
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Bochel, Alice J

Title:
Structural characterisation of a carbohydrate binding domain of the human cation-
independent mannose 6-phosphate/ IGF2 receptor

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



 

1 

 

 

 

Structural characterisation of a carbohydrate 

binding domain of the human cation-independent 

mannose 6-phosphate/ IGF2 receptor 

 

 

 

 

Alice J Bochel 

 

A dissertation submitted to the University of Bristol in accordance with the requirements for 

award of the degree of PhD in Chemistry in the Faculty of Science 

School of Chemistry 

 

September 2020 

 

Word Count: 62,294 

  



 

2 

 

Abstract 

 

The cation-independent mannose 6-phosphate/ Insulin-like growth factor-2 receptor (CI-MPR/ 

IGF2R) is a ~300 kDa transmembrane glycoprotein that is critical for intracellular protein 

trafficking, lysosome biogenesis and regulation of cell growth. The extracellular region 

consists of fifteen domains homologous to one another including mannose 6-phosphate (M6P) 

binding domains (D) 3, 5, 9 and 15, and IGF2 binding domain 11. To date, high-resolution 

structures have been determined for human D1-5 and D11-14. Although low resolution cryo-

EM structures of bovine CI-MPR have recently been determined at pH 4.5 and 7.4, a structure 

of the full extracellular region of human CI-MPR has yet to be determined. 

 

This thesis details structural studies on the central, uncharacterised region of human CI-MPR 

with particular focus on the elusive, specific and high-affinity M6P binding domain, D9. A 

modular approach has resulted in crystal structures of human CI-MPR D8, D9-10 and D7-11. 

D9-10 forms a rigid homodimer stabilised by a bridging N-linked glycan and maintained in 

D7-11, whereby two penta-domains intertwine to form a dimeric helical-type coil. Remarkably 

the D7-11 structure closely matches an IGF2 bound state of the receptor, suggesting this may 

be an intrinsically stable conformation at neutral pH. Interdomain clusters of histidine and 

proline residues at the D9-10 and D11-12 interfaces may impart receptor rigidity and play a 

role in cargo dissociation and structural rearrangement at low pH. 

 

A parallel project took an iterative, structure-based approach to engineer a synthetic lectin. The 

hydrophobic IGF2 binding site of CI-MPR D11 was mutated by site-directed mutagenesis to 

resemble the positively charged M6P binding sites of D3 and 9. Following preparation, D11 

mutants were screened by 1H-15N HSQC NMR for binding to monosaccharides. Although 

chemical shift perturbations were observed following addition of M6P, further work is required 

to validate these preliminary results. 
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SEC Size exclusion chromatography 

SEC-MALS Size exclusion chromatography multi-angle light scattering 

Sf21 Spodoptera frugiperda cell line 21 
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1.  Introduction 

1.1.  Glycosylation 

Protein glycosylation is a common and diverse post-translational modification that affects the 

solubility, folding, trafficking and secretion of newly synthesised glycoproteins.1 On plasma 

membrane proteins glycosylation further influences protein signalling, endocytosis and half-

life.1 It is unsurprising, therefore, that defects in protein glycosylation are implicated in 

numerous diseases and there are over 130 congenital disorders of glycosylation.2 Although low 

in incidence (approximately 1/10,000 per capita in Europe), the ubiquitous nature of protein 

glycosylation means that these autosomal recessive disorders exhibit a range of symptoms 

including neurological defects, cardiac disease and hepatopathy.2 Changes in protein 

glycosylation have also been observed in patients with Alzheimer disease and cancers.3,4  

Sugars are the most information rich macromolecule: just six monosaccharides (examples in 

Figure 1) can yield >1012 unique polysaccharide glycan structures (compared to six nucleotides 

generating 4096 unique oligonucleotides or six amino acids forming 6 x107 unique peptides).5,6 

This is due to structural properties of the monosaccharide (such as ring size and modifications, 

epimers and anomers) and polysaccharides (such as linkage configurations and branch 

positions).5  

Figure 1: The structures of monosaccharides. A: The monosaccharide fructose, which is shown as a linear 

Fischer projection on the left, can circularise, resulting in four conformations. Two of these are 5-membered 

ketoses termed furanoses (blue box). The remaining two are 6-membered aldoses termed pyranoses (green box). 

Monosaccharides can be classified further by the position of the hydroxyl group (1’OH, red) at position C1, the 

anomeric carbon. When the 1’OH is below the plane of the ring, monosaccharides are termed  anomers. In  

anomers the 1’OH is above the ring. The four conformations of fructose are drawn here as Haworth projections. 

B: Alternatively, monosaccharides may be drawn in skeletal form. The structures of -D-glucose and -D-glucose 

are shown here. -D-glucose is the predominant conformer due to the equatorial positioning of all hydroxyl 

groups. C: The structure of sucrose, a disaccharide formed by condensation reaction of -D-glucose and -D-

fructose. The monosaccharides are linked by an 1-2 O-glycosidic bond. 
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Protein glycosylation is a complex modification with ~700 proteins required to generate the 

~7000 different glycan structures found in mammalian cells.1 Where present, glycans make up 

an average of ~20 % of a proteins molecular weight.7 Protein glycosylation is classified by the 

glycan-peptide linkage 1 into the six classes described below: N-linked, O-linked, C-linked, P-

linked, G-linked and S-linked glycosylation.7  

 

N-linked glycosylation 

The most common class of protein glycosylation is N-linked glycosylation, with an estimated 

76 % of eukaryotic proteins being potentially derivatised in this way.8 N-linked glycosylation 

is sequence specific, with only asparagine residues in the conserved sequence N-X-S/T (termed 

NST sequon, whereby X is any amino acid except P) being modified.9 Statistical analysis of 

glycoprotein structures in the PDB revealed that ~70 % of N-linked glycans occur on N-X-T 

sequons, with only ~30 % on N-X-S sequons.10 However, in total, only ~66 % of NST sequons 

are glycosylated suggesting that glycosylation status is also more subtly affected by sequence 

and structural constraints.7 For example, the presence of cysteine, bulky or charged residues 

(C, P, W, D, E, R, K) in the centre of the NST sequon inhibits N-linked glycosylation.11,12 

Similarly, small non-polar amino acids are often found at the +1 and -2 positions adjacent to 

the asparagine of NST sequons, with larger hydrophobic amino acids at +3 and +5 

positions.10,13 The majority (~44 %) of N-linked glycans are found on flat, convex surfaces of 

the protein with ~27 % found on -turns and only ~10 % found on -helices.10 

N-linked glycans are derived from a single parent glycan precursor (Figure 2) consisting of 

two N-acetylglucosamine (GlcNAc), nine mannose (Man) and three glucose (Glc) residues 

(GlcNAc2Man9Glc3).
14 This glycan precursor is synthesised at the membrane of the rough 

endoplasmic reticulum (RER).14 The first seven sugars (GlcNAc2Man5) of this glycan are 

assembled on the cytosolic side of the RER attached to a dolichol-pyrophosphate lipid anchor.15 

This glycan precursor is transferred to the luminal surface of the RER by a flippase enzyme, 

where the remaining four mannose and three glucose residues are added.16 The assembled 

glycan precursor (GlcNAc2Man9Glc3) is transferred en bloc to an asparagine residue in the 

NST sequon of a nascent polypeptide by an oligosaccharyltransferase (OST) enzyme.17 Once 

attached to the protein, the glycan precursor is trimmed by Glucosidase I, II and 1-2 

Mannosidase before transport to the Golgi body for further trimming and processing.15  
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Mammalian N-linked glycans fall into three categories (Figure 2): high mannose, hybrid and 

complex glycans.15 Each category shares the same chitobiose core of GlcNAc2Man3.
15  

Addition of a GlcNAc residue to a mannose of the chitobiose core initiates biosynthesis of 

hybrid and complex glycans.18 Hybrid and complex glycans are characterised by the presence 

of extended arms/ branches consisting of GlcNAc-Gal (1-4 linked), termed type 2 N-

acetyllactosamine (LacNAc), capped with sialic acid, fucose or an additional galactose (Figure 

2C, 2D).18 Sialic acid is a family of ~40 nine-carbon monosaccharides characterised by an 

anomeric carboxylic acid group, an amino group at C5 and a three-carbon extension at C6 

(Figure 2E).19,20 The chitobiose core of complex glycans may also be modified, most frequently 

by the addition of an 1-6 linked fucose residue to the first GlcNAc (Figure 2D).15,18  

Figure 2: The structures of mammalian N-linked glycans.15,21 A: The structure of the N-linked glycan 

precursor. B: The structure of the high mannose N-linked glycan. C: The structure of the hybrid N-linked glycan. 

D: The structure of the complex N-linked glycan, in which the terminal mannose residues of the chitobiose core 

(grey box) are modified with a variety of sugars. Additionally, the first GlcNAc residue of the chitobiose core 

may be modified by an 1-6 linked fucose. The A, B and C arms of the precursor, high mannose and hybrid 

glycans are labelled. All schematic glycan depictions conform to nomenclature recommended by the Consortium 

for Functional Glycomics. E: The structure of the most common sialic acid, 5-N-acetylneuraminic acid (Neu5Ac).  

 

The importance of N-linked glycosylation was first reported in the 1970s by observing the 

effects of Tunicamycin, a nucleoside analog that inhibits the first step of N-linked glycosylation 

(transfer of GlcNAc onto the dolichol-pyrophosphate lipid anchor), causing ER stress.14,16 N-

linked glycosylation is directly linked to protein folding and quality control mechanisms. For 

example, Glucosidase I and II remove the two terminal glucose residues from the glycan 

precursor, allowing the chaperone proteins Calnexin (CNX) and Calreticulin (CRT) to 

recognise the single, remaining glucose residue and facilitate protein folding.22 Only upon 

removal of this remaining glucose residue by Glucosidase II can the glycoprotein proceed to 
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the Golgi body.14 1-2 mannosidases process the de-glucosylated glycoproteins, lowering their 

affinity for CNX and CRT.23 Misfolded glycoproteins are re-glucosylated in the RER by a 

UDP-Glc glucosyltransferase for recognition by the chaperone proteins.14 Terminally 

misfolded glycoproteins are trimmed further by 1-2 mannosidases to expose a terminal 1-6 

mannose residue that signals the glycoprotein for ER-associated degradation (ERAD).23,24  

O-linked glycosylation 

O-linked glycosylation consists of the attachment of a glycan to the oxygen of a serine or 

threonine hydroxyl group.7 Although O-linked glycosylation is sequence specific it is much 

harder to predict and typically occurs on unstructured regions of peptide that are rich in serine, 

threonine and proline.21,25 These regions are termed mucin domains due to their prevalence in 

secreted and transmembrane glycoproteins of the mucus-secreting epithelial cells lining the 

tracheobronchial and gastrointestinal tracts.26 

The most common form of O-linked glycosylation involves the mucin linkage. There are eight 

core O-linked mucin glycan structures, with cores 1-4 being the most common (Figure 3). Each 

core structure is characterised by a S/T -linked to an N-acetylgalactosamine (GalNAc) that 

may be modified by the addition of glucose, galactose, N-acetylglucosamine, sialic acid, N-

acetylgalactosamine or sulphate.26 

Figure 3: The structures of the eight core mammalian O-linked mucin glycans.21 

 

However, there are a small number of other forms of O-linked glycosylation that do not contain 

the mucin linkage.1 For example, the cysteine rich EGF domains of the transmembrane 

signalling protein Notch can be modified by a -linked glucose residue (to the serine of C-X-

S-X-A/P-C) or an -linked fucose residue (to the serine or threonine of C-X-X-X-X-S/T-C).27 

These sugar residues are further glycosylated to influence Notch ligand binding and function.27  
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GPI-linked glycosylation 

GPI-linked glycosylation only occurs on approximately 1 % of all eukaryotic proteins and 

involves the attachment of a pre-formed glycolipid, glycophosphatidlylinositol (GPI, Figure 

4), to the C-terminus of a soluble protein.28 This anchors the protein to the extracellular surface 

of the plasma membrane where it can act as a cell surface receptor or cell adhesion 

molecule.28,29 Example mammalian GPI anchored proteins include the neural cell adhesion 

molecule (NCAM), which mediates cell-cell interactions in the brain, and alkaline phosphatase 

(APase), which catalyses dephosphorylation.29 

Figure 4: The structure of the glycophosphatidlylinositol (GPI) anchor. A phosphoethanolamine linker 

attaches a soluble protein to a pentasaccharide unit of three mannose residues, glucosamine and inositol 

(Man3GlcNIno) that is in turn attached to a lipid in the plasma membrane. The modifications to the 

pentasaccharide unit and the lipid structure are tissue dependent.29 

 

C-linked glycosylation 

C-linked glycosylation involves the glycosylation of tryptophan residues with an -mannose 

residue.1 Uniquely, a carbon-carbon bond is formed between C1 of mannose and C2 of the first 

tryptophan in the consensus sequence W-X-X-W’ (whereby X is any amino acid) (Figure 

5A).30 The presence of C-mannosyltransferases in mammals, birds, amphibians and fish 

suggests this is a widespread post-translational modification.30 One of the most well studied 

examples of human C-mannosylation is that of thrombospondin, a large homotrimeric protein 

that, upon secretion, facilitates platelet aggregation resulting in wound healing, inflammation, 

tumour growth and metastasis.30 Thrombospondin type 1 repeats containing the above 
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consensus sequence and thus C-mannosylation are also found within netrin receptors and the 

ADAMTS family of secreted proteases, with C-mannosylation being critical for protein 

secretion.31,32  

Figure 5: Examples of C-linked and P-linked protein glycosylation. A: C-linked glycosylation whereby 

tryptophan is modified with an -D-mannose residue. B: P-linked glycosylation whereby a phosphoserine residue 

is modified with an -D-N-acetylglucosamine (GlcNAc) residue. 

 

P-linked glycosylation 

A minor class of glycosylation, P-linked glycosylation is characterised by glycosylation of 

phosphorylated serine residues and has been observed in a number of unicellular parasites.7,33 

For example, the cysteine proteases (CP) proteinase I, CP4 and CP5 of the amoeba 

Dictyostelium discoideum have all displayed glycosylation with the addition of GlcNAc to 

phosphoserine residues in three sequence motifs: polyS, SGSQ and SGSG.34,35 However the 

impact/ function of this modification is unknown. 

Another example of phosphoglycosylation occurs on secreted acid phosphatase found in the 

protozoan parasite Leishmania mexicana.36 Phosphorylated serine residues (of serine rich 

sequences) are mannosylated, creating a mannose 1-PO4-Ser linkage (Figure 5B).36 The 

resulting P-linked glycan which is rich in mannose and galactose could be cleaved from the 

protein by Peptide N-glycosidase F (PNGase F),36 similarly to N-linked and O-linked glycans. 

S-linked glycosylation 

With only a handful of examples, the final class of glycosylation, S-linked, is the least common. 

The GlcNAc transferase employed in O-linked glycosylation may also attach a GlcNAc residue 

to cysteine (Figure 6).37 The first observation of S-linked glycosylation arose from mass 

spectrometry of inter--inhibitor, a serine protease inhibitor that was found to be modified with 

two hexose sugars at C26.38 S-linked glycosylation has since been observed on other 
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intracellular proteins in mammals and on prokaryotic bacteriocins (antimicrobial 

polypeptides). 37,39  

Figure 6: The structure of S-linked glycosylation. A single GlcNAc residue is covalently attached to a cysteine 

residue. 

 

1.2.  Lectins 

Lectins are a class of proteins that selectively bind saccharides.40 The term lectin does not 

include sugar-specific antibodies, sugar-transport proteins or enzymes.40 Lectins were first 

discovered in 1888 by Russian scientist Stillmark, who identified the toxin Ricin from the 

caster bean plant Ricinus communis.41 Today we know that plants, particularly legumes, are 

rich in lectins, with these proteins accounting for 5-10 % total protein content of legume 

seeds.41 Lectins are, however, ubiquitous and found across all domains of life. The first animal 

lectins were identified in 1902 by American scientists Flexner and Noguchi, who observed 

agglutination of blood cells by snake venom.42 It wasn’t until 1980, however, that the first 

animal lectin, thrombolectin from Bothrops atrox (common lancehead snake), was isolated in 

pure form.42 

Animal lectins are a large and diverse protein family that play a critical role in innate immunity, 

cell adhesion, protein trafficking and quality control.43 Initially lectins were classified into five 

groups according to ligand specificity - for example, Galactose/N-Acetylgalactosamine 

(GalNAc) (61 % of animal lectins), Glucose/Mannose (14 %), N-Acetylglucosamine (GlcNAc) 

(12 %), Fucose (7 %) and sialic acid (6 %).41 In 1988 Drickamer introduced a single letter 

naming system whereby lectins are instead classified based upon primary structure similarity 

(Table 1).40  
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Family Example Ligands Cellular location Function Ref 

C-type Conglutinin Various Extracellular Innate immunity 44,45 

F-type X-epilectin Fucose Extracellular Innate immunity 46,47 

H-type HPA GalNAc, galactose Secreted Innate immunity 48,49 

I-type CD22 Sialic acid PM Cell adhesion 50 

L-type CNX/CRT Various ER Protein folding 51,52 

M-type OS-9 Mannose ER ERAD  46,53 

P-type CI-MPR M6P Secretory pathway Protein trafficking  54 

R-type ppGalNAcTs Various Golgi, PM Protein trafficking 46,55 

S-type Galectins -galactoside Cytosol Apoptosis 40 

T-type Tachylectins GlcNAc, GalNAc Hemocyte granules Innate immunity 56 

X-type Interlectins Furanoses PM Innate immunity 57 

Pentraxins CRP Galactose Cytosol Innate immunity 58 

CD 18 CR3 -glucans Plasma membrane Cell adhesion  42,59 
Table 1: Classification of animal lectins. Abbreviations used include: HPA - helix pomatia agglutinin, GalNAc 

- N-acetyl galactosamine, PM - plasma membrane, CNX/ CRT - calnexin/ calreticulin, ER - endoplasmic 

reticulum, ERAD - ER associated degradation, CI-MPR - Cation-independent mannose 6-phosphate receptor, 

M6P - mannose 6-phosphate, ppGalNAcTs - UDP-N-Acetylgalactosaminyltransferases, CRP - C-reactive protein.  

 

Of lectins that have been structurally characterised (and deposited in the Glyco 3D database as 

of 2017) animal lectins represent ~33 % of structures, with plant lectins representing 24 %, 

followed by bacterial lectins (20%), viral lectins (14 %) and fungal lectins (9 %). The majority 

of these lectin structures exhibit predominantly -strand secondary structure with 

approximately 50 % forming a -sandwich fold (Figure 7A).60 Other common folds include -

prisms (in plant lectins only), -trefoils (in all kingdoms) and -propellers (in animal, bacterial 

and fungal lectins) (Figure 7).60 

Figure 7: Structures of common lectin folds. A: -sandwich fold of human galectin-3 which recognises -

galactoside sugars such as LacNAc. B: -prism fold of the algal mannose lectin Griffithsin. C: -trefoil fold of 

mouse mannose receptor, a C-type lectin. D: -propeller fold of the Psathyrella velutina fungal lectin with six 

GlcNAc molecules bound. For each structure the protein is shown from the side (top) and top (bottom), glycans 

are shown as blue sticks, sulphate ions as red spheres and chloride ions as green spheres. PDB 2NN8, 2HYQ, 

1FWV and 2C4D respectively.61–64  
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Different classes of lectins may contain similar carbohydrate binding domains (CBD). For 

example, the M-type and the P-type lectins, which recognise mannose and mannose 6-

phosphate (M6P) respectively, both contain mannose 6-phosphate receptor homology (MRH) 

domains. Structural characterisation of the M-type and P-type lectins reveals a common 

flattened -sandwich topology and a conserved ‘QREY’ motif that forms hydrogen bonds (H-

bonds) to the sugar hydroxyl groups.54,65–67  

The ER-resident, M-type lectins OS-9, XTP3-B and Glucosidase II (GII) play a critical role in 

glycoprotein quality control.66 OS-9 and XTP3-B (otherwise known as Erlectin), which contain 

one or two MRH domains respectively, recognise the terminal 1-6 mannose residue on the C-

arm of N-linked glycan precursors containing 5-7 mannose residues (and two GlcNAc 

residues) of misfolded glycoproteins.24 This facilitates recruitment of the ubiquitin ligase 

SEL1L, targeting misfolded glycoproteins for ER associated degradation (ERAD).24  

A soluble heterodimer, GII is composed of a catalytic  domain and regulatory  domain.65 

The catalytic domain recognises and removes the terminal glucose residue of the N-linked 

glycans GlcNAc2Man9Glu2 and GlcNAc2Man9Glu, allowing release of the glycoprotein from 

the chaperones and L-type lectins CNX and CRT.68 Meanwhile, the regulatory  domain 

contains an MRH domain that recognises a mannose residue in the B or C arm of the N-linked 

glycan.65  

 

1.3.  P-type lectins 

Function of P-type lectins 

Of the different classes of animal lectins, P-type lectins are unique in their ability to bind 

phosphorylated sugars, namely mannose 6-phosphate (M6P).54 The P-type lectins recognise 

the phosphorylated terminal mannose residues of N-linked glycoproteins. The two members of 

the P-type lectin family, the cation-dependent mannose 6-phosphate receptor (CD-MPR) and 

the cation-independent mannose 6-phosphate receptor (CI-MPR), play a key role in 

intracellular protein trafficking and lysosome biogenesis. Together these P-type lectins are 

responsible for the trafficking of approximately 50 soluble lysosomal acid hydrolases from the 

trans Golgi network (TGN) to the late endosomes (LE) (Figure 8) and thus are critical for 

correct lysosome functioning.54  
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Traditionally referred to as the recycling centre of the cell, the lysosomes are responsible for 

the breakdown of proteins, lipids and polysaccharides.69 However, through recruitment of 

mechanistic target of rapamycin complex 1 (mTORC1), the lysosomes also plays a role in 

metabolic signalling.69 Recruitment of mTORC1, a phosphatidylinositol-3-kinase like Ser/Thr 

protein kinase, to the lysosomes allows it to regulate cell growth in response to nutrient levels.69 

Figure 8: Localisation of the P-type lectins.54,70 The CD-MPR (red) and CI-MPR (purple) transport M6P tagged 

lysosomal enzymes (blue) from the trans golgi network (TGN) to late endosomes (LE), which mature into the 

lysosomes. The CD-MPR and CI-MPR unload their cargo in the late endosomes and recycle to the TGN. When 

present in the plasma membrane (PM), the CD-MPR and CI-MPR may also import extracellular M6P tagged 

proteins. The CI-MPR can also bind the peptide hormone IGF2 (orange), facilitating its transport to the late 

endosomes for subsequent lysosomal degradation. 

 

Although the dominant trafficker of lysosomal enzymes, the P-type lectins are not the only 

proteins involved in lysosome biogenesis. Sphingolipid activator proteins (SAPs) required for 

the degradation of glycosphingolipids from the plasma membrane are transported to the 

lysosome by the transmembrane glycoprotein sortilin independent of carbohydrate 

recognition.71 Similarly, the transmembrane glycoprotein lysosomal integral membrane protein 

type 2 (LIMP2) has been demonstrated to transport -glucocerebrosidase, a lysosomal enzyme 

that also catalyses the breakdown of sphingolipids, to the lysosome.72,73 LIMP2 is not a lectin 

and this interaction between the proteins is instead mediated by a conserved coiled-coil of 

LIMP2.72 Furthermore, trafficking lysosomal membrane proteins is also independent of the P-

type lectins and carbohydrate recognition. Instead endocytosis sorting signals (e.g. YXXØ or 
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DEXXXLLI, whereby X is any amino acid and Ø a bulky, hydrophobic amino acid) are found 

at the C-terminus of the trafficked transmembrane lysosomal protein.74 

As demonstrated in Figure 8, the CI-MPR is distinct from the CD-MPR in its ability to bind an 

array of ligands at neutral pH including non-glycosylated ligands such as insulin-like growth 

factor-2 (IGF2) and cellular repressor of E1A-stimulated genes (CREG) (see Section 1.5).75–77 

 

Generation of the M6P recognition marker 

Generation of the M6P recognition marker requires the concerted action of two key enzymes 

(Figure 9A). The first of these, GlcNAc-1-phosphotransferase, present in the Golgi apparatus, 

attaches an N-acetylglucosamine (GlcNAc) 1-phosphate residue onto the terminal mannose 

residue of a high mannose N-linked glycan precursor (Figure 9A).78,79 GlcNAc 

phosphotransferase is a hetero-hexameric protein composed of the subunits .80 The 

catalytic  and  subunits may recognise 2-3 lysine residues ~34 Å apart that form a critical 

recognition patch for GlcNAc-phosphotransferase.80 Meanwhile, the regulatory  subunits 

enhance recruitment to the N-linked glycan through recognition of mannose residues by an 

MRH domain.81  

The action of GlcNAc-phosphotransferase creates an M6P-GlcNAc di-ester (Figure 9A).78 In 

the TGN a second enzyme, -N-acetylglucosaminidase (uncovering enzyme (UCE)), continues 

the processing by removing the GlcNAc to expose the M6P mono-ester (Figure 9A).82,83 

The N-glycan precursor can by phosphorylated at several mannose residues (Figure 9B). 

Furthermore, the actions of GlcNAc-1-phosphotransferase and UCE can produce mono and di-

phosphorylated glycoproteins. 85 % of mono-phosphorylated glycoproteins, which contain 6-

8 mannose residues, are phosphorylated on their 1-6 branch (B and C arms).84 Di-

phosphorylated glycoproteins, which contain no more than nine mannose residues, may be 

phosphorylated on both the -6 and 1-3 branch (A, B and C arms).84 
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Figure 9: Generation of the mannose 6-phosphate (M6P) recognition marker. A: Generation of the M6P 

recognition marker occurs in two enzymatic steps. Firstly, GlcNAc-1-phosphotransferase attaches a GlcNAc-1-

phosphate residue to the terminal mannose residue of an N-linked glycan on the lysosomal enzyme. This creates 

an M6P di-ester. Uncovering enzyme (UCE) removes the terminal GlcNAc to expose M6P mono-ester. B: The 

structure of the N-linked glycan precursor following transfer onto asparagine and removal of glucose residues. 

GlcNAc residues are coloured blue, mannose residues green and hydroxyl groups of mannose residues that can 

be phosphorylated are coloured orange. 

 

 

1.4.  CD-MPR structure and function 

The CD-MPR recognises M6P mono-esters.54 While it constitutively cycles between the TGN 

and lysosome, the CD-MPR functions to transport M6P tagged lysosomal enzymes to the late 

endosome (Figure 8).85,86 

The CD-MPR, which is encoded by an 8 exon, 12 kb gene located on chromosome 12p, is a 

~46 kDa, type I transmembrane glycoprotein, consisting of a cytoplasmic, carboxy-terminal 

domain (67 residues), a transmembrane domain (25 residues) and an extracellular amino-

terminal domain (159 residues).54 Crystal structures of bovine CD-MPR extracellular region 

have been determined in the absence of ligand, with the monosaccharide M6P bound (KD 8 

M) and with the oligosaccharides trimannosyl phosphate and pentamannosyl phosphate 

bound (PDB 1KEO, 2RL8, 2RL9 and 1C39 respectively).87–90 Each structure revealed a 

flattened nine stranded -sandwich (-strands A-I) with an N-terminal -helix.90 Four loops 

(termed the AB, CD, FG and HI loops) connect these -strands at the top of the sandwich to 
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form the ligand binding site.90 There are four disulphide bonds between C6-C52 at the N-

terminus, C106-C141 at the top of the FG and HI loops respectively, and C119-C153 at the 

base of G  and I respectively (Figure 10A).  

In each structure the CD-MPR formed a non-covalent homodimer (Figure 10B), with the E-I 

surfaces of both monomers packing against one another. Chemical cross-linking, size exclusion 

chromatography and sucrose density centrifugation have demonstrated that the extracellular 

region of the CD-MPR is capable of dimerising in solution.91 Further studies have found the 

CD-MPR to exist in monomeric, dimeric and tetrameric form in solution and dimeric form in 

membranes.92 The oligomeric state of the CD-MPR appears to be concentration, pH and 

temperature sensitive, with lower concentration, lower pH and higher temperature each 

promoting CD-MPR monomerisation.93 

Figure 10: The structure of P-type lectin CD-MPR extracellular region. A: The crystal structure of bovine 

CD-MPR in the absence of ligand (PDB 1KEO) reveals that each monomer forms a nine stranded -sandwich 

(A-I) connected by flexible loops and three disulphide bonds (sticks). Mn2+, not visible in the crystal structure, 

is modelled in (red sphere). B: The arrangement of the CD-MPR homodimer. 

 

In comparison to other lectins, the CD-MPR has a large, deep binding site that buries ~65 % 

of bound M6P and both the M6P and penultimate mannose residue of bound pentamannosyl 

phosphate.12, 24 X-ray crystallography reveals that the M6P residue is positioned in the same 

orientation in the structures of CD-MPR bound with M6P monosaccharide, trimannosyl 

phosphate and pentamannosyl phosphate (PDB 2RL8, 2RL9 and 1C39 respectively).  

Residues Q66 (C), R111 (F), E133 (H) and Y143 (I) form the conserved ‘QREY’ motif 

characteristic of MRH domains.54,67 Q66, Y143 and E133 are within hydrogen bonding 
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distance of the 2’ and 3’ OH of M6P.87 E133 may also form hydrogen bonds (H-bonds) to the 

4’ OH.87 Additional binding site residues include Y45 (B), R135 (HI loop) and H105 (FG 

loop). Y45 forms H-bonds to the 1’OH of M6P when free as a monosaccharide and when 

oxidised in an O-glycosidic bond.87 R135 may form H-bonds with the 4’OH of M6P.87 Lastly, 

H105 forms electrostatic interactions with the phosphate group of M6P (Figure 11A).87  

Figure 11: M6P binding by the CD-MPR extracellular region. A: The crystal structure of the extracellular 

region of bovine CD-MPR with M6P bound (PDB 2RL8) reveals the placement of the conserved ‘QREY’ motif 

(Q66, R111, E133, Y143, shown as orange balls-and-sticks). Additional M6P binding residues (Y45, R135, H105) 

are shown as yellow balls-and-sticks. M6P is shown as cyan sticks and possible H-bonds are shown as yellow 

dashed lines. B: Superimposition of the crystal structures of CD-MPR unbound (red) and with pentamannosyl 

phosphate bound (green, PDB 1KEO and 1C39 respectively) reveals large conformational changes upon ligand 

binding. Particularly, H105 on the FG loop and S41 on the AB loop move 2.9 Å and 4.1 Å respectively. C: The 

divalent cation Mn2+ binds at the edge of the M6P binding site and shields bound M6P from the acidic residue 

D103 on the FG loop (PDB 2RL8).  

 

Upon ligand binding, the CD-MPR loops undergoes a large conformational change (Figure 

11B).90 S41 of the AB loop is displaced 4.1 Å and H105 on the FG loop 2.9 Å when 

pentamannosyl phosphate is bound.90 Additionally, a flap comprising residues E134-C141 of 

the HI loop and E133 and F142 of H and I respectively, moves towards the binding pocket 

in the absence of ligand.90  

Residues R111 (F), D103 and H105 (FG loop) co-ordinate the Mn2+ cation (Figure 11C).87 It 

is proposed that, when present, the Mn2+ cation will shield the phosphate group of M6P from 
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the anion D103.54 However, despite its name, the human CD-MPR is not strictly dependent 

upon the presence of the divalent cation Mn2+ in the binding site.94 The CD-MPR retained the 

ability to bind phosphomannan-sepharose following stripping of the metal ion by EDTA.94 

 

1.5.  CI-MPR structure and function 

The CI-MPR, which is encoded by a 48 exon, 136 kb gene located on human chromosome 6q, 

is a large (~300 kDa), type I transmembrane glycoprotein consisting of a cytoplasmic carboxyl-

terminal domain (167 residues), a transmembrane domain (23 residues) and an extracellular 

amino-terminal domain (2269 residues).87, 95-96  

Although the intracellular region of the CI-MPR lacks kinase activity, suggesting it is unable 

to signal, it does have several ligands critical for receptor endocytosis and trafficking (Table 

2).97 For packaging into clathrin coated vesicles that are secreted to the plasma membrane, 

adaptor protein-1 (AP1) interacts with the sequence TEWLI in the C-terminal region of the CI-

MPR.98, 74 In a similar manner, AP2 recognises the internalisation sequence YKYSKV of the 

CI-MPR C-terminus, facilitating receptor endocytosis from the plasma membrane to early 

endosome (EE).54 The CI-MPR is also transported directly from the TGN to EE in clathrin-

coated vesicles by Golgi-localized -ear-containing ADP-ribosylation factor binding protein 

(GGA).54 The VHS domain of GGA recognises the di-leucine motif and central aspartic acid 

residue in the C-terminal TGN sorting signal sequence FHDDSDEDLL.99 

Following cargo release in the late endosome, the CI-MPR is recycled back to the TGN by 

retrograde transport machinery, including TIP47, AP1 and PACS1.54 TIP47 (Tail interacting 

protein of 47 kDa) recognises residues 48-75 of the CI-MPR C-terminal region and recruits 

Rab9 GTPase to facilitate retrograde transport.54 Meanwhile, PACS1 (Phosphofurin acidic 

cluster sorting) recognises the di-leucine motif DDS (of the TGN sorting signal sequence 

FHDDSDEDLL) and recruits AP1.54  

Interestingly, receptor trafficking is independent of extracellular ligand binding.98 Instead, CI-

MPR transport may be regulated by phosphorylation of these transport related recognition 

motifs in the intracellular region of the receptor.54 
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Intracellular 

ligand 

Recognition 

site 

Trafficking Ref 

AP1 TEWLI TGN-PM 74 

AP2 YKYSKV PM-EE 54 

GGA FHDDSDEDLL TGN-EE 99 

TIP47 residues 48-75 LE-TGN 54 

PACS1 DDS LE-TGN 54 

Retromer WLM LE-TGN 100 
Table 2: Ligands that recognise the intracellular region of the CI-MPR to facilitate receptor trafficking. 

Abbreviations: TGN-trans golgi network, PM-plasma membrane, EE-early endosome, LE-late endosome. 

 

 

The extracellular region of the CI-MPR is comprised of 15 homologous domains (each 124-

192 amino acids) that have between 14-28 % sequence identity to the extracellular domain of 

the CD-MPR.96 Figure 12 shows a comparison between the tertiary structure of the CD-MPR 

extracellular region and CI-MPR domain 11, the first CI-MPR domain to be structurally 

characterised. Similarly to the CD-MPR extracellular domain, each of the 15 CI-MPR 

extracellular domains forms a flattened, nine stranded, -sandwich structure (Figure 12) with 

-strands A-D and E-I forming two crossed -sheets.87,101 Each CI-MPR extracellular domain 

contains three or four conserved disulphide bonds. 

Figure 12: Structures of the P-type lectins. The extracellular regions of the CD-MPR (orange) and CI-MPR 

(green) exhibit high structural similarity - superimposition of the CD-MPR extracellular region and domain 11 of 

the CI-MPR gives an RMSD value of 6.0 Å over all backbone atoms (PDB 1KE0 and 1GP0 respectively). 

 

The CI-MPR is functionally distinct to the CD-MPR, firstly, in its ability to bind both M6P 

mono-esters and di-esters, and, secondly, in its affinity for non-glycosylated ligands (Table 

3).54 In fact, the CI-MPR is remarkable in its ability to bind three distinct classes of ligand: 

protein (e.g. IGF2), small molecules (e.g. M6P) and lipids (e.g. retinoic acid).  
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Table 3: Example known ligands of the CI-MPR extracellular region.  M6P dependent ligands are highlighted 

in green, M6P independent ligands in blue and ligands that utilise M6P dependent and independent mechanisms 

in orange. Abbreviations: TGF -Transforming Growth Factor , LIF-Leukaemia inhibitory factor, EGFR-

Epidermal growth factor receptor, CREG-Cellular repressor of E1A-stimulated genes, IGF2-Insulin-like growth 

factor-2, uPAR-Urokinase-type plasminogen activator receptor.  

 

IGF2 binding 

The most well characterised CI-MPR ligand interaction is that with the peptide hormone 

insulin-like growth factor-2 (IGF2). Although expression of IGF2, which is encoded by a nine 

exon, 30 kb gene located on human chromosome 11p, is highest during embryogenesis, IGF2 

is also present in adult liver and brain tissues.118,119 IGF2, which has several post-translational 

isoforms, is produced as a prepro-peptide (180 residues).118 The N-terminal signal sequence is 

cleaved to produce pro-IGF2 (156 residues, also termed IGF2156).118 Pro-IGF2 is O-link 

glycosylated, which signals further cleavage by pro-hormone convertase 4 (PC4) to produce 

mature IGF267 (67 residues).120,121 Incomplete processing of pro-IGF2 results in big IGF2 

isoforms containing 104 and 87 residues (IGF2104 and IGF287 respectively).120,121 These big 

IGF2 isoforms make up approximately 10-20 % of IGF2 in circulation.118 

At the plasma membrane mature IGF267 signals cellular growth and proliferation through 

binding the receptor tyrosine kinases IGF1R, IR-A (an alternatively spliced isoform of the 

insulin receptor) or the hybrid receptor IGF1R-IR-A (Figure 13).122 Through binding to IGF1R, 

IGF2 also plays a role in metabolic signaling by regulating glucose uptake.123 Circulating IGF2 

is sequestered by a family of six IGF binding proteins (IGFBPs).123 IGF2 is also sequestered 

in circulation and at the plasma membrane by the CI-MPR, which is also known as the insulin-

Extracellular ligand Consequence of binding Ref 

Lysosomal enzymes Intracellular trafficking and lysosome biogenesis. 54 

Granzyme B Cytotoxic T cell mediated apoptosis. 102 

Latent TGF  TGF activation. 103,104 

LIF Endocytosis and lysosomal degradation. 105 

Prorenin Activation to renin. 106 

Proliferin Angiogenesis. 105,107 

CD26 T cell activation. 108 

Thyroglobulin Endocytosis. 109 

EGFR Endocytosis and lysosomal degradation 110 

Herpes simplex viral glycoprotein D Viral entry to cells. 111 

CREG Endocytosis and lysosomal degradation. 77 

IGF2 Endocytosis and lysosomal degradation. 112 

Retinoic acid Suppression of cell growth and induction of apoptosis. 113 

uPAR Activation of TGF and plasminogen. 114,115  

Plasminogen Plasminogen activation, facilitating cell migration.  114,115 

CD45 Regulation of T cell signalling. 115,116 

Lck T cell signalling. 115,116 

Heparanase Extracellular matrix degradation. 117 
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like growth factor 2 receptor (IGF2R).124 The CI-MPR/ IGF2R facilitates IGF2 endocytosis 

and subsequent lysosomal degradation.124 Early CI-MPR/ IGF2R knock-out experiments in 

mice resulted in an increase of IGF2, embryos that were 35-40 % larger than average due to 

hyperplasia (an increase in cell number) and death at birth.125,126 

Figure 13: The Insulin-like growth factor (IGF) network. At the plasma membrane the IGFs signal growth via 

binding the receptor tyrosine kinases IGF1R, IGF1R-IR-A and, in the case of IGF2, IR-A. The IGFs signal 

metabolically through binding IGF1R and, in the case of IGF1, IGF1R-IR-B. The IGFs are sequestered by 

circulating IGF binding proteins (IGFBPs) in serum. IGF2 is also sequestered by the IGF2R/ CI-MPR, which 

facilitates IGF2 endocytosis and subsequent lysosomal degradation.118 The extracellular region of the IGF2R/ CI-

MPR consists of 15 domains, with domain 1 (D1) at the N-terminus, furthest from the plasma membrane and D15 

closest to the plasma membrane. IGF2 is bound at D11. 

 

IGF2 binds the CI-MPR/ IGF2R at extracellular domain 11 (D11). D11 contains a hydrophobic 

pocket formed from residues of the AB, CD, and FG loops (Figure 14A) that binds IGF2 with 

high-affinity (KD 40-60 nM).112,127 A combination of mutagenesis, crystallography and NMR 

studies has identified the interactions at the D11-IGF2 interface.75,101,124 A group of 9 

hydrophobic D11 residues interact with IGF2: V1574 (CD loop), L1626 (HI loop) and L1636 

(HI loop) form a three-pronged interaction with IGF2, F1567 (CD loop), L1629 (HI loop) and 

Y1542 (AB loop) interact with IGF2 F19, Y1606 (FG loop) and I1572 (CD loop) interact with 

IGF2 T16, and K1631 (HI loop) interacts with IGF2 L53 (Figure 14A).124 Electrostatic 

interactions are also involved in IGF2 binding, with the binding interface of IGF2 having a net 

negative charge and that of IGF2R a net positive charge.101   
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Residues of D13, which is the only domain to contain a fibronectin type II (FNII) insert (Figure 

15), stabilise the D11 AB loop.101 R1931 of the D13 FNII insert forms electrostatic interactions 

with E1553 of D11 AB loop (Figure 14D). Deletion of the FNII insert results in a 10-fold 

decrease in the rate of association (kA).101  

Figure 14: The extracellular region of the CI-MPR binds the growth hormone IGF2, facilitating its 

internalisation and subsequent degradation in the lysosome. A: The loops of D11 form the core IGF2 binding 

site. Interacting residues (T16, F19 and L53 of IGF2 and Y1542, V1547, F1567, I1572, Y1606, L1626, L1629, 

K1631, L1636 of D11) are shown as balls-and-sticks (PDB 2L29). B: The cryo-EM Structure of bovine D4-14 in 

complex with IGF2 reveals that residues on the F-I surface of D6 (H898, V900, I911, L914, W916, L923) also 

interact with IGF2 (V14, F26, F28, V43) (PDB 6UM2). C: K1113 at the N-terminus of D8 and T1139 and P1141 

of D8 BC loop interact with S5 and F48 of IGF2 (PDB 6UM2). D: A fibronectin type II insert in D13 stabilises 

the AB loop of D11, increasing its affinity for IGF2. A salt bridge forms between E1553 (D11) and R1931 (D13) 

(PDB 2V5P).  

 

Recently, a low-resolution (4.3 Å) cryo-EM structure of D4-14 plus IGF2 (PDB 6UM2) has 

revealed that D6 and D8 also interact with bound IGF2.128 The I-F surface of D6 interacts 

with helices 1 and 2 of IGF2 (Figure 14B), while K1113 N-terminal to A and Y1139 and 

P1141 both on the BC loop of D8 interact with 2 of IGF2 (Figure 14C). These interactions 

were confirmed by mutagenesis, with IGF2 mutations F28A, V43D (which both interact with 

D6) and F48D (which interacts with D8) each reducing CI-MPR-IGF2 binding 20-30 %.128 In 

comparison, mutation of IGF2 residue L53, which interacts with D11, reduced binding by 60 

%.128 
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Despite the high CI-MPR amino acid sequence identity between species and animal classes 

(for example, Bos taurus, Gallus gallus and Mus musculus have 90 %, 60 % and 89 % sequence 

identity to Homo sapiens CI-MPR respectively), only the CI-MPR/ IGF2R of mammals 

(monotremes, marsupials and placentals) is capable of IGF2 binding.97,124 The CI-MPR/ IGF2R 

of reptiles and birds does not bind IGF2.124 Comparison of the IGF2 binding sites of D11 of 

different species reveals that the volume of the binding pocket increases and changes from a 

net negative charge to a net positive charge as IGF2 binding ability is acquired.124 An exon 

splicing event whereby exon 34, which encodes the CD loop of D11, was mutated, is 

responsible for the IGF2 binding ability in D11.124 Additionally, sequence alignment reveals 

that the residues I911, L914 and W916 of bovine D6 and Y1139, I1140 of bovine D8 which 

interact with IGF2 are conserved in mammals but are not found in birds and fish, which lack 

IGF2 binding capability (Appendix Figure 2).  

 

Carbohydrate binding 

While the CI-MPR and the CD-MPR both possess the ability to bind M6P, the CI-MPR exhibits 

more efficient binding to M6P-tagged lysosomal enzymes in vitro and in vivo.82 This may be 

attributed to the presence of multiple MRH domains in the CI-MPR: D3, D5, D9 and D15 

(Table 4). These MRH domains differ in their glycan specificity, affinity and dependency on 

neighbouring domains. Whilst the core of these domains retains the nine stranded -sandwich 

structure shared with CI-MPR D11, the binding site residues vary. Sequence analysis, 

mutagenesis studies and structural biology have identified key sugar binding residues in these 

domains.67,88,129–131 Most notably, four residues are conserved in the same orientations across 

each of these domains: Q, R, E, Y (Figure 15).  

MRH domain Ligands Ref 

CI-MPR D3 M6P monoesters, M6P methyl esters and mannose 6-sulphate. 132 

CI-MPR D5 M6P di-esters. 131 

CI-MPR D9 M6P mono-esters. 103 

CI-MPR D15 M6P mono-esters and di-esters. 130 

CD-MPR M6P mono-esters. 133 

Glucosidase II Mannose.  65 

OS-9 Mannose. 66 

XTP3-B/Erlectin Mannose. 134 

GlcNAc-1-phosphotransferase Mannose. 81 
Table 4: Example lectins containing MRH domains and their ligands 
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Figure 15: Structure-based sequence alignment of human CI-MPR extracellular domains. The conserved 

‘QREY’ residues of MRH domains (D3, D5, D9 and D15) are coloured green. In D15 the conserved arginine 

residue is replaced by R2170 and V2205 (coloured red). IGF binding residues of D11 are coloured blue. Cysteines 

are coloured yellow. Each domain contains four disulphide bonds, except for D5 and D7 which both contain three 

disulphide bonds. The position of the -strands and binding loops are labelled. 

 

The CI-MPR, which contains four MRH domains (in D3, D5, D9 and D15), exhibits a similar 

binding affinity for the lysosomal enzyme acid alpha-glucosidase (GAA) tagged with M6P 

mono-ester and GlcNAc-M6P di-ester with KD values of 4.5 ± 0.7 nM and 51 ± 1 nM 
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respectively.130 Glycan micro-array analysis reveals that the CI-MPR does not interact with 

non-phosphorylated high mannose glycans.82 Kinetic studies have shown that the CI-MPR has 

a higher affinity for oligosaccharide glycans over monosaccharides. For example, the CI-MPR 

binds M6P monosaccharide, pentamannose phosphate and the glycoprotein -galactosidase 

with binding affinities (KD) of 7 M, 6 M and 0.02 M respectively.135  

Domain 3 

The structure of bovine CI-MPR D1-3 with M6P bound has been determined by X-ray 

crystallography (PDB 1SYO/1SZ0).136 Each domain formed the conserved -sandwich 

structure observed for D11. Similarly, to the CD-MPR structure, the crystal structure of the N-

terminal region of the CI-MPR (D1-3) revealed a homodimer.136 However, while dimerisation 

of D1-3 has been observed in crystals belonging to two different space groups (orthorhombic 

P212121 and monoclinic P21), the oligomeric state of D1-3 has not been demonstrated in 

solution.103,136 Thus, it is not known if dimerisation is relevant in solution or simply a crystal 

artefact. 

Bovine residues Q348 (C), R391 (G), E416 (H) and Y421 (I) form the conserved ‘QREY’ 

motif characteristic of MRH domains (Figure 16). Q348, Y421 and E416 are within hydrogen 

bonding distance of the 2’ and 3’ OH of M6P.136 E416 may also form H-bonds to the 4’ OH.136 

Y324 (B) may form H-bonds to the 1’ OH of M6P.136 Three bridging waters in the binding 

site further contribute to this network. Water 1 (W1) interacts with a phosphate oxygen, S386 

and S387 (both on the FG loop).136 The second and third water molecules (W2 and W3) form 

a hydrogen bond network - W2 forms H-bonds to W1 and W3, whilst W3 forms H-bonds to 

W2, S387 and D418 (H) (Figure 16).136 

Figure 16: The M6P binding site of bovine CI-MPR D3. The crystal structure of bovine D1-3 M6P bound 

(PDB 1SYO/1SZ0) reveals the orientation of key M6P binding residues Q348, R391, E416, Y421, S386, S387 

and Y324. H-bonds between these residues (balls-and-sticks) and M6P (cyan sticks) are shown as yellow lines. 

The salt bridge formed between D418 on the HI loop of D3 and K98 at the base of D1 is shown as a red line. The 

three bridging water molecules (W1, W2 and W3) are shown as green spheres. 
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Comparable to IGF2s interaction with D11 and D13, the binding of M6P to D3 is enhanced 

when expressed in a multi-domain construct of D1-3.82 For example, D1-3 exhibited a binding 

affinity of 0.5 ± 0.1 nM to M6P-tagged -glucuronidase, while D3 alone gave a value of ~500 

nM.67,137 The crystal structure of bovine D1-3 shows that these neighbouring domains stabilise 

the D3 binding loops, rather than interacting directly with the ligand.82 For example, K98 in 

the GH loop at the base of D1 forms a salt bridge with D418 in the HI loop of D3.136 

Recently the first structure of human CI-MPR D3 has been determined within the multi-domain 

construct D1-5 (PDB 6P8I and 6V02).138 These are also the first structures of the D3 M6P 

binding site unoccupied by a ligand. Superimposition of human D1-3 at pH 5.5 and 7.0 with 

bovine D1-3 plus M6P at pH 6.35 (PDB 6P8I, 6V02 and 1SZ0 respectively) gave RMSD 

values of 3.8 Å and 3.5 Å over backbone atoms. The absence of ligand alters the domain 

arrangement of D1-3, with E-I of D3 rearranging to pack against E-I of D1. 

D3 (within the bovine D1-3 construct) exhibits high-affinity binding (KD 1.0 ± 0.3 nM) for the 

M6P mono-ester of -glucuronidase.132 However, D3 is also capable of binding small methyl-

M6P di-esters and mannose 6-sulphates found in the amoeba Dictyostelium discoideum.132 The 

CD loop of D3 is lacking in large, bulky residues. Most notably H1285 of D9 and N104 and 

H105 of the CD-MPR, which are both specific for M6P monoesters, are replaced in D3 by 

S386 and S387.136 The bulky residues in the D9 and CD-MPR FG loops may occlude the 

binding site, preventing larger di-esters from binding.136 D3 also has a shorter FG loop than 

that of D9 and the CD-MPR.136 This further prevents residues of the FG loop from occluding 

the binding pocket.136 

Domain 5 

Glycan microarray analysis revealed that D5 preferentially bound GlcNAc-M6P di-esters.82 

When expressed in isolation, D5 exhibited a 4-fold higher affinity for M6P di-esters over M6P 

mono-esters when studied by SPR (KD 18 M versus 72 M respectively).139 This observation 

was supported by NMR titrations that found D5 bound M6P monosaccharide with a KD of 20 

mM and methyl-M6P-GlcNAc with a KD of 1 mM.131  

Similarly to D3, D5 exhibits higher affinity binding in the presence of neighbouring domains. 

D5 demonstrated a significantly higher affinity for GAA di-ester when expressed as a D1-5 

penta-domain construct (KD 60 nM) versus in isolation (KD 10 M).82,138  



1.  Introduction  

31 

 

The structure of bovine D5 has been determined in isolation by solution NMR in the absence 

of ligand; with M6P monosaccharide (mono-ester) and with methyl-M6P-GlcNAc (di-ester) 

bound.131 D5 does not undergo a conformational change upon ligand binding.131 Bovine 

residues Q644 (C), R687 (FG loop), E709 (FG loop) and Y714 (HI loop) form the conserved 

‘QREY’ motif characteristic of MRH domains (Figure 17). Q644, R687 and Y714 are within 

hydrogen bonding distance of the 2’ OH of M6P. Additionally, Y714 may also form H-bonds 

to the 3’ OH and E416 to the 4’ OH of M6P. S712 (HI loop) may H-bond to the 4’ OH of the 

GlcNAc residue of M6P di-ester, while N680 (FG loop) may form H-bonds with the phosphate 

group and amide at the 2’ position of GlcNAc (Figure 17). 

Figure 17: The M6P binding site of bovine CI-MPR D5. NMR solution structure of bovine D5 (PDB 2KVB) 

with GlcNAc-M6P (green sticks) docked. Sugar binding residues Q644, R687, E709, Y714, N680 and S712 are 

shown as balls-and-sticks. W653 interacts with R687 to stabilise the binding site. H-bonds are shown as yellow 

lines. 

 

D5 has a larger, more open binding pocket than D3 and can thus accommodate the bulkier 

M6P-GlcNAc di-ester. Furthermore, D5 contains only three disulphide bonds (Figure 15), 

lacking a stabilising disulphide bond at the edge of the M6P binding site between -strands C 

and D.131 D5 instead contains W653 on the CD loop, which interacts with R687 to stabilise the 

binding pocket (Figure 17).131 W653 may also interact with the protons at C1 and C5 of the 

mannose ring.131 Also not present within D3, Y679 in the FG loop of D5 may interact with the 

GlcNAc methyl group.131 

Domain 9 

Glycan micro-array analysis and SPR studies have shown that D9, which contains the 

conserved ‘QREY’ motif, is specific for M6P monoesters: KD 95 ± 12 nM for GAA mono-

ester and KD 1.4 ± 1 M for GAA di-ester.130,139,82 Glycan micro-array analysis also reveals 

that D9 recognises mono- and di-phosphorylated high mannose glycans with similar affinity.82  
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To date, D9 is the only CI-MPR domain to exhibit high affinity sugar binding independent of 

neighbouring domains.103,130 For example, D9 alone bound M6P-tagged -glucuronidase with 

a binding affinity of 0.3 ± 0.1 nM, while D7-9 bound with a KD value of 0.5 ± 0.1 nM.137  

Domain 15 

As for D9, there is currently no structure of D15. However, sequence alignments (Figure 15) 

reveal that D15 contains only three (Q2160, E2227, Y2233) of the four conserved sugar 

binding residues (‘QREY’) found in other MRH domains, with R2170 and V2205 replacing 

the conserved arginine residue.130 A model of D15 reveals that R2170 on D is positioned 

similarly to W653 of D5, suggesting a possible role in GlcNAc binding.130  

Carbohydrate recognition by bovine D15 has been studied in the context of D14-15, D7-15 

and, briefly, D1-15. Bovine D15 (of the D14-15 construct) binds M6P mono-esters and di-

esters with similar affinity: KD 13 ± 3 M and 17 ± 7 M respectively.130 This interaction was 

inhibited by addition of M6P but not G6P (glucose 6-phosphate).130 Similarly to D3 and D5, 

M6P binding by D15 is enhanced by the presence of neighbouring domains.130  

 

Other CI-MPR ligands 

As illustrated in Tables 2 and 3, the CI-MPR binds a range of ligands in an M6P dependent or 

independent manner. The majority of these M6P dependent interactions occur intracellularly 

at the TGN (pH 6.5) between CI-MPR and lysosomal acid hydrolases. However, the CI-MPR 

extracellular region can also recognise M6P-tagged proteins at the plasma membrane, which 

is near neutral pH (pH 7.4). For example, the CI-MPR binds the M6P-tagged glycan of the 

inactive propreprotein transforming growth factor  (TGF), which is present in the 

extracellular matrix.104 This interaction appears to be required for TGF activation by plasmin 

and urokinase-type plasminogen activator receptor (uPAR), which also binds the CI-MPR 

(discussed below).104 Similarly, M6P-tagged glycans of the inactive proenzyme prorenin are 

recognised by CI-MPR at the plasma membrane, facilitating prorenin internalisation and 

subsequent activation to renin.106  

Only a few ligands exhibit binding through both M6P dependent and independent mechanisms 

-one example being the secreted, dimeric, glycoprotein cellular repressor of E1A-stimulated 

genes (CREG).76 N-link glycosylated CREG has been demonstrated to bind CI-MPR D7-10 

through M6P recognition by D9, while deglycosylated CREG binds D11-13 independent of 
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M6P.41,42 The interaction between CI-MPR and CREG has proven essential for CREG 

mediated inhibition of cell growth.141 

The observation that CREG recognises two sites on the CI-MPR raises questions of whether 

the CI-MPR is capable of binding multiple ligands simultaneously. uPAR and plasminogen 

binding has been localised to the N-terminal half of D1 (residues 1-73).114 This corresponds to 

the first  sheet (A-D) and E, creating a binding surface on D1 that is positioned on the 

opposite surface to the M6P binding site of D3.103 This should allow both M6P tagged proteins 

(such as latent TGF) and the M6P independent uPAR or plasminogen to bind at the same 

time.103,142 However, addition of -glucuronidase (an M6P-tagged lysosomal enzyme) has been 

shown to reduce the binding of uPAR, likely through steric hindrance of the binding site.142 A 

similar observation was observed upon addition of IGF2.142 In the absence of other ligands, 

uPAR binds bovine CI-MPR with a KD of 8.9 ± 1.9 M.142 Interestingly, however, a soluble, 

truncated form of uPAR (suPAR) binds the CI-MPR in an M6P dependent manner with co-

immunoprecipitation experiments localizing suPAR binding to domains 1-3 and 7-9.143 

A final example of a ligand that binds the CI-MPR in an M6P independent manner, is retinoic 

acid (RA) (Figure 18). A lipid metabolite of vitamin A, RA plays a critical role in immunity, 

cell growth and neuronal development, 144,145 and binds the CI-MPR with high affinity (KD 2.5 

± 0.3 nM) independent of M6P.113 RA binding does not inhibit the CI-MPRs ability to bind 

M6P tagged ligands nor IGF2. In fact, RA and M6P act in a co-operative manner with 

photolabeling experiments demonstrating an increase in RA binding affinity (to KD 1.2 ± 0.4 

nM) following addition of M6P.113 Furthermore, the addition of RA to neonatal rat cardio 

myocytes resulted in a 30-50 % increase in IGF2 internalisation and an intracellular 

accumulation of M6P-tagged acid phosphatases in the lysosome.113 Although not yet fully 

determined, RA has been proposed to bind the C-terminal 40 kDa of the CI-MPR which would 

encompass the intracellular region of the receptor.113  

Figure 18: The structure of retinoic acid, a lipid metabolite of vitamin A, that is bound by the CI-MPR with 

nanomolar affinity. 
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CI-MPR in human disease 

The P-type lectins were first discovered during investigations into the lysosomal storage 

disorder mucolipidosis II, also known as I-cell disease.54 In I-cell disease a deficiency in 

catalytic subunits of GlcNAc-1-phosphotransferase results in missorting and secretion of  

lysosomal hydrolases.98 Lysosomes are thus non-functional and form dense inclusion bodies 

of undigested material.98 The same phenotype has been observed in transgenic mice lacking in 

both P-type lectins.54 Meanwhile, mutations in UCE, the uncovering enzyme responsible for 

M6P mono-ester formation, have been implicated in persistent stuttering.146 Other lysosomal 

storage disorders including Niemann-Pick disease and Krabbe disease, are due to deficiencies 

in lysosomal enzymes sphingomyelinase and galactocerebrosidase respectively.147  

Thus, the P-type lectins are implicated in a number of lysosomal storage disorders and 

neurodegenerative diseases. In mice models of Parkinson’s disease, the CI-MPR was 

missorted, resulting in a reduction of functional cathepsin D - a lysosomal protease that 

degrades -synuclein aggregates.148 This is supported by the observation that in human brain 

tissue of early stage Parkinson’s patients, the CI-MPR was found to be down-regulated, 

resulting in reduced cathepsin D trafficking and thus impaired lysosomal clearance of the toxic 

-synuclein aggregates.148 Samples of human Alzheimer’s brain tissue also shows mis-

regulated CI-MPR expression and localisation, disrupting the trafficking of cathepsins B and 

L that are involved in the lysosomal breakdown of -amyloid plaques.149 

The significance of the CI-MPR/ IGF2R and IGF2 in human health and disease is reflected in 

the tight regulation of their expression. In viviparous mammals the genes encoding both IGF2 

and IGF2R are imprinted - a form of epigenetic modification involving DNA methylation and 

histone acetylation to ensure transcription occurs from a single allele only.150 During 

embryogenesis, IGF2 and IGF2R are reciprocally imprinted, with IGF2R being maternally 

expressed and IGF2 paternally expressed.151 Imprinting of IGF2R leaves the receptor function 

susceptible to mutation.118, 151 Loss of loss of function mutations in IGF2R are common in 

epithelial based cancers.122 For example 60 % of early stage hepatocellular tumours and 30 % 

of early stage breast tumours exhibited IGF2R loss of heterozygosity.96 To date nine cancer 

related missense mutations have been observed in the extracellular region of the CI-MPR.67 

These include: C1262S (BC loop) and G1296R (D) in D9, Q1445H (DE loop), G1449V (DE 

loop) and G1464E (FG loop) in D10 and G1564R (C), I1572T (BC loop), A1618T (GH loop) 

and G1619R (GH loop) in D11.67,152–155 Loss of IGF2R activity leads to protein mis-sorting 
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and decreased clearance of mannosylated proteinases such as cathepsins, which are involved 

in extracellular matrix degradation and thus aid tumour invasion.156 The CI-MPR is, therefore, 

a tumour suppressor protein, with overexpression shown to contribute to increased apoptosis 

in tumours.157  

Loss of IGF2 imprinting – by hypomethylation of the paternal imprinting control region 1 

(ICR1) downstream of IGF2,158 and subsequent bi-allelic IGF2 expression is responsible for 

approximately 40 % of Silver-Russell Syndrome (SRS) cases.159, 160 SRS is a rare (1 in 30,00-

1 in 100,000) but severe growth retardation disorder.159,161 Conversely, IGF2 gene silencing by 

hypermethylation of ICR1 can cause the foetal over-growth disorder Beckwith-Weidemann 

syndrome, in which patients have a pre-disposition to tumours.159,162 Thus correct regulation 

of IGF2 by IGF2R is important during embryogenesis. IGF2R knock-out mice displayed severe 

developmental abnormalities and died at birth.115 Loss of IGF2R results in increased bio-

availability of IGF2, which promotes cell growth, proliferation and angiogenesis, while 

suppressing apoptosis.118 Increased big IGF2 isoforms also contribute to the syndrome non-

islet cell tumour hypoglycaemia (NICTH).118  

While the majority of the CI-MPR population is located intracellularly – constitutively cycling 

between the TGN and endosomes, approximately 10 % is present in the plasma membrane. In 

the plasma membranes of endothelial cells, the extracellular region of the CI-MPR can be 

cleaved at the C-terminus of D15 by the protease tumour necrosis factor -converting enzyme 

(TACE/ ADAM17).163  This results in soluble sCI-MPR (D1-15) that circulates in the blood.163 

sCI-MPR can form heterodimers with membrane bound CI-MPR, promoting receptor shedding 

from the plasma membrane.164 Increased sCI-MPR has been observed in patients with breast 

cancer, liver cirrhosis and morbid obesity.102,163,165 Similar to the IGFBPs, sCI-MPR binds and 

sequesters IGF2 to modulate organ size.166 sCI-MPR also binds plasminogen, inhibiting its 

interaction with and activation by uPAR and thus down-regulating cell migration and 

angiogenesis.163 In this manner sCI-MPR acts as a tumour suppressor protein.163 This is 

supported by the observation that sCI-MPR halts the progression of intestinal adenoma in 

mice.157,167 Additionally, sCI-MPR can sequester extracellular ligands including Granzyme B, 

CD26, CD45 and Lck, which are all involved in the regulation of cytotoxic T cells.102 

The CI-MPR, or components derived from it, might therefore be potential therapeutics. Of the 

eleven enzyme replacement therapies (ERT) approved for the treatment of lysosomal storage 

disorders, nine rely upon the CI-MPRs ability to traffic M6P tagged proteins.138 For example, 



1.  Introduction  

36 

 

recombinant human acid -glucosidase (rhGAA) is an ERT to treat the lysosomal storage 

disorder Pompe disease.168 In vitro and in mice models, Cheng et al. have demonstrated that 

the efficiency of this ERT can be enhanced by increasing rhGAA targeting (through the 

addition of M6P tagged oligosaccharides to rhGAA) to the CI-MPR and thus increasing 

rhGAA endocytosis.168 Similarly, Bali et al. improved the efficiency of rhGAA ERT in mice 

by up-regulating CI-MPR.169  

More recently, in 2016 Frago et al. developed the first high-affinity IGF2 specific ligand trap 

based upon D11 of the CI-MPR.127 This has proven successful in inhibiting in vivo IGF2 

signalling in hypoglycaemic mice.127 

 

CI-MPR structural knowledge  

Table 5 and Figure 19 below show the CI-MPR structures determined to at the outset of this 

work. There were no high-resolution structures of the sugar binding domains, D9 and D15 or 

D6-8 and D10. Neither are there any structures of the P-type lectins in complex with M6P-

tagged glycoproteins. Of the 15 CI-MPR extracellular domains, the IGF2 binding domain, D11, 

is the most well studied, with high-resolution structures of human, chicken, echidna and 

opossum D11 being determined to delineate the evolution of IGF2 binding.124 Bovine forms of 

the sugar binding domains, D3 and D5, have been expressed in Trichoplusia ni 5B1–4 (Tn-

5B1-4) insect cells and P. pastoris yeast respectively.131,136 Difficulties in obtaining soluble 

protein domains stems from the presence of 3-4 disulphide bonds in each domain, which 

require refolding after bacterial expression. This makes bacterial expression and purification 

of folded multi-domain constructs challenging.  

Table 5: CI-MPR extracellular domains solved at the outset of this work. 

Domain(s) Method Organism Expression host PDB 

D1-3 X-ray diffraction Bovine Tn-5B1-4 1SYO, 1SZ0, 1Q25 

D5 NMR Bovine P. pastoris 2KVA, 2KVB 

D11 X-ray diffraction Human E. coli 1GP0, 1GP3 

D11 NMR Chicken, echidna, opossum E. coli 2L21, 2LLA, 2L2G 

D11-IGF2 NMR Human E. coli 2CNJ 

D11-12 X-ray diffraction Human CHO 2V5N 

D11-13-IGF2 X-ray diffraction Human CHO 2V5P 

D11-14 X-ray diffraction Human CHO 2V5O 
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Figure 19: Structural characterisation of CI-MPR extracellular region. The extracellular region of the CI-

MPR consists of 15 homologous domains. At the outset of this work the structures of bovine D1-3 had been 

determined with M6P or a mannosylated glycan in the D3 binding site (PDB 1SYO/1SZ0 and 1Q25 respectively). 

The structure of bovine D5 had been determined alone and in complex with methyl-M6P-GlcNAc by solution 

NMR (PDB 2KVA, 2KVB). The structure of human D11 had been determined alone and within multi-domain 

constructs D11-12, D11-14 and D11-13 plus IGF2 (PDB 1GP0/1GP3, 2V5N, 2V5O and 2V5P respectively). 

Domains coloured red had not been structurally characterised. 

 

At the outset of this work, the largest fragment of the CI-MPR solved was a preliminary crystal 

structure of a 160 kDa homodimer of D7-11 (Figure 20). This was expressed, purified, and a 

single hit was crystallised by Hans Hoppe and Karl Harlos at the University of Oxford after 

numerous optimisations and trials. The crystals in question were, however, partially radiation 

damaged and it was suggested that D11 interacts weakly with the remaining D7-10 which may 

also have reduced the quality of crystals and diffraction data obtained. Nevertheless, a tentative 

model (Figure 20) was produced by Airlie McCoy (University of Cambridge) using a series of 

homology models generated for D7-10, the crystal structure of D11 (PDB 1GP0) and 

application and development of state-of-the-art molecular replacement approaches. However, 

a final, publishable, refined structure proved to be elusive. 
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Figure 20: The low resolution (3.8 Å) crystal structure of the D7-11 homodimer. One monomer is in ribbon 

format, the other in surface representation.  

 

At the start of this project there was no structure of the full extracellular region of the CI-MPR. 

An initial model for the CI-MPR extracellular region was proposed by Olson et al. in 2004 and 

comprised five tri-domain units each containing an MRH domain (D1-3, D4-6, D7-9, D10-12, 

D13-15).103 This was consistent with the compact crystal structure of D1-3, D1-3 and D4-6 

proteolytic stability and homology modelling the association of the remaining domains (D7-9, 

D10-12, D13-15).103,170 This model was later modified by Brown et al. in 2008 to include the 

D11-14 crystal structure.101 While maintaining the three N-terminal tri-domains D1-9, 

dimerisation interfaces at domains 3, 5, 9, 12 and 15 were introduced.101 

Recently, however, cryo-EM has been performed on CI-MPR extracted from bovine liver. 

Wang et al. have determined the structures of bovine D1-14 at pH 4.5 (3.5 Å) and D4-14 plus 

IGF2 at pH 7.4 (4.3 Å) (PDB 6UM1 and 6UM2 respectively).128 Although these structures are 

monomeric, CI-MPR oligomerisation remains poorly understood (see section 4.5). In the 

context of full length CI-MPR, both monomeric and dimeric forms of sCI-MPR purified from 

bovine livers have been observed by native gel electrophoresis.171  
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1.6.  Project aims 

Despite structural characterisation of several CI-MPR domains (Table 5), the structure of the 

selective, high-affinity and independent M6P binding domain D9 has, however, remained 

elusive. The primary aim of this work is to determine the structure of D9 and characterise its 

interaction with M6P. Previous work by Dr Chris Williams (University of Bristol) 

demonstrated that soluble D9 could not be obtained in isolation. Thus, the work presented in 

this thesis focuses on D9 within multi-domain constructs. This includes attempts to improve 

the low-resolution D7-11 crystal structure using two previously uncharacterised CI-MPR 

domains, D7 and D8, (chapter 2) and generation of novel multi-domain constructs that contain 

D9 (chapter 3). 

This work also aims to study the domain arrangement, oligomerisation and effects of ligand 

binding in the context of the full extracellular region of the human CI-MPR, i.e. domains 1-15 

(chapter 4). As a monomer the extracellular region is 250 kDa with 19 N-linked glycosylation 

sites and 59 disulphide bonds. Thus, D1-15 is a complex and ambitious target but ideal for 

characterisation by cryo-EM.  

In parallel to this, a second project (chapter 5) aims to engineer a synthetic lectin based upon 

D11 of the CI-MPR. This work builds upon preliminary work by Dr Chris Williams (University 

of Bristol) and tests whether a scaffold evolved to bind a ‘large’ macromolecule (e.g. IGF2) 

can be engineered to bind a small ligand (i.e. mannose 6-phosphate or perhaps even glucose). 
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2.  Domains 7 and 8 

2.1.  Introduction and aims 

Currently D11 is the most well characterised domain of the CI-MPR owing to its role in 

regulating IGF2 bioavailability. Due to the presence of eight cysteines that form four disulphide 

bonds, D11 forms insoluble inclusion bodies when expressed bacterially. However, a robust in 

vitro refolding protocol for D11 expression in E. coli was developed by Brown et al. in 2002 

(based upon Gao et al. 1998).112,172 Using variations of this protocol, high-resolution X-ray or 

NMR solution structures have been determined for human, echidna, chicken and opossum D11 

(PDB 1GP0, 2LLA, 2L21, 2L2G)101,124 as well as D11 variants engineered for high-affinity 

ligand binding.127 

The aim of the work in this chapter was to apply this refolding method to the expression of two 

previously uncharacterised domains – domain 7 (D7) and domain 8 (D8). When this project 

was initiated the only structural information available for D7 and D8 was from a tentative 

model of the 160 kDa homodimer of D7-11 collected to 3.8 Å. High-resolution crystal 

structures of domains 7, 8, 9 or 10, which have not been structurally characterised elsewhere, 

may assist in the phasing and refinement of this D7-11 crystal structure. 
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2.2.  Bacterial expression of D7 and D8 

Synthetic genes encoding D7 and D8 (GeneArt, ThermoFisher Scientific, Appendix Section 

8.1.) were individually subcloned into the expression vector pET28a (Novagen) by traditional 

restriction cloning methods (using NdeI, XhoI and T4 ligase). Following confirmation by 

Sanger sequencing (Genewiz), constructs were expressed in E. coli BL21 (DE3, Novagen). 

D11 was expressed from pET28a in parallel as a control. Due to the reducing environment of 

the bacterial cytosol and the presence of three disulphide bonds in D7 and four in each of D8 

and D11, these domains form insoluble inclusion bodies – dense aggregates of misfolded 

recombinant protein.173 

The inclusion bodies were purified and resolubilised in 8 M urea. Denatured protein was 

refolded following the rapid dilution protocol established by Brown et al. for D11.112 Briefly, 

denatured protein is diluted into refold buffer containing Tris pH 8 (a pH buffer), EDTA (a 

metal chelator that suppresses metal-catalysed cysteine oxidation), L-arginine (a chaotropic 

aggregation suppressor), cysteamine and cystamine (a redox pair that facilitates correct 

disulphide bond formation).173,174 After 24 hrs recombinant protein was purified by size 

exclusion chromatography (SEC) and analysed by SDS-PAGE. 

Figure 19 shows the successful application of this method to the refolding of D11. Folding was 

assessed by gel filtration and 1D 1H-NMR. When purified by SEC (using a preparative 26/60 

S75 column), natively folded, monomeric D11 elutes between 160-180 mL (Figure 21A). The 

minor peak at 100-120 mL seen in the purification of all three recombinant proteins (D11, D7 

and D8) corresponds to high molecular weight aggregates. Protein aggregation results from 

non-native, intermolecular hydrophobic interactions due to protein mis-folding.175 Purification 

of D11 was confirmed by SDS-PAGE and mass spectrometry. 1D 1H-NMR confirmed native 

folding of the protein (Figure 21B). The upfield chemical shifts in the region 0.5 to -0.5 ppm 

correspond to methyl groups that have been shifted away from common methyl chemical shifts 

(e.g. ~0.85ppm for valine and leucine methyl groups).176 This is due to the ring current effects 

of nearby aromatic residues and typically only occurs when a protein is folded.176 
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Figure 21: Bacterial expression and in vitro refolding of D11 (top), D8 (middle) and D7 (bottom). A: SEC 

trace of in vitro refold and SDS-PAGE analysis showing elution of purified recombinant protein. Expected 

molecular weights: D11 19.8 kDa, D8 17.5 kDa and D7 18.6 kDa. B: 1D 1H-NMR of sample 1 from in vitro 

refolds confirming that only D11 has been successfully refolded. 

 

However, use of this protocol did not yield natively folded D7 nor D8. Whilst refolded D7 and 

D8 eluted from the SEC column within the expected calibrated mass range (Figure 21A), the 

absorbance peak was broad suggesting the presence of multiple species/ states. 1D 1H-NMR 

confirmed that the major peak fractions of D7 and D8 were unfolded (Figure 21B). An 

extensive screen of refold conditions was performed in attempt to optimise the in vitro 

refolding protocol. Changes were made to the sample preparation, refold buffer and to the 

refold method (Table 6). However, despite an extensive screen of refold conditions (Table 6) 

in attempt to optimise the in vitro refolding protocol and screening by 1D 1H NMR, natively 

folded D7 or D8 could not be obtained following expression in E. coli BL21 (DE3).  
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Condition Change 

1. Protein concentration 1-0.01 mg/ mL 

2. Protein construct His6 tagged, untagged 

3. Reducing agent (DTT) 

concentration 

0-100 mM 

4. Denaturant 8 M urea, 6 M guanidinium hydrochloride 

5. pH pH 7-9 

6. Arginine concentration 0-2 M 

7. Redox pair Cystamine-cysteamine, glutathione-reduced glutathione 

8. Redox pair ratio 1:1 -10:1 (reduced: oxidised) 

9. Additives Glutamate, sucrose, ETDA, sodium chloride, potassium 

sulphate  

10. Denaturing IMAC  

11. On column (IMAC) refold  

12. Dialysis  
Table 6: D7 and D8 in vitro refold conditions screened. Changes were made to sample preparation (green), to 

refold buffer (blue) and to refold method (red) individually and in combination. 

 

2.3.  Insect cell expression 

Alternate approaches have proved successful in expressing single CI-MPR domains 

bacterially. For example, Olson et al. demonstrated successful expression of folded bovine D5 

in E. coli BL21 (DE3).177 D5, which contains three disulphide bonds, was expressed as an 

insoluble fusion protein with the small ubiquitin-like modifier (SUMO) protein at the N-

terminus – a modification previously demonstrated to enhance protein solubility.177,178 

Recombinant SUMO-D5 was refolded in vitro using the rapid dilution method, purified and 

the SUMO tag cleaved.177 A well dispersed 2D 1H-15N HSQC and crystals diffracting to 1.8 Å 

demonstrated native folding of bacterially expressed D5 suitable for structural 

characterisation.177  

However, with the aspiration to structurally characterise larger, multi-domain CI-MPR 

constructs, the decision was made to use a eukaryotic expression system, which due to their 

compartmentalisation, are intrinsically capable of disulphide bond formation.  Therefore, insect 

cells were chosen as expression hosts for the CI-MPR domains due to their post-translational 

modifications (notably disulphide bond formation and N-linked glycosylation), relatively high 

yields, and safety – the baculoviruses produced are unable to replicate within mammalian 

cells.179  
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Insect cell expression of D11 

D11 has already been well characterised structurally and functionally through E. coli 

expression, in vitro refolding, X-ray and NMR studies, IGF2 binding assays and 

mutagenesis.79,101,112,124 However, being only approx. 15 kDa in size, containing eight cysteines 

that form four disulphide bonds and having no N-linked glycosylation sites, D11 was used 

initially to demonstrate that insect cells were suitable expression hosts for single domains of 

the CI-MPR.  

In the baculoviral expression vector system (BEVS), insect cells are infected with recombinant 

baculovirus containing the gene of interest on a baculoviral artificial chromosome (BAC or 

bacmid).180 Here the MultiBac system developed by Professor Imre Berger, predominantly for 

the expression of multi-subunit complexes but also with the advantage of streamlined standard 

operating protocols, was used.181 Table 7 below summarises the major modifications that have 

been made to the 130 kb double stranded DNA genome of the Autographa californica nuclear 

polyhedrosis virus (AcNPV) to produce the MultiBac BAC.181 Although the AcNPV has a 

broad range of insect cell hosts, it cannot replicate within mammalian cells.179   

Gene Function Modification Result 

polh Very late gene encoding the 

viral coat protein polyhedron. 

Removed Recombinant protein can be placed 

under control of polh promoter. 

p10 Very late gene encoding p10 

– function unknown. 

Removed Recombinant protein can be placed 

under control of p10 promoter. 

v-

cath 

Encodes cathepsin - a 

cysteine protease involved in 

host cell degradation.182 

Removed Improves stability of secreted 

recombinant proteins.183 

chiA Encodes chitinase – degrades 

chitin and processes v-cath.182 

Removed Improves stability of secreted 

recombinant proteins.183 

YFP Encodes Yellow fluorescent 

protein. 

Added Facilitates monitoring of recombinant 

protein expression.179,184 

Table 7: The major modifications that have been made to the AcNPV genome in the MultiBac system for 

recombinant protein expression.  

 

A synthetic gene encoding D11, codon optimised for expression in Spodoptera frugiperda and 

with an N-terminal RPTP signal sequence for recombinant protein secretion and a C-terminal 

hexaHistidine tag for purification, was synthesised and sub-cloned (by GeneArt, ThermoFisher 

Scientific) into the transfer vector pFastBac, creating D11WT-pFastBac (Appendix Figure 1). 



2.  Domains 7 and 8  

45 

 

This places the D11 gene under the control of the very late baculoviral promoter polh 

(polyhedrin promoter) and within two Tn7 transposition sites that are required for bacmid 

formation.  

The D11 gene was inserted into the baculoviral DNA from the pFastBac transfer vector by Tn7 

transposition – the Tn7 enzyme being provided by a helper plasmid present within EMBacY 

DH10 E. coli cells (kindly provided by the Berger group, School of Biochemistry) (Figure 

22).179,185 Colonies containing recombinant bacmid were selected by blue-white screening. 

White colonies were simultaneously streaked onto fresh lysogeny broth (LB) agar plates and 

added to 3 mL LB containing the relevant antibiotics. Both plates and cultures were incubated 

overnight at 37 ºC before bacmid DNA was isolated by alkaline lysis from LB cultures of 

confirmed white colonies. Agarose gel electrophoresis (Figure 22) confirmed the presence of 

bacmid DNA. 

Figure 22: Generation of D11 bacmid DNA. EMBacY DH10 E. coli cells were transformed with D11WT-

pFastBac transfer plasmid. Tn7 transposase, encoded on a helper plasmid in the E. coli cells, facilitated the 

integration of the D11WT gene into the EMBacY bacmid. Successful integration disrupted the LacZ gene of 

EMBacY giving rise to white colonies. Following selection and growth of white colonies, bacmid DNA was 

isolated and confirmed by 0.8 % agarose gel electrophoresis. 

 

Bacmid DNA was transfected into an ovarian cell line from the fall army worm (Spodoptera 

frugiperda cell line 21, Sf21) via lipid transfection. Viral titre V0 was harvested after 48 hours 

incubation at 27 oC and amplified in fresh Sf21 shaking cultures. Viral titre V1, which was used 

to infect subsequent cultures, was harvested 24 hours after proliferation arrest. Cell 
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proliferation was monitored daily with samples containing 1x106 cells collected every 24 

hours.  

One of the advantages of the MultiBac system, is the addition of the YFP gene (as indicated in 

Table 7 above) to facilitate determination of the optimum harvest time.181 YFP and the gene of 

interest (D11 here) are both under the control of the polh promoter (Figure 22, D11WT 

EMBacY).181 It follows, therefore, that if YFP is expressed, the protein of interest should also 

be expressed. YFP emission is measured in soluble cell fractions prepared from 1x106 cells, 

making this a quantitative analysis (Figure 23A). Cultures should be harvested when the YFP 

emission peaks or plateaus` as at this point protein expression has generally reached a 

maximum. Beyond this time point YFP emission decreases as YFP degradation, cell death and 

lysis increases.  

Figure 23: Expression of D11 in insect cells. A: YFP emission at 524 nm peaks. B: SDS-PAGE of D11 soluble 

cell fractions (S), insoluble (I) and media (M). Expression and secretion of D11 (within the red box, expected 

molecular weight 18.6 kDa) is first visible 48 hours after proliferation arrest. YFP (expected molecular weight 

28.1 kDa) is also visible in the soluble and insoluble cell fractions. Abbreviations: PBS-phosphate buffered saline, 

CC-uninfected cell control, DPA-day of proliferation arrest, +24 -24 hours after proliferation arrest.  

 

Based upon the YFP emission data and SDS-PAGE above (Figure 23), D11 was harvested 72 

hours after proliferation arrest (DPA+72).  Due to the presence of an N-terminal signal peptide, 

D11 is secreted into the culture medium (Figure 23B), which was clarified by centrifugation. 

The pH of the culture media containing recombinant D11 was adjusted from pH 6.5 to 5.5 by 

dilution with sodium acetate buffer pH 5.0, keeping below the isoelectric point of D11 (8.2).  

This buffered media was filtered and loaded onto an SP ion exchange (IEX) column and D11 

eluted over a gradient of sodium chloride (Figure 24A). D11 was isolated to greater than 90 % 

purity and at a yield of 46 mg/ L. 
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Figure 24: Purification of D11 from insect culture media. A: IEX chromatogram of D11 harvest from cell 

culture medium. Protein was eluted from the SP column over a gradient of sodium chloride. B: SDS-PAGE 

analysis of IEX purification confirmed the presence of purified D11 in peak B.  

 

Electrospray ionisation-mass spectrometry (ESI-MS) (Figure 25A) confirmed expression and 

purification of D11 (expected mass: 16817.9 Da, observed mass: 16817.2 Da). However, ESI-

MS revealed the sample to be heterogeneous with multiple charge state envelopes observed. 

The major species corresponds to a truncated version in which the four N-terminal residues 

(ETGA) of the signal sequence were absent (expected mass: 16548.9 Da, observed mass: 

16548.5 Da). There is also a minor species at 16999.5 Da (182 Da greater than the expected 

mass) that has not been identified but may correspond to a combination of phosphorylation of 

D11 at a serine, threonine or tyrosine and a phosphate adduct (expected mass addition of +178 

Da). There are no N-linked glycosylation sites in D11. 

Figure 25: Initial characterisation of insect expressed D11. A: ESI-MS of D11 reveals 3 species: full length 

D11 (2), N-terminally truncated D11 (1) and an unidentified species (3) 182 Da larger than expected. Small 

quantities of D11 sodium adducts (black crosses), potassium adducts (blue) and phosphate adducts (green) were 

also observed. B: Analytical SEC of D11 reveals the major species (1) to be monomeric (Mwexp 16.8 kDa, Mwapp 

15.7 kDa). SDS-PAGE of the major species under reducing (R) and non-reducing (N) conditions suggests 

disulphide bond formation. 

 

Analytical SEC confirmed that the majority of D11 (1) was monomeric (Mwexp16.8 kDa, 

Mwapp 15.7 kDa), with a small peak (2) that may correspond to a D11 dimer (Mwexp 33.6 kDa, 
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Mwapp 40.5kDa) (Figure 25B and Appendix Figure 3). The major species was analysed further 

by denaturing and native SDS-PAGE (Figure 25B inset). Unlike in denaturing SDS-PAGE, 

where protein samples are denatured and reduced by boiling with SDS and -mercaptoethanol, 

in native SDS-PAGE samples are not denatured, allowing separation of different oligomeric 

states.186 Under native conditions, whereby the absence of reducing agent maintains the 

cysteine residues as oxidised disulphide bonds, protein samples migrate slightly faster and give 

rise to discrete bands. The slight band shift between D11 under denaturing, reducing conditions 

(R) and non-denaturing, non-reducing conditions (N) (Figure 25B inset) suggests the presence 

of disulphide bonds and is indicative of protein folding. 

Native protein folding was confirmed by 1D 1H-NMR (Figure 26A). The upfield chemical 

shifts in the region 0.5 to -0.5 ppm for methyl protons and sharp dispersed signals across the 

full range of protein signals, suggested that the protein is folded.176 Figure 24 shows a 

comparison of 1D 1H-NMR spectra of D11 expressed in insect cells (produced here) and 

bacterial cells (Dr Chris Williams, University of Bristol). Shifts in the upfield region are 

identical between the two spectra, suggesting that D11 expressed in insect cells is adopting the 

same fold as that expressed bacterially.  

X-ray crystallography has been routinely used to structurally characterise multi-domain CI-

MPR constructs (for example, D1-3, D11-12 and D11-14, PDB 1SYO/1SZ0, 2V5N and 2V5O 

respectively), single D11 constructs (PDB 1GP0 and 1GP3) and D11 mutants engineered for 

high-affinity IGF2 binding (for example D11 AB5 RHH, PDB 5IEI). Thus, X-ray 

crystallography was employed here to demonstrate that D11 expressed using the baculoviral 

expression vector system adopts the native -sandwich fold previously observed by bacterial 

expression. 

D11 (140 amino acids, N1511-T1651) in 0.025 M tris pH 7, 0.15 M sodium chloride 

crystallised from a solution of 30 % PEG 4000, 0.1 M Tris-HCl pH 8.5, 0.2 M sodium acetate 

for crystal structure determination. The construct crystallised in space group P212121 with 1 

molecule in the asymmetric unit. The structure of D11 was determined to 2.0 Å (Rwork and 

Rfree values of 18.3 and 22.4 % respectively) with 100 % of the backbone dihedral angles in 

allowed and favoured regions of the Ramachandran plot (Figure 26C, Appendix Table 4), by 

molecular replacement using the crystal structure of bacterially expressed D11 (PDB 1GP0) as 

a search model. There was no electron density for N1511-D1515 at the N terminus or Q1649-

T1651 at the C terminus of D11.  
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Insect expressed D11 forms the same core -sandwich topology composed of nine anti-parallel 

-strands as previously observed in the structures of D1-3, D5, D11 and D11-14.101,131,136 

Superimposition of insect expressed D11 (this work) and bacterially expressed D11 (PDB 

1GP0) crystal structures gives an RMSD value of 0.2 Å over backbone atoms (Figure 26C). 

Figure 26: Structural characterisation of D11. A: 1D-1H NMR spectra of D11 expressed in insect cells 

confirms native protein folding. B: 1D-1H NMR spectra of D11 expressed bacterially (Dr Chris Williams, 

University of Bristol) has the same pattern of upfield peaks suggesting the same protein fold. C: Superimposition 

of the insect expressed D11 (blue) and bacterially expressed D11 (green, PDB 1GP0) crystal structures gives an 

RMSD value of 0.2 Å over backbone atoms. 

 

 

Insect cell expression of D7 and D8 

Expression and purification of D7 and D8 

Following successful expression and purification of D11 in insect cells, this approach was 

applied to D7 and D8 for structural characterisation. DNA encoding D7 (465 bp) and D8 (420 

bp) was amplified by PCR from a synthetic gene encoding D1-15 (GeneArt, ThermoFisher 

Scientific) and subcloned, using restriction endonucleases EcoRI and HindIII, into the 

modified pFastBac transfer vector (Appendix Figure 1). (pFastBac was again modified to 

contain the N-terminal RPTP signal sequence for recombinant protein secretion and a C-

terminal hexaHistidine tag). EMBacY DH10 E. coli were transformed individually with 

D7pFastBac or D8pFastBac and recombinant D7 and D8 protein was expressed in Sf21 insect 

cells using the protocols previously established for the expression of D11WT.  
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The optimal harvest time for each protein was determined by SDS-PAGE analysis and YFP 

emission as 96 hrs after proliferation arrest. As for D11, D7 and D8 were secreted into the 

culture media that was harvested by centrifugation. However, due to lower isoelectric points 

(6.0 for D7 and 6.3 for D8 versus 8.2 for D11), the pH of the culture media was adjusted from 

pH 6.5 to pH 8.0 by the addition of an equal volume of tris buffer pH 9.0. This increase in pH 

simultaneously improved the affinity of His6 tagged D7 and D8 to the Ni2+ IMAC resin and 

diluted chelating agents present in the serum free media that strip Ni2+ IMAC resin.187 Above 

pH 7.0, components of the serum free culture media formed a white precipitate that was 

removed by centrifugation and filtration.187 Buffered culture media was then loaded directly 

onto an Ni-NTA column and recombinant protein eluted with an imidazole gradient (Figure 

27). 

Figure 27: Purification of D7 and D8 from insect culture media. A: Ni2+ IMAC of D7 (top) and D8 (bottom) 

harvested from cell culture medium. Protein was eluted from the Ni-NTA resin over a gradient of imidazole. B: 

SDS-PAGE analysis of Ni2+ IMAC confirmed the presence of purified D7 and D8 (bands in the red box, expected 

molecular weights of 18.2 kDa and 16.6 kDa respectively). ‘On’ corresponds to media loaded onto the Ni2+ 

column, ‘FT’ to the flow through and ‘Fractions’ to the peak fractions following addition of imidazole. 

 

D7 and D8 were isolated to greater than 90 % purity and with a yield of 6 mg/ L and 10-15 mg/ 

L respectively. The yields were much lower than that observed for D11 (46 mg/ L), most likely 

due to the presence of one predicted glycosylation site in D8 and two in D7 that mass 

spectrometry has shown to be glycosylated. The yields of D7 and D8 are in line with literature 

values. For example, Farrell et al. reported a yield of 10 mg/ L for a non-glycosylated, secreted 

protein (BTF) from Hi5 insect cells and 10-20 mg/ L for a glycosylated, secreted protein (GM-

CSF) from Bm5 insect cells.188 
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Biophysical characterisation of D7 and D8 

SDS-PAGE analysis and mass spectrometry confirmed successful expression and purification 

of both D7 and D8. D8 contains one predicted N-linked glycosylation site: N1163 and was 

characterised first for simplicity. The major species in the D8 mass spectrum (Figure 28A) was 

derived from truncated D8, termed D8t, that is missing four residues (ETGA) of the N-terminal 

signal sequence. Mass spectrometry revealed that both D8 and D8t were glycosylated with the 

same core fucosylated paucimannosidic N-linked glycan (D8 expected molecular mass: 

17699.7 Da, observed: 17701.0 Da, D8t expected molecular mass: 17341.3 Da, observed: 

17343.0 Da, Figure 28A). This post-translational modification is typical of insect cells (Figure 

29).189 

Despite sample desalting and preparation by methanol-chloroform extraction, several smaller 

peaks were observed corresponding to common salt adducts (sodium adducts (+23 Da), 

potassium adducts (+39 Da), imidazole adducts (+68 Da) and phosphate adducts (+98 Da)). 

This was not improved by using C4 ziptips or dialysis into ammonium acetate. Small peaks 

were also seen in the deconvoluted spectra for full length non-glycosylated D8 and truncated 

and full length glycosylated D8 species minus the His6 tag.  

Although N-linked glycans can be removed using anhydrous hydrazine, this has the 

undesirable effect of cleaving peptide bonds.190 Thus, for de-glycosylation under native 

conditions enzymatic methods are often employed. The N-linked glycan on D8 was removed 

by incubation with Peptide N-glycosidase F (PNGaseF), which cleaves the -glycosidic 

linkage between GlcNAc and asparagine, converting asparagine into aspartic acid.191 (Note 

PNGaseF cannot cleave N-linked glycans containing an 1-3 fucose residue but 1-3 

fucosylation does not occur in the Spodoptera frugiperda cell line 21 used here (Figure 29)).192–

194 Following treatment with PNGaseF, D8 was completely de-glycosylated, with the two 

major species corresponding to de-glycosylated truncated and full length D8 (de-glycosylated 

D8t expected molecular mass: 16303.3 Da, observed: 16304.9 Da and de-glycosylated D8 

expected molecular mass: 16661.7 Da, observed: 16663.0 Da) (Figure 28B). 
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Figure 28: ESI-MS of D8. A: Mass spectrometry revealed that D8 was glycosylated with a core fucosylated N-

linked glycan. The major species (4) corresponded to truncated D8 in which four N-terminal residues (ETGA) of 

the signal sequence had been cleaved. B: Following treatment with PNGaseF, D8 was de-glycosylated. Species 6 

and 7 have lost their His6 tag. In both spectra, black crosses corresponded to sodium adducts (+23 Da), blue 

crosses to potassium adducts (+39 Da), red crosses to imidazole adducts (+68 Da) and green crosses to phosphate 

adducts (+98 Da). 

 

 

Figure 29: The N-linked glycosylation pathway in insect cells. In the rough endoplasmic reticulum (RER), a 

precursor N-linked glycan is transferred from the lipid carrier dolichol phosphate to an asparagine residue in the 

NST sequon (N-X-S/T). The glycan is trimmed and processed in the RER and golgi to give rise to the three classes 

of insect N-linked glycan: high mannose, hybrid and paucimannosidic. The pathway highlighted in red and pale 

green occurs in the Spodoptera frugiperda cell line (including Sf21 used here).16,23,189 These Sf21 cells are 

incapable of 1-3 fucosylation (dark green box).192,193 The paucimannosidic glycan in the red box was observed 

on both D7 and D8. 
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Mass spectrometry revealed that D7 was modified with the same core fucosylated 

paucimannosidic glycan as D8 (Figures 28A and 30A). The same N-terminal truncation 

observed for D11 and D8 was also detected for D7 and is termed D7t. D7 contains two 

predicted N-linked glycosylation sites: N951 and N957, which gave rise to singly and doubly 

glycosylated species (singly glycosylated D7t expected molecular mass: 18928.1 Da, observed: 

18931.0 Da, doubly glycosylated D7t expected molecular mass: 19967.1 Da, observed: 

19970.0 Da, D7 singly glycosylated expected molecular mass: 19286.1 Da, observed: 19289.0 

Da, D7 doubly glycosylated expected molecular mass: 20325.5 Da, observed: 20327.0 Da). 

However, whilst ~60 % of D8 was isolated as the truncated form, a greater proportion (~80 %) 

of D7 was truncated.  

PNGaseF de-glycosylation of D7 (Figure 30B) yielded a major species of non-glycosylated 

D7t (expected molecular mass: 17887.1 Da, observed: 17896.0 Da). A smaller peak was 

observed for D7t modified with a single fucosylated N-linked glycan (expected molecular 

mass: 18926.5 Da, observed: 18935.0 Da). The same modifications were also observed with 

full length D7 (non-glycosylated D7 expected molecular mass: 18248.6 Da, observed: 18255.0 

Da, singly glycosylated D7 expected molecular mass: 19288.0 Da, observed: 19294.0 Da). 

Incomplete de-glycosylation may be due to sub-optimal conditions or steric hindrance of one 

of the glycosylation sites. N957 is predicted to be exposed on the surface of A and N951 on 

the flexible N-terminus/ linker region between D6-D7. 
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Figure 30: ESI-MS of D7. A: Mass spectrometry revealed that D7 was glycosylated with either one (species 2) 

or two (species 4) core fucosylated N-linked glycans. The same N-terminal truncation seen in D8 is visible for 

D7 (species 1 and 3). B: Mass spectrum of D7 following treatment with PNGaseF. Truncated and full length D7 

with no glycans (species 5 and 6) were visible. However, deconvoluted spectra also contains a peak corresponding 

to truncated D7 with a single fucosylated glycan (species 7). In both spectra, black crosses corresponded to sodium 

adducts (+23 Da), blue crosses to potassium adducts (+39 Da), red crosses to imidazole adducts (+68 Da) and 

green crosses to phosphate adducts (+98 Da).  

 

D7 and D8 were both determined to be monomeric in solution by analytical SEC with an 

expected and observed monomeric molecular weight of 19.9 kDa and 21.3 kDa respectively 

for D7 and 17.3 kDa (Mwexp) versus 15.5 kDa (Mwapp) for D8 (Figure 31A and Appendix 

Figure 3). Peak fractions were analysed by SDS-PAGE under denaturing, reducing (R) and 

non-denaturing, non-reducing (N) conditions (Figure 31A). The slight band shift under native 

conditions suggested a more compact, disulphide bonded structure consistent with a globular 

protein fold. Native protein folding of glycosylated D7 and D8 was confirmed by 1D-1H NMR 

acquired at 700 MHz (Figure 31B) and both species yielded sharp, well resolved and dispersed 

chemical shift envelopes.  
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Figure 31: Biophysical characterisation of D7 and D8. A: analytical SEC chromatogram of D7 (top) and D8 

(bottom) revealed their monomeric status. SDS-PAGE analysis of the peak under reducing (R) and non-reducing 

(N) conditions suggested protein folding. B: 1D 1H-NMR spectra of glycosylated D7 (top) and D8 (bottom) 

suggested native protein folding.  

 

Structural characterisation of D7 and D8 

D7 and D8 have not been structurally characterised at high-resolution. If high-resolution 

structures of D7 and D8 could be obtained these would provide structural information on two 

new domains of the CI-MPR as well as potentially assisting in the phasing and refinement of 

larger fragments of the CI-MPR, including a dataset for D7-11. Thus, D7 and D8 structure 

determination was pursued by X-ray crystallography. 

Domain 8: 

Sparse matrix crystallisation screens were set up with varying concentrations of glycosylated 

D8. After approximately 6 months small birefringent crystals were seen from a solution of 1.5 

M ammonium sulphate, 0.1 M Tris pH 8.5 and 12 % glycerol. These were looped, cryo-cooled 

and diffraction data collected at Diamond Light Source. D8 (V1082-R1221, 139 amino acids) 

had crystallised in space group P1211 with two molecules in the asymmetric unit. The 

diffraction data was poor quality with high anisotropy and possible twinning. Nonetheless, by 

molecular replacement methods, Dr Chris Williams (University of Bristol) determined the 

structure of D8 to 2.56 Å resolution (Rwork and Rfree values of 22.3 % and 25.1 % 

respectively) with 94.9 % of the backbone dihedral angles in favoured regions of the 
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Ramachandran plot (Appendix Table 4). Electron density was observed for V1082-V1220 of 

D8 and S1081 from the N-terminal signal sequence. Although ESI-MS revealed D8 to be 

modified by the addition of an N-linked glycan at N1164 (Figure 28A), no electron density for 

the glycan was observed. This is likely due to the flexibility of the glycan and the positioning 

of N1164 towards a solvent channel. Alternatively, the glycan may have been lost with time, 

allowing eventual crystallisation.  

The structure of D8 (Figure 32A) revealed a core -sandwich structure as previously observed 

for D1-3, D5 and D11-14 of the CI-MPR.101,131,136 Two antiparallel -sheets (A-D and E-I) 

form a flattened, nine-stranded -sandwich linked by five loop regions (termed AB, CD, FG 

and HI) which vary in length between four and nine amino acids. The -sandwich is stabilised 

by four disulphide bonds: C1084-1125 between the N-terminus and the loop between B and 

C, C1142-C1134 between C and the preceding loop region, C1177-C1204 between the FG 

and HI loop and C1190-C1207 at the base of G and I (Figure 32A).  

Figure 32: The crystal structure of human CI-MPR D8. A: D8 forms a nine-stranded -sandwich (A-I) 

stabilised by four disulphide bonds (red sticks). B: There are two copies of D8 per asymmetric unit. C: The D8 

homodimer is stabilised by a salt bridge between D1114-K1117 and H-bond between K1117-G1115 in the AB 

loops. D: At the base of D8, dimerisation is stabilised by a salt bridge between R1103-E1215 and H-bonds 

between R1103-G1195 and R1103-T1213. Salt bridges are shown as red dashed lines and H-bonds as yellow 

dashed lines. An identical interaction site is seen for R1103 of molecule B.  

 

The D8 crystal structure contains two copies per ASU (Figure 32B) with molecule A having a 

buried surface area of 682.4 Å2 (9.2 %) and molecule B 662.9 Å2 (8.9 %) (as determined by 

PISA, Krissinel et al.).195  A-B of molecule A packs against A-B of molecule B. Specifically, 

a series of three hydrogen bonds (K1117-G1115, R1103-G1195 and R1103-T1213) and two 



2.  Domains 7 and 8  

57 

 

salt bridges  (D1114-K1117 and R1103-E215) form at the bases of the -sandwich and the AB 

loops.  

D8 has no obvious ligand binding site, indeed there is no known ligand for D8. Analysis of the 

AB, CD, FG and HI loops of D8 reveals that residue Y1207 on I is in the same position as 

Y421 of D3, Y714 of D5, Y1351 of D9 and Y2233 of D15 that are all part of the conserved 

‘QREY’ motif in these MRH domains. However, the remaining residues of this motif are not 

present in D8, where L1143, F1182, Q1202 replace QREY residues respectively (Figure 33A), 

suggesting that D8 is unlikely to possess any hitherto unreported weak M6P binding. Further 

analysis of the M6P binding sites of D3, D5, D9 and the loops at the top of D8 demonstrate 

that, D8 does not form a pocket with a charge distribution observed in the MRH domains 

(Figure 33B). Similarly, the region adjacent to the AB, CD, FG and HI loops of D8 does not 

form a hydrophobic patch as observed in the D11 IGF2 binding site (Figure 33B). 

Figure 33: The potential D8 binding site. A: Superimposition of D3 (red) and D8 (orange). Residues of the 

‘QREY’ M6P binding motif of D3 (Q348, R391, E416, Y421) are labelled and shown as red balls-and-sticks. The 

analogous residues of D8 (L1143, F1182, Q1202, Y1207) are labelled in brackets and shown as orange balls-and-

sticks. B: Comparison of the binding sites (viewed looking down onto the AB, CD, FG and HI loops) of D3, D5, 

D9, D11 and D8 (PDB 1SYO, 2KVB, 6Z32, 1GP0 and 6Z31). Top: positively charged residues coloured blue 

and negatively charged residues red (range +2 to -2) as determined using the APBS software.196 Bottom: 

hydrophobic residues coloured red according to the normalised hydrophobicity scale.197 C: K1113 at the N-

terminus of D8 and T1139 and P1141 of D8 BC loop interact with S5 and F48 of IGF2 (PDB 6UM2). D: The 

crystal structure of single human D8 also contains two chloride ions (green spheres) that are bound by the 

positively charged side chain of K1104 and the backbone amide groups of V1102 and R1103 of each D8 molecule. 
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However, the recent low-resolution (4.3 Å) cryo-EM structure of bovine D4-14 in complex 

with IGF2 at pH 7.4 (PDB 6UM2) reveals that D8 may play a role in IGF2 binding.128 K1113 

N-terminal to A and Y1139 and P1141 both on the BC loop of D8 interact with 2 of IGF2 

(Figure 33C). These interactions were confirmed by mutagenesis, with IGF2 mutant F48D 

resulting in a 20-30 % reduction in CI-MPR-IGF2 binding.128 

The crystal structure of D8 also contains two chloride ions (confirmed by CheckMyMetal 

validation server 198) bound at the base of the -sandwich (Figure 33D). Although, chloride is 

not present in the crystallisation reservoir, D8 was purified into Tris pH 8 buffer containing 

150 mM sodium chloride. Analysis of protein structures in the PDB shows it is not uncommon 

to find two chloride ions in structures containing 2 copies of identical sequence in a single 

ASU.199 On average, such chloride ions have a total exposed surface area of ~29 Å2 (22 % of 

their total surface area).199 The chloride ions in the D8 crystal structure have exposed surface 

areas of 25.1 Å2 (20.2 %) and 24.4 Å2 (19.5 %).195 The chloride ions are bound by the positively 

charged side chain of K1104 and the backbone amide groups of V1102 and R1103 (Figure 

33D). This is in line with the observation that positively charged amino acids (R, H, K) and 

polar amino acids (N, Q, S, T) dominate in protein-chloride interactions.199 

 

Domain 7: 

Four commercial sparse matrix crystallisation screens (Morpheus, JCSG Plus, PACT Premier 

and Structure Screen I and II (Molecular Dimensions)) spanning 384 discrete crystallisation 

conditions were set up with D7 at a range of concentrations at 4 oC and 25 oC. However, 

birefringent protein crystals failed to form. This was attributed to the presence of the two 

predicted N-linked glycosylation sites at N951 and N957 that mass spectrometry revealed to 

be occupied by fucosylated paucimannosidic glycans (Figure 30A).   

Crystallisation of glycosylated proteins is a recognised challenge with only ~ 10 % of all PDB 

entries being glycosylated (as of 2007).25 The flexibility and heterogeneity of N-linked glycans 

hampers crystallisation and therefore the most common strategy for crystallisation of 

glycosylated proteins is simply to remove them. This was demonstrated by Fan et al. who found 

that although glycosylated follicle-stimulating hormone (FSH) crystallised, it diffracted to only 

9 Å.200 Meanwhile, FSH partially de-glycosylated with endoglycosidases F2 and F3 diffracted 

to 2.9 Å (PDB 1XWD).200 
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Mass spectrometry has shown that D7 can be partially de-glycosylated by PNGaseF (Figure 

30B). However, complete removal of the N-linked glycan can result in protein 

aggregation.25,201 Indeed, fully de-glycosylated, soluble D7 could not be obtained using 

PNGaseF when the reaction was performed under native conditions. A second enzyme, endo 

-N-acetylglucosaminidase H (EndoH), which cleaves between the two GlcNAc residues of 

the chitobiose core,25,202 was also tested but again failed to produce soluble, de-glycosylated 

D7 suitable for crystallisation. Co-crystallisation of D7 and EndoH also failed to produce 

crystals. 

 

2.4.  Conclusions 

As expected, due to the presence of disulphide bonds and N-linked glycosylation sites, D7 and 

D8 expressed insolubly in bacteria, forming dense inclusion bodies of protein. Despite an 

extensive screen of conditions, the D11 in vitro refold protocol could not be adapted for D7 or 

D8.  

With this in mind and the aspiration to structurally characterise larger, multi-domain fragments 

of the CI-MPR, eukaryotic expression protocols were established. Using the well characterised 

D11 as a control protein, insect cells proved to be suitable expression hosts capable of 

expressing natively folded, single CI-MPR domains for biophysical characterisation (that 

includes mass spectrometry, analytical SEC and 1D 1H-NMR) and structural characterisation 

(by X-ray crystallography).  

Although, D7 failed to crystallise (likely due to the presence of two N-linked glycans), D8, 

which contains only one N-linked glycosylation site, crystallised and its structure was 

determined to 2.5 Å resolution. This is the first high-resolution structure of human D8 and can 

hopefully be used in the determination of larger fragments of the CI-MPR such as D7-11. 
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3.  Structural characterisation of D9 

3.1.  Introduction and aims 

With a protocol established for the expression of single CI-MPR domains (chapter 2), the focus 

turned to the selective, high-affinity and independent M6P binding domain D9. To date, there 

exists no high-resolution structure of human D9, which has not been expressed in isolation. 

D5, D11, D15 and now D7 and D8 have each been expressed individually: D5 and D11 in both 

bacteria and yeast,112,124,131,177 D15 in bacteria 130 and D7 and D8 in insect cells (chapter 2). 

However, despite extensive previous work in the Crump group, soluble folded D9 has not been 

obtained. E. coli expression of D9 from four species (Homo sapiens, Bos taurus, Lemur catta 

and Ornithorhynchus anatinus) yielded inclusion bodies that require refolding. A range of in 

vitro refolding protocols yielded soluble protein but in no case was a well dispersed, native-

like 1H or 1H-15N HSQC NMR spectrum observed that would indicate correctly refolded 

protein. Mammalian expression of glycosylated D9 in HEK293 cells did eventually produce 

soluble, disulphide bridged, glycosylated protein but again this yielded poor 1H-NMR spectra 

suggesting this construct was not suitable for structural studies. In vitro de-glycosylation of the 

protein failed to improve the NMR spectra.70 

There are conflicting reports by others regarding the success in expressing the sugar binding 

domains D3 and D9 in isolation. For example, attempts by Dahms et al. have similarly failed 

to obtain D3 and D9 in isolation.67 However, Chavez et al. and Hancock et al. have expressed 

bovine D3 and D9 alone in Pichia pastoris, demonstrated the specificity of D9 for M6P mono-

esters and determined the binding affinity of D9 as 75 ±11 nM for GAA mono-ester and 0.3 

±0.1 nM for M6P-tagged -glucuronidase.137,139  

Based on the observation that a D9 protein could not be isolated alone for structural 

characterisation, this work aimed at expressing a stable, D9 containing, multi-domain 

construct. Due to their large size and the presence of three to four disulphide bonds per domain, 

eukaryotic expression hosts are required for the expression of multi-domain CI-MPR 

constructs. The most common eukaryotic expression hosts are the mammalian cell lines human 

embryonic kidney (HEK) cells and Chinese hamster ovary (CHO) cells, the insect cell lines 

Spodoptera frugiperda (Sf21) and Trichoplusia ni 5B1-4 (High five) cells, and the yeast strain 

Pichia pastoris.203 Olson et al. have expressed the three N-terminal domains of the CI-MPR 

extracellular region, D1-3, in High five insect cells and determined the structure by X-ray 
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crystallography (PDB 1SYO/ 1SZ0 and 1Q25).103,136 Similarly, Brown et al. have 

recombinantly expressed several D11 containing multi-domain constructs including D11-12, 

D11-14 and D11-13 in complex with IGF2 for X-ray crystallography (PDB 2V5N, 2V5O, 

2V5P) using the mammalian CHO cell line.101 However, due to availability and the 

establishment of a protocol for expression of single CI-MPR domains in insect cells (chapter 

2), Sf21 insect cells were employed here.  

A range of di-, tri- and larger multi-domain constructs encompassing D9 were designed and 

sub-cloned in parallel for expression in Sf21 cells (Table 8). The most successful constructs 

(D9-10 and D7-10) are discussed here.  

Construct PCR 

amplified? 

Ligated into 

pFastBac? 

Correct 

sequence? 

Bacmid? Virus? Protein? 

D8-9       

D8-10       

D8-11       

D9-10       

D9-11       

D6-10       

D6-11       

D7-10       

D7-12       

D7-14       
Table 8: The progress of D9 containing multi-domain constructs. Constructs were PCR amplified from a gene 

encoding human CI-MPR D1-15 and ligated into a pFastBac vector modified with an N-terminal signal sequence 

and C-terminal His6 tag. Ligation was confirmed by sanger sequencing (Genewiz) (column 3). D9-10 and D7-10 

were the first to be successfully sub-cloned and recombinant bacmid generated. Transfection of Sf21 insect cells 

with recombinant bacmid resulted in recombinant baculovirus and recombinant D9-10 and D7-10 protein. 

 

 

  



3.  Structural characterisation of D9  

62 

 

3.2.  Domains 9-10 

Expression and purification of D9-10 

DNA encoding a D9-10 (852 bp) di-domain construct (Appendix Section 8.1.) was amplified 

by PCR from a synthetic gene encoding D1-15 (GeneArt, ThermoFisher Scientific) and 

subcloned, using restriction endonucleases EcoRI and HindIII, into a modified pFastBac 

transfer vector with an N-terminal RPTP signal sequence and C-terminal His6 tag. EMBacY 

DH10 E. coli were transformed with D9-10pFastBac and D9-10 protein was expressed in Sf21 

insect cells using the protocols established in chapter 2 for single domain constructs.  

The optimal harvest time was determined by SDS-PAGE analysis and YFP emission to be 48 

hours after the day of proliferation arrest (Figure 34A, 34B). However, SDS-PAGE revealed a 

substantial amount of D9-10 protein was retained in the insect cells (in both the soluble and 

insoluble cell fractions, Figure 34A). This is likely due to the presence of 16 cysteines that 

form 8 disulphide bonds. As for previous constructs, D9-10 was harvested from culture media 

by Ni2+ IMAC (Figure 34C, 34D) and was isolated to greater than 90 % purity and with a yield 

of 7-13 mg/ L (varying with batch).  

Figure 34: Expression and purification of D9-10. A: SDS-PAGE analysis of D9-10 expression showing D9-10 

is secreted into culture media. D9-10 (within the red box) has an expected molecular weight of 33.6 kDa. B: YFP 

emissions confirming YFP expression. C: Ni2+ IMAC of D9-10 harvest from the culture media. D: SDS-PAGE 

analysis of IMAC purification. ‘On’ corresponds to media loaded onto the column, ‘FT’ to the flow through and 

‘Fractions’ to the peak fractions eluted following imidazole addition. 
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Characterisation of D9-10 

Expression and purification of D9-10 was confirmed by SDS-PAGE (Figure 34D) and mass 

spectrometry (Figure 35). The ESI-MS m/z envelope (Figure 35A) revealed the presence of 

multiple species with masses exceeding full length D9-10 (33,588.0 Da). This is consistent 

with modification of both predicted N-linked glycosylation sites of D9 (N1246 and N1312) 

with a mixture of typical insect cell derived glycans (Figure 36).16,23,189  

With a mass of 36,172.1 Da, peak D was close to the expected mass of D9-10 plus 

GlcNAc4Man11 (36,168.6 Da) (Figure 35A). Similarly, peak E (36,333.9 Da) was close to the 

expected mass of D9-10 plus GlcNAc4Man12 (36,330.6 Da). N-linked glycosylation is a highly 

heterogenous modification with incomplete mannosidase processing giving rise to intermediate 

glycans with a range of mannose residues. Although the exact glycan structures are unknown, 

glycans 1-3 (Figure 35A) represent possible configurations corresponding to modification of 

D9 at both sites with a low (1) and high (2 and 3) mannose glycan. The higher mass peak F 

(36,431.9 Da) was close to the expected mass of D9-10 plus GlcNAc6Man10 (36,428.7 Da). 

This may correspond to dual modification with hybrid glycan 4 (Figure 35A), a typical insect 

cell derived, N-linked glycan (Figure 36).  

The same glycan modifications (peaks A, B and C) were also observed on a second species 

attributed to an N-terminal truncation of D9-10 in which four amino acids (ETGA) from the 

N-terminal signal sequence had been lost resulting in 358.3 Da mass difference. This N-

terminal truncation was previously observed for D11, D7 and D8 (chapter 2). Small peaks 

corresponding to salt adducts were not removed by dialysis into 0.1 % formic acid or 100 mM 

ammonium acetate. Batch to batch preparations showed slight variability in the distribution of 

glycans (Figure 35B).  

Under native conditions the m/z envelope has a more bimodal distribution and contains several 

smaller charge states corresponding to higher molecular weight species (Figure 35B). 

However, the deconvoluted spectra is unchanged, suggesting D9-10 may exist as a dimer in 

the gas-phase. 

Treatment of D9-10 with PNGaseF confirmed complete loss of glycosylation leaving truncated 

and full length D9-10 de-glycosylated at both sites (truncated (1) expected molecular weight: 

33,231.4 Da, observed: 33,231.0 Da, full length (2) expected molecular weight: 33,589.7 Da, 

observed: 33,589.0 Da) (Figure 35C). 
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Figure 35: Mass spectrometry of recombinant human D9-10 from insect cells. A: ESI-MS of D9-10 used in 

X-ray crystallography reveals the glycosylation status of the two N-linked glycosylation sites of D9 (N1246 and 

N1312). Species D and species E, with masses 36,172.1 Da and 36,333.9 Da were close to the expected masses 

of 36,168.6 Da and 36,330.6 Da consistent with the presence of a low (1) and high (2 and 3) mannose glycan 

typical of on-pathway insect glycosylation processing.16,23,189 Similarly, the higher mass species F (36,431.9 Da) 

closely matched the expected mass for dual modification with hybrid glycan 4. The same glycan modifications 

(A, B and C) were also observed on a second species attributed to an N-terminal truncation of D9-10 in which 

four amino acids (ETGA) from the N-terminal signal sequence had been lost resulting in 358.3 Da mass 

difference. B: ESI-MS analysis of D9-10 batch used in SAXS studies shows the slight variability in glycosylation 

patterns. Higher m/z peaks under native conditions (bottom) suggest D9-10 may exist as a dimer in the gas phase. 

C: ESI-MS analysis of D9-10 de-glycosylated by PNGaseF. 
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Figure 36: The N-linked glycosylation pathway in insect cells. In the rough endoplasmic reticulum (RER), a 

precursor N-linked glycan is transferred from the lipid carrier dolichol phosphate to an asparagine residue in the 

NST sequon (N-X-S/T). The glycan is trimmed and processed in the RER and golgi to give rise to the three classes 

of insect N-linked glycan: high mannose, hybrid and paucimannosidic. The pathway highlighted in red and pale 

green occurs in Spodoptera frugiperda cell line (including Sf21 used here).16,23,189 These cells are incapable of 

1-3 fucosylation (dark green box).192,193 The glycans in the red boxes are observed on D9-10. 

 

Native protein folding was assessed by SDS-PAGE and 1D 1H-NMR (Figure 37). SDS-PAGE 

analysis of D9-10 run under denatured and reduced (R) versus non-denatured and non-reduced 

(N) conditions confirmed a band shift of ~3-4 kDa (Figure 37). The lower mass under native 

conditions strongly suggested the presence of intact disulphide bridges and the formation of a 

compact protein fold. Protein folding was further confirmed by 1D-1H NMR analysis at 700 

MHz. A 90 M solution of D9-10 dissolved in 25 mM Tris pH 7.5, 150 mM NaCl revealed a 

well dispersed chemical shift profile (Figure 37). The amide region contained numerous 

chemical shifts ~8.5 ppm that would be characteristic of the presence of -strands. In addition, 

the presence of upfield chemical shifts between 0.5 and -0.5 ppm most likely corresponds to 

methyl groups experiencing the ring current shifts from aromatic residues, again indicative of 

the formation of a hydrophobic core of the protein. The amide chemical shift region (10-6 ppm) 

is not as well defined when compared to that of individual domains but is judged to be good 

for a glycosylated protein with a molecular weight of 35-36 kDa. 
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Figure 37: SDS-PAGE and 1H-1D NMR to assess D9-10 folding. The slight band shift between D9-10 under 

reducing (R) and non-reducing (N) conditions suggests a compact structure stabilised by disulphide bonds. Protein 

folding was confirmed by 1D 1H-NMR collected at 700 MHz with 90 M D9-10 dissolved in 25 mM Tris pH 7.5, 

150 mM NaCl.  

 

Crystallisation and structure determination of D9-10 

Sparse matrix crystallisation screens were set up with glycosylated D9-10. After ~7 weeks 

crystals were observed in PACT Premier condition A6: 0.1 M SPG (succinic acid, sodium 

dihydrogen phosphate monohydrate, glycine) pH 9, 25 % PEG 1500. These were looped, 

dipped in 25 % glycerol and cryo-cooled in liquid nitrogen. Diffraction data was collected on 

beamline I04 at Diamond Light Source. The construct crystallised in space group P212121 with 

1 molecule in the asymmetric unit. The structure of D9-10 was determined to 1.5 Å (Rwork 

and Rfree values of 19.9 % and 22.8 % respectively) with 98.6 % of the backbone dihedral 

angles in allowed regions of the Ramachandran plot (Appendix Table 5) by molecular 

replacement using homology models of D9 and D10. 

The structure of D9-10 (Figure 36A) is formed from two well-defined domains of similar size, 

comprised of D9 residues D1225-D1365 and D10 residues L1366-K1509 and is the first 

reported to encompass the specific M6P binding site of D9. There was no electron density for 

amino acids V1222-G1224 at the N-terminus of D9 or S1510 at the C-terminus of D10. 

Electron density was observed for one N-linked glycan on N1312 of D9 (Figure 38) which is 

positioned through association with D9 of a symmetry related partner (Figure 38B). Modelling 

GlcNAc2Man4 yielded the best fit to the electron density (Figure 38B). The second glycan 

predicted to be linked to N1246, which is positioned next to a solvent channel, was not 

observed.  
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Both D9 and D10 form a core -sandwich structure stabilised with four disulphide bonds as 

previously observed for D1-3, D5 and D11-14 of the CI-MPR.101,131,136 Two antiparallel -

sheets (A-D and −) form a flattened, nine-stranded -sandwich linked by four loop regions 

(termed AB, CD, FG and HI) which vary in length between four and seven amino acids. D9 

and D10 each contain four disulphide bonds. These are: C1227-C1262 (at the N-terminus), 

C1270-C1282 (in the BC loop and C), C1319-C1349 (in the FG and HI loops), C1333-C1361 

(in G and the linker region) in D9 and C1369-C1408, C1420-C1427, C1461-C1494, C1476-

C1506 in D10. 

Figure 38: Crystal structure of human CI-MPR D9-10. A: The structure of D9-10 at 1.5 Å resolution. Each 

domain forms a nine-stranded flattened −sandwich stabilised by four disulphide bonds. N1312 of D9 was 

glycosylated with GlcNAc2Man4. D9 (blue) and D10 (cyan) are orientated at ~90o to one another. B: D9 (blue) 

binds an N-linked GlcNAc2Man4 glycan of a neighbouring D9 molecule (D9a, grey). Meanwhile the glycan of D9 

(blue) is bound by a third D9 molecule (D9b, grey). The inset shows the structure and fit to electron density (2Fo-

Fc map at 1.16 electrons per Å3 (2.8σ)) of the GlcNAc2Man4 glycan at N1312 of D9. 

 

D9 and D10 are arranged at approximately 90o to one another (Figure 38A) with the A-D 

surface of D10 interacting with the loops at the base of D9. The interface between D9 and D10 

buries surface areas of ~600 Å2 (8 %) and 625 Å2 (8 %) respectively (as calculated by PISA195). 

The electron density observed in this region was well defined. The interface is stabilised by a 

combination of hydrophobic interactions, hydrogen bonding and the disulphide bridge between 

C1333-C1361 at the base of D9 G and the linker region (Figure 39A). H1234 in the -hairpin 

at the N-terminus of D9 sits within a pocket formed by the proline rich BC loop of D10 (Figure 

39A) and is sandwiched between P1422 on D10 and P1362 on D9 with separations consistent 



3.  Structural characterisation of D9  

68 

 

with the formation of CH- interactions.204,205 R1233 also appears to pack against P1419 

yielding a CH- interaction. Y1387 of D10 also interacts with F1364 and R1335 to stabilise 

the opposing side of the interface. Hydrogen bonded residues include residues at the base of 

D9 and residues in the BC loop of D10 (N1306-G1416, R1356-S1388, R1233-G1416/Q1414, 

D1365-S1410) (Figure 39B).70
 

Figure 39: The interface between D9 and D10. A: H1234 in the -hairpin at the N-terminus of D9 sits within a 

pocket formed by the proline rich BC loop of D10 and is sandwiched between P1422 on D10 and P1362 on D9 

with separations consistent with the formation of CH- interactions.204,205 R1233 (left) also appears to pack against 

P1419 yielding a CH- interaction. Y1387 (right) of D10 also interacts with F1364 and R1335 of D9 to stabilise 

the opposing side of the interface. B: H-bonds (yellow lines) form between the base of D9 and residues in the BC 

loop of D10 (N1306-G1416, R1356-S1388, R1233-G1416/Q1414, D1365-S1410). 

 
 

D9-10 oligomeric state 

Having observed a glycan bridging D9s in the D9-10 crystal structure, the oligomeric state of 

D9-10 was investigated further by native mass spectrometry, analytical SEC and SAXS. As 

mentioned, under native conditions the m/z envelope of D9-10 contained several smaller 

charge states corresponding to higher molecular weight species (Figure 35B). The 

deconvoluted spectra was unchanged, suggesting D9-10 may exist as a dimer in the gas-phase.  

Analytical SEC of D9-10 at pH 7.5 gave an apparent molecular weight of ~64 kDa, close to 

the glycosylated, dimeric molecular weight of ~72 kDa (0.9 times the dimeric molecular 

weight, Figure 40, Appendix Figure 5). The broadness of the peak may be attributed to the two 

flexible N-linked glycans of D9 and the possible exchange between monomeric and dimeric 

forms. Upon addition of 100-fold excess M6P, D9-10 eluted only slightly later, giving an 

apparent molecular weight of ~57 kDa (0.8 times the dimeric molecular weight) (Figure 40A). 

De-glycosylated D9-10 (using PNGaseF) eluted even later and corresponded to ~39 kDa (0.6 
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times the dimeric molecular weight), which closely matches the expected de-glycosylated 

molecular weight of monomeric D9-10 (~33 kDa) (Figure 40A). Similarly to the glycosylated 

sample, there was little change upon addition of 100-fold excess M6P to de-glycosylated D9-

10, which corresponded to 43 kDa (0.7 times the dimeric molecular weight, Figure 40A).  

Figure 40: D9-10 is dimeric in solution. A: Analytical SEC of D9-10 at pH 7.5 glycosylated (black) and de-

glycosylated (orange). Upon incubation with 100-fold excess M6P (green) D9-10 elutes later. B: SEC-SAXS of 

glycosylated D9-10 at pH 7.5. Glycans are shown in red. C: SEC-SAXS of D9-10 at pH 7.5 de-glycosylated by 

PNGaseF. For each SEC-SAXS result: Ab initio DAMMIN bead density shape envelope of D9-10 is represented 

as a surface (light grey) overlaid with a 1-state-optimised model. For each model, the I(q) vs q plot for a 1-state 

optimised model (red line) against the experimental scattering data (black) is shown with the residual difference 

plot underneath. 

 

Small angle X-ray scattering (SAXS) was employed to further study D9-10 in solution and 

confirmed a folded flat entity with a calculated molecular mass associated with a dimer 

(apparent molecular mass 70.5 kDa (as calculated by SAXSMoW 2.0) expected dimeric 

molecular mass 70.8-71.6 kDa, Appendix Table 6). Ab initio shape envelope modelling of D9-

10 revealed a dimer with symmetric cross-binding of the two N-linked glycan moieties (Figure 

40B). Fitting required flexibility within the linker region between D9 and D10 (residues 1358-

1364) and flexibility of the N-linked glycan at N1312 but not the principle D9-10 interface. A 


2 value of 1.68 for a 1 state model of D9-10 indicates that this model is a good fit to the 

experimental data (Figure 40B).70 

De-glycosylation of D9-10 by PNGaseF resulted in monomerisation with an apparent 

molecular mass of 33.7 kDa (expected monomeric molecular mass 33.2-33.6 kDa, as calculated 
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by SAXSMoW 2.0, Appendix Table 6). Furthermore, the scattering data could be modelled to 

a shape envelope consistent with the D9-10 crystal structure (
2 value of 1.31, Figure 40C, 

Appendix Table 6).   

 

D9 binding site and comparison to other MRH domains 

D9 adopts the conserved MRH fold previously observed for CI-MPR D3 and D5, and the CD-

MPR.90,101,131 Sequence alignments and mutagenesis studies have shown that these MRH 

domains contain a four residue ‘QREY’ binding site motif present as Q1283, R1325, E1345 

and Y1351 in human D9 (Figure 41A).67 Q1283 on C forms a hydrogen bond (H-bond) with 

the 2’OH of the terminal mannose residue, while E1345 and Y1351 on H and I respectively 

can H-bond to the 3’OH and 4’OH. From the FG loop, the charged guanidinium group of 

R1325 interacts with the 6’OH of the terminal mannose residue. H1320, previously identified 

as an essential residue for M6P binding,132 also faces into the binding site of D9 and may 

engage the 6’OH of the same mannose residue (Figure 41A). The N-linked glycan branches, 

with the 1-3 branch of the glycan sitting inside the M6P binding site. Y1255 at the top of B 

may form H-bonds with the 4’OH of this branched mannose residue and 1’OH of the terminal 

mannose. 

Figure 41: Comparison of the binding sites of CI-MPR MRH D3 and D9. A: The structure of the N-linked 

glycan (grey sticks) observed in the D9-10 crystal structure (blue cartoon) is superimposed with the structure of 

the N-linked glycan (cyan sticks) observed bound to bovine D3 (red cartoon, PDB 1Q25). Sugar binding residues 

of D9 are labelled and shown as blue balls-and-sticks. Homologous residues in D3 are shown as red balls-and-

sticks and labelled in brackets. The insets show the structures of the N-linked glycans present at N76 of D3 (top) 

and N1312 of D9 (bottom). B: The structure of the N-linked glycan (grey sticks) observed in the D9-10 crystal 

structure (blue cartoon) is superimposed with the structure of M6P (cyan sticks) observed bound to bovine D3 

(red cartoon, PDB 1SZ0). H1320 in the FG loop of D9, which restricts M6P di-ester binding, is replaced by S386 

and S387 in the FG loop of D3. 
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As a P-type lectin, D9 is not expected to bind mannose. Indeed, glycan microarray analyses 

have shown no interaction between the CI-MPR and glycans with a terminal mannose 

residue.82,133 However, crystal structures of bovine D1-3 also revealed occupancy of the M6P 

binding site either by M6P or a non-phosphorylated branched glycan that varied with protein 

preparation (PDB 1Q25 and 1SZ0/1SYO respectively).103,136 Interactions were observed 

between the conserved D3 ‘QREY’ motif and three terminal mannose residues of a branched 

GlcNAc2Man3 N-linked glycan on N76 of a neighbouring D3 (Figure 41A).103 One mannose 

residue (of the 1-3 branch) sits within the M6P binding site interacting with the M6P binding 

residues Q348, R391, E416, Y421. Meanwhile, the mannose residue of the 1-6 branch sits 

outside the M6P binding site. Y324 on B forms hydrogen bonds with the 1’OH of the terminal 

1-3 mannose, 4’OH of the branching mannose residue and the 6’OH of the 1-6 branched 

mannose residue. The M6P binding pocket of D3 is shallow, with only 16 % of the three 

mannose residues being solvent-inaccessible.103   

A comparison between D9-10 and D1-3 structures reveals a common orientation of either the 

glycan (Figure 41A) or M6P (Figure 41B) and amino acid residues shown to be essential for 

M6P binding.67 H1320 in D9 replaces S386 and S387 residues in the equivalent position of D3 

that lie either side of the histidine side chain and, assuming a similar orientation of M6P, H1320 

would form a direct favourable charge-charge interaction with the phosphate group (Figure 

41B). The orientation of the histidine sidechain in D9 is homologous to the equivalent histidine 

residue (H105) from the bovine CD-MPR high-resolution structure that binds the phosphate of 

M6P (PDB 2RL8)206 and again there is close structural conservation of residues in the M6P 

binding site (Figure 42A). 
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Figure 42: Comparison of the binding sites of the MRH domains of CI-MPR D9, CD-MPR and OS-9. A: 

The structure of the N-linked glycan (grey sticks) observed in the D9-10 crystal structure (blue cartoon) is 

superimposed with the structure of the M6P (cyan sticks) observed bound to bovine CD-MPR (cyan cartoon, PDB 

2RL8). Sugar binding residues of D9 are labelled and shown as blue balls-and-sticks. Homologous residues in the 

CD-MPR binding site are shown as cyan balls-and-sticks and labelled in brackets. The critical H1320 (H105) 

adopts a similar juxtaposition to the 6’OH or 6’-P in both structures underlying its critical role in binding M6P 

mono-esters. B: The structure of the N-linked glycan (grey sticks) observed in the D9-10 crystal structure (blue 

cartoon) is superimposed with the structure of Man3 (green sticks) observed bound to OS-9 (green cartoon, PDB 

3AIH). H1320 in the FG loop of D9, which restricts M6P di-ester binding, is replaced by D182 in the FG loop of 

OS-9. Y1255 of B of D9 is replaced by a di-tryptophan motif (W117 W118) in OS-9. The insets show the 

structures of the N-linked glycan bound by D9 (bottom) and OS-9 (top). 

 

Both D9 and D3 also show close structural homology to OS-9 (RMSD values of 2.4 Å and 2.1 

Å respectively over backbone atoms), a lectin that recognises two α1-6 linked mannose 

residues on the C-arm of high-mannose type N-linked glycans on ER-associated degradation 

(ERAD) substrates.207 Q1283, R1325, E1345 and Y1351 of D9 all have conserved counterparts 

in OS-9 that form interactions with the hydroxyl groups of the bound mannose residues (Figure 

42B). The exceptions are Y1255 of B which is substituted as part of a crucial di-tryptophan 

glycan binding motif and H1320 of the FG loop which is substituted with D182 that binds the 

6’OH of Man(B) and may prevent M6P binding.66 The switch therefore to a polar residue (D3 

S386/S387) or positively charged residue (D9 H1320) appears to be associated with the 

presence of the negatively charged M6P moiety.70 

The interaction between the FG and HI loops defines an important region of the sugar binding 

pocket across the MRH domains. In D9, H1320 lies adjacent to the disulphide bridge (C1319-

C1349) that connects the FG and HI loops and together these residues occlude one side of the 

binding pocket, preventing GlcNAc-M6P di-ester binding (Figure 43A). This region of the 

binding pocket was proposed to be important for the recognition of M6P di-esters by bovine 
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D5.131 The FG and HI loops of D5 are not connected by a disulphide bridge and lack bulky 

residues, creating an open binding pocket that can easily accommodate the GlcNAc residue of 

the M6P di-ester (Figure 43B). Attempting to model in an equivalent di-ester into the D9 

structure creates clear steric clashes (Figure 43A). The D9 binding site closely resembles the 

deep narrow pocket that is formed by the surface of the CD-MPR M6P specific binding pocket 

(Figure 43D) which is defined by an almost identical packing of H105, R111 and an equivalent 

disulphide bridge connecting the FG and HI loops. Although lacking the bulkier histidine 

residue, the disulphide bridge also partially occludes the binding pocket in D3 (Figure 43C). 

Taken together, occlusion of this region of the MRH binding pocket appears to be a common 

mechanism for ensuring specificity for M6P mono-esters.70 

Figure 43: Comparison of the binding pockets of the P-type lectin MRH domains. A: The binding surface of 

D9 (grey) with the modelled GlcNAc-M6P di-ester (green sticks). H1320 (blue sticks) on the FG loop occludes 

di-ester binding. B: The binding surface of bovine D5 (grey, PDB 2KVB) with a modelled GlcNAc-M6P di-ester 

(green sticks) bound in the more open binding pocket. D5 lacks a disulphide bridge between the FG and HI loops 

and a bulky histidine on the FG loop. C: The binding surface of bovine D3 (grey) with bound M6P mono-ester 

(cyan, PDB 1SZ0). S386 and S387 of the FG loop and the disulphide bridge between C385 and C419 of the FG 

and HI loops respectively are shown as sticks. D: The binding surface of the CD-MPR (grey) with bound M6P 

mono-ester (cyan, PDB 2RL8). H105 and R111 are shown as sticks. 

 
 

M6P binding 

Having observed occupancy of the D9 carbohydrate binding site by a mannosylated glycan in 

the crystal structure and solution (Figure 38, Figure 40B), attention turned to demonstrating 

that D9 of the D9-10 construct has retained M6P binding ability. However, despite co-

crystallisation of D9-10 with M6P and soaking of D9-10 crystals in an excess of M6P, a 

structure of M6P bound D9-10 could not be determined. Therefore, SAXS was performed on 

D9-10 in the absence and presence of M6P. 

As mentioned above (Figure 40), glycosylated D9-10 is dimeric in solution through the 

bridging N-linked glycan of N1312. Enzymatic de-glycosylation of D9-10 resulted in 

monomerisation (Figure 40C, Figure 44C). However, the shape parameters (Rg and Dmax) and 

shape envelope associated with de-glycosylated D9-10 were largely unaffected by the addition 
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of a 100-fold excess of M6P, with the structure again fitting to the D9-10 crystal structure (
2 

value of 1.15) (Figure 44D, Appendix Table 6, Appendix Figure 8). Thus, if D9 has bound 

M6P, there are no significant structural changes to the arrangement of D9-10.  

The shape parameters (Rg and Dmax) and shape envelope associated with glycosylated D9-10 

were similarly unaffected by the addition of a 100-fold excess of M6P, with the structure 

remaining dimeric and again fitting to the D9-10 dimer arrangement of D7-11 (
2 value of 1.75) 

(Figure 44B, Appendix Table 6, Appendix Figure 8). This suggests a relatively tight interaction 

between D9 and the mannosylated N-linked glycan, that could not be disrupted by addition of 

M6P monosaccharide at pH 7.5. 

Figure 44: SEC-SAXS of D9-10 at pH 7.5. For each result: Ab initio DAMMIN bead density shape envelope of 

D9-10 represented as a surface (light grey) overlaid with a 1-state-optimised model. For each model, the I(q) vs 

q plot for a 1-state optimised model (red line) against the experimental scattering data (black) with the residual 

difference plot shown underneath.  For each structure, glycans are shown in red with the 2 value of the fit and Rg 

value of the model shown. A: D9-10 pH7.5. B: D9-10 pH7.5 plus 100-fold excess M6P. C: D9-10 pH 7.5 de-

glycosylated. D: D9-10 pH 7.5 de-glycosylated plus 100-fold excess M6P.  

 

The CI-MPR has been demonstrated to have a higher affinity for M6P when presented within 

an N-linked glycoprotein versus M6P monosaccharide. For example, using SPR, Olson et al. 

found that D1-15 binds M6P monosaccharide with micromolar affinity (KD 7 M), while 

Chavez et al. found that D1-15 binds M6P mono-ester glycoprotein with nanomolar affinity 

(KD 4.5 nM).130,139 The interaction between D9 and M6P monosaccharide has not been studied. 

However, Chavez et al. and Hancock et al. have demonstrated by SPR that bovine D9 

expressed alone in Pichia pastoris bound the M6P mono-ester tagged glycoproteins GAA and 

-glucuronidase with nanomolar affinity (75 ±11 nM and 0.3 ±0.1 nM respectively).137,139 

Thus, for comparison to the literature and for physiological relevance, an M6P-tagged 

glycoprotein is desirable. Chavez et al. describe a complex protocol for obtaining GAA tagged 
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with either M6P mono-ester or GlcNAc-M6P di-ester using the mammalian cell line CHO-K1 

treated with the N-linked glycosylation inhibitor kifunensine, mammalian expressed GlcNAc 

phosphotransferase, UCE and a phosphatase spPAP.139 However, these methods were not 

available to us. Thus, in the absence of an M6P-tagged glycoprotein, 1D ligand observed NMR 

experiments were employed with M6P monosaccharide and D9-10. 

Ligand observed NMR is often used in fragment-based drug discovery to identify hit 

compounds as it requires very little protein and is capable of screening multiple compounds 

simultaneously.208 Two ligand observed NMR methods were employed here: saturation 

transfer difference (STD) spectroscopy and water-ligand observed via gradient spectroscopy 

(WaterLOGSY). 

In STD (developed by Mayer and Meyer in the late 1990s 209,210), two spectra are collected. In 

the first spectrum aliphatic methyl groups of the protein are irradiated.211 Cross-relaxation spin 

diffusion ensures that this saturation is spread throughout the protein.209–211 Upon protein 

binding, this spin polarisation is transferred to protons of the ligand, giving rise to a positive 

signal.209–211 The second spectrum collected is a reference spectrum whereby an empty spectral 

region is irradiated.209–211 The reference spectrum is subtracted from the STD spectrum giving 

rise to an STD difference spectrum that shows only signals corresponding to the protons of 

ligands that interact with the protein.209–211  

In the second method used here, WaterLOGSY (developed by Dalvit et al. 212,213), the bulk 

water is irradiated. Through intermolecular NOE and chemical exchange this magnetisation is 

transferred to the protein and then to bound ligand.214 However, the ligand may also be 

magnetised through interaction directly with the bulk water. Thus, similarly to STD, a reference 

spectrum must also be collected in the absence of protein.214 Ligands that interact directly with 

the bulk water have positive NOE, giving rise to a negative peak, while ligands that interact 

with the protein have negative NOE, giving a positive peak in the WaterLOGSY 

spectrum.208,210  

Figure 45 shows the STD and WaterLOGSY experiments of D9-10 and the control ligands 

mannose, glucose and glucose 6-phosphate (G6P) which are not known to be bound by the CI-

MPR.82,133 For each ligand, the WaterLOGSY contains only a single positive peak at ~4.7 ppm 

that corresponds to water. Protons of the sugar display negative peaks suggesting that, as 

expected, there is no interaction between D9-10 and mannose (green panel), glucose (red panel) 
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or G6P (blue panel). This is supported by a lack of peaks in the STD spectra (Figure 45). 

Similar results were obtained for de-glycosylated D9-10 with mannose (Figure 45D, 45E). 

Figure 45: Control saturation transfer NMR experiments. A: CPMG spectrum of mannose. B: WaterLOGSY 

spectrum of glycosylated D9-10 plus mannose. C: The STD difference spectrum of glycosylated D9-10 plus 

mannose. D: WaterLOGSY spectrum of de-glycosylated D9-10 plus mannose. E: The STD difference spectrum 

of de-glycosylated D9-10 plus mannose. F: CPMG spectrum of glucose. G: WaterLOGSY spectrum of 

glycosylated D9-10 plus glucose. H: The STD difference spectrum of glycosylated D9-10 plus glucose. I: CPMG 

spectrum of glucose 6-phosphate (G6P). J: WaterLOGSY spectrum of glycosylated D9-10 plus G6P. K: The 

STD difference spectrum of glycosylated D9-10 plus G6P. Antiphase peaks corresponding to sugar protons (~3.4-

4ppm and 5.1 ppm) in the WaterLOGSY and absence of positive peaks in the STD difference spectra suggest that 

D9-10 does not bind mannose, glucose or G6P. Peaks marked with an orange cross correspond to water (~4.7 

ppm) and tris (~3.6 ppm). STD spectra were collected with an on-resonance frequency of 0.58 ppm and off-

resonance frequency of -28 ppm. All spectra were collected at 700 MHz by Dr Chris Williams with 20 M D9-

10 and 2 mM sugar in 25 mM Tris, 150 mM NaCl pH 7.4, 60 % D2O. 



3.  Structural characterisation of D9  

77 

 

Saturation transfer experiments were also performed on de-glycosylated D9-10 in the presence 

of M6P (Figure 47C, 47D). Except for a very small positive peak at ~5.1 ppm corresponding 

to the anomeric proton, the proton peaks of M6P are negative in the WaterLOGSY (Figure 

47C). While the WaterLOGSY result is largely inconclusive, the STD shows possible binding. 

The anomeric proton, along with protons H2-4, gives a weak positive signal in the STD 

spectrum (Figure 47D). The crystal structure of D9-10 shows that of the conserved sugar 

binding residues, Q1283 on C, E1345 on H, Y1351 on I are positioned to interact with the 

hydroxyl groups at positions 2, 3 and 4 respectively (Figure 46). 

Figure 46: The binding site of D9 (blue) with M6P docked (cyan sticks). Key sugar binding residues of D9 

are shown as balls-and-sticks (blue). Y1255 on B, Q1283 on C, E1345 on H, Y1351 on I and R1325 and 

H1320 on the FG loop are positioned to interact with the hydroxyl groups at positions 1, 2, 3, 4 and 6 respectively. 

 

Ambiguity may arise from the fact that ligand observed NMR is only suitable for a narrow 

range of binding affinities.214 WaterLOGSY and STD are only capable of detecting ligands 

that bind with millimolar to micromolar affinity (KD mM-M) due to their slow exchange with 

the protein (slow koff).
214 Thus, de-glycosylated D9-10 may be binding M6P monosaccharide 

too tightly or too weakly to observe here.  
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Figure 47: NMR experiments to study de-glycosylated D9-10 M6P binding ability. A: 1D 1H-NMR spectrum 

of 20 M de-glycosylated D9-10 plus M6P confirming that D9-10 is folded after de-glycosylation. B: 1D 1H-

NMR spectrum of M6P. C: WaterLOGSY of de-glycosylated D9-10 plus M6P. D: STD difference spectrum of 

de-glycosylated D9-10 plus M6P with an on-resonance frequency of 0.58 ppm and off-resonance frequency of -

28 ppm. Shifts corresponding to protons of M6P are highlighted in blue. Peaks marked with an orange cross 

correspond to water (~4.7 ppm) and tris (~3.6 ppm). All spectra were collected at 700 MHz by Dr Chris Williams 

with 20 M de-glycosylated D9-10 and 2 mM M6P in 25 mM Tris, 150 mM NaCl pH 7.4 in 60 % D2O. 
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Nonetheless, identical WaterLOGSY and STD experiments were also performed on 

glycosylated D9-10 in the presence of M6P (Figure 48). Positive WaterLOGSY signals were 

observed for the anomeric proton of M6P along with H2, H3 and H6 (Figure 48C). However, 

H4 has a negative peak and H5 has no observable peak. In a control WaterLOGSY experiment 

of M6P in the absence of protein, the protons of M6P, which are in fast exchange with the 

protons of water, do not give rise to positive peaks, indicating these WaterLOGSY signals 

observed in the presence of protein are not false positives. Furthermore, the STD spectrum 

closely matches the WaterLOGSY spectrum, with clear peaks for the anomeric, H2 and H3 

protons. This suggests some interaction between D9-10 and M6P. The crystal structure of D9-

10 shows that Y1255 on B, Q1283 on C, E1345 on H, Y1351 on I and R1325 and H1320 

on the FG loop are positioned to interact with the hydroxyl groups at positions 1, 2, 3, 4 and 6 

respectively (Figure 46). 

To determine the binding affinity of M6P under these conditions, a WaterLOGSY titration 

experiment was performed. However, the low concentrations of M6P required (50 M to obtain 

a 1:5 ratio of protein: ligand) could not be detected over a reasonable time frame using the 

micro-cryoprobe equipped 700 MHz spectrometer. Furthermore, Huang et al. have 

demonstrated that, due to the ligand re-binding the protein, determination of binding affinity 

by WaterLOGSY is affected by protein concentration, with higher KD values observed when 

using higher protein concentrations.215  
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Figure 48: Saturation transfer NMR experiments of D9-10 plus M6P. A: 1D 1H-NMR spectrum of D9-10 

plus M6P confirmed that glycosylated D9-10 was folded. B: 1D 1H-NMR spectrum of M6P. C: WaterLOGSY of 

D9-10 plus M6P. D: STD difference spectrum of D9-10 plus M6P with an on-resonance frequency of 0.58 ppm 

and off-resonance frequency of -28 ppm. Shifts corresponding to protons of M6P are highlighted in green. Peaks 

marked with an orange cross correspond to water (~4.7 ppm) and tris (~3.6 ppm). All spectra were collected at 

700 MHz by Dr Chris Williams with 20 M D9-10 and 2 mM M6P in 25 mM Tris, 150 mM NaCl pH 7.4 in 60 

% D2O. 
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Thus, alternate methods to determine the binding/ inhibition constant were explored. 

Preliminary isothermal titration calorimetry (ITC) experiments were performed using 

glycosylated D9-10 and an excess of M6P. However, the ligand, M6P, is an acidic monosodium 

salt, which makes exact buffer matching challenging and thus obscures the signal of M6P 

interacting with D9-10 even following buffer subtraction. Furthermore, due to the N-linked 

glycan, this would be a competitive experiment requiring subtraction of a non-competitive 

control experiment that would consist of glycosylated D9-10 in the syringe being titrated into 

glycosylated D9-10 in the sample cell. However, the ratio of ligand to protein established in 

preliminary experiments with M6P would require 2.5 mM glycosylated D9-10, which is not 

feasible. 

 

3.3.  Domains 7-10 

Having succeeded in expressing a D9 containing di-domain construct in insect cells and 

determining the first high-resolution structure of the elusive sugar binding domain D9, 

attention turned to larger multi-domain CI-MPR constructs. In the low-resolution D7-11 crystal 

structure, D11 interacts weakly with the remaining D7-10, which may have reduced the quality 

of crystals and diffraction data obtained. Thus, the D9-10 construct was extended to encompass 

D7-10, a ~66 kDa tetra-domain construct containing 5 N-linked glycosylation sites and 15 

disulphide bonds. 

Two D7-10 constructs were expressed in parallel. The first contained a C-terminal His6 tag. 

This construct was generated by former student Ryan Nicholls (University of Bristol), who 

sub-cloned and performed small-scale expression tests of CI-MPR multi-domain constructs in 

both mammalian and insect expression hosts at the Oxford Protein Production Facility (OPPF). 

Meanwhile, in the second D7-10 construct the C-terminal His6 tag was replaced by a Strep II 

affinity tag. A sequence of 8 amino acids (WSHPQFEL), the Strep II tag interacts with an 

engineered form of Streptavidin called StrepTactin with moderate affinity (KD ~1M).216 The 

Strep II tag is, therefore, routinely used in the purification and detection of recombinant 

proteins.216  
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Expression and purification of D7-10 

D7-10His: 

The D7-10His construct (Appendix Section 8.1.) contains the same N-terminal RPTP signal 

sequence and C-terminal His6 tag as the D11, D7, D8 and D9-10 constructs. A frozen 

baculoviral infected insect cell stock (BIIC) from Ryan Nicholls (University of Bristol) was 

thawed and used to infect fresh Sf21 cultures. Since the EMBacY MultiBac bacmid had not 

been used, protein expression could not be monitored by measuring YFP emission. Instead the 

optimal harvest time of D7-10His was determined by SDS-PAGE analysis to be 48 hours after 

the day of proliferation arrest (Figure 49A). However, only a very faint band for D7-10 was 

visible in samples of the culture media. SDS-PAGE and western blot (Figure 49) showed that, 

while some D7-10 has been secreted into the media, a substantial proportion has been retained 

intracellularly. This may be due to the increased size of the construct (~65 kDa versus the ~16-

19 kDa D8 and D7 constructs), the increased number of disulphide bonds (fifteen versus four 

and three for D8 and D7 respectively) and the increase in N-linked glycosylation sites (five 

versus one and two for D8 and D7 respectively).  

Figure 49: Expression and purification of D7-10His. A: SDS-PAGE analysis of D7-10His expression in Sf21 

insect cells. Samples of media (M), insoluble (I) and soluble (S) cell fractions were collected every 24 hours from 

the day after proliferation arrest (DPA). D7-10His (within the red box) has an expected molecular weight of ~65 

kDa.  B: D7-10His was harvested from culture media on DPA +48 by IEX chromatography using Q sepharose 

resin. C: Harvested D7-10His was further purified by Ni2+ IMAC. D: SDS-PAGE (top) and western blot (bottom) 

following expression and purification of D7-10His via IEX chromatography and Ni2+ IMAC. Abbreviations: M – 

media, I – insoluble cell fraction, S – soluble cell fraction, DPA – day after proliferation arrest, CC – uninfected 

cell control, FT – flow through, Q – Q sepharose IEX. 
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D7-10His was harvested from Sf21 culture media by ion-exchange (IEX) chromatography. D7-

10His has a net negative charge at physiological pH (pI of 5.8) so anion exchange 

chromatography was performed using a Q sepharoseTM column – whereby the resin is 

conjugated to positively charged quaternary ammonium ions and the protein of interest eluted 

off over a salt gradient (Figure 49B). Although this concentrated D7-10, SDS-PAGE analysis 

shows that IEX was not sufficient to purify D7-10His, with multiple higher and lower 

molecular weight species co-eluting across the peak (Figure 49B). D7-10His was therefore 

further purified by affinity chromatography by Ni2+ IMAC (Figure 49C).  

Although eluted D7-10His initially appeared pure by SDS-PAGE (Figure 49C), western blot 

analysis (Figure 49D) and subsequent biophysical experiments (below) revealed the recurring 

presence a lower molecular weight impurity. The detection of this species by western blot 

probing the C-terminal His6 tag suggests that this must be a degradation product of D7-11 

(Figure 49D). An N-terminal truncation of D7-11 would retain the C-terminal His6 tag. Thus, 

this species likely corresponds to loss of the N-terminal D7 (~16 kDa unglycosylated and ~19 

kDa glycosylated), giving a molecular weight of ~47.8 kDa unglycosylated (loss of D7 has 

also resulted in loss of two glycosylation sites, lowering the glycosylated molecular weight and 

heterogeneity) that is consistent with SDS-PAGE analysis. While the cause of this truncation 

is unknown, cleavage by a protease in the culture medium or improper processing of the signal 

sequence by the signal peptidase may be responsible.  

D7-10Strep: 

A synthetic gene encoding D7-10 with an N-terminal RPTP signal sequence and a C-terminal 

Strep II tag (D7-10Strep, Appendix Section 8.1., GeneArt, ThermoFisher Scientific) was sub-

cloned from the synthetic vector pMK-rq into the transfer vector pFL (kindly provided by the 

Berger group, University of Bristol) using the restriction endonucleases BamHI and HindIII. 

EMBacY DH10 E. coli were transformed with D7-10Strep-pFL and D7-10 protein was 

expressed in Sf21 insect cells using the protocols established in chapter 2 for single domain 

constructs.  

The optimal harvest time was determined by YFP emission, SDS-PAGE and western blot to 

be 96 hours after the day of proliferation arrest (Figure 50). As observed in the expression of 

D9-10, SDS-PAGE and western blot reveal that some D7-10 protein is retained in the insect 

cells (in both the soluble and insoluble cell fractions, Figure 50B). This is likely due to the 

presence of 30 cysteines that form 15 disulphide bonds. However, the majority of D7-10strep 
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is secreted. D7-10strep from samples of culture media was not visible by SDS-PAGE unless 

concentrated 10-fold or western blot analysis performed probing for the Strep II tag (Figure 

50B).  

Figure 50: Expression of D7-10Strep from Sf21 insect cells. A: YFP emission peaks 96 hours after the day of 

proliferation arrest (DPA +96). B: SDS-PAGE (left) and western blot (right, developed using Streptactin-AP) of 

samples of insoluble (I) and soluble (S) cell fractions taken every 24 hours from the day of proliferation arrest 

(DPA). C: SDS-PAGE (left) and western blot (right) of samples of media dilute (D) or concentrated 10-fold (C) 

collected every 24 hours from the day of proliferation arrest. D7-10Strep (within the red box) has an expected 

molecular weight of ~66 kDa. Abbreviations: CC-uninfected cell control, I-insoluble, S-soluble, M-media only, 

DPA-day of proliferation arrest, D-dilute, C-concentrated 10-fold. 

 

Although D7-10Strep contains a C-terminal Strep II tag for affinity purification, addition of 

culture medium directly to a 5 mL StrepTrapTM was not practical on the scale required. 

Therefore, as for D7-10His, IEX chromatography was performed first as a crude purification 

and concentration step. Owing to D7-10Strep’s net negative charge at physiological pH (pI of 

5.2) anion exchange chromatography was performed (Figure 51A). SDS-PAGE and western 

blot analysis were used to select fractions containing D7-10strep. These were pooled and 

applied to the pre-equilibrated StrepTactin column and eluted off over a gradient of 

desthiobiotin (Figure 51B). 
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Figure 51: Purification of D7-10Strep. A: D7-10Strep was purified from culture medium by IEX 

chromatography. D7-10strep was eluted over a gradient of salt (NaCl). B: SDS-PAGE (top) and western blot 

(bottom) analysis of IEX chromatography. D7-10Strep (within the red box) has an expected molecular weight of 

~66 kDa. C: IEX peak fractions were then purified by affinity chromatography with a 5 mL StrepTrapTM column. 

D7-10Strep was eluted over a gradient of desthiobiotin. D: SDS-PAGE analysis confirmed isolation of pure D7-

10strep. ‘On’ corresponds to media loaded onto the column, ‘FT’ to the flow through and ‘Fractions’ to the peak 

fractions eluted following desthiobiotin addition. 

 

However, even following optimisation of the purification protocol, the final yield of D7-

10Strep was very low, approximately 0.5 mg/ L. Due to a much greater yield of D7-10His (8.6 

mg/L) all subsequent protein characterisation was performed with D7-10His only.  

 

Characterisation of D7-10 

ESI-MS was performed with D7-10 (Figure 52). However, as seen by the broadness of the m/z 

peaks, D7-10 was very heterogeneous. This can be attributed to the five predicted N-linked 

glycosylation sites (N951 and N957 in D7, N1163 in D8 and N1246 and N1312 in D9) giving 

an expected molecular weight range of 65.9-71.1 kDa (65.9 kDa being unglycosylated and 71.1 

kDa being D7-11 plus five fucosylated paucimannosidic N-linked glycans). When 

deconvoluted, the ESI-MS gave a molecular weight range of 66.3-66.9 kDa. SDS-PAGE 

revealed that attempts to de-glycosylate D7-10 under denaturing conditions using EndoH and 

PNGaseF (individually) were unsuccessful (Appendix Figure 9). 
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Figure 52: ESI-MS of D7-10. Left: raw m/z spectrum of D7-10. Inset zooms in on m/z region 1400-1500 to 

demonstrate the broadness of each peak. Right: deconvoluted spectra for D7-10 is again very broad, with an 

observed molecular weight range of 66.3-66.9 kDa and expected molecular weight range of 65.9-71.1 kDa, due 

to the presence of five N-linked glycosylation sites.  

 

The only evidence that suggests D7-10 is folded is SDS-PAGE analysis (Figure 53A). D7-

10His ran faster under non-denaturing, non-reducing conditions suggesting a more compact 

form stabilised by disulphide bonds - of which D7-10 has fifteen.  

When analysed by analytical SEC (Figure 53A), D7-10 eluted as a single, broad peak. The 

peak maxima (14.2 mL) corresponded to an apparent molecular weight of 63.4 kDa (Appendix 

Table 7). With a calculated molecular weight of 65.9-71.1 kDa this suggests D7-10 is 

monomeric in solution. However, the peak is very broad and spanned 11.3-15.6 mL, which 

corresponds to 380-26.5 kDa. It is possible, therefore, that a smaller population of D7-10 exists 

as a dimer. There was no change in elution volume following the addition of mannose or M6P.  

Size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) was used 

to further characterise the oligomeric state of D7-10. D7-10 eluted as a broad peak with an 

apparent molar mass of 51.0 kDa  ± 38 % (corresponding to 31.6-70.4 kDa) suggesting D7-10 

was monomeric in solution (Figure 53B). There was no significant change in elution profile or 

calculated molar mass following incubation with 10-fold excess M6P (73.1 kDa ± 4.5 %, 

corresponding to 69.8-76.4 kDa, Figure 53B). D7-10 did not elute later following treatment 

with EndoH and PNGaseF under native conditions (individually). This is in-line with the 

observation, by SDS-PAGE, that D7-10 was not enzymatically de-glycosylated under 

denaturing conditions (Appedix Figure 9). 

Sedimentation equilibrium analytical ultracentrifugation (SE-AUC) was also performed (with 

the help of Dr Guto Rhys, University of Bristol) to determine the oligomeric state of D7-10 

(Figure 53C). SE-AUC, which reports molecular mass and oligomeric state, uses low 

centrifugal forces to create an equilibrium between sedimentation flux and diffusional flux.217 

The sedimentation coefficient (s) can be defined as below (Equation 1) whereby Mb is the 



3.  Structural characterisation of D9  

87 

 

buoyant molar mass and f the frictional coefficient. The buoyant molar mass (Mb) is calculated 

using the mass of the protein (Mp) and partial specific volume of the protein, v̄p (Equation 2). 

𝑠 =  
𝑀𝑏

𝑓
 

Equation 1: Calculation of the sedimentation coefficient (s) for AUC analysis. Mb is the buoyant molar mass 

and f the frictional coefficient. 

 

𝑀𝑏 = 𝑀𝑝(1 − v̄𝜌) 
Equation 2: Calculation of the buoyant molar mass (Mb). Mb depends upon the mass of the protein (Mp) and 

partial specific volume of the protein (v̄p). 
 

The presence of glycans, however, will affect the partial specific volume (v̄) of 

gylcoproteins.218 The mass of the carbohydrate (Mc) can be estimated as the total mass of the 

protein (Mp) minus the mass of the amino acids (MA).219 The partial specific volume of 

glycoproteins can therefore be calculated as below (Equation 3).219 Mass spectrometry has 

shown the sample to be highly heterogeneous, containing multiple glycosylated forms. 

Subsequently an average mass and partial specific volume were estimated for the carbohydrate 

content and amino acid composition (v̄ values calculated using SEDNTERP).220 

 v̄ =
1

𝑀𝑝
(𝑀𝐴v̄𝐴 + 𝑀𝐶 v̄𝐶) 

Equation 3: Calculation of the total partial specific volume (v̄) of glycoproteins. Mp is the mass of the total 

protein, MA the mass of the amino acid component, Mc the mass of the carbohydrate component, v̄A the partial 

specific volume of the amnio acid component and v̄C the partial specific volume of the carbohydrate component.
219 

 

Due to the presence of two species on the SDS-PAGE, results were fitted to a two-component 

model (Ultrascan II).221 This gave molecular masses of 64,354 Da (95 % confidence intervals: 

+1090 Da -800 Da, which corresponds to 63,554-65,446 Da) and 43,029 Da (95 % confidence 

intervals: +7470 Da -6180 Da, which corresponds to 36,849-50,499 Da). The former 

corresponds well to monomeric D7-10 (expected mass 65.9-71.1 kDa) and the later to truncated 

D7-10 (ie. D8-10, 47.8-51.1 kDa).  
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Figure 53: Determination of D7-10 folding and oligomeric state. A: Analytical SEC and SDS-PAGE analysis 

of the peak fraction under reducing (R) and native (N) conditions suggested D7-10 was folded and monomeric. 

B: SEC-MALS of D7-10 confirmed the monomeric status of D7-10 (51.0 kDa ± 38 %) that was unchanged by 

the presence of M6P (73.1 kDa ± 4.5 %). D7-10 was not successfully de-glycosylated by EndoH or PNGaseF. C: 

Experimental SE-AUC data (circles) and fits (lines) to a two-component model (top) along with residuals between 

the experimental and filled data points (bottom) reveal the presence of two species of molecular weights 64,354 

Da and 43,029 Da.  

 

Negative stains of D7-10, which were prepared and imaged with the help of Professor 

Christiane Berger-Schaffitzel (University of Bristol), showed the sample to be uniform (Figure 

54). However, structure determination by Cryo-EM was not pursued due to the relatively small 

size of the protein (~65 kDa) and sample impurity.  
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Figure 54: Transmission electron micrographs of D7-10 negatively stained with uranyl acetate. 100 k x 

magnification. Taken with an FEI Tecnai 20 200 kV (Wolfson Bioimaging facility) Top: 50 g/mL. Bottom: 5 

g/mL. 

 

Instead, in attempt to determine the structure of D7-10, sparse matrix crystallisation screens 

were prepared and after 3 days very small, birefringent crystals were observed in Structure 

screen I+II condition E8 (0.2 M ammonium phosphate monobasic, 0.1 M Tris pH 8.5, 50 % 

v/v MPD) (Appendix Figure 10). These were looped, cryo-cooled and taken to Diamond Light 

Source for data collection. However, the observed diffraction pattern (Appendix Figure 10) 

suggests these crystals were salt. Unfortunately, further attempts to crystallise D7-10 with 

longer crystallisation times, varying protein concentrations, with and without EndoH and with 

and without M6P failed to produce diffracting crystals. Similarly, SAXS was also unsuccessful 

due to protein aggregation. Thus, structural characterisation of D7-10 was not pursued further. 

 

3.4.  Domains 7-11 

Although, a bovine construct comprised of D7-11 has previously been shown to be stable to 

proteolytic digestion 170 and expressible as a soluble protein in High five insect cells that 

maintains M6P binding (KD = 0.5 nM) as well as an intact IGF2 binding site (D11)132, there is 

no structural information for this central region of the human CI-MPR. 
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Collaborators led by Professor Bass Hassan at the University of Oxford expressed human D7-

11 (and other multi-domain constructs containing D9: D8-9, D9-10 and D9-11) in HEK293T 

cells and assayed for M6P-binding by surface plasmon resonance (SPR) using the known CI-

MPR ligand Leukaemia inhibitory factor (LIF). The binding affinities (KD) determined by SPR 

of each construct were between 60-80 nM and in line with literature values for a single, bovine 

D9 construct binding M6P mono-ester glycoprotein GAA (KD 95 ± 12 nM).139 The binding 

affinity of D9 did not change significantly between constructs, confirming the unique property 

of D9 that M6P mono-ester binding affinity is independent of the presence of neighbouring 

domains.67,70,82,130 

In parallel expression experiments, human D7-11 was expressed in mammalian HEK293S cells 

by Hans Hoppe (University of Oxford) for structure determination. HEK293S cells lack N-

acetyl-glucosaminyl transferase I (GnTI) and therefore secrete protein containing shorter N-

linked GlcNAc2Man5 glycans.222 D7-11 crystallised from a solution of 0.1 M MES, 1.6 M 

MgSO4, 10 mM M6P at pH 6.5 and, in 2013, X-ray diffraction data was collected at Diamond 

Light Source by Karl Harlos (University of Oxford).70 

D7-11 crystallised in space group P41212 with two molecules in the asymmetric unit. However, 

D7-11 was partially radiation damaged and diffracted to low-resolution. Thus, D7-11 was a 

challenging structure to solve that required Airlie McCoy (University of Cambridge) to phase 

using a series of homology models generated for D7-10 and the crystal structure of D11 (PDB 

1GP0). Unfortunately, the preliminary D7-11 structure was not suitable for publication.  

However, the recent determination of high-resolution structures of human D8 (2.5 Å, chapter 

2) and human D9-10 (1.5 Å) has assisted in the phasing and refining of D7-11. Adding 

restraints from these three previously uncharacterised domains allowed the structure of D7-11 

to be determined to 3.5 Å (Rwork and Rfree values of 26.1 % and 30.0 % respectively) with 

99.6 % of the backbone dihedral angles in the allowed and favoured regions of the 

Ramachandran plot (Appendix Table 5, Appendix Figure 4). There was no electron density for 

A933 at the N-terminus of D7 or E1647-T1651 at the C-terminus of D11. D7-11 contains five 

predicted N-linked glycosylation sites: N951 and N957 on D7, N1163 on D8 and N1246 and 

N1312 on D9. Electron density was observed for a single GlcNAc residue at N951 of both 

chains, N1246 of chain B and GlcNAc2Man4 at N1312 of both chains.70 
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D7-11 crystal structure  

The structure of D7-11 (Figure 55) comprises residues C934 to C1646 of the human CI-MPR 

and provides the first structure of human D7. The construct forms two 80 kDa chains that 

associate to form an intertwined 160 kDa homodimer. Each chain is comprised of five well-

defined domains of similar size, comprised of D7 (C934-P1081, 147 amino acids), D8 (V1082-

R1221, 139 amino acids), D9 (V1222-D1365, 143 amino acids), D10 (L1366-S1510, 144 

amino acids) and D11 (N1511-C1644, 143 amino acids). Both chains wrap around each other 

primarily through associations between D8-10. Each domain has the same core -sandwich 

topology composed of nine anti-parallel -strands. The IGF2 binding domain, D11, is flexible 

and disordered in the complex probably due to the lack of neighbouring domains. In the D7-

11 structure, D11 associates with D10 via the E-I surface. This is the same region of D11 

observed to pack against D12 in the crystal structures of D11-12 and D11-14 (PDB 2V5N, 

2V5O)101 and may therefore be an artefact arising from the burial of this hydrophobic face of 

D11, possibly due to the absence of D12. This packing may be sub-optimal and may explain 

the poor electron density observed for this domain and a degree of conformational averaging.70  

Figure 55: Structure of human CI-MPR D7-11 homodimer.70 A: Structure of human CI-MPR D7-11 at 3.5 Å 

resolution. Both monomers are shown in surface representation with the two chains labelled a or b and coloured 

yellow (D7, C934-P1081), red (D8, V1082-R1221), dark green (D9, V1222-D1365), light green (D10, L1366-

S1510) and purple (D11, N1511-C1644). The structure on the right is rotated by 90° and the glycans extending 

into the opposing D9 M6P binding sites are shown as sticks. B: One monomer is shown in cartoon format, the 

other in surface representation and two orientations are shown.  
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The dimeric interface of D7-11 is formed from predominantly hydrophobic contacts with a 

total buried surface area of approximately 19500 Å2 and a solvent accessible area of 66400 Å2 

(as calculated by PISA195). The binding site loops of D9 are solvent exposed and, as observed 

in the D9-10 structure, a mannose residue from the modelled portion of the N1312-linked 

glycan of D9 extends into the D9 M6P binding site of the other chain. However, unlike in the 

D9-10 crystal structure, in the D7-11 crystal structure this is a symmetric interaction with both 

N-linked glycans binding to opposing D9 binding sites in the dimer (Figure 56). The terminal 

mannose residues are oriented to bring the 6’OH within ~ 3 and 6 Å of H1320 in the two sites 

and the two interactions bring the FG loops of neighbouring D9 molecules into close proximity. 

The conserved ‘QREY’ residues of the D9 M6P binding site interact with the terminal mannose 

residue supplemented by additional interactions to the preceding sugar (i.e. 3’OH to Y1255 at 

the N-terminus of B) (Figure 56).  Interestingly, the M6P binding site of D9 and the IGF2 

binding site of D11 point away from one another on opposing surfaces, suggesting that it may 

be possible for an M6P-tagged glycoprotein and IGF2 to bind simultaneously.  

Figure 56: The bridging glycan of D7-11.70 The structure of the D7-11 homodimer with one chain shown as 

cartoon and one as surface render. The inset shows the interface of the D9 structures with glycans (grey sticks) 

extending into the opposing D9 M6P binding site. Conserved residues (‘QREY’) are shown (blue balls-and-sticks) 

along with H1320 and Y1255 which binds a mannose group adjacent to the terminal mannose residue.  

 

Superimposing the single human D8 crystal structure and D8 of the human D7-11 structure 

gives an RMSD value of 0.51 Å over backbone atoms (Appendix Figure 4). D8 and D10 form 

the most extensive inter-domain contacts and the core of the D7-11 dimer. Interestingly 

however, there are no homo-dimeric contacts (i.e. 8 to 8b and 10 to 10b) for either of these 

domains and instead the D9 dimer forms a capstone that binds a ring of domains formed from 

8/10-8b/10b. D8-10 (of D7-11) forms a compact tri-domain structure comparable to the crystal 

structure of D1-3 (PDB 1SYO/ 1SZ0, 1Q25) (Figure 57).70 This extensive packing around D8 

suggests the role of this domain is purely structural.  
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Figure 57: Compact tri-domain structures of D1-3 and D8-10. A: Crystal structure of D1-3 (PDB 1SZ0). B: 

Crystal structure of D8-10 of the human D7-11 crystal structure (PDB 6Z32). 

 

The D7-11 crystal structure exposes the first structure of human D7. D7 is the most solvent 

exposed domain of D7-11, although this structure lacks neighbouring D6. The N-terminal N 

and N’ strands, the GH loop and the C-terminal loop of I from D7 all contact D8 of the same 

chain (i.e. D7a to D8a). S1602 of the HI loop of D11b from the opposing chain of the dimer is 

also brought into close proximity to the N-terminus of D7a A.  

There is no known ligand of D7. However, as pointed out by Brown et al. 2002, all the known 

functional domains to date are odd numbered domains.112 For example, D1 binds uPAR, D3, 

D5, D9 and D15 bind M6P-tagged proteins while D11 and D13 bind IGF2.75,101,103,130–132 

Indeed, D7 is the last odd numbered domain with no known binding partner. In the D7-11 

structure, the AB, CD, FG, and HI loops of D7 point away from the dimeric hub and enclose a 

slightly positively charged pocket (Figure 58B). D7 has a short AB loop, extended CD and HI 

loops and lacks one disulphide bridge (cf C1598-C1634) that connects the FG loop N-terminal 

of I. This is substituted for on I by R1065 that along with residues K963 (AB loop), K1000, 

R1003 (CD loop) and K1030 (FG loop) forms a cluster of positively charged residues. 

However, compared to D3, D9 and D11 which have more extended AB loops but shorter CD 

loops, the D7 loops do not form an obvious binding groove.70 
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Figure 58: Comparison of the known CI-MPR binding sites and the loops of D7. A: Comparison of the 

binding sites (viewed from the top) of D3, D5, D9, D11 and D7 (PDB 1SYO, 2KVB and D7-11 structure). Each 

domain is shown with surface render with hydrophobic residues coloured red according to the normalised 

hydrophobicity scale.197 B: Electrostatic surface potential of the same domains in identical orientation coloured 

by charge with positively charged residues blue and negatively charged residues red (range +2 to -2) as determined 

using the APBS PyMOL plug-in.196  

 

Interdomain orientation and interfaces 

Recent work by Wang et al. 2020 has determined the cryo-EM structure of bovine CI-MPR 

D1-14 to 3.5 Å at the physiological pH of the lysosome, pH 4.5 (PDB 6UM1). However, the 

structure of bovine CI-MPR D1-14 could not be obtained at neutral pH in the absence of ligand 

(likely due to flexibility).128 Only upon incubation with IGF2 could a low-resolution (4.3 Å) 

structure of the bovine CI-MPR D4-14 be obtained at neutral pH, with D1-3 omitted due to 

flexibility (PDB 6UM2).128  

At pH 4.5, the extracellular region of the bovine CI-MPR forms a compact, helical structure.128 

Seven sub-groups (D1+D3, D2+D5, D4+D7, D6+D9, D8+D11, D10+D13 and D12+D15) 

form with the E-I surface of each domain packing against the E-I surface of its partner.128 A 

similar interaction is observed in crystal structures of bovine CD-MPR at pH 6.5 (PDB 2RL8, 

2RL9, 1KEO), whereby the E-I surfaces of each monomer pack against one another and the 

HI loop of one monomer interacts with the N-terminus of the other.  

The cryo-EM structure of bovine CI-MPR at pH 4.5 reveals that the E-I surfaces of D6 and 

D9 pack against one another (in a similar manner to CD-MPR dimerisation).128 However, this 

interaction is shown to be disrupted in the cryo-EM structure of bovine D4-14 in complex with 

IGF2 at pH 7.4 (PDB 6UM2).128 The E-I surface of D9 is similarly exposed in the crystal 

structure of human D7-11 in the absence of IGF2 but near neutral pH (pH 6.5). It is from this 

E-I surface that, in the crystal structures of human D9-10 and D7-11, the N-linked glycan 

projects from N1312 into the neighbouring D9 binding site. Superimposing a single chain of 
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human D7-11 at pH 6.5 and bovine D7-11 at pH 7.4 (PDB 6UM2) gives an RMSD value of 

4.9 Å (PyMOL cealign structure-based alignment Figure 59). Thus, identical packing around 

D9 can be derived from interaction with one of two distinct ligands, IGF2 or glycan, or, more 

likely, by neutral pH conditions. Under these conditions, D9 forms protein-protein interactions 

with the A-D surface of D10 and, in the D7-11 crystal structure, with the BC loop at the base 

of D8b. 

Figure 59: Comparison of human and bovine D7-11 structures. A: A single chain from the crystal structure 

of human D7-11 at pH 6.5 (PDB 6Z30). B: D7-11 from the cryo-EM structure of bovine D4-14 in complex with 

IGF2 at pH 7.4 (PDB 6UM2). Superimposition of human and bovine D7-11 at near neutral pH shows the same 

domain orientation and gives an RMSD of 4.9 Å. C: D7-11 from the cryo-EM structure of bovine D1-14 at pH 

4.5 forms a more compact arrangement (PDB 6UM1). Superimposition of human D7-11 at pH 6.5 and bovine 

D7-11 at pH 4.5 gives an RMSD value of 7.9 Å. (PyMOL cealign structure-based alignments) 

 

A comparison of the relative orientations of D9-10 in isolation and D9-10 from the D7-11 

crystal structure revealed a surprisingly close similarity despite the presence of additional 

domains. Ab initio shape envelope modelling of D9-10 SAXS data was consistent with D9-10 

of the D7-11 crystal structure, with symmetric cross-binding of the two N-linked glycan 

moieties and no contact between D10s (Figure 44). The Ab initio shape envelopes also confirm 

that the dimerisation of D9-10 visible in the crystal structures of D9-10 and D7-11 is driven by 

the bridging N-linked glycan at N1312 of D9 and not by protein-protein interactions (Figure 

40).  

Further analysis, superimposing a single copy of D9 and D10 from the D9-10 and D7-11 crystal 

structures, at pH 9.0 and pH 6.5 respectively, yielded an RMSD value of 3.1 Å (over backbone 

atoms), consistent with this close alignment. Moreover, the inter-domain interactions also 

appear to be well conserved, with the CH- interaction between histidine and proline residues 

at the D9-10 interface also evident in the D7-11 crystal structure (Figure 60A). It appears 
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therefore that at neutral/ high pH D9-10 forms a rigid body and D10 may play a key role in 

stabilising the fold of D9. 

Figure 60: Identification of rigid di-domain structures stabilised by CH- interactions.70 A: D9 and D10 are 

in the same orientation in the D9-10 structure (blue, pH 9) and D7-11 structure (green, pH 6.5). Inset shows the 

His-Pro interaction at the interface of D9 and D10 of the D7-11 structure involving H1234 of D9 and P1413, 

P1419, P1421 and P1422 of D10. B: D11 and D12 also form a rigid unit that is conserved in the crystal structures 

of human D11-12 (purple), D11-13 (red) and D11-14 (orange) (all at pH 7.5, PDB 2V5N, 2V5P and 2V5O 

respectively). A similar His-Pro interaction to that in D9-10 is seen at the D11-12 interface involving H1641 of 

D11 and P1697, P1700, P1705 and P1707 of D12.  

 

The crystal structure of human D11-12 at neutral pH (pH 7.5, PDB 2V5N) revealed the 

hydrophobic patch of D11 formed from E-I packs against the BC loop of D12.112 This 

interface includes similar interactions to D9-10, with H1641 of D11 interacting with P1697 

and P1700 of the proline rich BC loop of D12 as well as several other hydrophobic interactions 

(Figure 60B). However, H1641 resides on I of D11 rather than the loop between NA and 

NA’ observed in D9-10 leading to a different association and side-on packing of the D11-12 

crossed -sheets. This interaction was maintained in two further crystal structures of D11-14 

and D11-13 bound to IGF2 (PDB 2V5O and 2V5P respectively) suggesting a degree of rigidity 

between at least D11-12 (Figure 60B).70 

Analysis of the full extracellular region of the CI-MPR reveals that these His-Pro interactions 

observed between D9-10 and D11-12 are unique when compared across D1-14. These His-Pro 

interactions are also observed in the recent, cryo-EM structure of bovine D4-14 at pH 7.4 in 

complex with IGF2 (PDB 6UM2) with the equivalent residues H1243 of D9; P1422, P1428, 

P1430 and P1431 of D10; H1641 of D11 and P1697, P1700, P1705 and P1707 of D12.  

Additionally, these His-Pro interactions at the D9-10 and D11-12 interfaces are conserved 

across species. Sequence analysis reveals that residues H1234, P1413, P1421 of human D9 and 
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H1641, P1697, P1707 of human D10 are present in placentals (e.g. Human and Rodent), 

marsupials (e.g. Kangaroo), monotremes (e.g. Echidna and Opossum), birds (e.g. Chicken) and 

fish (e.g. Zebrafish) with P1419, P1422 and P1700 also present in human, bovine and murine 

CI-MPR (Appendix Figure 11). 

 

The role of pH 

The CI-MPR binds its cargo at near neutral pH. For example, IGF2 is bound by D11 at the 

plasma membrane and in circulation by sCI-MPR at pH 7.4, while the MRH domains D3, D5, 

D9 and D15 bind M6P-tagged proteins at the plasma membrane and TGN (pH 6.5).54 Although 

the pH profiles of individual domains is broad (spanning approximately pH 6.0-7.5), more 

detailed studies have defined the pH optimum of D3 as pH 6.9 and D9 as pH 6.4-6.5.132,137 In 

the low pH environment of the late endosome (pH <6.0), the CI-MPR releases its ligands and 

is recycled to the TGN and PM. However, the precise mechanism of cargo release at low pH 

is poorly understood. Is cargo release simply the result of protonation of critical binding site 

residues in the acidic environment of the late endosome? Or are there conformational changes 

to the receptor structure that drive ligand dissociation? 

Olson et al. have proposed that cargo dissociation by the CD-MPR is facilitated by protonation 

of key binding site residues, particularly E133 of the conserved ‘QREY’ motif.90 It follows 

therefore that protonation of E416 of D3 and E1345 of D9 similarly play a role in ligand 

dissociation from the CI-MPR. 

Olson et al also observed large conformational changes to the binding loops of the CD-MPR 

upon ligand binding.90 Superimposition of bovine CD-MPR unbound and with M6P bound 

(both at pH 6.5, PDB 1KEO and 2RL8 respectively) gives an RMSD value of 0.47 Å over 

backbone atoms but a HI loop movement of 16.1 Å (Figure 61A). Similarly, upon binding 

pentamannosyl phosphate (PDB 1C39) the HI loop is displaced by 15.8 Å. Furthermore, S41 

of the AB loop is displaced 4.1 Å and H105 on the FG loop 2.9 Å when pentamannosyl 

phosphate is bound.90 However, superimposition of the crystal structures of bovine CD-MPR 

at pH 6.5 and pH 4.8 (both unbound, PDB 1KEO and 2RL7 respectively) gives an RMSD value 

of 0.27 Å over backbone atoms and no change to the positioning of the four binding loops.  

Meanwhile, superimposition of bovine D5 at pH 6.5 and pH 4.5 (PDB 6UM2 and 6UM1 

respectively, RMSD value of 1.0 Å over backbone atoms), demonstrates a HI loop movement 

of ~7.0 Å (Figure 61B). A similar movement is seen in D9, with superimposition of bovine D9 
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at pH 6.5 and pH 4.5 (PDB 6UM2 and 6UM1 respectively, RMSD value of 1.1 Å over 

backbone atoms), resulting in a HI loop moving 6.5 Å (Figure 61C). These domains have no 

ligands bound suggesting that this movement of the HI loop is pH dependent and may act to 

occlude the binding site at low pH.  

Figure 61: Effect of pH on CI-MPR binding domains. A: Superimposition of bovine CD-MPR unbound (grey) 

and with M6P bound (orange) both at pH 6.5 (PDB 1KEO and 2RL8 respectively) gives an RMSD value of 0.47 

Å over backbone atoms. The HI loop moves 16.1 Å. B: Superimposition of bovine D5 at pH 6.5 (grey) and pH 

4.5 (purple) (PDB 6UM2 and 6UM1 respectively), viewed from the side and top of the binding site, gives an 

RMSD value of 1.0 Å over backbone atoms. The HI loop moves 7.0 Å. C: Superimposition of bovine D9 at pH 

6.5 (grey) and pH 4.5 (blue) gives an RMSD value of 1.1 Å over backbone atoms. The HI loop moves 6.5 Å.  

 

Analysis of the bovine cryo-EM structures reveals further pH sensitive regions of the CI-MPR, 

particularly the His-Pro interactions at the interfaces of D9-10 and D11-12. At low pH, the 

histidine residues of D9 and D11 (H1234/ H1243 human/ bovine D9 and H1641/ H1650 

human/ bovine D11) are protonated and the domains reorient so that the histidine residues no 

longer sit within the pocket of proline residues and are therefore unable to form CH- 

interactions (Figure 62A, 62C). Superimposing D9-10 of the human D7-11 crystal structure at 

pH 6.5 with D9-10 of the bovine D1-14 cryo-EM structure at pH 4.5 (PDB 6UM1) (Figure 

62B) demonstrates the domain rearrangement, with an RMSD value of 12.3 Å over backbone 

atoms (versus an RMSD value of 2.7 Å over backbone atoms between D9-10 of human D7-11 

at pH 6.5 and D9-10 of bovine D4-14 at pH 7.4, PDB 6UM2). Similarly, superimposition of 

the human D11-12 structure at pH 7.5 (PDB 2V5N) with D11-12 of the bovine D1-14 structure 

at pH 4.5 (PDB 6UM1) demonstrates the rotation of D12 relative to D11 (Figure 62D).  
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Figure 62: The influence of pH on the structure of di-domain units D9-10 and D11-12. A: The His-Pro 

interaction at the interface of D9-10 of the human D7-11 crystal structure (PDB 6Z32) at pH 6.5 involves H1234 

of D9 and P1413, P1419, P1421 and P1422 of D10. The equivalent residues (H1243, P1422, P1428, P1430 and 

P1431) are observed in the cryo-EM structure of bovine D1-14 at pH 4.5 (PDB 6UM1). However, at low pH the 

histidine residue sits outside the proline pocket. B: Superimposing D9-10 at pH 6.5 with D9-10 at pH 4.5 reveals 

the altered domain arrangement. C: A similar His-Pro interaction is seen at the interface of D11 and D12 in the 

human D11-12 crystal structure at pH 7.5 (PDB 2V5N), involving H1641 of D11 and P1697, P1700, P1705 and 

P1707 of D12. The equivalent residues (H1650, P1706, P11709 and P1716) are observed in the cryo-EM structure 

of bovine D1-14 at pH 4.5. However, again, at low pH this interaction is disrupted. D: Superimposing D11-12 at 

pH 7.5 with D11-12 at pH 4.5 demonstrates the domain rearrangement. 

 

The same conformational change to the D9-10 and D11-12 di-domains is also seen upon 

comparison of bovine D1-14 at pH 4.5 and bovine D4-14 at pH 7.5 in complex with IGF2 

(PDB 6UM1 and 6UM2). However, the observation of this structural rearrangement in the 

absence of IGF2 (as in the ligand free structures of D9-10, D7-11, D11-12 and D11-14, PDB 

6Z30, 6Z31, 2V5N and 2V5O respectively) confirms that this structural rearrangement is not 

the result of IGF2 binding but a pH induced change. Could these pH sensitive His-Pro 

interactions at the interfaces of D9-10 and D11-12 represent two possible hinge points for the 

collapse of the receptor to a more compact structure at low pH?  

To further explore the effects of pH, analytical SEC and SAXS were performed with D9-10. 

During analytical SEC at pH 7.5, D9-10 elutes as a single broad peak (Figure 63A). The 

broadness of the peak, which may be attributed to the two flexible N-linked glycans of D9 and 
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possible exchange between monomeric and dimeric forms, makes molecular weight 

determination inaccurate. However, at 64 kDa, the apparent molecular weight is near the 

calculated dimeric molecular weight of 72 kDa. 

Before further gel filtration, D9-10 was checked by non-native ESI-MS at pH 7.5 and 5.5 

(Appendix Figure 7) and resulted in the same mass, ruling out any unexpected degradation. 

When the pH was lowered from pH 7.5 to pH 5.5, D9-10 eluted later and sharper, suggesting 

a more homogeneous, compact structure, with an apparent molecular weight of 57 kDa (Figure 

63A). This is consistent with recent SEC experiments performed by Olson et al., which found 

that, upon lowering the pH from 6.5 to 4.5, the stokes radius of human D1-5, D7-15 and D1-

15 decreased.138 This indicates formation of a more compact structure at acidic pH.  

Hancock et al. and Marron-Terada et al. have demonstrated that D9 does not undergo acid-

dependent cargo dissociation as efficiently as D3.132,137 For example, up to 90 % of bovine D7-

9 and D7-11 was retained on a pentamannosyl phosphate column at pH 4.6.132 Therefore, 

analytical SEC was repeated at lower pH in attempt to disrupt the N-linked glycan bridge of 

D9 and dissociate D9-10 to a monomer. However, when the pH was lowered to pH 4.0 the 

elution volume decreased suggesting aggregation.  

Figure 63: Analytical SEC and SEC-SAXS of D9-10 at pH 7.5 and pH 5.5. A: Analytical SEC of D9-10 at pH 

7.5 (black), pH 5.5 (red) and pH 4.0 (purple). B: SEC-SAXS of D9-10 at pH 7.5. C: SEC-SAXS of D9-10 at pH 

5.5. For each SAXS result: Ab initio DAMMIN bead density shape envelope of D9-10 represented as a surface 

(light grey) overlaid with a 1-state-optimised model. For each model, the I(q) vs q plot for a 1-state optimised 

model (red line) against the experimental scattering data (black) with the residual difference plot shown 

underneath. The 2 value of the fit and Rg value of the model are shown. Glycans are shown in red. 
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The SEC data at pH 5.5 suggests a change in quaternary structure of D9-10, but uncertainties 

associated with SEC mean monomer or monomer/dimer equilibrium cannot be ruled out. As 

described earlier, SAXS analysis of glycosylated D9-10 at pH 7.5 revealed the two domains 

form a folded flat entity with a calculated molecular weight associated with a dimer (apparent 

molecular mass 70.5 kDa (as calculated by SAXSMoW 2.0), expected dimeric molecular mass 

70.8-71.6 kDa, Appendix Table 6). Ab initio shape envelope modelling of D9-10 was 

consistent with the structure of D9-10 in the same conformation as the D7-11 crystal structure, 

with symmetric cross-binding of the two N-glycan moieties at N1312 of D9 (Figure 63B). A 


2 value of 1.68 for a 1 state model of D9-10 indicated that these models were a good fit to the 

experimental data.  

SAXS of glycosylated D9-10 at pH 5.5 gave an apparent molecular mass of 44.7 kDa (as 

calculated by SAXSMoW), which is between the expected monomeric and dimeric molecular 

mass (1.3 times monomeric and 0.75 times dimeric molecular mass, Appendix Table 6).  

Similarly, the radius of gyration (Rg) is intermediate of the monomeric and dimeric values 

obtained at pH 7.5 (Rg ~29 Å at pH 5.5 versus ~25 and ~32 Å for pH 7.5 monomer and dimer, 

Appendix Table 6). This would suggest that, at pH 5.5, there is exchange between the monomer 

and dimer.  

Multi-state modelling with the D9-10 dimeric model that fits the pH 7.5 scattering data gave a 


2 value of 31.7 for a one-state system and 16.7 for a two-state system when modelled to the 

pH 5.5 data indicating an incorrect fit. Similarly, modelling the recent bovine cryo-EM 

structures of D9-10 at pH 4.5 and pH 7.4 (PDB 6UM1 and 6UM2) gave 2 values of 7.37 and 

7.57 respectively, again indicating an incorrect fit to the scattering data. However, a good fit 

was found between the scattering data and monomeric D9-10 glycosylated at both sites (with 

glycan 4, GlcNAc2Man3GlcNAc, Figure 33B) (
2 value of 1.13, Figure 63C, Appendix Table 

6).  

Although further work/ repeats are required to confidently define the oligomeric state of D9-

10 at low pH, the SAXS data presented here (Figure 63B, 63C) suggests that low pH may 

disrupt the bridging D9-glycan interaction resulting in exchange between dimeric and 

monomeric forms. This would be consistent with CI-MPR cargo release in the acidic 

environment of the late endosome (pH <6.0).  
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3.5.  Conclusions 

This chapter describes the successful application of methods developed in chapter 2 for the 

expression and purification of single CI-MPR domains in insect cells to multi-domain 

constructs encompassing the elusive sugar binding domain, D9.  

A di-domain construct of D9-10 was expressed and secreted from Sf21 insect cells with greater 

than 90 % purity and with a yield of 7-13 mg/ L, allowing structure determination by X-ray 

crystallography. This was the first high-resolution (1.5 Å) structure of D9, which binds M6P 

mono-esters specifically with high affinity and independently of neighbouring domains. D9-

10 contains two predicted N-linked glycosylation sites that were shown by mass spectrometry 

to be modified with glycans typical of insect cells. The D9-10 crystal structure and SAXS data 

reveal that one of these N-linked glycans forms a bridge between the two D9s, driving 

dimerisation of the rigid D9-10 unit.  

Two tetra-domain constructs of D7-10 were also expressed in Sf21 insect cells. However, these 

constructs were not suitable for structural characterisation due to low yield, N-terminal 

truncation and the presence of five heterogeneous, glycans that could not be enzymatically 

removed. This impaired further biophysical characterisation and structure determination by X-

ray crystallography.  

However, the high-resolution crystal structures of human D9-10 and D8 (chapter 2) have 

improved the refinement of the human D7-11 crystal  structure for publication. As a 160 kDa 

penta-domain homodimer, this is the largest fragment of the human CI-MPR determined to 

date and comprises the core of the CI-MPR extracellular region. Despite the addition of 

neighbouring domains, D9-10 of D7-11 exhibits the same domain orientation and interface as 

observed in the structure of D9-10 alone. Both structures reveal dimerisation through a bridging 

N-linked glycan. 
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4.  The full extracellular region of CI-MPR 

4.1.  Introduction and aims 

To date, high-resolution X-ray or NMR solution structures have been determined for bovine 

D1-3 (PDB 1SZ0, 1SYO, 1Q25103,136), bovine D5 (PDB 2KVA, 2KVB131), human D1-5 (PDB 

6P8I, 6V02), human, echidna, chicken and opossum D11 (PDB 1GP0, 2LLA, 2L21, 

2L2G101,124), human D11-12 (PDB 2V5N101) and human D11-14 (PDB 2V50101) as well as 

D11 variants engineered for high-affinity ligand binding (Table 9).127 However, there exists no 

structure for the full extracellular region of the human CI-MPR. 

Table 9: Recombinant CI-MPR extracellular domains whose structures have been solved to date. 

Determination of the structures of human D8, 9-10 and D7-11 are described in chapters 2 and 3. 

 

The first model for the CI-MPR extracellular region was proposed by Olson et al. in 2004 and 

comprised five tri-domain units (D1-3, D4-6, D7-9, D10-12 and D13-15) each containing a 

functional binding domain (D3, D5, D9, D11 and D15) (Figure 64A).103 This tri-domain 

arrangement is supported by the observation that D1-3 and D4-6 form proteolytically stable 

units upon treatment of bovine extracted CI-MPR with the protease subtilisin.103,170 This model 

is also consistent with the compact crystal structures of bovine D1-3 with M6P or mannosylated 

glycan bound (PDB 1SYO/ 1SZ0 and 1Q25 respectively).136 Homology models of the 

remaining, uncharacterised domains (D7-9, D10-12, D13-15) were used.103  

 

Domain(s) Method Organism Expression host PDB 

D1-3 X-ray diffraction Bovine Tn-5B1-4 1SYO, 1SZ0, 1Q25 

D5 NMR Bovine P. pastoris 2KVA 

D1-5 X-ray diffraction Human Sf9 6P8I, 6V02 

D8 X-ray diffraction Human Sf21 6Z31 

D9-10 X-ray diffraction Human Sf21 6Z30 

D7-11 X-ray diffraction Human HEK293T 6Z32 

D11 X-ray diffraction Human E. coli 1GP0, 1GP3 

D11 NMR Chicken, echidna, opossum E. coli 2L21, 2LLA, 2L2G 

D11-IGF2 NMR Human E. coli 2CNJ 

D11-12 X-ray diffraction Human CHO 2V5N 

D11-13-IGF2 X-ray diffraction Human CHO 2V5P 

D11-14 X-ray diffraction Human CHO 2V5O 
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Figure 64: Early models of the CI-MPR extracellular region. A: The first model was proposed by Olson et al. 

in 2004 and consisted of five compact tri-domain units based upon the crystal structure of bovine D1-3 (PDB 

1SYO/1SZ0).103 B: This model was updated in 2008 by Brown et al. to incorporate the crystal structure of human 

D11-14 (PDB 2V5O).101 

 

This model was later modified in 2008 by Brown et al. (Figure 64B) to include the crystal 

structure of human D11-14 (PDB 2V5O), while maintaining the three N-terminal tri-domains 

D1-9.101 Brown et al. also proposed a dimeric model of the extracellular region in which 

domains 3, 5, 9, 12 and 15 formed homodimeric contacts. However, while dimerisation of D1-

3 has been observed in crystals belonging to two different space groups (orthorhombic P212121 

and monoclinic P21), the oligomeric state of D1-3 has not been demonstrated in solution.103,136 

Until recently, there has been very little work performed on the full CI-MPR. In 1989 Tong et 

al. extracted CI-MPR from bovine livers and determined, by radio-labelled assays, its binding 

affinity (KD) for M6P monosaccharide, pentamannosyl phosphate and the glycoprotein -

galactosidase to be 7 M, 6 M and 0.02 M respectively.135 More recently, Olson et al. 2015 

have used SPR to determine the binding affinity of the extracellular region (D1-15) of bovine 
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CI-MPR for the lysosomal enzyme GAA tagged with M6P mono-ester and di-ester (KD 4.5 

±0.7 nM and 51 ±1 nM respectively).130 Olson et al. were the first to recombinantly express 

bovine D1-15 of the CI-MPR and did so using Sf9 insect cells.130 In 2019 Hughes et al. 

expressed human CI-MPR D1-15 using the mammalian HEK293T cell line and determined the 

binding affinity of human D1-15 for IGF2 (0.14 nM) and M6P-tagged -glucuronidase (52.3 

nM).223 Most recently, Dwyer et al. 2020, have recombinantly expressed the extracellular 

region of human CI-MPR using the mammalian (human fibrosarcoma) cell line HT1080.224  

Having demonstrated that Sf21 insect cells are capable of expressing soluble, folded single and 

multi-domain CI-MPR constructs (chapters 2 and 3), human D1-15 was expressed here in 

insect cells with the goal of structure elucidation by cryo-EM. 

4.2.  Expression and purification of human D1-15 

DH10 EMBacY E. coli cells were transformed with a synthetic gene encoding human D1-15 

of the CI-MPR with an N-terminal RPTP signal sequence and C-terminal His6 tag (Appendix 

Section 8.1., GeneArt, Thermo Fischer). D1-15 EMBacY bacmids were purified from white 

colonies and used to transfect Sf21 insect cells as described previously for D11, D7, D8, D9-

10 and D7-10 (chapters 2, 3 and 6). Recombinant virus was harvested, amplified and used to 

infect subsequent cultures.  

The optimal harvest time was determined by SDS-PAGE analysis and YFP expression levels 

(Figure 65A, 65B). Due to the presence of an N-terminal signal sequence, soluble D1-15 should 

be secreted from the Sf21 cells. SDS-PAGE analysis revealed a band at ~250 kDa 

corresponding to D1-15 (expected monomeric, unglycosylated molecular weight 248.6 kDa) 

in the insoluble cell fraction that increases in intensity over time (Figure 65A). There was no 

visible band on the SDS-PAGE for secreted D1-15 (Figure 65A). Nonetheless, the culture 

media was harvested by centrifugation on DPA +72 before loading onto an Ni2+ IMAC column. 

A small absorbance peak (190 mAU) was observed upon application of a gradient of imidazole 

(Figure 65C). The peak species was confirmed by SDS-PAGE to be D1-15 (Figure 65D). The 

slight band-shift observed under non-denaturing, non-reducing (N) conditions versus 

denaturing, reducing conditions (R) (Figure 65D and Figure 66) is indicative of a more 

compact, disulphide bonded structure, suggesting that D1-15 is folded. However, due to the 

large size of D1-15 (250 kDa monomeric molecular weight), this could not be confirmed by 
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1D 1H NMR. Its large size and heterogeneous glycans also prevented acquisition of an accurate 

mass of D1-15 by ESI-MS.  

Figure 65: Expression and purification of D1-15 from insect cells. A: 5 % acrylamide SDS-PAGE analysis of 

D1-15 expression in Sf21 insect cells. Samples of media (M), insoluble cell fraction (I) and soluble cell fraction 

(S) were collected every 24 hours from the day after proliferation arrest (DPA) to determine optimal harvest time. 

Samples were also collected from an uninfected cell control (CC). D1-15 (within the red box) has an expected 

molecular weight of ~250 kDa. B: YFP emission was also measured every 24 hours to determine harvest time. 

C: D1-15 was harvested from culture media by Ni2+ IMAC. D: 5 % acrylamide SDS-PAGE confirmed 

purification of D1-15 from the culture media. All peak fractions except that labelled N (non-denatured, non-

reduced) were denatured by boiling and reduced by DTT. ‘On’ corresponds to media loaded onto the column, 

‘FT’ to the flow through and ‘Fractions’ to the peak fractions eluted following imidazole addition. 

 

 

4.3.  Initial characterisation of human D1-15 

Analytical SEC resulted in two small peaks (Figure 66). The first peak elutes at the column 

void volume (~7 mL) and corresponds to aggregated D1-15. However, the second peak (~10.9 

mL) has an apparent molecular weight of 506 kDa (Appendix Table 8). This closely matches 

the expected dimeric mass of D1-15, which could range between an unglycosylated molecular 

mass of 497 kDa and 517 kDa, 526 kDa and 536 kDa assuming 50 %, 75 % and 100 % N-

linked glycosylation with high-mannose glycans typical of on-pathway insect cell 

glycosylation. 
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Figure 66: Analytical SEC of D1-15 reveals the major species (2) to be dimeric. The first peak (1, ~7.0 mL) 

corresponds to aggregated D1-15. The second peak (2, ~10.9 mL) corresponds to D1-15 with an apparent 

molecular weight of 506 kDa and expected dimeric, unglycosylated molecular weight of 497 kDa. The red arrow 

marks the expected elution volume (~12.0 mL) of monomeric D1-15 (248 kDa). SDS-PAGE analysis of the major 

species (2) under denatured, reduced conditions (R) and non-denatured, non-reduced conditions (N). 

 

Negative stains of D1-15 were prepared and imaged with the help of Professor Christiane 

Berger-Schaffitzel and Dr Sathish Yadav (University of Bristol). With a resolution limit of ~15 

Å, negative staining is often used as a screening step before protein structure determination by 

single-particle cryo-electron microscopy (cryo-EM).225 During negative staining the protein 

sample is adsorbed onto a carbon coated copper grid, stained with the heavy metal solution 

uranyl acetate or uranyl formate and imaged by transmission electron microscopy (TEM).226  

Negative stain images were collected for D1-15 in the absence of any ligand, with 10-fold 

excess M6P monosaccharide and with 1.5-fold excess of IGF2 (Figure 67). The protein 

molecules exclude the uranyl acetate stain and thus appear with white contrast.226,227 The 

negative stain of D1-15 alone (120 M) at pH 7.5 (Figure 67A) revealed a uniform sample 

suitable for cryo-EM. However, a more concentrated sample would be required to facilitate 

particle picking for classification and cryo-EM data collection. In samples of D1-15 plus IGF2 

at pH 7.5 (120 M D1-15 and 180 M IGF2) large clumps of aggregated protein are observed 

(Figure 67B). This is due to the pH sensitivity of IGF2. Thus, formation of a D1-15-IGF2 

complex at neutral pH may require mixing/ complex formation at very dilute concentrations 

before concentration and imaging.  

D1-15 plus a 10-fold excess of M6P monosaccharide at pH 7.5 resulted in high quality negative 

stain micrographs (Figure 67C). Visual comparison to micrographs of D1-15 alone suggest the 

receptor forms a more compact structure in the presence of M6P and shows some 

heterogeneity. 2D classification was performed to understand if this heterogeneity might have 
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arisen from either different oligomeric states, different conformations or simply different 

orientations of D1-15 on the grids.226 Approximately 280 negative stain micrographs were 

collected of D1-15 plus M6P and ~15,000 particles picked for 2D classification (Figure 67D). 

Using the software package Scipion 228 images of D1-15 particles were picked, aligned, sorted 

into 36 classes and averaged.226 The resulting 2D classifications (Figure 67D) show an 

elongated form of the receptor and a more compact form at different orientations. Several of 

the images demonstrated a clear multi-domain structure. 

Figure 67: Transmission electron micrographs of D1-15 negatively stained with uranyl acetate. A: 120 M 

of D1-15 alone at pH 7.5. B: 120 M of D1-15 with 180 M IGF2 at pH 7.5. IGF2, which is pH sensitive, has 

aggregated. C: 120 M of D1-15 with 1200 M of M6P monosaccharide at pH 7.5. All micrographs were 

collected at 100 k x magnification on an FEI Tecnai 20 200 kV microscope (Wolfson Bioimaging Facility, 

University of Bristol) with the help of Professor Christiane Berger-Schaffitzel and Dr Sathish Yadav. 
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4.4.  The structure of bovine D1-15  

Recent work by Wang et al. 2020 has determined the cryo-EM structure of bovine CI-MPR 

D1-14 to 3.5 Å at the physiological pH of the lysosome, pH 4.5 (Figure 68A, PDB 6UM1). At 

this pH, the extracellular region of the CI-MPR forms a compact, helical structure.128 Seven 

sub-groups (D1+D3, D2+D5, D4+D7, D6+D9, D8+D11, D10+D13 and D12+D15) form with 

the E-I surface of each domain packing against the E-I surface of its partner.128  

However, the structure of bovine CI-MPR D1-14 could not be obtained at neutral pH (pH 7.4 

as found at the plasma membrane) in the absence of ligand.128 Only upon incubation with IGF2 

could a low-resolution (4.3 Å) structure of the bovine CI-MPR be obtained at neutral pH 

(Figure 68B, PDB 6UM2).128 The result is an elongated structure of D4-14, with D1-3 and D15 

being omitted due to flexibility.128 In the structure of D4-14 the domains have rearranged and 

the seven sub-group interactions have been disrupted. 

Figure 68:  Cryo-EM structures of bovine CI-MPR extracellular region. A: The cryo-EM structure of bovine 

CI-MPR D1-15 (PDB 6UM1) at pH 4.5 demonstrates a compact, helical structure. B: The cryo-EM Structure of 

bovine CI-MPR D4-14 (PDB 6UM2) in complex with IGF2 (cyan) at pH 7.4. Structures of D1-3 and D15 could 

not be determined due to flexibility. 
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4.5.  An updated model of D1-15 

Combining the crystal structure of D7-11 with the previously characterised domains (D1-3, 

D5, D11-14) produces a model for the CI-MPR extracellular region (D1-14) that is different to 

previous proposals (Figure 69A). D4-6 is assumed to adopt a stable tri-domain which, 

alongside D1-3, maintains the two tri-domain model at the N-terminus of the CI-MPR. D7-10 

and D11-14 do not conform to the tri-domain pattern but instead form two sequential tetra-

domain units. Therefore, the C-terminal half can be modelled from the crystal structures of D7-

11 and D11-14 using the alignment of D11 in the D11-14 structure. D15 was not modelled as 

it is anchored to the cell membrane, lacks any structural data and is susceptible to cleavage by 

TACE protease to release soluble CI-MPR (sCI-MPR).224 Therefore, it is currently not clear 

how D15 interfaces with the remainder of the receptor.  

Figure 69: An updated model of the CI-MPR extracellular region.70 A: A single chain of our updated model 

of D1-15 is based upon the crystal structures of bovine D1-3, human D7-11, human D11-14 and solution NMR 

structure of bovine D5 (PDB 1SZ0, 6Z32, 2V5O, 2KVA respectively). B: The dimeric form of our updated model. 

Chain A (cartoon) crosses over chain B (surface render) in the centre. Only the structures of D4, D6 and D15 have 

not yet been determined to high-resolution. The updated model was built by former PhD student Ryan Nicholls. 

 

The physiological oligomeric state of the CI-MPR at neutral pH is poorly understood, with 

both monomeric and dimeric forms of CI-MPR purified from bovine livers observed by native 

gel electrophoresis.171 When studied by gel filtration and sucrose gradient centrifugation, 

bovine extracted CI-MPR exists predominantly as a monomer.171,229 Similarly, recombinant 
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bovine D7-9 and D7-11 were determined monomeric by cross-linking, size exclusion 

chromatography and sucrose density gradient centrifugation.132 However, the purification 

method used in each of these studies involved pentamannosyl phosphate affinity 

chromatography and might be selective for monomers as CI-MPR dimers mediated by N-

linked glycosylation (as seen for bovine D1-3, human D9-10 and human D7-11) may not be 

retained on the column. Similarly, mammalian expressed human CI-MPR D1-15 (purified by 

similar affinity chromatography methods) was also determined monomeric by SEC-

MALS.70,224 

On the other hand, truncated  human CI-MPR constructs and fusion proteins of human CI-

MPR extracellular domains with epidermal growth factor receptor are capable of forming 

dimers in the plasma membrane of mammalian cells (HEK293T).171,230 Furthermore, dimers of 

bovine CI-MPR observed in the membranes of mouse cells were found to be cross-linked by 

the multi-valent M6P-tagged ligand -glucuronidase, which resulted in an increased rate of -

glucuronidase internalisation.70,229 

The updated model maintains the crystal structures of D1-3, D7-11 and D11-14 in their dimeric 

forms, creating an elongated structure with approximate dimensions of 260 by 130 by 92 Å 

assembled around the D7-11 core (Figure 69B). In this updated model the two CI-MPR chains 

intersect and cross at D8-10, resulting in D7 sitting above D14 of the opposing chain (Figure 

69B). D3, D5, D9 and D11 maintain solvent accessibility for (known) ligand binding. The role 

of D12 in receptor dimerisation has been proposed,101,171,231 but the mechanism of dimerisation 

in terms of protein-protein interactions has not been explicitly proven. The assembly of the D7-

10 hub and the rigidity of the D11-12 interface suggests minimal interactions between D12s 

but does permit extensive inter-chain contacts between D12 and D13. Similarly the positioning 

of the two D7s seems to preclude the incorporation of D5-D5 contacts suggesting D5 may not 

act as a dimerisation point or D7-D8 contact may be flexible.131 The D4-6 structure remains 

unknown but could conceivably mark a further point at which the chains intertwine and cross 

and may be more compact than represented here.70 

Despite the crowding caused by this coiled dimerisation, the updated model remains 

compatible with simultaneous multi-ligand binding. For example, the M6P binding site of D3 

is positioned on the opposite face of the D1-3 tri-domain to the uPAR and plasminogen binding 

sites at the N-terminus of D1.103,114,142 This should allow both M6P tagged proteins and the 

M6P independent ligand uPAR or plasminogen to bind simultaneously.103,142 However, 
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addition of -glucuronidase has been shown to reduce the binding of uPAR.142 A similar 

decrease in uPAR binding was observed upon addition of IGF2.142 However, IGF2 binding at 

D11 is unlikely to affect the structure of D1, as comparison of the crystal structures of D11-13 

in complex with IGF2 and D11-14 unbound (PDB 2V5P and 2V5O respectively) show no 

structural rearrangement upon IGF2 binding.101 

Similarly D3, D5, D9 and D11 are distributed so that IGF2 and M6P tagged proteins may bind 

simultaneously.101,103 For example, as in the previous models of the extracellular region,101,103 

the binding sites of D9 and D3 are on opposing surfaces of the receptor and therefore binding 

of IGF2 should not occlude D9 and D3. However, Kiess et al. found that addition of IGF2 

reduced -galactosidase binding by ~75 %.232  

There have also been multiple reports that bi-phosphorylated oligosaccharides exhibit higher 

affinity binding to the CI-MPR than mono-phosphorylated ligands 135,233 Tong et al. reported 

high affinity CI-MPR binding of a glycan containing two M6P mono-esters, which would have 

a maximum distance of 30 Å between the two M6P residues.135 To satisfy this, Olson et al. 

proposed that the extracellular region of the receptor exists in a dynamic state with the hinge 

regions between the two N-terminal tri-domains (D1-3 and D4-6) flexing to bring the M6P 

mono-ester sites of D3 and D9 to within 45-85 Å.103 Our model, however, proposes a dimer in 

which the bi-phosphorylated M6P oligosaccharide would bind two D9s, a distance of ~22 Å. 

The two D9 binding sites are also in close enough proximity to bind the bi-phosphorylated 

molecular rulers developed by Fei et al., which had a distance of 16-26 Å between the two 

M6P residues.234  The distance between D3 and D9 of the same chain (intramolecular) and the 

opposing chain (intermolecular) in our model is ~58 Å.  

This updated model of D1-14 has since been validated by the low-resolution cryo-EM 

structures of bovine extracted CI-MPR (PDB 6UM1 and 6UM2) (Figure 68).128 Superimposing 

D4-14 of chain A of our model with the structure of bovine D4-14 at pH 7.4 gives an RMSD 

value of 29.9 Å over backbone atoms and similar dimensions (204 by 112 by 63 Å versus 230 

by 170 by 70 Å for bovine D4-14). Furthermore, superimposing D7-11 of one chain of the 

dimeric core with corresponding domains of the extended D4-14-IGF2 complex (PDB 6UM2) 

revealed a close inter-domain arrangement (Figure 70), with an RMSD value of 4.9 Å (PyMOL 

cealign structure-based alignment). This is versus 7.9 Å when superimposed with bovine D7-

11 at pH 4.5. Thus, identical packing around D9 can be derived from interaction with one of 

two distinct ligands, IGF2 or glycan, or, more likely, by neutral pH conditions.70 
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Figure 70: Comparison of human and bovine D7-11 structures.70 A: A single chain from the crystal structure 

of human D7-11 at pH 6.5 (PDB 6Z30). B: D7-11 from the cryo-EM structure of bovine D4-14 in complex with 

IGF2 at pH 7.4 (PDB 6UM2). Superimposition of human and bovine D7-11 at near neutral pH shows the same 

domain orientation and gives an RMSD of 4.9 Å. C: D7-11 from the cryo-EM structure of bovine D1-14 at pH 

4.5 forms a more compact arrangement (PDB 6UM1). Superimposition of human D7-11 at pH 6.5 and bovine 

D7-11 at pH 4.5 gives an RMSD value of 7.9 Å. PyMOL cealign structure-based alignments. 
 

Our updated model of D1-14 is further supported by the recent crystal structures of human D1-

5. Superimposition of human D1-5 at pH 7.0 (PDB 6V02) and the corresponding domains of 

our model gives an RMSD value of 7.2 Å over backbone atoms (versus an RMSD value of 

13.6 Å when superimposed with D1-5 at pH 5.5, PDB 6P8I). Similarly, identical packing was 

observed in the structure of human D1-5 at pH 5.5 and the corresponding domains of bovine 

D1-14 at pH 4.5 (PDB 6P8I and 6UM1 respectively) (Figure 71). Superimposition of these 

structures, which share the same compact domain arrangement, gives an RMSD value of 1.4 

Å, over backbone atoms revealing a rigid N-terminal unit formed at low pH in both bovine and 

human CI-MPR.  

Figure 71: Comparison of human and bovine D1-5 structures at acidic pH. A: The crystal structure of human 

D1-5 at pH 5.5 (PDB 6P8I). The N-linked glycan (GlcNAc2Man2) at N591 of D5 is shown as red sticks. B: The 

cryo-EM structure of bovine D1-5 at pH 4.5 (PDB 6UM1) forms the same compact domain arrangement. 

Superimposition gives an RMSD value of 1.4 Å over backbone atoms.  
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4.6.  Conclusions  

With a monomeric molecular weight of ~250 kDa and containing 19 predicted N-linked 

glycosylation sites and 59 disulphide bonds, the full extracellular region (D1-15) of the CI-

MPR is a complex and ambitious target ideal for structure determination by cryo-EM. This 

chapter describes the successful expression of D1-15 of the human CI-MPR in insect cells 

using the protocols developed for single and multi-domain constructs (chapters 2 and 3). 

Although the expression protocol requires optimisation to increase the ratio of secreted to 

insoluble D1-15, preliminary characterisation by analytical SEC and negative stain EM has 

been performed. 

Determination of the structure of human D7-11 (chapter 3) has allowed an updated model of 

the CI-MPR extracellular region to be proposed that was validated by the recent, low-resolution 

cryo-EM structure of bovine D4-14. Supported by the observation that insect expressed, human 

D1-15 is dimeric in solution, the updated model of D1-15 maintains the crystal structures of 

D1-3, D7-10 and D11-14 in their dimeric forms. Dimerisation through a bridging N-linked 

glycan has now been observed in insect expressed bovine D1-3, insect expressed human D9-

10 and mammalian expressed human D7-11.103 This work opens up fresh avenues for 

investigation into the ground state of the CI-MPR at the cell surface, how receptor dimerisation 

is regulated and how the D9 M6P binding site is unmasked to allow ligand binding. 
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5.  Engineering a synthetic lectin 

5.1.  Introduction and aims 

Background 

In 2016 Frago et al. developed the first high-affinity IGF2 specific ligand trap by fusing high-

affinity D11 mutants with the Fc region of human IgG1.127 This has proven successful in 

inhibiting in vivo IGF2 signalling in hypoglycaemic mice and may be a suitable therapeutic for 

CI-MPR deficient cancers. 

Therefore, is it possible to make a similar CI-MPR-based trap for M6P-tagged proteins? Could 

an M6P trap be administered to stratified cancer patients alongside the IGF2 trap? Or could an 

M6P trap be used to treat lysosomal storage disorders, where it may prove useful in conjunction 

with enzyme replacement therapies (ERT). For example, Cheng et al. have demonstrated (in 

vitro and in mice models) that endocytosis of recombinant human acid -glucosidase (rhGAA), 

which is a recognised ERT for the treatment of the lysosomal storage disorder Pompe disease, 

is enhanced by tagging rhGAA with M6P-tagged glycans.168 Furthermore, Bali et al. have 

improved the efficiency of rhGAA ERT in mice by up-regulating CI-MPR.169 

Additionally, could an M6P trap be adapted to bind other carbohydrate ligands? Recognition 

of glucose, for example, could facilitate glucose monitoring and diabetes treatments (through 

glucose-responsive insulin).235 Evidently, a  selective synthetic lectin has huge potential as a 

therapeutic, drug carrier, diagnostic or research tool. Thus, we sought to take some preliminary 

steps to engineer a synthetic lectin based upon the MRH domains of the P-type lectins. 

Example synthetic lectins 

There are two broad approaches to creating a synthetic lectin: 1) employing organic chemistry 

methods and 2) engineering biological molecules. Each of these methods can be classified 

further. For example, the first of these approaches exploits the interaction between boronic 

acids and sugars to form boronate esters and these so-called boronolectins were initially 

developed to bind glucose.236,237 However, boronolectins may have limited application as 

boronic acids exhibit preferential binding to furanose monosaccharides over pyranoses.238 

Nonetheless, boronolectins that are capable of recognising the pyranose polysaccharides 

heparin and sialyl Lewis X (SLeX) have been developed.236 A lectin specific for SLeX, which 

is an O-linked glycan over-expressed in epithelial based cancers, may be of value in 
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diagnostics.239 However, the bis-borane SLeX lectin developed by Levonis et al. recognises the 

anomeric carboxylic acid group and glycerol tail rather that the hexose ring itself.240  

The second approach to creating a synthetic lectin is to synthesise a biomimetic compound. 

This has successfully been applied to -D-glucose, which, with all equatorial hydroxyl groups, 

can be simplified as two apolar surfaces with polar sides.6 This may slot into a ‘temple’ 

structure of two apolar, aromatic surfaces that form CH-π interactions to the ring protons, 

separated by polar spacers that form hydrogen bonds to the axial hydroxyl groups.6 Using this 

approach, Davis et al. have created a synthetic lectin that binds glucose with high affinity (KD 

~18 mM) and specificity over other monosaccharides (~50:1 versus galactose).241 More 

recently, Davis et al. have updated their design to consist of a single apolar, aromatic surface 

and polar arches that can hydrogen bond to both axial and equatorial hydroxyl groups.242 This 

yielded binding affinities of KD  320 M, 555 M and 960 M for D-mannosamine, D-

galactosamine and D-glucosamine respectively.242 Another design update to further increase 

versatility of these biomimetic synthetic lectins is the ‘asymmetric temple’, whereby one of the 

apolar surfaces is smaller than the other and linked by apolar spacers on one side and a variable 

region on the other side.243 This yielded binding affinities of KD 0.25 M to D-mannose but 3.8 

mM to D-cellobiose, a disaccharide of D-glucose.243 

Development of biological synthetic lectins has also taken two approaches, starting with either 

a nucleic acid scaffold or amino acid scaffold.60 Referred to as nucleic acid antibodies, 

aptamers are single-stranded oligonucleotides (20-100 nucleotides) that can bind a range of 

targets including carbohydrates, metal ions, small molecules, peptides/ proteins, viruses, 

bacteria and cells.60,244 Aptamers are generated by systemic evolution of ligands by exponential 

enrichment (SELEX) that involves multiple rounds of PCR amplification and binding 

selection.244 Both RNA and DNA aptamers have been developed for carbohydrate binding. For 

example, Jeong et al. have developed an RNA aptamer (of 110 nucleotides) that binds SLeX 

with very high affinity (KD 0.085 nM).245 This aptamer can inhibit, in vitro, the interaction 

between the cell surface adhesion proteins E- and P-selectin and SLeX-tagged transmembrane 

proteins overexpressed on the surface of HL60 (human promyelocytic leukaemia) cells.245 A 

DNA SLeX aptamer had a similar effect, in vitro, of inhibiting the cell adhesion interactions of 

HepG2 (hepatocellular carcinoma) cells.246   

An alternative approach to creating a biological lectin utilises peptides/ proteins as a scaffold. 

The simplest and most common method of creating a proteinogenic synthetic lectin is to re-
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engineer an existing lectin. This involves cycles of mutagenesis (either site-directed 

mutagenesis, random mutagenesis by error-prone PCR or domain swapping) followed by 

screening/ selection (typically by display methods or glycan microarrays).247 For example, 

Yabe et al. used error-prone PCR and ribosome display to re-engineer EW29Ch, an R-type 

lectin with two carbohydrate binding domains (CBD) that bind galactose.248 Wild-type 

EW29Ch does not bind sialic acid but the re-engineered construct exhibited micromolar 

binding to 2-6-Sialylated N-linked glycans.248 A similar approach was taken to re-engineer 

EW29Ch to bind 6-sulpho-galactose, a component of O-linked glycans, with millimolar 

affinity.249 Further site-directed mutagenesis revealed that a basic residue (lysine, arginine or 

histidine) is required at position 20 in the  CBD to alter its specificity.249 

Engineering a proteinogenic synthetic lectin by site-directed mutagenesis requires an 

understanding of protein-carbohydrate interactions. Analysis of bound lectin structures in the 

PDB (by Hudson et al.) reveal that aliphatic residues (A, P, V, M, C, L, I) are disfavoured in 

carbohydrate binding sites, while aromatic residues (W, Y, F, H) are favoured due to the 

formation of CH-π interactions between the aromatic side chain and sugar C-H.204,250 These 

interactions are influenced by the electronics of the sugar C-H bond and the aromatic side chain 

and therefore vary with the monosaccharide (e.g. Glc versus Gal), its stereochemistry (e.g. 

 versus ) and its position relative to the protein side chains.250 

Our approach 

Ideally CI-MPR MRH D9 would be used as an M6P trap and synthetic lectin scaffold due to 

its high affinity binding, specificity for M6P mono-esters and independence from neighbouring 

domains.82 However, as previous work by the Crump lab has found, D9 is insoluble in isolation. 

Therefore, we are utilising D11 of the CI-MPR as a scaffold due to its high stability and robust 

E. coli expression and refolding protocols previously established within the Crump lab.112,124 

The MRH domains of the P-type lectins and D11 of the CI-MPR have been well studied and 

there now exist high-resolution structures for each of these domains (Figure 72).101,103,124,131,136 

Structural characterisation, sequence alignments and mutagenesis studies have identified key 

carbohydrate binding residues in these MRH domains (Figure 72A-C).67 
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Figure 72: The binding sites of CI-MPR MRH domains D3, D5 and D9 and CI-MPR IGF2 binding domain 

D11. A: The binding site of bovine D3 (blue, PDB 1SYO) with M6P bound (cyan sticks). The conserved ‘QREY’ 

motif (Q348, R391, E416, Y421) and the additional sugar binding residues Y324, S386 and S387 are shown as 

balls-and-sticks. B: The binding site of bovine D5 (grey, PDB 2KVB) with M6P-GlcNAc di-ester modelled into 

the binding site (green sticks). The conserved ‘QREY’ motif (Q644, R687, E709, Y714) is shown as balls-and-

sticks. C: The binding site of human D9 (purple, PDB 63Z0) with M6P docked (cyan sticks). Again, the conserved 

‘QREY’ motif (Q1283, R1325, E1345, Y1351) and H1320 of the FG loop are shown as balls-and-sticks. D: The 

binding site of human D11 (blue) with the peptide IGF2 bound (yellow, PDB 2L29). Interacting residues (T16, 

F19 and L53 of IGF2 and Y1542, V1547, F1567, I1572, Y1606, L1626, L1629, K1631, L1636 of D11) are shown 

as balls-and-sticks. 

 

Thus, we have taken a structure-based approach to engineer CI-MPR D11 from a hydrophobic, 

protein binding domain to a positively charged, carbohydrate binding domain (i.e. a synthetic 

lectin). Initial attempts grafted the binding site loops of D9 straight onto D11. However, this 

mutant failed to fold (consistent with the observation from generating the IGF2 trap that too 

many mutations disrupts D11 folding). Therefore, an iterative approach was taken (Figure 73), 

with point mutations generated by site-directed mutagenesis, mutants expressed and re-folded 

in vitro, before screening for M6P binding by 2D 1H-15N HSQC NMR. 
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Figure 73: Engineering a biological synthetic lectin. A: Overview of our iterative, structure-based approach. 

Mutants are generated by site directed mutagenesis, expressed in E. coli, refolded in vitro and purified by SEC. 

Screening for sugar binding ability is performed by 2D 1H-15N HSQC NMR. Results obtained inform the next 

cycle. B: Evolution of our D11 construct. Three mutations in the AB loop of D11WT gave rise to AB3, a stable 

IGF2 binding domain. The conserved sugar binding ‘QREY’ motif was incorporated into this construct, 

generating the ‘Plus 4’ construct. This was mutated further by truncation of the FG loop to form D11 PK. The 

latest round of mutations focuses on two residues of the FG loop S1599 and S1600. Crystal structures are shown 

for D11WT, AB3, Plus 4 and PK (PDB 1GP0, 2L29 and unpublished (Dr Chris Williams (University of 

Bristol))). Mutated residues are shown as balls-and-sticks and M6P (cyan sticks) is docked into the structures of 

Plus 4 and PK. The electrostatic surface is shown for PK (blue positively charged, range +5 to -5 as determined 

using the APBS software).196   

 

 

The AB loop of D11 has been extensively mutated and a construct termed AB3 containing 

three mutations (E1544K, K1545S, L1547V) exhibited a 3-4 fold increase in IGF2 binding 

affinity.124 AB3 was chosen for further mutation due to an established expression and in vitro 

refolding protocol and excellent stability (AB3 was observed by 1H NMR to have retained 

native folding for at least a year when stored at 4 oC). AB3 was mutated by Dr Chris Williams 

(University of Bristol) to form ‘Plus 4’, a construct that knocked out the IGF2 binding residues 

F1567, Y1606, L1629 and L1636 which contribute to the hydrophobic surface of D11 and 

would otherwise form hydrophobic interactions with F19 and T16 of IGF2 (Figure 72D). The 

‘Plus 4’ construct simultaneously introduces the conserved ‘QREY’ motif observed in MRH 

domains (Figure 72A-C). As illustrated in the high-resolution crystal structure of human D9 

(1.5 Å resolution, PDB 6Z30), Q1283 on C forms a hydrogen bond with the 2’OH of mannose, 

while E1345 and Y1351 on H and I respectively can hydrogen bond to the 3’OH and 4’OH 

(Figure 73A). From the base of the FG loop, the charged guanidinium group of R1325 interacts 
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with the 6’OH of mannose group. Docking M6P into the D9 crystal structure demonstrates the 

same orientation of the mannose ring and thus same interactions to the ‘QREY’ motif (Figure 

74A).  

Although only the 2-epimer of M6P (Figure 74B), glucose 6-phosphate (G6P) binds the P-type 

lectins with ~10,000 fold lower affinity.54,89 G6P and 2-deoxyG6P bind the CI-MPR with 

similar affinity to one another.89 This suggests that movement of the 2’OH from the axial 

position in mannose (and M6P) to the equatorial position in glucose (and G6P) (Figure 74B) 

does not result in steric clash but instead disrupts hydrogen bonds between the 2’OH and 

binding site residues.89 Specifically, glutamine and arginine of the conserved ‘QREY’ motif 

(Q1283 and R1325 of D9, Figure 74A) are positioned to hydrogen bond the 2’OH of mannose/ 

M6P. 

Figure 74: MRH domains are selective for M6P over G6P. A: Residues of the conserved ‘QREY’ (Q1283, 

R1325, E1345, Y1351) motif in the binding site of D9 are shown as purple balls-and-sticks. The mannosylated 

N-linked glycan bound by D9 in the crystal structure of D9-10 (PDB 6Z30) is shown as grey sticks. M6P (cyan 

sticks) and glucose (Glc, orange sticks) are docked into the crystal structure. Mannose and glucose are epimers, 

with only the 2’OH (circled) differing. B: The structures of -D-mannose (grey), M6P (blue) and glucose 

(orange).  

 

The ‘Plus 4’ construct was later mutated further by Dr Chris Williams (University of Bristol) 

to form ‘PK’. P1599 and K1601 both in the FG loop were knocked out to shorten this loop, 

thereby making it similar to D3 and D9. This chapter summarises the progress made to date 

and describes the latest round of mutations made to the FG loop.  
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5.2.  AB3 

Before designing further mutants, the D11 AB3 construct, which contains the mutations 

E1544K, K1545S and L1547V in the AB loop and exhibits high affinity IGF2 binding,124 was 

studied as a control protein to confirm that the D11 scaffold is incapable of M6P binding. 

The AB3 gene was expressed in E. coli BL21 (DE3, Novagen). Due to the reducing 

environment of the bacterial cytosol and the presence of eight cysteines that form four 

disulphide bonds, AB3 forms insoluble inclusion bodies – dense aggregates of misfolded 

recombinant protein.173 However, a robust in vitro refolding protocol for D11 expression in E. 

coli was developed by Brown et al. in 2002 (based upon Gao et al. 1998).112,172 

The AB3 inclusion bodies were purified and resolubilised in 8 M urea. Denatured protein was 

refolded by rapid dilution as described in chapter 2.112 After 24 hrs recombinant protein was 

purified by SEC and analysed by SDS-PAGE (Figure 75). Folding was assessed by gel 

filtration and 1D 1H-NMR (Figure 75A, 75C). 

Figure 75: Purification and initial characterisation of D11 AB3. A: SEC trace of AB3 in vitro refold. The peak 

at 160-180 mL marked X corresponded to natively folded AB3. This was analysed by SDS-PAGE (inset). B: ESI-

MS of AB3 confirmed purification of AB3 and 94 % incorporation of 15N with an observed molecular mass of 

15,581 Da versus an expected molecular mass of 15,596 Da assuming 100 % 15N incorporation and reduction of 

cysteine residues. C: 1D 1H-NMR spectrum of AB3 confirmed native protein folding. 

 

 

When purified by SEC, natively folded, monomeric AB3 eluted between 160-180 mL (Figure 

75A). Expression and purification of AB3 was confirmed by SDS-PAGE and mass 

spectrometry. As described previously, 1D 1H-NMR confirmed native folding of the protein 

(Figure 75C). Protein folding was also confirmed by the presence of well-dispersed chemical 

shifts in the 2D 1H-15N HSQC (heteronuclear single quantum coherence) NMR spectra (Figure 
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76). The spectrum was assigned in CCPN analysis 251 by comparison to a previously assigned 

spectrum of AB3 at pH 4.0 (supplied by Dr Chris Williams (University of Bristol)).  

Figure 76: 2D 1H-15N HSQC NMR spectra of AB3 alone (black) and with ~100-fold excess of mannose 

(green). Spectra were collected at 700 MHz by Dr Chris Williams (University of Bristol) with 120 M AB3 and 

10 mM mannose in 25 mM Bis-Tris, 150 mM NaCl pH 6.5 in 10 % D2O.  

 

A protein-observed NMR method, HSQC experiments are frequently employed during the 

study of protein-ligand interactions and during fragment based-drug discovery.252 HSQC 

experiments have relatively fast acquisition times and the required 15N labelled protein is 

relatively easy to obtain by E. coli culture.214 1H-15N HSQC spectra are recorded with 

increasing concentrations of ligand.253 If a residue interacts with the ligand its shielding is 

altered and the position/ intensity of its chemical shift will change.253,211 These chemical shift 

perturbations (CSPs) allow identification of binding site residues and calculation of binding 
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affinity. Olson et al. determined the NMR structure of bovine D5 (using 3D NMR experiments) 

before using 1H-15N HSQC spectra to locate the carbohydrate binding site (by mapping CSPs) 

and to determine binding affinities to M6P and methyl-M6P-GlcNAc (by HSQC titrations).131  

Figure 76 also shows the HSQC spectrum of AB3 following incubation with approximately 

100-fold excess of mannose. As expected, there were minimal changes with small chemical 

shift perturbations (CSPs) (Figure 77A), which were calculated according to Equation 4 below. 

The ten greatest CSPs (which are N1520, K1579, D1630, D1514, K1544, I1572, V1518, 

N1556, G1603 and E1647) have been mapped to the structure of AB3 (PDB 2L29) (Figure 

77B). Their distribution throughout AB3 confirms the absence of a mannose binding pocket. 

Furthermore, the observed CSPs were very small, with only three residues giving a CSP above 

0.1 ppm and a maximum CSP of 0.26 ppm (for N1520) (Figure 77A). In comparison, titration 

of bovine D5 with M6P and methylM6P-GlcNAc by Olson et al. resulted in multiple CSPs 

between 0.5-0.8 ppm and clusters of CSPs that mapped to the binding loops.131  

∆𝛿 = √(5 × ∆𝛿𝐻)2 +  ∆𝛿𝑁
2
 

Equation 4: Calculation of chemical shift perturbation () whereby H and N correspond to 

perturbations of 1H and 15N chemical shifts. 

 

Figure 77: CSP of AB3 following addition of ~100-fold excess of mannose. A: CSPs of AB3 residues following 

addition of 10 mM mannose. The ten greatest CSPs are coloured green. -strands are represented by arrows 

underneath the residue number. B: The ten residues with the greatest CSP values are shown as green sticks on the 

grey surface of AB3 (PDB 2L29).  

 

The 2D 1H-15N HSQC was repeated in the presence of 100-fold excess of M6P (Figure 78A). 

Comparison to the 1H-15N HSQC of AB3 alone revealed small changes. Furthermore, some of 

these chemical shifts tracked with increasing concentration of M6P (10 and 20 mM M6P) 

suggesting an interaction between AB3 and M6P. However, upon CSP calculation and 

mapping to the structure of AB3 (Figure 78B, 78C), it became evident that there is no specific 
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M6P binding site on AB3. The ten residues that gave the largest CSPs (E1617, F1567, E1647, 

N1520, T1519, H1525, H1513, W1640, V1613 and A1618) were spread throughout AB3 and 

did not form a single M6P binding site (Figure 78C). Only one of these residues also exhibited 

a significant CSP upon addition of mannose, N1520 at the N-terminus. Interestingly, F1567, 

which has the second greatest CSP, is a key IGF2 binding residue.    

Figure 78: Analysis of AB3 binding M6P. A: 2D 1H-15N HSQC NMR spectra of AB3 alone (black), with 10 

mM M6P (blue) and 20 mM M6P (orange). B: CSP of AB3 following addition of 10 mM M6P. The ten greatest 

CSPs are coloured blue. C: The ten residues with the greatest CSP values are shown as blue sticks on the grey 

surface of the crystal structure of  (PDB 2L29). Each spectrum was collected at 700 MHz by Dr Chris 

Williams (University of Bristol) with 120 M D11 AB3 in 25 mM Bis-Tris, 150 mM NaCl pH 6.5 in 10 % D2O. 
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M6P monosodium salt is acidic. For example, creating a stock solution of 100 mM M6P in 25 

mM Tris lowered the pH from 8.0 to 5.0. Subsequent dilution to 2.5 mM M6P with 25 mM 

Tris lowered the pH from 8.0 to 7.1, a reduction of 0.9 pH units. A pH calibration curve 

(Appendix Figure 12) was determined by measuring the 1H chemical shift of Tris at a range of 

pHs. From this the pH of AB3 was calculated to be reduced from pH 6.7 to pH 6.1 upon 

addition of 10 mM M6P, a decrease of 0.6 pH units (compared to a decrease of 0.4 pH units 

upon addition of 10 mM mannose, Appendix Table 16).  

To determine if the small CSPs observed upon M6P addition were due to sugar-protein 

interactions or simply a result of the pH change, 1H-15N HSQC spectra of AB3 were collected 

at a range of pHs (pH 4, 5, 6, 7 and 8, Figure 79A). In each of the spectra the peaks were 

dispersed demonstrating that AB3 was folded and had not aggregated. CSPs were calculated 

for spectra collected at pH 7 and 6 (Figure 79B) and the ten residues giving the greatest CSPs 

(L1526, H1525, E1647, C1516, S1531, M1625, Q1586, C1553, L1581, S1543) mapped to the 

structure of AB3 (Figure 79C). With values ranging between 0.56-2.6 ppm, these residues 

demonstrated greater CSPs than observed upon addition of mannose or M6P (likely due to a 

larger pH change). Three residues, L1526, H1525 and E1647 that gave significant CSPs upon 

reduction of the pH from pH 7 to 6 also exhibited large CSPs following addition of M6P 

suggesting these were pH dependent changes and not the result of sugar binding.  
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Figure 79: The effect of pH on analysis of AB3. A: 2D 1H-15N HSQC NMR spectra of AB3 at pH 4 (cyan), 5 

(light blue), 6 (blue), 7 (navy) and 8 (black). B: CSP of AB3 at pH 6 and 7. The ten greatest CSPs are coloured 

blue. C: The ten residues with the greatest CSP values are shown as blue sticks on the grey surface of the crystal 

structure of  (PDB 2L29). Each spectrum was collected at 700 MHz by Dr Chris Williams (University of 

Bristol) with 120 M D11 AB3 in 25 mM Bis-Tris, 150 mM NaCl in 10 % D2O.  
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5.3.  D PK mutant 

Having demonstrated that the control protein AB3 is incapable of M6P binding, attention 

turned to the D11 mutant PK (designed by Dr Chris Williams (University of Bristol)), in 

which, following incorporation of the ‘QREY’ motif conserved in MRH domains, two residues 

of the FG loop (P1599 and K1601) have been deleted (Figure 80A). This was based upon the 

observation that the carbohydrate binding sites of CI-MPR D3 and D9 have FG loops 

composed of 11 residues compared to 13 residues in the FG loop of D11WT (and AB3) (Figure 

80B). Furthermore, the FG loop of the CD-MPR is 13 residues in length. X-ray crystallography 

has demonstrated that, in the absence of ligand, the CD-MPR FG loop occludes the binding 

site.254   

Figure 80: Sequence alignment of D11 mutants and CI-MPR domains. A: Alignment of D11 mutants. B: 

Alignment of human D11 (WT) against the MRH domains of human CI-MPR D3, D5, D9 and bovine CD-MPR. 

The three mutations in AB3 (E1544K, K1545S, L1547V) are coloured yellow, the conserved ‘QREY’ 

carbohydrate binding motif blue, the deletion of P1599 and K1601 in the FG loop orange and IGF2 binding 

residues of D11 (Y1542, V1547, F1567, I1572, Y1606, L1626, L1629, K1631, L1636) green. The location of -

strands is shown as arrows. 

 

The crystal structure of D11 mutant PK was previously determined by Dr Chris Williams 

(University of Bristol) to 2.4 Å resolution (Rwork and Rfree values of 24.0 % and 27.1 % 

respectively) with 96.8 % of the backbone dihedral angles in allowed regions of the 

Ramachandran plot (Appendix Table 17).  
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Superimposition of the crystal structure of PK with the structures of bovine D3 and human 

D9 gives RMSD values of 2.4 Å and 1.0 Å respectively over backbone atoms (Figure 81A). 

The crystal structure of PK confirms incorporation of the conserved ‘QREY’ motif. 

Furthermore these residues (Q1567, R1604, E1627, Y1634 of PK) are in the same position 

on C, G, H and I respectively as in D3 and D9 and should, therefore, be capable of forming 

H-bonds to M6P (Figure 81A). Although Q1567 at the top of C and R1604 near the top of G 

are in slightly different conformations to their counterparts in D3 and D9 (Q348, R391 and 

Q1283, R1325 respectively) they are still within H-bonding distance to a docked M6P residue 

(Figure 81A). The PK construct also contains a deletion of P1599 and K1601, truncating the 

FG loop from 13 residues found in D11 to 11 residues as found in D3 and D9 (Figure 81B). 

The IGF2 binding site on D11WT consists of a hydrophobic pocket, surrounded by a ring of 

positive charge (Figure 81C).101 The carbohydrate binding sites of D3 and D9 are less 

hydrophobic and have a positively charged pocket (Figure 81C). A similar surface is observed 

in the crystal structure of PK (Figure 81C). 

Figure 81: The crystal structure of PK. A: The crystal structure of PK (orange, Dr Chris Williams (University 

of Bristol)) superimposed with the structures of D3 (red) and D9 (blue) (PDB 1SYO and 6Z30 respectively). 

Residues of the conserved ‘QREY’ motif (Q1567, R1604, E1627, Y1634 in PK, Q348, R391, E416, Y421 in 

D3 and Q1283, R1325, E1345, Y1351 in D9) are shown as balls-and-sticks. The orientation on the right 

demonstrates the positioning of these side chains relative to a docked M6P residue (cyan sticks). B: The FG loop 

of PK was truncated to be the same length as that of D3 and D9, compared to that of D11WT (green, PDB 

1GP0). C: The binding site of PK (from the top) compared to that of D3, D9 and D11. Electrostatic surfaces 

(top, blue positively charged, range +2 to -2 as determined using the APBS software)196  and hydrophobic surfaces 

(bottom) are shown.  
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However, despite co-crystallisation with M6P and soaking, an M6P-bound structure of D11 

PK could not be obtained. D11 PK was, therefore, expressed as insoluble inclusion bodies 

in E. coli BL21 (DE3, Novagen) and refolded in vitro for characterisation by HSQC NMR. 

Successful expression, purification and refolding was confirmed by SEC, SDS-PAGE, MS and 

NMR (Figure 82). 

Figure 82: Purification and initial characterisation of D11 PK mutant. A: SEC trace of PK in vitro refold. 

The peak at 160-180 mL marked X corresponded to natively folded PK. This was analysed by SDS-PAGE 

(inset). B: ESI-MS confirmed purification of PK with an observed molecular mass of 15,225 Da versus an 

expected molecular mass of 15,224 Da assuming reduction of cysteine residues. C: 1D 1H-NMR spectrum of 

PK confirmed 15N incorporation and protein folding.  

 
 

 
1H-15N HSQC NMR experiments with PK demonstrated no significant changes upon addition 

of glucose, with a maximum CSP of 0.37 ppm (F1635) (Figure 83, Appendix Table 14). 

Similarly, upon addition of M6P, only small changes were observed, with a maximum CSP of 

0.27 ppm (H1525) and a distribution of CSPs throughout the protein (Figure 83E). Several 

residues that shifted upon addition of M6P also shifted upon addition of glucose (for example, 

H1525, F1635, T1519, R1580). Furthermore, residues H1525 and E1645 of PK that exhibited 

two of the greatest CSPs upon addition of M6P (0.27 ppm and 0.23 ppm respectively) were 

previously demonstrated to be pH sensitive (Appendix Table 14).  
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Figure 83: Analysis of D11 mutant PK. A: 2D 1H-15N HSQC NMR spectra of D11 PK alone (black) and with 

10 mM glucose (red) and with 10 mM M6P (blue). B: CSP of D11 PK following addition of 10 mM glucose. 

The ten greatest CSPs are coloured red. C: The ten residues with the greatest CSP values are shown as red sticks 

on the grey surface of the crystal structure of PK (Dr Chris Williams (University of Bristol)). D: CSP of D11 

PK following addition of 10 mM M6P. The ten greatest CSPs are coloured blue. E: The ten residues with the 

greatest CSP values are shown as blue sticks on the grey surface of the crystal structure of PK. Each spectrum 

was collected at 700 MHz by Dr Chris Williams (University of Bristol) with 50 M PK in 25 mM Bis-Tris, 150 

mM NaCl pH 8.5 in 10 % D2O.   
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5.4.  FG loop mutants 

A further round of site-directed mutagenesis was performed on D11 mutant PK based upon 

the crystal structure of PK (Figure 81, Figure 84). Truncation of the FG loop in the PK 

construct has re-positioned two serine residues (S1599 and S1600) in the FG loop (Figure 

84A). These serine residues are found in the same position in the FG loop of D3 (S386 and 

S387, Figure 84B) and have previously been demonstrated by mutagenesis and affinity 

chromatography to be essential sugar binding residues (mutation of S386 reduced D3 ligand 

binding, while mutation of S387 completely eliminated D3 ligand binding).67 However, the 

surface representation of PK with M6P docked demonstrates that the FG loop currently 

occludes this part of the binding site (Figure 84C). Specifically, S1599 on the FG loop clashes 

with the phosphate group of M6P. Therefore, PK mutants were designed whereby S1599 and 

S1600 were mutated to the smallest residue glycine (S1599G also termed PK1G, and S1600G 

or PK2G). Although partially responsible for restricting this side of the binding pocket, the 

disulphide bridge formed between C385-C419 of PK was left unmutated as it is conserved in 

D3 and D9 and likely critical to native protein folding (Figure 84C). 

Figure 84: Comparison of the carbohydrate binding pocket of D3, D9 and PK. A: The structure of PK 

binding surface (grey) with M6P docked (cyan sticks). The conserved ‘QREY’ motif (Q1567, R1604, E1627, 

Y1634), S1599 and S1600 in the FG loop are shown as balls-and-sticks. B: The structure of bovine D3 binding 

surface (grey) with M6P bound (cyan sticks, PDB 1SYO). The conserved ‘QREY’ motif (Q348, R391, E416, 

Y421), S386 and S387 in the FG loop are shown as balls-and-sticks. C: Superimposition of PK, D3 and D9 

reveals a conserved disulphide bond between C91/C385/C1319 in the FG loop (of PK/D3/D9) and C125/C419/ 

C1349 of I. S1599 and S1600 of PK are replaced by S386 and S387 in D3 and H1320 in D9. D: The structure 

of human D9 binding surface (grey) with M6P docked (cyan sticks, PDB 6Z30). The conserved ‘QREY’ motif 

(Q1328, R1325, E1345, Y1351) and H1320 in the FG loop are shown as balls-and-sticks.  
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Although glycan microarray analysis demonstrated no interaction between mannose and CI-

MPR domains, crystal structures have been determined of D1-3 and D9-10 occupied with a 

mannosylated N-linked glycan (PDB 1Q25 and 6Z30 respectively).82,103 Comparison to the 

structure of D1-3 with M6P bound (PDB 1SYO) reveals that the conserved ‘QREY’ motif 

interacts with the hydroxyl groups of mannosylated glycan and M6P in the same manner. This 

‘QREY’ motif is observed in a handful of other MRH lectins. For example, ER-resident lectins 

GII, OS-9 and XTP3-B each contain an MRH domain that possesses mannose binding ability 

and is incapable of M6P binding.65,66,134 Therefore, residues outside this ‘QREY’ motif are 

responsible for the P-type lectins preferential binding of M6P over mannose.82 The crystal 

structures of GII and OS- reveal that their FG loops contain either bulky residues (W409 and 

N410 in GII) that occlude this part of the binding pocket or residues (D182 and L183 in OS-

9) that interact with the 6’OH  (PDB 4XQM and 3AIH respectively).65,66 In D3, this is replaced 

by S386 and S387 which interact with the phosphate oxygen directly and through a bridging 

water molecule.136 Meanwhile, D9 contains a histidine residue, H1320, in the FG loop that 

forms a direct, favourable charge-charge interaction with the phosphate group of M6P (Figure 

84D). Therefore, a further two FG loop mutants were designed whereby S1599 and S1600 are 

replaced by a histidine residue (S1599H also termed PK1H, and S1600H or PK2H). 

These four new D11 mutations (S1599G, S1600G, S1599H and S1600H) were incorporated 

individually into the FG loop of D11 PK by site-directed mutagenesis. As for earlier D11 

constructs, the FG loop mutants were expressed as insoluble inclusion bodies in E. coli BL21 

(DE3, Novagen) and refolded in vitro. Successful expression, purification and refolding was 

confirmed by SEC, SDS-PAGE, MS and NMR (Appendix Figure 13-14). 

D11 mutants PK1G and PK1H (Figure 85) were crystallised by the hanging drop vapour 

diffusion method. Screening conditions were based on the crystallisation conditions of D11WT 

(PDB 1GP0) and PK. D11 PK1G crystals were observed in a solution of 15 % PEG 4K, 0.1 

M sodium cacodylate pH 5.2, 0.1 M sodium acetate. The construct crystallised in space group 

C121 with 9 molecules in the asymmetric unit. The structure of D11 PK1G was determined 

to 2.8 Å (Rwork and Rfree values of 26.3 % and 30.6 % respectively) with 97.9 % of the 

backbone dihedral angles in allowed and favoured regions of the Ramachandran plot (Figure 

85A, Appendix Table 17) by molecular replacement using the crystal structure of D11WT 

(PDB 1GP0) as the search model. There was no electron density for M1508-D1514 at the N 

terminus or E1647 at the C terminus.  
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In parallel, D11 PK1H crystals were observed in a solution 18 % PEG 4K, 0.1 M sodium 

cacodylate pH 5, 0.05 M sodium acetate. The construct crystallised in space group P1211 with 

6 molecules in the asymmetric unit. The structure of D11 PK1H was determined to 2.5 Å 

(Rwork and Rfree values of 25.3 % and 28.0 % respectively) with 98.4 % of the backbone 

dihedral angles in allowed and favoured regions of the Ramachandran plot (Figure 85B, 

Appendix Table 17) by molecular replacement using the crystal structure of D11WT (PDB 

1GP0) as the search model. There was no electron density for M1508-D1514 at the N terminus 

or P1646-E1647 at the C terminus. 

The crystal structures of D11 PK1G and PK1H (Figure 85) exhibit the core -sandwich 

topology observed for D11WT with RMSD values (over backbone atoms) of 2.2 Å, 1.0 Å and 

0.56 Å to D3, D9, D11WT respectively for PK1G and 2.3 Å, 0.97 Å and 0.25 Å to D3, D9, 

D11WT respectively for PK1H. The presence of both mutations (serine and histidine) is 

clearly visible in the corresponding electron density maps (Figure 85). However, as for PK, 

despite co-crystallisation and soaking with M6P, an M6P-bound structure could not be 

obtained. 

Figure 85: Crystal structures of D11 PK1G and PK1H. A: Superimposition of D11 PK1G (teal), PK 

(orange, Dr Chris Williams (University of Bristol)) and D3 (red, PDB 1SYO). Zoom in on the binding site shows 

carbohydrate binding residues of the FG loop: S386 and S387 (red) in D3, S1599 and S1600 (orange) in PK and 

G1599 and S1600 in the PK1G. M6P (cyan sticks) docked. Inset shows the electron density for G1599 in PK1G. 

B: Superimposition of D11 PK1H (green), PK (orange, Dr Chris Williams (University of Bristol)) and D9 

(blue, PDB 6Z30). Zoom in on the binding site shows the carbohydrate binding residue H1320 (blue ball-and-

stick) in the FG loop of D9 and H1599 (green ball-and-stick) in the PK1H. M6P (cyan sticks) docked. Inset 

shows the electron density for H1599 in PK1H. For each structure the 2Fo-Fc map is shown at 1.8σ. 
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As for AB3 and PK, 1H-15N HSQC was used to assess sugar binding capability of the D11 

FG loop mutants. Due to changes in the protein sequence and pH variation, 1H-15N HSQC of 

D11 PK1G were only 76-82 % assigned (Appendix Table 11). Very few changes were 

observed upon addition of excess mannose or glucose to D11 PK1G (Figure 86). Analysis of 

the CSPs revealed a maximum CSP of 0.15ppm (for R1613 and V1548) in the presence of 

mannose and 0.14 ppm (for Q1630 and H1525) in the presence of glucose (Appendix Table 

15, Figure 87A-B).  

Figure 86: Analysis of D11 mutant PK1G.  2D 1H-15N HSQC NMR spectra of D11 PK1G alone (black), with 

10 mM mannose (green), with 10 mM glucose (red) and 10 mM M6P (blue). Each spectrum was collected at 700 

MHz by Dr Chris Williams (University of Bristol) with 50 M D11 PK1G and 10 mM sugar in 25 mM Tris pH 

8.5, 150 mM NaCl in 10 % D2O. 
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Figure 87: CSP values of D11 PK1G following addition of mannose, glucose and M6P. A: CSP of D11 

PK1G following addition of 10 mM mannose. The ten greatest CSPs are coloured green. -strands are 

represented by arrows underneath the residue number. The ten residues with the greatest CSP values are shown 

as green sticks on the grey surface of PK1G crystal structure. B: CSP of D11 PK1G following addition of 10 

mM glucose. The ten greatest CSPs are coloured red. The ten residues with the greatest CSP values are shown as 

red sticks on the grey surface of PK1G crystal structure. C: CSP of D11 PK1G following addition of 10 mM 

M6P. The ten greatest CSPs are coloured blue. The ten residues with the greatest CSP values are shown as blue 

sticks on the grey surface of PK1G crystal structure. N1511 has been omitted as it was not visible in the crystal 

structure. 
 

However, upon addition of excess M6P, several changes were observed in the 1H-15N HSQC 

spectrum (Figure 86). Addition of 10 mM M6P gave large CSPs, with the ten greatest CSPs 

ranging from 0.25-1.06 ppm (Figure 87C, Appendix Table 15). However, mapping these CSPs 

to the crystal structure of D11 PK1G did not reveal a distinct M6P binding site. Instead there 

is a cluster of sensitive residues at the N-terminus (C1516, N1520, S1522, L1526) away from 
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the binding loops (Figure 87C). T1633 and F1635 both on H gave CSP values of 1.03 ppm 

and 0.26 ppm (Appendix Table 15). However, these two residues protrude from the -strand 

into the solvent rather than into the core of the -sandwich and are thus not in a position to 

interact with bound ligand (Figure 87C).  

The effect of M6P was studied further by titration with a range of M6P concentrations (5-50 

mM, i.e. 100-1000-fold excess) (Figure 88). The 1H-15N HSQC revealed that some peaks 

clearly tracked with an increased concentration of M6P, while other peaks only appeared at 

high M6P concentrations (Figure 88B).  

Addition of 50 mM M6P resulted in even larger CSPs, with the ten greatest values between 

0.39-3.32 ppm (Appendix Table 15). Only three of these residues (L1526, V1587 and the N-

terminal residue N1511) previously exhibited large CSPs upon addition of 10 mM M6P 

(Appendix Table 15). Three residues L1526, C1553 and C1516 that gave large CSP values 

following addition of M6P were demonstrated in earlier experiments with AB3 to be pH 

sensitive (Appendix Table 14). Of the remaining residues giving large CSPs upon titration with 

50 mM M6P three were in the binding loops of PK1G (Figure 89). These were S1545, one of 

the AB loop residues mutated to form AB3, S1596 in the FG loop and Q1630 in the HI loop 

(Figure 89).  
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Figure 88: Analysis of D11 mutant PK1G and M6P. A: 2D 1H-15N HSQC NMR spectra of D11 PK1G with 

increasing concentrations of M6P: 0 mM M6P black, 5 mM M6P purple, 10 mM M6P blue, 15 mM M6P green, 

20 mM M6P orange, 50 mM M6P red. B: Examples of chemical shifts tracking with increasing M6P concentration 

(left, arrows) and new peaks appearing at high ligand concentrations (right, grey boxes). Each spectrum was 

collected at 700 MHz by Dr Chris Williams (University of Bristol) with 50 M D11 PK1G in 25 mM Tris pH 

8.5, 150 mM NaCl in 10 % D2O.  
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Figure 89: CSP values of D11 PK1G following addition of 50 mM M6P. CSP of D11 PK1G following 

addition of 50 mM M6P. The ten greatest CSPs are coloured orange. -strands are represented by arrows 

underneath the residue number. The ten residues with the greatest CSP values are shown as orange sticks on the 

grey surface of PK1G crystal structure viewed from the side (right) and from the top (left). The view from the 

top has M6P docked into the binding site and the conserved ‘QREY’ motif shown as balls-and-sticks. N1511 has 

been omitted as it was not visible in the crystal structure. 
  

1H-15N HSQC were also collected of FG loop mutant PK1H in the presence of 50 mM M6P 

(Figure 90A). CSPs were of the same magnitude to those observed for PK1G (Figure 89), 

ranging from 0.41-3.67 ppm (Figure 90B, Appendix Table 15). Three residues, L1526, S1545 

and N1511, gave high CSPs in both D11 PK1H and PK1G plus 50 mM M6P (Appendix 

Table 15). Similarly to D11 PK1G, three PK1H residues that gave relatively large CSPs 

upon addition of M6P, L1526, C1516 and Q1586, were demonstrated to be pH sensitive in 

AB3 (Appendix Table 14). The remaining D11 PK1H residues giving large CSPs formed a 

small cluster near the base of D11. The only binding loop residues with significant CSPs were 

S1545 in the AB loop and T1631 in the HI loop (Figure 90C). However, both of these residues 

appeared to be positioned too far away to bind M6P. 
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Figure 90: Analysis of D11 mutant PK1H and M6P. A: 2D 1H-15N HSQC NMR spectra of D11 PK1H in 

the absence (black) and presence of 50 mM M6P (blue). B: CSPs of D11 PK1H following addition of 50 mM 

M6P. The ten greatest CSPs are coloured blue. -strands are represented by arrows underneath the residue number. 

C: The ten residues with the greatest CSP values are shown as blue sticks on the grey surface of PK1H crystal 

structure. Each spectrum was collected at 700 MHz by Dr Chris Williams (University of Bristol) with 50 M D11 

PK1H in 25 mM Tris pH 8.5, 150 mM NaCl in 10 % D2O. 
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The above 1H-15N HSQC experiments involving D11 FG loop mutants PK1G and PK1H 

were performed at pH 8.5 (above the proteins pI 7.5). However, Marron-Terada et al. have 

demonstrated by affinity chromatography that D3 exhibits optimal M6P binding at pH 6.9, 

while D9 displays optimal binding at pH 6.4-6.5.132,137 This is in-line with the observation that 

the CI-MPR binds M6P-tagged glycoproteins at the TGN (pH 6.5) and PM (pH 7.4) and 

releases its cargo in the late endosome (pH <6.0).54 Therefore these 1H-15N HSQC experiments 

were performed at lower pH, pH 6.5. 

Addition of 10mM mannose (100-fold excess) to D11 PK1H at pH 6.5 did not result in 

significant CSPs, with the 10 greatest CSPs distributed throughout the protein and of the same 

magnitude of those observed for the control protein AB3 in the presence of mannose and M6P 

(CSPs 0.19-0.44 ppm, Figure 91B, Appendix Table 15). Meanwhile, addition of 10 mM M6P 

resulted in slightly larger CSPs ranging from 0.17-0.91 ppm (Figure 91D, Appendix Table 15). 

However, these remained smaller than the CSPs observed for D11 PK1G and PK1H at pH 

8.5 (Appendix Table 15).  

When mapped to the crystal structure of PK1H, the ten residues with the greatest CSPs did 

not form a binding pocket but were again distributed throughout the protein (Figure 91E). Only 

two of these residues were in the binding loops: K1544 in the AB loop and G1568 in the CD 

loop (Figure 91E). Furthermore, three of these residues (L1526, E1645, H1525) have been 

previously demonstrated to be pH sensitive (Appendix Table 14). As observed for AB3, 

analysis of the bis-Tris peak revealed a pH change of 0.6 pH units (pH 6.9 to 6.3) following 

addition of 10 mM M6P (Appendix Figure 12, Appendix Table 16, there was no pH change 

following addition of 10 mM mannose).  

D11 FG loop mutant PK2H exhibited very similar behaviour at pH 6.5 (Figure 92). A similar 

CSP range was observed upon addition of 10 mM M6P (0.40-1.19 ppm) with several residues 

of PK1H also shifting in PK2H (L1526, H1526, E1645, V1611, K1544) (Appendix Table 

15). However, no discrete M6P binding site was observed (Figure 92E) and pH sensitive 

residues (L1526, H1525, E1645, C1553, L1581) again exhibited some of the greatest CSPs 

(Appendix Table 14). 
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Figure 91: Analysis of D11 mutant PK1H binding M6P at pH 6.5. A: 2D 1H-15N HSQC NMR spectra of D11 

PK1H alone (black), with 10 mM mannose (green) and 10 mM M6P (blue). B: CSP of D11 PK1H following 

addition of 10 mM mannose. The ten greatest CSPs are coloured green. -strands are represented by arrows 

underneath the residue number. C: The ten residues with the greatest CSP values are shown as green sticks on the 

grey surface of PK1H crystal structure. D: CSP of D11 PK1H following addition of 10 mM M6P. The ten 

greatest CSPs are coloured blue. E: The ten residues with the greatest CSP values are shown as green sticks on 

the grey surface of PK1H crystal structure. Each spectrum was collected at 700 MHz by Dr Chris Williams 

(University of Bristol) with 100 M D11 PK1H in 25 mM Bis-Tris, 150 mM NaCl pH 6.5 in 10 % D2O. 
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Figure 92: Analysis of D11 mutant PK2H binding M6P at pH 6.5. A: 2D 1H-15N HSQC NMR spectra of D11 

PK2H alone (black), with 10 mM mannose (green) and 10 mM M6P (blue). B: CSP of D11 PK2H following 

addition of 10 mM mannose. The ten greatest CSPs are coloured green. -strands are represented by arrows 

underneath the residue number. C: The ten residues with the greatest CSP values are shown as green sticks on the 

grey surface of PK2H crystal structure. D: CSP of D11 PK2H following addition of 10 mM M6P. The ten 

greatest CSPs are coloured blue. E: The ten residues with the greatest CSP values are shown as green sticks on 

the grey surface of PK2H crystal structure. Each spectrum was collected at 700 MHz by Dr Chris Williams 

(University of Bristol) with 100 M D11 PK2H in 25 mM Bis-Tris, 150 mM NaCl pH 6.5 in 10 % D2O. 
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5.5.  Conclusions  

This chapter describes our structure-based approach to engineer a synthetic lectin using CI-

MPR D11 as a scaffold. D11 AB3 has undergone iterative rounds of site directed mutagenesis, 

expression/ purification, and screening for M6P binding. The first round of mutagenesis 

incorporated the conserved ‘QREY’ motif (Q1567, R1604, E1627, Y1634) present in MRH 

domains. X-ray crystallography revealed that these residues are orientated in the same position 

as those present within CI-MPR D3 and D9 and should thus be capable of forming hydrogen 

bonds to M6P. The second round of mutagenesis truncated the FG loop by two residues, 

ensuring this loop is now the same length as that of M6P binding domains D3 and D9. In the 

final round of mutagenesis, FG loop mutants PK1G, PK1H, PK2G and PK2H (S1599G, 

S1599H, S1600G and S1600H respectively) were created to resemble the FG loops of D3 

(which contains a di-serine motif, S387 and S386) and D9 (which contains a histidine residue, 

H1320).  

Each D11 FG loop mutant tested (PK1G, PK1H and PK2H) exhibited greater CSPs upon 

addition of M6P than the earlier construct PK, the negative control protein D11 AB3 and the 

negative control sugars mannose and glucose. However, affected residues did not cluster 

around the loops at the top of D11 (the intended binding site) and did not form a distinct binding 

site elsewhere on the protein surface. The assignment of D11 mutant spectra was based upon a 

1H-15N HSQC spectra of AB3 at lower pH (pH 4 versus pH 8.5 or 6.5). Thus, ambiguity arose 

from changes to buffer composition and pH and from the protein itself, resulting in spectra that 

are only 76-90 % assigned (Appendix Tables 9-13). In particular the chemical shifts of residues 

that have been mutated are unknown. These residues have been incorporated to bind M6P and 

thus it is impossible to know if their chemical shifts are influenced by the addition of M6P. 

Currently, it is unclear to what extent the observed chemical shift changes can be attributed to 

sugar-protein interactions and how much is a result of pH reduction upon addition of the acidic 

M6P monosodium salt. Thus, further work is required to fully characterise these interactions 

(chapter 6). 
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6.  Future work 

6.1.  Characterisation of the CI-MPR extracellular region 

This work describes the modular approach to structurally characterise the extracellular region 

of the human CI-MPR, with a particular focus on the elusive, high-affinity, M6P binding 

domain 9. Work began on single domain constructs (D7, D8) before progressing to di-domain 

constructs (D9-10), larger tetra-domain constructs (D7-10) and, finally, the full extracellular 

region (D1-15). 

The two single domain constructs, D7 and D8 were previously uncharacterised and as such 

have no known ligands. Having obtained soluble D7 and D8 by expression in Sf21 insect cells, 

a pull-down assay should be performed to identify any binding partners. The His6 tagged 

domains may be immobilised on Ni-NTA resin, incubated with human serum and any resulting 

complexes characterised by mass spectrometry. 

The structure of D8 was determined to 2.5 Å by X-ray crystallography. However, D7 failed to 

crystallise. This is likely due to modification with two flexible and heterogeneous N-linked 

glycans. N-linked glycosylation is sequence specific, with the asparagine residue on the NST 

sequon (N-X-S/T) being glycosylated.9 Site-directed mutagenesis was performed to knockout 

the two predicted glycosylation sites (N921D and N957D) individually and in combination. In 

an attempt to cause least disruption to secondary and tertiary structure, asparagine was mutated 

to aspartic acid as is the case following enzymatic de-glycosylation with PNGase F.191 Work 

was ongoing to express these constructs in insect cells. 

An alternative approach is to express D7 in the presence of glycosylation inhibitors. This has 

been successfully applied by Dias et al. to the chemokine binding protein Evasin-1.255 

Following expression in insect cells, glycosylated Evasin-1, which contains three predicted N-

linked glycosylation sites, crystallised and diffracted to 2.7 Å (PDB 3FPT).255 Dias et al. were 

unable to obtain diffracting crystals of Evasin-1 following enzymatic de-glycosylation by 

EndoH or PNGaseF.255 However, addition of the antibiotic Tunicamycin, which inhibits the 

first step of the N-linked glycosylation pathway (transfer of GlcNAc-1-phosphate to the 

dolichol lipid anchor),256 to the insect cell culture medium resulted in soluble, non-glycosylated 

Evasin-1 that diffracted to 1.6 Å (PDB 3FPR).255 
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Although also modified by two N-linked glycans, a construct encoding D9-10 did crystallise 

and the structure was determined to 1.5 Å. The M6P binding site of D9 was occupied by a 

mannose residue from an N-linked glycan of a neighbouring protein. The same mechanism of 

dimerisation (through a bridging N-linked glycan at D9) was also observed in the crystal 

structure of D7-11. Further characterisation, such as SEC and SAXS, should be performed on 

D9-10 and D7-11 at varying pHs and ligand occupancies (M6P-tagged glycoprotein and IGF2) 

to investigate the regulation of dimerisation and the mechanisms of cargo dissociation. 

Competition assays should also be performed to determine the affinity between D9 and the 

mannosylated N-linked glycan.  

Following identification of two conserved His-Pro pockets at the interfaces of D9-10 and D11-

12 that may form critical pH-dependent hinge points in the CI-MPR extracellular region, 

knock-out mutation of H1234 of D9 in the D9-10 construct should also be performed to 

determine the role of this interaction in domain arrangement and receptor structure.  

The above experiments to study receptor oligomerisation, ligand occupancy and domain 

arrangement/ structure should also be performed on the full extracellular region of human CI-

MPR. Although, D1-15 was expressed here in Sf21 insect cells, a more concentrated sample 

of D1-15 alone and in complex with IGF2 is required for preliminary comparison to the 2D 

classification of D1-15 with M6P and for full structure determination by cryo-EM. This 

necessitates a more robust expression protocol. Attempts to affect this (by screening harvest 

times, recombinant bacmids, viral stocks and insect cell lines), were on-going. Work was also 

on-going to sub-clone and express truncated forms of the extracellular region based upon the 

recent observation that recombinant human CI-MPR extracellular domain expressed in the 

mammalian cell line HT1080 was truncated at F1182 of D15.224  

Nonetheless, the work presented here opens up many new avenues of investigation by cryo-

EM and super-resolution light microscopy methods into the domain arrangement, oligomeric 

state and trafficking of human CI-MPR and the influence of ligand binding. 

6.2.  Engineering a synthetic lectin 

In a parallel project, a structure-based approach was taken to engineer human CI-MPR D11 

from a hydrophobic, protein binding domain to a positively charged, carbohydrate binding 

domain (i.e. to engineer a synthetic lectin). A further round of protein engineering should be 
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performed. Additional structure-based mutations may be suggested from comparison of the 

crystal structures of D11 FG loop mutants, D3 and D9. For example, the mutations S1599G 

and S1600H should be combined so that the FG loop resembles that of D9. G1546 in the AB 

loop should also be mutated to tyrosine as is found in D3 (Y324) and D9 (Y1255). Crystal 

structures suggest this tyrosine residue may be capable of forming hydrogen bonds to the 2’OH 

and 3’OH, and CH-π interactions with the 2’C-H. 

Following this, a higher throughput method for designing and generating D11 mutants may be 

desired. In designing the IGF2 trap, Frago et al. used a combination of two parallel 

approaches.127 The first involved site-directed mutagenesis, E. coli expression and screening 

by NMR, as was employed here.127 The second approach involved random mutagenesis, 

expression in P. pastoris and screening by yeast surface display FACS (fluorescence activated 

cell cytometry).127 All mutants were then validated by SPR.127 This combined approach 

allowed screening of libraries of mutant D11s. However, yeast surface display relies upon a 

fluorescently labelled substrate for selection by FACS.257 Thus, to select a synthetic lectin for 

M6P by yeast surface display would require either M6P monosaccharide labelled with a 

fluorophore (which would likely interfere with any binding event) or an M6P-tagged 

glycoprotein that can be detected by a fluorescently labelled antibody or streptavidin. 

Alternatively, computational methods such as in silico molecular docking using the Bristol 

University Docking Engine (BUDE) may be used to design and screen mutants.258 Although 

BUDE has recently been used to identify hotspot residues in protein-protein interactions and 

characterise the protein-protein interactions in the clathrin coat, it was originally designed to 

screen libraries of small molecule drug candidates.258–260 BUDE may therefore be used here to 

simulate M6P (and other sugars) binding to D11 mutants. Alternative programs such as 

RosettaScripts and AutoDock Vina could also be employed for in silico docking studies.261,262 

D11 was chosen as the starting construct as a robust E. coli expression and in vitro refolding 

protocol already exists, allowing soluble D11 to be obtained in isolation. Soluble D3 and D9, 

which are both specific for M6P mono-esters, cannot be obtained in isolation. However, having 

determined the structure of D9 within the di-domain construct D9-10 (PDB 6Z30), it may now 

be possible to mutate D9 residues at the interface with D10 to improve the solubility of D9 

alone.  
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The D11 mutants engineered to date were analysed by 2D 1H-15N HSQC NMR experiments. 

1H-15N HSQC titrations (a protein observed NMR method) are commonly employed during 

the screening of protein-protein and protein-small molecule interactions as they are direct, 

reliable, relatively quick and easy to perform.211 Olson et al. have demonstrated the power of 

1H-15N HSQC titrations in identifying the binding site residues of bovine D5 and determining 

its binding affinities for M6P and methylM6P-GlcNAc.131 Fully assigned HSQC spectra of 

each D11 FG loop mutant are therefore required. This can be obtained by acquiring 3D NMR 

spectra of double-labelled (15N, 13C) protein samples.  

However, other screening methods should also be employed. Barile et al. describe using protein 

observed 1D 1H-NMR to monitor protein-protein interactions.211 Chemical shifts may be 

monitored in uncrowded spectral regions such as below 0.7 ppm, which corresponds to methyl 

groups, and above 10 ppm, which corresponds to tryptophan side chains.211 Chemical shift and 

intensity changes suggest an interaction.211 However, this is assuming that the binding site 

contains either methyl groups with chemical shifts below 0.7 ppm or tryptophan residues.211 

Furthermore, there is no information on the location of these interactions on the protein surface.  

1D 31P-NMR is an alternative 1D NMR method relevant here due to the phosphate group of 

M6P. However, further work is required to optimise protein and ligand concentrations to 

observe a reasonable phosphorous signal in a realistic timeframe.  

Alternative ligand observed NMR methods that are frequently used during fragment-based 

drug discovery, for example STD and WaterLOGSY, may also be employed here to identify 

an interaction between M6P and D11 mutants. As discussed in chapter 3, these saturation 

transfer methods are capable of detecting ligands that bind with millimolar to micromolar 

affinity (KD mM-M) due to their slow exchange with the protein (slow koff).
214 We are not 

expecting to have engineered a high affinity (nM) sugar binder at this point. Therefore, STD 

and WaterLOGSY are ideal experiments to identify an interaction between D11 mutants and 

M6P, mannose and glucose. However, again, these experiments will not identify interacting 

residues. 

Non-NMR techniques may also be employed to detect protein-carbohydrate interactions. 

Glycan microarrays, whereby libraries of glycan structures are immobilised, are a common tool 

used to characterise lectin binding.263–265 Song et al. and Bohnsack et al. describe the use of 

glycan microarrays to determine the specificities of CI-MPR MRH domains for M6P mono- 
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or di-esters.82,133 Another powerful technique to study protein-carbohydrate interactions is ITC. 

However, as discussed in chapter 3 with D9-10, due to the acidity of M6P monosodium salt, 

ITC with this ligand requires optimisation. Alternatively, an M6P-tagged glycoprotein, may be 

used. 

Based upon the 15N-1H HSQC experiments performed to date, it is possible that we have 

engineered sugar binding ability into D11. However, if our D11 mutants are binding M6P 

monosaccharide it is likely a very weak interaction (possibly still too weak to detect). Thus, 

further work is required to fully characterise and optimise this. 
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7.  Materials and Methods  

7.1.  Sources of materials 

Unless otherwise stated, reagents were purchased from Sigma Aldrich, Thermo Fisher 

Scientific and Merck Millipore. Competent E. coli cells -NEB 5 and Novagen BL21 (DE3) - 

were purchased from New England Biolabs and Merck Millipore respectively. All synthetic 

genes were synthesised by GeneArt Thermo Fisher Scientific. Primers (Appendix Section 8.1.) 

were purchased from IDT Ltd. PVDF membranes and antibodies for western blotting were 

purchased from Bio-Rad. The following kits were used: GenElute plasmid miniprep kit (Sigma 

Aldrich), Qiaquick gel extraction kit (Qiagen) and PureLink PCR purification kit (Thermo 

Fisher Scientific). 

7.2.  Techniques 

The methods employed here build upon those described in the first- and second-year reports 

(A. Bochel). Recombinant protein expression in E. coli, in vitro refolding and crystallisation 

was based on methods described by Brown et al. 2002 and Williams et al. 2012.112,124 

Recombinant protein expression in insect cells and general insect cell handling was based upon 

the standard operating procedures at the Eukaryotic Expression Facility, University of Bristol 

(Professor Imre Berger) and methods described by Bieniossek et al. 2008.266,184 All X-ray 

diffraction data and SAXS data was collected on beamlines I03, I04, I24 and B21 at Diamond 

Light Source. 

Sterile technique 

All sterile work was performed beside a flame or in a biohood. Media, pipette tips and 

Eppendorf’s were sterilised by autoclaving at 121 oC, 151 psi for 15 minutes. Antibiotics and 

solutions were sterilised by filtration through a 0.22 m filter.  

 

Media Ingredients 

LB 10 g/L tryptone, 10 g/L NaCl, 5 g/L yeast extract 

LB agar LB, 15 g/L agar 

2YT 20 g/L tryptone, 10 g/L yeast extract 

5052 solution 25 % w/v glucose, 25 % v/v glycerol 

M9 minimal media 3 g/L KH2PO4, 1.8 g/L Na2HPO4, 0.5 g/L NaCl 

Trace metal 

elements 

20 mM CaCl2, 2 mM CoCl2.6H2O, 2 mM CuCl2.2H2O, 60 mM H3BO3.HCl, 

10 mM MnCl2.4H2O, 2 mM Na2MoO4.2H2O, 2 mM Na2SeO3.5H2O, 2 mM 

NiCl2.6H2O, 2 mM ZnSO4.7H2O 
Table 10: Media used for E. coli culture. 
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Buffer Procedure Composition 

50x TAE buffer Agarose gel 

electrophoresis 

242 g Trizma base, 57 mL 100 % glacial acetic acid, 100 

mL of 0.5 M EDTA, up to 1 L dH2O 

Resuspension buffer Resuspension of 

E. coli pellets 

50 mM Tris pH 8, 0.5 M NaCl, 0.05 % Triton X-100, 1 

mM EDTA, 10% glycerol, 1 mM benzamidine, 5 mM -

mercaptoethanol 

Buffer 2 Inclusion body 

isolation 

50 mM Tris pH 8, 0.5 M NaCl, 1 % Triton X-100, 1 mM 

EDTA, 10 % glycerol, 1 mM benzamidine, 5 mM -

mercaptoethanol, 2 M urea 

Buffer 3 Inclusion body 

isolation 

50 mM Tris pH 8, 0.1 M NaCl, 1 mM EDTA, 1 mM 

benzamidine, 2 M urea 

Denaturing buffer Protein 

denaturation/ 

solubilisation 

0.1 M Tris pH 8, 0.1 M NaCl, 8 M urea 

Refold buffer Protein refolding 0.1 M Tris pH 8.5, 1 mM EDTA, 1 M L-Arginine, 4 M 

benzamidine, 3.7 mM cystamine, 6.5 mM cysteamine 

Gel filtration buffer Gel filtration 

chromatography 

25 mM Tris pH 7.5-8.5, 150 mM NaCl 

10 % separating gel SDS-PAGE 2.5 mL 40 % acrylamide, 3.3 mL gel buffer, 2.8 mL 

H20, 50 L 10 % AMPS, 20 L TEMED 

4 % stacking gel SDS-PAGE 0.5 mL 40 % acrylamide, 1.25 mL gel buffer, 3.3 mL 

H20, 50 L 10 % AMPS, 20 L TEMED 

Gel buffer SDS-PAGE 3 M Tris, 10 mM SDS, pH 8.45 

Denaturing gel loading 

dye 

SDS-PAGE 780 mM Tris, 142 mM -mercaptoethanol, 35 mM SDS, 

10 % glycerol, 140 mM bromophenol blue, pH 6.8 

Native gel loading dye SDS-PAGE 780 mM Tris, 10 % glycerol, 140 mM bromophenol 

blue, pH 6.8 

Anode buffer SDS-PAGE 20 mM Tris, pH 8.45 

Cathode buffer SDS-PAGE 100 mM Tris, 100 mM Tricine, 3.5 mM SDS, pH 8.25 

Phosphate buffered 

saline (PBS) 

Monitoring 

protein expression 

137 mM NaCl, 2.7 mM g KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4 pH 7.4 

Blocking solution Western blot 50 mM Tris HCl, 140 mM NaCl pH 7.4, 0.1 % 

Tween20, 3 % BSA 

Tris buffered saline 

(TBS) 

Western blot 50 mM Tris HCl, 140 mM NaCl pH 7.4 

TBST Western blot 50 mM Tris HCl, 140 mM NaCl pH 7.4, 0.1 % Tween20 

SP column buffer A Cation exchange 

chromatography 

50 mM Sodium acetate, pH 5.5 

SP column buffer B Cation exchange 

chromatography 

50 mM Sodium acetate, pH 5.5, 1 M NaCl 

IMAC column buffer A Ni-NTA IMAC 25 mM Tris pH 8.5, 150 mM NaCl 

IMAC column buffer B Ni-NTA IMAC 25 mM Tris pH 8.5, 150 mM NaCl, 800 mM Imidazole 

Q column buffer A Anion exchange 

chromatography 

25 mM Tris pH 7.5 

Q column buffer B Anion exchange 

chromatography 

25 mM Tris pH 7.5, 1 M NaCl 

Strep column buffer A Streptactin 

affinity 

chromatography 

100 mM Tris pH 8, 1 mM EDTA, 150 mM NaCl 

Strep column buffer B Streptactin 

affinity 

chromatography 

100 mM Tris pH 8, 1 mM EDTA, 150 mM NaCl, 2.5 

mM Desthiobiotin 

Table 11: Details of buffers used. 
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7.3.  Methods 

1. Agarose gel electrophoresis 

Agarose gel solutions were made by dissolving 0.5-1 g agarose in 100 mL 1x TAE buffer. 2 

L Midori Green advance dye (NIPPON Genetics) was added to molten agarose. 5 L of DNA 

sample was mixed with 1 L 5x loading buffer and loaded onto the 0.5-1 % agarose gel. Gels 

were run in 10x TAE buffer at 200 mV, 100 mA for 20 mins and then visualised under UV 

light. 

 

2. Cell transformations 

1 L of plasmid DNA was incubated with 50 L NEB 5 or BL21 Novagen E. coli cells on 

ice for 30 minutes. The cells were transformed by heatshock: 30 seconds at 42 oC, and then 

returned to ice for 5 minutes before the addition of 200 L sterile LB medium and 1-hour 

incubation at 37 oC, 220 rpm. 100 L of culture was then spread onto LB agar plates containing 

the relevant antibiotic and incubated overnight at 37 oC before storage at 4 oC. 

 

3. Isolation of plasmid DNA 

Overnight cultures of 10 mL sterile LB, 100 g/mL antibiotic and a single bacterial colony 

containing plasmid DNA (prepared as above) were incubated overnight at 37 oC, 220 rpm. 

Plasmid DNA was extracted from these cultures using a miniprep kit or alkaline lysis 

precipitation. Successful isolation of plasmid DNA was confirmed by 1 % agarose gel 

electrophoresis and the concentration determined by measuring the absorbance at 260 nm 

(A260) using a MicroVolume DeNovix spectrophotometer.  

 

4. PCR  

The following Master mix was made (Table 12) using the KOD hot start DNA Polymerase kit 

(Sigma-Aldrich). Where necessary up to 5 % DMSO was added. Table 13 shows the standard 

PCR cycle. Annealing temperatures were screened based upon primer melting temperatures 

(Appendix Section 8.1. for primer sequences) and extension time was adjusted based upon 

length of desired PCR product. Following PCR, samples were analysed by gel electrophoresis 

(see above) and the PCR products were then purified using the PureLink PCR purification kit. 

 

 

 

 

 

 

 

 

Table 12: Components of master mix for PCR using KOD polymerase. Where kappa polymerase was used 

the above concentrations of template DNA and primers were added to a 2x ready-mix. 

 

 

 

Component Volume (L) Final concentration 

KOD DNA polymerase 1 0.01 units/mL 

10X KOD hot start buffer 5 1X 

2 mM dNTPs 5 0.2 mM 

25 mM MgSO4 3 1.5 mM 

Template DNA 1 - 

5’ Primer 1.5 0.3 mM 

3’ Primer 1.5 0.3 mM 

dH20 32 - 
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Table 13: Standard PCR Cycle. A cycle of denaturation, annealing and extension was repeated 35 times. 

 

5. Site-directed mutagenesis 

PCR reactions were set up as per Table 12 above (Appendix Section 8.1. for primer sequences). 

The annealing temperature and extension time of the PCR cycle in Table 13 were adjusted to 

reflect the primers used and amplification of the whole plasmid respectively. Again, results 

were analysed by gel electrophoresis.  

 

Successful reactions were pooled and subject to DpnI digestion - 10 % (v/v) cutsmart buffer 

and 10 % (v/v) DpnI enzyme were added and samples incubated at 37 oC for 1 hour before 

clean up using the PureLink PCR purification kit. 

 

6. Restriction enzyme digests 

Per 1 g template DNA 1 L restriction enzyme was added along with 5 L 10x fast digest 

buffer. The total reaction volume was increased to 50 L by addition of water. Reactions were 

incubated at 37 oC for 1-4 hours before analysis by gel electrophoresis. Digested plasmid 

samples were excised from the gel and purified using the QIAquick gel extraction kit. Digested 

PCR products were purified using the PureLink PCR purification kit.  

 

7. Ligation  

Ligation reactions were performed using a 1:1 - 1:3 molar ratio of vector: insert DNA with a 

total DNA concentration of 50-100 ng. The DNA was mixed with 2 L 10x ligase buffer, 1 L 

T4 DNA ligase and the volume increased to 20 L with water before incubation at room 

temperature for 10 mins. 5 L of ligation reaction was added to 50 L NEB 5 E. coli cells. 

The cell transformation and isolation of plasmid DNA were performed as above. All ligation 

reactions were confirmed by Sanger sequencing performed by Genewiz. 

 

8. Recombinant protein expression in E. coli 

A single colony of BL21 (DE3) E. coli containing the recombinant plasmid prepared as above 

was added to 100 mL LB containing 100 g/mL kanamycin and incubated at 37 oC, 220 rpm 

for 16 hours. 2 mL of this pre-culture was used to inoculate 200 mL 2YT media supplemented 

with 100 g/mL kanamycin, 5 mL 5052 solution and 1 mM MgSO4. Cultures were incubated 

at 37 oC, 220 rpm until they reached an optical density at 600 nm (OD600) of 0.8. The 

temperature was then lowered to 25 oC and protein expression induced by addition of 0.5 mM 

IPTG. After 16 hours, cultures were harvested by centrifugation at 6000 rpm (F10S-6X500 

rotor, RC-6 centrifuge) for 10 mins. Cell pellets were resuspended in 50 ml resuspension buffer 

and inclusion bodies isolated as described below or stored at -20 °C for future analysis. 

Step Temperature (oC) Time 

Hot start 95 10 mins 

Denaturation 95 2 mins 

Annealing Gradient 30 sec 

Extension 70 30 sec /0.5 kb 

Final extension 70 10 mins 

Storage 4 Infinite 
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For isotopic labelling cultures were grown in 2YT media as described above. At OD600 1-2 

cells were centrifuged at 4000 rpm, 10 minutes (F10S-6X500 rotor, RC-6 centrifuge). Cell 

pellets were resuspended and washed in 50 mL pre-aerated M9 media (37 °C, 200 rpm) before 

a second centrifugation at 4000 rpm, 10 minutes. Cells were resuspended in a fresh 50 mL 

sample of pre-aerated M9 media and split between 10 500 mL flasks each containing 100 mL 

pre-aerated M9 media supplemented with 1 g/L 15NH4Cl, 6 g/L glucose, 100 L trace metal 

solution, 1 mM of MgSO4 and 100 g/mL kanamycin. Cultures were incubated at 37 oC, 30 

minutes prior to induction with 0.5 mM IPTG. Following overnight incubation at 25 oC, 

cultures were harvested and resuspended as above. 

 

9. Inclusion body isolation 

Resuspended cell pellets were sonicated (5 sec on, 10 sec off, 80 % amplitude) with a sonicator 

probe, pelleted (8600 x g, 20 mins) and resuspended in ~ 30 mL buffer 2. This cycle of 

sonication and centrifugation was repeated with buffer 3. Following centrifugation in buffer 3, 

supernatant was discarded, and the pellet resuspended in a minimal volume of denaturing 

buffer supplemented with 10 mM DTT and 6 M NaOH to obtain a final protein concentration 

of 20-50 mg/ mL. Denatured protein was either stored at -20 oC or underwent the refolding 

process described below. 

 

10. Refolding and purification 

Denatured protein was diluted 3-fold into fresh denaturing buffer reduced with 100 L 1M 

DTT and 100 L 10 mM EDTA on ice for 1 hour. Denatured protein was then added dropwise 

to fresh refolding buffer at 4 oC with rapid mixing. Refold solutions were left at 4 oC, with 

gentle stirring, for 24-48 hours. 

 

The resulting protein samples were centrifuged (15 minutes, 8600 x g) to remove precipitate 

and concentrated using an AMI UHP62 stirred pressure cell (Advantec) at 50-75 psi under 

nitrogen. The protein was then purified by size exclusion chromatography (SEC) using a 

Highload S26/60 Superdex 75 prep grade column (GE Healthcare) pre-equilibrated with gel 

filtration buffer, and a Fast Purification Liquid Chromatography (FPLC) system (GE 

Healthcare). 

 

11. Recombinant protein expression in insect cells 

Bacmid generation and isolation 

1 g plasmid DNA was added to 100 L DH10EmbacY cells (a gift from the Berger group) 

and incubated on ice for 30 mins. Following the addition of 400 L LB, samples were incubated 

at 37 oC, 220 rpm for 16 hours. Samples were then spread onto agar plates containing 50 g/ 

mL kanamycin, 10 g/ mL tetracycline, 10 g/ mL gentamycin, 1 mM IPTG and 100 g/ mL 

X-Gal, in a dilution series (1:1, 1:100, 1:1000, 1:10000) and incubated at 37 oC for a further 

16-24 hours.  

 

White colonies containing the recombinant bacmid DNA were then picked and simultaneously 

streaked onto a fresh LB agar plate (containing the above antibiotics, IPTG and X-Gal) and 
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added to 3 mL of LB containing 50 g/ mL kanamycin, 10 g/ mL tetracycline, 10 g/ mL 

gentamycin. These cultures were incubated overnight at 37 oC, 220 rpm.  

 

Recombinant bacmid DNA was extracted from confirmed white colonies by alkaline lysis 

miniprep. Briefly, resuspended cell pellets were lysed and neutralised using the GenElute 

plasmid miniprep kit (Sigma). The DNA was then precipitated with isopropanol and washed 

twice with 70 % ethanol. Under a sterile hood the ethanol was removed and the bacmid gently 

resuspended in 30 L sterile water. Successful bacmid isolation was confirmed by 0.8 % 

agarose gel electrophoresis. 

 

Baculovirus generation and amplification 

6 well plates were set up as below (Figure 93). 0.5 mL of Spodoptera frugiperda cell line 21 

(Sf21) insect cells at a density of 0.7-1.0x106 cells/mL were added to all wells (except for well 

M) along with 2.5 mL serum free media (SF900II, Gibco or ESF921, Expression Systems). To 

wells labelled M (media only) 3 mL media was added. 

Figure 93: Schematic overview of 6 well plates used in Sf21 culture and virus production. Wells labelled 1-

2 correspond to two different bacmid clones, of which 1’ and 2’ are duplicates of 1 and 2. CC is a cell control of 

uninfected cells, whilst M is a media only control. 

 

200 L media was added to each bacmid clone. For x number of bacmid clones x0 L 

XtremeGene Transfection Reagent (Sigma) was added to x00 L medium. 100 L of this 

transfection mixture was then added to each bacmid clone and 150 L of each bacmid-

XtremeGene cocktail was added to each of the two dedicated wells (e.g. 1 and 1’). After 48 

hours incubating at 27 oC, the supernatant, which contains the V0 viral titre, was removed from 

each clone and stored in foil at 4 oC. The supernatant of each infected well was replaced with 

3 mL fresh medium and the plates incubated at 27 oC for a further 48 hours before the 

supernatant was removed and the plate stored at -20 oC for protein expression tests (see 

‘Monitoring protein expression’ below). 

 

To amplify the virus, 3 mL V0 was added to 25 mL cultures of 0.5x106 cells/mL in 250 mL 

Erlenmeyer flasks. These were incubated at 27 oC, 100 rpm, for approximately 60 hours, with 

cells counted every 24 hours. On the day after proliferation arrest (DPA) samples containing 

1x106 cells were taken to monitor protein expression (see below). Samples containing 1x106 

cells were collected 24 hours later (DPA + 24). Viral titre V1 was also collected on DPA + 24; 

cultures were centrifuged (800 rpm, 3 minutes) and the supernatant, which contains V1, 

removed and stored in foil at 4 oC. The cell pellet was gently resuspended in 50 mL fresh 

medium and returned to the shaker flask. Samples containing 1x106 cells were taken every 24 

hours until cultures were harvested. All cell samples were stored at 4 oC until analysis.  
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Monitoring protein expression 

Each sample containing 1x106 cells was first centrifuged for 2 mins at 13 000 rpm before 

processing as below. Samples in 6 well plates were first resuspended in 500 L 1xPBS buffer 

(duplicate wells combined) before above centrifugation. 

 

A. Monitoring YFP 

Cell pellets from the above centrifugation were resuspended in 500 L 1xPBS and sonicated 

for 5 seconds. A sample of this insoluble cell fraction (I), was taken before centrifugation (12 

000 rpm, 10 minutes) and the supernatant, the soluble cell fraction (S), retained. 100 L S 

samples were loaded into a FluoroNunc 96 well black plate and YFP emission measured using 

a Tecan plate reader (BrisSynBio biosuite). 1xPBS was used as a negative control and a YFP 

standard as a positive control.  

 

B. Monitoring protein of interest 

The above samples, alongside samples of the culture media (M) were analysed by SDS-PAGE 

and western blot to monitor expression and secretion of the protein of interest (see ‘Protein 

detection below’). 

 

Large scale protein expression 

400 mL cultures (2 L Erlenmeyer flasks) of Sf21 cells at a density of 0.5-1.0x106 cells/mL 

were infected with x mL of V1 virus (as determined by small scale expression tests). Cultures 

were maintained at 0.5-1.0x106 cells/mL until the day of proliferation arrest (DPA) and 

samples containing 1.0x106 cells were taken daily until the media was harvested.  

 

Baculoviral-infected insect cell (BIIC) stocks were created as follows. On the day of 

proliferation arrest (DPA) infected insect cells at density 1.0x106 cells/mL were gently 

centrifuged (800 rpm, 10 mins) and resuspended to a density of 1.0x107 cells/mL in a solution 

of  90 % medium (sterile filtered), 10 % DMSO (already sterile) and 10 g/L BSA (sterile 

filtered). 1 mL aliquots were frozen at -20 oC for 1 hour before long term storage at -80 oC. 

When required, a 1 mL aliquot of BIIC was thawed and diluted to 50 mL with medium before 

being split between two flasks of 400 mL Sf21 cells at density 1.0x106 cells/mL and cultured 

as above.  

 

Protein purification 

All recombinant proteins expressed here using insect cells were secreted into culture medium 

due to the presence of an N-terminal signal sequence. Culture media containing the protein of 

interest was harvested by centrifugation at 4000 rpm, 10 mins (F10S-6X500 rotor, RC-6 

centrifuge).  

 

For purification of D11, the media was adjusted to pH 5.5 by the addition of 0.5 M sodium 

acetate pH 5.5 before centrifugation at 6000 rpm 20 mins (F10S-6X500 rotor, RC-6 

centrifuge). The media was then filtered under vacuum (0.45 m pore size filters) and pumped 

onto a 1 mL SP XL column and 1 mL SP FF column in tandem (GE Healthcare) pre-



7.  Materials and Methods  

156 

 

equilibrated with SP column buffer A.  The column was washed with SP column buffer A 

before elution over a gradient of SP column buffer B. 

 

For purification of D7, D8, D9-10 and D1-15, the media was adjusted to pH 8.3 by the addition 

of 0.5 M Tris pH 9 before centrifugation at 6000 rpm 20 mins (F10S-6X500 rotor, RC-6 

centrifuge). The media was then filtered under vacuum (0.45 m pore size filters) and pumped 

onto a 25 mL Ni-NTA column pre-equilibrated with 200 mM NiSO4 and 5 column volumes 

(CV) of IMAC column buffer A.  The column was washed with IMAC column buffer A before 

elution over a 10 CV gradient of IMAC column buffer B. 

 

For purification of D7-10, the media was adjusted to pH 7.5 by the addition of 0.5 M Tris pH 

9.0 before centrifugation at 6000 rpm 20 mins (F10S-6X500 rotor, RC-6 centrifuge). The 

media was then filtered under vacuum (0.45 m pore size filters) and pumped onto a 25 mL Hi 

LoadTM 16/10 Q sepharoseTM high performance anion exchange column (GE healthcare) pre-

equilibrated with Q column buffer A. The column was washed with Q column buffer A before 

elution over a gradient of Q column buffer B. Fractions containing D7-10Strep were purified 

further by affinity chromatography using a 5 mL StrepTrapTM column (GE healthcare) pre-

equilibrated with Strep column buffer A. D7-10Strep was eluted over a gradient of Strep 

column buffer B. The StrepTrapTM column was regenerated with 1 mM HABA. Fractions from 

IEX containing D7-10His were purified further by affinity chromatography using a 5 mL 

HisTrapTM column (GE healthcare) pre-equilibrated with IMAC column buffer A. D7-10His 

was eluted over a gradient of IMAC column buffer B. 

 

Recombinant proteins were concentrated using Amicon Ultra-15 centrifugal filter units 

(Sigma) and a sample analysed by analytical SEC using either a Superdex 75 10/200 column 

or Superdex 200 increase 10/200 GL column (GE Healthcare). 

 

Protein de-glycosylation 

Small scale de-glycosylation tests were performed on D7, D8, D9-10 and D7-10 using EndoH 

and PNGaseF following the manufacturers protocol (NEB). Briefly, 1-20 g of glycoprotein 

was denatured by boiling at 95 oC for 10 minutes with 1 L 10X NEB denaturing buffer (0.5 

% SDS, 40 mM DTT). 2 L 10x NEB glyco buffer 2 (50 mM sodium phosphate pH 7.5), 2 L 

1x NP40 (1 % NP40) and 1 L EndoH or PNGaseF were added and the reaction incubated at 

37 oC. Under native conditions the denaturing buffer was replaced with non-denaturing buffer 

(25 mM Tris pH 7.5, 150 mM sodium chloride) and the samples were not boiled. De-

glycosylation was monitored by SDS-PAGE and mass spectrometry. 

 

De-glycosylation of D9-10 was scaled up such that 1500 g D9-10 protein was incubated with 

60 L NP40, 60 L NEB glycobuffer 2 and 16 L PNGaseF (NEB) in a total volume of 600 

L for 16 hrs at 37 oC. De-glycosylation was again monitored by SDS-PAGE and mass 

spectrometry. De-glycosylated D9-10 was purified by analytical SEC using a Superdex 75 

10/200 column (GE Healthcare). 
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13. Protein detection 

SDS-PAGE and western blot 

Samples were prepared by addition of 5x loading dye before boiling (95 oC, 10 mins). 10 % 

Tris-tricine acrylamide gels were run for ~45 mins at 150 volts before staining in Coomassie 

brilliant blue stain (30 mins), and de-staining in water.  

 

For western blotting, samples were run on an SDS-PAGE gel as described above before 

transfer to a pvdf membrane (Bio-Rad) using a Turbo Transfer machine (Bio-Rad) (1.3 A, 7 

mins). Membranes were then incubated in blocking solution for 1 hour at room temperature 

with shaking before rinsing with TBST buffer. Primary antibody (-His tag, 1:4000 dilution) 

was added and membranes incubated for 1 hr at room temp with shaking. Following two five-

minute washes with TBST, membranes were visualised by addition of BCIP/NBT (Bio-Rad). 

 

Mass spectrometry 

Samples were prepared for mass spectrometry by methanol chloroform extraction.267 Briefly, 

20 L of protein was mixed with 60 L methanol and 15 L chloroform, vortexed and 45 L 

distilled water added. After centrifugation (5 mins 9000 x g) the top, organic layer was 

removed, and the protein precipitated at the interface was resuspended in 45 L fresh methanol. 

The protein was pelleted by centrifugation (5 mins 9000 x g). The supernatant was removed 

and the protein pellet dissolved in a solution of 50% acetonitrile, 0.01 % formic acid. 

 

Data was collected on a Synapt G2-Si (Waters) electrospray ionisation–time of flight (ESI-

TOF) mass spectrometer fitted with a Triverse Nanomate (Advion) spraying device in positive 

ion mode. Samples were sprayed using a capillary voltage of 1.5 kV, set up for resolution 

mode. Data was acquired over 500-3000 m/z for 10 minutes, before analysis using MassLynx 

4.1 or MagTran. 

 

Samples dialysed overnight into 100 mM Ammonium acetate using 7.5 kDa Slide-A-Lyzer 

mini dialysis caps (ThermoFisher Scientific) were analysed as above on the Synapt G2-Si 

(Waters) mass spectrometer under Ion Mobility mode, where the ion mobility cell was filled 

with N2 at 0.5 mbar. The sample cone was adjusted to 80 V, bias voltage 35 V, trap collision 

energy 10 V and transfer collision energy 5 V.  

 

14. Protein quantitation 

Protein concentration was determined using a DeNovix micro-volume spectrophotometer to 

measure absorbance at 280 nm (A280) using the Beer-Lambert Law. Extinction coefficients 

were calculated from the amino acid sequence using ExPASy Protparam.268 

 

15. Biophysical techniques 

Analytical SEC 

Samples of D11WT, D7, D8, D9-10, D7-10 and D1-15 were analysed by analytical SEC using 

either a Superdex 75 10/200 column or Superdex 200 increase 10/200 GL column (GE 

Healthcare) and gel filtration buffer.  
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The columns were calibrated with a combination of Beta amylase, ADH, Conalbumin, BSA, 

ovalbumin, Carbonic anhydrase, Cytochrome C and aprotinin. A calibration curve was 

generated using the equation below (Equation 5). 

  

𝐾𝑎𝑣 =
𝑉𝑒 − 𝑉𝑡

𝑉𝑡 − 𝑉𝑜
 

Equation 5: Calculation of the particle coefficient value, Kav, for analytical SEC analysis. Ve is the sample 

elution volume, Vt the total column volume and V0 the column void volume. 

 

SEC-MALS 

The oligomeric state of D7-10 in solution was analysed by SEC-MALS using a Dawn Heleos 

II light scattering instrument (Wyatt) coupled to an OptilabrEX online refractive index detector 

(Wyatt). Protein samples (100 l) were resolved using a Superdex 75 10/200 column (GE 

Healthcare) running at 0.4 ml/min in 25 mM Tris pH 7.5, 150 mM NaCl before passing through 

the light scattering and refractive index detectors. The molar mass was calculated using Wyatt’s 

ASTRA software.  

 

SEC-MALS data was collected for the control protein BSA (68 M), D7-10 (30 M), D7-10 

(30 M) plus 10-fold excess M6P and D7-10 following overnight incubation at 37 oC with 

EndoH and PNGase F (individually). 

 

NMR 

All data was collected using a Varian 600 MHz VNMR Spectrometer equipped with a triple-

resonance 6.5 mm cryoprobe or Bruker Avance III 700 MHz NMR Spectrometer equipped 

with a 1.7 mm inverse triple-resonance microcryocoil probe. One-dimensional 1H-NMR 

spectra and two-dimensional 1H-15N HSQC NMR spectra were acquired for D11 mutants. 

Spectra were processed with Topsin 3.6 (Bruker) or NMRPipe 269 and analysed using CcpNmr 

Analysis (version 2.4.2).270 

 

One-dimensional 1H-NMR spectra were also acquired for D7, D8 and D9-10. Additional NMR 

samples of D9-10 were prepared in 50 μL with 25 mM Tris, 150 NaCl pH 7.4 in 60 % D2O 

(uncorrected for D2O). Sugar (20 mM) was used with a final concentration of 2 mM compound. 

For the STD experiments, the standard Bruker stddiffesgp.3 pulse sequence was used with a 

saturation time of 7 s and a spectral width of 15.9 ppm with 256 scans. The on-resonance 

frequency was set to 0.58 ppm, while the off-resonance frequency was set to −28 ppm. 

Appropriate blank experiments, in the absence of protein or ligand, were performed to test the 

lack of direct saturation to the ligand protons. For the WATERLOGSY experiments, the 

standard Bruker ephogsygpno pulse sequence was used with relaxation delay of 1s and a 

mixing time of 1s with a spectral width of 15.9 ppm with 256 scans. Spectrometer operation 

was kindly performed by Dr Chris Williams (University of Bristol). 
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X-ray crystallography 

Domain 11 and mutants: 

D11 WT and mutants PK1G and PK1H were crystallised by the hanging drop vapour 

diffusion method using 24 well plates. Screening conditions were based on crystallisation 

conditions of D11 wild-type (PDB 1GP0) and PK (Dr Chris Williams unpublished data). 

Crystals were observed in 30 % PEG 4K, 0.1 M Tris pH8.5, 0.2 M sodium acetate for D11WT, 

15 % PEG 4K, 0.1 M sodium cacodylate pH 5.2, 0.1 M sodium acetate for PK1G and 15 % 

PEG 4K, 0.1 M sodium cacodylate pH 5.0, 0.05 M sodium acetate for PK1H. Suitable looking 

crystals were looped and cryo-cooled in liquid nitrogen, using 20-30 % glycerol as cryo-

protectant.  

 

Data was collected on beamlines I04 and I23 at Diamond Light Source (Didcot, UK). 

Diffraction images were processed and integrated using the Xia2 software package.271 D11WT 

was solved using phaser with an existing D11 wild-type structure (PDB 1GP0) as a search 

model. Using these phases about 90 % of the model was built using autobuild.272 The remaining 

residues were manually built in Coot273 and the model was subjected to several rounds of 

refinement and model building using phenix refine272 and Coot.273 The final model had an 

Rwork of 18.3 % and an Rfree of 22.4 % to 2.0 Å resolution. All figures were made in 

PyMOL.274 

 

D11 mutants PK1G and PK1H were solved using phaser with an existing structure of PK  

as a search model. Again, using these phases about 90 % of the model was built using 

autobuild.272 The remaining residues were manually built in Coot 273 and the model was 

subjected to several rounds of refinement and model building using phenix refine 272 and 

Coot.273 PK1H was refined with tNCS. The final model of PK1G had an Rwork of 26.3 % 

and an Rfree of 30.6 % to 2.8 Å resolution, while the final model of PK1H had an Rwork of 

25.3 % and an Rfree of 28.0 % to 2.5 Å resolution. Figures were made in PyMOL.274 

 

Domains 7 and 8: 

Commercial sparse matrix crystallisation screens (Morpheus, Structure I and II, PACT Premier 

and JCSG plus, Molecular Dimensions) were set up with glycosylated D7 and D8 (His6 tagged, 

5-10 mg/mL) in Swissci 96-well plates (Molecular Dimensions) using Art Robbins Gryphon 

and Phoenix liquid handling robots (BrisSynBio biosuite). After ~6 months crystals of D8 were 

seen in Structure screen I+II condition E7 (Molecular Dimensions): 1.5 M Ammonium sulfate, 

0.1 M Tris pH 8.5, 12 % glycerol. Suitable crystals were looped, dipped in 25 % glycerol and 

cryo-cooled in liquid nitrogen. 

 

Diffraction data was collected on beamline I24 at Diamond Light Source (Didcot, UK). 

Diffraction images 1-958 and 1298-1800 were processed and integrated in the  Xia2 software 

package.271 D8 was solved using phaser with D10 from the D9-10 crystal structure as a search 

model. Using these phases about 90% of the model was automatically built using autobuild.272 

The remaining residues were manually built in Coot 273 and the model was subjected to several 

rounds of refinement and model building using phenix refine 272 and Coot.273 The final model 
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had an Rwork of 22.3  % and an Rfree of 25.1 % to 2.5 Å resolution. Figures were made in 

PyMOL.274 

 

Domains 9-10: 

Commercial sparse matrix crystallisation screens (Morpheus, Structure I and II, PACT Premier 

and JCSG plus, Molecular Dimensions) were set up with D9-10 (His6 tagged, 4-8 mg/mL) in 

Swissci 96-well plates (Molecular Dimensions) using Art Robbins Gryphon and Phoenix liquid 

handling robots (BrisSynBio biosuite). After ~7 weeks crystals were seen in PACT Premier 

condition A6 (Molecular Dimensions): 0.1 M SPG (succinic acid, sodium dihydrogen 

phosphate monohydrate, glycine) pH 9, 25 % PEG 1500. Suitable crystals were looped, dipped 

in 25 % glycerol and cryo-cooled in liquid nitrogen. 

 

Diffraction data was collected on beamline I04 at Diamond Light Source (Didcot, UK). 

Diffraction images were processed and integrated in the Xia2 software package.271 D9-10 was 

solved using phaser with homology models of D9 and D10 as search models. Using these 

phases about 90% of the model was automatically built using autobuild.272 The remaining 

residues were manually built in Coot 273 and the model was subjected to several rounds of 

refinement and model building using phenix refine 272 and Coot.273 Glycans were modelled 

using the carbohydrate module in Coot 273 and validated with Privateer.275 The final model had 

an Rwork of 19.9 % and an Rfree of 22.8 % to 1.5 Å resolution. Figures were made in 

PyMOL.274 

 

Domains 7-11: 

Note all protein expression, purification, crystallisation and data collection was performed by 

Hans Hoppe, Karl Harlos and Yvonne Jones (University of Oxford). Data processing and 

structure determination was performed by Airlie McCoy (University of Cambridge) and Chris 

Williams (University of Bristol). The structure was refined with Dr Chris Williams using 

crystal structures of D8 and D9-10 (this work). 

 

Commercial sparse matrix crystallisation screens were set up with domains 7-11 (His6 tagged, 

3.5-7 mg/mL) in CrystalQuick 96-well plates (Greiner Bio-One). After ~20 hours crystals were 

observed in ProPlex condition H06 (Molecular Dimensions): 0.1 M MES pH 6.5, 1.6 M MgSO4 

with the addition of 10 mM M6P. These were looped, dipped in perfluoro-polyether-oil and 

cryo-cooled in liquid nitrogen. Many other crystal conditions were trialled with the inclusion 

and exclusion of mannose and M6P, but an improved resolution diffraction dataset was not 

achieved. 

 

Diffraction data was collected on beamline I03 at Diamond Light Source (Didcot, UK). 

Diffraction images were processed and integrated by XDS276 in the Xia2 software package.271 

Phaser272 was used to serially place Rosetta models of D7-10 and the crystal structure of D11 

(PDB 1GP0). The model was built through iterative rounds of manual building in Coot 273  and 

refinement in REFMAC5.277 B-factor sharpening was used to enhance the low-resolution maps. 

Once the model was built, external structural restraints generated with ProSMART 278 using 

high resolution models for domains 8, 9, 10 and 11 (1.4-2.5 Å) were added to the REFMAC5 
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refinement.279 Glycans were modelled using the carbohydrate module in Coot 273  and validated 

with Privateer.275 The final model had an Rwork of 26.1 % and an Rfree of 30.0 % to 3.5 Å 

resolution. Figures were made in PyMOL.274 

Negative stains 

Grids of D7-10 (50 g/mL) and D1-15 (30 g/mL) were prepared, stained with uranyl acetate 

and imaged with the help of Dr Sathish Yadavik and Professor Christiane Berger-Schafittzel. 

Grids were imaged at room temperature using an FEI Tecnai 20 200 kV twin lens transmission 

electron microscope (Wolfson Bioimaging Facility, University of Bristol). 281 micrographs of 

D1-15 plus 10-fold excess of M6P were taken. Approximately 15,000 particles were picked 

and 2D classification performed in Scipion.228  

 

Analytical ultracentrifugation 

Sedimentation equilibrium-analytical ultracentrifugation (SE-AUC) experiments on D7-10 

were carried out with the help of Dr Guto Rhys (University of Bristol) at 20 oC in a Beckman-

Optima XL-I analytical ultracentrifuge. 400 L of purified protein at OD280 = 0.4 was added 

to the sample channel, whilst the reference channel contained the matching buffer: 25 mM tris 

pH 7.5, 150 mM NaCl. SE-AUC was performed using an AN50 rotor with an Epon 6 channel 

centre piece at 7000, 10 000, 13 000, 16 000, 19 000, 22 000 and 25 000 rpm. 

 

Partial specific volumes of the amino acid component (v̄A) and carbohydrate content (v̄c) of 

D7-10 were estimated using SEDNTERP 220. Ultrascan II 221 was used to fit the data to a two-

component model and calculate molecular weight distributions.  

 

Small angle X-ray scattering 

In-line SEC-SAXS of D9-10 was collected with the help of Dr Ash Winter at B21 Diamond 

Light Source using an Agilent 1200 HPLC and 2.4 mL Superdex S200 column (GE 

Healthcare). 50 L of D9-10 (180 M) was loaded onto the S200 column in running buffer (25 

mM Tris, 150 mM sodium chloride) at pH 7.5. Frames were collected at 3 seconds per frame 

at 25 °C and X-ray scattering was recorded (Pilatus 2M detector) at a fixed camera length of 

4.014 m, at 12.4 keV. Angular q range data were collected between 0.0025- 0.34 Å-1. Data 

reduction, buffer subtraction and modelling of the radius of gyration (Rg), the maximum 

particle dimension (Dmax) and the pair distribution function (P(r)) were determined using 

ScÅtter 3.1r.280 Ab initio bead density shape envelope models for each dataset were generated 

by programs within the ATSAS  2.7,2 package.281 DAMMIF282 averaging over twenty three 

independent runs using the program DAMAVER,283 before a single DAMMIN284 refinement 

run. Ab initio bead density shape envelope models were superimposed to three dimensional 

structures of proteins using SUPCOMB.285 FoXS and MultiFoXS 286,287 was used to model 

flexible regions and quantitatively compare the calculated X-ray scattering of three-

dimensional models with the experimental scattering profile of each protein. SEC-SAXS data 

was also collected for D9-10 (270 M) in the presence of 100-fold excess (27 mM) M6P and 

de-glycosylated D9-10 (160 M) with and without M6P (16 mM). 
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8.  Appendix 

8.1.  Protein constructs 

Amino acid sequences 

D7 (orange) and D8 (green) were expressed in E. coli in the pET28a vector (black) with an N-

terminal hexa-histidine tag (red). D7, D8, D9-10 (blue), D7-10His and D1-15 were expressed 

in Sf21 insect cells with a C-terminal His6 tag (red). D7-10Strep was expressed in Sf21 insect 

cells with a C-terminal Strep II tag (purple) and flanked with TEV cleavage sites (pink). 

Residual residues of the N-terminal RPTP signal sequence (GILPSPGMPALLSLVSLLSVLLMGCV 

AETGAS) required for secretion from insect cells are coloured black. Cysteines are underlined 

and predicted N-linked glycosylation sites bold. All molecular weights were calculated 

assuming cysteines are reduced and glycosylation sites not modified. Domain boundaries are 

coloured according to Brown et al.112 D11 mutants were expressed in E. coli in the pET26b 

vector (black) with no purification tag. 

 

Domain 7 (E. coli expression) 
     MGSSHHHHHHSSGLVPRGSHMMQACSIRDPNSGFVFNLNPLNSSQGYNVSGIGKIFMFNV  969 D7 

970  CGTMPVCGTILGKPASGCEAETQTEELKNWKPARPVGIEKSLQLSTEGFITLTYKGPLSA 1029 D7 

1010 KGTADAFIVRFVCNDDVYSGPLKFLHQDIDSGQGIRNTYFEFETALACVPSP*        1081 D7 

Molecular weight 18,614 Da  pI 6.7 

 
Domain 8 (E. coli expression) 
     MGSSHHHHHHSSGLVPRGSHMMVDCQVTDLAGNEYDLTGLSTVRKPWTAVDTSVDGRKRTF 1220 D8 

1221 YLSVCNPLPYIPGCQGSAVGSCLVSEGNSWNLGVVQMSPQAAANGSLSIMYVNGDKCGNQR 1181 D8 

1182 FSTRFTIECAQISGSPAFQLQDGCEYVFIWRTVEACPVVR* 

Molecular weight 17,561 Da pI 6.6 

 
Domain 11 (Sf21 expression) 
1511 ETGASNEHDDCQVTNPSTGHLFDLSSLSGRAGFTAAYSEKGLVYMSICGENENCPPGVGA 1575 D11 

1576 CFGQTRISVGKANKRLRYVDQVLQLVYKDGSPCPSKSGLSYKSVVISFVCRPEARPTNRP 1626 D11 

1627 MLISLDKQTCTLFFSWHTPLACEQATTRHHHHHH*            

Molecular weight 16,818 Da pI 8.2 N-linked glycosylation sites: 0 

 
Domain 7 (Sf21 expression) 
     ETGASTTDTDQACSIRDPNSGFVFNLNPLNSSQGYNVSGIGKIFMFNVCGTMPVCGTILG  979 D7 

980  KPASGCEAETQTEELKNWKPARPVGIEKSLQLSTEGFITLTYKGPLSAKGTADAFIVRFV 1040 D7 

1041 CNDDVYSGPLKFLHQDIDSGQGIRNTYFEFETALACVPSPTRHHHHHH*            1081 D7 

Molecular weight 18,248 Da pI 6.0 N-linked glycosylation sites: 2 

 
Domain 8 (Sf21 expression) 
     ETGASVDCQVTDLAGNEYDLTGLSTVRKPWTAVDTSVDGRKRTFYLSVCNPLPYIPGCQG 1134 D8 

1135 SAVGSCLVSEGNSWNLGVVQMSPQAAANGSLSIMYVNGDKCGNQRFSTRITFECAQISGS 1195 D8 

1196 PAFQLQDGCEYVFIWRTVEACPVVRTRHHHHHH*                         

Molecular weight 16,661 Da pI 6.3 N-linked glycosylation sites: 1 
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Domains 9-10 (Sf21 expression) 
                                 ETGASVEGDNCEVKDPRHGNLYDLKPLGLNDT 1248 D9 

1249 IVSAGEYTYYFRVCGKLSSDVCPTSDKSKVVSSCQEKREPQGFHKVAGLLTQKLTYENGL 1308 D9 

1309 LKMNFTGGDTCHKVYQRSTAIFFYCDRGTQRPVFLKETSDCSYLFEWRTQYACPPFDLTE 1368 D10 

1369 CSFKDGAGNSFDLSSLSRYSDNWEAITGTGDPEHYLINVCKSLAPQAGTEPCPPEAAACL 1428 D10 

1429 LGGSKPVNLGRVRDGPQWRDGIIVLKYVDGDLCPDGIRKKSTTIRFTCSESQVNSRPMFI 1488 D10 

1489 SAVEDCEYTFAWPTATACPMKSTRHHHHHH*  

Molecular weight 33,588 Da pI 6.2 N-linked glycosylation sites: 2 

 

Domains 7-10Strep (Sf21 expression) 
     ETGENLYFQGACSIRDPNSGFVFNLNPLNSSQGYNVSGIGKIFMFNVCGTMPVCGTILGK  982 D7 

 983 PASGCEAETQTEELKNWKPARPVGIEKSLQLSTEGFITLTYKGPLSAKGTADAFIVRFVC 1043 D7 

1044 NDDVYSGPLKFLHQDIDSGQGIRNTYFEFETALACVPSPVDCQVTDLAGNEYDLTGLSTV 1104 D8 

1105 RKPWTAVDTSVDGRKRTFYLSVCNPLPYIPGCQGSAVGSCLVSEGNSWNLGVVQMSPQAA 1165 D8 

1166 ANGSLSIMYVNGDKCGNQRFSTRITFECAQISGSPAFQLQDGCEYVFIWRTVEACPVVRV 1226 D9 

1227 EGDNCEVKDPRHGNLYDLKPLGLNDTIVSAGEYTYYFRVCGKLSSDVCPTSDKSKVVSSC 1287 D9 

1288 QEKREPQGFHKVAGLLTQKLTYENGLLKMNFTGGDTCHKVYQRSTAIFFYCDRGTQRPVF 1348 D9 

1349 LKETSDCSYLFEWRTQYACPPFDLTECSFKDGAGNSFDLSSLSRYSDNWEAITGTGDPEH 1409 D10 

1410 YLINVCKSLAPQAGTEPCPPEAAACLLGGSKPVNLGRVRDGPQWRDGIIVLKYVDGDLCP 1470 D10 

1471 DGIRKKSTTIRFTCSESQVNSRPMFISAVEDCEYTFAWPTATACPENLYFQGWSHPQFEK* 

Molecular weight 65,906 Da pI 5.2 N-linked glycosylation sites: 5 

 
Domains 7-10His (Sf21 expression) 
     ETGACSIRDPNSGFVFNLNPLNSSQGYNVSGIGKIFMFNVCGTMPVCGTILGKPASGCEA  989 D7 

990  ETQTEELKNWKPARPVGIEKSLQLSTEGFITLTYKGPLSAKGTADAFIVRFVCNDDVYSG 1049 D7 

1050 PLKFLHQDIDSGQGIRNTYFEFETALACVPSPVDCQVTDLAGNEYDLTGLSTVRKPWTAV 1109 D7 

1110 DTSVDGRKRTFYLSVCNPLPYIPGCQGSAVGSCLVSEGNSWNLGVVQMSPQAAANGSLSI 1169 D8 

1170 MYVNGDKCGNQRFSTRITFECAQISGSPAFQLQDGCEYVFIWRTVEACPVVRVEGDNCEV 1229 D8 

1230 KDPRHGNLYDLKPLGLNDTIVSAGEYTYYFRVCGKLSSDVCPTSDKSKVVSSCQEKREPQ 1289 D8 

1290 GFHKVAGLLTQKLTYENGLLKMNFTGGDTCHKVYQRSTAIFFYCDRGTQRPVFLKETSDC 1349 D9 

1350 SYLFEWRTQYACPPFDLTECSFKDGAGNSFDLSSLSRYSDNWEAITGTGDPEHYLINVCK 1409 D9 

1410 SLAPQAGTEPCPPEAAACLLGGSKPVNLGRVRDGPQWRDGIIVLKYVDGDLCPDGIRKKS 1469 D10 

1470 TTIRFTCSESQVNSRPMFISAVEDCEYTFAWPTATACPMKHHHHHH*   

Molecular weight 64,113 Da pI 5.8 N-linked glycosylation sites: 5 
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Domains 1-15 sequence (Sf21 expression) 
     ETGASAAPFPELCSYTWEAVDTKNNVLYKINICGSVDIVQCGPSSAVCMHDLKTRTYHSV    96 D1 

97   GDSVLRSATRSLLEFNTTVSCDQQGTNHRVQSSIAFLCGKTLGTPEFVTATECVHYFEWR   157 D1 

158  TTAACKKDIFKANKEVPCYVFDEELRKHDLNPLIKLSGAYLVDDSDPDTSLFINVCRDID   218 D2 

219  TLRDPGSQLRACPPGTAACLVRGHQAFDVGQPRDGLKLVRKDRLVLSYVREEAGKLDFCD   279 D2 

280  GHSPAVTITFVCPSERREGTIPKLTAKSNCRYEIEWITEYACHRDYLESKTCSLSGEQQD   340 D3 

341  VSIDLTPLAQSGGSSYISDGKEYLFYLNVCGETEIQFCNKKQAAVCQVKKSDTSQVKAAG   401 D3 

402  RYHNQTLRYSDGDLTLIYFGGDECSSGFQRMSVINFECNKTAGNDGKGTPVFTGEVDCTY   462 D3 

463  FFTWDTEYACVKEKEDLLCGATDGKKRYDLSALVRHAEPEQNWEAVDGSQTETEKKHFFI   523 D4 

524  NICHRVLQEGKARGCPEDAAVCAVDKNGSKNLGKFISSPMKEKGNIQLSYSDGDDCGHGK   584 D4 

585  KIKTNITLVCKPGDLESAPVLRTSGEGGCFYEFEWHTAAACVLSKTEGENCTVFDSQAGF   645 D5 

645  SFDLSPLTKKNGAYKVETKKYDFYINVCGPVSVSPCQPDSGACQVAKSDEKTWNLGLSNA   706 D5 

707  KLSYYDGMIQLNYRGGTPYNNERHTPRATLITFLCDRDAGVGFPEYQEEDNSTYNFRWYT   767 D5 

768  SYACPEEPLECVVTDPSTLEQYDLSSLAKSEGGLGGNWYAMDNSGEHVTWRKYYINVCRP   828 D6 

829  LNPVPGCNRYASACQMKYEKDQGSFTEVVSISNLGMAKTGPVVEDSGSLLLEYVNGSACT   889 D6 

890  TSDGRQTTYTTRIHLVCSRGRLNSHPIFSLNWECVVSFLWNTEAACPIQTTTDTDQACSI   950 D7 

951  RDPNSGFVFNLNPLNSSQGYNVSGIGKIFMFNVCGTMPVCGTILGKPASGCEAETQTEEL  1011 D7 

1012 KNWKPARPVGIEKSLQLSTEGFITLTYKGPLSAKGTADAFIVRFVCNDDVYSGPLKFLHQ  1072 D7 

1073 DIDSGQGIRNTYFEFETALACVPSPVDCQVTDLAGNEYDLTGLSTVRKPWTAVDTSVDGR  1133 D8 

1133 KRTFYLSVCNPLPYIPGCQGSAVGSCLVSEGNSWNLGVVQMSPQAAANGSLSIMYVNGDK  1194 D8 

1195 CGNQRFSTRITFECAQISGSPAFQLQDGCEYVFIWRTVEACPVVRVEGDNCEVKDPRHGN  1255 D9 

1256 LYDLKPLGLNDTIVSAGEYTYYFRVCGKLSSDVCPTSDKSKVVSSCQEKREPQGFHKVAG  1316 D9 

1317 LLTQKLTYENGLLKMNFTGGDTCHKVYQRSTAIFFYCDRGTQRPVFLKETSDCSYLFEWR  1377 D9 

1378 TQYACPPFDLTECSFKDGAGNSFDLSSLSRYSDNWEAITGTGDPEHYLINVCKSLAPQAG  1438 D10 

1439 TEPCPPEAAACLLGGSKPVNLGRVRDGPQWRDGIIVLKYVDGDLCPDGIRKKSTTIRFTC  1499 D10 

1500 SESQVNSRPMFISAVEDCEYTFAWPTATACPMKSNEHDDCQVTNPSTGHLFDLSSLSGRA  1560 D11 

1561 GFTAAYSEKGLVYMSICGENENCPPGVGACFGQTRISVGKANKRLRYVDQVLQLVYKDGS  1621 D11 

1622 PCPSKSGLSYKSVISFVCRPEARPTNRPMLISLDKQTCTLFFSWHTPLACEQATECSVRN  1682 D12 

1683 GSSIVDLSPLIHRTGGYEAYDESEDDASDTNPDFYINICQPLNPMHGVPCPAGAAVCKVP  1743 D12 

1744 IDGPPIDIGRVAGPPILNPIANEIYLNFESSTPCLADKHFNYTSLIAFHCKRGVSMGTPK  1804 D12 

1805 LLRTSECDFVFEWETPVVCPDEVRMDGCTLTDEQLLYSFNLSSLSTSTFKVTRDSRTYSV  1865 D13 

1866 GVCTFAVGPEQGGCKDGGVCLLSGTKGASFGRLQSMKLDYRHQDEAVVLSYVNGDRCPPE  1926 D13 

1927 TDDGVPCVFPFIFNGKSYEECIIESRAKLWCSTTADYDRDHEWGFCRHSNSYRTSSIIFK  1987 D13 

1987 CDEDEDIGRPQVFSEVRGCDVTFEWKTKVVCPPKKLECKFVQKHKTYDLRLLSSLTGSWS  2048 D14 

2049 LVHNGVSYYINLCQKIYKGPLGCSERASICRRTTTGDVQVLGLVHTQKLGVIGDKVVVTY  2109 D14 

2110 SKGYPCGGNKTASSVIELTCTKTVGRPAFKRFDIDSCTYYFSWDSRAACAVKPQEVQMVN  2170 D15 

2171 GTITNPINGKSFSLGDIYFKLFRASGDMRTNGDNYLYEIQLSSITSSRNPACSGANICQV  2231 D15 

2232 KPNDQHFSRKVGTSDKTKYYLQDGDLDVVFASSSKCGKDKTKSVSSTIFFHCDPLVEDGI  2292 D15 

2293 PEFSHETADCQYLFSWYTSAVCPLGVTRHHHHHH* 

Molecular weight 248,588 Da pI 5.7 N-linked glycosylation sites: 19 
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Domain 11  sequence (E. coli expression) 
MKSNEHDDCQVTNPSTGHLFDLSSLSGRAGFTAAYSKSGVVYMSICGENENCPPGVGACFGQTRISVGKANKR

LRYVDQVLQLVYKDGSPCPSKSGLSYKSVISFVCRPEAGPTNRPMLISLDKQTCTLFFSWHTPLACEPE 

Molecular weight 15,224 Da pI 7.5 

 

Domain 11 PK sequence (E. coli expression) 
MKSNEHDDCQVTNPSTGHLFDLSSLSGRAGFTAAYSKSGVVYMSICGENENCPPGVGACFGQTRISVGKANKR

LRYVDQVLQLVYKDGSPCSSGLSYKSVISFVCRPEAGPTNRPMLISLDKQTCTLFFSWHTPLACEPE 

Molecular weight 15,224 Da pI 7.5 

 

Domain 11 PK1G sequence (E. coli expression) 
MKSNEHDDCQVTNPSTGHLFDLSSLSGRAGFTAAYSKSGVVYMSICGENENCPPGVGACQGQTRISVGKANKR

LRYVDQVLQLVYKDGSPCGSGLSRKSVISFVCRPEAGPTNRPMLISEDKQTCTYFFSWHTPLACEPE 

Molecular weight 15,194 Da pI 7.5 

 

Domain 11 PK1H sequence (E. coli expression) 
MKSNEHDDCQVTNPSTGHLFDLSSLSGRAGFTAAYSKSGVVYMSICGENENCPPGVGACQGQTRISVGKANKR

LRYVDQVLQLVYKDGSPCHSGLSRKSVISFVCRPEAGPTNRPMLISEDKQTCTYFFSWHTPLACEPE 

Molecular weight 15,274 Da pI 7.5 

 

Domain 11 PK2G sequence (E. coli expression) 
MKSNEHDDCQVTNPSTGHLFDLSSLSGRAGFTAAYSKSGVVYMSICGENENCPPGVGACQGQTRISVGKANKR

LRYVDQVLQLVYKDGSPCSGGLSRKSVISFVCRPEAGPTNRPMLISEDKQTCTYFFSWHTPLACEPE 

Molecular weight 15,194 Da pI 7.5 

 

Domain 11 PK2H sequence (E. coli expression) 
MKSNEHDDCQVTNPSTGHLFDLSSLSGRAGFTAAYSKSGVVYMSICGENENCPPGVGACQGQTRISVGKANKR

LRYVDQVLQLVYKDGSPCSHGLSRKSVISFVCRPEAGPTNRPMLISEDKQTCTYFFSWHTPLACEPE 

Molecular weight 15,274 Da pI 7.5 

 

 

Primer sequences 

 
Primer Sequence 

D7F aac gta gct agc ACC ACC GAC ACT GAC CAG GCT 

D7R ttg cat acg cgt CGG GCT CGG CAC GCA 

D8F aac gta gct agc GTG GAC TGC CAA GTT ACT GAC CTG 

D8R ttg cat acg cgt ACG CAC GAC AGG GCA AGC 

D9F aac gta gct agc GTT GAA GGC GAC AAC TGC GAA GTG 

D10R ttg cat acg cgt GGA CTT CAT AGG GCA AGC AGT AGC 

Appendix Table 1: Primers for sub-cloning domains into pFastBac for expression in insect cells (chapters 

2 and 3). The adaptor region containing the restriction site (in bold, NheI in forwards primers (F), MluI in reverse 

primers (R)) is in lower case. 

 

Mutation Forwards primer Reverse primer 

D8 N1163D CAG GCT GCC GCT GAT GGT TCC CTG TCC GGA CAG GGA ACC ATC AGC GGC AGC CTG 

D7 N951D CTG AAT CCA CTG GAC TCC AGC CAG GGT ACC CTG GCT GGA GTC CAG TGG ATT CAG 

D7 N957D AGC CAG GGT TAC GAC GTG TCC GGT ATC GAT ACC GGA CAC GTC GTA ACC CTG GCT 

Appendix Table 2: Primers for site directed mutagenesis of D7 and D8 (chapter 2). Asparagine residues of 

predicted N-linked glycosylation sites were mutated to aspartate. Mutated codon in bold.  
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Appendix Table 3: Primers for site directed mutagenesis of D11 (chapter 5). Mutated codon in bold. 

 

pFastBac vector design 

 
ATGGGGATCCTTCCCAGCCCTGGGATGCCTGCGCTGCTCTCCCTCGTGAGCCTTCTCTCCGTGCTGCTGACGGGT

TGCGTAGCTGAAACCGGTGCTAGCAACGAGCACGACGACTGTCAAGTGACTAACCCCTCTACCGGTCACCTGTTC

GATCTGTCCTCACTGTCCGGTCGTGCTGGTTTCACCGCTGCCTACTCTGAGAAGGGCCTCGTGTACATGTCCATC

TGCGGAGAGAACGAAAACTGCCCTCCAGGTGTCGGTGCTTGCTTCGGACAGACCCGTATCTCCGTCGGAAAGGCT

AACAAGCGTCTGCGTTACGTGGACCAGGTGCTGCAGCTGGTGTACAAGGACGGATCCCCTTGTCCTTCCAAGTCC

GGCCTGTCCTACAAGTCCGTCATCTCCTTCGTTTGCCGTCCTGAGGCTCGCCCTACCAACCGTCCAATGCTGATC

TCCCTCGACAAGCAGACCTGTACTCTGTTCTTCTCCTGGCACACCCCACTGGCCTGCGAGCAAGCTACTACGCGT

CACCATCATCACCATCATTAA 

Appendix Figure 1: Nucleotide sequence of D11WT synthetic gene showing modification of the pFastBac 

transfer vector. The start and stop codons are shown in bold, MluI (5’) and NheI (3’) restriction sites underlined 

blue, the RPTP signal sequence in green and the hexa-histidine tag in red. DNA encoding D11WT is shown here 

in black as an example. DNA encoding D7, D8, D9-10 were individually sub-cloned into this pFastBac using 

MluI and NheI.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mutation Forwards primer Reverse primer 

PK1G TCC CCT TGT GGC TCC GGC CTG CAG GCC GGA GCC ACA AGG GGA 

PK1H GGG TCC CCT TGT CAC TCC GGC CTG AGC GCT CAG GCC GGA GTG ACA AGG GGA CCC 

PK2G TCC CCT TGT AGT GGA GGC CTG AGC AGA TCT GCT CAG GCC TCC ACT ACA AGG GGA 

PK2H TCC CCT TGT AGT CAC GGC CTG AGC AGA   TCT GCT CAG GCC GTG ACT ACA AGG GGA 
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8.2.  Chapter 1: Introduction 

 

Appendix Figure 2: Sequence alignment of CI-MPR D6, D8 and D11 from placental mammals (human, 

cow, mouse, rat), marsupial mammals (wallaby), monotreme mammals (opossum, echidna), platypus, birds 

(Chicken) and fish (zebrafish). Residues that interact with IGF2 are highlighted purple.  
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8.3.  Chapter 2: Domains 7 and 8 

 

 

 

 

 

 

 

 

Appendix Figure 3: Analytical SEC of D11, D7 and D8 using a Superdex 75 10/300 column. Top: SEC 

chromatograms of calibrants: Aprotinin (AP), Ribonuclease A (RA), Carbonic Anhydrase (CA), Ovalbumin (OV) 

and Conalbumin (CO). Middle: Calibration curve of the calibrants used to determine the Mwapp for analysed 

proteins. Bottom: Summary of results for each calibrant, D11, D7 and D8 (red). D11 has a monomeric molecular 

weight of ~16.8 kDa (peak 2) and dimeric molecular weight of ~33.6 kDa (peak 1). D7 has a glycosylated 

monomeric molecular weight of ~20 kDa, while D8 has a glycosylated, monomeric molecular weight of ~17 kDa. 

The SEC column was calibrated by Dr Ash Winter (University of Bristol). 

 

 

 

 

 

 

Sample Mw (kDa) Mwapp (kDa) Log10Mw Ve (ml) Kav 

Conalbumin 75 65.9 1.87 9.02 0.11 

Ovalbumin 44 49.4 1.64 9.78 0.16 

Carbonic anhydrase 29 29.6 1.46 11.13 0.24 

Ribonuclease A 13 14.2 1.11 13.07 0.35 

Aprotinin 6 5.5 0.78 15.58 0.50 

D11 Peak 1 33.6 40.5 1.53 10.3 0.19 

D11 Peak 2 16.8 15.7 1.23 12.8 0.34 

D7 19.9 21.3 1.30 12.0 0.29 

D8 17.3 15.5 1.24 12.8 0.34 
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Appendix Table 4: Data collection and refinement statistics for D11 and D8 crystal structures. Values in 

parentheses are for the outer resolution shell. 

 

 

 

 

 

 

 

 

 

 

 

 

Construct Domain 11 Domain 8 

Data collection 

PDB accession code N/A 6Z31 

Space group P 21 21 21 P1211 

Unit cell    

   a, b, c (Å) 31.5, 49.9, 82.9 65.6, 45.6, 70.3 

      (o) 90, 90, 90 90, 116, 90 

X-ray wavelength (Å) 0.97 0.97 

Resolution range (Å) 40.73-2.00 

(2.07-2.00) 

36.02-2.56 

(2.65-2.56) 

Total reflections 18262 (1794) 56943 (5415) 

Unique reflections 9145 (897) 12121 (1170) 

Multiplicity 2.0 (2.0) 4.7 (4.6) 

Completeness (%) 98.2 (100) 98.98 (95.82) 

Rmeas 0.05 (0.29) 0.21 (0.71) 

Mean I/σ (I) 9.6 (3.1) 5.59 (1.97) 

Wilson B-factor (Å2) 24.41 40.52 

CC ½   0.997 (0.871) 0.975 (0.686) 

Refinement 

Reflections used in refinement 9144 (897) 12116 (1169) 

Rwork (%) 18.3 (22.9) 22.3 (27.1)  

Rfree (%) 22.4 (29.2) 25.1 (38.4) 

Root mean squared deviation   

   Bond lengths (Å) 0.004 0.004 

   Bond angles (o) 1.01 0.70 

Ramachandran plot (%)   

   Favoured 98.5 94.9 

   Allowed 1.5 5.1 

   Outliers 0.0 0.0 

Average B-factor (Å2) 33.61 30.62 

   Protein 33.12 30.70 

   Ligand/ glycan 74.81 41.31 



8.  Appendix  

170 

 

8.4.  Chapter 3: Structural characterisation of D9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Table 5: Data collection and refinement statistics for D9-10 and D7-11 crystal structures. Values 

in parentheses are for the outer resolution shell. 

 

 

 

Construct Domains 9-10 Domains 7-11 

Data collection 

PDB accession code 6Z30 6Z32 

Space group P 21 21 21 P 41 21 2 

Unit cell    

   a, b, c (Å) 40.4, 55.8, 32.7 139.2 139.2 234.7 

      (o) 90, 90, 90 90, 90, 90 

X-ray wavelength (Å) 0.98 1.06 

Resolution range (Å) 51.46-1.50 

(1.55-1.50) 

89.72-3.47 

(3.59-3.47) 

Total reflections 630776 (64,630) 438,999 (43,737) 

Unique reflections 48,880 (4805) 30,224 (2944) 

Multiplicity 12.9 (13.5) 14.5 (14.9) 

Completeness (%) 99.9 (99.9) 98.6 (98.4) 

Rmeas  0.15 (2.4) 0.21 (5.06) 

Mean I/σ (I) 11.12 (1.24) 6.03 (0.84) 

Wilson B-factor (Å2) 21.15 157.79 

CC ½   0.999 (0.488) 0.997 (0.127) 

Refinement 

Reflections used in refinement 48877 (4805) 30215 (2943) 

Rwork (%) 19.9 (30.02) 26.1 (42.1) 

Rfree (%) 22.8 (32.0) 30.0 (43.2) 

Root mean squared deviation   

   Bond lengths (Å) 0.005 0.014 

   Bond angles (o) 0.84 1.97 

Ramachandran plot (%)   

   Favoured 98.6 94.5 

   Allowed 1.4 5.1 

   Outliers 0.0 0.4 

Average B-factor (Å2) 27.43 197.43 

   Protein 25.78 197.85 

   Ligand/ glycan 22.68 174.54 
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Appendix Figure 4: Crystal structures used in the phasing and refinement of human D7-11 crystal 

structure. D7-11 was phased by Airlie McCoy (University of Cambridge) using homology models of D7, D8, 

D9, D10 and the high-resolution (1.4 Å) crystal structure of D11 (PDB 1GP0). Chris Williams (University of 

Bristol) refined the D7-11 structure using the high-resolution crystal structures of D8 (2.5 Å) and D9-10 (1.5 Å). 

Superimposition of individual domains of the D7-11 structure with those of the high-resolution reveals close 

structural similarities.  
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Appendix Figure 5: analytical SEC of D9-10 using a Superdex 75 10/300 column. A: chromatograms of D9-

10 with (green) and without M6P (black) and de-glycosylated D9-10 with (blue) and without (orange) M6P. B: 

chromatogram of calibrants: Blue dextran (BD), BSA dimer (BSA D), Conalbumin (CO), BSA monomer (BSA 

M), Ovalbumin (OV), Carbonic anhydrase (CA), Cytochrome C (CY). C: Calibration curve of the calibrants used 

to determine the Mwapp for analysed proteins. D: Summary of results for each calibrant and D9-10. D9-10 has a 

glycosylated monomeric molecular weight of ~36 kDa, glycosylated, dimeric molecular weight of ~72 kDa and 

de-glycosylated monomeric molecular weight of ~33 kDa. 
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Appendix Figure 6: analytical SEC of D9-10 using a Superdex 75 10/300 column. A: chromatograms of D9-

10 at pH 7.5 (black), pH 5.5 (red) and pH 4.0 (purple). B: chromatogram of calibrants: Blue dextran (BD), BSA 

dimer (BSA D), Conalbumin (CO), BSA monomer (BSA M), Carbonic anhydrase (CA), Cytochrome C (CY) and 

Aprotinin (AP). C: Calibration curve of the calibrants used to determine the Mwapp for analysed proteins. D: 

Summary of results for each calibrant and D9-10. D9-10 has a glycosylated monomeric molecular weight of ~36 

kDa, glycosylated, dimeric molecular weight of ~72 kDa and de-glycosylated monomeric molecular weight of 

~33 kDa. 
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Appendix Figure 7: ESI-MS of D9-10 at different pH. A: D9-10 at pH 7.5 is glycosylated at both sites by 

glycan 5, GlcNAc2Man3GlcNAc. B: The molecular mass of D9-10 at pH 5.5 is unchanged.  
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Data collection parameters    

Sample D9-10 

pH 7.5 

D9-10 pH 7.5 

+ M6P 

D9-10 pH 7.5 

de-

glycosylated 

D9-10 pH 7.5 

de-

glycosylated 

+M6P 

D9-10 

pH 5.5 

SASBDB code SASDH79 SASDH59 SASDH69 SASDJ23 N/A 

Instrument 

SEC Column 

Loading concentration (mg ml-1) 

Injection volume (l) 

Flow rate (ml min-1) 

Average C in combined data frames (mg ml-1) 

Solvent  

SEC-SAXS at B21 Diamond Light Source 

Superdex 200 Increase 3.2/300 

6.5 

45 

0.075 

1.65 

25 mM Tris-HCl, 150 mM NaCl 

Data analysis 

Guinier analysis: 

I(0) (cm-1) 

 

1.37E-1± 

1.4E-4 

 

9.72E-2± 

1.3E-4 

 

2.74E-2 

±2.3E-4 

 

1.74E-2 

±2.9E-5 

 

4.96E-2 

±9.2E-5 

Rg (Å) 32.79±0.19 32.51±0.19 25.21±0.13 25.05±0.21 29.05±0.3 

qmin (Å-1) 0.015 0.022 0.011 0.012 0.009 

qRg max (qmin max) 1.25 (0.034) 1.27 (0.034) 1.29 (0.040) 1.29 (0.041) 1.29 (0.034 

Coefficient of Correlation 0.9980 0.9986 0.9961 0.9898 0.9893 

P(r) analysis: 

I(0) (cm-1) 

 

1.31E-1 

 ±1.5E-3 

 

9.29E-2 

±1.3E-3 

 

2.76E-2 

±1.8E-4 

 

1.79E-2 

±1.6E-4 

 

4.83E-2 

±4.0E-4 

Rg (Å) 31.38±0.20 31.16±0.18 25.23±0.11 25.32±0.13 28.65±0.22 

dmax (Å) 92.0 91.0 77.0 77.5 93.5 

q range (Å-1) 0.0026-0.34 0.0026-0.34 0.0026-0.34 0.0026-0.34 0.0090-0.21 

  0.77 0.92 1.18 1.06 1.03 

Porod volume (Å-3)  

(ratio VP/calculated M) 

135,067  

(2.01) 

127,660  

(1.87) 

68,881  

(2.05) 

71,840 

(2.14) 

112,600 

(3.35) 

Resolution (from SASRES) (Å) 39 ± 3 37 ± 3 30 ±2 34 ±3 33 ±3 

DATCLASS designation Flat Flat Flat Compact Flat 

Molecular mass determination (ratio to predicted value) 

Partial specific volume (𝑣̅, cm3g-1) 0.726 

3.049  

(12.462 – 9.413) 
Particle contrast from sequence and solvent 

constituents 𝛥𝑝̅ (𝑃protein −  𝑃solvent; 1010 cm-2) 

Mr from sequence (KDa) 33.6 33.6 33.6 33.6 33.6 

Mr form I(0) Reciprocal (KDa) 83.6 (1.24) 78.9 (1.17) 48.0 (1.43) 41.8 (1.24) 67.1 (1.99) 

Mr from I(0) Real (KDa) 64.0 (0.95) 62.0 (0.92) 47.7 (1.42) 43.3 (1.28) 65.3 (1.94) 

Mr from Porod volume (Vporod/1.7) (KDa) 79.5 (1.18) 75.1 (1.12) 40.7 (1.21) 42.3 (1.26) 66.2 (1.97) 

Mr from SAXSMoW (KDa) 70.5 (1.05) 68.0 (1.01) 33.7 (1.01) 34.8 (1.04) 44.7 (1.33) 

Shape model fitting results 

DAMMIF (default parameters, 23 calculations) 

q range for fitting (Å-1) 

Symmetry, anisotropy assumptions 

NSD (standard deviation) 

 

0.0026-0.233 

P1, none 

0.766 (0.021) 

 

0.0026-0.233 

P1, none 

0.612 (0.039) 

 

0.0026-0.233 

P1, none 

0.548 (0.019) 

 

0.0026-0.239 

P1, none 

0.597 (0.018) 

 

0.0026-0.233 

P1, none 

0.621 (0.043) 

DAMMIN (default parameters, slow run) 

q range for fitting (Å-1) 

Symmetry, anisotropy assumptions 

  

 

0.0026-0.233 

P1, none 

1.937 

 

0.0026-0.233 

P1, none 

2.158 

 

0.0026-0.233 

P1, none 

1.504 

 

0.0026-0.233 

P1, none 

1.320 

 

0.0026-0.233 

P1, none 

1.252 

Atomistic Modelling   

Model (PDB code) 6Z32 6Z32  6Z30 6Z30 6Z30  

q range for all modelling 

FoXS: 

 

Predicted Rg (Å) 

0.0026-0.34 

 

3.56 

31.21 

0.0026-0.34 

 

9.90 

31.21 

0.0026-0.34 

 

2.13 

23.06 

0.0026-0.34 

 

1.35 

23.06 

0.0026-0.34 

 

3.08 

23.54 

MultiFoXS multistate models:  

(10,000 iterations) 

Flexible residues 

No of states 

 

c1, c2 

Rg values of each state (Å) 

 

 

1358-1364 

1 

1.68 

1.03, 0.72 

31.32 

 

 

1358-1364 

1 

1.75 

1.02, 1.53 

31.30 

 

 

1358-1364 

1 

1.31 

0.99, 2.92 

24.15 

 

 

1358-1364 

1 

1.15 

0.99, 2.74 

24.01 

 

 

1358-1364 

1 

1.13 

1.01, 4.00 

26.74 
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Appendix Table 6: Data collection parameters and statistics obtained from SEC-SAXS experiments of D9-

10 at pH7.5 in the absence of M6P, presence of 100-fold excess M6P, de-glycosylated in the absence of M6P 

and presence of M6P and glycosylated D9-10 at pH 5.5. For glycosylated samples D9-10 from the D7-11 

crystal structure, which was singly glycosylated, was used as a starting model. For de-glycosylated samples D9-

10 from the D9-10 crystal structure, with glycans removed, was used as the starting model. For modelling the pH 

5.5 data D9-10 from the D9-10 crystal structure was used, with the second glycan at N1246 being built in. All 

glycan residues were also specified as flexible during multistate modelling. 
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Appendix Figure 8: SEC-SAXS of D9-10. For each result: A: SEC trace of D9-10 showing the intensity of 

scattering as a ratio to the buffer background vs frame number. The Rg across the peak is highlighted in blue. B: 

I(q) vs q as log-linear plots with errors shown, the inset displays the guinier fit and residuals for data at q*Rg < 

1.3. C: Dimensionless Kratky plot data shown in panel B. The crosshair (1.10, 1.73) is the expected peak maxima 

for a folded globular protein. The two peaks observed indicate that the species is a two-domain structure. The 

definition of the second peak is reduced when the sample is deglycosylated. D: Pair-distance, P(r) distribution 

function showing the P(r) vs r profile. The inset shows the fit of the P(r) distribution profile (red line) to the raw 

scattering data used in the P(r) vs r analyses. SEC-SAXS of D9-10 at pH 7.5 in the absence of M6P (black), 

presence of 100-fold excess of M6P (green), de-glycosylated in the absence of M6P (orange) and presence of 100-

fold excess of M6P (blue). Data was collected at pH 7.5 (left) and pH 5.5 (right). D9-10 de-glycosylated pH 5.5 

gave poor scattering due to low concentration. Data for D9-10 de-glycosylated and at pH 5.5 was not collected. 
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Appendix Table 7: Analytical SEC of D7-10 using a Superdex 200 10/300 column reveals D7-10 to be 

monomeric. A summary of results for each calibrant and glycosylated D7-10His (red). The SEC column was 

calibrated by Dr Ash Winter (University of Bristol). 

 

 

Appendix Figure 9: D7-10 de-glycosylation attempts. Lane 1 contains denatured, fully glycosylated D7-10His 

(~65 kDa, red arrow). There is no shift to a lower molecular weight species following incubation with EndoH (29 

kDa, blue arrow) or PNGaseF (36 kDa, green arrow). 

 

 

Appendix Figure 10: Crystallography of D7-10His. Small birefringent crystals (left) were looped, cryo-cooled 

and analysed at Diamond Light Source. Unfortunately, their poor diffraction pattern (right) suggests salt crystals. 

 

 

 

 

 

 

 

 

 

 

Sample Mw 

(kDa) 

Mwapp (kDa) Log10Mw Ve (ml) Kav 

Blue dextran 2000 - 3.73 7.07 0.00 

Beta amylase 200 225.5 2.30 12.16 0.30 

ADH 150 137.1 2.18 12.96 0.35 

Conalbumin 75 72.7 1.88 13.98 0.41 

BSA monomer 66 57.4 1.82 14.36 0.43 

Ovalbumin 44 52.6 1.64 14.50 0.44 

Carbonic anhydrase 29 27.2 1.46 15.56 0.50 

Cytochrome C 12 12.7 1.09 16.79 0.57 

D7-10His ~66 63.4 1.82 14.20 0.57 
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Appendix Figure 11: Sequence alignment of CI-MPR domains 9-12 from placental mammals (human, cow, 

mouse, rat), marsupial mammals (wallaby), monotreme mammals (opossum, echidna), platypus, birds 

(Chicken) and fish (zebrafish). Histidine residues in the His-Pro pocket are coloured red, while proline residues 

coloured blue. 
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8.5.  Chapter 4: The full extracellular region of CI-MPR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Table 8: Analytical SEC of D1-15 using a Superdex 200 10/300 column reveals D1-15 to be 

dimeric. A summary of results for each calibrant and glycosylated D1-15 (red).  

 

8.6.  Chapter 5: Engineering a synthetic lectin 

Spectra: AB3 

 

AB3 

Man 

AB3 

M6P 

AB3  AB3  

pH: 6.5 6.5 6.5 6 7 

Residues: M1508 M1508 M1508 M1508 M1508 

K1509 K1509 K1509 K1509 K1509 

S1510 S1510 S1510 S1510 S1510 

P1521 C1516 D1514 P1521 H1513 

P1560 P1521 C1516 P1560 D1515 

P1561 G1537 P1521 P1561 N1520 

P1597 Y1542 A1536 P1597 P1521 

P1599 G1554 G1537 P1599 S1522 

P1616 P1560 Y1542 P1616 R1535 

P1620 P1561 V1548 P1620 S1545 

P1624 G1595 G1554 P1624 G1554 

P1643 S1596 P1560 P1643 P1560 

P1648 C1598 P1561 P1648 P1561 

 P1597 P1597  Q1569 

 P1599 P1599  P1597 

 K1601 K1601  S1602 

 R1615 S1605  G1603 

 P1616 P1616  P1616 

 P1620 P1620  P1620 

 P1624 P1624  T1621 

 M1625 S1628  P1624 

 L1626 T1633  P1643 

 T1633 H1641  P1648 

 P1643 P1643   

 P1648 L1644   

  P1648   

Percentage 

unassigned 

(%): 

 

0 

 

9 

 

9 

 

0 

 

8 

Appendix Table 9: Residues of AB3 unassigned by 1H-15N HSQC.  Unless otherwise stated 10 mM sugar was 

added to ~100 M protein. The percentage of unassigned residues does not include proline residues (highlighted 

orange) and the three N-terminal residues M1508-S1510 (highlighted blue) that are not visible in any of the HSQC 

experiments. Residues that are mutated from D11WT are coloured red. 

Sample Mw 

(kDa) 

Mwapp 

(kDa) 

Log10Mw Ve (ml) Kav 

Blue dextran 2000 - 3.73 7.07 0.00 

Beta amylase 200 225.5 2.35 12.16 0.30 

ADH 150 137.1 2.14 12.96 0.35 

BSA monomer 66 57.4 1.76 13.76 0.40 

Conalbumin 75 72.7 1.86 13.98 0.41 

Ovalbumin 44 52.6 1.72 14.50 0.44 

Carbonic anhydrase 29 27.2 1.43 15.46 0.50 

Cytochrome C 12 12.7 1.10 16.79 0.57 

D1-15 ~250 506.2 2.70 10.86 0.22 
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Spectra: PK PK 

Glc 

PK 

M6P 

pH:    

Residues: M1508 M1508 M1508 

K1509 K1509 K1509 

S1510 S1510 S1510 

D1515 D1515 D1515 

D1516 D1516 D1516 

V1518 V1518 V1518 

P1521 P1521 P1521 

L1532 L1532 L1526 

R1535 R1535 L1532 

A1536 A1536 R1535 

G1537 G1537 A1536 

Y1542 Y1542 G1537 

S1543 S1543 Y1542 

V1548 V1548 S1543 

G1554 G1554 S1545 

N1556 N1556 V1548 

P1560 P1560 G1554 

P1561 P1561 N1556 

G1568 G1568 P1560 

T1570 T1570 P1561 

S1573 S1573 G1568 

K1576 K1576 T1570 

V1587 K1593 S1573 

K1593 S1596 K1576 

S1596 P1597 V1587 

P1597 L1602 K1593 

L1602 P1614 S1596 

P1614 A1616 P1597 

A1616 P1618 L1602 

P1618 P1622 P1614 

P1622 L1624 A1616 

L1624 I1625 P1618 

I1625 S1626 P1622 

S1626 E1627 L1624 

E1627 D1628 I1625 

D1628 E1629 S1626 

E1629 T1631 E1627 

T1631 Y1634 D1628 

Y1634 P1641 E1629 

P1641 P1646 T1631 

P1646  Y1634 

  P1641 

  P1646 

Percentage 

unassigned 

(%): 

 

21 

 

20 

 

22 

Appendix Table 10: Residues of PK unassigned by 1H-15N HSQC. Unless otherwise stated 10 mM sugar was 

added to ~100 M protein. The percentage of unassigned residues does not include proline residues (highlighted 

orange) and the three N-terminal residues M1508-S1510 (highlighted blue) that are not visible in any of the HSQC 

experiments. Residues that are mutated from D11WT are coloured red. 
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Spectra: PK1G PK1G 

Man 

PK1G 

Glc 

PK1G  

10 mM M6P 

PK1G  

50 mM M6P 

pH: 8.5 8.5 8.5 8.5 8.5 

Residues: M1508 M1508 M1508 M1508 M1508 

K1509 K1509 K1509 K1509 K1509 

S1510 S1510 S1510 S1510 S1510 

E1512 E1512 E1512 E1512 E1512 

P1521 P1521 D1515 D1515 H1513 

R1535 S1522 P1521 P1521 D1515 

A1536 H1525 S1522 H1525 C1516 

A1541 R1535 F1527 R1535 T1519 

Y1542 A1536 R1535 A1536 D1520 

G1546 A1541 A1536 A1541 P1521 

P1560 Y1542 A1541 Y1542 R1535 

P1561 G1546 Y1542 G1546 A1536 

Q1567 P1560 S1545 Y1549 A1541 

G1568 P1561 G1546 P1560 Y1542 

Q1569 Q1567 P1560 P1561 G1546 

T1570 G1568 P1561 Q1567 P1560 

S1573 Q1569 Q1567 G1568 P1561 

Q1586 T1570 G1568 Q1569 Q1567 

L1588 S1573 Q1569 T1570 G1568 

P1597 V1574 T1570 S1573 Q1569 

G1599 Q1586 S1573 V1574 T1570 

S1600 L1588 V1574 Q1586 S1573 

G1601 S1596 Q1586 L1588 V1574 

S1603 P1597 L1588 P1597 Q1586 

F1610 G1599 S1596 G1599 L1588 

P1614 S1600 P1597 S1600 P1597 

A1616 G1601 G1599 G1601 G1599 

G1617 S1603 S1600 S1603 S1600 

P1618 F1610 G1601 F1610 G1601 

E1619 P1614 S1603 P1614 S1603 

P1622 A1616 F1610 A1616 F1610 

T1623 G1617 P1614 G1617 P1614 

E1627 P1618 A1616 P1618 A1616 

Y1634 E1619 G1617 E1619 G1617 

P1641 N1620 P1618 P1622 P1618 

E1645 G1621 E1619 T1623 E1619 

P1646 P1622 N1620 E1627 T1623 

 T1623 P1622 Y1634 E1627 

 E1627 T1623 P1641 D1632 

 Y1634 E1627 E1645 Y1634 

 P1641 P1641 P1646 P1641 

 E1645 Y1634  P1646 

 P1646 E1645   

  P1646   

Percentage 

unassigned 

(%): 

 

18 

 

23 

 

24 

 

21 

 

23 

Appendix Table 11: Residues of D11 PK1G unassigned by 1H-15N HSQC. Unless otherwise stated 10 mM 

sugar was added to ~100 M protein. The percentage of unassigned residues does not include proline residues 

(highlighted orange). Residues that are mutated from D11WT are coloured red. 
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Spectra: PK1H 

 

PK1H 

M6P 

PK1H 

 

PK1H 

Man 

PK1H 

M6P 

pH:  8.5 8.5 6.5 6.5 6.5 

Residues: M1508 M1508 M1508 M1508 M1508 

K1509 K1509 K1509 K1509 K1509 

S1510 S1510 S1510 S1510 S1510 

P1521 N1511 P1521 C1516 T1519 

G1546 P1521 G1554 P1521 N1520 

V1547 V1547 P1560 G1554 P1521 

P1650 P1560 P1561 P1560 F1527 

P1651 P1561 Q1569 P1561 V1547 

F1567 F1567 S1596 Q1569 P1560 

G1568 K1576 P1597 S1596 P1561 

T1570 D1585 C1598 P1597 Q1569 

K1576 P1597 H1599 C1598 S1596 

D1585 H1599 G1601 H1599 P1597 

P1597 S1600 V1607 G1601 C1598 

H1599 G1601 P1614 S1603 H1599 

S1600 S1603 A1616 V1607 G1601 

G1601 R1604 P1618 P1614 S1603 

S1603 P1614 P1622 A1616 P1614 

R1604 P1618 N1620 N1620 A1616 

P1614 E1619 I1625 P1618 P1618 

A1616 N1620 E1627 P1622 P1622 

G1617 P1622 Y1634 I1625 I1625 

P1618 S1626 F1635 E1627 E1627 

E1619 E1627 P1641 Y1634 T1633 

N1620 K1629 P1646 F1635 Y1634 

P1622 T1633  P1641 F1635 

S1626 Y1634  P1646 P1641 

E1627 P1641   P1646 

 K1629 E1645    

 T1633 P1646    

 Y1634     

 P1641     

 E1645     

 P1646     

Percentage 

unassigned 

(%): 

 

16 

 

13 

 

10 

 

11 

 

12 

Appendix Table 12: Residues of D11 PK1H unassigned by 1H-15N HSQC. Unless otherwise stated 10 mM 

sugar was added to ~100 M protein. The percentage of unassigned residues does not include proline residues 

(highlighted orange). Residues that are mutated from D11WT are coloured red. 
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Spectra: PK2H 

 

PK2H 

Man 

PK2H 

M6P 

pH: 6.5 6.5 6.5 

Residues: M1508 M1508 M1508 

K1509 K1509 K1509 

S1510 S1510 S1510 

D1515 D1515 D1515 

C1516 P1521 C1516 

P1521 R1535 P1521 

R1535 A1536 R1535 

A1536 Y1542 A1536 

Y1542 G1554 Y1542 

G1554 P1560 G1554 

P1560 P1561 P1560 

P1561 C1566 P1561 

C1566 Q1567 C1566 

Q1567 Q1569 Q1567 

T1570 T1570 E1569 

P1597 S1596 T1570 

H1600 P1597 S1596 

P1614 H1600 P1597 

P1618 G1601 H1600 

P1622 P1614 P1614 

I1625 P1618 P1618 

E1627 P1622 P1622 

Y1634 I1625 I1625 

F1635 E1627 E1629 

P1641 Y1634 E1627 

P1646 F1635 Y1634 

 P1641 F1635 

 P1646 P1641 

  P1646 

Percentage 

unassigned 

(%): 

 

11 

 

 

12 

 

13 

Appendix Table 13: Residues of D11 PK1G unassigned by 1H-15N HSQC. Unless otherwise stated 10 mM 

sugar was added to ~100 M protein. The percentage of unassigned residues does not include proline residues 

(highlighted orange). Residues that are mutated from D11WT are coloured red. 
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Spectra: AB3 

Man 

AB3 

M6P 

AB3 

pH 
PK 

Glc 

PK 

M6P 

pH: 6.5 6.5 6-7 8.5 8.5 

Residues 

(CSP, 

ppm): 

N1520 

(0.26) 

E1617 

(0.33) 

L1526 

(2.61) 

F1635 

(0.37) 

H1525 

(0.27) 

K1579 

(0.17) 

F1567 

(0.31) 

H1525 

(1.44) 

Q1517 

(0.32) 

F1635 

(0.23) 

D1630 

(0.16) 

E1647 

(0.30) 

E1647 

(1.42) 

K1605 

(0.23) 

E1645 

(0.23) 

D1514 

(0.07) 

N1520 

(0.30) 

C1516 

(1.32) 

T1519 

(0.22) 

T1519 

(0.22) 

K1544 

(0.07) 

T1519 

(0.29) 

S1531 

(0.98) 

R1580 

(0.20) 

C1632 

(0.16) 

I1572 

(0.06) 

H1525 

(0.28) 

M1625 

(0.83) 

L1581 

(0.19) 

E1557 

(0.13) 

V1518 

(0.06) 

L1526 

(0.28) 

Q1586 

(0.74) 

K1544 

(0.18) 

S1608 

(0.11) 

N1556 

(0.06) 

H1513 

(0.27) 

C1553 

(0.64) 

L1588 

(0.17) 

R1580 

(0.10) 

G1603 

(0.05) 

V1613 

(0.21) 

L1581 

(0.58) 

L1529 

(0.17) 

Q1589 

(0.09) 

E1647 

(0.05) 

A1618 

(0.18) 

S1543 

(0.56) 

M1623 

(0.17) 

S1605 

(0.09) 

Appendix Table 14: Residues of D11 AB3 and PK that gave the 10 largest CSPs upon addition of 100-fold 

excess mannose, M6P, glucose or change in pH (pH 6-7). Mutated residues are coloured red. 

 

Spectra: PK1G 

Man 

PK1G 

Glc 

PK1G 

10 mM 

M6P 

PK1G 

50 mM 

M6P 

PK1H  

50 mM 

M6P 

PK1H 

Man 

PK1H 

M6P 

PK2H 

Man 

PK2H 

M6P 

pH: 8.5 8.5 8.5 8.5 8.5 6.5 6.5 6.5 6.5 

Residues 

(CSP, 

ppm): 

R1613 

(0.15) 

Q1630 

(0.14) 

N1511 

(1.06) 

L1526 

(3.32) 

L1526 

(3.67) 

L1526 

(0.44) 

L1526 

(0.91) 

L1526 

(0.88) 

L1526 

(1.19) 

V1548 

(0.15) 

H1525 

(0.14) 

T1633 

(1.03) 

V1587 

(1.36) 

R1535 

(1.28) 

K1544 

(0.37)  

V1611 

(0.55) 

H1525 

(0.55) 

H1525 

(0.77) 

D1515 

(0.12) 

L1624 

(0.09) 

S1522 

(0.81) 

V1611 

(1.23) 

C1516 

(0.91) 

S1626 

(0.26) 

G1568 

(0.49) 

E1645 

(0.51) 

E1645 

(0.65) 

C1516 

(0.12) 

C1516 

(0.09) 

N1620 

(0.55) 

S1596 

(0.78) 

T1631 

(0.74) 

D1515 

(0.24) 

E1645 

(0.44) 

V1607 

(0.46) 

T1519 

(0.55) 

S1609 

(0.10) 

R1613 

(0.08) 

L1526 

(0.54) 

F1527 

(0.75) 

W1638 

(0.57) 

R1571 

(0.22) 

K1544 

(0.42) 

L1581 

(0.39) 

V1611 

(0.53) 

L1624 

(0.09) 

V1548 

(0.07) 

N1578 

(0.40) 

C1553 

(0.59) 

L1588 

(0.57) 

S1551 

(0.20) 

S1626 

(0.29) 

V1584 

(0.37) 

R1580 

(0.49) 

D1585 

(0.09) 

V1584 

(0.07) 

N1520 

(0.35) 

S1545 

(0.55) 

Q1586 

(0.51) 

Y1583 

(0.19) 

H1525 

(0.25) 

T1519 

(0.29) 

K1544 

(0.45) 

K1579 

(0.08) 

T1569 

(0.06) 

V1587 

(0.33) 

Q1630 

(0.47) 

Q1589 

(0.46) 

M1550 

(0.19) 

D1515 

(0.23) 

R1580 

(0.29) 

K1605 

(0.45) 

R1571 

(0.08) 

N1511 

(0.06) 

F1635 

(0.26) 

N1511 

(0.40) 

S1545 

(0.44) 

V1584 

(0.19) 

V1563 

(0.211) 

C1553 

(0.27) 

W1638 

(0.41) 

Q1630  

(0.07) 

V1611 

(0.06) 

C1516 

(0.25) 

H1639 

(0.39) 

F1610 

(0.41) 

V1563 

(0.19) 

T1640 

(0.17) 

R1613 

(0.27) 

V1584 

(0.40) 

Appendix Table 15: Residues of D11 FG loop mutants (PK1G, PK1H and PK2H) that gave the 10 

largest CSPs upon addition of mannose, glucose or M6P. Mutated residues are coloured red. 
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pH Tris  (ppm) Log 

pH 

Value 

X 

Calc log 

pH 

Calc 

pH 

Difference 

9.4 3.55 0.97 -0.72 0.98 9.56 -0.16 

8.8 3.58 0.94 -0.71 0.94 8.79 0.01 

8.4 3.59 0.92 -0.71 0.92 8.32 0.08 

8.2 3.60 0.91 -0.71 0.91 8.19 0.01 

8.0 3.60 0.90 -0.70 0.91 8.07 -0.07 

7.8 3.62 0.89 -0.70 0.89 7.78 0.02 

7.4 3.64 0.87 -0.69 0.86 7.32 0.08 

7.0 3.66 0.85 -0.69 0.84 6.89 0.11 

6.4 3.69 0.97 -0.72 0.98 9.56 -0.16 

6.2 3.69 0.79 -0.68 0.79 6.24 -0.04 

6.0 3.70 0.78 -0.68 0.79 6.13 -0.13 

Appendix Figure 12: Generation of a pH calibration curve using the chemical shifts of Tris. Top: 1D 1H-

NMR spectra of Tris at pH 6.0-9.4. Inset shows the calibration curve. Bottom: Table of values used to calculate 

pH. Value X was calculated using the equation: (-lowest pH)/ (highest pH-lowest pH) whereby the highest pH 

measured was 9.7 and the lowest pH 5.0. The difference between expected and calculated pH values are colour 

coded such that differences < 0.1 are green, >0.1 red. 
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Sample Expected 

pH 
Tris  

(ppm) 

Log 

pH 

Value 

X 

Calc log 

pH 

Calc 

pH 

Difference pH 

change 

AB3 6.5 3.67 0.81 -0.69 0.82 6.67 0.17 NA 

AB3 Man 6.5 3.69 0.81 -0.68 0.80 6.29 -0.21 -0.38 

AB3 10 mM M6P 6.5 3.70 0.81 -0.68 0.79 6.11 -0.39 -0.56 

AB3 20 mM M6P 6.5 3.70 0.81 -0.68 0.79 6.11 -0.39 -0.56 

PK 8.5 3.54 0.93 -0.72 0.99 9.73 +1.23 NA 

PK 10 mM Glc 8.5 3.54 0.93 -0.72 0.99 9.73 +1.23 0.00 

PK 10 mM M6P 8.5 3.56 0.93 -0.72 0.96 9.18 +0.68 -0.55 

PK1G 8.5 3.60 0.93 -0.71 0.91 8.17  -0.33 NA 

PK1G 10 mM Man 8.5 3.60 0.93 -0.71 0.91 8.17 -0.33 0.00 

PK1G 10 mM Glc 8.5 3.60 0.93 -0.71 0.91 8.15 -0.35 -0.02 

PK1G 10 mM M6P 8.5 3.63 0.93 -0.70 0.88 7.60 -0.90 -0.57 

PK1G 50 mM M6P 8.5 3.63 0.93 -0.70 0.88 7.60 -0.90 -0.57 

PK1H 8.5 3.56 0.93 -0.72 0.97 9.29 +0.79 NA 

PK1H 50 mM M6P 8.5 3.58 0.93 -0.71 0.94 8.74 +0.24 -0.56 

PK1H 6.7 3.66 0.81 -0.69 0.84 6.86 +0.17 NA 

PK1H 10 mM Man 6.7 3.66 0.81 -0.69 0.84 6.86 +0.17 0.00 

PK1H 10 mM M6P 6.7 3.69 0.81 -0.69 0.80 6.29 -0.41 -0.57 

PK2H 6.5 3.67 0.81 -0.69 0.82 6.67 +0.17 NA 

PK2H 10 mM Man 6.5 3.69 0.81 -0.68 0.80 6.29 -0.21 -0.38 

PK2H 10 mM M6P 6.5 3.70 0.81 -0.68 0.79 6.11 -0.39 -0.56 

Appendix Table 16: Calculated pH values of AB3 NMR samples. The difference column is the difference 

between expected and calculated pH values and is colour coded such that differences < 0.5 are green, >0.5 orange 

and >1.0 red. The pH change column is the pH change upon addition of sugar and is coloured such that changes 

<0.5 are coloured blue and changes >0.5 are coloured purple. 
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Appendix Figure 13: Purification and characterisation of D11 FG loop mutants PK1G and PK1H. A: 

SEC of D11 PK1G in vitro refold. The peak marked with a cross corresponds to folded, purified D11. B: ESI-

MS of D11 PK1G. The expected molecular weight, assuming cysteines reduced is 15,194 Da, the observed 

molecular weight is 15,198 Da. C: 1D 1H-NMR of D11 PK1G confirms the protein is folded. D: SEC of D11 

PK1H in vitro refold. The peak marked with a cross corresponds to folded, purified D11. E: ESI-MS of D11 

PK1H. The expected molecular weight, assuming cysteines reduced and 100 % 15N incorporation is 15,463 Da, 

observed molecular weight 15,449 Da. This corresponds to 93 % 15N incorporation. F: 1D 1H-NMR of D11 

PK1H confirms protein folding.  
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Appendix Figure 14: Purification and characterisation of D11 FG loop mutants PK2G and PK2H. A: 

SEC of D11 PK2G in vitro refold. The peak marked with a cross corresponds to folded, purified D11. B: ESI-

MS of D11 PK2G. The expected molecular weight, assuming cysteines reduced and 100 % 15N incorporation 

is 15,381 Da, the observed molecular weight 15,368 Da. This corresponds to 93 % 15N incorporation. C: 1D 1H-

NMR of D11 PK2G confirms the protein is folded. D: SEC of D11 PK2H in vitro refold. The peak marked 

with a cross corresponds to folded, purified D11. E: ESI-MS of D11 PK2H. The expected molecular weight, 

assuming cysteines reduced and 100 % 15N incorporation is 15,463 Da, observed molecular weight 15,445 Da. 

This corresponds to 90 % 15N incorporation. F: 1D 1H-NMR of D11 PK2H confirms protein folding. 
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Appendix Table 17: Data collection and refinement statistics for D11 mutants PK, PK1G and PK1H 

crystal structures. Values in parentheses are for the outer resolution shell. The structure of PK (including 

crystallisation, data collection, phasing and refinement) was determined by Dr Chris Williams (Crump group). 

 

  

Construct PK PK1G PK1H 

Data collection 

Space group C121 C121 P1211 

Unit cell    

a, b, c (Å) 150.2, 49.2, 214.9 144.4, 48.8, 214.0 48.3, 82.9, 93.8 

   (o) 90, 105, 90 90, 106, 90 90, 90, 90 

X-ray wavelength (Å) 0.98 0.98 0.97 

Resolution range (Å) 68.21-2.37 

(2.46-2.37) 

46.07-2.77 

(2.87-2.77) 

42.37-2.53 

(2.62-2.53) 

Total reflections 125063 (12398) 241364 (19278) 145012 (14222) 

Unique reflections 62588 (6228) 37254 (3692) 25300 (2482) 

Multiplicity 2.0 (2.0) 6.5 (5.2) 5.7 (5.7) 

Completeness (%) 98.4 (94.6) 99.3 (98.5) 99.4 (98.7) 

Rmeas 0.11 (1.94) 0.20 (1.44) 0.13 (0.34) 

Mean I/σ (I) 10.1 (0.9) 5.9 (1.2) 9.3 (5.8) 

Wilson B-factor (Å2) 44.51 57.62 23.40 

CC ½ 0.998 (0.488) 0.994 (0.733) 0.998 (0.989) 

Refinement 

Reflections used in refinement 61567 (5897) 37104 (3672) 25204 (2478) 

Rwork (%) 24.0 (41.0) 26.3 (45.6) 25.3 (31.6) 

Rfree (%) 27.1 (43.5) 30.6 (56.8) 28.0 (31.8) 

Root mean squared deviation    

Bond lengths (Å) 0.009 0.017 0.013 

Bond angles (o) 1.34 2.60 1.86 

Ramachandran plot (%)    

Favoured 96.8 93.5 93.5 

Allowed 2.8 4.4 4.9 

Outliers 0.4 2.1 1.6 

Average B-factor (Å2) 69.03 98.15 13.45 

Protein 69.39 98.26 13.04 

Ligand/ glycan 44.77 56.98 23.81 
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