

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Chalkley, Oli

Title:
Towards rational genome design

the genome design suite, whole-cell models and minimal genomes

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Towards rational genome design:
the genome design suite, whole-cell models and minimal genomes

By

OLIVER CHALKLEY

Department of Engineering Mathematics
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of DOCTOR OF

PHILOSOPHY in the Faculty of Engineering.

APRIL 2019

Word count: fifty six thousand

ABSTRACT

Creating organisms with predetermined traits has long been a goal of synthetic biology
and has the potential enable the creation of cell factories, medical tools and bio-materials.
The genome is a key factor in controlling attributes of an organism and biologists have

made great progress in writing and editing genomes, ushering in an era of synthetic organisms.
However, limited understanding of how phenotypes emerge from genotypes has contributed
towards a lack of genome design tools leaving genome engineers unsure what genome edits
to perform or genomes to create. Computer models hold great potential in aiding the design
of genomes but the tools are designed for specific models and do not adapt well. Additionally,
the models focus on specific processes in a cell (e.g. metabolism) and miss control mechanisms
that feed into those processes from other processes (e.g. gene regulation of metabolic enzymes).
Whole-cell modelling may enable models that can incorporate systems-level effects and minimal
genomes may simplify the genotype phenotype relationship. Unfortunately, there are currently
no methods to accurately find minimal genomes and there is only one published whole-cell model
that is hard to use and too computationally expensive to use for large-scale in-silico experiments.

This thesis aims to create tools to design in-silico genomes by enabling massive in-silico ex-
periments on state-of-the-art computational models. These tools should be easily adaptable to
different models, computers clusters, design goals, and design algorithms. As a proof-of-concept
these tools will be used to try and reduce the genome of the only published whole-cell model. The
results of this will be further analysed in the hope of learning about the whole solution space of
genome reductions and how it may help genome reduction algorithms.

Towards these goals we present the genome design suite which enables massive in-silico exper-
iments across multiple computer clusters and can avoid maximum simulation times imposed
on the cluster. The code is designed to make it easily adaptable. The genome design suite was
used to perform over 100,000 in-silico gene knockout experiments to develop genome reduction
algorithms and reduce the whole-cell model of M. genitalium by 165 genes. This minimal genome
is described biologically and further analysis of the simulations reveal multiple paths of conver-
gence to the minimal genome, high and low-essential gene combinations and the role of dynamic
gene essentiality in shaping the solution space.

We conclude that the genome design suite can aid in-silico genome design. The ability to avoid
maximum simulation times on clusters and utilise multiple clusters enables larger-scale in-silico
experiments giving new insights into solution spaces. Its adaptability allows it to evolve to new
models, design goals, and design algorithms. It also enables the genome design tools built on it to
utilise new models quickly and vice versa.

i

DEDICATION AND ACKNOWLEDGEMENTS

My PhD has taken me on a journey that I will never forgot. This amazing experience would
not have been possible without the support of the following people.

First I would like to thank the genome design group. Without your ideas, support and en-
couragement I cannot imagine the path I would have taken. Each member made their own unique
contributions to my progression that I greatly appreciate. Dr Lucia Marucci and Professor Claire
Grierson I owe you a huge thank you - I truly cannot imagine a better combination of supervisors.
As a team you gave the perfect balance of challenging my ideas whilst supporting my development
- you were always patient, enthusiastic, or skeptical appropriately. More specifically, Lucia, thank
you for your consistent belief in me and enthusiasm for my ideas. You always knew what I was
talking about and was able to contribute to the progression of my work whether it be technical
or general. Equally I would like to thank Claire whose never ending patience and enthusiasm
was always a great support for me. You have a great talent in making me see things in another
way and explaining the complexity of biology to me. No matter the what hurdle crossed my path,
you knew how to advise me. Dr Oliver Purcell, I would like to thank you for collaborating with
us - our long conversations about complex/crazy ideas were both enjoyable for me and critical to
my progression. You also always brought a fresh perspective to the table. Joshua Rees, I’d like to
thank you for the work we have done together. It was an absolute pleasure to work with someone
that would instantly reply to my messages and be just as excited about a result even if it was a
bank holiday Monday. Our complimentary strengths and weaknesses made us a good team and
you provided some healthy competition to keep the ball rolling. Sophie Landon, I like to thank
you for the great work and support you provided from the moment you started. Your ability to see
through the complexity of a problem was always welcome and I always looked forward to hearing
what insight you would bring to a conversation.

I would like to thank all members of the Bristol Centre for Complex Science for providing
such a welcoming, inspiring, and supportive atmosphere. In particular I’d like to thank Alonso
Espinosa Mireles De Villafranca for always having some relevant knowledge no matter what
subject I was talking about. You were great at bouncing ideas ideas around and always provided
a welcome distraction when necessary.

I would like to thank the Advanced Computing Research Centre and BrisSynBio for provid-
ing world-class high-performance computing facilities and support, as standard - this research
would not have been possible without you. In particular I would like to thank Steve Roome,
Simon Burbidge, Dr Matt Williams, and Dr Christopher Woods.

I would like to thank Dr Jonathan Karr and Professor Markus Covert for their advice on

iii

whole-cell modelling, and Professor John Glass for sharing his advice and data on Mycoplasmas.

I owe a big thank you Jenna Barratt for her never ending patience, enthusiasm and inspi-
ration. Thank you Joanne Pettitt for your advice, encouragement and proof-reading. Finally I
would like to thank my family, the Chalkleys, Vince, Jan, Charlotte, Rob, and Ben for all of your
support, encouragement, and understanding through this long journey.

iv

Autuon's DECLARATIoN

-
declare that the work in this ilissertation was carried out in aceordance with the

I ";;;";;;t" ortu" University's Regulations and code of Practiee for Research

I ;;; progru**". and that it has not beeu submitted for any other academic

award. Except where indicated by specific reference in the text, tlre work is the

eandidate's own urork. work done in collaboration with, or with the assistance o{

others, is inilicated as such. Any views expressed in the disserbatior &re those of the

author.

SIGNED:.

TABLE OF CONTENTS

Page

List of Tables xi

List of Figures xiii

1 Background 1
1.1 Introduction . 1

1.1.1 Genome engineering . 2

1.1.2 Minimal genomes . 4

1.1.3 Genome scale computational models . 8

1.2 Aims and objectives . 17

1.3 Structure of thesis . 18

1.4 The genome design group . 18

2 Methods 19
2.1 The whole-cell model of Mycoplasma genitalium . 19

2.1.1 Gene knockouts in the whole-cell model of M. genitalium 21

2.2 Computing . 23

2.2.1 Operating systems, tools and programming languages 23

2.2.2 Data storage . 26

2.2.3 Analysis . 26

2.3 Bioinformatics . 28

3 Initial investigation 29
3.1 Initial tests . 29

3.1.1 Wild-type simulations . 29

3.1.2 Single-gene knockout simulations . 31

3.1.3 Preliminary algorithms for genome reduction 35

3.1.4 Joshua Rees . 38

3.2 Knowledge consolidation . 40

3.2.1 Estimating resource usage . 40

vii

TABLE OF CONTENTS

3.2.2 Available resources . 41

3.3 Mathematical representations of a genome . 44

3.4 Discussion . 46

4 Genome design suite 49
4.1 Hardware/software requirements . 51

4.2 Computer communication . 51

4.2.1 The Connection class . 51

4.2.2 Child classes of the Connection class . 54

4.3 Job manager . 56

4.3.1 The JobSubmission class . 56

4.3.2 The ManageSubmission class . 58

4.4 Algorithms . 59

4.4.1 The MGA class . 59

4.4.2 The GeneticAlgorithm class . 63

4.4.3 The MateGroups class . 69

4.4.4 The DictOfSims class . 71

4.4.5 The DPD class . 73

4.4.6 The GeneticAlgorithmWithComplexs class . 76

4.4.7 The GeneticAlgorithmKnockIn class . 77

4.4.8 The GeneticAlgorithmSimpleKnockIn class . 80

4.4.9 The GeneticAlgorithmFocusSet class . 80

4.4.10 The MixFocussSets class . 82

4.5 Data . 84

4.5.1 Biological data . 85

4.5.2 Simulation overview . 95

4.5.3 Simulation data . 96

4.6 Analysis . 96

4.6.1 An analysis framework . 96

4.6.2 Comparing and visualising genomes . 98

4.6.3 Interpreting genomes biologically . 101

4.7 Discussion . 101

5 Massive in-silico experiments 103
5.1 Algorithm theory . 103

5.1.1 GA-type algorithms . 104

5.1.2 Dynamic probability distribution . 112

5.2 Genome reduction . 114

5.2.1 Standard genetic algorithms . 114

viii

TABLE OF CONTENTS

5.2.2 Dynamic probability distribution . 118

5.2.3 Genetic algorithms with biological knowledge 119

5.3 Making non-viable genomes viable . 126

5.3.1 Genetic algorithm additions . 128

5.4 Discussion . 131

6 The reductome 133
6.1 GAMA vs Minesweeper . 133

6.2 Analysis of all in-silico experiments in the genome design suite database 141

6.2.1 Genome comparison . 141

6.2.2 High and low essential genes . 144

6.3 Design of experiment . 149

6.3.1 Model accuracy profile . 150

6.3.2 Testing minimal genome predictions . 151

6.4 Discussion . 154

7 Conclusion 155
7.1 Introduction . 155

7.2 In-silico tools to aid genome design . 156

7.3 Massive in-silico experiments and discovering the reductome 158

7.4 Concluding remarks and future directions . 160

Glossary 163

Acronyms 165

A Appendix A 167
A.1 Initial genome reduction test . 167

A.1.1 GO Functions in the whole-cell model . 170

A.2 The genome design suite . 170

A.3 Karr2012 . 172

A.4 Designing minimal genomes using whole-cell models 172

A.5 Gene ontology . 172

A.6 Estimating data storage requirements . 172

A.7 Timing data extraction from raw simulation output 173

A.8 Changing the default file saving behaviour in the whole-cell model of M. genitalium174

Bibliography 175

ix

LIST OF TABLES

TABLE Page

1.1 Definitions of gene essentiality - adapted from Rancati et al.[19] 7

3.1 Comparison of statistics between Karr and Chalkley wild type simulations where

traditional statistical notation is used to describe the mean as µ, and the standard de-

viation as σ. Standard unit abbreviations are used where h is hours, f g is femtograms,

and s is seconds. 29

6.1 Low essential genes from Minesweeper_256 and GAMA_236 genomic contexts. Protein

annotation and GO term obtained from KEGG [104] and UniProt [102], based on

Fraser et al’s Mycoplasma genitalium G37 genome [103]. 137

A.1 A list of all GO functions for the 316 genes in the Whole-Cell model 171

xi

LIST OF FIGURES

FIGURE Page

1.1 Schematic representations illustrating different examples of context-dependent gene

essentiality. a | A hypothetical gene X encodes enzyme X, which is required for the

production of the essential metabolite B. In an environment where metabolite B is

present, gene X is dispensable. When metabolite B is absent, gene X becomes essential.

This phenomenon is also known as auxotrophy. b | Hypothetical genes X and Y

encode enzymes performing redundant biochemical reactions. Whereas inactivation

of either gene alone leads to viable cells, the simultaneous deletion of both genes

causes cell death. This is an example of synthetic lethality. c | Hypothetical gene X

encodes an inhibitor of toxin Y. In the absence of toxin Y, gene X is dispensable, but its

activity is required for viability in the presence of the toxin. Gene X is an example of a

protective essential gene. d | Hypothetical genes X and X’ encode mutually exclusive

and redundant subunits of an essential protein complex with subunit Y. In cells in

which the expression of gene X’ is epigenetically silenced, gene X becomes essential.

This could form the basis of cell type-specific essentiality in multicellular eukaryotes.

e | Hypothetical gene X encodes a protein that promotes essential process X. At a

normal level of expression, the product of gene Y does not contribute to process X. Upon

upregulation of protein Y (for example, due to aneuploidy of the chromosome encoding

gene Y), a hidden function of protein Y is unmasked, leading to its promotion of

process X. Therefore, the essentiality of gene X could be bypassed by the acquisition of

mutations that upregulate gene Y. This is the basis of high copy number suppression

screens and occurs frequently during adaptive evolution of yeast species. Figure

adapted from Rancati et al.[19] . 6

1.2 The gradient of essentiality adapted for gene knockout experiments in this thesis

shows how genomic context turns gene essentiality from a binary concept to a transient

one. The left and right extremes are genes that obey traditional ideas where they are

either always non-essential or always essential, respectively. The gradient inbetween

represents genes that can be both essential and non-essential depending on genomic

context. Figure adapted from [19]. 9

xiii

LIST OF FIGURES

1.3 A visual representation of FBA optimisation of a hypothetical 3-reaction system. The

solution space starts unconstrained (left). Constraining this solution space with the

stoichiometric matrix and flux constraints reduces viable solutions to those inside the

flux cone (middle). FBA identifies a single flux distribution on the edge of the flux cone

that optimises some objective function (right). Figure adapted from [34] 12

1.4 M. genitalium Whole-Cell Model Integrates 28 Submodels of Diverse Cellular Pro-

cesses. (A) Diagram schematically depicts the 28 submodels as coloured words—grouped

by category as metabolic (orange), RNA (green), protein (blue), and DNA (red)—in the

context of a single M. genitalium cell with its characteristic flask-like shape. Submod-

els are connected through common metabolites, RNA, protein, and the chromosome,

which are depicted as orange, green, blue, and red arrows, respectively. (B) The model

integrates cellular function submodels through 16 cell variables. First, simulations

are randomly initialised to the beginning of the cell cycle (left grey arrow). Next, for

each 1 s time step (dark black arrows), the submodels retrieve the current values

of the cellular variables, calculate their contributions to the temporal evolution of

the cell variables, and update the values of the cellular variables. This is repeated

thousands of times during the course of each simulation. For clarity, cell functions and

variables are grouped into five physiologic categories: DNA (red), RNA (green), protein

(blue), metabolite (orange), and other (black). Coloured lines between the variables

and submodels indicate the cell variables predicted by each submodel. The number of

genes associated with each submodel is indicated in parentheses. Finally, simulations

are terminated upon cell division when the septum diameter equals zero (right grey

arrow). Figure adapted from [52] . 15

3.1 Histograms of cell life cycle lengths of thesis results (right) compared to Karr et al.[52]

(left) . 30

3.2 A bar chart of all the genes in the M. genitalium whole-cell model by functional

product. Of the 525 genes in the model 359 code for proteins with known function, 36

code for tRNAs, 3 code for rRNAs, 3 code for sRNAs, and 124 code for proteins with

unknown function. 31

3.3 A venn diagram of the three singularly non-essential gene sets. The Karr and Glass

sets, knockout 242 and 104 genes, respectively and both sets agree that 90 of those

genes are non-essential. 32

3.4 Time series of growth rates of the five runs of “Agreed knockouts” 33

3.5 A bar chart of the number of genes from the Agreed knockout set that are used by

what functional category . 34

xiv

LIST OF FIGURES

3.6 A comparison of four different genome reduction algorithms. The x-axis shows the

number gene knockouts, the y-axis shows the percentage of viable gene knockouts

found by the algorithm and the colour represents which algorithms were used. Random:

random guess. AOL: Avoid overloading any functions with knockouts. Conn: Avoid

highly connected genes. GA: the first generation of a genetic algorithm which was

seeded by the viable sets found by Random. Random, AOL, and Conn only look for

gene knockout sets of between 2 and 5 genes but this is not controllable for GA. GA

attempted 7KO, 8KO, and 9KO sets but did not find any viable sets. 36

3.7 The per generation progression of the genetic algorithm where the top of each bar

shows the maximum size of viable gene knockouts found and the bottom of the bar

shows the minimum size of viable gene knockouts found for that generation. The point

that connects each bar is simply the midpoint between the maximum and minimum. 38

3.8 A bar chart of the number of gene knockouts required to test each of the minimal gene

set predictions. 39

3.9 Used resources and how they are connected. BC3: BlueCrystal III — HPC Cluster.

BG: BlueGem — HPC cluster. C3DDB: Commonwealth Computational Cloud for Data

Driven Biology. Hub is an old PC that has been re-purposed to act as a server that

controls everything. RDSF is a long term storage facility that is secure and has a

distributed backup system — it is for storage only and is only accessible from the

BC3 login-nodes. Flex1 is a disk with rapid read/write capabilities for use with HPC

cluster compute nodes. It is more resilient to failure than normal disk drives but is not

infallible and is also not backed up. In addition, this is officially classed as temporary

storage and the 9TBs can be reduced at any time. Hard drive is the standard hard

drive that comes with a PC and it belongs to the hub. The fast connections are the

Universities fast intranet connections. The slow connections are connections that have

to go through the internet. 42

3.10 RDSF is designed to move bulk data on and off the disk but not for computation. In

order to test this 100GBs of data was created in one text file. This was then repeated

three more times except with 100GBs of data in multiple 1GB, 1MB, and 10KB files.

The data was then transferred from the hub to RDSF and the y-axis gives the amount

of time the data took to transfer. 43

4.1 This shows how the three fundamental processes interact to design an in-silico genome.

Process-1 is labelled as ‘algorithm’, process-2 is labelled as ‘job manager’, and process-3

is labelled as ‘computer communication’. 50

xv

LIST OF FIGURES

4.2 This UML diagram has a box for each class that has the class name followed by class

variables followed by class methods. The arrows go from a child class to the parent

class that it is inheriting from. Here one can see that the abstract class Connection

is the parent class for all connection objects. The arrows pointing to themselves is

because the BC3 and BG classes have instances of themselves in-order to standardise

the way in which a connection connects to the database — see section 4.2.2. 53

4.3 Class diagram for the batch_jobs.py module shows their arguments and methods.

There are three classes that are not related by inheritance. 57

4.4 Class diagram for the parent class plus 5 (out of 10) child classes of the multigenera-

tion_algorithm.py module. It shows their arguments, methods and their inheritance

relationships. The remaining 5 child classes and their inheritance relationships can

be seen in figure 4.5. 61

4.5 Class diagram for the parent class plus 5 (out of 10) child classes of the multigenera-

tion_algorithm.py module. It shows their arguments, methods and their inheritance

relationships. The remaining 5 child classes and their inheritance relationships can

be seen in figure 4.4. 63

4.6 A schematic of the abstract class MGA. One can see that all algorithms will be started

by using the run() method which initiates a loop that repeats until a maximum

generation is reached. Each loop represents one generation of the algorithm and the

simulations are chosen and run using the runSimulations() method which is undefined

since it is an abstract class. This class needs to be defined by child classes that inherit

from this class. getGenerationName() and getGeneration() are also abstract methods

that will be utilised by child implementations of the runSimulations() method. 64

4.7 This diagram shows how the runSimulations method is implemented in the GeneticAlgorithm

class. Grey boxes contain everything that happens within the runSimulations method.

Lilac boxes contain any significant methods or classes called within the runSimulations

method. Blue boxes contain significant methods or classes called within the lilac boxes.

Here GA represents the GeneticAlgorithm class. 65

4.8 Code segment showing how the modified exponential distribution is calculated. The

while-loop means that a 0 value will never be created, the np.around method performs

standard rounding on the result, and the int method converts the data type from

float to integer (int truncates all decimal places rather than rounding them and so

rounding them first results in fewer loops). 67

4.9 A comparison of histograms from the aproximate (see code segment 4.8) and actual

(see equation 5.4) modified distributions the modified exponential distribution. Ten

thousand data points were sampled from each distribution, binned in the same way

and each bin plotted next to each other for comparison. 68

xvi

LIST OF FIGURES

4.10 This diagram shows how the runSimulations method is implemented in the MateGroups

class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within

the runSimulations method, and the blue boxes contain significant methods or classes

called within the lilac boxes. Here MG represents the MateGroups class. 70

4.11 This diagram shows how the runSimulations() method is implemented in the DictOfSims

class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within

the runSimulations method, and the blue boxes contain significant methods or classes

called within the lilac boxes. Here DS represents the DictOfSims class. 72

4.12 This diagram shows how the runSimulations method is implemented in the DPD class.

The grey box contains everything that happens within the runSimulations method,

whilst the lilac boxes contain any significant methods or classes called within the

runSimulations method, and the blue boxes contain significant methods or classes

called within the lilac boxes. 73

4.13 This diagram shows how the runSimulations method is implemented in the GeneticAlgorithmWithComplexs

class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within

the runSimulations method, and the blue boxes contain significant methods or classes

called within the lilac boxes. Here GAC represents the GeneticAlgorithmWithComplexs

class. 75

4.14 This diagram shows how the runSimulations method is implemented in the GeneticAlgorithmKnockIn

class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within

the runSimulations method, and the blue boxes contain significant methods or classes

called within the lilac boxes. Here GAKI represents the GeneticAlgorithmKnockIn class. 78

4.15 This diagram shows how the runSimulations method is implemented in the GeneticAlgorithmSimpleKnockIn

class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within

the runSimulations method, and the blue boxes contain significant methods or classes

called within the lilac boxes. Here GASKI represents the GeneticAlgorithmSimpleKnockIn

class. 79

4.16 This diagram shows how the runSimulations method is implemented in the GeneticAlgorithmFocusSet

class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within

the runSimulations method, and the blue boxes contain significant methods or classes

called within the lilac boxes. Here GAFS represents the GeneticAlgorithmFocusSet class. 81

xvii

LIST OF FIGURES

4.17 This diagram shows how the runSimulations method is implemented in the MixFocussSets

class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within

the runSimulations method, and the blue boxes contain significant methods or classes

called within the lilac boxes. Here MFS represents the MixFocussSets class. 83

4.18 Database schema for data related to genes. All data is taken from MMC4 except for

the GeneKOData table which is taken from MMC3. 87

4.19 Database schema for data related to the comparison of single-gene knockouts between

our simulations and Karr et al.[101]. 88

4.20 Database schema for data related to transcription units in the MG whole-cell model.

All data is taken from MMC4. 89

4.21 Database schema for data related to protein monomers in the whole-cell model. All

data is taken from MMC4. 90

4.22 Database schema for data related to macromolecular complexes in the MG whole-cell

model. All data is taken from MMC4. 91

4.23 Database schema for data related to reactions in the MG whole-cell model. All data is

taken from MMC4. 92

4.24 Database schema for data related to metabolites in the MG whole-cell model. All data

is taken from MMC4. 93

4.25 Database schema for tables that connect different aspects of biology. Moving from top

to bottom it connects protein monomers to protein complexs, metabolites to metabolic

reactions, genes to transcription units, genes to metabolic reactions, and genes to

protein monomers. 94

4.26 A diagram illustrating the schema of the ko.db database. There are 525 tables that

record what genes were knocked-out of the genome for a given in-silico experiment.

There is a table for each possible size of knockout, i.e. 1-525. This results in too many

tables to visualise and so 523 tables have been removed, leaving just the single and

double knockout tables as examples. All tables not related to gene knockouts remain

in the diagram. Diagram produced by SchemaCrawler (see section 2.3). 95

5.1 A flow diagram of the structure of a multi-generation algorithm. The iteration and the

processing stages start and end the process and the iteration and termination stage

define how many iterations are performed. 103

5.2 Histogram of the modified exponential distribution. 10,000 data points were sampled

from the modified exponential distribution to create this histogram. The data had a

minimum value of 1, a maximum value of 20, a mean value of 2.54050, and a standard

deviation of 2.00049. 106

5.3 A flow diagram of the main part of a GA-type algorithm shows how fittness/optimisa-

tion, selection, and reproduction are combined. 108

xviii

LIST OF FIGURES

5.4 A flow diagram of how a genetic algorithm reduces genomes in the GDS. The seed

stage randomly generates, N, children with between 2 - 5-gene knockouts, where, N, is

given by the user. When enough viable children have been found then the algorithm

moves to the mate stage where evolution by natural select is performed on sequential

generations of children so that the children converge to the smallest viable genome. . 109

5.5 The Guess, Add, and Mate Algorithm (GAMA) attempts to seed a genetic algorithm (i.e.

the mate stage) with genomes as small as possible in order to converge to a minimal

genome as fast as possible. The guess stage partitions all the non-essential genes into 4

groups and then picks 400 random subsets from each group. Each subset represents a

gene knockout combination which is simulated. The add stage randomly picks between

2 and 4 of the partitions and then randomly picks one viable knockout combination

from each one and combines them to create one larger knockout combination which

is then simulated. This process is repeated 2,000 times. The mate stage, instead of

being seeded by standard random guesses, takes its seeds as the 50 smallest viable

genomes from the add stage. This stage then acts as a normal genetic algorithm (see

chapter 2.3 and section 4.4.2) but it now works on all the essential and non-essential

358 protein-coding genes. This figure was taken from [101]. 111

5.6 The dynamic probability distribution uses the entire database of simulations to assign

probabilities of picking a gene to knockout based on the proportion of time it killed

the cell in the past. 113

5.7 A plot of the number of genes reduced against the generation number. The blue line

represents the mean gene reduction for that generation and the high/low error-bar

points represent the maximum/minimum gene reduction in that generation. 115

5.8 A plot of the number of genes reduced against the generation number. The blue line

represents the mean gene reduction for that generation and the high/low error-bar

points represent the maximum/minimum gene reduction in that generation. 117

5.9 A plot of the number of genes reduced against the generation number. The blue line

represents the mean gene reduction for that generation and the high/low error-bar

points represent the maximum/minimum gene reduction in that generation. 119

5.10 A plot of the number of genes reduced against the generation number. The blue line

represents the mean gene reduction for that generation and the high/low error-bar

points represent the maximum/minimum gene reduction in that generation. 121

5.11 A plot of the number of genes reduced against the generation number. The blue line

represents the mean gene reduction for that generation and the high/low error-bar

points represent the maximum/minimum gene reduction in that generation. 123

5.12 A comparison of the genome reduction algorithms implemented on GDS. (a) Shows

the largest viable combination of gene knockouts found by each algorithm. (b) Shows

the average number of genes reduced per simulation for each algorithm. 125

xix

LIST OF FIGURES

5.13 A comparison of the genome reduction algorithms implemented on GDS. (a) Shows

the number of days each algorithm needed to reduce the genome by 100 genes. (b)

Shows the number of simulations needed to reduce the genome by 100 genes. 127

5.14 A comparison of number of gene knockouts for the non-viable minimal genome predic-

tions and a fixed version created by the Rees method and by the Chalkley method. . . 130

6.1 Comparison of unmodified M. genitalium whole-cell model, Minesweeper_256, and

GAMA_236 outputs. 100 in-silico replicates, with time courses plotted for 6 cellular

variables over 13.89 hours (the default endtime of the simulations). Top row is unmod-

ified genome, showing the expected cellular behaviour (previously shown by Karr et al

[52]) and is used for comparison. Minesweeper_256 and GAMA_236 show deviations in

phenotype caused by gene deletions. Non aggregated data for each in-silico simulation

is available (see appendix A.4). 136

6.2 Comparing the genomes of the M. genitalium whole-cell model, Minesweeper_256,

and GAMA_236. The outer ring displays the M. genitalium genome (525 genes in

total), with modelled genes (401) in navy and unmodelled genes (124, with unknown

function) in grey. The middle ring displays the reduced Minesweeper_256 (256 genes)

genome in light blue, with genes present in Minesweeper_265 but not in GAMA_236

in dark blue. The inner ring displays the reduced GAMA_236 (236 genes) genome in

light yellow, with genes present in GAMA_236 but not in Minesweeper_265 in dark

yellow. Figure produced from published M. genitalium genetic data [52] [103], with

genetic data for Minesweeper_256 and GAMA_236 available in section A.4. 138

6.3 Comparing the genomes of Minesweeper_256 and 2954 GAMA genomes. The genome

of Minesweeper_256 and all the genomes found by GAMA (that were the same size

or smaller) were collated. Each point represents a single genome and is plotted

based on a ARI distance (see section 4.6.2). The circled genome in the top right is

Minesweeper_256 and the circled genome in the bottom left is GAMA_236. 139

6.4 Scatter diagram of all viable genomes simulated by the GDS. Each point represents

a simulation with the x-axis showing the average growth rate of the simulation, the

y-axis showing the second that the simulation divided and the colour showing the

number of genes knocked-out in the genome. 141

6.5 The ARI distance metric (see section 4.6.2) was used to create a distance matrix

between all viable genomes with 100 or more genes knocked-out from the GDS and

minesweeper_256. PCA was then used to reduce the number of dimensions to 2 and

then each genome is plotted as a point with the colour indicating the size of the genome.143

6.6 Visualisation of all viable genomes with over 99 genes knocked-out from figure 6.5

except now coloured by the groups found by hierarchical clustering. 144

xx

LIST OF FIGURES

6.7 The ARI distance metric (see section 4.6.2) was used to create a distance matrix

between all viable genomes found by the GDS. PCA was used to reduce the number of

dimensions to 2 and then each genome is plotted as a point with the colour representing

the size of the genome. 145

6.8 A histogram showing the distribution of gene knockout set sizes of low-essential genes.146

6.9 Scatter plot showing the ARI-distance of low-essential gene combinations using PCA.

The number associated with the colour of each genome represents the number of genes

knocked-out of the genome. 147

6.10 A histogram showing the distribution of gene knockout set sizes of high-essential genes.148

6.11 Scatter plot showing the ARI-distance of high-essential gene combinations using PCA.

The colour of each point represents the number of genes knocked-out of the genome. . 149

6.12 A depiction of the M. genitalium genome. Each equally sized segment represents a

gene and 12 o’clock is the origin of replication. The colour of each segment represents

information deemed useful for the design of experiments. Red genes are low informa-

tion essential genes. Green and charcoal are sets of genes that have a high probability

of being removed from the minimal genome. The blue genes are high probability

low-essential genes. The grey genes are false-essential genes in the model and so may

enable further reductions not predicted by the model. 153

xxi

C
H

A
P

T
E

R

1
BACKGROUND

1.1 Introduction

B iology has evolved a vast array of functions/attributes to persist on earth. Enzymes enable

complex networks of reactions that enable chemical transformations that laboratories

would be unable to reproduce without biological tools. For example, bacterial and fungal

species have been shown to break down plastics, pollutants and other waste products[1] and

others have been shown to produce biofuels, amino acids and other important pharmaceutical

precursors like complex snake venoms[2]. These tiny chemical factories can work on minute

scales but in massive armies providing intricate chemistry that is scalable. Furthermore, these

cell factories exist in bodies that can respond to environmental changes/perturbations in both

resilient and robust ways. Multicellular life performs cooperation and self-organisation like

nothing else in the known universe and has resulted in the incredible data processing ability of

brains, the orchestration of highly adaptable immune systems, and the creation of biomaterials

with novel properties. It is no surprise that scientists have taken inspiration from biology for a

long time, however, until relatively recently the complexity of biology required that engineers

remove the biological parts and work with the concept within a simpler framework to be able to

engineer it effectively (e.g. flight).

The twentieth century saw crucial breakthroughs in biological understanding that have ushered

in the age of synthetic biology which attempts to combine engineering and biology. Synthetic

biology has a broad range of goals, but a major one is the engineering of cells. Examples of

engineered cells could be cell factories[3] that break down waste products and produce useful

by-products like biofuels[4] or biological machines that could be used for medical applications[5].

1

CHAPTER 1. BACKGROUND

Since the genome of an organism contains all the information needed for it to function, it is a

prime goal to design an organism through its genome. Research on genome engineering is done

on a wide range of biological life, but prokaryotes are often used due to their simplicity and fast

life cycles. The following sections will investigate some key topics in organism design related to

this thesis.

1.1.1 Genome engineering

Humans have been consciously and unconsciously[6] modifying the genomes of organisms for

thousands of years through the process of selective breeding where individuals with desired traits

are bred, and any offspring with superior phenotypes are selected for.

In the 1920s scientists started modifying genomes by mutation breeding which involved in-

ducing mutations on common crops like barley. Mutations are randomly induced with X-rays,

gamma rays and occasionally by chemical means. Offspring with desirable traits are selected for,

and whilst there is no requirement to document plants that underwent mutation breeding, as of

August 2007, there were 2,543 recorded plant varieties released that underwent this method.

The true number is expected to be much higher[7].

While both methods provided great improvements on our ability to manipulate biology they

both had major restrictions. For selective breeding, one has to find two organisms that have

desired phenotypes and those organisms need to be able to mate. Furthermore, it is a matter

of luck if offspring end up with the combination of traits desired. For mutation breeding, the

mutations are completely random in where and how many mutations occur. The chance that the

right combination of mutations actually happens is low, resulting in mostly undesirable and fatal

mutations. However, without a good understanding of information processing and transfer in

biology, it would be hard to improve on these methods.

Discovering the structure of DNA was a pivotal moment[8]. It helped to reveal the code of

life and this combined with linking DNA-replication, transcription, and translation to discover

the so-called central dogma of biology. In an effort to understand an organism’s information

storage and processing abilities scientists started to discover mechanisms that cells and virus’

use to modify DNA, RNA, and proteins. Boyer and Cohen are credited with the invention of

recombinant-DNA (rDNA) technology which was a key moment in genome editing methods. They

were able to take two plasmids containing different antibiotic resistance markers, cleave them

and combine them into one plasmid. This new plasmid was then transformed into E. coli which

then showed resistance to both antibiotics[9]. They soon repeated the feat except this time the

plasmid contained genes from the African clawed frog, Xenophs laevis, which the E. coli cells

went on to express[10]. This research showed that genomic modification could be performed

2

1.1. INTRODUCTION

with a precision that may enable traditional engineers to consider cells as a new tool to work with.

Many ways have been developed to perform genome editing, but most involve a similar pro-

cess, i.e. the creation of some sort of vector (e.g. plasmids, bacteriophages, cosmids or phasmids)

and integrating the vector into a cell. The techniques can roughly be categorised by whether DNA,

RNA or protein is used to recognise the target site and if it makes double-strand breaks. These

techniques not only have the ability to introduce DNA into the cell but also to cut, copy and paste

parts of the existing genome. These methods faced many problems like low efficiency, scarring

the DNA, and a limited number manipulations in one integration[11]. However, the invention

CRISPR genome editing technology promises to greatly reduce these problems ushering a new

era of precise, high efficiency, multiplexed, genome manipulation[12].

At the JCVI Gibson et al., in a tour-de-force of synthetic biology, published a paper in 2010

detailing the synthetic construction of a M. mycoides genome which was then transplanted into

an empty M. capricolum cell[13]. They showed that the synthetic DNA was the only DNA in the

new cell, including watermarks to prove it was synthetic, and the cell also started to behave like

a M. mycoides cell.

With such great control over an organism’s genome the natural next step is to start engineering

organisms which scientists have started to do with mixed results. High throughput experiments

and bioinformatics tools have enabled a better understanding of biological processes on certain

scales but it is often still unclear how phenotypes emerge from genotype and so predicting the

result of genome edits is hard. As a result, biologists often have to use random or loosely guided

trial and error approaches[14]. So whilst great progress has been made in creating tools to create

and edit genomes there has been very little progress in tools to help researchers decide what

genome edits to make or genomes to build[15]. Using laboratory evolution to guide a cell to evolve

certain attributes is probably the most deterministic way to engineer a cell and this still lacks

the precision and rationale desired[16].

One way of making the design stage easier is to reduce the genome of a cell as much as possible

in favourable and stable conditions without killing the cell. This concept is referred to as the

minimal genome or minimal gene set and would provide the simplest possible example of a cell

as the removal of any genetic material would result in cell death. The simplicity of such a cell

may be an easier place to start when trying to understand the relationship between genotype

and phenotype. It also has an additional benefit for metabolic engineers because the cell is not

wasting resources on unnecessary processes which may make it easier to optimise the production

of some desired molecule. Taking these ideas further, the minimal genome could be the base

genome of all synthetic organisms. It is also believed that this may help in understanding what

3

CHAPTER 1. BACKGROUND

makes something alive and the origins of life. Another way would be to use computer models to

aid rational genome design[17, 18]. Gibson et al. at the JCVI are attempting to combine both

approaches by creating a whole-cell model of a minimal synthetic organism[15].

1.1.2 Minimal genomes

With the value of minimal genomes realised, scientists started to focus their attention on this goal.

In the 1960s and 1970s it became accepted that the Mycoplasmas were the smallest and simplest

self-replicating organisms[20] which led Morowitz and Wallace to suggest that they may be near

the top of the phylogenetic tree, i.e. a close relative of the last universal common ancestor[21].

Neimark contested this and suggested that their simplicity arose through degenerative evolution

from more complex prokaryotes with cell walls[22]. Later this was confirmed in a phylogenetic

study by Woese et al.[23]. M. genitalium is now believed to be the smallest, naturally occurring,

self-replicating organism, making it a great organism to start with when looking at minimal

genomes[24].

Based on the idea that all life on earth evolved from the last universal common ancestor, it

was hypothesised that there might be one common set of genes that are essential to all life. It

would follow from this that there is one minimal genome that all organisms can be reduced to. A

goal of comparative genomics is to exploit this theory by finding all the genes in common between

a set of organisms — if one were to sample enough different organisms, then they would eventu-

ally be left with only the genes essential to life. This research yielded useful information about

minimal gene sets, but in terms of definitively finding the minimal gene set, it was flawed due

to a trade-off between trying to avoid non-orthologous gene displacements and reducing genetic

redundancy. Genetic redundancy can help protect a cell against randomness inside and outside of

the cell and so cells will have similar redundancies with close relatives. In an attempt to minimise

redundancies comparisons are, ideally, made on a large population of different cells with diverse

phylogenetic histories. However, cells can evolve non-orthologous genes to do the same essential

function and so will not be recognised as the same gene. The larger the number of genomes and

the more phylogenetic diversity, the more likely it is to find non-orthologous genes[25, 26]. In

practice researchers quickly realised that comparisons resulted in small amounts of conserved

genes. A study by Lagesen et al. in 2010 compared the genomes of 1,000 bacterial species and

found only 4 conserved genes (2 RNA and 2 protein-coding genes)[27] and in 2012 Lui et al.

compared the genomes of 20 Mycoplasma species and found only 196 genes conserved[28]. It

seems that comparative genomics may be good for approximating subsets of essential genes but

seems to underestimate the minimal gene set significantly.

In 2006, Glass et al., performed global transposon mutagenesis on M. genitalium and found that

4

1.1. INTRODUCTION

5

CHAPTER 1. BACKGROUND

382 of the 482 protein-coding genes are essential and note that this is significantly larger than

predictions of comparative genomics studies at the time[29]. It is worth noting that this only

looks at if single gene knockouts are essential or not and so assumes that multiple non-essential

genes knocked-out in combination cannot be essential and that combinations of genes involving

essential genes cannot be non-essential. In this thesis, if a gene is knocked-out on its own and

it kills the cell then it is called singularly essential, if it does not kill the cell, then it is called

singularly non-essential.

Over time it has become apparent that whether a gene is essential or not is dependent on

the other genes present in the genome (genomic context), the environmental conditions (environ-

mental context), and the ability of the cell to mutate to adapt to the loss of the gene (evolvability).

These aspects will be discussed from the perspective of Rancati[19].

Environmental context is when a change in environmental conditions change the essentiality

of a gene. For example, Auxotrophy (Figure 1.1(a)) is when gene A is non-essential when the

cell is in an environment that is rich in metabolite M but if metabolite M is not present in the

environment, then gene A becomes essential.

Genomic context is when other genes being present in the genome or not affect the essen-

tiality of a gene. Rancati et al. give examples of synthetic lethal genes (Figure 1.1(b)) where

Figure 1.1 (preceding page): Schematic representations illustrating different examples of context-
dependent gene essentiality. a | A hypothetical gene X encodes enzyme X, which is required
for the production of the essential metabolite B. In an environment where metabolite B is
present, gene X is dispensable. When metabolite B is absent, gene X becomes essential. This
phenomenon is also known as auxotrophy. b | Hypothetical genes X and Y encode enzymes
performing redundant biochemical reactions. Whereas inactivation of either gene alone leads
to viable cells, the simultaneous deletion of both genes causes cell death. This is an example of
synthetic lethality. c | Hypothetical gene X encodes an inhibitor of toxin Y. In the absence of
toxin Y, gene X is dispensable, but its activity is required for viability in the presence of the toxin.
Gene X is an example of a protective essential gene. d | Hypothetical genes X and X’ encode
mutually exclusive and redundant subunits of an essential protein complex with subunit Y. In
cells in which the expression of gene X’ is epigenetically silenced, gene X becomes essential. This
could form the basis of cell type-specific essentiality in multicellular eukaryotes. e | Hypothetical
gene X encodes a protein that promotes essential process X. At a normal level of expression,
the product of gene Y does not contribute to process X. Upon upregulation of protein Y (for
example, due to aneuploidy of the chromosome encoding gene Y), a hidden function of protein Y
is unmasked, leading to its promotion of process X. Therefore, the essentiality of gene X could be
bypassed by the acquisition of mutations that upregulate gene Y. This is the basis of high copy
number suppression screens and occurs frequently during adaptive evolution of yeast species.
Figure adapted from Rancati et al.[19]

6

1.1. INTRODUCTION

Definition based on Extent of essentiality
No essentiality Low essentiality High essentiality Complete essentiality

Context dependency
Dispensable in all
environmental and
genetic contexts

Dispensable in most
environmental and genetic
contexts

Indispensable in most
environmental and genetic
contexts

Indispensable in all
environmental and
genetic contexts

Evolvability following gene inactivation
No compensatory
mutations required for
survival

Compensatory mutations are
required for survival. For these
compensatory mutations, multiple
independent compensatory
mechanisms exist and/or the
mutations occur at high frequency
and/or they are easily selected and
fixed in the population

Compensatory mutations are
required for survival. For these
compensatory mutations, only a
few compensatory mechanisms
exist and/or the mutations occur
at low frequency and/or they are
not easily selected and fixed in
the population

No compensatory
mechanism exists

Table 1.1: Definitions of gene essentiality - adapted from Rancati et al.[19]

there is one essential function that is supported by two different pathways and so disrupting one

pathway is fine but disrupting both kill the cell. Protective essential genes (Figure 1.1(c)) are

ones where one gene results in a fatal effect (e.g. creation of a toxin) and the other gene protects

against the fatal effect (e.g. removing or breaking down a toxin). Cell-type-specific essentiality

(Figure 1.1(d)) describes when cells of the same species (e.g. cell type or strain) have different

gene essentiality — for example the genomic content can be very different between strains of the

same species of bacteria potentially leading to different essentiality results for a particular gene.

Finally, karyotype-dependent essentiality (Figure 1.1(e)) is where the regulation of a gene can

affect the essentiality of another gene — for example gene A may be essential under “normal”

expression of gene B, but when gene B is over-expressed gene A becomes redundant. Environmen-

tal and genomic context can also be linked — for example, synthetic lethality can be dependent

on the environment.

Evolvability refers to the case when a gene is technically essential, but the cell evolves to

compensate for the deletion. The example given for evolvability is when a gene essential for cy-

tokinesis was deleted in budding yeast, some cells were able to evolve a new method of cytokinesis.

These effects combine to give a gradient of essentiality. Rancati et al. define the extent of

essentiality in four categories for both context and evolvability. No essentiality is when a gene is

dispensable in all contexts, and there are no compensatory mutations possible to enable survival.

Low essentiality is when a gene is dispensable in most contexts and/or there are compensatory

mutations that are likely to occur before the death of all mutant cells. High essentiality is when a

gene is indispensable in most contexts and/or there are compensatory mutations that are possible

but not likely to happen before all the mutant cells die. Complete essentiality is when a gene is

indispensable in all contexts, and no compensatory mutations exist. This gradient of essentiality

is summarised in Table 1.1.

With regards to the gradient of essentiality proposed by Rancati et al. this thesis focuses solely

on genomic context and so Table 1.1 has been adapted to reflect this - see Figure 1.2.

7

CHAPTER 1. BACKGROUND

Non-binary gene essentiality has significant ramifications for minimal genome research be-

cause it results in a combinatorial explosion of experiments needed to determine the minimal

genome of an organism. In the binary case, one only needs to find the single gene essentiality of

each gene in the genome, and then one knows that the minimal genome is simply the set of all the

singularly essential genes. Just incorporating genomic context means that unless one can predict

all the genes with non-static essentiality, then every possible combination of gene knockouts must

be tried. There are ∼ 10157 unordered combinations of gene knockouts for an organism as small as

M. genitalium which is likely to be underestimating the real number since there is evidence that

the order of gene knockouts can alter the mutant phenotype[30]. Adding environmental context

and evolvability adds even more complexity to the problem. It is clear that this would require a

prohibitive amount of resources to perform the experiments for the foreseeable future. Therefore,

methods need to be developed that can find minimal genomes in a smaller amount of experiments.

In 2016 Hutchinson et al. repeated the feat of transplanting a synthetic M. mycoides genome into

an empty M. capricolum cell only this time reducing the synthetic genome to an approximation

of the minimal genome[31]. Their method for reducing the genome utilised a divide and conquer

strategy on only the singularly non-essential genes (without repetition with different initial

conditions). This strategy means that their method cannot utilise high-essential genes to reduce

the genome, they have no idea if there are multiple local minima, and they do not know if their

reduction is close to the optimal local minima. Whilst the feat is a milestone for synthetic biology

and the minimisation process is one of the best examples of rational genome design, again the

results are dominated by chance, and much is still left to learn about genome reduction in M.

mycoides and organisms in general. It has been suggested that computer models may help to

rationally design genomes[15, 17].

1.1.3 Genome scale computational models

With an impossibly large number of gene combinations to test, experimental biologists have

often had to rely on random guessing, luck, and simple trial and error methods for design[14]. In

other disciplines, like physics for example, researchers often rely on mathematical modelling of

systems to reduce the burden on experimentalists. Here we look at some traditional modelling

approaches in biology - this is will not be a review of the field but rather a few choice examples

to highlight some key points. For a more thorough discussion on mathematical formalisms in

biology see the review by Machado et al.[32]. Areas of biology that modellers have often focused

on are gene regulatory networks, signalling networks and metabolic networks as these areas are

likely to provide the intricate network of feedbacks that enable cells to act as a complex adaptive

system[33].

An organism’s genome codes for all the functions utilised by the organism. However, in or-

8

1.1. INTRODUCTION

Figure 1.2: The gradient of essentiality adapted for gene knockout experiments in this thesis
shows how genomic context turns gene essentiality from a binary concept to a transient one.
The left and right extremes are genes that obey traditional ideas where they are either always
non-essential or always essential, respectively. The gradient inbetween represents genes that can
be both essential and non-essential depending on genomic context. Figure adapted from [19].

der to achieve the complex behaviour displayed by life, genes must be expressed in dynamic ways

that change depending stimulus from both inside and outside of the cell. A gene is expressed

through both transcription and translation. The cell can control the transcription of genes through

transcription factors that are themselves coded by genes that may have transcription factors.

The control of gene expression is often studied as gene regulatory networks. A mathematical

formalism for this process is boolean networks that model the expression of genes as boolean

variables in discrete time[32].

A cell can receive and respond to external stimuli and the study of this is called signal transduc-

tion. A cell combines these processes to form complex signalling networks. The process normally

starts with an external molecule that binds to a receptor on the surface of the cell. The binding

process starts a cascade of signals that trigger the cell’s response. This often utilises gene regula-

tory networks to enact the desired response. Stochasticity is important in signalling networks

due to the small number of signalling molecules, and so a common mathematical formalism is

stochastic simulation which involves making assumptions about the probability distribution of

reaction activation[32].

The metabolism is made up of large networks of chemical reactions. In chemistry, reactions

are normally modelled by systems of ordinary differential equations. Attempts have been made

in biology to follow this formalism but getting accurate data to parameterise these models is

hard[34]. The metabolism imports and exports molecules to and from the cell and creates all the

9

CHAPTER 1. BACKGROUND

molecules necessary to sustain biological function and so it is also related to gene regulatory

and signally networks. Conversely, gene regulation and signal transduction can affect metabolic

reactions.

It can be seen that all these processes are modelled in different ways and furthermore, have

more representations that have not been discussed here[32]. Having different mathematical

representations can cause problems when integrating systems together. For example, being

able to model an entire system with a system of ordinary differential equations opens up many

potentially useful tools like calculus and stability analysis[35, 36] - in some cases, the system

may even be analytically tractable enabling exact mathematical representation. The advantages

here is that one can not only simulate particular instances of a system but can also analyse the

entire solution space (e.g. analyse the effects of parameters, initial conditions and stochasticity¬).

Modelling a system in one mathematical formalism is an ideal situation, however, sometimes it

is not known how to represent systems in one formalism. In this case, different formalisms can,

sometimes, be integrated by feeding the outputs of the model into each other through computer

simulation. In order to do this, both systems need to represent quantities that can be transformed

into the quantities used by the other formalism and vice versa. Whilst this enables the modeller

to run specific simulations, the ability to analyse the whole solution space is severely depleted

and requires the user to sample simulations with random parameters and initial conditions

and hope that the important features become apparent. In some cases, even when the different

systems work in transferable quantities, the modelled processes work on vastly different scales.

For example, imagine the time scales that molecules interact on during chemical reactions and

compare that to the time scales of a chaperone being created to fold a desired protein or even

further still, imagine the time scales that a cell moves and responds to chemical gradients. Some

mathematical formalisms require the same time scales, for example, systems ordinary differential

equations, in this case, all modelled processes must act on the smallest time scale which results

in an explosion of CPU work and data storage that can make it computationally intractable for

meaningful durations of time. Integrating inter-related biological systems has been the focus of

much biological research[37, 38] and will be elaborated one throughout this section.

A different approach to modelling the metabolism of a cell which is particularly relevant to

this thesis is to use constraint-based methods on genome-scale metabolic models. Due to difficul-

ties parametrising genome-scale metabolic models of ordinary differential equations, biological

modellers turned to stoichiometric representations of the metabolism. The stoichiometry of a

system of reactions can be represented in a matrix, S = [si, j], where each column, represents a

reaction j, and each row represents a metabolite i. The value of the entry in the matrix, si, j, is the

¬General relativity is an example of a system that fits into one mathematical formalism. Analysis of the solution
space of this model led to the birth of the field of cosmology and made the first prediction of the existence of black
holes.

10

1.1. INTRODUCTION

stoichiometric coefficient of metabolite i, in reaction j where the sign is positive if the metabolite

is being imported or produced and negative if it is being exported or consumed or vice versa

depending on the preference of the modeller. Reactions transforming metabolites within the cell

are referred to as internal reactions and reactions that import and export metabolites inside and

outside of the cell (or across compartments within the cell) are called exchange reactions. Analysis

methods were developed based on the principle of mass conservation of internal metabolites[39].

The mass conservation equation for a system of known volume is

(1.1)
dC
dt

= S ·υ−d ·C

where dC
dt is the rate of change of the vector of the concentration of m metabolites (mol/L) with

respect to time, υ is the vector of n reaction rates (mol/L/hr), also known as the flux vector, S is

the stoichiometric matrix of size m×n, and d is the specific dilution rate associated with the

change in volume of the system (1/hr). Since the reaction rates happen on a much faster scale

than the dilution rate, the concentration changes due to dilution is negligible and so the system

at steady state can be written as

(1.2)
dC
dt

= S ·υ= 0.

The only unknown in the equation is υ which is a well studied problem in linear algebra. There

are further restrictions on the problem because the reaction rates must obey thermodynamic

constraints and so place minimum and maximum bounds on the flux vector υ− ≤ υ ≤ υ+. Cel-

lular metabolism normally results in an under-determined system which means that there

are considerably more reactions than metabolites. Trinh et al. cite three main ways to solve

this problem for υ, metabolic flux analysis, flux balance analysis, and metabolic pathway analy-

sis, however, we will focus solely on flux balance analysis - for more information please see [40, 41].

Since the system is under-determined (i.e. m ¿ n) it is not possible to produce a unique solution

by inverting the stoichiometric matrix. Flux balance analysis works by assuming that evolution

has optimised certain metabolic attributes (e.g. growth rate) over time. If one is able to construct

a realistic objective function that mimics this natural optimisation objective then there are

optimisation algorithms that can find the flux distributions that maximise (or minimise) the ob-

jective function subject to constraints like substrate uptake rates, secretion rates, thermodynamic

constraints, metabolic regulation and any other data sources that might be obtained [40]. Figure

1.3 depicts the FBA optimisation process and one can see that the model constraints produce

a flux cone of possible solutions which then FBA finds the flux distribution on the edge of the

cone that optimises some objective function. Models that contain all genes directly related to the

metabolism are called genome-scale metabolic models.

Constraint-based genome-scale metabolic models have received much attention since their ability

11

CHAPTER 1. BACKGROUND

Figure 1.3: A visual representation of FBA optimisation of a hypothetical 3-reaction system. The
solution space starts unconstrained (left). Constraining this solution space with the stoichiometric
matrix and flux constraints reduces viable solutions to those inside the flux cone (middle). FBA
identifies a single flux distribution on the edge of the flux cone that optimises some objective
function (right). Figure adapted from [34]

to accurately predict growth rates was demonstrated. These models have gone on to demonstrate

many other successes related to gene/reaction/metabolite essentiality studies, metabolic engi-

neering and aiding biological understanding/discovery but the area has had to evolve to keep

improving. For example, it was found that trying to construct an objective function that accurately

describes a cell’s metabolic desire combined with trying to understand global metabolic behaviour

from a single flux distribution had limited use. Research has now moved away from this practice

and started to take a more holistic approach of combining -omics data with a better understanding

the whole solution space using Markov chain Monte Carlo sampling and metabolic pathway

analysis. Early successes combining -omics data with constraint-based models highlighted how

giving the model context enhanced its predictive capability. This effect of needing context can

be explained by the model’s inability to simulate non-metabolic processes that regulate cellular

behaviour (e.g. expression regulation and signalling). Taking this idea further, researchers have

attempted to integrate other biological processes like transcription and translation into these

constraint-based models. Whilst these integrated models have shown some success they require

more data to accurately parameterise the model and the models to be integrated need to be taken

from their preferred mathematical formalism and forced into a linear optimisation formalism

through the use of coupling constraints[42].

Many tools have been created and to some extent used to aid in organism design, but they

rely on the stoichiometric formalism and require a specific implementation of that formalism (e.g.

COBRA[43–45]). Little has been done to create general tools that can take into account different

models and can utilise HPC facilities.

12

1.1. INTRODUCTION

Whilst there has been much success in gene essentiality prediction using constraint-based

models [46–50], there is still likely room for improvement by integrating feedbacks from other

processes and not to mention there are many genes outside of the genome which can affect a cells

ability to survive[37, 38].

When thinking of a cell as a complex system combined with the idea that biology has no privileged

level of causation[51], it is no surprise that researchers have been working towards a more sys-

tems view of the cell[37, 38]. Unfortunately, cellular processes are multi-scale in time and space,

there is a lack of data to parameterise models, and there is no single mathematical formalism that

integrates all biological processes making this a huge challenge in cellular/computational biology.

To date, there is only one published whole-cell model which models the parasitic bacterium M.

genitalium [52]. Rather than try to represent multiple biological processes into one mathematical

formalism Karr et al. used existing, different, mathematical formalisms and integrated them

computationally by assuming that each biological process is independent on one second time

scales.

M. genitalium is smallest of the Mycoplasma family and is the smallest known naturally occur-

ring self-replicating organism with only 525 genes. It lives in the urethral passage of humans and

owes its simplicity to degenerative evolution[24]. Interestingly, this suggests that the urethral

passage of humans is one of the most stable environments on Earth (Professor John Glass,

personal communication February 2017).

Karr et al. defined 28 submodels of M. genitalium and independently built, parameterised

and tested them (Figure 1.4A). Each submodel is represented by the most appropriate mathe-

matical formalism, e.g. the metabolism was modelled using FBA and the degradation of gene

products as poison processes. There are 16 cell variables that represent the state of the cell at

any one time. By assuming that each submodel is independent on 1 second time scales, each

submodel can be run individually and every second the cell variables are updated with the

results of each submodel which is then fed back into the submodels for the next second (Figure

1.4B). This process is repeated until either the cell divides or 50,000 seconds pass without division.

The model is parameterised with over 1,900 experimentally observed parameters from over

900 publications. If data was not available for M. genitalium then data was taken from the

nearest relative that had that data available. Most parameters were implemented as reported,

but there were a few that had discrepancies between experimental observations and had to be

carefully reconciled.

Once the model was built and parameterised, 128 wild-type simulations were run, and the

cells showed key features from the training data like observed doubling time, cellular chemical

13

CHAPTER 1. BACKGROUND

14

1.1. INTRODUCTION

composition, replication of major cell mass fractions, and gene expression.

Karr et al. went on to further test the model against independent experimental data. They

found that metabolic flux ratios between certain pathways were in accordance with experimen-

tal data, metabolite concentrations were at similar levels to those of E. coli, it showed similar

stochastic effects caused by the interaction between translation/degradation of proteins and

mRNA expression, distribution of mRNA and protein levels were in line with reports, and they

concluded that the model results are consistent with experimental data over multiple biological

functions and scales.

Exploring the model showed that it is in line with several studies on DNA and RNA poly-

merase activity and sheds light on what the potential mechanisms might be. The model has three

major cell phases, replication initiation, replication, and cytokinesis. It was noticed that whilst

the overall cell cycle duration remained relatively consistent, the duration of replication and

replication initiation varied a lot. On further investigation, it was noticed that regulation of cell

cycle duration emerged from replication and replication initiation. This was because if replication

initiation were faster or slower than average (e.g. because of initial conditions or stochasticity

within the model) then there would be less or more time for the cell to build up the resources

required for replication and thus replication would take longer or shorter, respectively. The model

also shows that most of the cell’s energy is spent on transcription and translation and that the

cell produces significantly more energy than it consumes. Finally, the model accurately predicted

the single-gene essentiality of 79% of the genes modelled. It is worth noting that there are still

many genes with unknown function and in M. genitalium there are 124 - these are referred to as

uncharacterised genes in the model. For this reason, the single gene knockout experiments were

Figure 1.4 (preceding page): M. genitalium Whole-Cell Model Integrates 28 Submodels of Di-
verse Cellular Processes. (A) Diagram schematically depicts the 28 submodels as coloured
words—grouped by category as metabolic (orange), RNA (green), protein (blue), and DNA (red)—in
the context of a single M. genitalium cell with its characteristic flask-like shape. Submodels are
connected through common metabolites, RNA, protein, and the chromosome, which are depicted
as orange, green, blue, and red arrows, respectively. (B) The model integrates cellular function
submodels through 16 cell variables. First, simulations are randomly initialised to the beginning
of the cell cycle (left grey arrow). Next, for each 1 s time step (dark black arrows), the submodels
retrieve the current values of the cellular variables, calculate their contributions to the temporal
evolution of the cell variables, and update the values of the cellular variables. This is repeated
thousands of times during the course of each simulation. For clarity, cell functions and variables
are grouped into five physiologic categories: DNA (red), RNA (green), protein (blue), metabolite
(orange), and other (black). Coloured lines between the variables and submodels indicate the cell
variables predicted by each submodel. The number of genes associated with each submodel is
indicated in parentheses. Finally, simulations are terminated upon cell division when the septum
diameter equals zero (right grey arrow). Figure adapted from [52]

15

CHAPTER 1. BACKGROUND

only tested on the 401 genes characterised in the model.

Whole-cell modelling shows great promise, but currently, the only published whole-cell model

has significant barriers to use (Dr Oliver Purcell, personal communication December 2015 and

Dr Jonathan Karr, personal communication February 2017)[53]. It is also worth looking at the

publication history of this model in the 6 years since its release. In total there have been 8 papers

published based on the whole-cell model. Three of these are tools from the same laboratory

(Covert Lab, Stanford, USA), led by Karr, designed for use with the whole-cell model. One is

the knowledge-base used to parameterise the whole-cell model[54], a second database was also

published except this time the database was to store simulation data produced by the whole-cell

model[55], and the third is a suite of tools to aid visualisation of simulation data[56]. Another one

of the papers is a review on the difficulties of building and using whole-cell models[53], and the

final three papers are the only papers to use the whole-cell model. The first is the original paper

that published the model (with equal contributions from Karr and Sanghvi) and has already been

discussed. The second, authored by Sanghvi, compared the growth rates of single-gene knockout

mutants between the model and experimental data. Discrepancies were then used to identify

problems in kinetic parameters of particular enzymes that they were then able to validate[57].

The third paper, authored by Karr, used the whole-cell to create data so that teams could develop

and compare parameter estimation methods in a testable environment[58]. The fourth paper is

the only publication using the whole-cell model to come from outside of Covert Lab[14]. Purcell et

al. present an approach to modelling synthetic gene circuits using the whole-cell model, however,

Karr is still an author on this paper. So it appears that building a whole-cell model is only one

step towards enabling the biological community to fully utilise the technology. It appears that at

least some of these problems stem from the fact that significant in-silico experiments require the

use of a computer cluster as well as significant disk storage for the resulting simulation data.

The large amount of data also makes analysis harder.

Overcoming the obstacles stopping the adoption of whole-cell models will take significant work

and further exacerbating this problem is the fact that the field is young and so is likely to

undergo rapid change. This means that developing these solutions is high risk for researchers

because their solutions may not end up being applicable to cutting-edge models/technology by

the time they are published. There are currently two unpublished whole-cell models under con-

struction using the Covert Lab style submodel integration process (Dr Jonathan Karr, personal

communication September 2017, and Professor Markus Covert, April 2017). The Covert Lab style

whole-cell models will be able to utilise the many CPU cores in a HPC cluster to perform many

simulations and to process and analyse the resulting data. A different modelling approach is

also being developed that utilises high-performance GPUs to simulate biological systems on an

atomistic level - they are currently not whole-cell models but recent research has worked up to

16

1.2. AIMS AND OBJECTIVES

simulating the entire cytoplasm of an organism[59, 60]. Researchers at the JCVI are currently

working with collaborators to create an atomistic whole-cell model of their synthetic minimal cell,

JCVI-Syn3.0[15]. Finally, the references earlier in this section show how influential the Palsson

Lab has been in producing cutting-edge biological models and took some of the earliest steps

in integrating different biological processes - it would be surprising if whole-cell models were

not produced from this laboratory in the future. Whilst it would be impossible to know what the

future of whole-cell modelling holds, it is very likely to have periods of rapid development in a

very competitive environment.

1.2 Aims and objectives

The overall aim of this thesis is to contribute towards genome design. Whilst the tools to create

and modify genomes have been created, the tools needed to decide what genomes to create or

what to part of a genome to modify are underdeveloped. The era of whole-cell models has just

begun and shows much promise but are hard to use with few tools to aid in genome design.

Minimal genomes may further help the rational design of genomes, but very few methods to

reduce genomes have been created.

The contribution to genome design will start with tools to enable large-scale in-silio experi-

ments using the whole-cell model of M. genitalium[52]. It is desired that these tools should

aid general genome design by having the ability to optimise different biological functions with

different optimisation methods so that they can keep up with contemporary genome design

trends. It should also be general with regards to models and technology so that the tools are

easily transferable to new models or HPC facilities. In addition to using whole-cell cell models to

design genomes, one needs to be able to store, analyse and visualise the data so general tools for

this should also be part of the suite of tools. These tools, with their generality, will also make it

easier for more of the community to utilise these state of the art models.

This suite of tools will then be tested by developing methods to find in-silico minimal genomes.

The analysis tools will then be used to understand as much about the data created as possible.

In summary, my aims are as follows

• Make whole-cell models easier to use for the community.

• Create a suite of tools to enable in-silico genome design.

– Tools should be able to be easily adapted to new organisms, models, and design goals.

• Use tools to investigate genome reduction algorithms in the whole-cell model of M. genital-

ium.

17

CHAPTER 1. BACKGROUND

• Analyse and understand the minimal gene set.

• Analyse and understand the solution space of reduced genomes.

1.3 Structure of thesis

The structure of this thesis is sequential. The methods chapter, chapter 2.3, details existing

methods and tools used throughout the thesis. The remaining chapters are the results chapters

followed by the conclusion chapter. The first results chapter, chapter 3, looked at preliminary

work done to understand the scale of the problem and further justifies the route of the rest of

the results. The second results chapter, chapter 4, illustrates the technical implementation of

the tools created to aid our goals in rational genome design - this chapter is focused around

code structure and how that enables our tools to be adaptable to different algorithms, different

design goals, using different models on different clusters. The third results chapter, chapter 5,

uses the tools created in chapter 4 to run massive in-silico experiments to create algorithms that

can reduce genomes and to make non-viable genomes viable. The final results chapter tries to

biologically interpret the minimal genome as well as taking a deeper dive into the data generated

in order to better understand the solution space of reduced genomes. Finally, the conclusion

chapter reflects on the research done and looks to the future.

1.4 The genome design group

Over time this project has grown from the solo PhD I originally proposed to a small group

called the genome design group (GDG). It is a small group that works closely together, and so all

members will be mentioned throughout the thesis and so will be introduced here.

• Dr Lucia Marucci - supervisor/PI.

• Professor Claire Grierson - supervisor/PI.

• Dr Oliver Purcell - external collaborator.

• Joshua Rees - PhD student.

• Sophie Landon - PhD student.

18

C
H

A
P

T
E

R

2
METHODS

This chapter discusses the methods used throughout the thesis and provides references for

more information. It is split into the sections for methods related to the whole-cell model

of Mycoplasma genitalium, computing, and bioinformatics.

2.1 The whole-cell model of Mycoplasma genitalium

M. genitalium was simulated using the so-called Whole-Cell model [52]. It is the first and, at

the time of writing, only published whole-cell model. The model is coded in Matlab and we used

version 2012a [61] to run the simulations. For the rest of this thesis, the model will be referred

to as the whole-cell model of M. genitalium and will not be referenced. For more information

about how the model was constructed and what it has been used for please see section 1.1.3. This

section has discussed some of the obstacles a user is likely to come up against when attempting

to use the model due to technological challenges. However, there is a more basic challenge to

overcome first - learning how to use the model. The supplementary information of the paper

that published the whole-cell model provides data used in model development, data created

in the making of the paper, and also a large document describing the biology captured in the

model. The user manual, however, is much smaller and describes only a few usage examples.

Unfortunately, these descriptions are either out-of-date or require the ‘user-friendly configurator’.

The out-of-date instructions have been replaced by using simulation runners and so published

instructions should be ignored (including the initial setup commands) - Dr Jonathan Karr, per-

sonal communication November 2015. The online ‘user friendly configurator’ is not open to the

general public (e.g. only members of Stanford University, USA) although it is possible to set up

your own web-server to act as a personal ‘user friendly configurator’ - not only is this process not

well documented, it requires quite advanced technical knowledge (e.g. web-servers and RDMSs)

19

CHAPTER 2. METHODS

and again, Karr now discourages this method in favour of using simulator runners. Since the

new instructions have not been released or published anywhere the next part explains the process.

A simulation runner is a subclass that tells Matlab what kind of simulation the user would like

to run. The following Matlab code snippet shows the runner created for gene knockouts and is

used throughout this thesis.

c lassde f koRunner < edu . stanford . covert . c e l l . sim . runners . SimulationRunner

methods

function th is = koRunner (varargin)

th is = this@edu . stanford . covert . c e l l . sim . runners .

SimulationRunner (varargin { : }) ;

end
end

% jobNumber can be used to make a seed

% Change the jobnumber as shown in th i s example :

% runSimulation (. . , ’ runner ’ , ’ AdjustParameters ’ , ’ jobNumber ’ , 1 , . .)

propert ies

jobNumber = 0; % Preal locate jobNumber

koList =0;

end

methods (Access = protected)

function modifyNetworkParameters (this , sim)

% s e t the seeed and display i t

timeNow = clock ;

seed = this . jobNumber * 10000 + timeNow (2) *24*31 + timeNow (3)

*24 + timeNow (4) ; %Override seed

th is . seed = seed

% apply kos

koList=this . koList

sim . applyOptions (’ geneticKnockouts ’ , koList)

end
end

end

A simulation can then be run using the following code.

20

2.1. THE WHOLE-CELL MODEL OF MYCOPLASMA GENITALIUM

cd PATH_TO_WHOLECELL_MASTER_DIR

addpath (PATH_TO_WHOLECELL_MASTER_DIR)

setWarnings ()

setPath ()

runSimulation (’ runner ’ , ’ koRunner ’ , ’ logToDisk ’ , true , ’ outDir ’ ,

SIMULATION_OUTPUT_DIR, ’ jobNumber ’ ,JOB_NUMBER, ’ koList ’ ,

CELL_ARRAY_OF_GENE_CODES_TO_KO)

This code results in knocking genes out in the same way as the original publication[52] which is

described in the supplementary information as Gene disruption was implemented in two steps: (1)

we modelled insertion of a transposon of length zero which reduces the stability of the terminal

products of the deleted gene, and set the half-life of the RNA and protein products of the deleted

gene to zero; and (2) to more quickly highlight altered phenotypes, we deleted all RNA and protein

products of the deleted gene.

In addition to the model there were several tools published in parallel, WholeCellKB [54],

WholeCellSimDB [55], and WholeCellViz [56].

WholeCellKB is a knowledge base for biological organisms (with a focus on parametrising

models). One was created for M. genitalium and used to parameterise the whole-cell model. The

online version of this is often used when trying to understand what is happening in a simulation

as one can look up, for example, genes, their products, and what reactions those products are

involved in.

Two different PhD students (Joshua Rees and I) and a masters’ student (Rick Vink, MIT, USA)

attempted to use WholeCellViz but were unable to get it to work on any data created by our

group and so was deemed inappropriate for our uses.

WholeCellSimDB was not used because it is not well documented, is intended to be situated on a

single disk drive, and requires administrator privileges to setup. It was likely that our solution

was going to have distributed disk and computational resources that were likely to change in the

near term (this will be discussed in more detail in chapter 3) making a simple, adaptable bespoke

solution more desirable than a complex black box centralised database.

2.1.1 Gene knockouts in the whole-cell model of M. genitalium

This thesis mostly focuses on the viability of gene knockout simulations, and so this is discussed in

more detail here. The reader is advised to read section 1.1 for an introduction into the whole-cell

model of M. genitalium and concepts of gene essentiality before proceeding with this section.

21

CHAPTER 2. METHODS

This thesis uses a very simplistic definition of living in the whole-cell model of M. genital-

ium - if the simulation divides then it is classed as alive. However, classifying cell viability in

the whole-cell model of M. genitalium is non-trivial. Karr et al. [52] showed that their model

correctly predicts the essentiality of 79% of the genes in M. genitalium. In order to understand

the complications, this number will be investigated further.

There are 525 genes in this model, however, at the time of model construction, there were

124 genes with unknown function — these genes are transcribed and translated in the model,

but their products are inert in the cell and eventually degrade or get broken down. The un-

characterised genes were removed from the test and leaves 401 functional genes. There were

29 genes that Karr classified as non-essential from a single life cycle but was experimentally

shown to be essential. It is not possible for the model to simulate more than one life cycle of the

cell (Professor Markus Covert and Dr Jonathan Karr, person communication February 2016),

however, with further investigation Karr was able to create bespoke simulations that only used

a sub-model of the whole-cell model to show that if the model was able to perform multiple

generations that it would likely result in cell death. This was split into two different categories,

non-perpetuating (23 genes) and toxin accumulation (6 genes). The former is caused by genes that

disrupt molecules that cannot be set to zero at the beginning of a simulation (like chaperones)

and so the downstream effects will not kick in until the molecule degrades which can take

longer than a generation. The latter is caused by an accumulation of toxins which often do not

reach lethal levels within one life-cycle. Having empirical single gene knockout data notified

Karr et al. what simulations were not producing correct results which then enabled them to

perform intensive investigations into why the results are wrong. From this standpoint, they

were able to create bespoke functions that simulated only submodels of the whole-cell model for

multiple generations and thus demonstrate that it was unlikely that the mutant would survive

multiple generations. This method creates problems for our investigation. There are many more

multiple gene knockouts than single gene knockouts making the kind of analysis they performed

impossible. In addition to this, there is no experimental data of multiple gene knockouts for

M. genitalium in order to tell us where to look. As more genes are knocked-out the chain of

cause and effect of the knockouts becomes combinatorially larger making significantly harder to

predict multi-generational effects and furthermore devising a function that will run submodels

in such a way to convincingly show that the cell is unlikely to survive multiple generations. For

these reasons it was decided to judge a cells viability on the single generation of data produced

and the downfalls of this is dealt with in the same way that all model inaccuracies are dealt

with in science, acknowledgement and transparency. As our work is a proof-of-concept we chose

to use the model in its entirety and the generalisability of our tools will enable either future

modifications to account for these inaccuracies or adaptability to new models that can account for

22

2.2. COMPUTING

multiple generations and other improvements. It should be remembered that only performing

a single life-cycle of a cell reduces a whole-cell model’s ability to predict genome viability. It is

worth noting that some single gene knockout mutants exhibit different phenotypes when the

experiment is repeated further complicating the classification problem, but this is discussed in

more detail in section 3 since this effect is not mentioned by the original authors and is discovered

by results.

2.2 Computing

This section discusses the computational methods used in the thesis.

2.2.1 Operating systems, tools and programming languages

Writing code that is stable across dependency versions and operating systems (OSs) is a non-

trivial job and normally requires a team of developers/testers. Additionally, this stage is normally

one of the last stages of development. For these reasons, it was decided to stick to just one OS

and try to avoid using multiple different versions of software.

Linux is known for its speed, stability, customisability, and is the OS on most HPC clusters

and so was chosen as our desired OS. All scripting is done in Bash which is a common Linux

scripting language (for more information see the official webpage [62]). A computer called the

Hub was used and ran on the CentOS 6.6 distribution of Linux. BC3 is the UoB HPC cluster, it

runs Scientific Linux 6.4 (Carbon) and uses the PBS 4.2.4.1 job scheduler — for more information

about BC3 see the official webpage at [63]. The following is a template for a typical submission

script for a job array on BC3.

#!/ bin/bash

COMMENTS

Job name

#PBS −N JOB_NAME

Resource request

#PBS −l nodes=NO_OF_NODES: ppn=NO_OF_CORES, walltime=HH:MM:SS

#PBS −q QUEUE_NAME

Job array request

#PBS −t MIN_ARRAY_NUMBER−MAX_ARRAY_NUMBER

23

CHAPTER 2. METHODS

designate output and error f i l e s

#PBS −e /PATH/TO/DIR/TO/SAVE/STDERR/FILE

#PBS −o /PATH/TO/DIR/TO/SAVE/STDOUT/FILE

print some de ta i l s about the job

echo "The Array ID i s : $ {PBS_ARRAYID} "

echo Running on host ‘ hostname ‘

echo Time i s ‘ date ‘

echo Directory i s ‘pwd‘

echo PBS job ID i s $ {PBS_JOBID}

echo This job runs on the fo l lowing nodes :

echo ‘ cat $PBS_NODEFILE | uniq ‘

load required modules

e . g . module load apps/matlab−r2013a

echo " Modules loaded : "

module l i s t

code to be executed for each array job should go here

BG is the BrisSynBio HPC cluster at UoB and C3DDB is a commercial HPC cluster that is rented

by Lu Lab, MIT. BG runs on Scientific Linux release 6.6 (Carbon) and uses the SLURM 14.03.0

and C3DDB runs on Red Hat Enterprise Linux Server release 6.6 (Santiago) using SLURM

14.11.4. The following is a template for a typical submission script for a job array on BG or

C3DDB.

#!/ bin/bash −login

COMMENTS

Job name

#SBATCH −−job−name=NAME_OF_JOB

What account the simulations are r eg i s t e r ed to

#SBATCH −A ACCOUNT_NAME

Resource request

#SBATCH −−ntasks=NUMBER_OF_TASKS

#SBATCH −−time=D−HH:MM:SS

#SBATCH −p QUEUE_NAME

24

2.2. COMPUTING

Job array request

#SBATCH −−array=MIN_ARRAY_NUMBER−MAX_ARRAY_NUMBER

designate output and error f i l e s

#SBATCH −−output=/PATH/AND/NAME/TO/SAVE/STDOUT.OUT

#SBATCH −−error=/PATH/AND/NAME/TO/SAVE/STDERR.ERR

print some de ta i l s about the job

echo "The Array TASK ID i s : $ {SLURM_ARRAY_TASK_ID} "

echo "The Array JOB ID i s : $ {SLURM_ARRAY_JOB_ID} "

echo Running on host ‘ hostname ‘

echo Time i s ‘ date ‘

echo Directory i s ‘pwd‘

load required modules

e . g . module load apps/matlab−r2013a

echo " Modules loaded : "

module l i s t

code to be executed for each array job should go here

Having multiple computers to work means that remotely connecting to them is useful. All remote

connections are made with SSH which is a cryptographic protocol for securely connecting comput-

ers over an unsecured connection.

It is common to transfer data between computers using scp which is a modification of the cp

function to copy over SSH. However, when transferring large amounts of data scp is prone

to stop due to connection errors. Since we are working with large amounts of data we will use

rsync by default which is an improved version of scp (for more information on rsync see the

official website [64]).

Most of the development code in this thesis was programmed in Python3.5 which is an open-

source, general-purpose, interpreted programming language [65]. One of the goals of this thesis

was to develop tools that could be used on new whole-cell models as and when they became

available. To this end, a lot of the code follows the object-oriented paradigm [66, 67].

The class structure of the object-oriented code will be visualised using UML diagrams, which are

automatically created by PyReverse which comes as part of PyLint (for more information see the

25

CHAPTER 2. METHODS

official website [68]).

Parallel computing is used in multiple different ways. On the level of a cluster queue man-

ager, job arrays are used to submit multiple jobs simultaneously. On the level of Bash, the &

command is used to run multiple processes in the background together. In Matlab, the par

command is used to parallelise loops, and in Python the multiprocessing (if child processes do

not need to spawn child processes) and concurrent.futures (if child processes do need to spawn

child processes) libraries are used to parallelise tasks.

2.2.2 Data storage

SQLite3 is a lightweight RDMS that was used to prototype data storage solutions (for more

information see the official website [69]). Python libraries were created to interface with SQLite3

databases using the sqlite3 Python module.

Database schema is visualised using SchemaCrawler (for more information see the official

website [70]).

The whole-cell model of M. genitalium automatically stores simulation data in compressed

Matlab files [61].

When using Python data can be stored as CSV files but is normally stored as Pickles. Pickleing

and unPickleing is a way of serialising and de-serialising Python objects and is often used to

store/transfer data and objects. Pickle is part of the Python standard library and so is referenced

to Python [65].

2.2.3 Analysis

Python has many standard data structures like lists, sets and dictionaries [65]. Numpy is a

library built on top of this to improve linear algebra and other array processing tasks. Pandas

is a library built on top of Numpy to give a higher level data manipulation experience plus

many additions like useful manipulation, analytical, and plotting methods [71]. Python analysis

in this thesis was normally done in Pandas DataFrames or standard data structures but also

occasionally in Numpy [72].

The adjusted rand index (ARI) is often used in machine learning to compare clustering [73, 74].

This thesis calculates the ARI using the scikit-learn library in Python.

A distance matrix is a matrix that contains all the distances between pairs of objects. A distance

is a function on a set, S, δ : S×S → [0,∞) ∈R where the following conditions hold for all x, y, z ∈ S

26

2.2. COMPUTING

1. δ(x, y)≥ 0

2. δ(x, y)= 0 ⇐⇒ x = y

3. δ(x, y)= δ(y, x)

4. δ(x, y)≤ δ(x, z)+δ(z, y).

The distance matrix of a set of objects S = {s1, . . . , sN |N ∈N} is defined as D = [di, j] where

di, j = δ(si, s j) for all si, s j ∈ S. So the distance matrix of two 2D points, p1 = (1,2) and p2 = (7,3)

using Euclidean distance as the distance measure results in the following distance matrix

D =
[
δ(p1, p1) δ(p1, p2)

δ(p2, p1) δ(p2, p2)

]
=

[√
(1−1)2 + (2−2)2

√
(1−7)2 + (2−3)2√

(7−1)2 + (3−2)2
√

(7−7)2 + (3−3)2

]
=

[
0

p
37p

37 0

]
.

Note that only the positive square roots were taken due to the property of distance being positive

(see the list of properties of distance functions 2.2.3). More information can be found on the

concepts of distance and matrices from most undergraduate textbooks on linear algebra [75].

Cytoscape is an application designed to visualise networks [76]. It has the ability to be au-

tomated, and third parties can create and publish plugins that others can easily use. Cytoscape

is used heavily in the bioinformatics community and so has many plugins specialised to biological

visualisation.

Scikit-learn is a Python library that creates a framework to train and test machine learn-

ing models and other machine learning related tasks [77].

PCA is an unsupervised machine learning algorithm used to reduce the dimensions of a dataset

[78]. It is often used to visualise distance matrices that have 3 or more dimensions. PCA looks at

how much effect each dimension has on the linearised variance of the dataset and attempts to

compress as much of this variance into a user-specified number of dimensions. It is known as a

lossy compression algorithm since information can be lost in the process. All PCA performed in

this thesis was done with Pythons scikit-learn.

Analysis of data that is on different orders of magnitude can result in skewed results due

to some parts of the data being significantly larger than the other and thus can lose quantitative

and qualitative effects of the dataset. Multiple methods in the scikit-learn library explicitly

require the data to be standardised. In order to normalise the scales whilst still retaining the

shape of the data, it is common in statistics and machine learning to standardise the data.

Standardising data transforms the data, x = [x1, x2, . . . , xN] → z = [z1, z2, . . . , zN], such that its

27

CHAPTER 2. METHODS

mean and standard deviation is (µ,σ)= (0,1) by using the equation

zi = xi −µ
σ

.

All standardisation in this thesis is done in Python using the sklearn.preprocessing.StandardScalar

method from scikit-learn.

Clustering is an area of unsupervised machine learning that involves organising data into

clusters [79]. DBSCAN is a method in Python’s scikit-learn library that automatically calculates

the number of clusters in data and clusters all data points using density-based clustering.

All visualisations in this thesis from Python are made using matplotlib which is a library

that enables the creation of visualisations [80]. Often this is used in combination with seaborn

which is a library that attempts to make it easier for the user to create professional-looking

visualisations from matplotlib [81].

A dendrogram is a plot that tries to illustrate clusters found by hierarchical clustering [82].

Dendrograms in this thesis are created with scikit-learn and matplotlib.

2.3 Bioinformatics

The GO resource [83, 84] aims to collate machine friendly data on genes, their products and

functions. GO is a framework to describe biology and annotations are specific instances of the use

of this structure.

KEGG [85–87] is a collection of databases related to biological knowledge on all scales from molec-

ular to organism level and include things like biochemical reactions, genes/genomes, pathways,

molecules, and organisms etc — for further reading please see [88].

The NCBI create, host and/or publish databases and tools related to biology [89].

BLAST is a series of tools by NCBI that compare DNA, RNA, or protein sequences to database

sequences and calculates the statistical significance of their similarity [90, 91]. BLAST is often

used to connect sequences with related resources like GO annotations or KEGG maps.

ClueGO is a Cytoscape plugin [92] that creates functional networks from lists of gene codes using

resources like GO annotations and KEGG maps.

28

C
H

A
P

T
E

R

3
INITIAL INVESTIGATION

An initial investigation into using the whole-cell model for genome design was per-

formed in order to assess the situation and make a plan of action to achieve our stated

goals.

Four tests were planned: (1) run 200 wild-type simulations, (2) run all single gene knockouts, (3)

test some minimal genome predictions, and (4) run a basic genetic algorithm to try to reduce the

genome and compare it to one that randomly guesses.

3.1 Initial tests

3.1.1 Wild-type simulations

It is possible to run a single life cycle of a cell using the M. genitalium whole-cell model on a

standard PC. However, it drains all the resources of the computer and takes around a day to run

Wild type comparisons

Statistic
Karr et al. Chalkley
µ σ µ σ

Life Cycle (h) 9.2820 0.8757 8.6927 0.9203
Growth (f gh−1) 1.0892 0.2198 1.0582 0.2427

Mass Doubling Time (h) 8.9357 0.7874 8.4575 0.8236
ATP Synthesis (s−1) 1426 592 1362 607

Table 3.1: Comparison of statistics between Karr and Chalkley wild type simulations where
traditional statistical notation is used to describe the mean as µ, and the standard deviation as σ.
Standard unit abbreviations are used where h is hours, f g is femtograms, and s is seconds.

29

CHAPTER 3. INITIAL INVESTIGATION

Figure 3.1: Histograms of cell life cycle lengths of thesis results (right) compared to Karr et al.[52]
(left)

a single life cycle. Due to the stochastic nature of the model, each simulation needs to be repeated

multiple times and so even the simplest experiments start to require days or even weeks - see

section 1.1.3 for more information about the model and section 2.1 for more information on how

the model was run. In order to reduce the simulation time of experiments it was decided to use

the ACRCs HPC facilities at the UoB. Two hundred wild-type simulations were run on BC3 in

order to learn how to do it and to check to see if the results are consistent with published results.

BC3 is a HPC cluster with 3,568 2.6 GHz cores with 4GB per core - a general overview of the

ACRCs facilities will be discussed in section 3.2.2

The 200 wild-type simulations were run so that comparisons could be made against the wild-type

data from Karr et al.[52] which consisted of 192 simulations. The results can be seen in table

3.1. It should be noted that the simulations automatically stop if the cell has not divided within

50,000 seconds. This means that there is not a valid life cycle length for organisms that did

not divide and so these simulations are removed from the data as done by Karr et al. Table 3.1

compares the mean (µ) and the standard deviation (σ) of the duration of the life cycle, growth

rate, mass doubling time, and ATP synthesis between our 200 wild-type simulations and the

192 wild-type simulations published by Karr et al.[52]. One can see that all results except for

life cycle length made an excellent match. Whilst the life cycle length was still a good match, the

distributions were compared to check there was nothing unexpected happening. Figure 3.1 shows

histograms of both sets of data and the distributions look sufficiently similar to satisfy concerns

30

3.1. INITIAL TESTS

Figure 3.2: A bar chart of all the genes in the M. genitalium whole-cell model by functional
product. Of the 525 genes in the model 359 code for proteins with known function, 36 code for
tRNAs, 3 code for rRNAs, 3 code for sRNAs, and 124 code for proteins with unknown function.

of divergence between the two datasets.

3.1.2 Single-gene knockout simulations

In order to learn how to perform single gene knockouts in the model all possible single gene

knockouts were performed on the cluster. This was part of the learning process but later Joshua

Rees compared results of single gene knockouts to published results (this will be discussed in

more detail later in Section 3.1.4). This experience highlighted the fact that there were three

main classes of genes in the model, protein-coding genes, RNA coding genes, and uncharacterised

genes. Figure 3.2 shows the number of genes dedicated these three categories. Of the 525 genes in

M. genitalium the whole-cell model has 359 characterised protein-coding genes, 42 RNA-coding

genes, and 124 uncharacterised protein-coding genes. The RNA-coding genes are made up of

36 tRNAs, 3 rRNAs, and 3 sRNAs. tRNA, and rRNA are used in translation and sRNA are

used in regulating expression. The uncharacterised genes are protein-coding genes and are still

coded into the genome. Their products are transcribed and translated but their products have no

functional effects in the cell. For this reason, uncharacterised genes were removed as potential

genes for deletion.

It is worth noting that the characterised proteins are not all characterised to the highest bi-

ological standards. For example, UniProt characterises less than 401 genes in M. genitalium

(this will be discussed in more detail later in the section about Joshua Rees’ work 3.1.4). For

example, constructing a constraint-based model of the metabolism of M. genitalium from genomic

31

CHAPTER 3. INITIAL INVESTIGATION

Figure 3.3: A venn diagram of the three singularly non-essential gene sets. The Karr and Glass
sets, knockout 242 and 104 genes, respectively and both sets agree that 90 of those genes are
non-essential.

data results in a network that cannot sustain a cell. In order to get around this problem Karr

et al. looked at uncharacterised genes that partially match enzymes that are needed for the

M. genitalium metabolism to function[52]. Reducing the requirement to classify gene function

will mean that there is more chance of misclassified genes in the model and may explain some

incorrectly classified single gene knockouts.

The next test was to try simulating some minimal genome predictions. Knocking out all singularly

non-essential genes (i.e. removing the gene on its own does not kill the cell see chapter 1 for

more details) has been suggested as a potential minimal genome[29] and so this was simulated

for the set of singularly non-essential genes proposed by Glass et al.[29] and Karr et al.[52]

— this is referred to as the Glass set and the Karr set. A third set was constructed by taking

all the genes that both Glass and Karr classify as singularly non-essential — this is referred

to as the Agreed set. Figure 3.3 shows a Venn diagram of the three sets of non-essential genes

and it can be seen the Karr set is the smallest genome with 242 genes knocked-out (118 after

removing the 124 uncharacterised genes), the Glass set has 104 genes knocked-out and the

Agreed set knocks-out 90 genes. Collectively we refer to them as the singularly non-essential

32

3.1. INITIAL TESTS

Figure 3.4: Time series of growth rates of the five runs of “Agreed knockouts”

minimal genome predictions.

All the genes from each of the three sets of singularly non-essential genes were knocked-out

simultaneously and simulated using the whole-cell model of M. genitalium — this was repeated 5

times for each set to take into account the stochastic nature of the model. It was found that none

of the 15 simulations produced a cell that divided. The Karr and the Glass knockout sets both

produced a zero growth rate from start to finish but interestingly the Agreed knockout set showed

a short spell of normal growth at the beginning of the simulation which then rapidly tended to

zero (see Figure 3.4). One can see that even once the decline in growth rate starts there are still

fluctuations of growth which start quite large but slowly decline with time. The initial conditions

are randomised at the beginning of the simulation and so a cell always starts with a reasonable

amount of resources other than any RNAs, proteins or macromolecular complexes that have had

their corresponding genes deleted. The fact that the Karr and Glass knockouts showed no signs

of life from beginning to end suggests that those gene sets miss so many functions that there

are very few, if any, working biological processes going on inside the cell. Conversely, the normal

initial growth, followed by “splutters” of growth from the Agreed knockout set suggest that there

are enough genes to facilitate growth but there are some molecules that are not being produced

by the cell that is available in the cell at the beginning of the simulation due to initial conditions,

however, the cell consumes these molecules until they run out and then the cell dies. An example

of this would be knocking-out a gene that codes for an enzyme that catalyses a reaction that

produces an essential metabolite. When the simulation starts the counts of the enzyme will be

33

CHAPTER 3. INITIAL INVESTIGATION

Figure 3.5: A bar chart of the number of genes from the Agreed knockout set that are used by
what functional category

set to zero and so none of the essential metabolite will be produced but the counts of the essential

metabolite will be randomly assigned at the beginning and so the cell will not die until all the

metabolite is consumed. Since all the genes are singularly non-essential and do not produce a

dividing cell the Agreed set is our first example of a low-essential combination, proving that

the model is capable of simulating low-essentiality. It should be noted that essentiality must be

considered relative to the experiment (this case is relative to the whole-cell model) which means

that both the Karr knockout set and the Agreed knockout set can be considered as low-essential

sets. The Glass set, however, contains genes that are singularly non-essential in-vivo but essential

in this model and so cannot be classed as a low-essential set relative to the model.

An attempt was made to understand what was being removed from the Agreed knockout set

biologically. Figure 3.5 shows how many genes from the Agreed knockout set were used for

specific functions using the DAVID Bioinformatics Resource [93]. It can be seen that most of the

disrupted genes are used in the membrane, DNA repair and stress response, and nucleotide and

ribonucleotide binding. The smaller groups are methyltransferase, membrane interaction and

signalling, ATP mechanisms, and metabolic processes.

Of the 90 Agreed knockouts, 4 are unknown in the model and by DAVID and several were

known in the model but uncategorised by DAVID. There could be two reasons for the discrepancy.

Firstly, online public databases are updated periodically and so can be relatively out of date and

secondly, Karr et al. inferred the function of some unknown genes when building the model (as

34

3.1. INITIAL TESTS

discussed earlier in this section).

3.1.3 Preliminary algorithms for genome reduction

In order to get an idea of the challenges involved in developing algorithms a basic attempt

to implement proof-of-concept genome reduction algorithms was performed. It was decided to

assess the performance of basic use of biological knowledge and machine learning to reduce the

whole-cell model of M. genitalium.

The genetic algorithm is a common general-purpose machine learning algorithm that attempts to

mimic evolution by natural selection to optimise some objective function. It normally starts at

generation 0 with random guessing. Then all the children a ranked by some objective function

and the best are allowed to mate to produce a new generation of children that are made up of

a random combination of the genes of both parents plus some random mutation. The children

are then ranked alongside the fittest of the previous generation and then a new set of the fittest

individuals is created to be the parents of the new generation. This is repeated until some termi-

nating event happens (e.g. a maximum number of simulations or no improvement made over a

certain number of generations[94]). This is referred to as GA. Genetic algorithms have been used

in the past to design in-silico genomes of genome-scale metabolic models[95] (see Section 1.1.3

for more information on biological models) and so it was decided to attempt genome reduction of

the whole-cell model of M. genitalium with a genetic algorithm.

Since the Agreed knockout set looked close to a viable combination so some inspiration was

taken for the analysis discussed previously in the section (see figure 3.5). It was noticed that

the genes seemed spread over categories such that categories with more genes have more genes

knocked-out than ones with fewer genes. Additionally, the genes knocked-out were more likely

to be involved in only one category. In order to test these observations, two genome reduction

algorithms were proposed. One randomly picked genes such that genes in categories involving

large numbers of genes are more likely to be picked than categories involving small amounts of

genes. The other algorithm randomly picks genes to knockout such that genes that are involved

in more different categories are less likely to be picked than genes involved in fewer categories.

These are called the AOL and the conn algorithm, respectively.

A final algorithm of randomly guessing was implemented in order to have a bench-mark to

compare the algorithms against. In order to get an idea of the probability of guessing a viable

gene combination, an initial investigation of the solution space was performed. There is no such

thing as order of gene deletion in the whole-cell model of M. genitalium and so the amount

of unordered k-combinations of the 401 characterised genes is
(401

k
)
. The most recent minimal

genome predictions from JCVI are from Glass et al. [24], that suggest a reduction of M. genitalium

35

CHAPTER 3. INITIAL INVESTIGATION

Figure 3.6: A comparison of four different genome reduction algorithms. The x-axis shows the
number gene knockouts, the y-axis shows the percentage of viable gene knockouts found by the
algorithm and the colour represents which algorithms were used. Random: random guess. AOL:
Avoid overloading any functions with knockouts. Conn: Avoid highly connected genes. GA: the
first generation of a genetic algorithm which was seeded by the viable sets found by Random.
Random, AOL, and Conn only look for gene knockout sets of between 2 and 5 genes but this is
not controllable for GA. GA attempted 7KO, 8KO, and 9KO sets but did not find any viable sets.

of around 100 genes. If one assumes that there is only one minimal genome and that there is a

linear decay¬ to that point from the 118 singularly non-essential genes in the model then one

can calculate the size of the solution space, estimate the number of viable combinations and

thus the probability of randomly guessing a viable combination for each size knockout. Since the

number of viable combinations linearly decreases whilst the potential solution space increases

combinatorially it is expected that the probability of randomly picking a viable combination to

rapidly diminish to zero. Using the linear model, y = −1.18x+119.18 (constants to 2 d.p.) to

estimate the number of viable combinations, y, given the size of the knockout set, x and
(401

x
)

to

calculate the size of the solution space at that knockout size it can be seen that the probability of

randomly picking a viable 1-gene, 2-gene, 5-gene, and 10-gene knockout set is ∼ 29%, ∼ 0.15%,

∼ 1×10−7%, ∼ 4×10−16%, respectively. Therefore, if the random algorithm were to randomly pick

a knockout size from a uniform distribution and then pick a random combination uniformly then

it would be highly unlikely to find a viable combination in a reasonable amount of simulations.

For this reason, the random algorithm was set to only look for gene knockout sets between 2 and

5 genes. The same thing was done for the AOL and Conn but could not be done for the genetic

algorithm since the knockout set size is determined by evolution.

¬We actually expect the number of viable combinations to increase and then decrease rapidly but do not have data
to estimate the position of the maximum and so use linear regression to keep things simple.

36

3.1. INITIAL TESTS

More details can be seen on the implementation of the algorithms in the appendix section

A.1. All four algorithms were tested. The three algorithms that only have one generation were

run so that roughly 200-gene knockouts were simulated for each knockout size resulting in

800 simulations. The ga algorithm ran 800 random simulations for generation 0 and then 200

simulations per generation thereafter. Due to the length of simulation time generation 0 used the

results from the random algorithm which produced 36 viable genomes. Figure 3.6 compares the

first generation of GA to the results of AOL, Conn and the random algorithm. The Conn algorithm

performs slightly worse than randomly guessing which might suggest that highly connected genes

should be targeted rather than avoided. The AOL algorithm performs significantly better than

randomly guessing but by 5-gene knockouts any advantage is overshadowed by the explosion

in the size of the solution space. So spreading knockouts over functions appears to be a good

strategy from genome reduction although it is probably not powerful enough on its own to find

the minimal genome. The genetic algorithm massively outperformed the other algorithms in

every knockout size with 2-4-gene knockouts over 70% and 5-gene knockouts managing over

40% success rate. The algorithm also went further and found 6-gene knockouts and whilst it

attempted some 7-9-gene knockouts it was unable to find any viable ones. Whilst the genetic

algorithm clearly shows superior results, it should be noted that generation 1 would not have

been possible without generation 0 which was taken from the random algorithms results and so

is not a completely fair comparison. It does, however, highlight the main advantage of the genetic

algorithm which is its ability to learn. Whilst the genetic algorithm is able to use memory to

iteratively improve results the other algorithms are stuck with a static concept that cannot learn

or adapt with new information.

Figure 3.7 takes a look at all the generations performed by the genetic algorithm and it can

be seen that the algorithm was able to discover viable 10-gene knockout combinations. Earlier

in this section we estimated the probability of randomly guessing a viable 10-gene knockout

combination to be ∼ 4×10−16% which as a probability is ∼ 4×10−18 and so there is a ∼ 0% chance

of randomly guessing at least one viable 10-gene knockout combination in 2000 trials. Whilst

the general trend is to find larger and larger knockout sets one can see that a new generation

does not guarantee a larger viable knockout set and in fact, the first viable 10-gene knockout

set was found in generation 3. The algorithm reduced the genome by 10 genes in 7 generations

(including the generation 0) giving a reduction rate of 10
6 = 5

3 genes per generation. If one only

counts generations until the first instance of the maximum generation (i.e. the first viable 10-

gene knockout set was found in generation 3), then it reduced the genome by 10
4 = 5

2 genes per

Whilst this probability is strictly greater than zero, it is so small that Python returned exactly 0 due to rounding
errors caused by the limitations of standard floating-point arithmetic in computers. Assuming a binomial probability
distribution then the probability of finding no 10-gene knockouts in 2,000 trials is

(2000
0

)× (4×10−18)0 × (1−4×
10−18)2000 ≈ 0.

37

CHAPTER 3. INITIAL INVESTIGATION

Figure 3.7: The per generation progression of the genetic algorithm where the top of each bar
shows the maximum size of viable gene knockouts found and the bottom of the bar shows the
minimum size of viable gene knockouts found for that generation. The point that connects each
bar is simply the midpoint between the maximum and minimum.

generation. Furthermore, if generation 0 is not included then these statistics become, 5
6 and 5

3 ,

respectively.

3.1.4 Joshua Rees

Joshua Rees is a PhD student who joined the genome design group after the initial work de-

scribed in this section. Joshua and I worked closely in some areas and tried to keep our results

comparable and so our contributions are intertwined. As a result, this section is dedicated to

some of the work done by Joshua that will need to be referenced at some point in the thesis. After

sharing my code and teaching Rees how to run gene knockout experiments on BC3 and BG he set

out to extend my tests of theoretical predictions. It was found that minimal genome predictions

were normally made on protein-coding genes and so it was decided to reduce our search space

from 401 characterised genes to 359 characterised protein-coding genes (i.e. 42 RNA-coding genes

were excluded from the set of genes to potentially knockout). It was found that one protein-coding

gene MG_469 often crashed the simulation when knocked-out and so was removed from my

search set, however, was left in Rees’ set. Rees then performed single gene knockouts that were

mostly in agreement with Karr et al.[52]. The disagreements looked like they were caused by

single gene knockouts that produced inconsistent phenotypes; for a spreadsheet of the data

please see section A.4. Rees then collected 13 minimal genome predictions from the literature and

each set will be named after the lead author of the paper that the prediction was published in

(small caps are used to signify the difference between my initial tests and Rees’s more extensive

38

3.1. INITIAL TESTS

Figure 3.8: A bar chart of the number of gene knockouts required to test each of the minimal
gene set predictions.

tests). The names of the sets with references to publications are the koonin[96], hutchinson[97],

tomita[96], glass[29], church[98], atlas[99], huang[99], karr[52], gil04[100], and the gil 2014[99]

sets. In addition to this, he created the agreed100 set and the agreed90 set which used the same

concept as my agreed set except it took into account all the new predictions and only used the

characterised protein-coding genes - the 100 and 90 are for 100% or 90% agreement, respectively.

In the agreed100 set every prediction has to agree that a gene is non-essential to be knocked-out,

in the latter set only 90% of the predictions have to agree that a gene is non-essential to knock it

out.

Figure 3.8 shows that the number of gene knockouts predicted by each set varies greatly. The

tomita, church, and huang sets had the most with 230 - 270-gene knockouts. There were between

170 - 190 in the atlas, gil04, and gil14 sets. Additionally, the karr and koonin sets have between

120 and 130-gene knockouts. Three of the smallest sets were the hutchison, glass, and agreed90

sets which have between 40 - 60-gene knockouts. However, the smallest number of knockouts

required is the agreed100 set with only 18.

Rees, simulated all these sets and found that none produced a viable cell and is currently

writing a paper with all the work we have done on the historical predictions - I will be second

author on the paper.

Although I had already classified the genes of M. genitalium using DAVID ontology GO terms it

39

CHAPTER 3. INITIAL INVESTIGATION

was done under standard conditions using multiple databases. Rees reclassified them using only

the UniProt database as it has the most prestige. This thesis refers to my classifications unless

otherwise stated. In order to get more information of the classifications please see section 6.1.

3.2 Knowledge consolidation

The initial tests performed in section 3.1 illustrated that traditional computational tools would

not be able to cope with the large amount of data and the long-running time of the M. genitalium

whole-cell model. The next section is dedicated to trying to define the problems and matching

them to our resources with a plan of how to make them work together.

3.2.1 Estimating resource usage

It is impossible to know our exact resource usage a priori to doing the research and so first an

upper and lower bound was proposed as the best case and worst-case scenario.

The only known way to guarantee that the minimal genome is found in a finite amount of

time is to try every combination of gene knockouts and record the smallest viable genome (or

equivalently the largest gene knockout set). This is known as a brute force method and will be our

worst-case scenario. The whole-cell model of M. genitalium has no order of gene deletion which

means that the amount of simulations is the number of unordered combinations of 401 genes. So

the upper bound on the number of simulations needed is

Nupper =
401∑
x=1

[(
401

x

)]
=∼ 5.164×10120.

At 200 simulations a generation it would take ∼ 2.582×10118 generations to calculate every

single gene combination.

The initial tests in section 3.1 showed that the genetic algorithm reduced the genome by 5
6

genes per generation. It is worth noting that multiple statistics were provided but the slowest

statistic was picked because the convergence to the minimal genome is likely to be logarithmic

since it becomes harder and harder to find smaller genomes as there are less and less to find

and so this early sample is likely to overestimate the overall speed of convergence (i.e. we have

assumed a linear rather than logarithmic convergence). For this reason, the slowest rate was

picked to reduce the overestimation. Additionally, the majority of the algorithm is generation 1 to

the optimal solution and so generation 0 is not very representative of the overall convergence

rate. The most recent minimal genome predictions from Glass et al. at JCVI estimate that one

would need to knockout around 100 genes from M. genitalium to produce a minimal cell. Using

this prediction it was estimated that the genetic algorithm would need ∼ 120® generations to
®100× 6

5 = 120

40

3.2. KNOWLEDGE CONSOLIDATION

find the minimal genome. 200 simulations per generation result in a total of Nlower =∼ 24,000

simulations required to find the minimal gene set as our lower bound.

The average size of a wild-type simulation was estimated at 239MBs (see section A.6) and

so the upper and lower bounds of our storage requirements are Slower = 5.736TBs and Supper =∼
1.239×10119TBs.

Initial development was performed on BC3 and so all data relates to BC3, however it should be

noted that later it was found out that BG significantly outperforms BC3 in computation time.

The quickest simulation ran in about 5 hours and the walltime is set to 35 hours. On occa-

sion, a simulation can take longer than 35 hours but since the standard walltime for a script is

35 hours it is not possible to know how much longer those simulations would go on for since the

simulation is automatically cancelled at 35 hours. Since the length of a generation is determined

by the longest simulation, it was decided that it is rare enough that the loss of information is less

important than the increase in generation time. It is also worth noting that the only other thing

that effects generation time is how busy the queue is but it is not easy to account for this without

doing a very complex analysis of queuing times¯ and is excluded from our estimate. Since 200

simulations normally resulted in at least one simulation taking close to 35 hours°, the estimated

time of a generation is 35 hours.

Having calculated the generation time and the number of generations it is easy to see that

the lower bound on simulation time to find the minimal genome is Tlower = 35×120= 4,200 hours

which is just under 6 months. The upper bound is Tupper = 35×∼ 2.582×10118 =∼ 9.039×10119

hours which is ∼ 1.031×10116 years.

3.2.2 Available resources

Section 3.2.1 showed that the lower bound on resources would need TBs data and half a years

worth of simulations not including research and development and an upper bound that in practi-

cal terms may as well need infinite resources and so efforts were made to maximise the amount

of resources at our disposal.

Fortunately access to three high performance computing clusters were obtained as well as

9 TBs of temporary disk space plus 10 TBs of long term back-up. The following describes the

resources acquired and credits any people or groups that granted it to us.

¯BC3s queuing system takes into account everything that is in the queue at the time, how much resources you
and everyone requires. It takes into account how much every individual has been using the cluster and how much
each group and department have been using the cluster to ensure fair usage.

°This is taken from anecdotal observations.

41

CHAPTER 3. INITIAL INVESTIGATION

Figure 3.9: Used resources and how they are connected. BC3: BlueCrystal III — HPC Cluster.
BG: BlueGem — HPC cluster. C3DDB: Commonwealth Computational Cloud for Data Driven
Biology. Hub is an old PC that has been re-purposed to act as a server that controls everything.
RDSF is a long term storage facility that is secure and has a distributed backup system — it is for
storage only and is only accessible from the BC3 login-nodes. Flex1 is a disk with rapid read/write
capabilities for use with HPC cluster compute nodes. It is more resilient to failure than normal
disk drives but is not infallible and is also not backed up. In addition, this is officially classed as
temporary storage and the 9TBs can be reduced at any time. Hard drive is the standard hard
drive that comes with a PC and it belongs to the hub. The fast connections are the Universities
fast intranet connections. The slow connections are connections that have to go through the
internet.

HPC clusters:

• BlueCrystal Phase III (BC3),ACRC, UoB: 223 nodes with 16 x 2.6 GHz SandyBridge cores,

4GB/core and a 1TB SATA disk. Plus 18 high-memory nodes (256GB RAM), 100 nodes that

host dual GPGPUs, and 76 NVIDIA K20 on 38 nodes.

• BlueGem (BG), BrisSynBio, ACRC, UoB: 900 Intel Haswell CPU cores, and 8 nVidia K80

GPUs spread over 53 compute nodes and 4 GPU nodes.

• Commonwealth Computational Cloud for Data Driven Biology (C3DDB): Lu Lab, MIT

through our collaborator Oliver Purcell (see section 1.4 for more information on the GDG

42

3.2. KNOWLEDGE CONSOLIDATION

Figure 3.10: RDSF is designed to move bulk data on and off the disk but not for computation.
In order to test this 100GBs of data was created in one text file. This was then repeated three
more times except with 100GBs of data in multiple 1GB, 1MB, and 10KB files. The data was
then transferred from the hub to RDSF and the y-axis gives the amount of time the data took to
transfer.

team): 133 compute nodes with a total of 7200 cores with 61 terabytes of main memory,

several different high-memory nodes, and 32 nodes dedicated to GPU accelerators.

Personal Computers:

• Hub: BCCS, UoB. This is an old desktop PC which I repurposed as a server that could

monitor or control any processes that take longer than what is allowed on a cluster.

Disk drives:

• RDSF (10 TB): ACRC, UoB. This is a disk designed for long term storage only. It is resilient

to faults and is backed up in 2 different locations. It does not have a fast read/write speed

(relative to disks like flex1) and is only accessible through a BC3 login node (i.e. no compute

nodes are allowed to access this drive).

• Flex1 (9 TB): BrisSynBio, ACRC, UoB. This is disk designed for direct contact with HPC

cluster compute nodes and has fast read/write speeds. Whilst it is resilient to faults it is

not backed up and the administrators only allow it for short term storage. In addition to

this, the 9 TB of space can be reduced at any time.

• Scratch (1 TB): MIT. This is disk designed for direct contact with HPC cluster compute

nodes and has fast read/write speeds. Whilst it is resilient to faults it is not backed up and

the administrators only allow it for short term storage.

43

CHAPTER 3. INITIAL INVESTIGATION

Figure 3.9 shows how all these resources are connected. This set-up will require bespoke tools

if we are to utilise them to their maximum. It can be seen that the only way to access data

from RDSF is to work from BC3. Also, note that all the resources are connected with high speed

connections except the C3DDB which is limited by the speed of the internet. There is a very large

difference in transfer speeds and so when talking about transferring data in the order of TBs this

is a huge disadvantage to using the C3DDB cluster. In addition to this, it does not have direct

access to the Flex1 disk drive which is likely to be the location of any databases which should

be accessible to all members of the genome design group. All the HPC clusters have maximum

simulation times of two months which is likely to cause problems due to our estimated lower

bound being almost 6 months.

It should be noted that RDSF is only suitable for long term back-up and so cannot be used

to store active data. It is designed to be fast at transferring bulk data and slow at small file read

and write. Due to our large storage requirements, it is likely that data will need to be moved

around fairly regularly which may have an effect on the way we chose to store data. In order to

quantify this effect a test was created where 100GBs of data was created in the form of 1 100GBs

files, or multiple 1GB, 1MB, or 10KB files and then transferred from the Hub to RDSFand timed.

Figure 3.10 shows the time it took for the 100GBs of data to transfer and it can be seen that

transferring large files is much better than transferring lots of small files. However, most of the

performance benefit is gained at around GB file sizes.

3.3 Mathematical representations of a genome

Sometimes during this thesis it will be useful to think of the M. genitalium genome mathemati-

cally. In this section, we define a mathematical formalism with which to think about genomes

that will be used throughout the thesis. This section is built from first principles that mostly use

set theory that can be found in any introductory textbook for undergraduates. Curly braces, {},

will be used to denote sets. Such that and and will be denoted with a ‘|’, and a ‘∧’, respectively,

within set generators.

There are 525 genes in M. genitalium and so the set of all these genes is Γ= {γ1,γ2, . . . ,γ525}. γi

can be any representation of a gene but the simplest and most intuitive representation is a gene

code.

An individual can be defined by it’s genome, Θ, which is represented as a set of binary variables

Θ= {θ1,θ2, . . . ,θ525} where each binary variable θi is equal to 0 if γi is knocked-out and or equal to

1 if γi is present in the organism. The wild-type genome is defined as A = {θ1,θ2, . . . ,θ525} where

θi = 1 ∀i.

44

3.3. MATHEMATICAL REPRESENTATIONS OF A GENOME

Since only one organism is being considered the whole genome, A, remains constant and thus it is

possible to define a genome by the genes that are knocked-out, K = {κ1,κ2, . . . ,κN }, and the genes

that are present, Υ= {υ1,υ2, . . . ,υM}, where κ,υ ∈Γ. It will always be able to change between the

genome, knockout, and present representations. For a given individual Θi with corresponding

knockouts, K i, and present genes, Υi, then the set of the knockouts combined with the present

genes is always the set of all genes, K i ∪Υi = Γ ∀i and there can never be any genes shared

between them, K i ∩Υi =; ∀i.

This gives three equivalent representations of an individual, 1. the genome representation,

Θ, 2. the knockout representation, K , and 3. the present representation, Υ. Since Γ is constant it

is also possible to retrieve the knockout set from the present set of an individual and vice versa.

In order to switch between the two representations the difference operator is defined as

(3.1) ∆(χ) :=Γ−χ

where the knockout and present sets are collectively referred to as knock sets or the knock

representations or symbolically as χ. It’s easy to see that ∆(K i)=Υi and ∆(Υi)= K i ∀i.

Furthermore one can convert from genome representation to knock representations. The conver-

sion operator is defined as

(3.2) ω(θi) := γi.

The inverse of this operator depends on whether the gene was present or knocked-out so given

the ith gene from individual, Θ j, then

(3.3) ω−1(γi)=
0, ∀γi ∈ K j.

1, ∀γi ∈Υ j.

Using the conversion operator the genome representation can be converted into knock represen-

tations by defining the transform operator

(3.4) Ω(Θ j) :=
K j = {ω(θi) | (θi ∈Θ j)∧ (θi = 0)}

Υ j = {ω(θi) | (θi ∈Θ j)∧ (θi = 1)}

and vice versa with it’s inverse

(3.5) Ω−1(χ j) := {θi =ω−1(γi) | γi ∈Γ}.

45

CHAPTER 3. INITIAL INVESTIGATION

It can be useful to know how many genes are in a genome or how many genes have been

knocked out of a genome. The number of genes in a genome or knocked out of a genome is simply

the cardinality of the present and knockout sets, respectively. The number of genes in genome

representation is the same as the present representation. Thus we define

‖K i‖ =
∑

κ j∈K i

[1]

‖Υi‖ =
∑

υ j∈Υi

[1]

‖Θi‖ =
525∑
k=1

[θk]

(3.6)

where ‖Θi‖ = ‖Υi‖.

This section should have illustrated the three representations of an organism’s genome, then

showed that they are equivalent, how to convert between the representations, and how genome

size and set cardinality is related and defined.

3.4 Discussion

This chapter has shown preliminary tests done on the whole-cell model of M. genitalium. After

getting the model working for wild-type and gene knockout experiments Rees and I showed that

minimal genome predictions in the literature produced non-viable cells according to the whole-cell

model of M. genitalium. Some prototype genome reduction algorithms were tested and it showed

that whilst biological knowledge and machine learning can help pick viable gene knockout com-

binations the benefits seem to be overshadowed adverse properties in the solution space. The

size of the solution space explodes combinatorially whilst the number of viable genomes reduces

as the number of knockouts increase, making it extremely hard to find viable genomes with

large numbers of genes knocked-out. Algorithms with memory and learning showed the most

promise, as demonstrated by the genetic algorithm and so this was used to estimate the amount

of resources that were likely to be needed. The best-case scenario suggested that 6 months of

simulation time and TBs of data storage would be needed - not including development time. The

worst-case scenario would require an infeasible amount of resources. Realising the scale of the

task, time was spent acquiring access to as much computing resources as possible.

It was found that the longest simulations allowed on any of the HPC clusters was only 2 months

which would not likely be enough time to find a minimal genome, given our estimations and

there might be just enough disk storage for one genome reduction experiment. To overcome these

problems it was decided to try and find a way to run the simulations on a cluster but managing

them from off the cluster in an automated fashion. The idea of a multi-generation algorithm was

utilised such that a standard PC would manage an algorithm and submit simulations to a cluster

46

3.4. DISCUSSION

one generation at a time so that the results from each generation can be fed back to the PC so

that it can learn to improve the next generation. This structure might also enable the integration

of bespoke data processing/storage capabilities and the use of multiple clusters. This structure

would require a lot of development and so in order to maximise the value created per unit of work

the code would need to be easily adaptable to different clusters, models, design objectives and

design algorithms.

The final section of the chapter presents a basic mathematical representation of genomes. As the

thesis progresses a quantitative representation is useful to explain genome design strategies and

processes in the code.

47

C
H

A
P

T
E

R

4
GENOME DESIGN SUITE

In Chapter 3 we showed that the genetic algorithm would need at least half a year of

simulation time, the capability of TBs of data storage/processing, and lots of research and

development into how to best find a minimal gene set given the combinatorial explosion

of gene knockout sets. It was decided to create a framework with which to run simulations

that are too big for a cluster and to potentially split it across multiple clusters. This way it is

possible to avoid the maximum simulation time on clusters and also increase the number of

simulations run per unit time. This framework will enable us to run in-silico genome optimisation

experiments but will produce large amounts of data and so a serious data storage solution needs

to be designed and integrated into our suite of tools. Additionally, analysis and visualisation of

such large datasets will be non-trivial, and so tools will need to be developed and integrated into

the suite of tools. Nascent fields tend to evolve fast, and due to the scale of the challenge, we do

not want to leave ourselves vulnerable to rapid change. In order to progress as the field evolves,

our suite of tools should be as general as possible so that they can be easily adapted to different

optimisation goals, optimisation algorithms, computer models, and computer clusters. Since the

purpose of this suite of tools is to enable the rational design of in-silico genomes, it will be called

the genome design suite. Some concepts in this chapter will be explained mathematically using

the mathematical formalism of genomes described in section 3.3.

The purpose of this Chapter is to illustrate the code and the structure of the GDS. Much of

the value of the GDS comes from the fact that it is designed to enable massive in-silico ex-

periments where it is easy to change the algorithms, models or clusters used. To see how this

generalisation is enabled requires an analysis of the code structure and additionally technical

details will be discussed. Section 5.1 will discuss the theory behind the algorithms implemented

49

CHAPTER 4. GENOME DESIGN SUITE

Figure 4.1: This shows how the three fundamental processes interact to design an in-silico
genome. Process-1 is labelled as ‘algorithm’, process-2 is labelled as ‘job manager’, and process-3
is labelled as ‘computer communication’.

and their results and so these two chapters are closely related and show complimentary perspec-

tives.

In order to create a suite of libraries to enable in-silico genome design three fundamental

processes were defined. 1. Decide what simulations to run next in-order to optimise a specified

function and learn from previous simulations if there is any. 2. Organise simulations into batches

and submit them to the computer cluster(s). Monitor all running jobs and when the jobs are

finished perform any necessary tasks like data processing and updating databases. 3. Perform

fundamental tasks on a remote computer like creating files, running code, and checking disk

usage. Figure 4.1 shows how these processes interact to create an iterative process that learns

over time. Furthermore, if coded correctly these fundamental processes can act as an abstract

template enabling versatility of algorithms, models and HPC clusters.

These three processes were set as the fundamental sections of the code. It was decided to start

with abstract classes as much as possible and use them to create a solid framework so that

they can be generalised and adapted for different algorithms, models and computer clusters.

However, since most HPC clusters run on Linux which is my personal preference of operating

system, an assumption that all computers would run on a Linux operating system was made. The

fundamental processes are coded into the following Python modules:

• Process-1, or algorithms, is in the multigeneration_algorithm.py module.

50

4.1. HARDWARE/SOFTWARE REQUIREMENTS

• Process-2, or job manager, is in the batch_jobs.py module.

• Process-3, or computer communication, is in the base_connections.py and connections.py

modules.

It was decided that abstract classes would be used for the computer communication and the

algorithms code. These classes would define the structure of any computer connection and any

algorithm. The job manager code would assume that all algorithms and connections would follow

the said structure thus making an abstract class unnecessary.

4.1 Hardware/software requirements

The Hub and all three computer clusters run on some form of Linux, and that is unlikely to

change for the foreseeable future. Additionally, developing software on multiple operating systems

is very time-consuming and not advisable in the proof-of-concept stage of development. For these

reasons the GDS was developed assuming that all computers involved run on Linux. Additionally,

it is assumed that all computers have SSH installed and set up and that the local computer (i.e.

the users equivalent of Hub) has its .ssh/config file configured so that it is possible to access all

computer clusters without needing human interaction (e.g. having to type a password).

Throughout this thesis any related examples will assume the following .shh/config file.

Host ssh_al ias

User user_name

HostName address_to_remote_computer

Ident i tyFi le / home / user_name / . ssh / key_name

This setup means that in a Linux terminal on the local machine it is possible to connect to

the remote machine, without manually entering a password, using the following command

ssh ssh_alias .

4.2 Computer communication

Computer communications are kept in two modules, base_connection and connections . The

former holds any abstract classes, and the latter holds the classes for specific computer connec-

tions. Figure 4.2 shows each class in these two modules, their class variables and methods, and

how they inherit from one another.

4.2.1 The Connection class

The Connection class is the only class in the base_connection module and is the abstract class

that defines the core structure of all connection classes. All the child classes that inherit from

51

CHAPTER 4. GENOME DESIGN SUITE

52

4.2. COMPUTER COMMUNICATION

this class can be thought of as a portal to another computer.

Initialisation:

The Connection class is initialised with attributes: • The username of the account on the remote

computer. • The SSH alias defined in section 4.1. • The path to the encryption key required to

login as said user — see section 4.1. • The forename of the user. • The surname of the user. • The

user’s email.

Instance methods:

The createFile method turns a list of text into a file on the local computer and sets the file

permissions if specified.

The rsyncFile method transfers files either locally or to the remote computer. This method

uses the rsync function commonly found on Linux computers and can be installed with

apt-get install rsync on Debian-based systems or yum install rsync on RPM-based systems.

The convertKosAndNamesToFile method is specific to gene knockout experiments with the whole-

cell model of M. genitalium. It creates two files, one that contains all the sets of gene knockouts

and one that contains a name for each set. Both files are ordered in the same way, so line 1 of the

names file gives the name of the knockout set on line 1 of the gene knockout sets file.

The sendCommand method takes a list of shell commands (in this thesis always BASH) commands

and runs them on the remote computer. It returns a dictionary with the stdout , stderr and

return_code .

Static methods:

The checkSuccess method takes a function that needs to make a remote connection with a set of

arguments and executes that function in a while loop until the return code signifies success.

Having it loop normally can potentially overload the login server of the remote computer (like

a DoS attack attack), and so this waits a certain duration of time before trying again. It starts

relatively frequent and slows down, starting with every three seconds and ending by checking

once every 24 hours. Once the function returns a successful return code, checkSuccess returns

Figure 4.2 (preceding page): This UML diagram has a box for each class that has the class name
followed by class variables followed by class methods. The arrows go from a child class to the
parent class that it is inheriting from. Here one can see that the abstract class Connection is the
parent class for all connection objects. The arrows pointing to themselves is because the BC3 and
BG classes have instances of themselves in-order to standardise the way in which a connection
connects to the database — see section 4.2.2.

53

CHAPTER 4. GENOME DESIGN SUITE

the output with a successful return code. If the function does not return a successful return code

within 7 days, then it exits with a return code of 13.

Abstract methods:

checkQueue and checkDiskUsage are methods that will often be used but vary from computer to

computer. When creating a child class for a new computer to connect to, it is advised that these

methods are properly overloaded because they are made abstract so that additional software

that uses the framework can assume that this functionality is available. If a method(s) is not

available, then compilation or potentially dangerous runtime errors may occur. However, anyone

that does not wish to add this or the computer does not have the functionality can create the

function name and use pass . The checkQueue method checks the queue on a remote cluster

and the checkDiskUsage returns disk usage statistics of the remote computer.

4.2.2 Child classes of the Connection class

There are four child classes that inherit from the Connection class, the Bc3 , Bg , C3ddb ,

and C3ddbWithOutScratch classes and act as a portal into the BC3, BG, and C3DDB clusters,

respectively. This means that they have access to all the methods and variables from connection

and will also need to overload any abstract methods. It is worth noting that almost all child class

attributes should be the same so that a program using them always knows how to perform a

specific task no matter what cluster it is connecting to. The only difference is the way that a

specific task is performed on a specific computer. For example, the createFile method from

the Connection class can be implemented in the Connection class because Python can create

a file on any operating system in one single way. However, the checkQueue method must be

implemented in the child classes because the queuing system depends on what cluster one is

trying to connect to. Only the child attributes will be discussed to avoid repetition because the

Connection class (i.e. the parent class) was described in section 4.2.1. Since the child attributes

all perform the same function, just implemented differently, all the child class attributes will

be discussed in one since they all have the same explanation except with slight differences in

implementation. In order to see details of implementation, the reader is advised to view the source

code supplied in the supplementary information (see base_connection.py and connections.py).

Initialisation:

The child Connection classes have the additional initialisation variables: • A path to a directory

that all simulation output should be saved in. • A path to a directory that all files/data needed to

submit jobs to the cluster should be saved in. • A path to the WholeCell-master directory that is

necessary to run simulations using the whole-cell model of M. genitalium.

Abstract methods:

54

4.2. COMPUTER COMMUNICATION

These classes do not dictate any abstract methods however the Connection class dictates that

all child classes must have the checkQueue and checkDiskUsage methods.

The checkQueue method takes a job number as a parameter and returns all entries in the

queuing system that have that specified job number. The TORQUE and SLURM clusters use

different queuing systems and so the checkQueue methods are the same for the SLURM clusters

(i.e. BG and C3DDB) but different for the TORQUE clusters (i.e. BC3).

The checkDiskUsage method returns the user’s disk usage. BC3 has a custom command,

pan_quota , for this and so uses this command to return the disk available and disk used

and percentage used. To implement this on the SLURM clusters is not straight forward because

there is no equivalent to pan_quota and using multiple shared file systems makes it more

complicated than it would be on a normal PC. With that said, it would be possible to implement

this, but at present, there is no pressing need for it. In the case of needing to implement a method

because it is defined in as an abstract method in the parent class one can simply create the child

instance method with only the pass command¬.

Instance methods:

The createStandardKoSubmissionScript is a method that creates an executable TORQUE or

SLURM submission script (BC3 or BG and C3DDB, respectively) that will submit a batch of gene

knockout simulations using the whole-cell model of M. genitalium. All the method needs to know

is • The local path and file name of the submission script that it will create. • The name of the

job that will be sent to the cluster queuing system. • The number of gene knockout sets in this

batch of jobs. • The remote path and file name of a file that contains all the names of each of the

gene knockout sets. • The remote path and file name of a file that contains all the gene codes of

each of the gene knockout sets. ® • The number of times that the user wishes each gene knockout

set to be repeated. • The path to the WholeCell-master directory. • The path that the simulation

data output will be stored. • The path and file name that the simulation’s standard out should be

saved to. • The path and file name that the simulation’s standard error should be saved to. The

method checks that an unrealistic amount of simulations has not been given and then splits the

simulations across array jobs and cores within an array job such that it gets through the cluster

queue as quickly as possible.

¬This is currently an acceptable solution because nothing that uses the GDS calls this method. However, in the
future, this may change, and so any instances from this class used in this hypothetical future code will break or create
a dangerous bug in the code.

These names must be unique and must be in the same order as the gene knockout sets file — there is one name
per line.

®These sets of codes must be in the same order as the gene knockout sets names file — there is one comma-
separated set of gene codes per line.

55

CHAPTER 4. GENOME DESIGN SUITE

When a job is submitted to a cluster queuing system a job number is normally returned to

standard out. The getJobIdFromSubStdOut method takes the number from the standard out and

remembers it so that the job’s progress can be monitored.

The file static.db is an SQLite3 database that acts as the central authority on data re-

lated to M. genitalium and its whole-cell model (see section 4.5.1). Children of the Connection

class will want to query this database for various reasons, and so there are four instance methods

that relate to this.

There is a Python library in the same directory as static.db that makes querying the database

easier. If one wants to send a raw SQLite3 query to static.db then the sendSqlToStaticDb

method will do this and return the result. If one wants to use any of the other functions in the

library, then the useStaticDbFunction can be used.

The convertGeneCodeToId method converts a tuple of gene codes into gene IDs.

The getGeneInfo method takes a tuple of gene codes and returns a dictionary containing

the following attributes taken from the supplimentary information of [52] • gene code • gene type

(e.g. mRNA or rRNA etc) • gene name • gene symbol • functional unit of gene product • Karr2012

deletion phenotype • essential in model according to • essential in experiment according to.

4.3 Job manager

The job manager libraries are kept in one module batch_jobs which contains two classes,

JobSubmission and ManageSubmission . The job manager libraries do not have a rigid structure

defined by abstract classes since this structure is defined in the computer communication and

the algorithm libraries. The UML diagram of the batch_jobs module can be seen in figure 4.3.

Whilst there is no inheritance structure between the two classes, it is important to note that they

are intricately linked by the fact that the ManageSubmission class requires an instance of the

JobSubmission class in order to be created.

4.3.1 The JobSubmission class

The JobSubmission class holds everything needed to submit a batch of jobs to a computer cluster.

Initialisation:

The class needs to be initialised with a • name for the submission. • A child class that inherits

from the Connection class of the base_connection module. • A Python dictionary whose keys

are unique names and the values are tuples of genes codes where each code represents a gene to

56

4.3. JOB MANAGER

Figure 4.3: Class diagram for the batch_jobs.py module shows their arguments and methods.
There are three classes that are not related by inheritance.

knockout. • A base path on the remote computer that the simulation data should be saved in. • A

base path on the remote computer that the simulation standard error files should be saved. • A

base path on the remote computer that the simulation standard out files should be saved. • A

base path on the remote computer that the files needed to run the simulations should be saved.

• The number of times the user wants each gene knockout set to be repeated. • A path to the

WholeCell-master directory where the whole-cell model of M. genitalium is stored.

Instance methods:

The createUniqueJobName method creates a unique name so that files can be created and stored

locally. It needs to be unique because an algorithm instance may want to submit more jobs

than can be handled in one JobSubmission instance and so there will be multiple very similar

instances running at the same. In order to make sure that similar instances do not interfere with

each other’s files, a directory name that is guaranteed to be unique is needed.

Files often need to be created and transferred to the remote computer before a job can be

submitted to the cluster. prepareForSubmission is the method that does this.

57

CHAPTER 4. GENOME DESIGN SUITE

The submitJobToCluster method, submits the job to the cluster, records the time and job number,

and then deletes any temporary files created locally for the submission.

4.3.2 The ManageSubmission class

The ManageSubmission class submits a JobSubmission instance to a cluster and then monitors

its progress in the queue. When the job is finished it converts the raw simulation output into

Pandas DataFrames, updates ko.db , and remembers the average growth rate and division time

of all the simulations.

Initialisation:

The class needs to be initialised with • an instance of the JobSubmission class. • Sometimes an

algorithm needs to pass information specific to only that algorithm, and so there is a class variable

that this can be passed to if necessary. • The class automatically submits the job contained in the

JobSubmission instance which can be a problem for unit testing and so a variable is passed to

tell the class whether to initialise normally or in test mode.

Instance methods:

The prepareDictForKoDbSubmission method creates a dictionary that is designed to be recognised

by the ko_db module and so can be used to update the ko.db database. This returns the

dictionary that will be submitted to the database, but all data related to the simulations in the

job submission will not be filled in yet — it will only contain the common data like the details of

the person who submitted the job, the details about the cluster, and the time that the job was

submitted.

The prepareSimulationDictForKoDbSubmission method goes to the directory of a specific simu-

lation on the remote computer to open the Pandas DataFrame, extract the average growth rate

and the time step when the pinchedDiamter variable was first zero (i.e. the time of division —

if the cell did not divide then it returns the number zero). It then returns a dictionary where

the key is the gene knockout set that defines the genome of the organism, and the value is the

average growth rate and division time of that organism.

The monitorSubmission method watches every simulation related to the job submission as

it progresses through the queuing system by checking the queue after the first hour followed by

15-minute intervals after that. Occasionally some jobs might get lost in the queuing system or the

simulation crashes, and this method will account for these events. When this method finds that

simulations have finished, it converts the data from .mat files to Pandas DataFrames stored in

.pickle files — this is done in parallel using ProcessPoolExecutor from the concurrent.futures

58

4.4. ALGORITHMS

module. As each simulation finishes and the data is converted, the average growth rate and

division time is also retrieved into a dictionary using the prepareSimulationDictForKoDbSubmission

method — these are added to a dictionary that is stored as a class variable and so once all the

simulations are completed the relevant data can be found all in one place. When the whole job

submission is finished, the data is converted and the growth and division time data is collected

then the method updates ko.db using the ko_db library which can be found on flex1 in

the same directory as the database (a copy of these things can be found in the supplementary

information).

The convertDataToPandas method goes to the directory of the simulation data output and

converts all the raw data from .mat files into Pandas DataFrames stored in .pickle files

using the Python package, Pickle. It is worth noting that the .mat files are read by the File

method of the h5py library. However, it was found that occasionally it threw an error whilst

trying to read the file even though Matlab had no problem. The standard version of .mat file

that Matlab uses is 7.0 which is a compressed version, and it appeared that the uncompressed

version, 7.3, did not cause this error. In order to avoid these errors, code in the whole-cell model

was modified so that it saved the files in version 7.3 rather 7.0 - for more information see section

A.8 of the appendix.

4.4 Algorithms

The algorithm libraries are stored in the multigeneration_algorithm module and is made up of

11 classes. The UML diagram of the module has been split into 2 figures due to the large amount

of classes, arguements, methods, and relationships. These two figures can be seen in figures 4.4

and 4.5 and one can see that there is one parent class, MGA , that all 10 child classes inherit

from.

4.4.1 The MGA class

The MGA class is an abstract class that acts as a template that all other algorithm classes

should inherit from. The class must be abstract enough that it can act as a template for as many

algorithms as possible. Figure 4.6 shows how the MGA class, and thus all algorithms, execute.

One can see that all algorithms will be started by running the run method which then initiates

a loop that does not stop until a specified maximum generation number is reached. Each iteration

of the loop represents a single generation and each generation is created and simulated using the

runSimulations method.

Initialisation:

The class needs to be initialised with: • a Python dictionary where the values are cluster connec-

59

CHAPTER 4. GENOME DESIGN SUITE

60

4.4. ALGORITHMS

tion instances that are available to run simulations on (i.e. child classes of the Connection class

from the base_connections module). The keys of the clusters are unique names that label each

cluster connection. • A Python dictionary that defines when the algorithm should stop running.

At present this only has the functionality to stop at a predetermined generation in the future but

additional options could be added. • The name given to this instance of the algorithm. • Once the

class is initialised a class variable that remembers what generation the algorithm is on is created

and set to None .

Instance methods:

The checkStop method checks to see if the generation counter (i.e. class variable 4.4.1) is less

than the ‘stop generation’ number in the ‘checkStop’ dictionary (i.e. class variable 4.4.1). If the

generation counter (4.4.1) is equal or more than the ‘checkStop’ dictionary (4.4.1) it returns True

otherwise it returns False .

The run method is a while loop that runs the next batch of simulations and increments the

generation counter (i.e. class variable 4.4.1) by one until the generation counter is greater or

equal to the maximum generation (i.e. while checkStop()!= True).

Abstract methods:

The runSimulations method is called by the run method and implements one generation of an

algorithm. Since this is the abstract class it does not specify any algorithm and leaves it for the

child classes to define. Two other abstract methods are set as they will ned to be called by the

runSimulations method. These are the getGenerationName and getNewGeneration methods.

The getNewGeneration method will need to create the genomes of the children that need to

be simulated in the next generation but is an abstract method and so left for the child class to

define.

The getGenerationName method will return a name for each generation that can be used to

identify what belongs to each generation. This is an abstract method and so is left for the child

classes to define.

The following sections will look at the algorithms implemented using the GDS. All algorithms

Figure 4.4 (preceding page): Class diagram for the parent class plus 5 (out of 10) child classes
of the multigeneration_algorithm.py module. It shows their arguments, methods and their
inheritance relationships. The remaining 5 child classes and their inheritance relationships can
be seen in figure 4.5.

61

CHAPTER 4. GENOME DESIGN SUITE

62

4.4. ALGORITHMS

implemented using the GDS inherit all class attributes from the MGA class and so unless they

are abstract methods then they will not be discussed again. Abstract methods are not defined in

the parent class and so that definition will need to be given in the child class.

4.4.2 The GeneticAlgorithm class

Genetic algorithms are a great general purpose, easy to implement machine learning algorithm

used to optimise objectives and have been used to in a wide variety of tasks. A genetic algorithm

attempts to, roughly, mimic evolution by natural selection in order to learn. The population of

individuals is made up of parents and children where the parents are the fittest individuals that

survived whatever natural selection is placed upon them. Here the natural selection is normally

implemented by some kind of objective function that one wishes to optimise. A set of genes defines

each parent and the fittest individuals mate to create children that are made up of a random

combination of the genes of both parents, plus some random mutation.

Figure 4.7 shows how each generation of the GeneticAlgorithm is executed and to see how

this fits in with the entire process it should be compared to figures 4.1 and 4.6.

Initialisation:

In addition to the parameters needed to initialise the MGA class the GeneticAlgorithm class

requires • The maximum number of fit individuals that are allowed to survive each genera-

tion. • The number of times each simulation needs to be repeated. • The number of children

needed in each generation. • A path that all simulation data will be stored in. This is relative

to the cluster base path which is given by the connection class. • The probably that a muta-

tion occurs whilst creating a child. • The name of a function (that exists in the child class) that

can be called to get a dictionary that contains all the gene codes and IDs that make up the genome.

Abstract methods:

The MGA class defined three abstract methods that need to be defined in any child classes,

getGenerationName , getNewGeneration , and runSimulations .

The getGenerationName method returns the string ‘genN’ where ‘N’ is the current generation

number.

Figure 4.5 (preceding page): Class diagram for the parent class plus 5 (out of 10) child classes
of the multigeneration_algorithm.py module. It shows their arguments, methods and their
inheritance relationships. The remaining 5 child classes and their inheritance relationships can
be seen in figure 4.4.

63

CHAPTER 4. GENOME DESIGN SUITE

Figure 4.6: A schematic of the abstract class MGA. One can see that all algorithms will be started
by using the run() method which initiates a loop that repeats until a maximum generation is
reached. Each loop represents one generation of the algorithm and the simulations are chosen
and run using the runSimulations() method which is undefined since it is an abstract class.
This class needs to be defined by child classes that inherit from this class. getGenerationName()

and getGeneration() are also abstract methods that will be utilised by child implementations of
the runSimulations() method.

The getNewGeneration method decides what method to call to generate the next generation of

children. For the genetic algorithm, this calls the mateTheFittest method if the number of fit

individuals is greater than one. Otherwise, it calls the getRandomKos method.

The runSimulations method defines the algorithm over one generation. For geneticAlgorithm

this means using the getGeneration method to get all the child genomes for the next generation

of simulations as well as the number of clusters available. It then splits the children evenly over

all the clusters (plus remainders) and creates JobSubmission instances for each set.

Parallel computing is required to create the ManageSubmission classes. Python executes all

lines of code sequentially and waits for each line of code to finish before executing the next.

The sequential nature of code execution means that normal code will submit the first batch of

jobs to cluster-1 and then wait for the whole ManageSubmission process to finish before sub-

mitting the second batch of jobs to cluster-2. This sequential use of the clusters defeats the

point of having multiple computing facilities, and so a parallel solution was created by using

the multiprocessing library to map each job to their respect clusters. Due to the amount of

time it takes to convert the simulation data output to Pandas DataFrames and the fact that it

is not uncommon for lots of simulations to finish at a similar time the ManageSubmission class

64

4.4. ALGORITHMS

Figure 4.7: This diagram shows how the runSimulations method is implemented in the
GeneticAlgorithm class. Grey boxes contain everything that happens within the runSimulations

method. Lilac boxes contain any significant methods or classes called within the runSimulations

method. Blue boxes contain significant methods or classes called within the lilac boxes. Here GA
represents the GeneticAlgorithm class.

65

CHAPTER 4. GENOME DESIGN SUITE

executes the convertDataToPandas method in parallel as well. So one can see that the process

running the ManageSubmission class is already a child process from the parallelised mapping in

the runSimulations method. Unfortunately, the multiprocessing library does not allow child

processes to spawn new child processes and so the more popular library was dropped and replaced

by the futures module of the concurrent library.

Once all the simulations for this generation have completed then the runSimulations method

passes all the finished ManageSubmission instances to the updateFittestPopulation method in

order to learn what happened in the current generation.

Instance methods:

The getPopulationSize method returns the desired population of children for this generation.

The getRandomKos method finds out what genes can be knocked-out out from the genome

from class variables and uses the getPopultionSize method to find out how many children need

to be created. It then uses these to create the desired number of children each with a random num-

ber of genes knocked out in the range [2,5]. The number of genes knocked out and which genes are

knocked out are both picked from a uniform distribution. Each child name is made up of two parts,

the first part is ‘ko’ and the second part is a number that starts at 1 and increments by one every

time a new child is created so that each child has a unique name in the generation. When a new

generation starts, the name counter goes back to 1. This method returns a dictionary where the

keys are the names of the children, and the values are the gene codes of the genes that need to be

knocked out — this dictionary will be referred to as the child name to gene knockout set dictionary.

The mateTheFittest method creates all the children for the next generation. The children

are created by mimicking natural selection, and sexual reproduction by randomly selecting two

parents from the fittest individuals found so far (natural selection) and creates a child by mixing

the genomes of the two parents (sexual reproduction). The theory of this process is explained

in section 5.1 however the modified exponential distribution will be discussed in a little more

detail here. The mateTheFittest method aproximates the modified expontial distribution (see

equation 5.4 where λ = 2) using code snippet 4.8. Here it can be seen that instead of using

int(np.around(np.random.exponential(2)+ 1)) it does not add the 1 to the random variable but

instead generates the random variable in a while loop until it results in a number greater than

zero. The idea behind this is that all the zero values get split (acording to the exponential distri-

bution) across the higher values preserving the shape of the distrbution and shifting it across

the x-axis by one. This raises the question of how good is our approximation of the modified

exponential distrbution and does it preserve the requirement that the area under the distribution

curve is equal to 1. I have not been able to prove this one way or another but a comparison to the

66

4.4. ALGORITHMS

number_of_gene_mutations = 0
while number_of_gene_mutations == 0:

number_of_gene_mutations = int (np . around (np . random .
exponential (2)))

Figure 4.8: Code segment showing how the modified exponential distribution is calculated. The
while-loop means that a 0 value will never be created, the np.around method performs standard
rounding on the result, and the int method converts the data type from float to integer (int

truncates all decimal places rather than rounding them and so rounding them first results in
fewer loops).

actual distribution is provided. Ten thousand samples were taken from the modified exponential

distribution (see equation 5.4 with λ = 2) and compared to 10,000 samples of the approxima-

tion of the modified exponential distribution in the mateTheFittest method. The result can be

seen in figure 4.9 and shows that only small differences can be seen - one would expect small

differences by random chance although no quantitative test is performed in this thesis. The

conclusion here is that it is a reasonable approximation. However, there is no known reason

to chose the approximation over the actual function as the latter is clearer and more efficient

(due to the lack of a while loop) and thus is noted as a desired change to the code in future versions.

The updateFittestPopulation method takes the simulation results from a completed SubmissionManager

instance and extracts all individuals that produced a dividing cell. The dividing cells are then

combined with the current fittest individuals and ranked so that the smallest genomes are at the

top and the largest at the bottom. The algorithm class is initialised with a maximum number of

fit individuals, M, and so the top M individuals are taken from the new list and set as the new

fittest individuals.

Instance methods for all child classes:

These are methods deemed generally useful and automatically get put into all child classes of the

MGA class and will always be identical in implementation. These will not be defined again in the

other child classes.

The random_combination method takes a Python iterable (e.g. a list) and the desired size and

then picks a random subset of that size from a uniform distribution which is then returned to the

user.

The random_pick method is the same as the random_combination method except it picks

the iterable elements from a distribution defined by a iterable of probabilities passed by the user.

The getJr358Genes method returns a tuple of gene codes. These gene codes are defined as

67

CHAPTER 4. GENOME DESIGN SUITE

Figure 4.9: A comparison of histograms from the aproximate (see code segment 4.8) and actual
(see equation 5.4) modified distributions the modified exponential distribution. Ten thousand
data points were sampled from each distribution, binned in the same way and each bin plotted
next to each other for comparison.

all of the protein-coding genes that are characterised in the whole-cell model of M. genitalium

minus one that tends to crash the simulation (see Chapter 3 for more information on gene

selection).

The getDictOfJr358Codes method returns a dictionary where the keys are gene codes returned

by the getJr358Genes method and the values correspond to the ID used in our databases. This

method takes an instance of the Connection class and uses that connection to get IDs directly

from static.db so that all users are working off the same data source.

The invertDictionary method takes a dictionary and, assuming that the keys and values

share a bijective relationship, returns a dictionary where the keys and values are swapped.

The createIdxToIdDict method takes a dictionary that converts gene codes into gene IDs

and converts that into a dictionary that converts genome indexes into gene IDs.

The convertIdxToGeneId method takes a list of genome indexes and returns a correspond-

ing list of gene IDs

The convertGeneIdToCode method takes a list of gene IDs and returns a corresponding list

of gene codes.

68

4.4. ALGORITHMS

4.4.3 The MateGroups class

The MateGroups class was created to give more control on which parents mate. The algorithm is

passed an arbitrary amount of groups. Each group is a set of parents defined in terms of gene

knockouts. The parents will not mate within their groups and will only mate with parents from

other groups, giving the user some additional control over mating.

Figure 4.10 shows how each generation of the Mategroups algorithm is executed and to see how

this fits in with the entire process it should be compared to figures 4.1 and 4.6.

Initialisation:

In addition to the class variables needed to initialise the MGA class the MateGroups class needs:

• A dictionary that contains the gene codes for the base genes and each group. The names are

the keys, and the values are lists of gene codes that relate to each name. Each group is made up

of sets of gene codes. The base genes are gene codes that do not make it into any of the groups

and can be empty — it is included so that some genes can always be included no matter which

groups are picked. • A maximum number of fit individuals allowed to survive a generation. • The

number of times each simulation needs to be repeated. • The number of children needed in each

generation. • A path that all simulations will be stored in. This is relative to the cluster base

path which is given by the connection class. • The probability that a mutation occurs whilst

creating a child.

Abstract methods:

The getGenerationName method returns the string ‘genN’ where ‘N’ is the current generation

number.

The getNewGeneration method decides what method to call to generate the next generation of

children. In this case, it calls the mateTheFittest method if the number of fit individuals is

greater than one. Otherwise, it calls the mateGroups method.

The runSimulations method defines the algorithm over one generation. In this case it is the same

as the geneticAlgorithm as it creates a new generation using the getNewGeneration (which is

the big difference between the two algorithms) and then splits it across the available clusters

and the manages the submissions — for a more detailed discussion of the method see section 4.4.2.

Instance methods:

All the methods in the MateGroups class are the same as the GeneticAlgorithm class, except

getNewGeneration and the addition of a new method called mateGroups . The getNewGeneration

method was discussed in the abstract methods section above so mategroups will be the only

69

CHAPTER 4. GENOME DESIGN SUITE

Figure 4.10: This diagram shows how the runSimulations method is implemented in the
MateGroups class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within the
runSimulations method, and the blue boxes contain significant methods or classes called within

the lilac boxes. Here MG represents the MateGroups class.

70

4.4. ALGORITHMS

method described here.

The mateGroups method uses the getPopulationSize method to find out how many children

need to be created and also retrieves each group of genes and the base genes. It then creates all

the children and puts them into a child name to gene knockout set dictionary. The children are

created by randomly selecting two of the groups of genes (such that larger groups are more likely

to be picked) and selecting one of the gene sets from each of those two groups (uniformly). The

base genes are added to both sets, and these are the genes knocked-out in a genome that define

two parents. These two parents then mate with the same principle that two parents mate in the

mateTheFittest method except there is no random mutation.

4.4.4 The DictOfSims class

The DictOfSims class was not created to be a learning algorithm, as it is meant to run for one

generation and only simulate user defined genomes.

Figure 4.11 shows how each generation of the DictOfSims is executed and to see how this

fits in with the entire process it should be compared to figures 4.1 and 4.6.

Initialisation:

In addition to the class variables needed to initialise the MGA class the DictOfSims class

needs: • A child name to gene knockout set dictionary. These are all the simulations that will

be performed by the algorithm. • The number of times each simulation needs to be repeated.

• The number of children needed in each generation. This is left-over from the GeneticAlgorithm

template and is not strictly necessary but left in as some slight modifications could make it useful

again in the future should multi-generation functionality need to be incorporated in some cases.

At present, the default setting of this is zero for every generation. • A path that all simulations

will be stored in. This is relative to the cluster base path which is given by the connection class.

Abstract methods:

The getGenerationName method returns the string ‘genN’ where ‘N’ is the current generation

number.

The getNewGeneration method simply returns the child name to gene knockout set dictio-

nary passed by the user irrespective of the generation number.

The runSimulations method defines the algorithm over one generation. In this case it is the same

as the geneticAlgorithm as it creates a new generation using the getNewGeneration method

(which is the big difference between the two algorithms) and then splits it across the available

71

CHAPTER 4. GENOME DESIGN SUITE

Figure 4.11: This diagram shows how the runSimulations() method is implemented in the
DictOfSims class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within the
runSimulations method, and the blue boxes contain significant methods or classes called within

the lilac boxes. Here DS represents the DictOfSims class.

clusters and manages the submissions — for more a more detailed discussion of the method see

section 4.4.2.

Instance methods:

There are no other methods in the class that are not covered by previous chapters.

72

4.4. ALGORITHMS

Figure 4.12: This diagram shows how the runSimulations method is implemented in the DPD

class. The grey box contains everything that happens within the runSimulations method, whilst
the lilac boxes contain any significant methods or classes called within the runSimulations

method, and the blue boxes contain significant methods or classes called within the lilac boxes.

4.4.5 The DPD class

The DPD class derives its name from the acronym of Dynamic Probability Distribution. I de-

signed a learning algorithm that had a probability distribution of picking genes. The algorithm

would randomly create children based on this distribution, and once the simulations had com-

pleted, it would change the probability distribution based on what was learnt from the most

recent simulations. Over time this distribution should get better and better at predicting reduced

genomes (or optimising any other objective function). Unfortunately, there was not time to fully

implement this, but this class was the initial prototype that only takes into account single gene

probabilities and not conditional probabilities based on what else is either present or knocked-out

of the genome.

Figure 4.12 shows how each generation of the DPD is executed and to see how this fits in

with the entire process it should be compared to figures 4.1 and 4.6.

Initialisation:

In addition to the class variables needed to initialise the MGA class the DPD class needs: • A

73

CHAPTER 4. GENOME DESIGN SUITE

list of all the possible gene knockout set lengths. • The number of times each simulation needs to

be repeated. • The number of children needed in each generation. • A path that all simulations

will be stored in. This is relative to the cluster base path which is given by the connection class.

Abstract methods:

The getGenerationName method returns the string ‘genN’ where ‘N’ is the current generation

number.

The getNewGeneration method gets the percentage that every gene has been in a viable combina-

tion using the getGeneProbabilityDistribution method and then uses that to create a distribution

for picking genes such that genes that are normally knocked-out in viable combinations get picked

more often. This distribution is then used to, randomly, pick sets of genes to knockout in children.

The number of knockouts in a child is determined by randomly picking an element, uniformly,

from the list of all possible gene knockout set lengths passed to the class when it was initialised.

The number of children to create is determined by the getPopulationSize method.

The runSimulations method defines the algorithm over one generation. In this case it is the same

as the geneticAlgorithm as it creates a new generation using the getNewGeneration method

(which is the big difference between the two algorithms) and then splits it across the available

clusters and manages the submissions — for more a more detailed discussion of the method see

section 4.4.2.

Instance methods:

The getSizeOfKoSet method takes the list of all the possible gene knockout lengths passed by

the user at initialisation and a corresponding list of probabilities and then returns one of the

gene knockout lengths randomly according to the list of probabilities. It is worth noting that

currently the getNewGeneration is hard-coded to pass this method equal probabilities (i.e. a

uniform distribution) but the method was given more versatility so that the algorithm could be

extended in the future with the less effort.

The getGeneProbabilityDistribution method uses a child that inherits from the Connection

class to connect to ko.db through the ko_db library to return the gene viability history by

calling the getGeneViabilityHistory method. The gene viability history is a dictionary that

contains the proportion of times that a specific gene was knocked-out and produced a living cell

for every gene.

74

4.4. ALGORITHMS

Figure 4.13: This diagram shows how the runSimulations method is implemented in the
GeneticAlgorithmWithComplexs class. The grey box contains everything that happens within the
runSimulations method, whilst the lilac boxes contain any significant methods or classes called

within the runSimulations method, and the blue boxes contain significant methods or classes
called within the lilac boxes. Here GAC represents the GeneticAlgorithmWithComplexs class.

75

CHAPTER 4. GENOME DESIGN SUITE

4.4.6 The GeneticAlgorithmWithComplexs class

The GeneticAlgorithmWithComplexs class is the same as a standard genetic algorithm except

this was created in an attempt to reduce the amount of gene combinations in the solution

space. It assumes that a protein (and/or RNA) complex will only function in the model if it has

all its components and so can treat the set of genes that make up a single complex as a single gene.

Figure 4.13 shows how each generation of the GeneticAlgorithmWithComplexs is executed and to

see how this fits in with the entire process it should be compared to figures 4.1 and 4.6.

Initialisation:

In addition to the class variables needed to initialise the MGA class the GeneticAlgorithmWithComplexs

class needs: • The maximum number of individuals that can live on to the next generation. • The

number of times each simulation needs to be repeated. • The number of children needed in each

generation. • A path that all simulations will be stored in. This is relative to the cluster base

path which is given by the connection class.

Abstract methods:

The getGenerationName method returns the string ‘genN’ where ‘N’ is the current generation

number.

The getNewGeneration method decides what method to call to generate the next generation of

children. In this case, it calls the mateTheFittest method if the number of fit individuals is

equal to the maximum number of fit individuals. If the algorithm has less than the maximum

number of fit individuals and it is past generation 0, then it changes the child population size

to be equal to that of generation zero (this is because generation zero normally has a bigger

population because it is randomly guessing). Otherwise, it calls the getRandomKos method.

The runSimulations method defines the algorithm over one generation. In this case it is the same

as the geneticAlgorithm as it creates a new generation using the getNewGeneration method

(most of the difference can be found in the getRandomKos method) and then splits it across the

available clusters and manages the submissions — for more a more detailed discussion of the

method see section 4.4.2.

Instance methods:

The getRandomKos method works the same as the equivalent method in the GeneticAlgorithm

class except it randomly picks complexes to knockout rather than individual gene codes. If a

complex is chosen, then all genes that relate to a component of that complex are knocked-out.

Genes whose products do not form a complex are treated as individual genes.

76

4.4. ALGORITHMS

All other methods in this class are the same as the GeneticAlgorithm class and so will not

be repeated here.

4.4.7 The GeneticAlgorithmKnockIn class

The GeneticAlgorithmKnockIn class works similarly to the GeneticAlgorithm class except it

starts with a reduced genome and knocks genes in.

Figure 4.14 shows how each generation of the GeneticAlgorithmKnockIn class is executed and to

see how this fits in with the entire process it should be compared to figures 4.1 and 4.6.

Initialisation:

In addition to the class variables needed to initialise the MGA class the GeneticAlgorithmKnockIn

class needs: • The maximum number of fit individuals that are allowed to survive each generation.

• The number of times each simulation needs to be repeated. • The number of children needed in

each generation. • A path that all simulations will be stored in. This is relative to the cluster

base path which is given by the connection class. • The probability that a mutation occurs whilst

creating a child. • The genes knocked-out in the initial organism. • A string telling the algorithm

which probability distribution should be used to decide how many gene knockouts a child should

have.

Abstract methods:

The getGenerationName method returns the string ‘genN’ where ‘N’ is the current generation

number.

The getNewGeneration method decides what method to call to generate the next generation of

children. In this case, it calls the mateTheFittest method if the number of fit individuals is

greater than eleven. Otherwise, it calls the getRandomKos method.

The runSimulations method defines the algorithm over one generation. In this case, it is

the same as the GeneticAlgorithm as it creates a new generation using the getNewGeneration

method and then splits it across the available clusters and manages the submissions — for more

a more detailed discussion of the method see section 4.4.2.

Instance methods:

The getRandomKos method works similarly to the equivalent method in the GeneticAlgorithm

class, however, it randomly picks what genes to put back into the genome. Whilst the GeneticAlgorithm

only has the option to choose the number of genes to knockout from the modified exponential

77

CHAPTER 4. GENOME DESIGN SUITE

Figure 4.14: This diagram shows how the runSimulations method is implemented in the
GeneticAlgorithmKnockIn class. The grey box contains everything that happens within the
runSimulations method, whilst the lilac boxes contain any significant methods or classes called

within the runSimulations method, and the blue boxes contain significant methods or classes
called within the lilac boxes. Here GAKI represents the GeneticAlgorithmKnockIn class.

78

4.4. ALGORITHMS

Figure 4.15: This diagram shows how the runSimulations method is implemented in the
GeneticAlgorithmSimpleKnockIn class. The grey box contains everything that happens within the
runSimulations method, whilst the lilac boxes contain any significant methods or classes called

within the runSimulations method, and the blue boxes contain significant methods or classes
called within the lilac boxes. Here GASKI represents the GeneticAlgorithmSimpleKnockIn class.

distribution, this algorithm chooses how many genes to add to the genome from either a uniform

distribution or the modified exponential distribution (as decided by the user) with parameter of

10% of the size the original knockout set.

All other methods are the same as the GeneticAlgorithm class and so will not be repeated

here.

79

CHAPTER 4. GENOME DESIGN SUITE

4.4.8 The GeneticAlgorithmSimpleKnockIn class

The GeneticAlgorithmSimpleKnockIn class is exactly the same as the GeneticAlgorithmKnockIn

class except the updateFittestPopulation method is left blank. Leaving this method blank has

the effect that the algorithm never learns and so simply repeats the random guesses over and

over again. It also only has the option to pick the number of genes to add back into the genome

from a uniform distribution.

Figure 4.15 shows how each generation of the GeneticAlgorithmSimpleKnockIn class is executed

and to see how this fits in with the entire process it should be compared to figures 4.1 and 4.6.

4.4.9 The GeneticAlgorithmFocusSet class

The GeneticAlgorithmFocusSet class was created in order to explore certain specified subsets of

genes.

Figure 4.16 shows how each generation of the GeneticAlgorithmFocusSet class is executed

and to see how this fits in with the entire process it should be compared to figures 4.1 and 4.6.

Initialisation:

In addition to the class variables needed to initialise the MGA class the GeneticAlgorithmFocusSet

class needs: • The maximum number of fit individuals that are allowed to survive each generation.

• The number of times each simulation needs to be repeated. • The number of children needed in

each generation. • A path that all simulations will be stored in. This is relative to the cluster

base path which is given by the connection class. • The probability that a mutation occurs whilst

creating a child. • The set of genes that need to be investigated. • A minimum and maximum

number of gene knockouts in an individual. There is a standard set and a safe set. The standard

set gets used by default, but the safe set gets used if the algorithm is not finding enough viable

solutions to progress to the next stage of the algorithm.

Abstract methods:

The getGenerationName method returns the string ‘genN’ where ‘N’ is the current generation

number.

The getNewGeneration method decides what method to call to generate the next generation of

children. In this case, it calls the mateTheFittest method if the number of fit individuals is

greater than thirty. Otherwise, it calls the getRandomKos method. Additionally, if it calls the

getRandomKos method later than generation 0 and there are no survivors, or there are survivors,

but it is after generation 1 then it uses the safe gene knockout lengths. Otherwise, it uses the

normal ones.

80

4.4. ALGORITHMS

Figure 4.16: This diagram shows how the runSimulations method is implemented in the
GeneticAlgorithmFocusSet class. The grey box contains everything that happens within the
runSimulations method, whilst the lilac boxes contain any significant methods or classes called

within the runSimulations method, and the blue boxes contain significant methods or classes
called within the lilac boxes. Here GAFS represents the GeneticAlgorithmFocusSet class.

81

CHAPTER 4. GENOME DESIGN SUITE

The runSimulations method defines the algorithm over one generation. In this case, it is

similar to the GeneticAlgorithm as it creates a new generation using the getNewGeneration

method and then splits it across the available clusters and manages the submissions — for a

more detailed discussion of the method see section 4.4.2. The only difference in the method is

that instead of splitting the children equally (plus a remainder) across each cluster this splits

the children into groups of 200 and then assigns those groups of 200 equally over the available

clusters.

Instance methods:

The getRandomKos method gets the number of children it needs to create and the set of genes

that need to be investigated. This method then works the same way as the equivalent method in

GeneticAlgorithm except rather than randomly picking any gene in the wild-type genome it only

picks from the set of genes to be investigated given by the user.

Every other method in this class is the same as the GeneticAlgorithm class and so will not be

repeated.

4.4.10 The MixFocussSets class

The MixFocussSets class was created to take groups of viable gene knockout sets where every

individual from all groups is from the same organism but each group has genes knocked out from

a disjoint set of genes, i.e. if one takes all the genes knocked-out in both group-1 and group-2 then

there will be no gene in common between the two groups even though they are simulating the

same organism. The knockout sets of each group can be added together to create new individuals.

There is a difference here between mating two genomes which will be discussed in more detail in

the below.

Figure 4.17 shows how each generation of the MixFocussSets class is executed and to see

how this fits in with the entire process it should be compared to figures 4.1 and 4.6.

Initialisation:

In addition to the class variables needed to initialise the MGA class the GeneticAlgorithmFocusSet

class needs • The maximum number of fit individuals that are allowed to survive each generation.

• The number of times each simulation needs to be repeated. • The number of children needed in

each generation. • A path that all simulations will be stored in. This is relative to the cluster

base path which is given by the connection class. • The probability that a mutation occurs whilst

creating a child. • A dictionary where the keys are the names of the groups and the values are

sets of viable knockout sets.

82

4.4. ALGORITHMS

Figure 4.17: This diagram shows how the runSimulations method is implemented in the
MixFocussSets class. The grey box contains everything that happens within the runSimulations

method, whilst the lilac boxes contain any significant methods or classes called within the
runSimulations method, and the blue boxes contain significant methods or classes called within

the lilac boxes. Here MFS represents the MixFocussSets class.

83

CHAPTER 4. GENOME DESIGN SUITE

Abstract methods:

The getGenerationName method returns the string ‘genN’ where ‘N’ is the current generation

number.

The getNewGeneration method decides what method to call to generate the next generation of

children. In this case, it calls the mateTheFittest method if the number of fit individuals is

greater than eight. Otherwise, it calls the mixGroups method.

Instance methods:

The mixGroups method is given the minimum and maximum number of groups to combine and

then selects a number of groups within that range from a uniform distribution. It then selects one

gene knockout set uniformly from each of the selected groups and combines all the gene knockouts

sets into one larger knockout set that defines a child for the next generation. The child-creation

process is then repeated until there are enough children to simulate the next generation. It is

worth noting the difference between add and mate. Adding refers to the fact that sets of gene

knockouts are being added together — here as long as there are different genes knocked-out in

each parent (which is the case because the set of genes are partitioned in the guess stage) the

child genome is guaranteed to get smaller because the sets of genes being combined are disjoint.

Mating refers to the mating of two parents in the same fashion of a genetic algorithm and so the

two genomes are randomly mixed so to create one new child genome. This means that the child

genome will inherit remaining genes as well as knocked-out genes and so the child genome could

theoretically get larger, smaller, or stay the same.

All other methods in this class are the same as the GeneticAlgorithm class and so will not

be repeated.

4.5 Data

The GDS enables complex data storage and processing tasks to be automated during the execution

of an in-silico experiment. The M. genitalium whole-cell model has two data related problems and

so this aspect of the GDS was utilised. The two data problems are the amount of data produced

and the speed of data retrieval.

The raw simulation output of one life cycle is, sequentially in time, split into hundreds of

compressed Matlab files. This means that if one wants to use a time series from a simulation,

then every file needs to be opened, the relevant time series extracted and then all the sections

of data concatenated to create the final time series. The data extraction process was timed (see

84

4.5. DATA

appendix A.7) by loading the growth rate of one simulation with 338 state files, and it took just

over 31 seconds, not including the time it takes to load Matlab.

Due to the amount of data likely to be produced (see section 3.2.1) compared to the amount

of space available (see section 3.2.2) it was decided that a single large central database would

not be possible. However, because there are various different disk locations and RDSF is only

appropriate for back-up some time was spent looking into having many smaller databases that

could be moved about when necessary. Ideally, the smaller the database, the less unnecessary

data is transferred, and so the quicker the analysis becomes. However, RDSF is designed for

bulk transfer at the expense of smaller read/write operations (see section 3.2.2) and there is a

non-zero storage overhead to an empty database. An initial investigation was made into creating

a normalised SQLite3 database per simulation as this works out a convenient way to balance

the database size trade-off. Unfortunately, SQL-based databases are not very efficient at storing

data with regards to disk space. Additionally, members of the ACRC advised that data storage

options were going to dramatically change in the near future (i.e. different storage places with

larger capacity and different storage options). This combined with a lack of personal experience

designing RDMSs or using the data meant that attempting a final database solution would not be

an efficient use of time. Instead, it was decided to have a simple temporary data storage solution

until more was known about the new data storage options and more experience using the data as

well as designing/using RDMSs had been acquired.

It was decided to have three different data storage types. The first type was biological data

about the model/organism and is stored in a normalised SQLite3 database on Flex1 . The second

type was an overview of simulation results that are stored in a normalised SQLite3 database on

Flex1 . Finally, key data from the raw simulation output would be extracted then converted into

Pandas DataFrames and saved as Pickle files. All three processes are automatically done by the

GDS and the implementation can be seen in section 4.2 and 4.3.

4.5.1 Biological data

Biological data was taken from the supplementary information of the M. genitalium whole-cell

model publication and converted into a SQLite3 database. Due to the data being published in

Excel spreadsheets, many characters were corrupted making the conversion process very time-

consuming and so unfortunately not all data was transferred. However, there is still a significant

amount of data relating to genes, RNAs, protein monomers, protein complexes, metabolites and

metabolic reactions.

There are two spreadsheets in the supplementary information of the M. genitalium whole-

cell model paper, mmc3.xls and mmc4.xls, that contain biological information about the model.

85

CHAPTER 4. GENOME DESIGN SUITE

These will be referred to as MMC3 and MMC4, respectively.

In addition to the M. genitalium whole-cell model data, Joshua Rees’s single gene knockout

data, classification and comparison against Karr’s single gene knockout classification was added

to the database (see section 3.1.4).

There are 49 tables in this database, and so there is no easy way to present the data or the

schema in one go, and so the schema will be split into sections of related tables. The sections will

be tables related to genes, transcription units, protein monomers, macromolecular complexes,

reactions and metabolites. Later, section 4.6.3 will provide some examples of actual data, and

for a more in-depth understanding of the structure of the database and the data contained in it

the reader is invited to explore the actual database which is called static.db either directly or

through the GDS.

4.5.1.1 Genes

Tab S2G-Gene disruption strains of MMC3 contains data about single gene knockout tests

that Karr et al. performed on the M. genitalium whole-cell model and this is contained in the

GeneKOData table of static.db which can be seen with other data related to genes in figure 4.18.

All the other tables in Figure 4.18 come from tab S3J-Genes of MMC4 which contains data

about the genes in the M. genitalium whole-cell model. These tables contain data about every

gene’s codes and names. It also contains the position and other genomic details like length,

direction and sequence. There are details about homologs in other Mycoplasmas and some model

organisms. There is empirical expression data for each gene under normal, cold and heat shock

conditions.

Figure 4.19 is the table schemas for data taken from Rees’s single gene knockout experiments on

the M. genitalium whole-cell model. The rees_10x_1ko_test table contains the results of 10 rep-

etitions of each single gene knockout supplied by Rees and the rees_chalkley_19_1ko_comparison

table the summary of this and comparison against Karr’s single gene knockout experiments

taken from 3.1.4. It’s worth noting that normally there would be a foreign key linking the id

columns of the rees_chalkley_19_1ko_comparison and rees_chalkley_19_1ko_comparison tables

to the id column of the genes table however these tables were created on-the-fly through the

Pandas library in Python and so the foreign keys could not be put on and there has not been time

nor reason to add it manually yet.

86

4.5. DATA

generated by SchemaCrawler 14.21.02
generated on 2019-03-01 15:05:51

expression [table]
gene_id INTEGER NOT NULL
normal_37C REAL
heat_shock REAL
cold_shock REAL

genes [table]
id INTEGER NOT NULL
code TEXT NOT NULL
type TEXT NOT NULL
name TEXT
symbol TEXT
synonyms TEXT

geneCrossReferences [table]
gene_id INTEGER NOT NULL
CMR TEXT
BioCyc TEXT
SwissProt TEXT
GenBank TEXT

GeneKOData [table]
gene_id INTEGER NOT NULL
functional_unit TEXT
deletion_phenotype TEXT NOT NULL
essential_in_model BOOL NOT NULL
essential_in_experiment BOOL NOT NULL
essentiality_agreement TEXT NOT NULL

geneticCode [table]
gene_id INTEGER NOT NULL
start_codon TEXT
codons TEXT
amino_acid TEXT

homologs [table]
gene_id INTEGER NOT NULL
e_coli TEXT
m_pneumoniae TEXT
m_hyopneumoniae TEXT
m_mobile TEXT
b_subtilis TEXT
s_oneidensis TEXT
s_coelicolor TEXT

otherData [table]
gene_id INTEGER NOT NULL
coordinate INTEGER NOT NULL
length INTEGER NOT NULL
direction TEXT NOT NULL
sequence TEXT NOT NULL
GC_content REAL NOT NULL
molecular_weight INTEGER
min_halflife_experimental REAL
reactions TEXT
comments TEXT

Figure 4.18: Database schema for data related to genes. All data is taken from MMC4 except for
the GeneKOData table which is taken from MMC3.

87

CHAPTER 4. GENOME DESIGN SUITE

generated by SchemaCrawler 14.21.02
generated on 2019-03-01 16:11:20

rees_10x_1ko_test [table]
id INTEGER
repetition_1 REAL
result_1 TEXT
repetition_2 REAL
result_2 TEXT
repetition_3 REAL
result_3 TEXT
repetition_4 REAL
result_4 TEXT
repetition_5 REAL
result_5 TEXT
repetition_6 REAL
result_6 TEXT
repetition_7 REAL
result_7 TEXT
repetition_8 REAL
result_8 TEXT
repetition_9 REAL
result_9 TEXT
repetition_10 REAL
result_10 TEXT

rees_chalkley_19_1ko_comparison [table]
id INTEGER
Sims INTEGER
Missing REAL
Karr TEXT
"10x_Sims_2018-07-10" TEXT
"E_NE_2018-07-10" TEXT
Consistent TEXT

Figure 4.19: Database schema for data related to the comparison of single-gene knockouts
between our simulations and Karr et al.[101].

88

4.5. DATA

generated by SchemaCrawler 14.21.02
generated on 2019-03-01 15:05:55

transcriptionUnitData [table]
id INTEGER NOT NULL
code TEXT NOT NULL
name TEXT NOT NULL
type TEXT NOT NULL
coordinate INTEGER NOT NULL
length INTEGER NOT NULL
direction TEXT NOT NULL
promoter_minus_35_box_coordinate INTEGER
promoter_minus_35_box_length INTEGER
promoter_minus_10_box_coordinate INTEGER
promoter_minus_10_box_length INTEGER
transcription_start_site_coordinate INTEGER

Figure 4.20: Database schema for data related to transcription units in the MG whole-cell model.
All data is taken from MMC4.

4.5.1.2 Transcription Units

Tab S3K-Transcription units of MMC4 contains data about the transcription units in the M.

genitalium whole-cell model and the tables related to this in static.db can be seen in figure 4.20.

The table contains names, codes and other descriptors as well as structural information like

length, direction, and promoters.

4.5.1.3 Protein monomers

Tab S3M-Protein monomers of MMC4 contains information about the protein monomers in the M.

genitalium whole-cell model and the tables related to this data in static.db can be seen in figure

4.21. The data is split into 8 tables with each one dedicated to one of the following, identifiers,

classifications, DNA footprint, folding, physical properties, signal sequence, structure and other.

4.5.1.4 Macromolecular complexes

Tab S3N-Macromolecular complexes of MMC4 contains information about macromolecular com-

plexes in the M. genitalium whole-cell model and the tables related to this data in static.db can

be seen in figure 4.22. The data is split into 5 tables with each dedicated to one of the following

identifiers, classification, DNA footprint, folding, and other.

4.5.1.5 Reactions

Tab S3O-Reactions of MMC4 contains information about reactions in the M. genitalium whole-cell

model and the tables related to this data in static.db can be seen in figure 4.23. The data is split

into 9 tables with each one dedicated to one of the following identifiers, cross-references, enzyme

89

CHAPTER 4. GENOME DESIGN SUITE

generated by SchemaCrawler 14.21.02
generated on 2019-03-01 15:05:57

proteinMonomer [table]
id INTEGER NOT NULL
code TEXT NOT NULL
gene TEXT NOT NULL
symbol TEXT
name TEXT

proteinMonomerClassification [table]
protein_monomer_id INTEGER NOT NULL
Subsystem TEXT
General_Classification TEXT
Protease_Classification TEXT
Transporter_Classification TEXT

proteinMonomerDnaFootPrint [table]
protein_monomer_id INTEGER NOT NULL
Size_nt INTEGER
Binding_Strandedness TEXT
Region_Strandedness TEXT

proteinMonomerFolding [table]
protein_monomer_id INTEGER NOT NULL
Prosthetic_Groups TEXT
Chaperones TEXT NOT NULL

proteinMonomerOther [table]
protein_monomer_id INTEGER NOT NULL
Molecular_Interaction TEXT
Chemical_Regulation TEXT
N_terminal_Methionine_Cleavage BOOL NOT NULL
Localization TEXT NOT NULL
Comments TEXT

proteinMonomerPhysicalProperties [table]
protein_monomer_id INTEGER NOT NULL
Length INTEGER
Sequence TEXT
Molecular_Weight REAL
Empirical_Formula TEXT
pI REAL NOT NULL
Instability_Index REAL
Stability TEXT NOT NULL
Aliphatic_Index REAL
GRAVY REAL
Extinction_Coefficient REAL
Absorption REAL

proteinMonomerSignalSequence [table]
protein_monomer_id INTEGER NOT NULL
Signal_Sequence_Type TEXT
Signal_Sequence_Location TEXT
Signal_Sequence_Length INTEGER

proteinMonomerStructure [table]
protein_monomer_id INTEGER NOT NULL
Complex TEXT
PDB TEXT
Topology TEXT
Active_Site TEXT
Metal_Binding_Site TEXT

Figure 4.21: Database schema for data related to protein monomers in the whole-cell model. All
data is taken from MMC4.

90

4.5. DATA

generated by SchemaCrawler 14.21.02
generated on 2019-03-01 15:05:50

proteinComplex [table]
id INTEGER NOT NULL
code TEXT NOT NULL
Name TEXT
Biosynthesis TEXT NOT NULL
PDB TEXT
Molecular_Weight INTEGER

proteinComplexClassification [table]
protein_complex_id INTEGER NOT NULL
Subsystem TEXT
General_Classification TEXT
Protease_Classification TEXT
Transporter_Classification TEXT

proteinComplexDnaFootPrint [table]
protein_complex_id INTEGER NOT NULL
Size_nt INTEGER
Binding_Strandedness TEXT
Region_Strandedness TEXT

proteinComplexFolding [table]
protein_complex_id INTEGER NOT NULL
Prosthetic_Groups TEXT
Chaperones TEXT

proteinComplexOther [table]
protein_complex_id INTEGER NOT NULL
Molecular_Interaction TEXT
Chemical_Regulation TEXT
Compartment TEXT NOT NULL
Disulfide_Bonds TEXT
Complex_Formation_Process TEXT NOT NULL
Comments TEXT

Figure 4.22: Database schema for data related to macromolecular complexes in the MG whole-cell
model. All data is taken from MMC4.

catalysis, forward kinetics, backward kinetics, bounds on kinetics, macromolecule modification,

thermodynamics and other.

4.5.1.6 Metabolites

Tab S3G-Metabolites of MMC4 contains information about reactions in the M. genitalium whole-

cell model and the tables related to this data in static.db can be seen in figure 4.24. The data

is split into 6 tables with each dedicated to one of the following identifiers, cross-references,

categories, exchange bounds, physical properties, and other.

91

CHAPTER 4. GENOME DESIGN SUITE

generated by SchemaCrawler 14.21.02
generated on 2019-03-01 15:05:56

reactions [table]
id INTEGER NOT NULL
code TEXT NOT NULL
Name TEXT
type TEXT
EC TEXT
Stoichiometry TEXT NOT NULL

reactionsCrossReferences [table]
reaction_id INTEGER NOT NULL
BioCyc TEXT
BiGG TEXT
SABIO_RK_ID_Forward TEXT
SABIO_RK_ID_Backward TEXT

reactionsEnzymeCatalysis [table]
reaction_id INTEGER NOT NULL
Enzyme TEXT
Enzyme_Compartment TEXT
Coenzymes TEXT
Optimal_pH REAL
Optimal_Temperature_C INTEGER
Activators TEXT
Inhibitors TEXT

reactionsKineticsBackwards [table]
reaction_id INTEGER NOT NULL
Rate_Law TEXT
Km TEXT
Vmax TEXT
Vmax_Unit TEXT

reactionsKineticsBounds [table]
reaction_id INTEGER NOT NULL
Lower REAL
Upper REAL
Units TEXT

reactionsKineticsForwards [table]
reaction_id INTEGER NOT NULL
Rate_Law TEXT
Km TEXT
Vmax TEXT
Vmax_Unit TEXT

reactionsMacromoleculeModification [table]
reaction_id INTEGER NOT NULL
Molecule TEXT
Compartment TEXT
Position INTEGER

reactionsOther [table]
reaction_id INTEGER NOT NULL
Process TEXT
State TEXT
Comments TEXT

reactionsThermodynamics [table]
reaction_id INTEGER NOT NULL
Spontaneous TEXT NOT NULL
Direction TEXT NOT NULL
Observed_deltaG REAL
Calculated_deltaG REAL
Keq REAL NOT NULL

Figure 4.23: Database schema for data related to reactions in the MG whole-cell model. All data
is taken from MMC4.

92

4.5. DATA

generated by SchemaCrawler 14.21.02
generated on 2019-03-01 15:05:53

metabolite [table]
id INTEGER NOT NULL
code TEXT NOT NULL
name TEXT NOT NULL
traditional_name TEXT
IUPAC_name TEXT

metaboliteCategory [table]
metabolite_id INTEGER NOT NULL
category TEXT
subcategory TEXT

metaboliteCrossReference [table]
metabolite_id INTEGER NOT NULL
BioCyc TEXT
BiGG TEXT
KEGG TEXT
CAS TEXT
PubChem TEXT
threeDMET TEXT
ChEBI TEXT
PDB_CCD TEXT
KNApSAcK TEXT
LIPID_MAPS TEXT
LipidBank TEXT

metaboliteExchangeBounds [table]
metabolite_id INTEGER NOT NULL
lower REAL
upper REAL

metaboliteOther [table]
metabolite_id INTEGER NOT NULL
comments TEXT

metabolitePhysicalProperties [table]
metabolite_id INTEGER NOT NULL
Empirical_Formula TEXT NOT NULL
SMILES TEXT
Charge INTEGER NOT NULL
Hydrophobic BOOL NOT NULL
Molecular_Weight REAL NOT NULL
van_der_Walls_Volume REAL
pKa REAL
pI REAL
logP REAL
logD REAL

Figure 4.24: Database schema for data related to metabolites in the MG whole-cell model. All
data is taken from MMC4.

93

CHAPTER 4. GENOME DESIGN SUITE

generated by SchemaCrawler 14.21.02
generated on 2019-03-01 15:05:52

gene2proteinMonomer [table]
protein_monomer_id INTEGER NOT NULL
gene_id INTEGER NOT NULL

gene2reaction [table]
gene_id INTEGER NOT NULL
reaction_id INTEGER NOT NULL

gene2transcriptionUnit [table]
gene_id INTEGER NOT NULL
transcription_unit_id INTEGER NOT NULL

metabolite2reaction [table]
metabolite_id INTEGER NOT NULL
reaction_id INTEGER NOT NULL

proteinMonomer2proteinComplex [table]
protein_complex_id INTEGER NOT NULL
protein_monomer_id INTEGER NOT NULL

Figure 4.25: Database schema for tables that connect different aspects of biology. Moving from top
to bottom it connects protein monomers to protein complexs, metabolites to metabolic reactions,
genes to transcription units, genes to metabolic reactions, and genes to protein monomers.

4.5.1.7 Connector tables

The connector tables were manually created in order to link the main groups of genes, transcrip-

tion units, protein monomers, macromolecular complexes, reactions and metabolites together in

a traditional RDMS manner (i.e. with lookup tables). Each table takes two of the groups and

connects the ID of one with the ID of another. Figure 4.25 shows the tables without the foreign

keys to the corresponding group’s identities table since it has had to be separated due to the num-

ber of tables in the database. Due to time constraints these tables have not been populated but

section 4.6.3 shows that it is possible to do this for all the tables except gene2transcriptionUnit

and proteinMonomer2proteinComplex . I believe that it is possible to do these two tables but have

not had time to implement it.

94

4.5. DATA

generated by SchemaCrawler 14.21.02
generated on 2019-02-22 16:27:00

1kos [table]
ko_index_id INTEGER NOT NULL
ko1 INTEGER NOT NULL

koIndex [table]
id INTEGER NOT NULL
number_of_kos INTEGER NOT NULL

2kos [table]
ko_index_id INTEGER NOT NULL
ko1 INTEGER NOT NULL
ko2 INTEGER NOT NULL

batchDescription [table]
id INTEGER NOT NULL
name TEXT NOT NULL
simulation_initiator_id INTEGER NOT NULL
description TEXT NOT NULL
simulation_day INTEGER NOT NULL
simulation_month INTEGER NOT NULL
simulation_year INTEGER NOT NULL
cluster_info TEXT NOT NULL

people [table]
id INTEGER NOT NULL
first_name TEXT NOT NULL
last_name TEXT NOT NULL
user_name TEXT NOT NULL

simulationDetails [table]
id INTEGER NOT NULL
ko_index_id INTEGER NOT NULL
batchDescription_id INTEGER NOT NULL
average_growth_rate REAL NOT NULL
time_when_pinchedDiameter_is_first_zero INTEGER NOT NULL

Figure 4.26: A diagram illustrating the schema of the ko.db database. There are 525 tables
that record what genes were knocked-out of the genome for a given in-silico experiment. There is
a table for each possible size of knockout, i.e. 1-525. This results in too many tables to visualise
and so 523 tables have been removed, leaving just the single and double knockout tables as
examples. All tables not related to gene knockouts remain in the diagram. Diagram produced by
SchemaCrawler (see section 2.3).

4.5.2 Simulation overview

An SQLite3 database was created to store an overview of simulations. There are 529 tables in

this database, one for the person that executed the batch of simulations; one that contains the

name of the batch, the date of execution and the cluster that it was executed on; one that records

the average growth rate and second of division of each simulation; and one that holds a unique

ID of every genome simulated and the number of gene knockouts for that genome. The other 525

tables hold the genes knocked-out of each genome simulated where the table “1kos” hold all the

single gene knockouts, “2kos” holds all the double gene knockouts, all the way up to 525-gene

knockouts.

529 tables would be too much to visualise but all the tables related to gene knockouts have

the same structure except the number of columns is the number of gene knockouts plus 1 (for the

ID). Using this to exclude redundant information, a diagram of the database schema and how the

tables relate to each other was created. Single and double knockout tables were included as an

example, and the 3 to 525-gene knockout tables were excluded, and the resulting diagram can be

seen in figure 4.26.

95

CHAPTER 4. GENOME DESIGN SUITE

4.5.3 Simulation data

For reasons discussed at the beginning of this section the raw simulation output underwent a

significant amount of data processing, the implementation of this can be seen in the batch_jobs

module described in section 4.3 and requires an additional module on the computer cluster. Key

data was removed, converted into Pandas DataFrames and saved as Pickle files - the rest of the

data was deleted. Several saving options were programmed into the GDS for convenience. These

had four categories, each stored in a separate Pickle file, a general overview, mature RNA counts,

mature protein monomer counts, mature protein complex counts, and metabolic reactions fluxes

and the user can choose any combination of these to store.

There is a Python library called H5py that has methods to read Matlab files. Unfortunately,

this occasionally results in an error for the compressed files (version 7.0) which is the standard

version for the M. genitalium whole-cell model. A change was made to the M. genitalium whole-

cell model so that it saves the data in to uncompress Matlab files (version 7.3). H5py is then

able to read the files to extract the necessary data and then saves it. The GDS requires the

extract_matFile_data_v73 module to be present of the computer cluster in order to do this data

processing.

4.6 Analysis

Despite all the support provided by the GDS and the supporting databases, analysis of data

is still not straight forward. Analysis of how all a cell’s functions interact as well as problems

with working with large datasets and combining simulation data with biological data it not easy

without the GDS. The analysis module of the GDS was created to provide a framework and tools

for analysing data from the M. genitalium whole-cell model with an aim to easily to generalise to

other models/organisms as they become available.

This section will be split into the following sections, an analysis framework, comparing and

visualising genomes, and interpretting genomes biologically.

4.6.1 An analysis framework

Whilst there are many aspects to the analysis of whole-cell models, for genome design it was

decided to start with analysis of the genome. Since our in-silico experiments focus on the scale of

the gene it was decided to start with the resolution of the gene. The code is structured so that

within the main GDS folder there is an analysis folder that contains the genome module that

contains the Genes class.

The Genes class creates a framework to analyse genomes at the resolution of the gene. Three

96

4.6. ANALYSIS

representations of a genome were proposed in section 3.3 — Genome, Θ, knockout, K , and present,

Υ. Each representation can be useful in certain types of analysis, storage and simulation and so

the class needs to be able to move between all three representations. However, it was decided that

the main representation would be the genome representation that will also be quickly available

within an instance of the class.

An instance of the Genes class is initialised with a GDS connection to the GDS databases, a

list of all the possible gene codes, genome data, and data input type. The connection instance is

used so that there can be a single remote source of data meaning that teams can work together

knowing that all their analysis is equivalent and that when someone finds an update to the

biology it can be uploaded to everyone all in one go. With datasets this large/complex it is essential

that everyone is working from the same source since it only takes relatively small divergences to

strongly inhibit individuals comparing/combining work later on. A list of all possible genes is

passed because an analysis may want to study all the genome or only the protein-coding genes

or some other subset of genes. Data on the genome(s) can be in any of the three forms or None

where None creates an empty instance of the class. The data input type is a string that tells the

class what representation the genomes are in. All genome data is stored in the instance of the

class and then makes a second copy in genome form (if the passed data is not already in genome

form).

The previous paragraph showed that a subset of a genome could be visualised. This is a collection

of genes and not a genome anymore, however, for the rest of this section the term genome will

still be used and it is implied that this could actually be a subset of a genome.

Genome data must be passed in the standard Pandas DataFrame form when in genome form

where the column headers are the names of each genome and the indexes are gene codes. If

in knockout or present form then it must be in the form of a dictionary that has the name of

the genomes as keys and lists of gene codes (or IDs) as the genes that either remain or are

knocked-out.

There are methods of the class that enable manipulation of the instances of the class and

the genome data and so each will be discussed.

Should one want to add genomes to an existing Genes instance then the appendGenomeDf ,

appendNameToKoIdSetDict , or appendNameToKoSetDict methods can be used depending on the

genome form of the input. If a batch of genomes from Pandas DataFrames were stored as a Pickle

file then those genomes can be added to an existing instance of the Genes class by using the

appendGenomeDfFromPickleFile method.

97

CHAPTER 4. GENOME DESIGN SUITE

Often a user has a series of genomes stored in a text file in genome form. In this case, the

appendGenomeFromTxtFile method will take the file name and automatically append it to the in-

stance of the Genes class. Similarly, one may have genomes like this but as a Python list of binary

strings. These can be converted to a Pandas DataFrame and passed to the convertRawGenomeToDf

method to be added to an instance of the Genes class. If a SQLite3 database outputs genomes

as binary strings then genomes can be appended to an existing instance of the Genes class

by passing the path to the database and a corresponding SQL query to the appendGenomeFromDb

method.

There are various methods to convert between forms that are named with the convention

convert<form1>To<form2>. For example the method convertRawGenomeToDf converts a Pan-

das DataFrame of binary strings into the standard Pandas DataFrame form and the method

convertKoDictToGenomes converts from knockout form to genome form. The method convertKoIdDictToCodes

converts present or knockout representations from IDs to codes.

4.6.2 Comparing and visualising genomes

It is useful to be able to compare the difference between two or more genomes from the same

organism, but there are many different perspectives one can take, so methods were created to

investigate this.

The obvious starting place is to compare what genes are present or knocked-out between genomes.

The getGeneCodesBySimilarityClassification method take two genomes with corresponding

genome names and returns a dictionary that contains all the gene codes that were present in

both genomes, the codes that were knocked-out in both genomes, and the codes that genomes did

not agree should be present or knocked-out. The summeriseEssentialityByGene method returns

a dictionary similar to the previous method except that it acts on all the genomes in genome

form currently stored in the instance of the class. This dictionary only has three keys though.

The universal_essential_codes are all the gene codes that were present in every genome, the

universal_non_essential_codes are all the gene codes that were knocked-out in every genome, and

the transient_codes are all the gene codes that were present in some genomes but knocked-out in

others. The plotDistributionOfGeneEssentiality method plots the proportion of genomes that a

gene was present.

It was decided that it would be useful to be able to visualise how similar/different sets of

genomes were and so distance metrics were created. A distance metric, in this case, is simply

defined as a metric that is 0 if the two genomes are identical and gets larger the more different

they are. All distance metric methods take two genomes in genome form and are static methods

98

4.6. ANALYSIS

since they do not need access to class attributes, and it makes it easy to pass to other methods

and even other classes.

The most obvious way is to look at the proportion of genes that are the same but this actu-

ally has three interpretations. The proportionSimilarityDistance compares each gene in both

genomes. Any genes that are either both present or both knocked-out are scored with a 1 and

otherwise, scored as 0 and then the proportion of ones is calculated to indicate what propor-

tion of genes were the same. In order to turn this into a distance metric, we take one minus

the proportion of genes that are the same. This distance metric results in 0 if the genomes

are identical and 1 if not a single gene is the same. A similar metric is made but only compar-

ing the genes present, proportionKIsDistance , or the genes knocked-out, proportionKOsDistance .

In statistics and machine learning it is common to compare two sets using the ARI (see Chapter

2.3). Since a genome is a set of genes, a distance metric was created using the ARI which is 1

minus the ARI. The distance metric results in 0 if the genomes are identical, 2 if they are opposite

and around 1 if it is about as different as an average random guess. This is refered to as the ARI

distance metric and is called by the ariDistance method.

Once one has a distance metric for two objects it is common to compare a set of objects by

creating a distance matrix which calculates the distance between every object (see Chapter 2.3).

Distance matrices are normally symmetric (i.e. δ(a,b)= δ(b,a)) and will be in all cases for this

chapter. The createDistanceMatrix method takes 3 arguments, the distance function, the child

process chunksize, and the number of cores. The distance function is a function that takes two

genomes and returns a distance metric. A distance matrix is then created by calculating all the

distances between all the genome form genomes in the instance of the class. Since creating a

matrix is O
(
n2)

this quickly takes prohibitively long to calculate and so the task was coded to be

able to calculate it using multiple cores in parallel. The number of cores argument specifies how

many cores a user wishes to use - the default is set to None which will automatically use all

available cores on the computer. Often transferring data to cores can slow down a parallel calcu-

lation and so the child process chunksize option allows the user to specify how many genomes

to be transferred in one go. The default is set to 15 which is what generally performed quite

well on a particular laptop, but users should investigate what is best for their machine. Due to

potentially long calculation times a progress bar is shown for convenience. This only works on

the local computer, attempts were made to add options that send the calculation to the computer

cluster, but there are currently unresolved technical difficulties. Other improvements would be to

cut the computation time in half by exploiting the symmetry of the matrix or potentially creating

even larger improvements by writing a C++ function to create the matrix and creating bindings

so it can be called from Python.

99

CHAPTER 4. GENOME DESIGN SUITE

Visualising a distance matrix can be problematic since the number of dimensions is given

by the number of objects. One common way is to use a dendrogram. The plotDendogramOfMGSs

method creates a dendrogram from a distance matrix.

The dendrogram is useful for seeing clusters of similar objects, but as the numbers of objects or

clusters increase it quickly becomes hard to interpret. The plotDistanceMatrixWithPca method

takes a distance matrix and uses PCA to reduce the number of dimensions to two and creates a

scatter chart (see Chapter 2.3 for more information about PCA). The method provides a much

more intuitive way to visualise large sets of genomes but PCA is a lossy compression algorithm

and so should be used with care and the dimensions can be hard to interpret since they are linear

combinations of dimensions. Examples of these plots can be found in chapter 6.

It became clear that there is no easy way to literally visualise a genome and so heat map

was modified so that each column represents a genome and each row represents a gene and

the colour represents if the gene is present or knocked-out - this visualisation can be created

using the plotGenomes method. However, there are too many genes to see anything other

than a qualitative view. To improve this one can order the genomes by similarity by using the

orderGeneomesWithDbscan and/or look at smaller subsets of genes.

4.6.2.1 Further comments on distance metrics

Information theory has been used to create distance metrics, and so it is suggested that an

investigation into finding an information theoretical representation of the distance between

genomes.

A common property of the distance metric used is that there is a strong relationship between the

length of the genome and its similarity. This relationship makes sense because it can only be the

same genome if it is of the same length, but there may be more to genome similarity. I believe

that this effect may be strengthened by using symmetric distance metrics. It is common to use

symmetric distance metrics, but perhaps this is not a good assumption in this case. For example,

imagine that one genome is reduced by 10 genes and another genome is reduced by 200 genes,

and instantly they are going to have quite large distance but what if all the genes that remain in

the smaller genome also remain in the larger genome. In this case, it might be argued that the

smaller genome is more similar to the larger genome, but the larger genome is more different

from, the smaller genome. However, visualising non-symmetric distance matrices may be hard or

even impossible, and so I suggest an investigation into the feasibility of this as if possible then

could be a way of improving distance metrics of genomes.

100

4.7. DISCUSSION

All distance metrics discussed so far are very abstract and do not attempt to find a biologically

meaningful representation of the distance between genomes. For example, the three distance

metrics coded into the GDS discussed above assume that every gene is equal which may not be

the case. For example, imagine a pathway or a function that involves x number of genes but as

long as any y number of genes (y< x) remain in the genome then the cell lives which means that

you have
(x

y
)

combinations of viable genomes, but there is very little difference between them. A

viable genome that has genes knocked-out from a different pathway or function would be a very

different genome. The problem with this is that lots of genes interact in different ways and so it

may be hard to find some distance metric that incorporates it.

4.6.3 Interpreting genomes biologically

One major problem with the M. genitalium whole-cell model is that it is very hard to interpret the

data biologically. In section 4.5.1 it was shown that a lot of important biological data was converted

into machine friendly format and loaded into an SQLite3 database. The central database enables

us to get the team’s current biological knowledge automatically and in a machine-friendly format.

In order to utilise this data to help us better interpret our results, methods were created in

the anlysis part of the GDS that create bar charts and word clouds of sets of gene’s functional

groups. Also sets of genes could be automatically highlighted on KEGG maps through Cytoscape.

However, no good example use-cases of these methods arose in the creation of this thesis and so

have been omitted but the interested reader will be able to find the methods in the code.

4.7 Discussion

In this chapter we presented a python framework to enable multi-generation algorithms across

multiple computing clusters, a bespoke data storage solution for gene knockout experiments using

the whole-cell model of M. genitalium, and tools for genome analysis and biological interpretation

of the whole-cell model of M. genitalium.

The framework for multi-generation algorithms was structured to enable it to be easily adaptable

for different optimisations, models and clusters. We then added 3 HPC clusters, 1 model and 10

different optimisation algorithms.

Due to the large amount of data a temporary bespoke data storage solution was created to

fit our situation and it was designed to be simple, distributable, compact, machine friendly,

and quick/easy to access. The data was split across 2 SQLite3 databases and series of Pandas

DataFrames stored as Pickles. The framework for multi-generation algorithms was adapted to

transform all data into this format as and when simulations were performed.

101

CHAPTER 4. GENOME DESIGN SUITE

The analysis part of the GDS was split into 2 sections, genome analysis and biological interpre-

tation. Toy examples were used to demonstrate the function of the tools. The genome analysis

was made up of presenting a Python framework to work with and manipulate genomes, then

analysis tools were build upon this framework. This framework and tools were designed to be

general analysis tools and so would work on any organism. The tools for biological interpretation,

however, need to be model/organism specific and automatically communicate to with Cytoscape

and static.db in order to interpret data.

Whilst the goals for GDS were largely met, there is still room for improvement. Whilst the

code was structured so that it would be easy to adapt to different clusters, models and algorithms

the structure is a little too simple and does not specify areas of code where some instance specific

functions should go. This has resulted in the code, as new algorithms are added and extended

the code becomes either messy with repeated code or complicated function calls. Whilst the GDS

will be released open-source it currently lacks a user manual, tutorials and a community of users

making it hard for users to get started. However, those able to use the GDS are rewarded with

the ability to perform in-silico genome design experiments on scales previously not possible.

102

C
H

A
P

T
E

R

5
MASSIVE in-silico EXPERIMENTS

This chapter has two themes. The first theme is covered in the first section (section 5.1) and

looks at the theory behind the algorithms implemented in the GDS. The second theme

is covered in the remaining sections and looks at the results gained from using the GDS.

Chapter 4 looked at the design and implementation of the GDS and how it can easily be adapted

for different algorithms, models or computers. The GDS enables in-silico experiments that are

too big for a computer cluster - e.g. because the run-time is longer than the maximum walltime

of the cluster’s queueing system (around 2 months in our case for all three clusters), or because

the number of cores required is more than what’s available on any one cluster. This chapter will

present the results of its use in enabling massive in-silico experiments of M. genitalium using

the Karr et al.[52] whole-cell model.

5.1 Algorithm theory

The GDS is built around the concept of a multi-generation algorithm. The multi-generation

algorithm is able to implement any kind of computational process that requires more computing

Figure 5.1: A flow diagram of the structure of a multi-generation algorithm. The iteration and
the processing stages start and end the process and the iteration and termination stage define
how many iterations are performed.

103

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

resources than what is available by splitting the process into subsets that are small enough to be

run on the available computing resources and then combined to produce the end result. Each

subset of computation is referred to as a generation. These subsets could be computed separately

and collated at the end like calculating the average result of multiple independent simulations.

Alternatively, the results of some subsets may become input parameters of other subsets like the

generation of a gentic algorithm. The GDS assumes that a user’s problem can be broken into

subsets small enough to run on a single computational resource and so users should confirm that

this is the case beforehand to avoid failure. It is also worth noting that it can still be used for

lesser tasks that simply complete within the first generation. Figure 5.1 shows the four stages of

a multi-generation algorithm. The initialisation stage sets everything up so that the algorithm

can be performed on the resources available. The iteration stage is where the GDS splits the

computation into subsets small enough to be run on the available resources and then runs them -

it is worth noting that any subsets that don’t require the previous generation’s results can be

run in parallel across multiple computational resources. The termination stage is how the GDS

knows how to stop the iteration stage e.g. an optimisation algorithm might have converged to a

solution. The processing stage then performs any computation that requires all of the iteration

stage to finish first, like calculating the average result of all the iterative stages.

5.1.1 GA-type algorithms

This thesis uses the GDS in both ways described above (e.g. combining independent computational

tasks and sequentially performing steps of an algorithm that is too time consuming for maximum

simulation times of the available clusters). Whilst the GDS is flexible enough to work with any

type of algorithm that fits the conditions described above (i.e. splitting the algorithm into subsets

of computations small enough to work on the available resources) most of the algorithms explored

here are either a genetic algorithm or are derivative in some way and so this will be described

under the term GA-like algorithms and the common properties will be explored.

GA-type algorithms have 5 main components.

1. Chromosome encoding.

2. Fitness function.

3. Optimisation objective.

4. Selection.

5. Sexual reproduction.

Chromosome encoding in the GDS swaps between the three different but equivalent repre-

sentations of a genome specified in section 3.3 depending on which is most appropriate. These

104

5.1. ALGORITHM THEORY

are the genome (Θ), knockout (K), and present (Υ) representations.

The fitness function is the genome length of dividing individuals and has three equivalent

forms

f (Θi)=δi ×‖Θi‖
f (Υi)=δi ×‖Υi‖
f (K i)=δi ×‖∆(K i)‖

(5.1)

where δi is a binary variable that represents if individual i divides or not,

δi =
1, if Θi produces a dividing cell

0, if Θi does not produce a dividing cell.

‖Θi‖ & ‖Υi‖ is the genome length of individual i and ∆ is the difference operator that converts

the knockout representation into the present representation. One can see that f is only equal to

zero if the cell does not divide or if there are no genes present in the genome.

The optimisation objective, O , has three equivalent forms

O (Θi)= min
f (Θi)>0

[f (Θi)]

O (Υi)= min
f (Υi)>0

[f (Υi)]

O (K i)= max
f (K i)>0

[f (K i)] .

(5.2)

The fitness function and optimisation objective help guide selection. Once a generation of

genomes have been tested, the fittest individuals are selected to mate and create the next

generation. The non-dividing genomes are removed. Two genomes are then selected from the

remaining genomes such that smaller genomes are more likely to be picked. To describe this

mathematically we will use the knockout representation of genomes as it is most intuitive. Let

the set of all the fittest individuals of generation, G i, be Fi = {K j | f (K j)> 0 ∧ K j ∈G i}. Thus we

define the probability of picking individual j from Fi as

(5.3) P(X = K j) := f (K j)∑
Kk∈Fi [f (Kk)]

.

Sexual reproduction is split into two sections, recombination and mutation.

The algorithm for sexual reproduction is most intuitive when using the genome representa-

tion, Θi. Let two individuals, K i & K j, be randomly picked from the fittest set of genera-

tion i, Fi, to mate using equation 5.3. These are converted from knockout to genome repre-

sentation using the inverse-transform operator and will become the parents of a new child,

105

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

Figure 5.2: Histogram of the modified exponential distribution. 10,000 data points were sampled
from the modified exponential distribution to create this histogram. The data had a minimum
value of 1, a maximum value of 20, a mean value of 2.54050, and a standard deviation of 2.00049.

P1 = Ω(K i) = {θ1
1,θ1

2, . . . ,θ1
‖Γ‖} and P2 = Ω(K j) = {θ2

1,θ2
2, ...,θ2

‖Γ‖}
¬. In order to create the child a

random number in the range x ∈ [1,‖Γ‖] is uniformly picked, this indicates how much of the child

genome will be made up of parent-1. A subset of size x is uniformly picked from P1, CP1 ⊂ P1,

and the remaining genes will come from parent-2, CP2 ⊂ P2 - naturally CP1 ∩CP2 =;. CP1
and

CP2
are combined to make a new genome, C = CP1 ∪CP2 = {θk1

1 ,θk2
2 , . . . ,θk‖Γ‖

‖Γ‖ } where km = 1 if the

mth gene is taken from parent-1 or km = 2 if taken from parent-2. In algorithm form, two parents,

P1 and P2, perform sexual reproduction by the following

1. Pick a uniformly distributed random integer, x, in the range [1,‖Γ‖].

2. Sample x θi (without replacement) from P1.

3. Take the remaining θ j from P2.

4. Combine both sets of genes to form the genome of the child.

Once sexual reproduction has occurred then random mutation must happen. Here a random

number of genes are flipped by adding genes that were knocked-out or knocking-out genes

that were present (i.e. θi is a binary variable and so can be flipped by adding 1 modulo 2,

θi → (θi +1)mod2). The number of genes to be flipped needs to be picked randomly in the range

¬The user defines the total gene set, Γ, and thus its size on initialisation of the algorithm. The gene set may be the
entire wild-type genome or could be some subset that excludes genes that the user does not want to knockout. In the
case of this thesis, ‖Γ‖ = 358, which is the number of the characterised protein-coding genes minus one that tends to
cause the simulation to crash. For more information on how the genes were chosen, see Chapter 3.

106

5.1. ALGORITHM THEORY

[1,‖Γ‖]. Whilst it is possible to pick this number uniformly, we expect that as the number of

mutations increase the number of genes knocked-out become more random (i.e. lessons learnt

from our algorithm are being forgotten due to random mutation) and experience from chapter 3

tells us that a few random knockouts even in a wild-type cell very quickly become lethal. Thus one

might assume that uniformly picking the number genes to mutate in the range [1,‖Γ‖] is often

going to result in killing the cell. One could stick with a uniformly distributed random variable

and narrow the range, say to [1,5] but this significantly reduces the randomness of mutation.

In order to balance this trade off it was decided to use a modified exponential distribution. The

exponential distribution is a monotonically decreasing function which is qualitatively what we are

looking for because large amounts of mutations are possible but less likely. The rate parameter,

λ, sets the rate of decay of this continuous function. The exponential distribution produces,

real-valued, random variables in the range [0,∞] but we would like the range to start at 1 as the

user specifies at initialisation the probability of a mutation occurring and we want integer values

of genes to knockout. Additionally, we would like the probably of mutating all (or more) genes

to be almost impossible. To fulfil these requirements the modified exponential distribution was

created. Let Xλ be an exponentially distributed random variable with rate λ then the number of

mutations, M, can be calculated by

(5.4) M = bXλ+1e

where be denotes that the value calculated within is rounded and λ= 2.

Equation 5.4 is approximated by the mateTheFittest method of the GDS and it’s implementation

is discussed in more detail in section 4.4.2. Ten thousand samples were taken from the modified

exponential distribution, and a histogram of the data can be seen in figure 5.2. The sample

minimum, maximum, mean, and standard deviation are 1, 20, 2.54050, and 2.00049, respectively.

Figure 5.3 shows the iterative process of a GA-type algorithm. The observant reader may notice

that iterating this process assumes that there is always a previous generation that can mate

to produce offspring for the new generation. The first generation will, by definition, have no

previous generation to gain it’s population from. In order to start with some kind of population

for mating, the algorithm is seeded with an initial population - this may be referred to as the seed

generation or generation 0. This is a significant factor that distinguises many of the algorithms

implemented and will be discussed in the next section along with other differences.

5.1.1.1 Standard genetic algorithm

Figure 5.4 shows how the GDS genetic algorithm reduces genomes. The algorithm can be split

into two stages, the seed stage and the mate stage. The mate stage mimics evolution by natural

selection such that smaller viable genomes are favoured. The mate stage, however, needs parents

107

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

Figure 5.3: A flow diagram of the main part of a GA-type algorithm shows how fittness/optimisa-
tion, selection, and reproduction are combined.

to mate and create children and so these are randomly created in the seed stage and passed to the

mate stage. The random gene knockouts that create the seed children are restricted to between 2

- 5-gene knockouts because it becomes hard to randomly guess viable gene knockout combinations

greater than 5 within 200 simulations which we expected to be the standard generation size (see

chapter 3).

5.1.1.2 Grouping genes by gene-product complexes

Using biological knowledge as shown in section 3.1.3 had not shown enough benefit to be imple-

mented on the GDS. However, it became clear that the biggest problem for the genetic algorithm

was the huge size of the solution space and so an attempt was made to try and reduce the solution

space. Since gene products can combine to produce complexes (e.g. a ribosome) it was decided to

group all the genes by their functional molecules. For example, let’s consider a heterodimer, H,

made up of the protein from gene A, pA, and the protein from gene B, pB. In previous genetic

algorithms gene A and gene B could be knocked out individually (2 combinations), together (1

combination), or not at all (1 combination), but in this algorithm, both genes are treated as one so

either both get knocked-out together (1 combination) or neither get knocked-out (1 combination).

This reduces the numbers of combinations of genes (from 4 combinations to 2 combinations)

and thus reduces the overall solution space. This is a specific example but the result can be

generalised as follows. Let an arbirary complex be made up of x gene products then there are

108

5.1. ALGORITHM THEORY

Figure 5.4: A flow diagram of how a genetic algorithm reduces genomes in the GDS. The seed
stage randomly generates, N, children with between 2 - 5-gene knockouts, where, N, is given by
the user. When enough viable children have been found then the algorithm moves to the mate
stage where evolution by natural select is performed on sequential generations of children so
that the children converge to the smallest viable genome.

∑x
i=0

[(x
i
)]

combinations of gene knockouts that affect that complex but in this algorithm you can

only knockout all of the genes or none of the genes and so reduce the number of combinations by∑x
i=0

[(x
i
)]−2 combinations.

Data about the gene products were taken from the supplementary information of [52] and

can be found in machine-friendly form in static.db (see section 4.5 for more details). For more

information about the technical implementation see section 4.4.6 and the complex name to gene

codes can be seen in method getComplexToGeneCodesDict .

109

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

5.1.1.3 Seed with theoretical predictions

Instead of seeding the genetic algorithm with random genomes with 2 - 5-genes knocked-out, all

the non-viable minimal genome predictions discussed in chapter 3.1.4 were used. These genomes

did not produce a viable cell in the wholecell model of M. genitalium but it was assumed that

predictions from peer-reviewed literature is likely to be a better approximation of a minimal

genome than randomly guessing. In order to help produce viable reduced genomes these were

mated with larger, but viable, genomes in the hope that the genetic algorithm would (at some

point, by random chance) replace the non-viable parts of the non-viable genomes with viable parts

from the viable genomes. The viable genomes were taken from all viable genomes found (at the

time) from the two original genetic algorithms and are described in sections 5.2.1.1 and 5.2.1.2.

The non-viable genomes are much smaller genomes with between 45 - 269-gene knockouts, and

the viable genomes are much larger with 2 - 27-gene knockouts.

5.1.1.4 Guess, add, and mate algorithm

GAMA is also an implementation of a genetic algorithm with non-standard seeding in the GDS.

GAMA stands for the Guess, Add, and Mate Algorithm and the component names that make up

the acronym are stages in the algorithm where the guess and add stages are seed stages, and the

mate stage refers to the mating performed in a standard genetic algorithm. Figure 5.5 depicts

the stages of the GAMA algorithm, and one can see the similarities to the standard algorithm

except with two more complex seed stages rather than one standard random one.

In order to encourage the seed generation to seed the mate generation with the smallest genomes

possible an assumption was made that genes changing essentiality were, on average, significantly

less likely than it staying the same when reducing a genome. This assumption leads to our two

principles of static essentiality: 1. knocking-out combinations of only non-essential genes are sig-

nificantly more likely to produce viable cells than ones that knockout at least one essential gene,

and 2. given multiple sets of viable gene knockout combinations, then combining the knockout

combinations is likely to also produce a viable combination.

Guess

The guess stage uses item 1 of the principles of static essentiality by only looking at non-essential

genes to knockout. However, the pool of 151 non-essential genes still has a massive solution

space (∼ 2.9×1045)® and at the time gene addition algorithms were showing signs, anecdotally,

that they were struggling to find viable gene knockout combinations from subsets of non-essential

genes (the gene addition algorithms are discussed in section 5.3) and so there were concerns that

It is now agreed that there are 147 singularly non-essential genes but at the time of algorithm design there was
uncertainty about the essentiality of some of the genes, and so an extra 4 genes were added.

®∑151
k=1

(151
k

)
where

(n
k
)

was estimated using the scipy.special.comb function in Python.

110

5.1. ALGORITHM THEORY

All characterised protein coding genes (358)

All characterised non-essential genes (151) Guess

Add

Collate sets that produce a viable
cell

110100...0010110 110100...0010110

Mate

Test child viability

Repeat until child
genomes stop getting

smaller

Set B Set DSet CSet A

Random
subsets

Random
subsets

Random
subsets

Random
subsets

Add viable combinations from each set

...1 100 01 10110 01

...1 100 10110 011 1

Pick the smallest 50
genomes for the next
generation of parents

Convert to genome representation and mate

Figure 5.5: The Guess, Add, and Mate Algorithm (GAMA) attempts to seed a genetic algorithm
(i.e. the mate stage) with genomes as small as possible in order to converge to a minimal genome
as fast as possible. The guess stage partitions all the non-essential genes into 4 groups and then
picks 400 random subsets from each group. Each subset represents a gene knockout combination
which is simulated. The add stage randomly picks between 2 and 4 of the partitions and then
randomly picks one viable knockout combination from each one and combines them to create
one larger knockout combination which is then simulated. This process is repeated 2,000 times.
The mate stage, instead of being seeded by standard random guesses, takes its seeds as the 50
smallest viable genomes from the add stage. This stage then acts as a normal genetic algorithm
(see chapter 2.3 and section 4.4.2) but it now works on all the essential and non-essential 358
protein-coding genes. This figure was taken from [101].

the guess stage might struggle to find large viable gene knockout combinations. Since combina-

tions are super-linear, if a set is partitioned into non-overlapping subsets, then the sum of all the

combinations of the subsets will be significantly less than all the combinations of the super-set.

The shrinking of the solution space also means that we are missing out on potential large viable

combinations that span multiple partitions. This can be somewhat compensated for by utilising

item 2 of the principles of static essentiality in the add stage (see section 5.1.1.4 for more details).

It was decided to partition the 151 non-essential genes into four, roughly, equally sized subsets.

These subsets had 36, 37, 38, and 40 gene codes in them and so the sum of the combinations of

them are significantly smaller than the combinations of 151 (1.58×1012 ¿ 2.9×1045).¯

¯∑
n∈N

∑n
k=1

(n
k
)

where N = {36,37,38,40} and
(n
k
)

was estimated using the scipy.special.comb function in
Python.

111

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

Four hundred random sets of genes (with replacement) were picked from each partition creating

1,200 gene knockout sets to simulate. The number of gene knockouts of each set were picked

randomly from a uniform distribution in the range between 25 and the total size of the partition.

For technical details of the implementation of the guess stage see the GeneticAlgorithmFocusSet

class in chapter 4. The simulations for this generation cannot be found in ko.db (see section 4.5

for more details on the databases) because the results failed to upload due to a technical error,

for more information see section A.2.

Add

To take advantage of item 2 of the principles of static essentiality, the add stage randomly picks

between two and four of the partitions from the guess stage and then randomly picks one viable

gene knockout combination from each of the selected partitions, both random variables are from a

uniform distribution. Each of the selected sets of gene knockouts are then combined to make one

larger set of genes to knockout, which is then simulated. This child creation process is repeated

2,000 times.

For technical details of the implementation of the add stage see the MixFousSets class in chapter

4. The simulations for this generation can found under the experiment name ‘mix_ne_focus_splits’

in ko.db (see section 4.5 for more details on the databases).

Mate

A genetic algorithm is normally seeded with simple random guesses which result in children

with very large genomes. Instead, GAMA is seeded by the 50 smallest viable genomes found by

the add stage and then proceeds to mate them as a standard genetic algorithm would. The mate

stage was implemented through the MixFousSets class but was a separate experiment to the

add stage and the experiment name is ‘big_mix_of_split_mixes’ in ko.db (see section 4.5 for

more details on the databases).

5.1.2 Dynamic probability distribution

The ‘dynamic probability distribution’ is based on the idea of picking gene knockouts for children

based on a probability distribution. This probability distribution is updated after each generation

of children have been simulated and so that the algorithm improves it’s guesses each time. Figure

5.6 is a flow diagram that illustrates the principles of the algorithm. There were two initial

hurdles at the beginning of the problem. (1) In order to learn from all simulations it would be

necessary to read ko.db (see section 4.5 for more details on the database) from the compute

nodes of clusters and calculate the distribution in a reasonable amount of time. (2) Since genomic

112

5.1. ALGORITHM THEORY

Figure 5.6: The dynamic probability distribution uses the entire database of simulations to assign
probabilities of picking a gene to knockout based on the proportion of time it killed the cell in the
past.

context effects the essentially of the genes, one needs to be able to calculate the conditional

probability of a gene being non-essential given the existence of other genes in the genome.

Calculating all possible conditional probabilities results in a combinatorial explosion that would

make it unlikely that it is possible to compute/store/process/analyse efficiently enough to be a

viable option. However, there might be ways to approximate the probabilities on-the-fly making

it feasible. In order to test (2) easily, (1) needs to be implemented. (1) is also the quicker/easier

problem to solve and so this was done first assuming that only single gene probabilities were

needed (i.e. not calculating the conditional probabilities resulting in an averaging of the effects of

genomic context). Due to time constraints only (1) was completed and (2) remains to be done. It

was implemented to take into account every simulation that had been recorded in the database

at the time. The probability of picking a gene to knockout was calculated by counting all of the

genomes that successfully knocked the given gene out and dividing it by the total amount of

genomes that had the given gene knocked-out - for more details on the technical implementation

see section 4.4.5.

113

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

5.2 Genome reduction

The rest of this chapter now looks at the results of all the algorithms tested in the GDS. In an

attempt to find the minimal genome of the M. genitalium whole-cell model [52] the GDS was

used to perform massive in-silico experiments to reduce its genome.

Comparing the performance of different algorithms is not straight forward for a variety of

reasons. Algorithms and instances of the same algorithm can have many different attributes

like the length of time it was run for, the number of simulations it performed in that time, what

computer cluster(s) were used and how busy the clusters were at the time. The smallest viable

genome found could be misleading because some algorithms were only run for a few weeks and

ran 1,000 simulations whilst others ran for six months and ran tens of thousands of simulations.

The amount of genes knocked-out divided by the duration of time that the algorithm ran for

would also be misleading for three reasons: (1) The amount of time simulations wait in the cluster

queue depends on how busy it is. (2) Some queuing systems take into account how much a user

and the user’s group/school/department have used the cluster in the past so that people get

fair usage. (3) The amount of time a simulation takes to run varies depending on the cluster.

For example, BG takes between 5-15 hours to run the life cycle of a single M. genitalium cell

(excluding queueing time) whereas BC3 takes between 5-35+ hours to do the same. A measure of

effort might be more appropriate than time, like the number of gene reductions per simulation for

example. Unfortunately, optimisation algorithms often converge logarithmically and so converged

algorithms may show a much worse result per simulation than an algorithm that did not get

a chance to converge. Standardising aspects of the test (like the number of simulations) would

help, but the early stage of the research meant that flexibility was required and the amount of

resources required to perform an experiment makes repeating experiments very hard.

5.2.1 Standard genetic algorithms

In Chapter 3 it was shown that a genetic algorithm showed promise at reducing genomes and so a

genetic algorithm was implemented onto the GDS first. Chapter 2.3 discusses genetic algorithms

more generally and chapter 4 discusses its implementation into the GDS.

Computer cluster queueing systems normally have an array submission option of some kind.

These arrays enable users to submit multiple, similar jobs to the cluster as one array. These

arrays are normally limited in size but the limit can vary widely across clusters, and it was

decided to initially limit array sizes in the GDS to 200 jobs. This limit was mainly to enable easy

compatibility across clusters and also there, anecdotally, appeared to be a noticeable increase in

queuing time when 200 job arrays were regularly submitted, and so it was feared that regularly

submitting larger arrays may significantly slow our queue progression due to overuse. Whilst

114

5.2. GENOME REDUCTION

Figure 5.7: A plot of the number of genes reduced against the generation number. The blue
line represents the mean gene reduction for that generation and the high/low error-bar points
represent the maximum/minimum gene reduction in that generation.

the GDS could facilitate different array sizes depending on the clusters involved this option

was not implemented since it was not deemed a priority improvement. Initially, if the GDS

was given more than 200 jobs per array, then it would group them so that the amount of jobs

is not more than 200 and that each job runs multiple simulations in parallel with one core

per simulation. For example, if a batch of jobs needed 400 simulations, then 200 jobs would

be created, but each job would request 2 cores and run 2 simulations in parallel. The down-

side to this is that requesting many cores per array job can significantly impact the speed at

which one progresses through the cluster job queue. For this reason, it was expected that 200

simulations per generation would be the soft maximum/standard for experiments. How this is

coded can be seen in the createStandardKoSubmissionScript method of the respective cluster class.

The first two genetic algorithm tests were run with 100 and 200 children per generation which

were named the ‘small GA test’ or ’large GA test’, respectively.

115

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

5.2.1.1 Small GA test

The ‘small GA test’ is a standard genetic algorithm implemented in the GDS. It was run on BC3,

the maximum number of fit individuals that could survive to the next generation was 100, every

generation had 100 children, and each child was simulated only once. The experiment name is

GA_run_2017_11_30 and can be found in the databases described in section 4.5. The experiment

was set to end after generation 100 but was stopped prematurely at generation 12 in order to free

space on the cluster for other experiments.

This algorithm reduced the genome by 14 protein-coding genes in 11 generations (the total

number of generations was 12) and 1,000 simulations (total simulations was 1,100). On average

it reduced the genome by 0.014 genes per simulation. Generation 0 started on November 30th

2017, generation 10 started on December 20th 2017 and so ran for roughly 22 days, reducing the

genome by roughly 0.64 genes per day. Linearly extrapolating° this result, shows that at least 79

generations would be needed to knockout 100 genes. Figure 5.7 shows the per generation genome

reduction progress and one can see a fairly steady progression to knocking-out more genes over

time. However, progress is slow. Linearly extrapolating for time± shows that the 79 generations

would take 158 days or ∼ 5.3 months.

5.2.1.2 Large GA test

The ‘large GA test’ is a standard genetic algorithm implemented in the GDS. It was run on

BC3, the maximum number of fit individuals that could survive to the next generation was 100,

generation 0 had 600 children whilst the other generations had 200 children, and each child was

simulated only once. The experiment name is GA_full_run_2017_12_01 and can be found in the

databases described in chapter 4.5. The experiment was set to end after generation 100 but was

stopped prematurely at generation 25 in order to free space on the cluster for other experiments.

In addition to this, the algorithm was paused after generation 17, and two changes were made to

the mating process.

The first change was made to how the parent genomes were mixed to create a child. Origi-

nally, two parent genomes were randomly picked and then a random point on the genome was

picked, and both the parent’s genomes were split at that point. The child was then created by

combining the top part of genome 1 with the bottom part of genome 2. This was changed to enable

more diverse mixing of genomes and the number of genes, x, from parent 1 were picked randomly

from a uniform distribution and the number of genes picked from parent 2 were T− x, where T is

the total number of genes in a wild-type genome (i.e. T = 358). Then x and T − x genes are ran-

domly sampled from a uniform distribution from the parent 1 and parent 2 genomes, respectively.

° 100
14 ×11= 78.5 (1 d.p)

± 79
11 ×22= 158

116

5.2. GENOME REDUCTION

Figure 5.8: A plot of the number of genes reduced against the generation number. The blue
line represents the mean gene reduction for that generation and the high/low error-bar points
represent the maximum/minimum gene reduction in that generation.

Both implementations can be seen in the mateTheFittest method of the GeneticAlgorithm class

of the multigeneration_algorithm module, where the old version is in the comments above the

new version.

The second change was made to how mutations were performed on a child. Originally, 10%

of the time a child would have one gene mutated, which would be chosen randomly from a

uniform distribution. The new implementation again only mutated 10% of children but this time

the number of genes to mutate, x, was chosen from a modified exponential distribution so that

mutating 2 genes was extremely likely and the probability of larger numbers of genes reduced

exponentially. Preliminary tests showed that the largest number of genes picked over 1,000 trails

often got as high as 12. Once the number of genes to mutate were known the genes were mutated

by randomly sampling x genes from a uniform distribution.

This algorithm reduced the genome by 34 protein-coding genes in 25 generations (the total

number of generations was 26) and 5,397 simulations (total simulations was 5,597). On average

it reduced the genome by ∼ 0.006 genes per simulation. Generation 0 started on December 1st

117

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

2017 and generation 25 started on January 18th and so ran for roughly 50 days, reducing the

genome by roughly 0.68 genes per day. Linearly extrapolating² this result, shows that at least

74 generations would be needed to knockout 100 genes. Figure 5.8 shows the per generation,

genome reduction progress and one can see a fairly steady progression to knocking-out more

genes over time. However, again, progress is slow. Linearly extrapolating for time³ shows that

the 74 generations would take 148 days or ∼ 4.9 months. It can also be seen that the distance

between the minimum and maximum number of viable gene knockouts gets large from generation

18 onwards suggesting that the changes made may have slightly increased the number of viable

gene knockouts found per generation. All other algorithms that have a mate stage will use the

new implementation.

5.2.2 Dynamic probability distribution

The dynamic probability distribution queries ko.db to find all existing simulations that knock-

out each gene and then use it to calculate the proportion of times is was involved in viable

combinations and uses that as a probability of picking it again - for more information see section

5.1.2. It was run on BC3, the number of gene knockouts for a child was picked from a uniform

distribution in the range 50-200, all generations had 200 children, and each child was simulated

only once. The experiment name is dpd_18_01_11 and can be found in the databases described in

section 4.5. The experiment was set to end after generation 100 but was stopped prematurely at

generation 10 in order to free space on the cluster for other experiments.

This algorithm reduced the genome by 0 protein-coding genes in 10 generations (the total

number of generations was 10) and 2,031 simulations (total simulations was 2,031). On average it

reduced the genome by 0 genes per simulation and 0 genes per day. Linear extrapolation projects

that no amount of generations would result in reducing the genome by 100 genes´.

It is expected that the conditional probabilities would help increase the success of this algo-

rithm. Additionally, looking to knockout sets in between 50 and 200 is a huge solution space

to be looking at and that perhaps a variable knockout set size would help if it started small

and got bigger as the algorithm found viable gene knockout sets towards the upper range. The

worry here would be that the algorithm would not converge significantly faster than the standard

genetic algorithm. However, it may be worth pursuing this algorithm since it has much more

versatility than other algorithms. For example, the genetic algorithm’s success in reducing the

genome suggests that there is some gradient in the fitness function that the algorithm can climb.

This gradient is not guaranteed to be the case, for instance, should a solution space have a mostly

² 100
34 ×25= 73.5 (1 d.p)

³ 74
25 ×50= 148

´0× g = 0∀g where gis the number of generations and zero is number of genes reduced per generation.

118

5.2. GENOME REDUCTION

Figure 5.9: A plot of the number of genes reduced against the generation number. The blue
line represents the mean gene reduction for that generation and the high/low error-bar points
represent the maximum/minimum gene reduction in that generation.

flat gradient with sparse islands of locally optimal solutions, a genetic algorithm would perform

very badly, but a dynamic probability distribution with conditional probabilities might take into

account the islands and avoid flat gradients by building multiple distributions of each island. The

conditional probabilities may also enable it to focus on multiple local minima simultaneously and

furthermore analysis of the probability space may reveal more detail about the solution space.

5.2.3 Genetic algorithms with biological knowledge

An attempt to use biological knowledge to increase the convergence time of a standard genetic

algorithm was used. Two main strategise were investigated, grouping genes by gene-product

combinations as well using non-standard seeding strategies to start the mate stage with the

smallest possible genomes.

5.2.3.1 Grouping genes by complexes

Efforts were made to reduce the size of the solution space by grouping genes by complexes that

they form (see section 5.1.1.2 for the theoretical explanation). The ‘genetic algorithm with com-

119

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

plexes’ is an implementation of this in the GDS. It was run on BG, the maximum number of fit in-

dividuals that could survive to the next generation was 100, all generations had 200 children, and

each child was simulated only once. The experiment name is GA_with_complexes_bg_2017_02_05

and can be found in the databases described in chapter 4.5. The experiment was set to end after

generation 100 but was stopped prematurely at generation 14 in order to free space on the cluster

for other experiments.

This algorithm reduced the genome by 13 protein-coding genes in 15 generations (the total

number of generations was 15) and 1,466 simulations (total simulations was 1,466). On average

it reduced the genome by ∼ 0.009 genes per simulation. Generation 0 started on February 5th

2018 and generation 14 started on March 3rd and so ran for roughly 26 days, reducing the

genome by roughly 0.5 genes per day. Linearly extrapolatingµ this result, shows that at least

115 generations would be needed to knockout 100 genes. Figure 5.9 shows the per generation,

genome reduction progress and one can see a fairly steady progression to knocking-out more

genes over time. However, again, progress is slow. Linearly extrapolating for time¶ shows that

the 155 generations would take 169 days or ∼ 5.6 months.

The missing minimum/maximum bars in figure 5.9 (e.g. generations 4 and 6) denotes miss-

ing data. I have not been able to deduce the cause of this but the most likely reason is cluster

problems (e.g. the filesystem going down). This is likely to have caused a loss of not just new

information but information existing at the time and so has detrimental effects to atleast genera-

tion 5 and 7. For this reason it is reasonable to believe that the results are underestimating the

performance of the algorithm and should be re-done but unfortunately, there was not time to do

this in this thesis.

5.2.3.2 Genetic algorithms with non-standard seeding

A genetic algorithm needs an initial population of individuals with which to perform natural

selection on. This population is called the seed population and is generation 0 in the GDS imple-

mentation of a standard genetic algorithm. A genetic algorithm traditionally starts by randomly

guessing the children for the seed generation and this is repeated until a minimum amount

of individuals with a certain level of fitness has been found. All previous genetic algorithms

discussed here had a seed population made by randomly guessing gene knockouts from a uniform

distribution. The number of gene knockouts of an individual is randomly picked from a uniform

distribution in the range 2-5. This limit was imposed because it is very unlikely to randomly

guess a viable genome with more than 5 genes knocked-out in 200 guesses. Since the genetic

µ 100
13 ×15= 115.4 (1 d.p)

¶ 155
15 ×26= 169

120

5.2. GENOME REDUCTION

Figure 5.10: A plot of the number of genes reduced against the generation number. The blue
line represents the mean gene reduction for that generation and the high/low error-bar points
represent the maximum/minimum gene reduction in that generation.

algorithm reduces genomes slowly it was decided to investigate alternative methods to seed the

genetic algorithm such that it could get to larger knockout combinations quicker.

5.2.3.3 Seed viable

The ‘seed viable genetic algorithm’ is an implementation of a genetic algorithm with non-standard

seeding in the GDS. It aims to combine small non-viable minimal genome predictions with larger

viable genomes to seed a standard genetic algorithm (see section 5.1.1.3 for a full discussion

on this). It was run on both BG and BC3, and the maximum number of fit individuals that

could survive to the next generation was 100. Generations 1-30 had 200 children each, gen-

erations 31-100 had 100 children each, generation 101-134 had 200 children each and each

child was simulated only once. The experiment name is ga_seed_viables_bg_2017_01_02 and

ga_seed_viables_cont_on_bc3_2017_01_02 and can be found in the databases described in section

4.5. The experiment was set to end after generation 100 and then changed to 200 but was stopped

prematurely at generation 134 because the Hub had to be turned off to move office.

This algorithm reduced the genome by 133 protein-coding genes in 128 generations (the to-

121

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

tal number of generations was 135) and 15,087 simulations (total simulations was 15,675). On

average it reduced the genome by ∼ 0.009 genes per simulation. Generation 1 (generation 0

is skipped and the fittest individuals passed to generation 1 are the seeds discussed above)

started on January 2nd 2018 and generation 134 started on May 10th and so ran for roughly

130 days or ∼ 4.3 months, reducing the genome by roughly 1.02 genes per day. The algorithm

first found a viable genome with 100 or more genes knocked-out in generation 72. Generation 72

started on March 6th 2018 and so took about 64 days or ∼ 2.1 months. Figure 5.10 shows the per

generation, genome reduction progress and one can see that the first 40 generations converge

much faster than the previous algorithms discussed. There is a large range of the number of genes

knocked-out in the early generations whilst the genetic algorithm explores all the combinations

of the seeded genomes. The success of this also suggests that our assumption that the non-viable

predictions did resemble a minimal genome was correct. As the generations progress it reverts

back to a similar pace as a standard genetic algorithm and it also looks as if the range of number

of knockouts increases a little at generation 100, which is consistent with the same observation

for the large GA test, 5.2.1.2.

5.2.3.4 GAMA

The guess, add, and mate algorithm (GAMA) attempts to seed a gentic algorithm (the mate stage)

with much smaller viable genomes by using the guess and add stages instead of a traditional

random seed stage, for more information see section 5.1.1.4. In addition to the new seeding, it

was suspected that given the size of the solution space, limiting the number of simulations in a

generation to 200 children might be severely hampering progress. Due to this, larger generation

sizes were planned, and instead of letting the cluster class spread multiple simulations over

single jobs, a routine was implemented in the GAMA classes that simply split all the children

into multiple sets of 200 single simulation job arrays and submit each job array in parallel to the

cluster(s). This is implemented in the runSimulations method of the respective algorithms class

in the multigeneration_algorithm module.

This algorithm reduced the genome by 165 protein-coding genes in 28 generations (the to-

tal number of generations was 47) and 32,928 simulations (total simulations was 51,119). On

average it reduced the genome by ∼ 0.005 genes per simulation. All 47 generations took less than

62 days, reducing the genome by 2.66 genes per day. The algorithm was meant to continue until

200 generations but was stopped manually because it went 20 generations without finding a

smaller genome. All three stages took under 72 days or ∼ 2.4 months.

Figure 5.11 shows that the guess and add stages rapidly find genomes with as many as 137

genes knocked-out. The guess stage finds viable genomes with as many as 40 genes removed

which provides some validation for its use. In addition to this, the huge combinations of viable

122

5.2. GENOME REDUCTION

Figure 5.11: A plot of the number of genes reduced against the generation number. The blue
line represents the mean gene reduction for that generation and the high/low error-bar points
represent the maximum/minimum gene reduction in that generation.

gene knockouts found by the add stage validates this stage and supports our use of item 2 of

the principles of static essentiality. It is worth noting that whilst the maximum amount of gene

knockouts is high in the add stage, the mean is very low which may suggest that the large viable

combinations were less common. The skew towards smaller viable knockout sets may illustrate

that item 2 of the principles of static essentiality may not be very consistent. This inconsistency

is not surprising since dynamic essentiality was expected but the algorithm just exploits the

relative scarcity compared to static essentiality. The degree of success of the algorithm, however,

may hint that dynamic essentiality is, perhaps surprisingly, uncommon in the M. genitalium

whole-cell model though.

It is clear to see that the guess and add stages of the algorithm worked well. In order to quantify

this we add the two following statistics. The first generation (guess) found viable genomes with

up to 40 genes knocked-out in 1,600 simulations, removing 0.025 genes per simulation. The first

two generations (guess and add) found viable genomes with up to 135 genes knocked-out in 3,600

simulations, removing 0.0375 genes per simulation. The guess and add stages took about ten days

123

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

to complete. Linearly interpolating these results· tell us that GAMA found a viable 100-gene

knockout combination in two generations or about a week.

It may appear that GAMA is performing more simulations per unit time than the other al-

gorithms but the first 18 generations of the seed viable algorithm performed 3,600 simulations

which took about 9 days which is a day quicker than GAMA (both sets of simulations were

performed on BG). This suggests that having the larger generation sizes does not speed up or

slow the rate of simulations and that the algorithm itself is to credit for the fast convergence and

not the larger size of the generations.

5.2.3.5 Comparison

As discussed at the beginning of the chapter it was decided to prioritise flexibility to experiment

with algorithms over maintaining a rigid structure to test on and so a direct quantitative com-

parison of the algorithms is not possible. However, comparing a few different statistics can give

a rough idea of how the algorithms performed against each other. Figure 5.12 looks at overall

measures of performance whereas Figure 5.13 looks at measures that try and account for some of

the inconsistencies between experiments by comparing the performance finding exactly 100-gene

knockouts. All algorithms discussed in this section are included plus one that looks at only the

guess and add stages of the GAMA algorithm. The reason for this is two-fold. First, GAMA is

the only algorithm to converge on a local minimal genome which means that it has a very long

shallow gradient where it almost converged that the other algorithms haven’t got to and so the

guess and add stage is fairer comparison. Second, the mate stage is a standard genetic algorithm

whereas the guess and add stages are the novel part of the algorithm and deserves closer analysis.

Figure 5.12(a) looks at the number of genes knocked-out in the smallest viable genome for

each algorithm. GAMA is clearly the most successful here with the guess and add stages and the

seeded viable algorithms showing impressive reductions. The standard genetic algorithms and

the GA with complexes show much smaller totals but it is worth remembering that these ran a

much smaller amount of simulations.

Figure 5.12(b) shows the average gene reduction per simulation for each algorithm. It can

be seen that the GAMA algorithm performs the worst with this metric but the guess and add

stages performs the best and knocks-out over 7 times more genes on average, illustrating just how

much of a difference the logarithmic convergence makes. It seemed that increasing the number

of children per generation helped the standard genetic algorithms find smaller genomes and so it

was slightly surprising that the second largest was the small GA which significantly outperforms

the rest. The GA with complexes performed very well with this metric, especially since it is

·10× 100
135 = 7.41 (2 d.p.).

124

5.2. GENOME REDUCTION

(a)

(b)

Figure 5.12: A comparison of the genome reduction algorithms implemented on GDS. (a) Shows
the largest viable combination of gene knockouts found by each algorithm. (b) Shows the average
number of genes reduced per simulation for each algorithm.

125

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

suspected that technical problems hindered the algorithm’s performance. The seeded viable

algorithm performed the same as the GA with complexes. Whilst the seeded viable algorithm

is not nearly as close to converging as GAMA, perhaps it also deserves to have a shorter subset

of generations analysed. However, it is not as clear cut for the seed viable algorithm because

the only part that is different in the algorithm is the seed generation but most of the increased

performance happens in the generations after and so requires some kind of system to decide

which generations should be included to make a fair comparison. How to create such a system is

not currently clear and so remains an unanswered question in this thesis.

Figure 5.13(a) shows the number of days each algorithm took to find a viable genome with

100 genes knocked-out. GAMA and the guess and add stages are the same for this metric and the

next (Figure 5.13(b)) since the algorithm had found 100 knockouts by the add stage and they are

again, clearly outperforming the rest with only 7 days. The seed viable manages to do it in about

2 months, and the rest come in at around 5 months. It is worth remembering that the standard

genetic algorithms and the GA with complexes did not actually find 100 knockouts and so their

figures had to be linearly extrapolated. The linear extrapolation could mean that their figures are

underestimated but given the expected logarithmic convergence there is a reason to doubt this.

A more significant concession is that the all the GA tests were run on BC3, GAMA was run on

BG, and the seed viable algorithm was run on a mix of both clusters. This is significant because

BG runs a simulation quicker than BC3. The GA with complexes is by far the worst performer,

and the small GA test surprisingly outperforms the seeded viable algorithm. These mixed results

suggest that a closer analysis than performed in this thesis is neccessary to understand what is

going on but one may speculate that the dominating factor is how many other people are using

the cluster during an in-silico experiment.

Figure 5.13(b) shows the number of simulations needed to find a viable genome reduced by

100 genes. Again GAMA and the guess and add stages are the same and significantly outperform

the rest.

5.3 Making non-viable genomes viable

Chapter 3 shows that minimal genome predictions in the literature do not produce a viable cell

in the M. genitalium whole-cell model. Joshua Rees showed that adding the model’s singularly

essential genes and other genes with inconsistent phenotypes (see chapter 2.3) to all the predicted

genomes fixed the cell in every case. This approach will be referred to as the Rees method, and it

gives a nice clean result but it is not guaranteed to fix a non-viable genome nor that the viable

genome is the smallest possible. In order to overcome these problems, it was decided to implement

an algorithm on the GDS that would try and converge to the smallest viable genome from the

126

5.3. MAKING NON-VIABLE GENOMES VIABLE

(a)

(b)

Figure 5.13: A comparison of the genome reduction algorithms implemented on GDS. (a) Shows
the number of days each algorithm needed to reduce the genome by 100 genes. (b) Shows the
number of simulations needed to reduce the genome by 100 genes.

127

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

initial non-viable genome. This approach will be referred to as the Chalkley method.

5.3.1 Genetic algorithm additions

It was decided to try and reverse the genetic algorithm so that it starts with a non-viable genome

and attempts to knock genes back into the genome in order to try and find the smallest viable

genome.

Preliminary tests showed that knocking all the essential genes back into the genomes did

not fix any of the predictions. It was assumed that high essential genes would be rare and

the essential genes combinatorially increase the solution space making it much harder to find

viable genomes and so the gene addition experiments only searched through combinations of

non-essential genes to add whilst all the essential genes are permanently present in the genome,

until the mate stage.

5.3.1.1 Atlas

The genetic algorithm added genes to the atlas genome and found eight different viable genomes.

The smallest genome had 59 genes knocked-out and the largest had 14 genes knocked-out. 3,158

genomes were simulated of which 2,908 were unique. The algorithm had 65 generations. In the

database this has the experiment name ‘atlas_no_ess_ki_bg_2018_01_19’.

5.3.1.2 Church

The genetic algorithm added genes to the church genome and found one viable genome. The

genome had 46 genes knocked-out. 496 genomes were simulated of which 489 were unique. The

algorithm had 9 generations. In the database this has the experiment name

‘church_ki_no_ess_bg_2018_01_19’.

5.3.1.3 Gil04

The genetic algorithm added genes to the gil04 genome and found four different viable genomes.

The smallest genome had 77 genes knocked-out and the largest had 19 genes knocked-out. 3,153

genomes were simulated of which 3,013 were unique. The algorithm had 65 generations. In the

database this has the experiment name ‘gil04_no_ess_ki_bg_2018_01_19’.

5.3.1.4 Gil14

The genetic algorithm added genes to the gil14 genome and found two different viable genomes.

The smallest genome had 49 genes knocked-out and the largest had 33 genes knocked-out. 458

genomes were simulated of which 445 were unique. The algorithm had 8 generations. In the

database this has the experiment name ‘gil14_no_ess_ki_bg_2018_01_19’.

128

5.3. MAKING NON-VIABLE GENOMES VIABLE

5.3.1.5 Glass

The genetic algorithm added genes to the glass genome and found 641 different viable genomes.

The smallest genome had 41 genes knocked-out and the largest had 19 genes knocked-out. 3,204

genomes were simulated of which 1,662 were unique. The algorithm had 70 generations. In the

database this has the experiment name ‘glass_ki_no_ess_bg_2017_01_20’. This is a continuation

of ‘glass_ki_no_ess_bg_2017_01_17’, which had 245 simulations.

5.3.1.6 Karr

The genetic algorithm added genes to the karr genome and found 83 different viable genomes.

The smallest genome had 61 genes knocked-out and the largest had 3 genes knocked-out. 250

genomes were simulated of which 247 were unique. The algorithm had 2 generations. In the

database this has the experiment name ‘karr_ki_wo_ess_bg_2018_01_18’. This is a continuation

of ‘karr_ki_no_ess_bg_2018_01_21’, which had 399 simulations.

5.3.1.7 Huang

The genetic algorithm added genes to the Huang genome and found 1 viable genome. The genome

had 78 genes knocked-out. 497 genomes were simulated of which 496 were unique. The algorithm

had 8 generations. In the database this has the experiment name

‘huang_no_ess_ki_bg_2018_01_19’.

5.3.1.8 Koonin

The genetic algorithm added genes to the koonin genome and found 641 different viable genomes.

The smallest genome had 63 genes knocked-out and the largest had 41 genes knocked-out. 2,633

genomes were simulated of which 759 were unique. The algorithm had 51 generations. In the

database this has the experiment name ‘koonin_no_ess_ki_bg_2018_01_19’.

5.3.1.9 Tomita

The genetic algorithm added genes to the tomita genome and found 5 different viable genomes.

The smallest genome had 4 genes knocked-out and the largest had 2 genes knocked-out. 711

genomes were simulated of which 677 were unique. The algorithm had 11 generations. In the

database, this has the experiment name ‘tomita_ki_bg_2017_01_03’.

5.3.1.10 Hutchinson

The genetic algorithm added genes to the hutchinson genome and found 499 viable genomes. 889

genomes were simulated of which 696 were unique. The algorithm had 9 generations. In the

database this has the experiment name ‘hutchinson_ki_no_ess_bg_2017_01_19’. The smallest

129

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

Figure 5.14: A comparison of number of gene knockouts for the non-viable minimal genome
predictions and a fixed version created by the Rees method and by the Chalkley method.

genome had 15 genes knocked-out and the largest genome had 2 genes knocked-out. However, due

to human error this algorithm knocked-out uncharacterised genes. Removing the uncharacterised

genes reveals that the algorithm’s smallest genome removed 15 genes and the largest genome

only removed 1 gene.

5.3.1.11 Comparison of the Rees and Chalkley methods

Figure 5.14 compares the number of gene knockouts in the original non-viable genomes, the

fixed genome using the Rees method, and the Chalkley method. One can see that most of the

original predictions had significantly more genes knocked-out than either of the fixed sets. The

Rees method is consistently better at fixing the non-viable genomes than the Chalkley method,

and in fact, the Chalkley method only matches/beats the Rees method once (the Glass set but

the Chalkley method only uses one less gene than the Rees method). Although most of the

experiments were not run for very long (with some only simulating hundreds of children), the

Chalkley method seemed to struggle the most for sets that had a big difference between the

predicted set and the fixed set. The big difference results in a combinatorial explosion of genomes

to try before success which suggests that, like the genetic algorithm for gene knockouts, the

vast size of the solution space is again the problem. Whilst the Rees method outperformed the

Chalkley method with this test, the Rees method is not guaranteed to fix the genome, and if it

does not work, then there is no specification on what to do next, whereas the Chalkley method will

always find a viable genome given enough time. Also, the Rees method is not guaranteed to find

the smallest viable genome and could never find genomes with high essential genes knocked-out.

When trying to fix a non-viable genome, one could start with the Rees method and then apply

130

5.4. DISCUSSION

the Chalkley method to the results of the Rees method. In order to improve how the Chalkley

method deals with large solution spaces, one could use the principles from the GAMA algorithm

(i.e. implement a guess and add stage instead of initial random guesses).

5.4 Discussion

This chapter presented the results of performing massive in-silico experiments enabled by the

GDS in order to reduce the genome, and fix non-viable minimal genome predictions in the

whole-cell model of M. genitalium. In-silico experiments were successfully run on BC3 and BG.

Everything appeared to run fine on the C3DDB cluster except there was a file-lock restriction that

prevented the GDS from writing Pickle files to the scratch drive and the system administrators

were not able to correct the problem in a reasonable amount of time. Whilst in-silico experiments

ran without a problem on a single cluster (even if there were multiple single-cluster experiments

running simultaneously) attempts to run a single experiment that uses multiple clusters resulted

in delays accessing ko.db due to simultaneous access attempts locking the SQLite3 database.

It is currently unknown if the problem would resolve itself, given enough time, but SQLite3 is

a light-weight RDMS that is not meant to get high volumes of access requests and so using a

fully featured database would solve this problem - currently a PostgreSQL database is being

constructed to overcome this problem.

All genome reduction algorithms worked to some extent but the biggest problem was to ef-

ficiently traverse the huge solution space in a reasonable amount of time. The genetic algorithm,

dynamic probability distribution, genetic algorithm with complexes, and seed viable algorithms

were all converging too slowly to wait for them to converge to a minimal genome. GAMA, which

exploits the principles of static essentiality was able to converge to a minimal genome in 1.5-2.5

months.

Only one algorithm to fix non-viable genomes was implemented on the GDS and whilst it

did perform its function the performance was deemed inadequate and was outperformed by a

method created by Rees - although there there were complimentary strengths and weaknesses

suggesting a combination of the two would be the best. Like the genome reduction algorithms

the size of the solution space was the biggest problem and is likely to be the case for most design

objectives that use combinations of genes to control the model.

GAMA was the only algorithm that was able to successfully navigate the huge solution space but

even that algorithm took ∼ 1.5−2.5 months on a HPC cluster. Additionally it relies on exploiting

specific properties of the solution space (i.e. the principles of static essentiality) but we do not

know if the model is accurate in this domain. Even if the model is accurate in this domain we do

131

CHAPTER 5. MASSIVE IN-SILICO EXPERIMENTS

not know if other organisms will have similar properties to their solution spaces. Furthermore,

the principles of static essentiality may not help speed up the convergence of other objectives

(e.g. metabolic engineering). As a result, methods to rapidly traverse the huge solution space to

converge on general genome design objectives may become a significant goal of synthetic biology

in the future.

132

C
H

A
P

T
E

R

6
THE REDUCTOME

In chapter 5 we described massive in-silico experiments to reduce the genome of the M.

genitalium whole-cell model and to fix non-viable genomes - this chapter will look deeper

into the results. This thesis refers to a specific reduced genome as a reduction, but as of

yet, there is no term to refer to the solution space of all reductions. Following the -omics naming

convention, the set of all genes of an organism are its genome, all transcripts are its transcrip-

tome etc, and now I define the set of all reduced genomes of an organism as its reductome. In

other words, the reductome is the set of all possible combinations of genes in its genome, and I

further define the viable and non-viable reductome as the combinations that produce a viable

and non-viable cell, respectively.

A significant proportion of this chapter is based on a manuscript. Joshua Rees and I are co-

first authors and it is titled ‘Designing Minimal Genomes Using Whole-Cell models’ which is

currently being submitted to Nature Communications and can be viewed on bioRxiv[101]. A

significant proportion of this chapter (particularly section 6.1) is included in the manuscript. A

copy, supporting materials, and contributions can be found in the supplementary information of

this thesis see appendix A.4. There is frequent references to the essentiality of genes and so the

reader should be familiar with the terminology set out in section 1.1.2.

6.1 GAMA vs Minesweeper

All references to gene ontology in this thesis are done by my classifications except for this section

which is done by Rees unless otherwise stated - for more information on the two different classifi-

cations see section 3.1.4 for justifications and appendix A.5 for data.

133

CHAPTER 6. THE REDUCTOME

In parallel to the in-silico experiments described in chapter 5, Joshua Rees also developed

a genome reduction algorithm. Joshua used his algorithm, minesweeper, to find a large reduction

and it ran 2,000 simulations over a couple of days on BG. This algorithm looked for reductions

by knocking-out genes only from the set of non-essential genes and the smallest genome found

was called minesweeper_256. The genome of minesweeper_256 contains 256 protein-coding genes

which makes it a 145 protein-coding gene reduction.

GAMA ran 51,000 simulations over roughly 2.5 months on BG, although the smallest genome

was found in just over 1.5 months. The smallest genome found by GAMA was GAMA_236 and

so is made up of 236 protein-coding genes which makes it a 165 protein-coding gene reduction.

Interestingly, GAMA_236 knocked-out 18 singularly essential genes identifying them as potential

high-essential genes.

More information about GAMA can be found in Chapters 4 and 5 as well as the manuscript which

also contains information about minesweeper[101].

Having both found minimal genomes using different algorithms an investigation into what

they were biologically and how they compare to each other was performed. The following sections

use Rees’ UniProt gene classifications which can be found in spreadsheets in the supplementary

information - see section A.4.

Minesweeper_256 GO Term Analysis

We investigated what processes were removed in the creation of Minesweeper_256, using

gene ontology (GO) biological process terms (see appendix A.5). The baseline M.genitalium

whole-cell model has 259 genes of 401 genes (72% coverage) with GO terms on UniProt[102].

Minesweeper_256 has 186 (73%) genes with GO terms and 70 (27%) genes without. The 140

gene deletions did not impact 91 (59%) GO categories, impacted 22 (14%) GO categories, and

removed 41 (27%) GO categories entirely, of which 29 (70%) were associated with a single gene

(see appendix A.5).

The GO categories reduced include: DNA (replication, topological change, transcription reg-

ulation and initiation); protein (folding and transport); RNA processing; creation of lipids; cell

cycle; and cell division. As the in-silico cells continue to function, we can assume that these

categories could withstand low-level disruption.

Removed GO categories that group together multiple genes include: proton transport; host

interaction; DNA recombination and repair; protein secretion and targeting to membrane; and

response to oxidative stress. Removed GO categories that contain single genes include: transport

134

6.1. GAMA VS MINESWEEPER

(proton, carbohydrate, phosphate and protein import, protein insertion into membrane); protein

modification (refolding, repair, targeting); chromosome (segregation, separation); biosynthesis

(coenzyme A, dTMP, dTTP, lipoprotein); breakdown (deoxyribonucleotide, deoxyribose, mRNA,

protein); regulation (phosphate, carbohydrate, and carboxylic acid metabolic processes, cellular

phosphate ion homeostasis); cell-cell adhesion; foreign DNA cleavage; SOS response; sister chro-

matid cohesion; and uracil salvage.

These deletions reduce the ability of M. genitalium to interact with the environment and defend

against external forces. Internally this results in a reduction in control, from transport to regu-

lation to genome management, and pruned metabolic processes and metabolites. The deletions

leave Minesweeper_256’s in-silico cell alive, but more vulnerable to external and internal pres-

sures, less capable of responding to change, and more reliant on internal processes occurring by

chance.

GAMA_236 GO Term Analysis

We investigated what processes were removed in the creation of GAMA_236, and compared to

Minesweeper_256. GAMA_236 has 163 genes (69% coverage) with GO terms on UniProt[102],

with 73 genes with no GO terms. The 165 genes deleted did not affect 83 (54%) GO categories,

reduced counts in 17 (11%) GO categories, and removed 55 (35%) GO categories, 38 (69%) of

which were associated with a single-gene (see appendix A.5). There were 8 unaffected and five

reduced GO categories in Minesweeper_256 removed in GAMA_236, with one unaffected GO

category unique to GAMA_236 (phosphate ion transmembrane transport). Four GO categories

were reduced further in GAMA_236: DNA (transcription, transcription regulation, transport),

and glycerol metabolic process.

The 14 additional GO categories removed include: DNA (transcription (termination, regula-

tion of elongation, antitermination, initiation)); RNA (processing (mRNA, tRNA, rRNA), rRNA

catabolic process, tRNA modification, pseudouridine synthesis); thiamine (biosynthetic process,

diphosphate biosynthetic process); and protein lipoylation.

GO analysis of GAMA_236, when compared to Minesweeper_256, suggests a further reduc-

tion of both internal control and reactivity to the external environment.

Behaviour and Consistency of GAMA_236 and Minesweeper_256 Genomes

We investigated the characteristics of our two minimal genomes in terms of how consistently

they produced a dividing in-silico cell and the range of possible behaviour they displayed. We

simulated 100 replicates of an unmodified M. genitalium in-silico genome, Minesweeper_256,

GAMA_236, and a single-gene knockout of a known essential gene (MG_006) for comparison. The

135

CHAPTER 6. THE REDUCTOME

Figure 6.1: Comparison of unmodified M. genitalium whole-cell model, Minesweeper_256, and
GAMA_236 outputs. 100 in-silico replicates, with time courses plotted for 6 cellular variables over
13.89 hours (the default endtime of the simulations). Top row is unmodified genome, showing
the expected cellular behaviour (previously shown by Karr et al [52]) and is used for comparison.
Minesweeper_256 and GAMA_236 show deviations in phenotype caused by gene deletions. Non
aggregated data for each in-silico simulation is available (see appendix A.4).

rate of division (or not in MG_006 knockout simulations) was analysed to assign a phenotype

penetrance percentage, quantifying how often an expected phenotype occurred. The unmodified

M. genitalium and MG_006 knockout in-silico genomes demonstrated consistent phenotypes (99%

and 0% divided, respectively). Minesweeper_256 was slightly less consistent (89% divided), while

GAMA_236 was substantially less consistent, producing a dividing in-silico cell 18% of the time.

This inconsistency is not entirely surprising given the greater number of gene deletions affecting

essential gene functions (according to the GO term analysis).

In order to visualise the phenotypic penetrance Rees plotted the 100 replicates for the unmodified

M. genitalium genome, Minesweeper_256, and GAMA_236 to assess the range of behaviour

(Figure 6.1). The unmodified M. genitalium whole-cell model (Figure 6.1, top row) shows the

range of expected behaviour for a dividing cell (in line with previous results [52]). Growth, protein

production, and cellular mass increase over time, with most cells dividing at around 10 hours,

136

6.1. GAMA VS MINESWEEPER

Gene Annotation GO Term (Biological Processes) Non Essential In Essential In
MG_039 N/A N/A GAMA_236 Minesweeper_256
MG_289 p37 transport GAMA_236 Minesweeper_256
MG_290 p29 N/A GAMA_236 Minesweeper_256
MG_291 p69 transport GAMA_236 Minesweeper_256
MG_427 N/A OsmC-like protein GAMA_236 Minesweeper_256
MG_033 glpF glycerol metabolic process Minesweeper_256 GAMA_236
MG_410 pstB N/A Minesweeper_256 GAMA_236
MG_411 pstA phosphate ion transmembrane transport process Minesweeper_256 GAMA_236
MG_412 N/A N/A Minesweeper_256 GAMA_236
MG_305 dnaK protein folding M.g* whole-cell model GAMA_236 and Minesweeper_256

Table 6.1: Low essential genes from Minesweeper_256 and GAMA_236 genomic contexts. Protein
annotation and GO term obtained from KEGG [104] and UniProt [102], based on Fraser et al’s
Mycoplasma genitalium G37 genome [103].

though division can occur between 6 and 11 hours. RNA production fluctuates but increases

over time. DNA replication follows a characteristic shape, with some simulations delaying the

initiation of DNA replication past 9 hours.

By comparison, Minesweeper_256 (Figure 6.1, middle row) displays slower, and in some cases

decreasing, growth over time which is capped to a lower maximum. Protein production and

cellular mass are generated more slowly and present some erratic behaviour. The range of RNA

production is narrower, compared to the unmodified M. genitalium whole-cell model. DNA repli-

cation takes longer and initiation can occur later (at 11 hours). Cell division occurs later, between

8 and 13.889 hours. A number of simulations can be seen failing to replicate DNA and divide.

Compared to the other genomes, GAMA_236 (Figure 6.1, bottom row) shows a much greater

range of growth rates. Some grow as fast as the unmodified genome, some are comparable to

Minesweeper_256, and some show very low or decreasing growth. Observable protein levels ap-

pear between 2 and 5 hours, followed by a slower rate of protein production in some simulations.

Cellular mass is either similar to Minesweeper_256 or slower. The range of RNA production is

reduced and the rate of RNA production is slower. Some simulations replicate DNA at a rate

comparable to the unmodified genome, others replicate more slowly, some not completing DNA

replication. Cell division occurs across a greater (6 - 13.889 hours). A number of simulations

showing metabolic defects can be seen. These do not produce any growth, and can also be seen

failing to replicate DNA and divide.

Genes with Low and High Essentiality

We analysed Minesweeper_256 and GAMA_236 to determine whether these were different

minimal genomes, or GAMA_236 was an extension of Minesweeper_256. We conducted a gene

content comparison of an unmodified M. genitalium, Minesweeper_256, and GAMA_236 genomes

(see figure 6.2, created by Sophie Landon - see section 1.4 for information about the GDG),

highlighting gene deletions unique to each minimal genome. We took this a step further and

137

CHAPTER 6. THE REDUCTOME

Figure 6.2: Comparing the genomes of the M. genitalium whole-cell model, Minesweeper_256,
and GAMA_236. The outer ring displays the M. genitalium genome (525 genes in total), with
modelled genes (401) in navy and unmodelled genes (124, with unknown function) in grey. The
middle ring displays the reduced Minesweeper_256 (256 genes) genome in light blue, with genes
present in Minesweeper_265 but not in GAMA_236 in dark blue. The inner ring displays the
reduced GAMA_236 (236 genes) genome in light yellow, with genes present in GAMA_236 but
not in Minesweeper_265 in dark yellow. Figure produced from published M. genitalium genetic
data [52] [103], with genetic data for Minesweeper_256 and GAMA_236 available in section A.4.

138

6.1. GAMA VS MINESWEEPER

Figure 6.3: Comparing the genomes of Minesweeper_256 and 2954 GAMA genomes. The genome
of Minesweeper_256 and all the genomes found by GAMA (that were the same size or smaller)
were collated. Each point represents a single genome and is plotted based on a ARI distance (see
section 4.6.2). The circled genome in the top right is Minesweeper_256 and the circled genome in
the bottom left is GAMA_236.

compared Minesweeper_256 to all of the GAMA genomes 256 to 236 genes in size. Figure 6.3

shows the GAMA algorithm’s avenue of gene reductions converging to a minimal genome, but

Minesweeper_256 is clearly not on the same path of convergence.

Our comparison of the genomes found 18 genes knocked out in GAMA_236 that have high

essentiality. They were defined as essential by single knockout in an unmodified M. genitalium

whole-cell model, but could be removed in the genomic context of GAMA_236 without preventing

division. Rees found that four of these 18 genes could be removed as a group in the genomic

context of Minesweeper_256, but doing so greatly increased the number of non-dividing cells

produced (see appendix A.4 to find data for the paper).

Rees also found that Minesweeper_256 and GAMA_236 each removed four unique genes (Table

6.1) which could not be removed (either individually or as a group) from the opposing mini-

139

CHAPTER 6. THE REDUCTOME

mal genome (Minesweeper_256 or GAMA_236), without causing cellular death or mutations

that prevented cellular division. We confirmed that these eight genes were individually non-

essential. One additional gene, MG_305, could not be additionally removed in both GAMA_236

and Minesweeper_256. Our results demonstrate that these nine genes have low essentiality (see

section section 1.1.2). To identify the cause of this synthetic lethality, we attempted to match the

functions of these low essentiality genes (Table 6.1), as we anticipated finding redundant essen-

tial gene pairs or groups. We found two genes in GAMA_236 (MG_289, MG_291) had matching

GO terms with the gene MG_411 in Minesweeper_256. These, and three other adjacent genes

on the genome were tested by combinatorial gene knockouts in an unmodified M. genitalium

whole-cell model genome (see appendix A.4 to find data for the paper). MG_289, MG_290, MG_291

were found to form a functional group, as were MG_410, MG_411, MG_412. Rees ran further

simulations to show that these genes could be deleted individually and in functional groups from

an otherwise unmodified M. genitalium whole-cell genome, and produce a dividing in-silico cell.

However, any double gene deletion combination that involved one gene from each functional

group resulted in a cell that could not produce RNA, produce protein, replicate DNA, grow or

divide.

M. genitalium only has two external sources of phosphate, inorganic phosphate and phospho-

nate. MG_410, MG_411, and MG_412 transport inorganic phosphate into the cell, with MG_289,

MG_290, and MG_291 transporting phosphonate into the cell [103], [104]. These phosphate

sources proved to be a key difference between our minimal genomes. Minesweeper_256 removed

the phosphate transport genes, relying on phosphonate as the sole phosphate source. GAMA_236

removed the phosphonate transport genes, relying on inorganic phosphate as the sole phosphate

source. This can be seen in the GO term analysis, the phosphate ion transmembrane transport is

still present in GAMA_236 but not in Minesweeper_256.

It has previously been theorised that individual bacterial species will have multiple minimal

genomes [105], [106], with different gene content depending on the environment and which

evolutionary redundant cellular pathways were selected during reduction. We would argue that

one of these selected pathways is phosphate source, with minimal genomes differing by choice of

phosphate transport genes and associated processing stages, equivalent to the phn gene cluster

in Escherichia coli [107]. We could not however find any annotated phosphonate processing genes

that had been subsequently removed in GAMA_236. We suspect that further ‘pivot points’, the

selection of one redundant cellular pathway over another during reduction, will be identified in

future in-vivo and in-silico bacterial reductions, increasing the base number of minimal genomes

per bacterial species.

140

6.2. ANALYSIS OF ALL IN-SILICO EXPERIMENTS IN THE GENOME DESIGN SUITE
DATABASE

Figure 6.4: Scatter diagram of all viable genomes simulated by the GDS. Each point represents a
simulation with the x-axis showing the average growth rate of the simulation, the y-axis showing
the second that the simulation divided and the colour showing the number of genes knocked-out
in the genome.

6.2 Analysis of all in-silico experiments in the genome design
suite database

Section 6.1 showed that GAMA and Minesweeper had complementary strengths and weaknesses.

Minesweeper provides a quick approximation of a minimal genome (∼ 2 days). It is very inefficient

with disk usage as it leaves the raw data untouched which is manageable because so few

simulations are run. Whilst the small number of simulations result in very fast running time it

also means that very little is learnt about the reductome as a whole. GAMA, on the other hand,

takes much longer to run (∼ 2 months) but is much closer to the actual minimal genome, more

efficient with disk storage (although data is deleted) and provides a much clearer view of the

reductome. These differences make comparison difficult and so much of the information gained

from the GDS is not included in the paper and is in-fact restricted to only looking at the results

from GAMA that are directly compariable to Minesweeper. This section is about doing a more

thorough analysis of all the data produced by the GDS.

6.2.1 Genome comparison

Key statistics of all simulations run using the GDS are recorded in databases described in section

4.5. At the time of writing the GDS performed 107,946 simulations (including repetitions of the

same genome) of which 40,173 produced a viable genome. Biomass production of a strain is an

important factor that effects experimental cost/design. Figure 6.4 was created to get an overview

141

CHAPTER 6. THE REDUCTOME

of the data and shows the relationship between average growth rate, the number of seconds it took

to divide and the number of genes knocked-out of the genome. One can see that there is an edge

made by the dark points (i.e. smallest genomes) that starts in the top left hand corner and ends in

the bottom right. This edge is curved displaying a negative exponential relationship¬. However,

there are also genomes that appear to violate this relationship. This violation of the relationship

suggests that there are multiple processes involved in the growth rate and the division time -

some are involved in one and others are involved in both. The processes involved in both create

the negative exponential relationship seen in the scatter plot whilst the processes involved in

only one or neither can violate this relationship. Further analysis of these results could reveal the

genes most important in the optimisation of growth rate, division time and biomass production

overall. For example taking a few (say the top 1%) of each of the four extremes, growth-division:

low-low, growth-division: low-high, growth-division: high-low, and growth-division: high-high and

comparing the genomes between them should identify the genes responsible for each process

individually and in combination. An example of this type of genome analysis can be seen ahead

in figure 6.6 when hierarchical clustering and some other tools in the GDS were used to identify

which genes defined two arms of convergence.

Multiple figures were created to try and get an idea of what the viable solution space of genome

reductions looks like. All viable genomes with 100-gene knockouts or more were collected, a dis-

tance matrix was created using the ARI distance metric (see section 2.2.3 for general information

on the ARI and distance matrices, and section 4.6.2 for information on the creation/implemen-

tation of the ARI distance metric and distance matrices in the GDS) and plotted using PCA

(figure 6.5). There were 7,000 viable genomes found, and each one is represented by a point

whose colour describes the size of the genome. The first thing to notice is that there are two very

distinct arms of genomes. The largest genomes start in the top right-hand corner and get smaller

as it goes down to the left until the genome gets to around 260 protein-coding genes when it

curves back on itself until the smallest genomes, in pink, can be found on top of the red coloured

genomes. The trend of genomes of a similar size being near one another is expected because the

ARI distance metric looks at how many genes present or knocked-out they have in common and

similar genomes have a similar number of knockouts. However, the smallest genomes being on

top of the red and blue ones is unexpected. I believe that this is most likely the effect of loss

of information due to the reduction dimensions through PCA. The two distinct arms of data

show much more clearly that there are multiple paths of convergence and possibly multiple local

minima than previous results (see section 6.1). One may argue that the strange placement of the

smallest genomes may be caused by the need of another dimension to express another fork in the

data and may also point out that the upper-arm of data could be made up of a large main arm

¬The negative exponential relationship can be expressed as y= AZax+b +B, where y is the time until division, x
is the average growth rate and A, a, B, b, and Z are unknown constants that fit the equation to the edge described.
Since it is a negative exponential we know that a < 0.

142

6.2. ANALYSIS OF ALL IN-SILICO EXPERIMENTS IN THE GENOME DESIGN SUITE
DATABASE

Figure 6.5: The ARI distance metric (see section 4.6.2) was used to create a distance ma-
trix between all viable genomes with 100 or more genes knocked-out from the GDS and
minesweeper_256. PCA was then used to reduce the number of dimensions to 2 and then each
genome is plotted as a point with the colour indicating the size of the genome.

and a smaller second arm underneath. For now, it will be assumed that it is just the two obvious

arms, but it is notable that that number could be as high as four.

In order to understand what the difference is between the two paths of convergence, the genomes

were clustered using hierarchical clustering. Figure 6.6 shows that hierarchical clustering was

able to perfectly group the two paths. Methods from the analysis module of the GDS were then

used to look at which genes were always, sometimes, or never knocked out in each group. There

were 40 genes that were never knocked-out in cluster 1 but were in cluster 2 and 26 genes that

were always knocked out in cluster 1 but not in cluster 2. These differences in genes define the

two arms. It could be possible that some of those differences are caused by random chance of

the algorithm not trying those combinations yet. However, since the algorithm was converging

down each arm and the arms look densely packed, we expect differences caused by chance to

be rare. This would mean that the 40 genes never knocked-out in cluster 1 mostly can’t be

knocked-out without killing the cell and similarly, the 26 genes that were always knocked-out in

cluster 1 needed to be knocked-out to avoid killing the cell. Both sets of genes contain singularly

essential/non-essential genes suggesting both high and low essentiality is involved in defining

the two paths of convergence.

143

CHAPTER 6. THE REDUCTOME

Figure 6.6: Visualisation of all viable genomes with over 99 genes knocked-out from figure 6.5
except now coloured by the groups found by hierarchical clustering.

Every single genome recorded in the GDS databases that produced a dividing cell was extracted,

which produced over 40,000 genomes. The ARI distance was calculated between all genomes and

plotted by reducing the dimension number of dimensions to two. Figure 6.7 shows each genome

as a point, and the colour shows the size of the genome. The largest genomes can be found on

the right of the diagram and get smaller as they move left. Again there appear to be two clear

paths of convergence although they may be converging to the same minimal genome as the upper

arm comes down as if it may have the potential to connect to the smallest genomes on the lower

arm. At the top of the upper arm, there is a fork suggesting that there was an additional short or

unsearched third path. Strangely there is a sparsely populated area that separates the small

and large genomes of the lower arm. This could be the manifestation of complex patterns formed

by genes changing essentiality but I believe that the add stage of the GAMA algorithm would

have this effect since the guess stage would find between 20 and 40-gene knockouts sets that

suddenly become sets with over 100 knockouts that acts much more like a jump than a solid path

of convergence. This would be a sign of the effect utilised by item 2 of the principles of static

essentiality (see section 5.2.3.4).

6.2.2 High and low essential genes

GAMA_256 is the only high-essential gene combination found so far and comparing the two

minimal genomes enabled us to identify a low essential gene combination pair related to phos-

144

6.2. ANALYSIS OF ALL IN-SILICO EXPERIMENTS IN THE GENOME DESIGN SUITE
DATABASE

Figure 6.7: The ARI distance metric (see section 4.6.2) was used to create a distance matrix
between all viable genomes found by the GDS. PCA was used to reduce the number of dimensions
to 2 and then each genome is plotted as a point with the colour representing the size of the
genome.

phate import/production (see section 6.1). In order to find more high and low essential genes

the knockout database (see section 4.5) was queried. There are mtuliple different ways to detect

potential shifts in essentiality, however, we will focus on one. This approach looks for only one

shift in essentiality (i.e. sets on singularly non-essential genes becoming essential in combination

or sets containing at least 1 singularly essential gene becoming non-essential in combination).

Low essential:

The strict approach of finding low-essential genes starts by extracting all non-viable gene combi-

nations and groups by the number of gene knockouts. Any combination made up of only singularly

non-essential genes are extracted. This results in non-viable combinations of singularly non-

essential genes but consider the following problem using the mathematical representation

specified in section 3.3. Let γ1, γ2 be singularly non-essential but essential in combination. Given

an arbitrary singularly non-essential gene γi and V (γ1,γ2,γi)= 0 then it is likely that γi is not

145

CHAPTER 6. THE REDUCTOME

Figure 6.8: A histogram showing the distribution of gene knockout set sizes of low-essential
genes.

contributing to a shift in essentiality and so should not be classed as low-essential. The exception

to this is either V (γ1,γi)= 0 or V (γ2,γi)= 0 in which case {γ1,γ2} and {γ1 or 2,γi} are low essential

sets but {γ1,γ2,γi} is not. In order to remove the unwanted sets any low essential set that was a

proper subset of another low essential set had the super-set removed.

This resulted in 50 low-essential genes being found, and the distribution of knockout size can

be seen in figure 6.8. It can be seen that the minimum size set is 2 genes and the maximum

is 31 genes, and although the amount of genes knocked-out is negatively correlated with the

number of occurrences this is not a strict rule as demonstrated by the large number occurrences

of 21-gene knockout sets. 92 different singularly non-essential genes were involved in at least one

low essential combination. A low essential combination represents an essential biological function

being disrupted, and so there should be some sort of relationship between the distribution of

low essential gene combinations and the distribution of essential biological functions. However,

it is feasible that one essential function could have multiple low essential gene combinations

depending on the function and so is unlikely to be something as simple as being proportional

to one another. Further research in this is suggested since it may enable the definition of the

minimal cell in terms of essential functions. The scale of function may be a more appropriate

scale to define a minimal cell on than genes since one function can be implemented by different

146

6.2. ANALYSIS OF ALL IN-SILICO EXPERIMENTS IN THE GENOME DESIGN SUITE
DATABASE

Figure 6.9: Scatter plot showing the ARI-distance of low-essential gene combinations using
PCA. The number associated with the colour of each genome represents the number of genes
knocked-out of the genome.

sets of genes - as demonstrated through non-homologous gene displacement which was discussed

in chapter 1.

Figure 6.9 shows the ARI distance of all the low essential gene combinations coloured by the

amount of genes involved in the low-essential set. The main pattern is that knockout sets of a

similar size are more similar which suggests that the dominating pattern is based on the math-

ematics of the distance metric. There are possible clusters, but none of them are very distinct

making it a very subjective decision.

High essential:

The strict approach for finding high-essential genes starts by extracting all viable gene combina-

tions and grouping them by the number of gene knockouts. Any combination that contains at

least one singularly essential gene is extracted as a high-essential combination. Then larger high-

essential combinations are searched to find combinations that contain a smaller high-essential

combination. If the larger combination does not contain singularly essential genes that do not

belong to the smaller set, then the larger set is removed since, in terms of dynamic essentiality,

the larger set is no different to the smaller set.

147

CHAPTER 6. THE REDUCTOME

Figure 6.10: A histogram showing the distribution of gene knockout set sizes of high-essential
genes.

This resulted in 2,909 high-essential gene combinations being found, and the distribution of

knockout size can be seen in figure 6.10. The distribution of high essential genes is very different

from the low essential genes. The high essential genes have many more instances of combinations

than the low-essential combinations. The range is also much larger with a minimum gene knock-

out set of 11 genes and a maximum of 165. Also in contrast to the low-essential genes, the number

of high-essential genes are positively correlated to the size of the gene set. 266 genes are involved

in high essential combinations. At around half of all the consistent genes, this is a surprisingly

large number although it is worth remembering that high-essential gene sets can contain both

essential and non-essential genes. A lot of this might be explained if it is common to get lots of

similar combinations of high-essential gene sets - for example knockout any combination of a set

of 50 singularly essential genes greater than 7. Also this number may be incorrectly high - later

in section 6.1 we discuss the suitability of the whole-cell model of M. genitalium for essentiality

classification and suggest that we are likely to be falsely identifying viable combinations due to

only simulating one generation and also only repeating the experiment once.

Figure 6.11 shows the ARI distance of all the high-essential gene combinations coloured by

the number of genes involved in the high-essential set. In contrast to the low-essential compari-

son, the high-essential sets show very distinctive clusters, and it is less dominated by genome

size - although it is still relevant which is to be expected. If the hypothesis, in the previous

148

6.3. DESIGN OF EXPERIMENT

Figure 6.11: Scatter plot showing the ARI-distance of high-essential gene combinations using
PCA. The colour of each point represents the number of genes knocked-out of the genome.

paragraph, that there are lots of combinations of similar high-essential gene sets is true, then

one would expect that they would be shown as very tight clusters of high essential genes as seen

in figure 6.11. The tight clustering may suggest that whilst there are thousands of high-essential

combinations most of them are variations on the same pathway(s) which, in this case, would

show that there are only 4-7 distinct high-essential sets. Since the high-essential genes enable

the viable reduction of genomes, this may also provide information on the minimal gene set. For

example, this figure may show that there are at least 4-7 local minima when reducing the genome

of which 3 have over 100 genes knocked-out.

6.3 Design of experiment

All experiments done thus far have been in-silico, and so this section looks at how our findings

may help guide experiments.

Whilst the M. genitalium whole-cell model has been tested against empirical data for single gene

essentiality, its accuracy in the domain of multiple gene knockouts and changing genomic context

is currently unknown. GAMA has been designed so that it can work on reducing the genome

of any organism and furthermore the GDS is designed to easily be adapted to new algorithms,

new models, and new computers. Whilst this enables one to quickly shift to the best available

149

CHAPTER 6. THE REDUCTOME

models, it would still be desirable to manage the accuracies/inaccuracies of whatever model is

being used. No model is a perfect representation of reality and so dealing with model inaccuracies

when designing experiments is a useful skill.

The design of an experiment can drastically influence the impact of the results and so should be

carefully considered. Here I suggest 3 main factors that influence experiment design.

1. Intended goal(s)

2. Resources

• Time

• Money

• Manpower

3. Risk tolerance

Intended goals should be explicitly stated with priorities. Since there are multiple possible

resource allocations, an analysis of the trade-off should be made in order to get a grasp of the

options. A simple example could be that money will only allow work to be undertaken by two

people for one year or one person for two years. Some kind of risk metric should be assigned to

each goal and possibly an overall one too. This is very important to the design of experiment

because someone might only desire a very big finding and not worry about a no-result as opposed

to someone that wants as big a result as possible but needs to have some kind of result (e.g.

perhaps a funding requirement).

Section 6.3.1 will look at the information gained so far and then we will look at how that

can be used to design experiments.

6.3.1 Model accuracy profile

As previously stated, the M. genitalium whole-cell model has not been tested in the domain of

predicting the essentiality of multiple gene knockouts. However, all knowledge should be utilised

gauging the likely-hood of our reduced genome predictions.

The predictions of single gene knockouts have been tested against experiment. This means

that one can group the genes by the accuracy of the single knockout predictions, i.e. true essential,

true non-essential, false essential, false non-essential. It is reasonable to doubt the accuracy

of multiple gene knockout predictions that contain genes that gave false results in the single

gene knockout experiment. This results in one having strong doubts about the validity of viable

genomes that have false non-essential genes knocked-out. Conversely, one might wonder if false

150

6.3. DESIGN OF EXPERIMENT

essential genes could be successfully removed from a viable genome. The latter would only be

worth testing empirically since it is known that the model gives incorrect predictions with regards

to that gene.

Another cause of uncertainty is inconsistent phenotypes. This inconsistency suggests that the

model prediction is near the edge of a basin of attraction resulting in bifurcations from initial

conditions or natural stochasticity. This means that knocking this gene out can result in qualita-

tively different results leaving the experimenter unsure if any, all or some of the results were

correct. If a gene knockout is sensitive to initial conditions or stochasticity then one might expect

it to pass this uncertainty to the effects of further gene disruptions, especially since one may

expect multiple gene knockout experiments to reduce the stable solution space generally. For this

reason, inconsistent genes are labelled high risk (even if the variable phenotypes are consistently

essential or non-essential).

Since our purpose is to reduce genomes, testing low-essential combinations is not desired, how-

ever, these combinations contain a lot of information. A correct or incorrect prediction of a low

essential gene set provides a lot of information about the capabilities of the model and if correct

means the extremely high-resolution data created by the model may enable insight into biological

mechanisms never seen/understood before.

High-essential genes represent the greatest gain since they are not only high-information

experiments (like low-essential combinations), but they also reduce the size of the genome.

Unfortunately, I believe that high-essential genes are high risk because of only simulating one

generation and only repeating the experiment once combined with the fact that larger numbers

of knockouts seem more likely to give inconsistent phenototypes.

6.3.2 Testing minimal genome predictions

The obvious way to test the predictions is to take the smallest prediction and test it experimen-

tally. If the smallest genome does not work then the next smallest genome is tested. This can

be repeated until a viable genome is found and this will be the smallest genome of the predic-

tions. However, there are over 40,000 viable genome predictions and so could quickly become

prohibitively expensive. In addition to this, as the algorithm converges on a minimal genome

many variations of the same genome are produced which means that if the smallest genome

does not work then many almost identical ones will follow and are also likely not to work as

well. Given that the M. genitalium whole-cell model is the first, and currently only, whole-cell

model and whole-cell models have not been tested on multiple gene knockouts one would expect

there to be inaccuracies. On top of this there are several features of the model that make it

sub-optimal for testing for essentiality (see chapter 2.3) plus there are genes that inaccurately

151

CHAPTER 6. THE REDUCTOME

predicted the essentiality of single gene knockouts. What follows will be an attempt to manage

model uncertainty when designing experiments.

JCVI successfully created JCVI-Syn3.0 by transplanting a significantly reduced M. mycoides

genome into an empty M. capricolum cell [31]. The minimisation process was done by utilising a

variation on a divide and conquer algorithm. We will refer to this as the JCVI divide and conquer

algorithm and will be used to reduce risk should the model’s accuracy be bad.

It seems that blindly trying all the largest viable gene knockouts is likely to be an inefficient

approach, so more appropriate sets are considered. Take all the GAMA_236 gene knockouts

and remove all high-risk genes. This leaves only the consistent singularly non-essential genes

(89 genes) that the model did not predict low-essentiality. Knock all of these genes out of M.

genitalium genome. If this does not produce a viable cell, then use the JCVI divide and conquer

algorithm to find the largest viable subset of gene knockouts. This will be referred to as the

viable, consistent non-essential genome. There is only one essential gene that correctly predicts

single gene essentiality with a consistent phenotype involved in GAMA_236, so this should be

knocked-out of the viable, consistent non-essential genome. In addition to this, there are 197

false-essential genes that may be worth exploring with a divide and conquer algorithm if there

are enough resources.

There are 50 low-essential combinations and 2,909 high-essential combinations they may contain

incorrectly modelled genes or inconsistent genes. Whilst this may not mean that the predictions

are wrong, including them, is likely to increase the number of incorrect predictions and so de-

pending on available resources one may only choose to explore the sets that do not contain the

problem genes. There are 5 remaining low-essential gene sets and 0 remaining high-essential sets.

The genome reduction experiments described would be appropriate if the genomes were be-

ing created de-novo and transplanted into an empty cell. The only laboratory to successfully do

this is in the JCVI, and so for most laboratories, knocking-out genes from the wild-type organism

is more feasible but adds complexity because one needs to take into account the location of genes

on the genome.

I created a way to overlay information about genes onto a genome in order to guide experiment

design. This was the proof of concept that inspired Sophie Landon’s development of the method

used to create figure 6.2. Each equally sized segment in the graph represents a gene in the M.

genitalium genome where 12 o’clock is the origin of replication and the colour of the segment

represents information about the gene.

Figure 6.12 attempts to aid in the design of in-vivo gene knockout experiments. The green

152

6.3. DESIGN OF EXPERIMENT

Figure 6.12: A depiction of the M. genitalium genome. Each equally sized segment represents a
gene and 12 o’clock is the origin of replication. The colour of each segment represents information
deemed useful for the design of experiments. Red genes are low information essential genes.
Green and charcoal are sets of genes that have a high probability of being removed from the
minimal genome. The blue genes are high probability low-essential genes. The grey genes are
false-essential genes in the model and so may enable further reductions not predicted by the
model.

segments represent genes that are most likely to be removed from the minimal genome. The

genes are spread out across the genome meaning that an experiment would have to remove

the genes with multiple iterations. There are a lot of small clusters however, meaning that

this number will be smaller than the number of genes. All 77 green genes can be disrupted by

removing 62 segments without disrupting any other gene colour. If false-essential genes were

allowed to be removed, then this number could potentially be reduced even further to 57 segments

whilst significantly increasing the overall gene reduction (there are multiple different imple-

mentations of this and so the actual figure would be down to the decisions of the experimenter).

The low-essential genes are completely spread and so each gene would have to be disrupted

individually. There is only 2 double, 1 triple, and 1 quadruple set of low essential genes and so is

less of a problem. The false-essential genes not only account for a lot of the genes but there are

large segments of them enabling one to test large knockout sets in a small amount of integrations

which further adds to their allure as genome reduction targets.

One may notice that figures 6.12 and 6.2 are similar in concept but different in style and

153

CHAPTER 6. THE REDUCTOME

content. The former figure was created using an analysis tool from the GDS and acts as a visual

tool to guide the design of experiments for in-vivo genome reduction in M. genitalium. The latter,

with the consent of Rees and I, was created by Sophie Landon based on my GDS tool but this

figure compares the wild-type, GAMA_236, and minesweeper_256 genomes. Landon’s figure was

used for our manuscript [101] (see section 6.1) but the GDS tool was used here.

6.4 Discussion

In this chapter we tried to combine all the work done to get a better understanding of our data

and the reductome more generally.

Initially, just the minimal genomes found by GAMA and Rees’ minesweeper were compared

and analysed. A biological description of the genes present and absent in the minimal genomes

was presented and we were able to show that minesweeper_256 was on a different path of conver-

gence to GAMA_236. Further investigation showed that in addition to the high-essential genes

found by GAMA_236 there were also two sets of genes that were vital to phosphate production in

the cell which when combined acted as a low-essential set. Minesweeper_256 and GAMA_236

both picked different sources of phosphate.

By utilising more of the tools in the GDS, further analysis of all the rest of the data produced by

the GDS showed multiple paths of convergence to different local minima. It also appeared that

high and low-essential genes were creating the arms of convergence suggesting that they are

critical to the shape of the solution space.

Finally, it was suspected that the model was over-estimating the amount of genes it could

knockout by utilising false non-essential genes and so steps were presented to try and reduce the

risk of failure of in-vivo experiments and present our results in such a way to make design of

experiment easier depending on the resources and goals.

154

C
H

A
P

T
E

R

7
CONCLUSION

7.1 Introduction

The aim of this thesis, as set out in chapter 1, was to contribute to the genome design community.

Synthetic biology has huge potential to enable the creation of bio-machines and bio-materials

that could revolutionise many industries and society in general. Having created the tools to build

and modify genomes, synthetic biology now lacks methods to rationally decide what genomes to

build or what to edit on existing genomes. We identify two underdeveloped areas that may help

in furthering the goal to rationally design genomes, whole-cell models and minimal genomes.

The tools that exist to help design genomes are mostly in-silico and are very specific to par-

ticular implementations of particular types of models (e.g. COBRA for genome-scale metabolic

models). Furthermore, the models used have inaccuracies like not taking into account systems-

level effects within the cell. Whole-cell models, potentially, offer a solution to these problems

but the only existing whole-cell model is very hard to use and brings technical challenges of

requiring run-times longer than the maximum amount of time allowed on most HPC clusters

and producing vast amounts of data - for the type of large-scale in-silico experiments likely to be

necessary for genome design goals. In addition to the big data challenges, it is also hard to relate

the data back to biological processes which is needed to interpret and understand the simulations.

As a result, none of the tools that have been developed on other models have been extended to

the whole-cell model of M. genitalium.

Minimal genomes may also help rationally design genomes by reducing the genome into its

simplest form enabling easier analysis of the genotype-phenotype relationship. It has also been

155

CHAPTER 7. CONCLUSION

suggested that the minimal genome may act as a base genome with which to design all synthetic

organisms. Despite the high potential rewards, efforts made have mostly fallen short. The area of

comparative genomics under-estimates the size of the minimal gene set, at least partly due to

non-orthologous gene displacement. Whilst this does suggest that the answer to the question, is

there only one minimal genome?, is no, it does not help us to understand how common minimal

genomes are, if a particular organism can have more than one minimal genome, nor what an

organism’s viable genome reductions might look like generally. The incredible achievement by

JCVI to produce a synthetic organism with a severely reduced genome falls short in similar ways

in that it has failed to help understand minimal genomes. Their algorithm does not tell us if a

minimal genome was found and does not even give any idea of if it is near a local minimum or

not. An understanding of the whole solution space of genome reductions would be necessary to

rapidly find minimal genomes generally, discover specific and general attributes of the reductome,

and if there are multiple minimal genomes then which one(s) should be used to develop synthetic

organisms? Knowing the solution space of all genome reductions of an organism could also help

genome design in general since genome design would be performed on the solution space of all

possible viable genomes and further research may be able to combine patterns of the viable

reductome with patterns related to the design goal (e.g. increased growth rate).

Focussing on these two weak points in existing research towards the rational creation of synthetic

organisms, we wanted to create a suite of in-silico tools to make it easier to perform large-scale

in-silico experiments on cutting-edge biological models. The tools should enable in-silico experi-

ments that are longer than the maximum allowed length on any given Linux cluster as well as

bespoke data processing/storage/analysis solutions and biological interpretation. Furthermore,

these tools must be adaptable to work on different clusters, models, design goals and design

algorithms. These tools would then be used to perform and understand some designated genome

design goal. The proof-of-concept goal was to develop genome reduction algorithms and use them

to find the minimal genome of the whole-cell model of M. genitalium. This minimal genome would

be described biologically, and the process of finding it would be used to try and better understand

the solution space of genome reductions and minimal genomes in general.

The rest of this chapter will be split into sections looking at the progress made with regards to

the creation of the in-silico tools, the use of the tools to better understand minimal genomes,

concluding remarks and future directions.

7.2 In-silico tools to aid genome design

Chapter 4 described the construction of the GDS. The suite enables the user to convert an old PC

into a kind of server that can manage massive in-silico experiments across multiple computer

156

7.2. IN-SILICO TOOLS TO AID GENOME DESIGN

clusters. The GDS can perform in-silico experiments that require more time than is allowed by

the cluster and spread an experiment over multiple clusters providing a larger amount of CPUs

and GPUs. This technology can enable researchers to perform in-silico experiments on a scale

not possible before which could be very useful for genome design given the long running time of

the only whole-cell model. The adaptability of the tools means that researchers from completely

different fields could also utilise it.

The code was designed to be adaptable for different clusters, models, design goals, and de-

sign algorithms. This versatility was demonstrated to work on three different HPC clusters (BC3,

BG, and C3DDB), two different design goals (genome reduction and fixing non-viable genomes),

and 5 different algorithms (genetic algorithm, GAMA, dynamic probability distribution, genetic

algorithm for complexes, and seeded viables). Unfortunately, there was not time to demonstrate

this on a different model, but there is no reason to believe that it could not be done given the

success of all the other aspects. These attributes not only allows the GDS to evolve with the field

as new technology, models, design goals, and design algorithms become available, but it enables

other researchers to utilise it. For example, if a researcher wanted to find the minimal genome of

another model they would simply need to add subclasses to enable it to utilise their computing

facilities and to run gene knockout experiments on the new model. Once that is done, they can

apply GAMA to find the minimal genome. They may choose to add subclasses that optimise the

growth rate or the increased production of some desired molecule.

The data processing and storage solutions used were bespoke and designed specifically for

our situation and so may not be appropriate for others, however, the GDS has the adaptability to

be modified to work with whatever solutions are used by the user.

The analysis and visualisation created both general and model-specific tools. The general tools are

for analysing, comparing, and visualising genomes on the scale of genes. The model-specific tools

enable the user to interpret data from the whole-cell model of M. genitalium biologically. Whilst

the latter is model specific, it does show a framework that can be followed to adapt the GDS to do

the same for a different model. The GDSs ability to automatically use Cytoscape provides a great

platform to explore biological networks, and although this thesis only used KEGG maps, utilising

other Cytoscape plug-ins can reveal lots of data and state-of-the-art visualisations (e.g. -omics

data integration). The analysis part of the GDS is designed to use data from a remote database

enabling groups of researchers to work independently whilst knowing that their biological analy-

ses are equivalent. It is hoped that this will make collaborations and comparisons much easier

within research groups. Practically, the analysis part of the genome design was crucial in our

biological understanding of results as well as our investigation into the shape of the solution space.

157

CHAPTER 7. CONCLUSION

Whilst the GDS functions as intended, it is not as easy to use as desired. This is due mostly to a

lack of documentation and an online community of users. Over time it is hoped that it will be

possible to build these up, but until then users will have to rely on my advice and help when

using it for new tasks. Additionally, the first implementation has highlighted design flaws that

have resulted in the code not being as modularised as is possible leading to a confusing structure

in places and repeated code which is generally advised against by software developers. These can

be corrected, like any software development process, by releasing a new version.

7.3 Massive in-silico experiments and discovering the
reductome

The GDS was used to perform massive in-silico genome design experiments. The first focus was

to develop algorithms to reduce genomes, and it was shown that although biological information

could help, a learning aspect was needed to combat the almost zero chance of guessing large

viable genome reductions. It was hypothesised that this was due to the combinational explosion

in the solution space combined with reducing instances of viable genomes as gene knockouts

increased. Genetic algorithms have been used in the past for genome design goals in genome-scale

metabolic models[108], but it was shown that the long running time of the whole-cell model

of M. genitalium meant that the convergence rate was prohibitively slow. Various ideas were

implemented using the GDS, but we will only discuss the two most interesting here.

First, generation 0 of a standard genetic algorithm was seeded with a combination of non-

viable minimal genome predictions and much larger but viable genomes which resulted in a

marked increase in the rate of convergence of early generations suggesting that, according to

the whole-cell model, at least some of the predictions were approximations of a minimal genome.

It is interesting that the whole-cell model found that minimal genome predictions in the litera-

ture over-estimated the number of knockouts despite us finding that the model is also likely to

over-estimate the number of genes to knockout but the over-estimation is with different genes.

Further analysis may reveal either problems with the model and/or problems with the methods

used to make the predictions.

The second algorithm is GAMA which exploited mathematical properties of the principles of static

essentiality in two stages, the guess stage and the add stage which allowed rapid convergence

to very small genomes. The smallest genomes found were then used to seed the mate stages of

a standard genetic algorithm. This algorithm had the best convergence rate whilst still being

able to look for high-essential genes. As a result, GAMA found a minimal genome with 165 genes

knocked-out, GAMA_236.

158

7.3. MASSIVE IN-SILICO EXPERIMENTS AND DISCOVERING THE REDUCTOME

With the help of Joshua Rees we were able to describe GAMA_236 using UniProt gene classi-

fications. Further analysis of all genomes simulated showed that there were multiple paths of

convergence, suggesting multiple local minima. Furthermore, the arms of convergence appeared

to be dominated by high and low-essential genes, suggesting that genes with dynamic essentiality

cause the shape of the solution space. In the literature, until relatively recently, dynamic essen-

tiality had only been talked about in very specific cases that were found by experiment. Rancati

et al. [19] have started to think about these concepts more generally by introducing the gradient

of essentiality. This thesis attempts to take this generality further by defining the reductome

and highlights the importance of dynamic essentiality on the shape of the solution space. This

combined with the mathematical representation of genomes in chapter 3.3 takes us a small step

closer to the quantification of all genomes which may help minimal genome research and rational

genome design more generally.

Whilst GAMA_236 showed the success of GAMA in finding minimal genomes rapidly, the incon-

sistency of the resultant phenotype highlighted some of the limitations of the model with regards

to genome essentiality testing. We tried to take into account potential inaccuracies in the model

and proposed a framework with which to design experiments based on the results produced and

the experimenter’s goals.

Although the GDS has enabled massive in-silico experiments, the huge size of the solution

space has a been a problem in both the genome design goals, suggesting that this will be a

common problem in general. We were able to make significant improvements to genome reduction

algorithms, but it still required a computer cluster and ∼ 1.5−2.5 months of simulation time. We

were not able to show similar speed-ups in convergence for the genome fixing algorithm, although

it is believed that GAMA could inspire a similar strategy for fixing non-viable genomes. Even so,

further speed-ups and more general methods are desirable. The quantification of all genomes

may help to find and exploit patterns in the solution space in order to converge much faster to an

optimisation objective. Another problem with GAMA is that it relies on the principles of static

essentiality and so should the model underestimate the amount of dynamic essentiality or there

are organisms that have high amounts of dynamic essentiality then the algorithm will perform

worse and maybe even become inappropriate for the task.

GAMA and all other algorithms tested are heuristic algorithms that do not guarantee the

global minimum/maximum. Due to GAMA not increasing the number of gene knockouts in 20

generations we can be fairly confident that it is close to a local maximum but cannot say if it is

the global maximum. Repeating GAMA with random initial conditions can help find other local

maxima thus combining to build a picture of the global landscape. Additionally, further analysis

of the over 100,000 simulations already performed by the GDS may help us identify other local

159

CHAPTER 7. CONCLUSION

maxima to investigate. Hope of finding exact algorithms is most likely found by creating and

utilising a full mathematical representation of all genomes.

7.4 Concluding remarks and future directions

This thesis has been successful in its goals to build tools to enable rational genome design, develop

genome reduction and genome fixing algorithms, find the minimal genome and learn about the

reductome of the whole-cell model of M. genitalium. However, much work is still needed in order

to fulfil its potential.

The GDS needs further developing in order to be easier to use/adapt as well as being more

robust to dependency versions and operating systems. Furthermore, proper documentation and

tutorials need to be produced and a community of users built in order to make this a truly

successful open-source project.

The algorithms can be developed more and new ones created (e.g. faster genome reduction,

optimising growth rate, production of industrially useful chemicals, or other desired phenotypes).

A proper framework should be created so that algorithms can be quantitatively tested against

one and another. New models should also be added so that different models and organisms

can be analysed and compared. Whilst much of this kind of research has already been done on

genome-scale metabolic models, there may still be value in adding the models since splitting

experiments across multiple computer clusters may enable analysis on a new scale - for example

simulating cells of an organ or the human microbiome. More generally extension of the models,

design goals and design algorithms available in the GDS is a very important step to releasing the

potential impact of the GDS on rational genome design as well as helping to test and improve

models.

Analysis tools can always be improved but integrating more biological knowledge is a valuable

goal. Further investigation into different distance metrics and dimension reduction algorithms

may improve our visualisation of genomes. Also, our tools looked at genomes at the scale of genes

whereas base-pairs, super-families, or some other representation may aid our analysis.

Creating a basis with which to describe genomes mathematically combined with our analy-

sis of the genome provided a glimpse at the possibility of a mathematical theory of genome

viability. Creating a rigorous mathematical representation of genome viability could impact both

genome reduction and genome design research by enabling the exploitation of patterns to traverse

the space of genomes to optimise certain objectives rapidly.

160

7.4. CONCLUDING REMARKS AND FUTURE DIRECTIONS

One of the most important steps is to combine the GDS with in-vivo experiments to create

a design, build, test test cycle. Currently the main restriction is likely to be the accuracy of

computer models but the GDS will be able to help improve them and evolve with the space

provided that there is a community there to support it.

161

GLOSSARY

Bash A unix shell and command language. 23, 26

C++ C++ is a fast compiled programming language. 99

ClueGO A Cytoscape plugin that creates functional networks from sets of genes based on

resources like GO annotation and KEGG pathway. 28

Cytoscape A network visualisation application designed with bioinformatics applications. 27,

28, 101, 157

DBSCAN Density-Based Spatial Clustering of Applications with Noise is a method to automati-

cally calculate the number of clusters in a dataset and then cluster it using density based

clustering from Pythons scikit-learn library. 28

DoS attack A denial of service attack is one that overloads a computer that is providing a

service by making more requests than it can process. This prevents the computer from

dealing with any legitimate requests. 53

iterable In the Python programming language an iterable is an array that has an iterator which

is a way of iterating through the array without holding the entire array in memory. 67

KEGG The Kyoto Encyclopedia of Genes and Genomes is a collection of databases related to

biological knowledge on all scales from molecular to organism level. 28, 157

Matlab A numerical computing environment and proprietary programming language from

MathWorks. 19, 20, 26, 59, 173, 174

matplotlib A Python library that enables the creation of visualisations. 28

NCBI The National Center for Biotechnology Information is create, host and/or publish databases

and tools related to biology. 28

Numpy Is a scientific computing library in Python which specialises in array processing and

linear algebra. 26

163

GLOSSARY

Pandas Pandas is a data analysis library for Python to make manipulating, analysing and

visualising structured data quick and easy. 26, 86

Pandas DataFrame The Pandas library uses DataFrame objects to deal with two dimensional

tabular data in Python. 26, 58, 59, 64, 85, 95, 97, 98, 101

Pickle The Pickle library is serializing and de-serializing a Python object structure. It is often

used to store and transfer Python objects. 26, 59, 85, 95, 97, 101, 131, 170

PostgreSQL A fully featured relational database management system. 131

Python Python is a interpreted, general-purpose programming language. 25–28, 37, 56, 59, 64,

67, 86, 97, 99, 101, 170, 174

SchemaCrawler A free database schema discovery and comprehension tool ??. 26

scikit-learn A Python library that creates a framework to train and test machine learning

algorithms and other related tasks. 26–28

seaborn A Python library that attempts to make it easier to make professional looking visuali-

sations with matplotlib. 28

SLURM The Slurm Workload Manager (formerly known as Simple Linux Utility for Resource

Management or SLURM), is a resource manager used on computer clusters. 24, 55

SQLite3 A reduced feature relational database management system. 26, 56, 85, 94, 97, 101, 131

standard error The standard error is the errors output from a program and displayed to the

terminal. 55, 56

standard out The standard out is the output of a program displayed to the terminal. 55–57

TORQUE The Terascale Open-source Resource and QUEue Manager, is a resource manager

used on computer clusters. 55

UML Unified Modeling Language is a way of visualising computer code for design and description.

It is often used to describe ‘objects’ in object oriented programming languages. 25, 53, 56,

59

walltime The maximum amount of time that one expects a job on a computer cluster to need.

The walltime must be specified when the job is submitted. Once the job has been running

for that amount of time the job will be automatically terminated - even if the job is not

finished. 41, 103

164

ACRONYMS

E. coli Escherichia coli 2, 15

M. capricolum Mycoplasma capricolum 3, 8, 152

M. genitalium Mycoplasma genitalium 4, 8, 13, 15, 17, 19, 21, 22, 26, 29, 31–33, 35, 39, 40, 44,

46, 53–57, 67, 84–86, 89, 96, 101, 103, 110, 114, 123, 126, 131, 133, 135–140, 148–158, 160,

170, 172–174

M. mycoides Mycoplasma mycoides 3, 8, 152

ACRC advanced computering reseach centre 30, 42, 43, 85

ARI adjusted rand index 26, 99, 139, 142–145, 147, 148

BC3 BlueCrystal III 23, 30, 38, 41–44, 53–55, 114, 116, 118, 121, 126, 131, 157

BCCS Bristol centre for complexity science 43

BG BlueGem 24, 38, 41, 42, 53–55, 114, 120, 121, 124, 126, 131, 134, 157, 174

BLAST basic local alignment search tool 28

BrisSynBio Bristol synthetic biology research centre 42, 43

C3DDB Commonwealth Computational Cloud for Data Driven Biology 24, 42, 44, 54, 55, 131,

157

COBRA COnstraint-Based Reconstruction and Analysis Toolbox 12, 155

CSV comma separated file 26

FBA flux balance analysis 11–13

GAMA guess, add, and mate algorithm 122, 124, 131, 154, 157–159, 170

GAMA_236 GAMA_236 154, 158, 159

165

ACRONYMS

GB gigabyte 30, 42–44

GDG genome design group 42, 137

GDS genome design suite 49, 51, 55, 61, 84–86, 95, 96, 100–104, 107–110, 114–116, 120, 121,

125–127, 131, 141–145, 149, 153, 154, 156–161

GO gene ontology 28

HPC high performance computing 12, 16, 17, 23, 24, 30, 42–44, 46, 50, 101, 131, 155, 157

Hub the central computer hub 23, 44, 51, 121

JCVI J. Craig Venter institute 3, 4, 16, 35, 40, 152, 156

KB kilobyte 43, 44

MB megabyte 41, 43, 44

minesweeper minesweeper 154

minesweeper_256 minesweeper_256 154

MIT massachusetts institute of technology 21, 42, 43

OS operating system 23

PCA principle component analysis 27, 99, 142, 143, 145

RDMS relational database management system 19, 26, 85, 91, 131

RDSF research data storage facility 43, 44, 84, 174

rRNA ribosomal RNA 31

SQL structured query language 85, 97

sRNA small RNA 31

SSH secure shell 25

TB terabyte 41, 43, 44, 46, 49, 170

tRNA transfer RNA 31

UoB University of Bristol 23, 24, 30, 42, 43

166

A
P

P
E

N
D

I
X

A
APPENDIX A

The supplementary information that accompanies this thesis can be found attached as SI.zip.

When unzipped this produces a SI directory - the contents of this directory is explained in various

sections below.

A.1 Initial genome reduction test

This section gives details of the initial genome reduction tests in section 3.1.3.

There are 525 genes in the MG-WC model of which 401 are characterised according to Karr et al.

[52]. However we could only find GO terms for 316 genes. In order to maintain a fair comparison

across tests we restricted all algorithms to search only from these 316 genes.

One can look at biological function from many scales, from many individual pathways up to a

few general terms like metabolism and membrane. We felt for some of our measures individual

pathways would be too much detail and the most general terms would be too little detail and

decided to pick something in the middle. As a result we have split the gene annotation of M.

genitalium over 44 GO terms - see table A.1 in the appendix.

When looking at the relationship of genetic knockouts to functions for viable and non-viable

mutants we hypothesised about ways to identify key genes for survival. We split this in two two

main groups:

Avoid overloading functions:
Due to the fact that M. genitalium is already reduced significantly by evolution we started by

167

APPENDIX A. APPENDIX A

making the assumption that all the functions were essential - each function could be tested

individually at a later date if necessary. With the assumption that every function is essential for

the survival of the cell we hypothesised that one way to protect the cell was to spread our genetic

knockouts across functions so as to try to avoid disrupting any of the functions. The number of

genes related to a function are not necessary the same across functions and so it was decided to

bias our search so that functions with more genes associated to it are more proportionally more

likely to be picked. Our algorithm is such:

1. Pick a function such that functions with more genes are more likely to be picked.

P (gene KO comes from function f i)= G(f i)∑N
j=1 G(f j)

where P (X = x) is the probability that X = x, f i is function i, G(f i) is the amount of genes

associated to function f i and N is the total number of functions.

2. Pick a random gene from the selected function using a uniform distribution.

3. Repeat process until the desired amount of genes are picked.

Avoid highly connected genes:
This hypothesis came from the idea that the connectivity of a gene may effect the chances of it

being essential or not. We decided that a gene that is involved in many different functions is

more likely to disrupt something essential than a gene that is only involved in one function. In

addition to this the different functions need to feedback on each other to create an entity that

is responsive to it’s situation and environment and so we further hypothesised that the highly

connected genes were key to this phenomena and thus more likely to be essential. This algorithm

takes the form:

1. Pick genes so that genes connected with fewer functions are favoured.

P (KO = g i)=
1− F(g i)∑M

j=1 F(g j)

M−1

where P (KO = g i) is the probability that gene g i is knocked out, F(g i) is the number of

functions associated to gene g i and M is the total number of genes.

2. Repeat until the desired number of genes have been knocked out.

Of course there are many other network related measures that maybe useful but we left these

until later to test should we decide we wish to carry on along that path.

Machine learning:
We hoped to further improve our algorithm by incorporating machine learning of some kind.

168

A.1. INITIAL GENOME REDUCTION TEST

There are many different types but the two that seemed most suitable and achievable within

a relatively short time frame were an genetic algorithm and an algorithm that has a dynamic

probability distribution of picking combinations of genes.

Genetic algorithm:
This would be a normal genetic algorithm that was modified to incorporate any measures ex-

plained above, e.g. avoiding overloading functions or highly connected genes. This could be

incorporated either into the initial random guess or in the picking of mutations.

This method would be relatively easy to implement but potentially not very flexible when

incorporating ways of avoiding/targeting certain genes.

Dynamic probability distribution:
One can seed a probability distribution based on the results on empirical single knockout data

and other potential methods mentioned above, e.g. avoiding overloading functions or highly

connected genes. Simulations can be run and then depending on the results the distribution of

picking genes can change to better pick viable gene combinations.

This method gives much more freedom to to implement complex ways of picking genes but

will be significantly harder to implement and test than the genetic algorithm.

Test algorithms:
It was decided that in order to rate our algorithms we needed something to compare against. We

picked two test cases.

1. Random guessing.

2. A basic genetic algorithm.

The first algorithm simply picks a gene randomly from a uniform distribution. This was picked

as the baseline to beat. Beating this might still not be very good so we included a basic genetic

algorithm to give some extra perspective - in addition to being an initial glance at how it performs

on this problem.

A.1 Basic genetic algorithm: Let the vector ~P be an individual in the population where
~P = [p1, p2, ..., pn] where pi is either zero or one which represents whether a gene is knocked out

or not, respectively, and n is the total amount of genes.

1. Pick two individuals, ~P1 and ~P2, from the population randomly such that a higher objective

function value has a higher chance of being picked.

169

APPENDIX A. APPENDIX A

2. Randomly choose to keep the top/bottom half of ~P1 and the bottom/top half of ~P2.

3. Randomly choose what proportion of each individual to take.

4. Stick the two parts together to make a new individual.

5. Randomly pick between 0-10% of the genome to mutate and then randomly mutate it.

No viable combination is ever dropped from the potential mating pool although the probably of

being picked to mate increases with the amount of knocked-out genes. This is done in order to try

an avoid loosing potential paths to smaller genomes. On the other hand we keep mutation rates

relatively low due to the high time-cost of simulation.

A.1.1 GO Functions in the whole-cell model

A.2 The genome design suite

Source code for the genome design suite can be found in the supplementary information directory

at ‘SI/hub/gds/src’.

Python scripts that started massive in-silico experiments on the hub can be found in the supple-

mentary information directory at ‘SI/hub_code/gds/run_files’.

Simulation data stored in ko.db can be found in the supplementary information directory

as ’SI/remote_db/ko.db’.

The Python module used to ensure safe writing to ko.db can be found in the supplemen-

tary information directory as ’SI/remote_db/ko_db.py’.

Biological data on the whole-cell model of M. genitalium can be found in the supplementary

information directory as ’SI/remote_db/static.db’.

Due to there being TBs of simulation data and thousands of cluster submission scripts this

data is available upon request. An example of of a basic_summary Pickle file is given: ‘SI/re-

mote_db/example_basic_summary.pkl’.

Due to a technical error ko.db was not updated with the results of the guess stage of GAMA. The re-

sults from the guess stage are summarised in Pickle files: ‘SI/remote_db/sims_missing_from_ko_db_from_guess_stage/viability_of_ne_focus_sets_pickles.zip’.

170

A.2. THE GENOME DESIGN SUITE

Table A.1: A list of all GO functions for the 316 genes in the Whole-Cell model

Function
DNA metabolic process
DNA replication
DNA-dependent DNA replication
RNA methylation
RNA phosphodiester bond hydrolysis
carbohydrate transport
cell cycle
cellular component disassembly
cellular homeostasis
cellular modified amino acid metabolic process
cellular protein metabolic process
cellular protein modification process
cytoadherence to microvasculature, mediated by symbiont protein
fatty acid metabolic process
ion transport
lipid metabolic process
monosaccharide metabolic process
nucleobase-containing compound metabolic process
organonitrogen compound metabolic process
oxidation-reduction process
protein folding
protein targeting
proteolysis
pseudouridine synthesis
purine ribonucleoside salvage
pyrimidine nucleoside metabolic process
rRNA metabolic process
rRNA processing
response to oxidative stress
small molecule metabolic process
transcription, DNA-templated
translational initiation
transport

171

APPENDIX A. APPENDIX A

A.3 Karr2012

The original whole-cell model of M. genitalium paper and supplementary information can be

found in the supplementary information directory as ’SI/karr2012’.

A.4 Designing minimal genomes using whole-cell models

Joshua Rees and I are co-first authors on a paper called ‘Designing Minimal Genomes Using

Whole-Cell models’ this can be view on bioRxiv at https://www.biorxiv.org/content/10.110

1/344564v3.supplementary-material and is currently submitted to Nature Communications.

A copy of the paper and all supporting documentation/data can be found in the supplementary

information of this thesis in the directory named ‘SI/rees_chalkley_2019’.

A.5 Gene ontology

The thesis uses two different gene ontology classifications one using standard DAVID ontology

classification done by myself and one stricter one that only used the UniProt database done by

Joshua Rees.

The data collected by myself is available through the analysis part of the genome design suite.

The data collected by Joshua Rees is available in the supplimentary information. Within the sup-

plimentary information there is a directory called ‘rees_chalkley_2019’ that contains everything

related to our paper. Tabs I-K of SI_media_-1.xlsx contain Rees’ classifications.

A.6 Estimating data storage requirements

get_wt200_file_sizes.sh

#!/ bin/bash

def ine variables

base_path =/ pro jec t s / Minimal_genome_desing / jr_sims

save_ f i l e=$ { base_path } / simulation_sizes_wt200 . txt

base_sim_path=$ { base_path } / WT200

create a f i l e with the data column name at the top

echo " simulation s ize (bytes) " > $ { save_ f i l e }

loop through a l l the poss ib l e d i r e c t o r i e s

172

https://www.biorxiv.org/content/10.1101/344564v3.supplementary-material
https://www.biorxiv.org/content/10.1101/344564v3.supplementary-material

A.7. TIMING DATA EXTRACTION FROM RAW SIMULATION OUTPUT

for dir_name in { 1 . . 2 0 0 }

do
sim_path=$ { base_sim_path } / $ { dir_name }

i f the d ir e c tory e x i s t s then sum up a l l the s i z e s # of f i l e s t h a t

end in . mat and append that number to

s a v e _ f i l e

i f [−d "$ { sim_path } "]

then du −c $ (f ind $ { sim_path } −name ’ * . mat ’) | \

t a i l −n 1 | awk ’ { print $1 } ’ >> $ { save_ f i l e }

f i
done

get_mean_size_of_wt_sim.py

#!/ bin/python3

import pandas

import pandas as pd

s e t variables

s im_s i ze_ f i l e = ’ / pro j ec t s / Minimal_genome_desing / jr_sims /\

simulation_sizes_wt200 . txt ’

read data into pandas dataframe

sim_sizes = pd . read_csv (s im_s i ze_ f i l e)

calcu la te the mean in MBs and print the r e su l t

print (’The average s ize of a wildtype simulation i s : ’ , \

sim_sizes [’ simulation s ize (bytes) ’] . mean () /1024.0 , \

’MBs ’)

A.7 Timing data extraction from raw simulation output

The whole-cell model of M. genitalium outputs hundreds of compressed Matlab files (i.e. ‘.mat’

files). Since every file has to be loaded even if only one time series is needed it became clear

that data extraction was slow. For this reason the following script was run on one of the original

wild-type simulations in order to quantify how long it takes.

% This was performed on my or ig inal wild−type data on RDSF:

% /p r o j e c t s /Minimal_genome_desing/mg−wc/original_data/wild_type/1

173

APPENDIX A. APPENDIX A

% and was done to time how long i t takes to ex t rac t a time s e r i e s from

the compressed matlab f i l e s .

% RESULT: Elapsed time i s 31.321722 seconds .

tic
min_state_no = 1;

max_state_no = 338;

growth_data = []

for idx = min_state_no : max_state_no

file_name = [’ 1 / state− ’ num2str (idx) ’ . mat ’] ;

state_mat = load (file_name) ;

tmp_growth = squeeze (state_mat . MetabolicReaction . growth) ;

growth_data = [growth_data ; tmp_growth] ;

end
toc

The script was run on RDSF in the directory ‘/projects/Minimal_genome_desing/mg-wc/original_data/wild_type’

and loads the growth rate from each the 338 state-*.mat files from directory ‘1’. It took just over

31 seconds to achieve this.

A.8 Changing the default file saving behaviour in the
whole-cell model of M. genitalium

The whole-cell model of M. genitalium saves simulation data into compressed Matlab files

(i.e. either version 7.0 or version 6 if the amount data becomes larger than the maxmum al-

lowed on version 7.0), however, this version sometimes causes errors uncompressing them with

Python’s scipy . In order to stop these errors, the source code of the model was changed to save

into the uncompressed version (i.e. 7.3). The file version is specified in the DiskLogger class at

‘/projects/flex1/database/WholeCell-master/src/+edu/+stanford/+covert/+cell/+sim/+util/DiskLogger.m’

on lines 916 and 932 - path is relative to an arbitrary BG login node but can also be found in the

supplimentary information at the same path relative to ‘WholeCell-master’.

174

BIBLIOGRAPHY

[1] S. Yoshida, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara,

K. Miyamoto, Y. Kimura, K. Oda, A bacterium that degrades and assimilates

poly(ethylene terephthalate)., Science (New York, N.Y.) 351 (6278) (2016) 1196–9.

doi:10.1126/science.aad6359.

URL http://www.ncbi.nlm.nih.gov/pubmed/26965627

[2] T. Tasoulis, G. Isbister, T. Tasoulis, G. K. Isbister, A Review and Database of Snake Venom

Proteomes, Toxins 9 (9) (2017) 290.

doi:10.3390/toxins9090290.

URL http://www.mdpi.com/2072-6651/9/9/290

[3] D. Choe, S. Cho, S. C. Kim, B.-K. Cho, Minimal genome: Worthwhile or worthless efforts

toward being smaller?, Biotechnology journal (sep 2015).

doi:10.1002/biot.201400838.

URL http://www.ncbi.nlm.nih.gov/pubmed/26356135

[4] T. P. Howard, S. Middelhaufe, K. Moore, C. Edner, D. M. Kolak, G. N. Taylor, D. A. Parker,

R. Lee, N. Smirnoff, S. J. Aves, J. Love, Synthesis of customized petroleum-replica

fuel molecules by targeted modification of free fatty acid pools in Escherichia coli.,

Proceedings of the National Academy of Sciences of the United States of America

110 (19) (2013) 7636–41.

doi:10.1073/pnas.1215966110.

URL http://www.ncbi.nlm.nih.gov/pubmed/23610415http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC3651483

[5] M. Kalos, B. L. Levine, D. L. Porter, S. Katz, S. A. Grupp, A. Bagg, C. H. June, T cells with

chimeric antigen receptors have potent antitumor effects and can establish memory in

patients with advanced leukemia., Science translational medicine 3 (95) (2011) 95ra73.

doi:10.1126/scitranslmed.3002842.

URL http://www.ncbi.nlm.nih.gov/pubmed/21832238http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC3393096

[6] C. Darwin, The Variation of Animals and Plants under Domestication Volume 2, Cambridge

University Press, 2010.

175

http://www.ncbi.nlm.nih.gov/pubmed/26965627
http://www.ncbi.nlm.nih.gov/pubmed/26965627
https://doi.org/10.1126/science.aad6359
http://www.ncbi.nlm.nih.gov/pubmed/26965627
http://www.mdpi.com/2072-6651/9/9/290
http://www.mdpi.com/2072-6651/9/9/290
https://doi.org/10.3390/toxins9090290
http://www.mdpi.com/2072-6651/9/9/290
http://www.ncbi.nlm.nih.gov/pubmed/26356135
http://www.ncbi.nlm.nih.gov/pubmed/26356135
https://doi.org/10.1002/biot.201400838
http://www.ncbi.nlm.nih.gov/pubmed/26356135
http://www.ncbi.nlm.nih.gov/pubmed/23610415 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3651483
http://www.ncbi.nlm.nih.gov/pubmed/23610415 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3651483
https://doi.org/10.1073/pnas.1215966110
http://www.ncbi.nlm.nih.gov/pubmed/23610415 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3651483
http://www.ncbi.nlm.nih.gov/pubmed/23610415 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3651483
http://www.ncbi.nlm.nih.gov/pubmed/21832238 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3393096
http://www.ncbi.nlm.nih.gov/pubmed/21832238 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3393096
http://www.ncbi.nlm.nih.gov/pubmed/21832238 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3393096
https://doi.org/10.1126/scitranslmed.3002842
http://www.ncbi.nlm.nih.gov/pubmed/21832238 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3393096
http://www.ncbi.nlm.nih.gov/pubmed/21832238 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3393096
https://books.google.co.uk/books?hl=en{&}lr={&}id={_}uON0AO7qwYC{&}oi=fnd{&}pg=PA1{&}dq=Variation+of+Animals+and+Plants+under+Domestication{&}ots=hqeZySDFfI{&}sig=YY5rjn06wS5HccnZ8kvVEMC7bpU{#}v=onepage{&}q=Variation of Animals and Plants under Domestication{&}f=false

BIBLIOGRAPHY

URL https://books.google.co.uk/books?hl=en{&}lr={&}id={_}uON0AO7qwYC

{&}oi=fnd{&}pg=PA1{&}dq=Variation+of+Animals+and+Plants+under+Domest
ication{&}ots=hqeZySDFfI{&}sig=YY5rjn06wS5HccnZ8kvVEMC7bpU{#}v=onepage

{&}q=VariationofAnimalsandPlantsunderDomestication{&}f=false

[7] H. J. Schouten, E. Jacobsen, Are mutations in genetically modified plants dangerous?,

Journal of biomedicine & biotechnology 2007 (7) (2007) 82612.

doi:10.1155/2007/82612.

URL http://www.ncbi.nlm.nih.gov/pubmed/18273413http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC2218926

[8] J. D. Watson, F. H. C. Crick, A Structure for Deoxyribose Nucleic Acid, Tech. Rep. 1 (1953).

URL https://www.3dmoleculardesigns.com/3DMD-Files/DNA-Discovery/PDFs/A

nnotatedWatsonandCrickpaper.pdf

[9] S. N. Cohen, A. C. Y. Chang, H. W. Boyer, R. B. Hellingt, Construction of Biologically

Functional Bacterial Plasmids In Vitro (R factor/restriction enzyme/transformation/en-

donuclease/antibiotic resistance), Tech. Rep. 11 (1973).

URL https://www.pnas.org/content/pnas/70/11/3240.full.pdf

[10] J. F. Morrow, S. N. Cohen, A. C. Chang, H. W. Boyer, H. M. Goodman, R. B. Helling,

Replication and transcription of eukaryotic DNA in Escherichia coli., Proceedings of

the National Academy of Sciences of the United States of America 71 (5) (1974) 1743–7.

doi:10.1073/PNAS.71.5.1743.

URL http://www.ncbi.nlm.nih.gov/pubmed/4600264http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC388315

[11] R. Chari, G. M. Church, Beyond editing to writing large genomes, Nature Reviews Genetics

18 (12) (2017) 749–760.

doi:10.1038/nrg.2017.59.

URL http://www.nature.com/doifinder/10.1038/nrg.2017.59

[12] C. A. Lino, J. C. Harper, J. P. Carney, J. A. Timlin, Delivering CRISPR: a review of the

challenges and approaches, Drug Delivery 25 (1) (2018) 1234–1257.

doi:10.1080/10717544.2018.1474964.

URL https://www.tandfonline.com/doi/full/10.1080/10717544.2018.1474964

[13] D. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R.-Y. Chuang, M. A. Algire, G. A. Benders,

M. G. Montague, L. Ma, M. M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar,

N. Assad-Garcia, C. Andrews-Pfannkoch, E. A. Denisova, L. Young, Z.-Q. Qi, T. H.

Segall-Shapiro, C. H. Calvey, P. P. Parmar, C. A. Hutchison, H. O. Smith, J. C. Venter,

176

https://books.google.co.uk/books?hl=en{&}lr={&}id={_}uON0AO7qwYC{&}oi=fnd{&}pg=PA1{&}dq=Variation+of+Animals+and+Plants+under+Domestication{&}ots=hqeZySDFfI{&}sig=YY5rjn06wS5HccnZ8kvVEMC7bpU{#}v=onepage{&}q=Variation of Animals and Plants under Domestication{&}f=false
https://books.google.co.uk/books?hl=en{&}lr={&}id={_}uON0AO7qwYC{&}oi=fnd{&}pg=PA1{&}dq=Variation+of+Animals+and+Plants+under+Domestication{&}ots=hqeZySDFfI{&}sig=YY5rjn06wS5HccnZ8kvVEMC7bpU{#}v=onepage{&}q=Variation of Animals and Plants under Domestication{&}f=false
https://books.google.co.uk/books?hl=en{&}lr={&}id={_}uON0AO7qwYC{&}oi=fnd{&}pg=PA1{&}dq=Variation+of+Animals+and+Plants+under+Domestication{&}ots=hqeZySDFfI{&}sig=YY5rjn06wS5HccnZ8kvVEMC7bpU{#}v=onepage{&}q=Variation of Animals and Plants under Domestication{&}f=false
https://books.google.co.uk/books?hl=en{&}lr={&}id={_}uON0AO7qwYC{&}oi=fnd{&}pg=PA1{&}dq=Variation+of+Animals+and+Plants+under+Domestication{&}ots=hqeZySDFfI{&}sig=YY5rjn06wS5HccnZ8kvVEMC7bpU{#}v=onepage{&}q=Variation of Animals and Plants under Domestication{&}f=false
http://www.ncbi.nlm.nih.gov/pubmed/18273413 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2218926
https://doi.org/10.1155/2007/82612
http://www.ncbi.nlm.nih.gov/pubmed/18273413 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2218926
http://www.ncbi.nlm.nih.gov/pubmed/18273413 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2218926
https://www.3dmoleculardesigns.com/3DMD-Files/DNA-Discovery/PDFs/AnnotatedWatsonandCrickpaper.pdf
https://www.3dmoleculardesigns.com/3DMD-Files/DNA-Discovery/PDFs/AnnotatedWatsonandCrickpaper.pdf
https://www.3dmoleculardesigns.com/3DMD-Files/DNA-Discovery/PDFs/AnnotatedWatsonandCrickpaper.pdf
https://www.pnas.org/content/pnas/70/11/3240.full.pdf
https://www.pnas.org/content/pnas/70/11/3240.full.pdf
https://www.pnas.org/content/pnas/70/11/3240.full.pdf
https://www.pnas.org/content/pnas/70/11/3240.full.pdf
http://www.ncbi.nlm.nih.gov/pubmed/4600264 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC388315
https://doi.org/10.1073/PNAS.71.5.1743
http://www.ncbi.nlm.nih.gov/pubmed/4600264 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC388315
http://www.ncbi.nlm.nih.gov/pubmed/4600264 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC388315
http://www.nature.com/doifinder/10.1038/nrg.2017.59
https://doi.org/10.1038/nrg.2017.59
http://www.nature.com/doifinder/10.1038/nrg.2017.59
https://www.tandfonline.com/doi/full/10.1080/10717544.2018.1474964
https://www.tandfonline.com/doi/full/10.1080/10717544.2018.1474964
https://doi.org/10.1080/10717544.2018.1474964
https://www.tandfonline.com/doi/full/10.1080/10717544.2018.1474964

BIBLIOGRAPHY

Creation of a bacterial cell controlled by a chemically synthesized genome., Science

(New York, N.Y.) 329 (5987) (2010) 52–6.

doi:10.1126/science.1190719.

URL http://www.sciencemag.org/content/329/5987/52.abstract

[14] O. Purcell, B. Jain, J. R. Karr, M. W. Covert, T. K. Lu, Towards a whole-cell modeling

approach for synthetic biology., Chaos (Woodbury, N.Y.) 23 (2) (2013) 025112.

doi:10.1063/1.4811182.

URL http://www.ncbi.nlm.nih.gov/pubmed/23822510

[15] D. G. Gibson, Programming biological operating systems: genome design, assembly and

activation, Nature Methods 11 (5) (2014) 521–526.

doi:10.1038/nmeth.2894.

URL http://www.nature.com/articles/nmeth.2894

[16] M. Dragosits, D. Mattanovich, Adaptive laboratory evolution – principles and applications

for biotechnology, Microbial Cell Factories 12 (1) (2013) 64.

doi:10.1186/1475-2859-12-64.

URL http://microbialcellfactories.biomedcentral.com/articles/10.1186/

1475-2859-12-64

[17] K. M. Esvelt, H. H. Wang, Genome-scale engineering for systems and synthetic biology.,

Molecular systems biology 9 (1) (2013) 641.

doi:10.1038/msb.2012.66.

URL http://www.ncbi.nlm.nih.gov/pubmed/23340847http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC3564264

[18] S. Y. Lee, H. U. Kim, Systems strategies for developing industrial microbial strains, Nature

Biotechnology 33 (10) (2015) 1061–1072.

doi:10.1038/nbt.3365.

URL http://www.nature.com/articles/nbt.3365

[19] G. Rancati, J. Moffat, A. Typas, N. Pavelka, Emerging and evolving concepts in gene

essentiality, Nature Reviews Genetics 19 (1) (2017) 34–49.

doi:10.1038/nrg.2017.74.

URL http://www.nature.com/doifinder/10.1038/nrg.2017.74

[20] K. Dybvig, L. L. Voelker, D. Yogev, R. Rosengarten, R. Watson-McKown, K. S. Wise,

K. Deitsch, E. Moxon, T. Wellems, J. Cairns, J. Overbaugh, S. Miller, D. C. Krause, M. F.

Balish, M. W. van der Woude, A. J. Bäumler, S. Razin, L. Hayflick, Z. B. Zeng, C. C.

Cockerham, M. Miyata, S. Seto, Mutation Models and Quantitative Genetic Variation,

Genetics 38 (3) (2004) 183–90.

177

http://www.sciencemag.org/content/329/5987/52.abstract
https://doi.org/10.1126/science.1190719
http://www.sciencemag.org/content/329/5987/52.abstract
http://www.ncbi.nlm.nih.gov/pubmed/23822510
http://www.ncbi.nlm.nih.gov/pubmed/23822510
https://doi.org/10.1063/1.4811182
http://www.ncbi.nlm.nih.gov/pubmed/23822510
http://www.nature.com/articles/nmeth.2894
http://www.nature.com/articles/nmeth.2894
https://doi.org/10.1038/nmeth.2894
http://www.nature.com/articles/nmeth.2894
http://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-12-64
http://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-12-64
https://doi.org/10.1186/1475-2859-12-64
http://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-12-64
http://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-12-64
http://www.ncbi.nlm.nih.gov/pubmed/23340847 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3564264
https://doi.org/10.1038/msb.2012.66
http://www.ncbi.nlm.nih.gov/pubmed/23340847 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3564264
http://www.ncbi.nlm.nih.gov/pubmed/23340847 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3564264
http://www.nature.com/articles/nbt.3365
https://doi.org/10.1038/nbt.3365
http://www.nature.com/articles/nbt.3365
http://www.nature.com/doifinder/10.1038/nrg.2017.74
http://www.nature.com/doifinder/10.1038/nrg.2017.74
https://doi.org/10.1038/nrg.2017.74
http://www.nature.com/doifinder/10.1038/nrg.2017.74
http://www.sciencedirect.com/science/article/pii/S0300908499002096 http://www.genetics.org/content/133/3/729.short http://www.sciencedirect.com/science/article/pii/S1045105609001808 http://cmr.asm.org/content/17/3/581.short http://doi.wiley.com/10.1046/j.

BIBLIOGRAPHY

doi:10.1016/j.biologicals.2009.11.008.

URL http://www.sciencedirect.com/science/article/pii/S030090849900209

6http://www.genetics.org/content/133/3/729.shorthttp://www.sciencedirec

t.com/science/article/pii/S1045105609001808http://cmr.asm.org/content/

17/3/581.shorthttp://doi.wiley.com/10.1046/j.

[21] H. J. Morowitz, D. C. Wallace, Genome size and life cycle of the mycoplasma, Annals of the

New York Academy of Sciences 225 (1 Mycoplasma an) (1973) 62–73.

doi:10.1111/j.1749-6632.1973.tb45637.x.

URL http://doi.wiley.com/10.1111/j.1749-6632.1973.tb45637.x

[22] H. Neimark, Origin and evolution of wall-less prokaryotes, The bacterial L-Forms. Marcel

Dekkar Inc. New York (1986).

URL https://scholar.google.co.uk/scholar?hl=en{&}as{_}sdt=0{%}2C5{&}q

=Origin+and+evolution+of+wall-less+prokaryotes.+Neimark{&}btnG=

[23] C. R. Woese, J. Maniloff, L. B. Zablen, Phylogenetic analysis of the mycoplasmas., Proceed-

ings of the National Academy of Sciences of the United States of America 77 (1) (1980)

494–8.

URL http://www.ncbi.nlm.nih.gov/pubmed/6928642http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC348298

[24] J. I. Glass, C. Merryman, K. S. Wise, C. A. Hutchison, H. O. Smith, Minimal Cells-Real and

Imagined., Cold Spring Harbor perspectives in biology (2017) a023861doi:10.1101/cs

hperspect.a023861.

URL http://www.ncbi.nlm.nih.gov/pubmed/28348033

[25] A. R. Mushegian, E. V. Koonin, A minimal gene set for cellular life derived by comparison

of complete bacterial genomes., Proceedings of the National Academy of Sciences 93 (19)

(1996) 10268–10273.

doi:10.1073/pnas.93.19.10268.

URL http://www.pnas.org/content/93/19/10268.abstract

[26] R. Gil, F. J. Silva, J. Peretó, A. Moya, Determination of the core of a minimal bacterial gene

set., Microbiology and molecular biology reviews : MMBR 68 (3) (2004) 518–37, table of

contents.

doi:10.1128/MMBR.68.3.518-537.2004.

URL http://www.ncbi.nlm.nih.gov/pubmed/15353568http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC515251

[27] K. Lagesen, D. W. Ussery, T. M. Wassenaar, Genome update: the 1000th genome–a caution-

ary tale., Microbiology (Reading, England) 156 (Pt 3) (2010) 603–8.

178

https://doi.org/10.1016/j.biologicals.2009.11.008
http://www.sciencedirect.com/science/article/pii/S0300908499002096 http://www.genetics.org/content/133/3/729.short http://www.sciencedirect.com/science/article/pii/S1045105609001808 http://cmr.asm.org/content/17/3/581.short http://doi.wiley.com/10.1046/j.
http://www.sciencedirect.com/science/article/pii/S0300908499002096 http://www.genetics.org/content/133/3/729.short http://www.sciencedirect.com/science/article/pii/S1045105609001808 http://cmr.asm.org/content/17/3/581.short http://doi.wiley.com/10.1046/j.
http://www.sciencedirect.com/science/article/pii/S0300908499002096 http://www.genetics.org/content/133/3/729.short http://www.sciencedirect.com/science/article/pii/S1045105609001808 http://cmr.asm.org/content/17/3/581.short http://doi.wiley.com/10.1046/j.
http://www.sciencedirect.com/science/article/pii/S0300908499002096 http://www.genetics.org/content/133/3/729.short http://www.sciencedirect.com/science/article/pii/S1045105609001808 http://cmr.asm.org/content/17/3/581.short http://doi.wiley.com/10.1046/j.
http://doi.wiley.com/10.1111/j.1749-6632.1973.tb45637.x
https://doi.org/10.1111/j.1749-6632.1973.tb45637.x
http://doi.wiley.com/10.1111/j.1749-6632.1973.tb45637.x
https://scholar.google.co.uk/scholar?hl=en{&}as{_}sdt=0{%}2C5{&}q=Origin+and+evolution+of+wall-less+prokaryotes.+Neimark{&}btnG=
https://scholar.google.co.uk/scholar?hl=en{&}as{_}sdt=0{%}2C5{&}q=Origin+and+evolution+of+wall-less+prokaryotes.+Neimark{&}btnG=
https://scholar.google.co.uk/scholar?hl=en{&}as{_}sdt=0{%}2C5{&}q=Origin+and+evolution+of+wall-less+prokaryotes.+Neimark{&}btnG=
http://www.ncbi.nlm.nih.gov/pubmed/6928642 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC348298
http://www.ncbi.nlm.nih.gov/pubmed/6928642 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC348298
http://www.ncbi.nlm.nih.gov/pubmed/6928642 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC348298
http://www.ncbi.nlm.nih.gov/pubmed/28348033
http://www.ncbi.nlm.nih.gov/pubmed/28348033
https://doi.org/10.1101/cshperspect.a023861
https://doi.org/10.1101/cshperspect.a023861
http://www.ncbi.nlm.nih.gov/pubmed/28348033
http://www.pnas.org/content/93/19/10268.abstract
http://www.pnas.org/content/93/19/10268.abstract
https://doi.org/10.1073/pnas.93.19.10268
http://www.pnas.org/content/93/19/10268.abstract
http://www.ncbi.nlm.nih.gov/pubmed/15353568 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC515251
http://www.ncbi.nlm.nih.gov/pubmed/15353568 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC515251
https://doi.org/10.1128/MMBR.68.3.518-537.2004
http://www.ncbi.nlm.nih.gov/pubmed/15353568 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC515251
http://www.ncbi.nlm.nih.gov/pubmed/15353568 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC515251
http://www.ncbi.nlm.nih.gov/pubmed/20093288
http://www.ncbi.nlm.nih.gov/pubmed/20093288

BIBLIOGRAPHY

doi:10.1099/mic.0.038257-0.

URL http://www.ncbi.nlm.nih.gov/pubmed/20093288

[28] W. Liu, L. Fang, M. Li, S. Li, S. Guo, R. Luo, Z. Feng, B. Li, Z. Zhou, G. Shao, H. Chen,

S. Xiao, Comparative Genomics of Mycoplasma: Analysis of Conserved Essential Genes

and Diversity of the Pan-Genome, PLoS ONE 7 (4) (2012) e35698.

doi:10.1371/journal.pone.0035698.

URL https://dx.plos.org/10.1371/journal.pone.0035698

[29] J. I. Glass, N. Assad-Garcia, N. Alperovich, S. Yooseph, M. R. Lewis, M. Maruf, C. A. Hutchi-

son, H. O. Smith, J. C. Venter, Essential genes of a minimal bacterium., Proceedings

of the National Academy of Sciences of the United States of America 103 (2) (2006)

425–30.

doi:10.1073/pnas.0510013103.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1324956

{&}tool=pmcentrez{&}rendertype=abstract

[30] P. Gawand, F. Said Abukar, N. Venayak, S. Partow, A. E. Motter, R. Mahadevan, Sub-

optimal phenotypes of double-knockout mutants of Escherichia coli depend on the order

of gene deletions., Integrative biology : quantitative biosciences from nano to macro

7 (8) (2015) 930–9.

doi:10.1039/c5ib00096c.

URL http://pubs.rsc.org/en/Content/ArticleHTML/2015/IB/C5IB00096C

[31] C. A. Hutchison, R.-Y. Chuang, V. N. Noskov, N. Assad-Garcia, T. J. Deerinck, M. H.

Ellisman, J. Gill, K. Kannan, B. J. Karas, L. Ma, J. F. Pelletier, Z.-Q. Qi, R. A. Richter,

E. A. Strychalski, L. Sun, Y. Suzuki, B. Tsvetanova, K. S. Wise, H. O. Smith, J. I. Glass,

C. Merryman, D. G. Gibson, J. C. Venter, Design and synthesis of a minimal bacterial

genome, Science 351 (6280) (2016) aad6253–aad6253.

doi:10.1126/science.aad6253.

URL http://science.sciencemag.org/content/351/6280/aad6253.abstract

[32] D. Machado, R. S. Costa, M. Rocha, E. C. Ferreira, B. Tidor, I. Rocha, Modeling formalisms

in Systems Biology., AMB Express 1 (1) (2011) 45.

doi:10.1186/2191-0855-1-45.

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-84867843623{&}p

artnerID=tZOtx3y1

[33] N. D. Theise, M. D’Inverno, Understanding cell lineages as complex adaptive systems,

Blood Cells, Molecules, and Diseases 32 (1) (2004) 17–20.

179

https://doi.org/10.1099/mic.0.038257-0
http://www.ncbi.nlm.nih.gov/pubmed/20093288
https://dx.plos.org/10.1371/journal.pone.0035698
https://dx.plos.org/10.1371/journal.pone.0035698
https://doi.org/10.1371/journal.pone.0035698
https://dx.plos.org/10.1371/journal.pone.0035698
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1324956{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1073/pnas.0510013103
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1324956{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1324956{&}tool=pmcentrez{&}rendertype=abstract
http://pubs.rsc.org/en/Content/ArticleHTML/2015/IB/C5IB00096C
http://pubs.rsc.org/en/Content/ArticleHTML/2015/IB/C5IB00096C
http://pubs.rsc.org/en/Content/ArticleHTML/2015/IB/C5IB00096C
https://doi.org/10.1039/c5ib00096c
http://pubs.rsc.org/en/Content/ArticleHTML/2015/IB/C5IB00096C
http://science.sciencemag.org/content/351/6280/aad6253.abstract
http://science.sciencemag.org/content/351/6280/aad6253.abstract
https://doi.org/10.1126/science.aad6253
http://science.sciencemag.org/content/351/6280/aad6253.abstract
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867843623{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867843623{&}partnerID=tZOtx3y1
https://doi.org/10.1186/2191-0855-1-45
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867843623{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867843623{&}partnerID=tZOtx3y1
https://www.sciencedirect.com/science/article/pii/S1079979603002523

BIBLIOGRAPHY

doi:10.1016/J.BCMD.2003.09.010.

URL https://www.sciencedirect.com/science/article/pii/S107997960300252

3

[34] J. D. Orth, I. Thiele, B. Ø. Palsson, What is flux balance analysis?, Nature biotechnology

28 (3) (2010) 245–8.

doi:10.1038/nbt.1614.

URL http://www.ncbi.nlm.nih.gov/pubmed/20212490http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC3108565

[35] S. Sastry, Nonlinear system : analysis, stability, and control, Springer, 1999.

[36] J. B. Carrell, Fundamentals of linear algebra, Tech. rep. (2005).

URL https://www.math.ubc.ca/{~}carrell/NB.pdf

[37] M. Tomita, Whole-cell simulation: a grand challenge of the 21st century, Trends in Biotech-

nology 19 (6) (2001) 205–210.

doi:10.1016/S0167-7799(01)01636-5.

URL https://www.sciencedirect.com/science/article/pii/S016777990101636

5

[38] J. Carrera, M. W. Covert, Why Build Whole-Cell Models?, Trends in Cell Biology 25 (12)

(2015) 719–722.

doi:10.1016/J.TCB.2015.09.004.

URL https://www.sciencedirect.com/science/article/pii/S096289241500170

1

[39] C. T. Trinh, A. Wlaschin, F. Srienc, Elementary mode analysis: a useful metabolic path-

way analysis tool for characterizing cellular metabolism., Applied microbiology and

biotechnology 81 (5) (2009) 813–26.

doi:10.1007/s00253-008-1770-1.

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-58149154663{&}p

artnerID=tZOtx3y1http://www.pubmedcentral.nih.gov/articlerender.fcgi?a

rtid=2909134{&}tool=pmcentrez{&}rendertype=abstract

[40] K. Plaimas, J.-P. Mallm, M. Oswald, F. Svara, V. Sourjik, R. Eils, R. König, A. P. Burgard,

S. Vaidyaraman, C. D. Maranas, J. D. Orth, I. Thiele, B. Ø. O. Palsson, A. M. Feist,

C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbelt,

V. Hatzimanikatis, B. Ø. O. Palsson, C. T. Trinh, A. Wlaschin, F. Srienc, N. D. Price, J. L.

Reed, B. Ø. O. Palsson, C. B. Milne, P.-J. Kim, J. A. Eddy, N. D. Price, J. S. Edwards,

B. Ø. O. Palsson, E. O’Brien, J. Monk, B. Ø. O. Palsson, M. W. Covert, C. H. Schilling,

180

https://doi.org/10.1016/J.BCMD.2003.09.010
https://www.sciencedirect.com/science/article/pii/S1079979603002523
https://www.sciencedirect.com/science/article/pii/S1079979603002523
http://www.ncbi.nlm.nih.gov/pubmed/20212490 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3108565
https://doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3108565
http://www.ncbi.nlm.nih.gov/pubmed/20212490 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3108565
https://www.math.ubc.ca/{~}carrell/NB.pdf
https://www.math.ubc.ca/{~}carrell/NB.pdf
https://www.sciencedirect.com/science/article/pii/S0167779901016365
https://doi.org/10.1016/S0167-7799(01)01636-5
https://www.sciencedirect.com/science/article/pii/S0167779901016365
https://www.sciencedirect.com/science/article/pii/S0167779901016365
https://www.sciencedirect.com/science/article/pii/S0962892415001701
https://doi.org/10.1016/J.TCB.2015.09.004
https://www.sciencedirect.com/science/article/pii/S0962892415001701
https://www.sciencedirect.com/science/article/pii/S0962892415001701
http://www.scopus.com/inward/record.url?eid=2-s2.0-58149154663{&}partnerID=tZOtx3y1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2909134{&}tool=pmcentrez{&}rendertype=abstract
http://www.scopus.com/inward/record.url?eid=2-s2.0-58149154663{&}partnerID=tZOtx3y1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2909134{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1007/s00253-008-1770-1
http://www.scopus.com/inward/record.url?eid=2-s2.0-58149154663{&}partnerID=tZOtx3y1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2909134{&}tool=pmcentrez{&}rendertype=abstract
http://www.scopus.com/inward/record.url?eid=2-s2.0-58149154663{&}partnerID=tZOtx3y1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2909134{&}tool=pmcentrez{&}rendertype=abstract
http://www.scopus.com/inward/record.url?eid=2-s2.0-58149154663{&}partnerID=tZOtx3y1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2909134{&}tool=pmcentrez{&}rendertype=abstract

BIBLIOGRAPHY

B. Ø. O. Palsson, Elementary mode analysis: a useful metabolic pathway analysis tool

for characterizing cellular metabolism., Biotechnology Journal 2 (5) (2009) 813–26.

doi:10.1007/s00253-008-1770-1.

URL http://www.sciencedirect.com/science/article/pii/S002251930192405

1http://www.ncbi.nlm.nih.gov/pubmed/26000478http://www.biomedcentral.co

m/1471-2105/1/1http://www.pubmedcentral.nih.gov/articlerender.fcgi?art

id=3160784{&}tool=pmcentrez{&}rendertype=abstract

[41] N. E. Lewis, H. Nagarajan, B. O. Palsson, Constraining the metabolic genotype-phenotype

relationship using a phylogeny of in silico methods., Nature reviews. Microbiology 10 (4)

(2012) 291–305.

doi:10.1038/nrmicro2737.

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-84858439602{&}p

artnerID=tZOtx3y1

[42] A. Bordbar, J. M. Monk, Z. A. King, B. O. Palsson, Constraint-based models predict

metabolic and associated cellular functions., Nature reviews. Genetics 15 (2) (2014)

107–20.

doi:10.1038/nrg3643.

URL http://www.nature.com/nrg/journal/v15/n2/full/nrg3643.html{#}t1htt

p://dx.doi.org/10.1038/nrg3643

[43] S. A. Becker, A. M. Feist, M. L. Mo, G. Hannum, B. Ø. Palsson, M. J. Herrgard, Quantitative

prediction of cellular metabolism with constraint-based models: the COBRA Toolbox,

Nature Protocols 2 (3) (2007) 727–738.

doi:10.1038/nprot.2007.99.

URL http://www.nature.com/articles/nprot.2007.99

[44] J. Schellenberger, R. Que, R. M. T. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C. Zielinski,

A. Bordbar, N. E. Lewis, S. Rahmanian, J. Kang, D. R. Hyduke, B. Ø. Palsson, Quan-

titative prediction of cellular metabolism with constraint-based models: the COBRA

Toolbox v2.0, Nature Protocols 6 (9) (2011) 1290–1307.

doi:10.1038/nprot.2011.308.

URL http://www.nature.com/articles/nprot.2011.308

[45] C. J. Lloyd, A. Ebrahim, L. Yang, Z. A. King, E. Catoiu, E. J. O’Brien, J. K. Liu, B. O. Palsson,

COBRAme: A computational framework for genome-scale models of metabolism and

gene expression, PLoS Computational Biology 14 (7) (2018).

doi:10.1371/journal.pcbi.1006302.

[46] J. S. Edwards, B. O. Palsson, The Escherichia coli MG1655 in silico metabolic genotype: its

definition, characteristics, and capabilities., Proceedings of the National Academy of

181

http://www.sciencedirect.com/science/article/pii/S0022519301924051 http://www.ncbi.nlm.nih.gov/pubmed/26000478 http://www.biomedcentral.com/1471-2105/1/1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3160784{&}tool=pmcentrez{&}rendertype=abstract
http://www.sciencedirect.com/science/article/pii/S0022519301924051 http://www.ncbi.nlm.nih.gov/pubmed/26000478 http://www.biomedcentral.com/1471-2105/1/1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3160784{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1007/s00253-008-1770-1
http://www.sciencedirect.com/science/article/pii/S0022519301924051 http://www.ncbi.nlm.nih.gov/pubmed/26000478 http://www.biomedcentral.com/1471-2105/1/1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3160784{&}tool=pmcentrez{&}rendertype=abstract
http://www.sciencedirect.com/science/article/pii/S0022519301924051 http://www.ncbi.nlm.nih.gov/pubmed/26000478 http://www.biomedcentral.com/1471-2105/1/1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3160784{&}tool=pmcentrez{&}rendertype=abstract
http://www.sciencedirect.com/science/article/pii/S0022519301924051 http://www.ncbi.nlm.nih.gov/pubmed/26000478 http://www.biomedcentral.com/1471-2105/1/1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3160784{&}tool=pmcentrez{&}rendertype=abstract
http://www.sciencedirect.com/science/article/pii/S0022519301924051 http://www.ncbi.nlm.nih.gov/pubmed/26000478 http://www.biomedcentral.com/1471-2105/1/1 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3160784{&}tool=pmcentrez{&}rendertype=abstract
http://www.scopus.com/inward/record.url?eid=2-s2.0-84858439602{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84858439602{&}partnerID=tZOtx3y1
https://doi.org/10.1038/nrmicro2737
http://www.scopus.com/inward/record.url?eid=2-s2.0-84858439602{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84858439602{&}partnerID=tZOtx3y1
http://www.nature.com/nrg/journal/v15/n2/full/nrg3643.html{#}t1 http://dx.doi.org/10.1038/nrg3643
http://www.nature.com/nrg/journal/v15/n2/full/nrg3643.html{#}t1 http://dx.doi.org/10.1038/nrg3643
https://doi.org/10.1038/nrg3643
http://www.nature.com/nrg/journal/v15/n2/full/nrg3643.html{#}t1 http://dx.doi.org/10.1038/nrg3643
http://www.nature.com/nrg/journal/v15/n2/full/nrg3643.html{#}t1 http://dx.doi.org/10.1038/nrg3643
http://www.nature.com/articles/nprot.2007.99
http://www.nature.com/articles/nprot.2007.99
https://doi.org/10.1038/nprot.2007.99
http://www.nature.com/articles/nprot.2007.99
http://www.nature.com/articles/nprot.2011.308
http://www.nature.com/articles/nprot.2011.308
http://www.nature.com/articles/nprot.2011.308
https://doi.org/10.1038/nprot.2011.308
http://www.nature.com/articles/nprot.2011.308
https://doi.org/10.1371/journal.pcbi.1006302
http://www.ncbi.nlm.nih.gov/pubmed/10805808 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC25862
http://www.ncbi.nlm.nih.gov/pubmed/10805808 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC25862

BIBLIOGRAPHY

Sciences of the United States of America 97 (10) (2000) 5528–33.

URL http://www.ncbi.nlm.nih.gov/pubmed/10805808http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC25862

[47] C. H. Schilling, M. W. Covert, I. Famili, G. M. Church, J. S. Edwards, B. O. Palsson, Genome-

Scale Metabolic Model of Helicobacter pylori 26695, Journal of Bacteriology 184 (16)

(2002) 4582.

doi:10.1128/JB.184.16.4582-4593.2002.

URL http://www.ncbi.nlm.nih.gov/pubmed/12142428http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC135230

[48] J. Förster, I. Famili, B. Ø. Palsson, J. Nielsen, Large-Scale Evaluation of <i>In Silico</i>

Gene Deletions in <i>Saccharomyces cerevisiae</i>, OMICS: A Journal of Integrative

Biology 7 (2) (2003) 193–202.

doi:10.1089/153623103322246584.

URL http://www.liebertpub.com/doi/10.1089/153623103322246584

[49] Y.-K. Oh, B. O. Palsson, S. M. Park, C. H. Schilling, R. Mahadevan, Genome-scale reconstruc-

tion of metabolic network in Bacillus subtilis based on high-throughput phenotyping

and gene essentiality data., The Journal of biological chemistry 282 (39) (2007) 28791–9.

doi:10.1074/jbc.M703759200.

URL http://www.ncbi.nlm.nih.gov/pubmed/17573341

[50] Y. Shinfuku, N. Sorpitiporn, M. Sono, C. Furusawa, T. Hirasawa, H. Shimizu, Development

and experimental verification of a genome-scale metabolic model for Corynebacterium

glutamicum., Microbial cell factories 8 (2009) 43.

doi:10.1186/1475-2859-8-43.

URL http://www.ncbi.nlm.nih.gov/pubmed/19646286http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC2728707

[51] D. Noble, A theory of biological relativity: no privileged level of causation, Interface Focus

2 (1) (2012) 55–64.

doi:10.1098/rsfs.2011.0067.

URL http://rsfs.royalsocietypublishing.org/cgi/doi/10.1098/rsfs.2011.

0067

[52] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival, N. Assad-

Garcia, J. I. Glass, M. W. Covert, A whole-cell computational model predicts phenotype

from genotype., Cell 150 (2) (2012) 389–401.

doi:10.1016/j.cell.2012.05.044.

URL http://www.sciencedirect.com/science/article/pii/S0092867412007763

182

http://www.ncbi.nlm.nih.gov/pubmed/10805808 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC25862
http://www.ncbi.nlm.nih.gov/pubmed/10805808 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC25862
http://www.ncbi.nlm.nih.gov/pubmed/12142428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC135230
http://www.ncbi.nlm.nih.gov/pubmed/12142428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC135230
https://doi.org/10.1128/JB.184.16.4582-4593.2002
http://www.ncbi.nlm.nih.gov/pubmed/12142428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC135230
http://www.ncbi.nlm.nih.gov/pubmed/12142428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC135230
http://www.liebertpub.com/doi/10.1089/153623103322246584
http://www.liebertpub.com/doi/10.1089/153623103322246584
https://doi.org/10.1089/153623103322246584
http://www.liebertpub.com/doi/10.1089/153623103322246584
http://www.ncbi.nlm.nih.gov/pubmed/17573341
http://www.ncbi.nlm.nih.gov/pubmed/17573341
http://www.ncbi.nlm.nih.gov/pubmed/17573341
https://doi.org/10.1074/jbc.M703759200
http://www.ncbi.nlm.nih.gov/pubmed/17573341
http://www.ncbi.nlm.nih.gov/pubmed/19646286 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2728707
http://www.ncbi.nlm.nih.gov/pubmed/19646286 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2728707
http://www.ncbi.nlm.nih.gov/pubmed/19646286 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2728707
https://doi.org/10.1186/1475-2859-8-43
http://www.ncbi.nlm.nih.gov/pubmed/19646286 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2728707
http://www.ncbi.nlm.nih.gov/pubmed/19646286 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2728707
http://rsfs.royalsocietypublishing.org/cgi/doi/10.1098/rsfs.2011.0067
https://doi.org/10.1098/rsfs.2011.0067
http://rsfs.royalsocietypublishing.org/cgi/doi/10.1098/rsfs.2011.0067
http://rsfs.royalsocietypublishing.org/cgi/doi/10.1098/rsfs.2011.0067
http://www.sciencedirect.com/science/article/pii/S0092867412007763
http://www.sciencedirect.com/science/article/pii/S0092867412007763
https://doi.org/10.1016/j.cell.2012.05.044
http://www.sciencedirect.com/science/article/pii/S0092867412007763

BIBLIOGRAPHY

[53] D. N. Macklin, N. A. Ruggero, M. W. Covert, The future of whole-cell modeling, Current

Opinion in Biotechnology 28 (2014) 111–115.

doi:10.1016/J.COPBIO.2014.01.012.

URL https://www.sciencedirect.com/science/article/pii/S095816691400025

1

[54] J. R. Karr, J. C. Sanghvi, D. N. Macklin, A. Arora, M. W. Covert, WholeCellKB: model

organism databases for comprehensive whole-cell models., Nucleic acids research

41 (Database issue) (2013) D787–92.

doi:10.1093/nar/gks1108.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3531061

{&}tool=pmcentrez{&}rendertype=abstract

[55] J. R. Karr, N. C. Phillips, M. W. Covert, WholeCellSimDB: a hybrid relational/HDF database

for whole-cell model predictions., Database : the journal of biological databases and

curation 2014 (jan 2014).

doi:10.1093/database/bau095.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4165886

{&}tool=pmcentrez{&}rendertype=abstract

[56] R. Lee, J. R. Karr, M. W. Covert, WholeCellViz: data visualization for whole-cell models.,

BMC bioinformatics 14 (2013) 253.

doi:10.1186/1471-2105-14-253.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3765349

{&}tool=pmcentrez{&}rendertype=abstract

[57] J. C. Sanghvi, S. Regot, S. Carrasco, J. R. Karr, M. V. Gutschow, B. Bolival, M. W. Covert,

Accelerated discovery via a whole-cell model, Nature Methods 10 (12) (2013) 1192–1195.

doi:10.1038/nmeth.2724.

URL http://www.nature.com/articles/nmeth.2724

[58] J. R. Karr, A. H. Williams, J. D. Zucker, A. Raue, B. Steiert, J. Timmer, C. Kreutz, S. Wilkin-

son, B. A. Allgood, B. M. Bot, B. R. Hoff, M. R. Kellen, M. W. Covert, G. A. Stolovitzky,

P. Meyer, P. Meyer, Summary of the DREAM8 Parameter Estimation Challenge: Toward

Parameter Identification for Whole-Cell Models, PLOS Computational Biology 11 (5)

(2015) e1004096.

doi:10.1371/journal.pcbi.1004096.

URL https://dx.plos.org/10.1371/journal.pcbi.1004096

[59] M. Feig, R. Harada, T. Mori, I. Yu, K. Takahashi, Y. Sugita, Complete atomistic model of a

bacterial cytoplasm for integrating physics, biochemistry, and systems biology, Journal

of Molecular Graphics and Modelling 58 (2015) 1–9.

183

https://www.sciencedirect.com/science/article/pii/S0958166914000251
https://doi.org/10.1016/J.COPBIO.2014.01.012
https://www.sciencedirect.com/science/article/pii/S0958166914000251
https://www.sciencedirect.com/science/article/pii/S0958166914000251
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3531061{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3531061{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1093/nar/gks1108
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3531061{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3531061{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4165886{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4165886{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1093/database/bau095
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4165886{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4165886{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3765349{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1186/1471-2105-14-253
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3765349{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3765349{&}tool=pmcentrez{&}rendertype=abstract
http://www.nature.com/articles/nmeth.2724
https://doi.org/10.1038/nmeth.2724
http://www.nature.com/articles/nmeth.2724
https://dx.plos.org/10.1371/journal.pcbi.1004096
https://dx.plos.org/10.1371/journal.pcbi.1004096
https://doi.org/10.1371/journal.pcbi.1004096
https://dx.plos.org/10.1371/journal.pcbi.1004096
https://www.sciencedirect.com/science/article/pii/S1093326315000388
https://www.sciencedirect.com/science/article/pii/S1093326315000388

BIBLIOGRAPHY

doi:10.1016/J.JMGM.2015.02.004.

URL https://www.sciencedirect.com/science/article/pii/S109332631500038

8

[60] I. Yu, T. Mori, T. Ando, R. Harada, J. Jung, Y. Sugita, M. Feig, Biomolecular interactions

modulate macromolecular structure and dynamics in atomistic model of a bacterial

cytoplasmdoi:10.7554/eLife.19274.001.

URL https://cdn.elifesciences.org/articles/19274/elife-19274-v1.pdf

[61] T. MathWorks, MATLAB 2012a, The MathWorks, Natick, 2012. (2012).

[62] F. s. f. GNU, GNU Bash, https://www.gnu.org/software/bash/.

[63] U. o. B. Advanced Computing Research Center (ACRC), BlueCrystal Phase 3,

https://www.acrc.bris.ac.uk/acrc/phase3.htm.

[64] Rsync, https://rsync.samba.org/.

[65] G. v. . C. v. W. e. I. C. Rossum, Python tutorial, Python 206 (10) (1995) 1600–1600.

URL https://dl.acm.org/citation.cfm?id=869378{&}preflayout=flat

[66] J. C. Mitchell, Concepts in Programming Languages, Cambridge University Press, Cam-

bridge, 2002.

doi:10.1017/CBO9780511804175.

URL http://ebooks.cambridge.org/ref/id/CBO9780511804175

[67] D. Phillips, Python 3 Object Oriented Programming, Packt Pub, 2010.

arXiv:arXiv:1011.1669v3, doi:10.1007/s13398-014-0173-7.2.

[68] PyLint, https://www.pylint.org/.

[69] SQLite, https://www.sqlite.org/index.html.

[70] SchemaCrawler, https://www.schemacrawler.com/.

[71] S. van der Walt, S. C. Colbert, G. Varoquaux, The NumPy Array: A Structure for Efficient

Numerical Computation, Computing in Science & Engineering 13 (2) (2011) 22–30.

doi:10.1109/MCSE.2011.37.

URL http://ieeexplore.ieee.org/document/5725236/

[72] W. Mckinney, pandas: a Foundational Python Library for Data Analysis and Statistics,

Tech. rep.

URL http://pandas.sf.net

184

https://doi.org/10.1016/J.JMGM.2015.02.004
https://www.sciencedirect.com/science/article/pii/S1093326315000388
https://www.sciencedirect.com/science/article/pii/S1093326315000388
https://cdn.elifesciences.org/articles/19274/elife-19274-v1.pdf
https://cdn.elifesciences.org/articles/19274/elife-19274-v1.pdf
https://cdn.elifesciences.org/articles/19274/elife-19274-v1.pdf
https://doi.org/10.7554/eLife.19274.001
https://cdn.elifesciences.org/articles/19274/elife-19274-v1.pdf
https://dl.acm.org/citation.cfm?id=869378{&}preflayout=flat
https://dl.acm.org/citation.cfm?id=869378{&}preflayout=flat
http://ebooks.cambridge.org/ref/id/CBO9780511804175
https://doi.org/10.1017/CBO9780511804175
http://ebooks.cambridge.org/ref/id/CBO9780511804175
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/s13398-014-0173-7.2
http://ieeexplore.ieee.org/document/5725236/
http://ieeexplore.ieee.org/document/5725236/
https://doi.org/10.1109/MCSE.2011.37
http://ieeexplore.ieee.org/document/5725236/
http://pandas.sf.net
http://pandas.sf.net

BIBLIOGRAPHY

[73] W. M. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the

American Statistical Association 66 (336) (1971) 846.

doi:10.2307/2284239.

URL https://www.jstor.org/stable/2284239?origin=crossref

[74] J. M. Santos, M. Embrechts, On the Use of the Adjusted Rand Index as a Metric for

Evaluating Supervised Classification, Springer, Berlin, Heidelberg, 2009, pp. 175–184.

doi:10.1007/978-3-642-04277-5_18.

URL http://link.springer.com/10.1007/978-3-642-04277-5{_}18

[75] S. Boyd, L. Vandenberghe, Introduction to Applied Linear Algebra Vectors, Matrices, and

Least Squares (2018).

doi:10.1017/9781108583664.

URL www.cambridge.org

[76] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,

B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated mod-

els of biomolecular interaction networks., Genome research 13 (11) (2003) 2498–504.

doi:10.1101/gr.1239303.

URL http://www.ncbi.nlm.nih.gov/pubmed/14597658http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC403769

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, É. Duchesnay, Scikit-learn: Machine Learning in Python, Jour-

nal of Machine Learning Research 12 (Oct) (2011) 2825–2830.

URL http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

[78] I. T. Jolliffe, J. Cadima, Principal component analysis: a review and recent developments,

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-

neering Sciences 374 (2065) (2016) 20150202.

doi:10.1098/rsta.2015.0202.

URL http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.20

15.0202

[79] V. Estivill-Castro, Vladimir, Why so many clustering algorithms, ACM SIGKDD Explo-

rations Newsletter 4 (1) (2002) 65–75.

doi:10.1145/568574.568575.

URL http://portal.acm.org/citation.cfm?doid=568574.568575

[80] J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering

9 (3) (2007) 90–95.

185

https://www.jstor.org/stable/2284239?origin=crossref
https://doi.org/10.2307/2284239
https://www.jstor.org/stable/2284239?origin=crossref
http://link.springer.com/10.1007/978-3-642-04277-5{_}18
http://link.springer.com/10.1007/978-3-642-04277-5{_}18
https://doi.org/10.1007/978-3-642-04277-5_18
http://link.springer.com/10.1007/978-3-642-04277-5{_}18
www.cambridge.org
www.cambridge.org
https://doi.org/10.1017/9781108583664
www.cambridge.org
http://www.ncbi.nlm.nih.gov/pubmed/14597658 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC403769
http://www.ncbi.nlm.nih.gov/pubmed/14597658 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC403769
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC403769
http://www.ncbi.nlm.nih.gov/pubmed/14597658 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC403769
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2015.0202
http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2015.0202
http://portal.acm.org/citation.cfm?doid=568574.568575
https://doi.org/10.1145/568574.568575
http://portal.acm.org/citation.cfm?doid=568574.568575
http://ieeexplore.ieee.org/document/4160265/

BIBLIOGRAPHY

doi:10.1109/MCSE.2007.55.

URL http://ieeexplore.ieee.org/document/4160265/

[81] M. Waskom, O. Botvinnik, P. Hobson, J. B. Cole, Y. Halchenko, S. Hoyer, A. Miles,

T. Augspurger, T. Yarkoni, T. Megies, L. P. Coelho, D. Wehner, Cynddl, E. Ziegler,

Diego0020, Y. V. Zaytsev, T. Hoppe, S. Seabold, P. Cloud, M. Koskinen, K. Meyer,

A. Qalieh, D. Allan, seaborn: v0.5.0 (November 2014), Tech. rep. (nov 2014).

doi:10.5281/ZENODO.12710.

URL https://zenodo.org/record/12710{#}.XJKjU3BpHrc

[82] S. C. Johnson, Hierarchical clustering schemes, Psychometrika 32 (3) (1967) 241–254.

doi:10.1007/BF02289588.

URL http://link.springer.com/10.1007/BF02289588

[83] A. P. Davis, J. E. Richardson, S. Lewis, D. Botstein, J. C. Matese, H. Butler, C. A. Ball,

L. Issel-Tarver, K. Dolinski, G. Sherlock, D. P. Hill, M. A. Harris, M. Ringwald, S. S.

Dwight, A. Kasarskis, J. M. Cherry, J. A. Blake, G. M. Rubin, M. Ashburner, J. T. Eppig,

Gene Ontology: tool for the unification of biology, Nature Genetics 25 (1) (2002) 25–29.

arXiv:10614036, doi:10.1038/75556.

URL http://www.ncbi.nlm.nih.gov/pubmed/10802651http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC3037419http://www.nature.com/art

icles/ng0500{_}25

[84] The Gene Ontology Resource: 20 years and still GOing strong, Nucleic acids research

47 (D1) (2019) D330–D338.

doi:10.1093/nar/gky1055.

URL https://academic.oup.com/nar/article/47/D1/D330/5160994

[85] M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes., Nucleic acids

research 28 (1) (2000) 27–30.

URL http://www.ncbi.nlm.nih.gov/pubmed/10592173http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC102409

[86] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima, KEGG: new perspectives

on genomes, pathways, diseases and drugs, Nucleic Acids Research 45 (D1) (2017)

D353–D361.

doi:10.1093/nar/gkw1092.

URL http://www.ncbi.nlm.nih.gov/pubmed/27899662http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC5210567https://academic.oup.com/n

ar/article-lookup/doi/10.1093/nar/gkw1092

186

https://doi.org/10.1109/MCSE.2007.55
http://ieeexplore.ieee.org/document/4160265/
https://zenodo.org/record/12710{#}.XJKjU3BpHrc
https://doi.org/10.5281/ZENODO.12710
https://zenodo.org/record/12710{#}.XJKjU3BpHrc
http://link.springer.com/10.1007/BF02289588
https://doi.org/10.1007/BF02289588
http://link.springer.com/10.1007/BF02289588
http://www.ncbi.nlm.nih.gov/pubmed/10802651 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3037419 http://www.nature.com/articles/ng0500{_}25
http://arxiv.org/abs/10614036
https://doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3037419 http://www.nature.com/articles/ng0500{_}25
http://www.ncbi.nlm.nih.gov/pubmed/10802651 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3037419 http://www.nature.com/articles/ng0500{_}25
http://www.ncbi.nlm.nih.gov/pubmed/10802651 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3037419 http://www.nature.com/articles/ng0500{_}25
https://academic.oup.com/nar/article/47/D1/D330/5160994
https://doi.org/10.1093/nar/gky1055
https://academic.oup.com/nar/article/47/D1/D330/5160994
http://www.ncbi.nlm.nih.gov/pubmed/10592173 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409
http://www.ncbi.nlm.nih.gov/pubmed/10592173 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409
http://www.ncbi.nlm.nih.gov/pubmed/10592173 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409
http://www.ncbi.nlm.nih.gov/pubmed/27899662 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5210567 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5210567 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5210567 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5210567 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5210567 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1092

BIBLIOGRAPHY

[87] M. Kanehisa, Y. Sato, M. Furumichi, K. Morishima, M. Tanabe, New approach for under-

standing genome variations in KEGG, Nucleic Acids Research 47 (D1) (2019) D590–

D595.

doi:10.1093/nar/gky962.

URL http://www.ncbi.nlm.nih.gov/pubmed/30321428http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC6324070https://academic.oup.com/n

ar/article/47/D1/D590/5128935

[88] M. Kanehisa, Post-genome informatics, Oxford University Press, 2000.

[89] D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin, D. M.

Church, M. DiCuccio, R. Edgar, S. Federhen, L. Y. Geer, Y. Kapustin, O. Khovayko,

D. Landsman, D. J. Lipman, T. L. Madden, D. R. Maglott, J. Ostell, V. Miller, K. D.

Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, K. Sirotkin, A. Souvorov, G. Starchenko,

R. L. Tatusov, T. A. Tatusova, L. Wagner, E. Yaschenko, Database resources of the

National Center for Biotechnology Information, Nucleic Acids Research 35 (Database)

(2007) D5–D12.

doi:10.1093/nar/gkl1031.

URL https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl103

1

[90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search

tool, Journal of Molecular Biology 215 (3) (1990) 403–410.

doi:10.1016/S0022-2836(05)80360-2.

URL https://linkinghub.elsevier.com/retrieve/pii/S0022283605803602

[91] J. Ye, S. McGinnis, T. L. Madden, BLAST: improvements for better sequence analysis,

Nucleic Acids Research 34 (Web Server) (2006) W6–W9.

doi:10.1093/nar/gkl164.

URL https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl164

[92] G. Bindea, B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.-H. Fridman,

F. Pagès, Z. Trajanoski, J. Galon, ClueGO: a Cytoscape plug-in to decipher functionally

grouped gene ontology and pathway annotation networks, Bioinformatics 25 (8) (2009)

1091–1093.

doi:10.1093/bioinformatics/btp101.

URL http://www.ncbi.nlm.nih.gov/pubmed/19237447http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC2666812https://academic.oup.com/b

ioinformatics/article-lookup/doi/10.1093/bioinformatics/btp101

[93] D. W. Huang, B. T. Sherman, R. A. Lempicki, Systematic and integrative analysis of large

gene lists using DAVID bioinformatics resources., Nature protocols 4 (1) (2009) 44–57.

187

http://www.ncbi.nlm.nih.gov/pubmed/30321428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6324070 https://academic.oup.com/nar/article/47/D1/D590/5128935
http://www.ncbi.nlm.nih.gov/pubmed/30321428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6324070 https://academic.oup.com/nar/article/47/D1/D590/5128935
https://doi.org/10.1093/nar/gky962
http://www.ncbi.nlm.nih.gov/pubmed/30321428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6324070 https://academic.oup.com/nar/article/47/D1/D590/5128935
http://www.ncbi.nlm.nih.gov/pubmed/30321428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6324070 https://academic.oup.com/nar/article/47/D1/D590/5128935
http://www.ncbi.nlm.nih.gov/pubmed/30321428 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6324070 https://academic.oup.com/nar/article/47/D1/D590/5128935
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl1031
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl1031
https://doi.org/10.1093/nar/gkl1031
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl1031
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl1031
https://linkinghub.elsevier.com/retrieve/pii/S0022283605803602
https://linkinghub.elsevier.com/retrieve/pii/S0022283605803602
https://doi.org/10.1016/S0022-2836(05)80360-2
https://linkinghub.elsevier.com/retrieve/pii/S0022283605803602
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl164
https://doi.org/10.1093/nar/gkl164
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl164
http://www.ncbi.nlm.nih.gov/pubmed/19237447 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2666812 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp101
http://www.ncbi.nlm.nih.gov/pubmed/19237447 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2666812 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp101
https://doi.org/10.1093/bioinformatics/btp101
http://www.ncbi.nlm.nih.gov/pubmed/19237447 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2666812 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp101
http://www.ncbi.nlm.nih.gov/pubmed/19237447 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2666812 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp101
http://www.ncbi.nlm.nih.gov/pubmed/19237447 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2666812 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp101
http://www.ncbi.nlm.nih.gov/pubmed/19131956
http://www.ncbi.nlm.nih.gov/pubmed/19131956

BIBLIOGRAPHY

doi:10.1038/nprot.2008.211.

URL http://www.ncbi.nlm.nih.gov/pubmed/19131956

[94] D. Whitley, A genetic algorithm tutorial, Statistics and Computing 4 (2) (1994) 65–85.

doi:10.1007/BF00175354.

URL http://link.springer.com/10.1007/BF00175354

[95] K. R. Patil, I. Rocha, J. Förster, J. Nielsen, Evolutionary programming as a platform for in

silico metabolic engineering., BMC bioinformatics 6 (2005) 308.

doi:10.1186/1471-2105-6-308.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1327682

{&}tool=pmcentrez{&}rendertype=abstract

[96] A. R. Mushegian, E. V. Koonin, A minimal gene set for cellular life derived by comparison

of complete bacterial genomes., Proceedings of the National Academy of Sciences of the

United States of America 93 (19) (1996) 10268–73.

doi:10.1073/PNAS.93.19.10268.

URL http://www.ncbi.nlm.nih.gov/pubmed/8816789http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC38373

[97] C. A. Hutchison III, Global Transposon Mutagenesis and a Minimal Mycoplasma Genome,

Science 286 (5447) (1999) 2165–2169.

doi:10.1126/science.286.5447.2165.

URL http://www.sciencemag.org/content/286/5447/2165.short

[98] A. C. Forster, G. M. Church, Towards synthesis of a minimal cell, Molecular Systems

Biology 2 (10) (2006) 1011–21.

doi:10.1038/msb4100090.

URL http://www.ncbi.nlm.nih.gov/pubmed/8849777http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC1369433http://msb.embopress.org/cg

i/doi/10.1038/msb4100090

[99] R. Gil, The Minimal Gene-Set Machinery, in: Encyclopedia of Molecular Cell Biology and

Molecular Medicine, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014,

pp. 1–36.

doi:10.1002/3527600906.mcb.20130079.

URL http://doi.wiley.com/10.1002/3527600906.mcb.20130079

[100] R. Gil, F. J. Silva, J. Peretó, A. Moya, Determination of the core of a minimal bacterial gene

set., Microbiology and molecular biology reviews : MMBR 68 (3) (2004) 518–37, table of

contents.

188

https://doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
http://link.springer.com/10.1007/BF00175354
https://doi.org/10.1007/BF00175354
http://link.springer.com/10.1007/BF00175354
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1327682{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1327682{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1186/1471-2105-6-308
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1327682{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1327682{&}tool=pmcentrez{&}rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/8816789 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC38373
http://www.ncbi.nlm.nih.gov/pubmed/8816789 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC38373
https://doi.org/10.1073/PNAS.93.19.10268
http://www.ncbi.nlm.nih.gov/pubmed/8816789 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC38373
http://www.ncbi.nlm.nih.gov/pubmed/8816789 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC38373
http://www.sciencemag.org/content/286/5447/2165.short
https://doi.org/10.1126/science.286.5447.2165
http://www.sciencemag.org/content/286/5447/2165.short
http://www.ncbi.nlm.nih.gov/pubmed/8849777 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1369433 http://msb.embopress.org/cgi/doi/10.1038/msb4100090
https://doi.org/10.1038/msb4100090
http://www.ncbi.nlm.nih.gov/pubmed/8849777 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1369433 http://msb.embopress.org/cgi/doi/10.1038/msb4100090
http://www.ncbi.nlm.nih.gov/pubmed/8849777 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1369433 http://msb.embopress.org/cgi/doi/10.1038/msb4100090
http://www.ncbi.nlm.nih.gov/pubmed/8849777 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1369433 http://msb.embopress.org/cgi/doi/10.1038/msb4100090
http://doi.wiley.com/10.1002/3527600906.mcb.20130079
https://doi.org/10.1002/3527600906.mcb.20130079
http://doi.wiley.com/10.1002/3527600906.mcb.20130079
http://www.ncbi.nlm.nih.gov/pubmed/15353568 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC515251
http://www.ncbi.nlm.nih.gov/pubmed/15353568 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC515251

BIBLIOGRAPHY

doi:10.1128/MMBR.68.3.518-537.2004.

URL http://www.ncbi.nlm.nih.gov/pubmed/15353568http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC515251

[101] J. Rees, O. Chalkley, S. Landon, O. Purcell, L. Marucci, C. Grierson, Designing Minimal

Genomes Using Whole-Cell Models, bioRxiv (2019) 344564doi:10.1101/344564.

URL https://www.biorxiv.org/content/10.1101/344564v3

[102] R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger,

H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale, C. O’Donovan, N. Redaschi,

L.-S. L. Yeh, UniProt: the Universal Protein knowledgebase, Nucleic Acids Research

32 (90001) (2004) 115D–119.

doi:10.1093/nar/gkh131.

URL http://www.ncbi.nlm.nih.gov/pubmed/14681372http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC308865https://academic.oup.com/n

ar/article-lookup/doi/10.1093/nar/gkh131

[103] C. M. Fraser, J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. D. Fleischmann,

C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley, R. D. Fritchman, J. F. Weidman,

K. V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T. R. Utterback, D. M. Saudek,

C. A. Phillips, J. M. Merrick, J. F. Tomb, B. A. Dougherty, K. F. Bott, P. C. Hu, T. S.

Lucier, S. N. Peterson, H. O. Smith, C. A. Hutchison, J. C. Venter, The minimal gene

complement of Mycoplasma genitalium., Science (New York, N.Y.) 270 (5235) (1995)

397–403.

URL http://www.ncbi.nlm.nih.gov/pubmed/7569993

[104] M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes., Nucleic acids

research 28 (1) (2000) 27–30.

doi:10.1093/nar/28.1.27.

URL http://www.ncbi.nlm.nih.gov/pubmed/10592173http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC102409

[105] A. P. Burgard, S. Vaidyaraman, C. D. Maranas, Minimal reaction sets for Escherichia coli

metabolism under different growth requirements and uptake environments., Biotech-

nology progress 17 (5) 791–797.

doi:10.1021/bp0100880.

URL http://www.ncbi.nlm.nih.gov/pubmed/11587566

[106] M. Huynen, Constructing a minimal genome, Trends in Genetics 16 (3) (2000) 116.

doi:10.1016/S0168-9525(99)01972-1.

URL https://www.sciencedirect.com/science/article/pii/S016895259901972

1

189

https://doi.org/10.1128/MMBR.68.3.518-537.2004
http://www.ncbi.nlm.nih.gov/pubmed/15353568 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC515251
http://www.ncbi.nlm.nih.gov/pubmed/15353568 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC515251
https://www.biorxiv.org/content/10.1101/344564v3
https://www.biorxiv.org/content/10.1101/344564v3
https://doi.org/10.1101/344564
https://www.biorxiv.org/content/10.1101/344564v3
http://www.ncbi.nlm.nih.gov/pubmed/14681372 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC308865 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh131
https://doi.org/10.1093/nar/gkh131
http://www.ncbi.nlm.nih.gov/pubmed/14681372 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC308865 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh131
http://www.ncbi.nlm.nih.gov/pubmed/14681372 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC308865 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh131
http://www.ncbi.nlm.nih.gov/pubmed/14681372 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC308865 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh131
http://www.ncbi.nlm.nih.gov/pubmed/7569993
http://www.ncbi.nlm.nih.gov/pubmed/7569993
http://www.ncbi.nlm.nih.gov/pubmed/7569993
http://www.ncbi.nlm.nih.gov/pubmed/10592173 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409
https://doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10592173 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409
http://www.ncbi.nlm.nih.gov/pubmed/10592173 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC102409
http://www.ncbi.nlm.nih.gov/pubmed/11587566
http://www.ncbi.nlm.nih.gov/pubmed/11587566
https://doi.org/10.1021/bp0100880
http://www.ncbi.nlm.nih.gov/pubmed/11587566
https://www.sciencedirect.com/science/article/pii/S0168952599019721
https://doi.org/10.1016/S0168-9525(99)01972-1
https://www.sciencedirect.com/science/article/pii/S0168952599019721
https://www.sciencedirect.com/science/article/pii/S0168952599019721

BIBLIOGRAPHY

[107] S. S. Kamat, H. J. Williams, F. M. Raushel, Intermediates in the transformation of phos-

phonates to phosphate by bacteria, Nature 480 (7378) (2011) 570–573.

doi:10.1038/nature10622.

URL http://www.ncbi.nlm.nih.gov/pubmed/22089136http://www.pubmedcentra

l.nih.gov/articlerender.fcgi?artid=PMC3245791http://www.nature.com/art

icles/nature10622

[108] K. Patil, I. Rocha, J. Förster, J. Nielsen, Evolutionary programming as a platform for in

silico metabolic engineering, BMC Bioinformatics 6 (1) (2005) 308.

doi:10.1186/1471-2105-6-308.

URL http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-

2105-6-308

190

http://www.ncbi.nlm.nih.gov/pubmed/22089136 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3245791 http://www.nature.com/articles/nature10622
http://www.ncbi.nlm.nih.gov/pubmed/22089136 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3245791 http://www.nature.com/articles/nature10622
https://doi.org/10.1038/nature10622
http://www.ncbi.nlm.nih.gov/pubmed/22089136 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3245791 http://www.nature.com/articles/nature10622
http://www.ncbi.nlm.nih.gov/pubmed/22089136 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3245791 http://www.nature.com/articles/nature10622
http://www.ncbi.nlm.nih.gov/pubmed/22089136 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3245791 http://www.nature.com/articles/nature10622
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-6-308
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-6-308
https://doi.org/10.1186/1471-2105-6-308
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-6-308
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-6-308

	List of Tables
	List of Figures
	Background
	Introduction
	Genome engineering
	Minimal genomes
	Genome scale computational models

	Aims and objectives
	Structure of thesis
	The genome design group

	Methods
	The whole-cell model of Mycoplasma genitalium
	Gene knockouts in the whole-cell model of M. genitalium

	Computing
	Operating systems, tools and programming languages
	Data storage
	Analysis

	Bioinformatics

	Initial investigation
	Initial tests
	Wild-type simulations
	Single-gene knockout simulations
	Preliminary algorithms for genome reduction
	Joshua Rees

	Knowledge consolidation
	Estimating resource usage
	Available resources

	Mathematical representations of a genome
	Discussion

	Genome design suite
	Hardware/software requirements
	Computer communication
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|Connection|whitepush0 g 0 Gpoptowidthheightdepth class
	Child classes of the push0 g 0 Gpop[basicstyle=,breaklines=true]|Connection|whitepush0 g 0 Gpoptowidthheightdepth class

	Job manager
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|JobSubmission|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|ManageSubmission|whitepush0 g 0 Gpoptowidthheightdepth class

	Algorithms
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|MGA|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|GeneticAlgorithm|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|MateGroups|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|DictOfSims|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|DPD|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|GeneticAlgorithmWithComplexs|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|GeneticAlgorithmKnockIn|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|GeneticAlgorithmSimpleKnockIn|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|GeneticAlgorithmFocusSet|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|MixFocussSets|whitepush0 g 0 Gpoptowidthheightdepth class

	Data
	Biological data
	Simulation overview
	Simulation data

	Analysis
	An analysis framework
	Comparing and visualising genomes
	Interpreting genomes biologically

	Discussion

	Massive in-silico experiments
	Algorithm theory
	GA-type algorithms
	Dynamic probability distribution

	Genome reduction
	Standard genetic algorithms
	Dynamic probability distribution
	Genetic algorithms with biological knowledge

	Making non-viable genomes viable
	Genetic algorithm additions

	Discussion

	The reductome
	GAMA vs Minesweeper
	Analysis of all in-silico experiments in the genome design suite database
	Genome comparison
	High and low essential genes

	Design of experiment
	Model accuracy profile
	Testing minimal genome predictions

	Discussion

	Conclusion
	Introduction
	In-silico tools to aid genome design
	Massive in-silico experiments and discovering the reductome
	Concluding remarks and future directions

	Glossary
	Acronyms
	Appendix A
	Initial genome reduction test
	GO Functions in the whole-cell model

	The genome design suite
	Karr2012
	Designing minimal genomes using whole-cell models
	Gene ontology
	Estimating data storage requirements
	Timing data extraction from raw simulation output
	Changing the default file saving behaviour in the whole-cell model of M. genitalium

	Bibliography

