contrast, MILR1 and LAIR1 act as inhibitory receptors for activation. This implies 

simultaneous activation alongside accumulating inhibitory factors which could act as part of a 

negative feedback loop to prevent persistent inflammation. Work in natural killer (NK) cells has 

shown that a lack of inhibitory receptors leads to hyporesponsiveness (to activating factors) as 

a possible mechanism to present or reduce auto-aggression/possible autoimmunity as these 
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cells lack an “off” switch [621]. Furthermore, inhibitory receptors co-localise with the activating 

receptors in the immunological synapse of NK cells [622]; it is plausible that the expression of 

inhibitory receptors by microglia and our observation of them on the cell surface enables greater 

activation of the microglia, akin to that of the NK cell. This could explain their presence during 

the inflammatory response (in addition to the possible negative feedback loop). 

Furthermore, persistent FAS expression could lead to formation of a death-inducing signalling 

complex (DISC), inducing apoptosis in microglia. Contrastingly, other studies have identified 

FAS as important in the resolution of inflammation via apoptosis-independent pathways and 

that these immune cells are resistant to FAS-mediated apoptosis [623]. 

Taken together this suggests that the C5AR1+ microglia are actively engaging with infiltrating 

immune cells, acting as “responders” presumably through direct LPS stimulation to TLR4; this 

is supported by other reports which showed that C5AR1 knock-out prevented lineage 

commitment of microglia to pro-inflammatory states in an AD model [366]. These are likely 

analogous to the DAM/RAM observed in other disease states/models. 

On the other hand, BST2 has functions involved in antiviral responses and is typically associated 

with activation through IFNα/β [624, 625]; IFNβ was upregulated by microglia during EIU, 

implying autocrine/paracrine signalling. There is no data from these experiments to distinguish 

whether the C5ar1+ or C5ar1- microglia (or both) were secreting IFNβ and hence the exact 

signalling process and mechanisms are unclear. 

CD44 is a receptor for hyaluronic acid, osteopontin, collagens (components of the ECM) and 

matrix metalloproteinases [626]; it is associated with lymphocyte activation and homing [627]. 

Therefore, the C5AR1- microglia may represent “active bystanders” that aren’t directly engaged 

with LPS, but due to changes in the microenvironment (ergo paracrine signalling induced by 

the “responding [C5AR1+] microglia”) enhance their general immunological defence and 

surveillance programmes (e.g. through enhanced expression of antiviral proteins (BST2) and 

receptors involved in homing and interaction with the ECM [CD44]) to better detect further 

damage and respond more quickly as a mechanism of ultimately protecting the tissue. 

Unpublished adaptive optics imaging data from my Supervisor, Colin Chu, has shown that 

microglia within the tissue can interact with immune cells adhering to the endothelium of blood 

vessels. It is plausible that molecules such as CD44 permit microglial interaction with the vessels 

and enable them to assist in extravasation of peripheral immune cells into the tissue (but also 

to signal endothelium with much greater efficiency due to spatial proximity) and could at least 
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partially explain why there is considerable perivascular sheathing caused by microglia in models 

such as EAU (see Chapter VI). These are compatible with the notion that active inflammation 

or activation of a region of the retina would result in enhanced surveillance throughout the 

tissue (and possibly beyond) to allow for rapid elimination of infection. 

In summary, the data demonstrates that the homeostatic threshold of retinal microglia is reset 

following an acute inflammatory insult and identifies potential markers for delineating the 

heterogeneity of microglia that may be used depending on the context of retinal perturbation. 
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Chapter VI: Future Direction s 

Prior to the work presented in this thesis, it was known that microglia play a key role in the 

maintenance of homeostasis within the ocular compartment, that a fine balance exists between 

immune activation and regulation, and that new transgenic models had recently emerged which 

were proposed as sensitive and specific for microglial tagging to permit their investigation. 

However, comprehensive validation of the transgenic models and specific investigation into the 

microglial transcriptome in vivo during inflammatory states had not been performed 

comprehensively. Likewise, many proposed/hypothesised microglia markers had yet to be 

tested for validation (or invalidation) at the protein level. Critically, it was unclear whether 

homeostasis was permanently altered in response to autoimmune/inflammatory stimuli, or 

whether it can reset with time as proof-of-concept to reset immune states of uveitis or other 

patients with inflammatory disorders. 

The data presented in this thesis demonstrates how development and optimisation of a low cell 

number mRNA-Seq platform, using FACS isolation, permits transcriptomic assessment of 

immune cells within the retina. Proof of concept validation using naïve microglia, and CD4+ T 

cells isolated during EAU, confirmed this approach could be applied to the sequencing of 

microglia isolated from single inflamed eyes (Chapter III). 

To investigate microglia, use and validation of the latest transgenic models with temporal and 

conditional gene targeting for microglial specific tagging was required (the Cx3cr1CreER:R26-

tdTomato mouse strain). Furthermore, tamoxifen administration regimes for inducing 

recombination were compared and a shortened local (topical) approach was found to be 

superior, validating the sensitivity and specificity of this mouse strain for microglial 

identification during inflammation within the eye (Chapter IV). 

With both the transcriptomic pipeline and microglial identification optimised, it was then 

possible to specifically interrogate the transcriptome of retinal microglia during inflammatory 

states. mRNA-Seq data acquired using the EIU model shows how LPS induces an acute and 

highly-plastic transcriptional response in microglia that resets by 2 weeks. A consistent set of 

downregulated homeostatic microglial genes, in agreement with the literature, was observed 

across the microglial activation stages. Furthermore, microglial subtypes could be stratified 

during the response via C5AR1 expression (Chapter V). 

In summary, the over-arching aim of ultimately determining the transcriptional changes 

occurring in microglia during intraocular inflammation was achieved, highlighting that during 

acute inflammation the microglial homeostatic state is restored post-inflammation.  
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6.1 Single-cell mRNA-Seq 
Before a comprehensive analysis of the microglial transcriptome could be initiated, optimisation 

of a suitable mRNA-Seq pipeline was required. With approximately 1,500 microglia present in 

the mouse retina, and lower recovery when utilising FACS, a specialist pipeline that could 

process ultra-low inputs was required. To this end the SMART-Seq v4 Ultra Low Input RNA Kit 

by Clontech was selected. Several optimisations including cycling conditions, sequencing flow 

cell utilised, and staggered preparations were required to ensure a high success rate for sample 

preparation. Furthermore, as part of other experiments in the lab, the experimental pipeline has 

been scaled to even lower numbers of cells (<50). 

Using various QC/QA metrics, the data highlights both a high accuracy in base calling by the 

sequencer but also quality input material as the results dependent on that (i.e. alignment rates) 

meet the gold standard as well. Furthering this, optimisation of the analytical pipeline and 

methods of data visualisation enabled key data to be displayed in a format more easily 

interpretable to others. Additionally, power analysis was required to inform the suggested 

number of biological replicates beyond the general considerations and suggestions presented in 

various technical papers, many of which were based on cell lines or other in vitro work. In all, 

optimisations were successful and have resulted in the generation of high-quality data and 

publication of our approach, both of which are available in public repositories. 

Nonetheless, mRNA-Seq has the major limitation that it samples the average expression profile 

of the input material and cannot account for heterogeneity. Microglial heterogeneity in 

responses during disease states are becoming increasingly recognised [340-342], and the data 

presented in Chapter V on C5AR1 expression delineating microglia into what we term 

“Responders” and “Active Bystanders” also highlights this. Specific targeting of the microglial 

subsets responsible for disease or damage would be important to help restore tissue 

homeostasis. Two main technologies are used for the in vivo isolation of cells for sc-mRNA-Seq 

pipelines: 1) FACS and 2) specialised microfluidics devices (e.g. Drop-Seq, 10x chromium, and 

the Fluidigm C1) [628]. 

Systematic review of the published literature on scRNA-Seq protocols was performed to identify 

which protocol/s would be suitable for use with locally available equipment. Ultimately, three 

key criteria were used to determine which method to utilise: 1) low cost (utilisation of off-the-

shelf reagents as opposed to kits where there is a large mark-up on price), 2) being FACS-ready 

(i.e. no requirement for the use of a specialist microfluidics device or other equipment currently 

unavailable locally), and 3) barcoding availability (to allow for pooling, which would greatly 



Chapter VI: Future Directions 

197 
 

reduce the time and cost implications of the experiment, allowing for much larger numbers of 

samples to be ran in parallel). Over 30 protocols were identified which allowed for low-level 

mRNA detection (ergo single-cell and ultra-low cell number mRNA-Seq) [629, 630]. 

Of the protocols identified, a number passed the latter two criteria, but many technical papers 

comparing methods highlighted three methodologies which clearly were of enhanced 

sensitivity and correlation (between technical replicates) than the others: cell expression by 

linear amplification and sequencing 2 (CEL-Seq2) [631], QUARTZ-Seq2 [632], and adapted 

versions of the Smart-Seq2 protocol (on which the SMART Seq v4 kit by Clontech, used for the 

mRNA-Seq data presented in this thesis, is based) [518] to include barcoding [633]. Whilst none 

of these were compared head-to-head, CEL-Seq2 was shown to be more sensitive (defined as 

the number of genes detected from single cells) than a non-barcoding version of Smart-Seq2 

[631]. As they all appeared to (nonetheless) be reliable methods that were highly cited (or at the 

least the original versions of these protocols were), the main deciding factor for the protocol 

selected for use was cost. Using a Smart-Seq2 with barcoding or a QUARTZ-Seq2 approach was 

estimated to cost a total of £7,000 for a single run of a 384-well plate for single-cell sequencing 

(based on the best available estimators of cost and internal facility costings) whereas the CEL-

Seq2 protocol was estimated at £3,100 per run. The primary reason for the discrepancy was the 

high cost of commercial library preparation kits (Illumina’s Nextera XT kits) that the former 

two protocols used, whilst CEL-Seq2 used exclusively off-the-shelf reagents. For reference, use 

of the Illumina recommended pipeline for single-cell mRNA-Seq (utilising the Clontech SMART 

Seq v4 kits and Nextera XT DNA Library preparation kits) [516] was estimated at costing £61,000 

for an equivalent experiment which was deemed unaffordable. 

Additionally, the protocols had multiple pros and cons. The main considerations for CEL-Seq2 

were that it possessed strand specificity (which few other protocols did), higher sensitivity, but 

importantly that it would only sequence the 3’ fragment of the mRNA; the latter means that it 

would be unsuitable for sequencing of a poorly-annotated genome or for transcript/splicing 

analysis. The current mouse genome assembly, mm10, is well-refined and based on the C57BL/6 

background meaning this limitation is not an obstacle to this continuing research. Furthermore, 

new technologies such as Nanopore [634] (which is available at the University of Bristol) are 

more suitable for transcript analysis because they provide long reads of direct mRNA molecules 

(as opposed to the short reads and subsequent alignment using Illumina sequencing). 

Therefore, experiments requiring transcript analysis would likely be performed using nanopore 

instead because of its improved validity. 
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Initial experiments wanted to confirm populations that would delineate nicely on a t-distributed 

stochastic neighbour embedding (t-SNE) plot as positive controls to validate the pipeline, in 

addition to generating interesting data on microglial heterogeneity. Barcoded 384-well plates 

were prepared, and CD4+ T cells isolated from spleen, naïve retinal microglia, retinal microglia 

18 hours post-EIU, and GFP+ cells from the liver of a Cx3cr1GFP heterozygote (the majority of 

these cells will be Kupffer cells, but a small proportion of T and other cells was anticipated based 

on previous flow cytometric characterisation of this organ) were sorted into single wells. It was 

hypothesised that the microglia and Kupffer cells would map to a similar 3D space (but 

nonetheless segregate), and the T cells would be located elsewhere but potentially further 

delineated by subset (e.g. naïve, effector, memory, etc). The samples were then barcoded, 

pooled, and then processed for mRNA-Seq. A library of lower than expected yield was generated 

in 1 of the 4 pools (each comprising 96 cells), which means that further optimisations are 

required before performing sequencing (Figure 6.1.1). Discussions are underway with the 

protocol Authors about possible modifications and improvements to improve the yield and 

success rate of the experimental pipeline (e.g. inclusion of a lysis reagent, such as nonyl 

phenoxypolyethoxylethanol-40 [NP-40], and an RNase inhibitor to the first mix cells are sorted 

into). 

Further to sc-mRNA-Seq, as part of systematic review several protocols were identified which 

incorporate multi-omics approaches, such as transcriptomics with methylation (epigenetic) 

status and single-cell resolution [605-609]. It remains possible that once sc-mRNA-Seq is 

optimised that even more advanced techniques could be attempted to broaden the range of 

information on the cellular state that be acquired with single-cell resolution simultaneously. 
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Figure 6.1.1. Agilent Bioanalyser output of libraries generated through the CEL-Seq2 

protocol. Barcoded single cells, sorted into a 384-well, were pooled (96 cells per pool) into 4 

samples for processing. Post-library generation and cleanup, these were then analysed on an 

Agilent 2100 Bioanalyser high-sensitivity DNA tapestation. (Left) electropherogram image with 

the ladder indicate a small positive peak around 130 bp (expected peak at 200-400 bp) for one of 

the four samples in the experiment. (Right) the gel trace for the positive sample indicates low 

yield. The ladders can clearly be observed at 25 and 1500 bp in green and purple, respectively. 
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We remain hopeful that this pipeline can generate novel and interesting datasets on retinal 

microglia. It will be especially interesting to observe how the two different niches of microglia 

[341] react during disease states, if it is differential due to their inherent differences, and to 

ultimately map the kinetics of microglial activation in uveitis models through pseudotime 

analysis. With reliable and robust models such as EIU, and sampling of microglia (from different 

mice) at different timepoints it may be possible to map the kinetics of microglial activation 

using real time and overcome some of the existing limitations that pseudotime analysis (of a 

sample at a single time-point) currently exhibits, albeit acknowledging that acquired cells from 

different timepoints were not from the same mouse. Furthermore, sc-mRNA-Seq of various 

myeloid cells, in addition to microglia, would help to highlight transcriptional differences 

between these groups and whether they are genuinely different or distinguishable (without fate-

mapping or chimeras) during inflammation to identify possible microglial markers with more 

precision. Genome annotation to include tdTomato transcripts could act as a positive control 

for microglial identification in the context of these datasets. 
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6.2 Digital Cell Quantification and Demultiplexing of 
Cells and Cell Subsets 
A novel analysis strategy, called digital cell quantification (DCQ), was recently described [635]. 

It involves using bulk mRNA-Seq data generated from known specific cell types and then 

applying it to mRNA-Seq data generated from a mixed population of cells. This then enables 

delineation of the gene expression values into an estimated representation of each cell type 

within a given sample. For example, in the original publication it utilises transcriptomic data 

generated by the ImmGen project for 213 different immune cells (grouped into stem cells, B 

cells, monocytes, macrophages, granulocytes, NK cells, Tαβ cells, NKT cells, Tγδ cells, and 

dendritic cells – they originated from a variety of tissues, stimulations, and time-points and were 

isolated using FACS [418]) to show and validate predicted changes in immune cell proportions 

within the lung during influenza infection. It was able to effectively predict changes in immune 

cell subsets that were already known to change but additionally provide novel insight into 

dendritic cell subtypes and their possible roles in the infection response. 

This type of approach holds various advantages. For example, mRNA-Seq on immune cells 

isolated from patient blood could enable a better understanding of how specific immune cell 

subsets change over the course of treatment or disease, and it may assist in disease classification 

if certain subsets or gene expression profiles associate strongly with disease. A simple test of 

robustness could be to ask what cell populations are predicted in a sequenced sample of known 

cell type to observe how the algorithm performs as a form of positive control. In the case of the 

CD4+ T cell data (Chapter III), analysis highlights high predictive scores (on the raw data) for 

developing T cells, a large number of CD4+ T cells, and one CD8+ T cell signature (Figure 6.2.1). 

The over-representation of a CD8+ T cell signature, Tγδ signature, and developing T cell 

signatures is likely due to overlap in their expression signatures with CD4+ T cells. Nonetheless, 

this highlights the algorithm as accurate in identifying the data as derived from CD4+ T cells. 
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Figure 6.2.1. Digital Cell Quantification (DCQ) highlights an abundance of T cell signals 

in the CD4+ T cell dataset. The DCQ algorithm [635] was ran on the raw data obtained from 600 

CD4+ T cells isolated from naïve spleens, and EAU peak disease (D25) spleens and retinas. Output 

values in red represent high predictive scores; blue represents low predictive score. An abundance 

of Pre-T cell, CD4+ T cell, and one Tγδ and CD8+ T cell signatures were observed. An absence of 

other signals (from major immune cell types and stromal cells) was observed. Output values which 

differ by ≥2 SDs (compared to the overall SD of all samples) are shown. Basic cell types are labelled 

to the right of the corresponding rows. Additional abbreviations: NVE – naïve, LN – lymph node, 

SP – spleen, BM – bone marrow, LV – liver. For a full explanation of the cell type labels, see the 

Immunological Genome Project data files and metadata [418] (n = 2–8). 
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When performing the same analysis but subtracting signals from the control samples (the 

recommended analysis strategy by the Authors; in this case, the naïve samples were the 

controls) this describes how the cells change from the baseline state in comparison to the cell 

types in the reference database. This is because our sample contains a known population of 

CD4+ cells, and not a mixture. Multiple NKT and CD8+ effector signals were overrepresented in 

the EAU retinas but not the EAU spleens (Figure 6.2.2). This suggests a transition within the 

population to NKT and CD4+ cytotoxic T cells (the CD8+ signatures, in what are known/sorted 

CD4+ T cells) – both of which are recognised as associated with autoimmune conditions [636-

639]. It could also be that there is skewed representation of these cellular populations in the 

retinas, and that they for some reason are selectively retained or recruited to the eye during 

EAU and this accounts for the observation. NKT cells appear to be protective against 

autoimmunity in most, but not all, cases of autoimmune disease [640-642]. Additionally, 

somewhat conflicting results were obtained about B cell, dendritic cell, monocyte, and stromal 

cell signatures: some of the signatures appear enriched within EAU spleen samples, and others 

in EAU retinas, and both predictive enrichment and depletion of similar cell types can be 

observed in the same samples. It is unclear what this means but it highlights inherent variability 

and possible noise present within the system – and a lack of clarity about what is or is not 

significant. Nonetheless the DCQ algorithm was able to predict consistent changes to CD4+ T 

cell populations that are already known within the autoimmunity field. 

Despite these strengths, the ImmGen reference dataset currently contains no information on 

microglia for analysis (a compendium bias) and it is coarse in identification because it has little 

ability for subtype discrimination. Additionally, it provides a single readout of representation of 

that given cell-type without any indication of deviation, and there is no clear cut-off for what 

constitutes a significantly different representation (in the dataset an arbitrary cut-off of ≥2 SDs 

from the overall dataset was used). 
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Figure 6.2.2. Digital Cell Quantification (DCQ) highlights over-representation of NKT 

and T effector cell signatures. The DCQ algorithm [635] was ran on the data processed (as per 

the recommended analytical strategy) obtained from 600 CD4+ T cells isolated from naïve spleens 

(A3S, B1S), and EAU peak disease (D25) spleens (A2S, B3S) and retinas (A2L–C1R). Output values 

in red represent high predictive scores; blue represents low predictive score. Output values which 

differ by ≥2 SDs (compared to the overall SD of all samples) are shown. Basic cell types are labelled 

to the right of the corresponding rows. Additional abbreviations: NVE – naïve, MEM – memory, 

LN – lymph node, SP – spleen, BM – bone marrow, LV – liver. Over-representation of multiple NKT 

and CD8+ effector cell signatures were observed, with a loss of multiple naïve CD8+ T cell 

signatures in EAU retinas. The naïve and EAU spleen signatures were found to be highly similar 

through this analysis. For a full explanation of the cell type labels, see the Immunological Genome 

Project data files and metadata [418] (n = 2–8). 
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Nonetheless, DCQ brings several other possible exciting prospects beyond the ImmGen data 

because it is modular and allows provision of your own reference dataset. This hypothetically 

enables quantification of any cell types or subsets present in the reference data provided. 

Unfortunately, there are no well-classified microglial subtypes currently (aside from the 

relatively poorly-fitting M1/M2 classification borrowed from macrophage field [158, 159]) let 

alone mRNA-Seq reference datasets of these hypothetical subtypes, and therefore analysis of 

them is currently not possible. However, CD4+ T cell subtypes are well-classified (primarily into 

Naïve, Th1, Th2, Th17, and Treg cells) and mRNA-Seq datasets on all these subtypes have already 

been generated [643]. Therefore, as the Th1/Th17 axis is critical to the disease mechanisms of 

EAU [1, 644], delineating subsets using the CD4+ dataset could generate novel insight. 

The results with DCQ were difficult to compare and contrast because of arbitrary cut-offs 

(determined by us) for what constitutes significance and an inability to perform robust 

statistical analyses, but it suggested over-representation of Th1, Treg, and Th17 signals in EAU 

retinas with a Th1/Treg signal in EAU spleens as compared to naïve (Figure 6.2.3). Optimisation 

of the number of input reference markers was required (<100 total reference genes worked best 

as a greater number of makers resulted in ceiling scores for many cell types. The markers were 

selected on the best enrichment for each specific group i.e. highest fold-change in favour of that 

subtype versus each of the other subtypes [10 per subtype in the case of the CD4+ subsets]). Due 

to the aforementioned limitations, comparing the data in a different manner to overcome these 

challenges could be helpful. 

Therefore, the DEGs identified previously with the ANOVA model (Chapter III; naïve vs. EAU 

spleen, naïve vs. EAU retina, EAU spleen vs. EAU retina) were taken and classified by which 

subtype upregulated group (i.e. relative specificity to a single CD4+ subset, as identified in the 

original paper generating the CD4+ T cell subset dataset [643]) they associated with. It was then 

possible to use statistical analysis to observe if any subset was over-represented in the DEGs 

through use of Fisher’s exact tests with FDR step-up p value correction (this mimics how 

pathway analysis is performed). The results of this approach generally agreed with the DCQ 

findings (Figure 6.2.4): that Th1, Th17, and Treg signatures were over-represented in EAU retinas 

compared to naïve spleens. It also indicated (in a head-to-head comparison not possible with 

DCQ) that Th1 and Treg were over-represented in EAU retinas compared to EAU spleens but not 

Th17; the Th17 signal was similar between EAU spleens and retinas. As expected, the naïve signal 

was most prominent in the naïve spleen. A lack of enrichment was observed in EAU spleens to 

naïve retinas and this is likely due to poor statistical power rather than lack of genuine difference 

(n = 2 in both groups for comparison). 
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Figure 6.2.3. Digital Cell Quantification (DCQ) [635] identifies a prominent Th1/Th17 

signatures in EAU retinas, in addition to a natural Treg signature. EAU spleens and retinas 

were compared to naïve spleens in their expression signature for various CD4+ T cells subtypes 

using a dataset generated by Stubbington et al. [643]. Output values in red represent high 

predictive scores; blue represents low predictive score. nTreg cells were obtained from mice, whilst 

all other subtypes were derived from in vitro culturing conditions. The reference dataset includes 

replicates for each of the subtypes. Abbreviations: nTreg – natural Treg cell, iTreg – induced Treg cell. 



Chapter VI: Future Directions 

208 
 

 

Figure 6.2.4. Differential gene expression analysis (DGEA) of “subtype upregulated” CD4+ 

T Cell subset genes highlights general agreement with Digital Cell Quantification (DCQ) 

results. Head-to-head comparisons between naïve spleen, EAU spleen, and EAU retinas was 

performed. Total numbers of differentially-expressed genes (DEGs) between group comparisons 

are indicated in brackets (all genes), with the percentage overlap into subtype upregulated genes 

indicated on the bars (n = 2–6). * = p ≤0.05, ** = p≤0.01. 
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As the spleen samples were prepared from eyes at peak EAU disease, it isn’t possible to 

extrapolate whether these changes preclude infiltration of T cells into the retina, represent 

changes occurring from T cells that recirculated from the retina, or both. However, the data 

suggests that T cells shift from a more Th17-like phenotype to a Th1-like phenotype in the retina 

at the peak/late stages of disease. In agreement, other recent sc-mRNA-Seq data also suggests 

that Th1 cells dominate the response in a spontaneous EAU model [561]. Whether this is a 

response to the microenvironment, interactions with microglia, both, or other reasons is 

unclear. However, evidence suggests that Th1 cells could differentiate from other CD4+ cell types 

(such as Th17) by inducing IL-27 expression in microglia via IFN-γ (see “Retinal Microglia and 

Homeostasis” Chapter I which describes IL-27 preventing Th17 lineage commitment and the 

formation of ex-Th17 cells). Does commitment to a more Th1-like phenotype help to drive or 

prevent further damage in the retina? As IL-27R knockout exaggerates autoimmune disease 

[410] this suggests that a more Th1-like phenotype might cause reduced damage in comparison 

to a more Th17-like phenotype. Most pertinently, is there a way to enhance the 

immunosuppressive environment? Further work could help to delineate the kinetics and 

changes across the stages of EAU, in addition to validation of the phenotypes using orthogonal 

approaches such as flow cytometry and immunohistochemistry (including iterative staining for 

an increased marker repertoire in stains). 

If in the future microglial subsets are modelled and mRNA-Seq data produced on them, it would 

become possible for retrospective analysis of multiple existing datasets generated from 

microglia. New analysis strategies similar in function to DCQ have since been developed which 

can infer estimated cell proportions in bulk-mRNA-Seq from cell subsets identified using sc-

mRNA-Seq data and may assist in bridging the gap between old and new [645, 646]. This could 

yield both rapid and novel insight into microglial lineage differentiation in various disease states 

and models because it could utilise a pool of readily-available data from mRNA-Seq repositories 

such as the NCBI’s GEO. Ultimately this could result in rapid expansion of microglial knowledge 

and understanding and highlights why DCQ or other similar analyses represent a very powerful 

approach to probe/mine historic datasets for continued utility. 
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6.3 Further Investigation of Microglia in EIU 
Prior to use of the Cx3cr1CreER:R26-tdTomato mouse strain, it was important to validate this as 

both sensitive and specific for microglia. A reduced sensitivity would have meant fewer numbers 

of microglia tagged, resulting in a potentially less representative mRNA-Seq dataset generated. 

Additionally, downstream processing and testing of marker specificity would have been more 

difficult because the tdTomato- fraction of cells would still include microglia. Lastly, lower 

numbers of microglia would have reduced the power and ability to validate changes using flow 

cytometric analysis because data such as percentage positivity would be more susceptible to 

skewing. Conversely, specificity also needed to be high so that cDNA was generated from a pure 

population of microglia and observed differences in the mRNA-Seq dataset were not due to 

infiltrating cells and changing proportions of cell types. Such confounding would have greatly 

reduced the validity of the datasets generated. Whilst validation in each disease context is 

recommended, it is evident that this approach of microglial identification is considerably 

superior to the conventional approaches and will enable more robust analysis of microglial 

changes during disease until a specific marker or set can be identified to reliably differentiate 

them from infiltrating myeloid cells. 

With both the mRNA-Seq pipeline and Cx3cr1CreER:R26-tdTomato mouse strain optimised and 

validated, it was then possible to begin investigation of retinal microglia during inflammatory 

states using the EIU model. After confirming unaltered kinetics to the WT C57BL/6 mouse, and 

that microglial morphological perturbation occurs by 4 hours post-injection, sorting and 

sequencing of microglia before, during, and after resolution of EIU identified a highly-plastic 

transcriptome over time in response to LPS. It also confirmed that the microglia did reset by 2 

weeks and identifies the potential for immune state reset in diseases such as uveitis. 

Importantly, this series of experiments highlights the importance of orthogonal validation of 

both DEGs but also suggested microglial markers. Lastly, a key marker (C5AR1) that helps to 

delineate microglial subsets during the response was identified and validated. 

With the work presented in Chapters III–V now published, there are still many unanswered 

questions and further lines of investigation into microglia during and after EIU: What potential 

treatments could be identified and tested through further bioinformatic analysis, what does the 

flow cytometric panel of validated markers and imaging show when treatments (both novel and 

existing) are administered, and what happens if the retinas are subject to a second LPS stimulus 

during or after the reset period, or how the anti-viral (e.g. TLR3-mediated) and anti-fungal (e.g. 

TLR-2 mediated) response compare to name a few. 



Chapter VI: Future Directions 

211 
 

To this end, work is already underway to test a variety of treatments: dexamethasone (as 

glucocorticoids represent a first-line treatment in uveitis and a treatment known to have efficacy 

– a positive control to observe how the microglia change with treatment), prostaglandin (PG) 

E2 receptor (EP2) agonists and antagonists Butaprost and AH6809 respectively [647] (as IPA 

identified PGE2 as a key regulator), and searching for GPCRs expressed by microglia that signal 

through the Gαq subunit (an IPA canonical pathway identified as greatly altered that could be 

modulated through agonists, antagonists, biased or inverse agonists). Based on an RPKM 

threshold of 5, the existing datasets indicate that only one combination of Gα, Gβ, and Gγ 

subunit isoforms are expressed by retinal microglia: α15, β1, and γ13. In contrast, three 

phospholipase C (PLC) isoforms are expressed: γ2, δ3, and δ4. However, due to the large 

numbers of subunit isoforms and downstream targets little is known about each combination 

could specifically interact and the functional and regulatory consequences this may have in a 

given cell type [648]. It is known however that the Gα15 subunit can couple in a highly 

promiscuous fashion to multiple receptors and may explain why other α subunits are not 

expressed [649]. Key GPCRs expressed by microglia include C5AR1, P2RY12, and CX3CR1, which 

have roles in inflammatory state polarisation, neurone-coupling and responsiveness to injury, 

and neuronal interactions respectively, further highlighting the potential critical role this 

signalling pathway may have [366, 372, 610, 650, 651]. Assays utilising primary murine microglia 

and PLC isoform inhibition have already been described, and may be useful in delineating the 

roles of different signalling molecules expressed by the microglia as identified by mRNA-Seq 

[652]. Furthermore, generalised inactivation of the Gαq subunit could be achieved by using a 

selective inhibitor such as YM-254890 [653, 654]. However, due to Gα15’s promiscuous nature, 

the critical receptors it couples to, and lack of alternate isoforms expressed by microglia for 

partial compensation this may have limited utility in experiments and unlikely to be useful as a 

therapeutic due to wide potential for side effects. It would however confirm if certain functions 

were mediated by a receptor (or receptors) coupling to that signalling pathway. Other avenues 

for possible therapeutics include targeting PLCγ2, a variant of which with a small hypermorphic 

effect on enzyme function associated with a protective effect in AD [655]. Receptor tyrosine 

kinases (such as TREM2, Fc receptors, and CSF1R), acting through the intermediate protein SYK, 

can interact with PLCγ variants and TREM2 signalling/dysfunction has already been identified 

as important in AD [340, 356]. 

In addition to possible therapeutics, it is possible to investigate EIU and microglial responses 

from a more mechanistic viewpoint. Re-stimulation with LPS in other organs leads to a local 

refractory state and it would be interesting to observe and characterise whether the same 
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phenomenon occurs in the eye [656]. Research into different TLR agonists has already been 

performed in the retina, indicating that TLR3- and TLR2-mediated agonisation (e.g. using 

poly(I:C) and zymosan) can induce an immune response [92, 657]. Investigating whether 

microglia exhibit differential responses to simulated infection with different broad classes of 

pathogen would assist in delineating core response programmes and specialised responses to 

specific stimuli – opening the possibility of generalised inhibition of activation or targeted 

inhibition of a specialised response induced under specific circumstances. 
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6.4 Investigating Microglia in EAU 
Beyond EIU, several other models and variants exist. For example, EAU (where CD4+ responses 

are driven against retinal antigens through immunisation) is a widely used model that simulates 

a variety of aspects of uveitis well. It is possible to investigate several variants of EAU including 

conventional peptide immunisation vs. AT and compare the microglial response between them. 

AT would be especially useful in removing the effects adjuvants (i.e. CFA and PTX) have on the 

disease phenotype, enabling delineation between adaptive immune system effects and innate 

immune influences [88, 658]. In short, AT involves conventional peptide immunisation of mice, 

harvesting of lymph nodes during disease, culturing of these for Th17-inducing cytokines and 

peptide, and lastly intraperitoneal transfer into new recipient mice and is a model that has been 

previously optimised by a PhD student within the Ophthalmology group. With various allelic 

markers (such as CD45.1 and CD45.2) but also the arrival of CAG-eGFP mice (where all cells are 

labelled with GFP) to Bristol, it will permit investigation of various hypotheses and already has 

interesting implications such as repeatable in vivo imaging of the microglia and transferred cells 

and their interactions (Figure 6.4.1). The pinnacle version of this experiment would enable 

imaging of endogenous cells, microglia, and transferred cells all with different fluorescent 

markers and is possible using the right combination of transgenic lines: For example, tagging 

microglia with tdTomato in the Cx3cxr1CreER:R26-tdTomato line, subsequently generating a 

chimera (HPI) with a mouse line expressing BFP (e.g. to the CD45 promoter) to label 

endogenous cells, and AT of CAG-EGFP cells would enable visualisation of how each cell 

group/type move and interact with one another in vivo. Furthermore, with new technologies 

such as adaptive optics (repeatable in vivo high resolution imaging) could be performed in the 

mouse and would synergise with this multi-fluorescent tagging approach [659-661]. 
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Figure 6.4.1. Inducing EAU by adoptive transfer of CD4+ T cells and initial assessment 

with imaging and flow cytometric platforms. A) The adoptive transfer model pipeline is 

summarised, showing how the antigen-specific T cells are generated, cultured, purified (90% 

purity by magnetic-activated cell sorting), and lastly administered to recipient mice by 

intraperitoneal injection. B) Disease is obtained in 80% of recipients by day 10 (a faster onset than 

conventional peptide immunisation). Tissue damage can be imaged in brightfield, C) whilst 

transferred cells can also be visualised using fluorescent filters. D) Flow cytometric analysis can 

be used to identify the GFP+ transfer cells and confirm them as high purity CD4+ T cells. E) 

Brightfield imaging at day 5 post-transfer shows very early signs of disease and F) fluorescent 

imaging highlights the presence of CD4+ T cells (green) in the retina alongside microglial (red) 

perturbations primarily adjacent to the optic disc. The data presented in this figure were generated 

by Dave Copland and Colin Chu.  

E F 
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Work is already underway for analysis of EAU in the Cx3cr1CreER:R26-tdTomato line. Imaging of 

the conventional peptide EAU model shows simultaneous microglial association with both 

lesions and other regions that appear physiological (Figure 6.4.2). This is analogous to some of 

the highly diverse range of pathological appearances in uveitis. Clinically, inflammation can be 

restricted to different anatomical compartments and even within the same ocular tissue as the 

retina can have strikingly varied appearances [662]. Similarly, damage-associated microglia have 

been described in other disease models [340] and microglial heterogeneity is becoming 

increasingly recognised, with reports highlighting heterogeneity in AD, light-damage models, 

EAE and in response to LPS stimulation in vivo [340-342, 344, 586]. 

Additionally, long-term imaging highlights that EAU continues post-peak disease with “flare-

ups” and activation of the microglia – whether this is by recirculation (into and from lymphoid 

tissues) and activation of CD4+ T cells that had already caused disease, or activation of new CD4+ 

T cells by peptide loading (or both) is unclear. What it does highlight is that conventional 

peptide EAU is a disease model which certainly does not resolve in the immediate aftermath 

from peak disease, or for up to 74 days post-immunisation (the latest time-point in imaging in 

these mice), with regards to microglial involvement and perturbation. This means that the 

model exhibits remission and lower-severity (compared to peak) regionality-specific relapse, 

the latter of which may not necessarily be completely representative of relapse in uveitis patients 

(Figure 6.4.2). Nonetheless it could be utilised to characterise changes to microglia after 

repeated activation versus peak disease, but also compared to repeated stimulation EIU 

experiments for both similarities and differences (i.e. a comparison between repeated innate 

stimuli and adaptive responses). Additionally, the tdTomato fluorescence intensity was raised 

considerably, although from the imaging data this is unclear whether it is due to microglial 

migration (e.g. from ON into retina), upregulation of tdTomato by microglia, proliferation of 

microglia, or a combination of these factors. 
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Figure 6.4.2. tdTomato acquisition-normalised fluorescent fundal imaging time-course 

in a single mouse highlights continuing pathology and microglial association in the EAU 

model long-term. The mouse was immunised for EAU using RBP-3 peptide 1–20 and both eyes 

imaged using the Micron IV. The day of imaging is indicated to the upper left of each image. The 

time-course shows changes occurring in the right eye over time. This particular mouse had a peak 

of disease around day 20, with evidence of some remission at day 25. Resurgence and worsening of 

disease severity is evident at day 28 (but most prominently at days 42 and 52), highlighting ongoing 

disease and changes in this model long-term. This mouse received a 3-day topical tamoxifen 

regime.  
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Flow cytometric analysis highlights a reduced specificity for microglia with a subcutaneous 

tamoxifen regime that negatively correlates with immune cell infiltrate (Figure 6.4.3a–b). These 

experiments were required as the severity and persistence of inflammation are different to EIU. 

This means it is possible that other immune cells may acquire the tdTomato tag through 

constitutive recombination if Cx3cr1 expression was elevated, in addition to surviving long-term 

due to persistent inflammation or possible engraftment into the tissue. In a spontaneous uveitis 

model (Aire-/-) there is evidence for the formation of tertiary lymphoid structures for example 

[561]. Ultimately, use of the same or a similar pipeline for microglial isolation and investigation 

will be critical to future experiments and necessitates confirmation of specificity in this context. 

At peak EAU the microglial count is elevated roughly two-fold during EAU (Figure 6.4.3c), 

although it is currently unclear whether this is due to proliferation, migration of microglia from 

other regions to the retina, or both; it could even be due to engraftment, although this seems 

unlikely as it has already been shown that it takes several weeks to achieve high expression of 

tdTomato (Chapter IV). Research into microglia in other contexts highlights microglial 

proliferation as a feature of neuroinflammation, suggesting that proliferation in EAU (at least) 

is happening [663-665]. The fact that there are regions which appear quiescent during EAU 

suggest that microglia remain within their niche and that it is only microglia local to the damage 

that are proliferating, although this remains yet to be proven. Additionally, CD45 mean 

fluorescence intensity (MFI) was elevated in microglia (Figure 6.4.3d) in agreement with other 

work [415, 549, 550]. tdTomato expression was also elevated and this positively correlates with 

immune cell infiltrate in EAU (Figure 6.4.3e–f), representing another possible flow cytometric 

marker for scoring disease specific to the Cx3cr1CreER:R26-tdTomato mouse line. 
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Figure 6.4.3. Preliminary flow cytometric analysis of microglia during EAU in the 

Cx3cr1CreER:R26-tdTomato mouse strain. The mice were immunised for disease using RBP-3 

peptide 1–20 and were taken for flow cytometric assessment at day 24 (peak disease). A) The 

specificity of microglial tagging in a topical vs. subcutaneous approach indicates a reduced 

specificity with subcutaneous tamoxifen (gating as per Figure 4.2.4). B) The percentage specificity 

correlates with immune cell infiltrate at peak disease in the EAU model of mice that received a 

subcutaneous tamoxifen regime, highlighting a reduced specificity as disease severity increases. 

Further analyses (C–E) utilised mice that had received a topical tamoxifen regime to overcome 

this possible confounding. C) Microglial count is elevated by roughly two-fold during EAU. D) In-

line with published work [415, 549, 550], microglial CD45 expression was increased during 

inflammation. E) tdTomato expression is elevated during EAU. F) tdTomato MFI correlates with 

immune cell infiltrate in the EAU model (n = 5–17). For statistical analysis, both the T test (with 

FDR step-up correction) and Pearson’s test were used. * = p≤0.05, **** = p≤0.0001. 
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Continuing the work beyond basic phenotyping and analysis of microglia in the EAU model 

(e.g. the panel of markers validated as differentially-expressed during EIU and stratification 

using C5AR1; Chapter V), it would be interesting to observe what effects LPS treatment, other 

treatments (such as potential therapeutic interventions), or even other variations of the EAU 

model (such as PMU, a more chronic disease model [85]) have on microglial activation, fundal 

appearance, and transcriptional status. The PMU model, for example, could be important in 

helping to investigate the role of the CD8-microglia interactions observed in the brain [394], 

and delineating that aspect of uveitis due to its chronicity. Ultimately, co-expressional meta-

analysis of these transcriptomes during inflammation would be interesting to identify core sets 

of genes associated to inflammation/immune cell ingress, but also how they compare to 

microglia in other disease states. Ideally, stratifying microglial subtypes or regional damage 

during disease and improvements in disease severity classification will permit more powerful 

and meaningful bioinformatic analysis of the data generated. 

  



Chapter VI: Future Directions 

221 
 

6.5 Regional Biopsies of Retinas for Analysis of Intra-
Tissue Heterogeneity 
To address the challenge of heterogeneity in retinal tissue damage observed in EAU (Figure 

6.5.1), my Supervisors (Colin Chu and Dave Copland) developed a regional biopsy technique 

whereby these heterogeneous regions can be visualised and excised using microscopy-guided 

dissection (Figure 6.5.2). Preliminary experiments aim to perfect the technique by performing 

regional biopsies on microglia obtained from different anatomical regions in the retina (e.g. ON, 

parenchyma, perivascular), but then progress onto controlled lesion formation through use of 

the laser-CNV model. Performing flow cytometry and mRNA-Seq on these regional biopsies is 

anticipated. By using regional biopsies from the same mouse, the general microenvironment 

could be controlled for and damage-associated signals could be enriched (compared to 

performing bulk mRNA-Seq on whole tissues) leading to better power and detection of 

transcriptional changes in this microglial subpopulation. It may even be possible to identify 

microglial subsets within the same biopsy using C5AR1 stratification. Regional biopsies 

represent a novel and unique opportunity in eye research as part of the synthesis between 

available imaging technologies and their utility in informing other techniques. 
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Figure 6.5.1. Fluorescent fundal images of tdTomato (microglia) in the Cx3cr1CreER:R26-

tdTomato mouse line highlights heterogeneity in the microglial response during EAU. 

Regions of microglial activation in parenchymal (blue, circled) and perivascular (grey, circled) 

regions highlights focal points of activation. Other regions possess microglia which, in viewed in 

isolation, could be considered naïve or certainly appear more quiescent with regards to disease 

(purple, circled). 
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Figure 6.5.2. An overview of the regional biopsy technique. A) In agreement with images in 

the Cx3cr1CreER:R26-tdTomato mouse, heterogeneity in the microglia is also observed in the 

Cx3cr1GFP mouse line. B) Using a curved 21G lacrimal cannula, tissue punches of live full thickness 

retina can be obtained reliably (blue arrow highlights the optic nerve). C) Fluorescent imaging of 

the same retina shown in B (red box). D) Punches can be isolated (circled) and homogenised as 

per standard protocols. E) Flow cytometric analysis shows the presence of 25 GFP+ microglia per 

punch in a naïve retina. The data for this figure, and figure itself, were prepared by Dave Copland 

and Colin Chu. 
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A potentially very powerful synthesis of techniques could be that of regional biopsies and sc-

mRNA-Seq. Regional biopsies could be utilised to ensure representation of all tissue phenotypes 

in fewer cells than at a tissue level (where a rare population may be missed or under-represented 

unless the whole tissue was sequenced) which would permit a greater number of biological 

replicates to be assessed for improved validity and reproducibility (a lack of biological replicates 

is one major flaw of the sc-mRNA-Seq field currently). Additionally, the phenotype of the 

biopsies (identified by imaging pre-mortem) could be cross-correlated to the sc-mRNA-Seq data 

and enable the prediction of signal (and cell) localisation without the need for microscopy or 

techniques such as fluorescence in situ hybridisation (FISH) – but may inform where these 

techniques would be best-placed to validate the findings nonetheless. Furthermore, with 

imaging over a time-course it may be possible to retrospectively analyse early microglial changes 

and signals that preclude later changes, and ultimately guide targeted therapies. 
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6.6 Three-Dimensional OCT Disease Scoring 
Research into the eye carries the advantage of in vivo imaging, a repeatable and non-terminal 

procedure. Disease models carry inherent variability and this decreases statistical power of 

analyses. However, in the eye it is possible to image and score/grade eyes for disease severity 

and then associate this to downstream assays – a major advantage of this field. With the mRNA-

Seq data currently generated, one pertinent question which could be asked is: does disease 

severity correlate well to any expression patterns? This could serve as an approach of identifying 

novel biomarkers in addition to potential therapeutic targets by identifying those genes which 

are critical and robust in expression across samples which have been delineated based on 

disease severity/stage. 

The currently available approaches for scoring disease (based on brightfield fundal imaging) are 

useful but have limitations [104]. For example, the measures are subjective and therefore subject 

to bias, they are unlikely to be linear (meaning use of more powerful parametric statistics is not 

possible), and are not particularly sensitive in grading scale. Other, conventional approaches for 

scoring (i.e. histology) prevent use of samples for other analyses. 

However, a different method utilising OCT and measurement of particles in the VB was recently 

described [109]. In theory, this approach is linear, objective, and could be more sensitive than 

current approaches. Despite this, the method utilises a small sampling region (one or a few OCT 

line scans) and could be argued as less representative because of this. Nonetheless, with the 

OCT it is possible to sample larger regions of the retina by acquiring 512 B-scans adjacent to one 

another (each B-scan is 0.9 mm in length horizontally, scans have a spacing of ~1.75 µm, and a 

depth of ~1.3 mm leading to acquisition of a 0.9*0.9*1.3 mm region of space; Figure 6.6.1a), 

termed a volume scan, that can be reconstructed into a three-dimensional render (Figure 6.6.1b–

d). They can be acquired with the optic disc located centrally, ensuring the same mouse is 

sampled in the same location (i.e. posterior retina) at different time-points, but also that 

equivalent regions are sampled between different mice for better comparability. 
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Figure 6.6.1. Three-dimensional projections of the retina using OCT. A) The OCT can 

rapidly acquire 512 horizontal b-scans running superiorly within the target box area (green) to 

enable sampling of the retina and vitreous in a larger, more representative region. These can then 

be used to create different projections, such as B) en-face, C) slices similar to those obtained with 

single line b-scan acquisition (with extended depth of view), and D) oblique images that help to 

visualise the three-dimensional space. Abbreviation: OCT – optical coherence tomography. 
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An analysis strategy that can quantify parameters from these volume scans was recently 

optimised using Imaris software (Bitplane, Belfast, UK). Manual boxes are drawn from the 

NFL/GCP/IP to the upper boundaries of the scan (this was usually within the VB) every 75 scans 

which can then be used to create a surface (similar to a layer in photo-editing programmes) of 

this region. This will capture the inner retinal regions (before the INL), which on the OCT 

appears as a continuous region of high intensity. Imaris can then automatically detect surfaces 

on absolute intensity, and size filters can be applied to remove the very small objects (noise) 

and the large objects (continuous inner retina and hypothetical corneal/lens artefacts). From 

here, the number of objects, their volume, and other parameters can be extracted for further 

analysis (Figure 6.6.2). With calibration, the voxel count can be attributed to exact size/volume 

of identified objects. It would also be possible to introduce a standardised metric, such as score 

per volume (to normalise for differences in the volume of space sampled), or measurement of a 

standardised volume size. 

Whilst the Imaris protocol could represent a potential improvement over previously described 

approaches, it requires validation. Future work aims to score and characterise disease in retinas 

(running comparisons to both fundal image analysis and flow cytometric scoring approaches) 

of mice with EAU and/or EIU. It may be possible to intentionally induce differential disease 

severities in EIU through dosing with LPS or use of different TLR agonists, and this could 

represent a powerful way to validate this approach because you could predictively know the 

order of severity in the eyes measured. Once validated, it could then be correlated to mRNA-

Seq data (either acquired post-validation or through retrospective analysis). 

Nonetheless, this analytical approach is not without shortfalls. The approach is not fully 

automated, meaning that it could be labour-intensive to utilise. It might be only pragmatic to 

use on limited numbers of samples, such as mRNA-Seq datasets, rather than large experiments. 

Additionally, it utilises proprietary software for which the code running it is unavailable, which 

also limits customisation of analysis to the hardcoding in the application; these former points 

will limit its potential adoption and use by others. It also makes the underlying assumption that 

the disease course has linear kinetics that are equivalent in each mouse; existing data already 

indicates that the loss of P2RY12 is context-dependent and could be differential to the amount 

of cellular infiltrate for example (Chapter V). However, if the same disease model and induction 

approach were compared then results would be comparable as variability in cellular infiltrate 

due to disease model would be controlled. Additionally, in the early stages of disease there are 

very few changes in the VB, meaning this approach may be unable to quantify early disease 

scores unlike existing methods. Lastly, in a mouse with very severe disease (such as white-out), 
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it is likely that the number of objects (cells) in the eye would be too great for analysis – they 

may be in contact with the retina and each other, resulting in exclusion by the size filter. 

Conventional scoring is unable to score retinas with this severity of disease either, providing 

them with a ceiling score. 

Work is already underway to potentially improve and optimise this approach. A PhD student 

has recently started in our group, and her project aims to design code which can extract these 

and other parameters in an automated fashion through the use of registration and other image-

processing techniques in MATLAB. This would allow for customisation, faster processing, and 

freely available code which could be more widely adopted in the field. In summary, continuing 

developments in image analysis could provide further insights and novel findings, especially 

when correlated to other datasets including mRNA-Seq. 
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Figure 6.6.2. A series of images showing the key stages of analysis of OCT volume scans 

using the Imaris software. A) The series of 512 images are loaded and rendered. B) Manual 

segmentation of the vitreous and inner retinal layers in a single scan (NFL/GCP/IP). C) Summary 

of key locations where manual segmentation was performed (every 75 scans was the maximum 

spacing in which a reliable result was obtained). D) A blue box represents the mask created from 

the segments drawn in C, with red shapes highlighting identified objects that passed the size 

exclusion criterion (this removed the inner retina in this render). 

  

A) B) 

C) D) 



Chapter VI: Future Directions 

230 
 

6.7 Summary 
The synthesis of imaging and image analysis, regional biopsies, AT with labelling of disease-

inducing cells, and sc-mRNA-Seq using the Cx3cr1CreER:R26-tdTomato mouse line has the 

potential to generate novel insight and understanding into both uveitis and the role of microglia 

far greater than what has been previously possible. It would enable us to begin answering many 

pertinent questions about microglia and uveitis on the quest for a “microglia marker” and novel 

targeted therapeutics, ideally one which could reset the microglial transcriptome – confirmed 

as possible by the work presented within this thesis.  
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Appendix I: mRNA- Seq Technicalitie s 

Appendix I covers more detailed aspects of the mRNA-Seq pipeline utilised to generate data as 

part of this thesis. For an overview and rationale behind this pipeline, see Chapter III. 

Cell Isolation and cDNA Generation 

Initially, cells are isolated by sorting or direct harvesting (if cultured). The cells are lysed and 

the first-strand of cDNA is generated using oligonucleotide and Moloney murine leukaemia 

virus RT (MMLV-RT). The oligonucleotides (the “Oligo-dT primer”) contains a 30-length T 

sequence, two terminal 3’ nucleotides, and a 5’ 25 bp terminal sequence (containing a primer 

site). The T sequence ensures anchoring to the polyA tail, whilst the two terminal 3’ nucleotides 

ensure specific annealling at the beginning of the polyA tail. This means that cDNA generated 

using this pipeline will not include very long sequences of the polyA tail and waste reads, instead 

enriching the associated mRNA sequence upstream. The terminal sequence (5’ end) is used for 

amplification in later steps [518]. When the end of the mRNA strand is reached, addition of 

nucleotides beyond the original transcript’s 5’ end occurs via template-switching (a property of 

MMLV-RT [666]). Template-switching uses a template-switching oligonucleotide (TSO) that 

has a 3’ terminal sequence of rGrG+G (where rG represents ribosomal guanylate and +g 

represents a locked nucleic acid) which enhances the thermal stability to the DNA strand and 

therefore yield [441]. The TSO (in this pipeline) also contains a primer site, allowing for 

replication independent of the nucleotide composition of the strand sequence, thus eliminating 

GC bias often observed in mRNA-Seq datasets. Once the initial cDNA strand is generated, LD-

PCR is performed (using the newly-incorporated primers that flank the mRNA strand) to 

increase the yield – the hallmark feature of this technology which enables use of low input 

amounts. A summary, highlighting template-switching to generate processed cDNA strands, is 

shown in Figure A1.1. 
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Figure A1.1. The initial cDNA generation using reverse transcriptase and template-

switching, as utilised in the SMART-Seq v4 ultra low RNA input kit. First, oligo(dT) primers 

(labelled 3’ SMART-Seq CDS Primer II A) anneal to the 3’ poly(A) tail of the mRNA transcript and 

is copied utilising reverse transcriptase (RT). These primers also incorporate a primer binding site 

downstream of the transcript (highlighted in light green). Secondly, RT utilised adds additional 

nucleotides to the 5’ end of the transcript which can anneal with the SMART-Seq v4 

Oligonucleotide. RT can then switch templates and copy the remaining sequence present on the 

Oligonucleotide, integrating it into the cDNA strand. Thirdly, primers specific to the newly-

incorporated regions enable the amplification of the full-length transcript by long-distance 

polymerase chain reaction (LD-PCR) to generate double-stranded cDNA at increased yield. Taken 

from Takarabio Inc.’s website. 
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cDNA Purification and Quantification 

Once the cDNA has been generated, it requires purification from the remaining reaction 

components and subsequent quantification so that input amounts between samples can be 

normalised for library preparation and sequencing. Provided that the input number of cells is 

known, this also allows for an estimation of the average amount of mRNA per cell (with some 

underlying assumptions such as 100% reaction efficiency of the LD-PCR, and that the cell 

viability and mRNA content between samples remains constant – meaning that observed 

differences could represent genuine transcriptional amplification or repression). 

Isolation of cDNA is performed using the Agencourt AMPure XP DNA beads, which are the 

gold-standard in nucleotide isolation for maximal recovery and minimal contamination [667]. 

It involves the use of paramagnetic beads to selectively bind nucleic acids by type and size (≥100 

bp). The beads initially bind to the cDNA, are separated from the solution using a magnet, and 

retained (by the magnet) whilst the solution is aspirated. After wash steps, the cDNA is then 

eluted from the beads and aspirated whilst the beads are held by the magnet. The workflow for 

this stage is summarised in Figure A1.2. 

Once the cDNA has been isolated and purified, it is ready for downstream applications such as 

mRNA-Seq (but also other applications including qPCR). However, normalisation of input 

cDNA amount is required and therefore requires quantification of the cDNA output. This step 

is performed using the Agilent TapeStation system, which represents a very precise method of 

quantification [668]. Nucleic acids are separated using electrophoresis and quantified under UV 

light (similarly to many other DNA applications) using especially sensitive equipment and 

reagents; they are stained using a highly sensitive fluorescent stain called “SYBR Gold”. The 

system is very sensitive at quantifying both the abundance (detects as low as 100 pg/uL peaks) 

and size (25-10,000 bp with an accuracy of ±10%) of nucleic acids, whilst using considerably 

reduced input volumes compared to conventional methods such as detecting ethidium bromide 

intercalation using a UV transilluminator. In synthesis, it allows for the quantification of the 

low outputs expected from the ultra-low input RNA kit and uses minimal volume to retain as 

much sample as possible for downstream steps. Representative figures of output gels produced 

by the Agilent Bioanalyzer are presented within the results section Chapter III. 
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Figure A1.2. The workflow steps required for successful pure isolation of cDNA using the 

Agencourt AMPure XP beads. The beads are incubated with the cDNA (1) to enable binding (2). 

Then the beads (containing the bound cDNA) are separated from the solution using a magnet (3). 

They are washed (4), and then the cDNA is eluted from the beads (5) before transfer to a new tube 

as a purified preparation (6). Taken from the Agencourt AMPURE XP beads manual.  
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Tagmentation and Library Preparation 

After purification removal of the original primer sites, in addition to insertion of new primer 

binding sites (for sequencing on the flow cell), an index (to enable multiplexing of samples on 

the flow cell), and a complementary region to the flow cell (for annealing) is required. For 

cleavage of the double-stranded cDNA and insertion of primer binding sites, a hyperactive and 

nonspecific variant of the Tn5 transposase is used [669, 670]. 

However, this inevitably results in the insertion of the primer binding sequences to all cDNA 

fragments generated. This includes terminal regions which contain artefacts such as the original 

primer binding sites, but also undesirable regions such as the polyA tail. PCR cycling (low 

number) using the new inserts will result in exponential replication of all fragments containing 

a primer binding site, including the artefacts/undesirable cDNA. The primers used for the 

cycling contain an index and a region complementary to the flow cell upstream of the primer 

binding site, which enables their integration into the cDNA fragments. Whilst undesirable 

regions will be amplified, because they contain only one region complementary to the flow cell 

(terminal regions would receive only one insert) they will be unable to generate clusters (see 

later). The end result (of desired regions) is a cDNA fragment containing a portion of the 

original mRNA strand (excluding artefact or undesirable segments, and assuming a 0% error 

rate of DNA polymerase) with the required indices (unique to each sample), primer binding 

sites, and both complementary regions to the flow cell required for cluster generation and 

subsequent sequencing (Figure A1.3). 

From here, the libraries are cleaned using the Agencourt AMPure XP beads (Figure A1.2), with 

quantification on the Agilent Bioanalyser, as described earlier. Lastly, the libraries are 

normalised using beads to ensure they all have the same concentration prior to sequencing on 

the flow cell. This helps to ensure similar number of clusters are generated (and therefore reads) 

by each sample. 
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Figure A1.3. An overview of the mRNA-Seq library preparation steps utilised in the 

SMART-Seq v4 pipeline. Firstly, transposase is used to cleave dsDNA whilst incorporating novel 

primer binding sites (adapters). These can then be utilised for polymerase chain reaction (PCR) 

with a low number of cycles required. New sequences that are complementary to the flow cell (for 

sequencing) and an index are introduced upstream of each primer and are integrated with cycling. 

This results in the production of a DNA insert containing the original mRNA sequence and other 

sequences required for successful annealing to the flow cell, successful identification of sample 

source (i.e. index utilised for demultiplexing post-acquisition), and successful amplification as 

part of sequencing. This figure was made utilising parts of a video on the Illumina website that 

describe the mRNA-Seq process.  
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Sequencing (Illumina) 

Sequencing is performed without modifications to the usual Illumina protocols; the library is 

treated as a small genome library for the purposes of processing. It is performed on a flow cell, 

which contains millions (or billions) of covalently-attached forward and reverse 

oligonucleotides (universal and complementary to the libraries generated); more recent 

versions of flow cells (patterned flow cells) contain nanowells etched into a glass substrate 

coated with a metal or metal compound. The nanowells are between 1 nm2 and 1 mm2 in size 

with spacing of between 0.5 and 100 µm; the former depends somewhat on the size of the 

transcript, and the latter depends on the density (how many reads) a flow cell might contain 

[671]. All flow cells possess a continuous gel layer (such as agarose, gelatin, or polyacrylamide 

covering all regions of the flow cell) and a glass top. The cDNA is amplified by solid-phase 

amplification (PCR with the use of surface-bound primers [672]) which enables clonal expansion 

of the cDNA fragments containing both complementary regions (and hence both primer 

binding sites) to generate clusters of up to 1,000 identical copies of an original strand. This 

ensures that fluorescent signals generated from the cDNA strand during sequencing are greatly 

enhanced so they can be detected much more easily and have improved signal-to-noise ratios. 

Different clusters are randomly spaced but spatially separated (for patterned flow cells they are 

found within the nanowells and therefore clusters will be both at a specified size and interval), 

being up to 1 µm in diameter. The spacing between clusters is generally determined by how the 

libraries were loaded and their concentration and is optimised per individual machine and type 

of flow cell used. An overview of cluster generation is shown in Figure A1.4. Furthermore, most 

flow cells will contain between 4–10 segmented regions known as lanes. They contain discrete 

boundaries and assist in controlling cluster generation. As each lane (relative to others) may be 

susceptible to technical bias, they will typically contain clusters generated from every sample 

being ran on the flow cell. 

After cluster generation, the flow cell is ready for sequencing. This is performed by repeated 

cycles of polymerase-directed single base extension through the use of reversible terminators 

(3’-O-azidomethyl 2’-deoxynucleoside triphosphates), each labelled with a different removable 

fluorophore [673]. To improve the efficiency of phosphodiester bond formation between the 

nucleotide analogues, the polymerase also has modifications to its active site [674]. This 

approach enables simultaneous incorporation of any base to limit the potential for non-specific 

or competitive binding (if different bases were added in different steps) but also enhance the 

speed of sequencing. It also enables control of extension base-by-base, which enables imaging 
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of the conjugated fluorophores a single nucleotide at a time, with fluorophore dissociation and 

exposure of the 3’ on the pentose sugar for further extension (repeat of the prior steps) post-

imaging until a new image is ready for acquisition. As the fluorophores are different for each of 

the four bases (A, T, C, G), this enables base-calling for every cluster on the flow cell in a 

simultaneous fashion and registration back to the specific location of the signal to generate a 

read (Figure A1.5). The extension reaction, imaging, and dissociation can be repeated to 

determine the base sequence for short reads (typically between 75 and 300 bp). 

The index (a 3 base code unique to the biological sample – one for the forward read, and one for 

reverse read where applicable) is also sequenced which enables association of a particular read 

(cluster) to an original sample; use of paired indices like this enables multiplexing of up to a 

large number of samples on a single flow cell (typically ≥96) which is highly beneficial for many 

applications, through greatly enhancing the cost-efficiency, where the full depth (number) of 

reads isn’t required for a single sample (e.g. mRNA-Seq). It would also block for any technical 

artefact caused by the flow cell or lane. 
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Figure A1.4. Cluster generation on Illumina flow cells. A) A flow cell typically contains 4–10 

segmented regions termed lanes. B) Within the flow cell are millions or billions of covalently-

attached oligonucleotides (one of two sequences) complementary to a region on the cDNA in the 

libraries. C) The libraries can anneal to the oligos, and D) be copied by DNA polymerase to create 

a strand complementary to the original that is immobilised on the flow cell. The signal from a 

single strand is too weak to be easily imaged, and therefore E) the other terminal section of the 

strand can anneal to and F) be copied onto a different oligo, enabling clonal expansion (i.e. cluster 

generation) to greatly enhance the signal produced when sequencing. This figure was made 

utilising parts of a video on the Illumina website that describes the mRNA-Seq process.  
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Figure A1.5. Illumina sequencing overview highlights how it is possible to sequence 

millions of reads in parallel with accuracy. A) Primers complementary to terminal regions of 

cDNA enable copying of strands. B) Immediately succeeding this is the 3-nucleotide index code 

that enables demultiplexing in analysis. Bases are added in a stepwise fashion using reversible 

terminators with tags. C) The tags can be visualised and registered to specific locations on the 

flow cell which correspond to the different clusters present. This enables construction of sequence 

reads in a parallel fashion. D) Once the read is complete (typically 75 or 150 bp), a primer is 

annealed near to the terminus which E) enables sequencing of the second 3-nucleotide index. 

Pairing indices like this allows for exponentially more samples to be ran in parallel. Lastly, after 

denaturation of the copied strand, it is possible to F) anneal the original strand terminus to the 

flow cell. This allows the process to repeat, generating a sequence from the other end of the mRNA 

transcript to generate paired reads. This figure was made utilising parts of a video on the Illumina 

website that describes the mRNA-Seq process. 
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Measurement Error within Illumina Sequencing 

Measurement error refers to errors or artefacts introduced as part of obtaining reads when 

sequencing. It is well-recognised that differences can occur between flow cells but even lanes 

on the same flow cell. A balanced study design ideally multiplexes samples across all lanes of a 

flow cell to mitigate this (i.e. technical sequencing replicates) and, if using multiple flow cells, 

balances samples of the different experimental groups across them (or in an extremely 

complicated fashion balance all samples equally across all flow cells) [523]. An experimental 

concept schematic is shown in Figure A1.6 and highlights the differences between good and bad 

practice in this context. Illumina provide comprehensive instructions for sequencing that help 

to minimise measurement error: these include multiplexing samples across lanes, controlling 

the concentration of libraries added to the flow cell (this is machine-specific but is often 

determined when initially using the sequencer), and many more as part of their supplied 

protocols and standard operating procedures. 
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Figure A1.6. Examples of good and poor experimental design with regards to sequencing 

flow cells and lane allocation. In the confounded design, each sample is sequenced on a 

different lane of the flow cell. When performing analysis, differences between lanes could confound 

the results. In the balanced design, all samples are split and allocated across each lane (as 

technical replicates) to mitigate this potential effect. 
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