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Enhancing Pantograph-Catenary Dynamic Performance Using an 

Inertance-integrated Damping System 

Abstract 

For modern electrical rail systems, the pantograph-catenary dynamic performance is one 

of the most critical challenges. Too much fluctuation in contact forces leads to either 

accelerated wear of the contacting components or losses of contact and, consequently, 

arcing. In this work, inertance-integrated pantograph damping systems are investigated 

with the objective of reducing the contact force standard deviation. Firstly, a multibody 

pantograph model is developed with its accuracy compared with experimental data. The 

model is improved through the calibration of the pantograph head suspension parameters 

and the introduction of both non-ideal joint and flexibility effects. Using the calibrated 

model, beneficial inertance-integrated damping systems are identified for the pantograph 

suspension. The results show that the configuration with one inerter provides the best 

performance among other candidate layouts and contends a 40% reduction of the 

maximum standard deviation of the contact force over the whole operating speed range 

in the numerical modelling scenario analysed. Considering the identified configuration, 

time-domain analysis and modal analysis are investigated. It has been shown that the 

achieved improvement is due to the fact that with the beneficial inertance-integrated 

damping system, the first resonance frequency of the pantograph system coincides with 

the natural frequency of the catenary system. 

Keywords: Pantograph-Catenary System, Dynamic Performance, Inerter, Multibody 

Dynamics, Damping System Design 

Subject classification codes:  

1. Introduction 

High-speed trains are becoming one of the most sought after transportation modes due to their 

high travelling speed, reliability, convenience and low carbon emissions. Modern high-speed 

trains are driven by electricity transmitted from the catenary, which is generally achieved by 

the contact between the power receiving device, the pantograph, and the contact wires of the 

catenary. The pantograph-catenary system is the most practical and economic way to 

electrically power high-speed trains. However, it depends on reliable contact between the 

pantograph head and the contact wire. According to statistics consolidated over Europe, an 

average of over one million minutes of delay each year are linked to problems with the 

pantograph-catenary interface [1]. Reliable power transmission is one of the key challenges in 

ensuring efficient operation and one of the most critical factors that restrict the maximum 
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commercial operating speed of high-speed trains [2]. As operating speed increases, the 

vibrations of the pantograph-catenary system generally become stronger. Such vibrations 

deteriorate the power transmission, leading to contact losses with consequent arcing and 

accelerated wear of the contact components [3, 4]. Better pantograph-catenary contact 

dynamics is therefore critical for improving the transport operation efficiency and system 

reliability in the design of the next generation of trains and overhead system. 

To study the pantograph-catenary interaction, Wu and Brennan [5] simplified the 

pantograph-catenary system as a time-varying single degree-of-freedom (DOF) lumped mass 

model and investigated the basic analytical dynamic performance. Pisano and Usai [6] used a 

simplified time-varying 1DOF lumped mass catenary model coupled with a 2DOF lumped mass 

pantograph model. Facchinetti et al. [7] developed a hardware-in-the-loop procedure based on 

a real-time catenary model to reproduce the realistic behaviour of the pantograph-catenary 

system. A fully three-dimensional interaction methodology is also developed based on the finite 

element method (FEM), for the catenary [8], and multibody dynamics methods, for the 

pantograph [9-11], integrated via an efficient co-simulation procedure [12, 13]. Other authors 

also devoted their attention to studying how pantograph-catenary performance is affected by 

service conditions such as contact wire irregularities [14-16], aerodynamic loads [17-19], wear 

[20, 21], multiple pantographs operations [22, 23] and track irregularities [24]. The effect of 

train excitations on the pantograph-catenary dynamics is also evaluated in the literature [25， 

26]. 

However, the focus of the above studies was mainly on the modelling and simulation, 

rather than dynamic performance optimisation. Park et al. [27] and Kim et al. [28] each 

investigated the parameter sensitivity of a FEM catenary coupled with a 3DOF lumped mass 

pantograph model and optimised the key design parameters. Zhou and Zhang [29] discussed 

the influence of the design parameters on the contact force and optimised the model parameters 

using a FEM catenary model coupled with a lumped mass pantograph model. Ambrósio et al. 

[10] also minimised the standard deviation of the contact force with a 3DOF lumped mass 

pantograph model. While these lumped mass models captured the behaviour well, the model 

parameters do not link conveniently to the physical characteristics of the pantograph. This 

means that, with this type of model, it is a challenge to know how the vibration suppression 

elements of the pantograph system might be altered to improve the overall system performance. 

Separately, the inerter has been proposed as an element that can be used, alongside 

dampers and springs, to enhance the passive vibration suppression performance of systems. The 

inerter [30] is an ideal mechanical element with two terminals having the property that the 

generated force is proportional to the acceleration of its length. This completes the analogy 

between mechanical and electrical systems by providing the mechanical equivalence to a 

capacitor [31]. With the introduction of the inerter, all positive-real immittance functions can 

be realised by passive networks consisting of inerters, dampers and springs. Performance 

benefits from employing inerters have been identified for various mechanical systems, 

including motorcycle steering systems [32], passenger vehicle suspensions [33, 34], train 

suspensions [35-37], buildings [38-40], landing gear [41], wind turbines [42] and cables [43]. 

The main aim of the work presented in this article is to explore the potential benefits of 

extending the successful employment of inerters onto pantograph design. In this sense, a 

multibody pantograph model is developed with its accuracy enhanced based on existing 

literature. Consequently, the benefits of inertance-integrated damping systems on the dynamic 

performance of the pantograph-catenary system are investigated. This is done by considering 

various suppression system layouts using the structure-based method [44] applying to a 

multibody pantograph model. The standard deviation of the contact force, as one of the most 

important metrics of pantograph-catenary dynamics, is aimed to be reduced using the inertance-

integrated damping configurations. 
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This paper is structured as follows. In Section 2, a multibody pantograph model is 

assessed against published experimental data with the limitations of the model discussed. In 

Section 3, the multibody model is further enhanced to better match the experimental data. 

Subsequently, in Section 4, beneficial inertance-integrated damping configurations are 

identified, with performance advantages presented and discussed. Conclusions and further 

developments are drawn in Section 5. 

2. Development and assessment of a pantograph model 

In this section, a simplified multibody pantograph model is developed with its accuracy 

compared with experimental data. Some discrepancies between the responses of the original 

model and the experimental data can be observed. The sources of the observed discrepancies 

are further discussed based on the mode shape analysis. 

2.1. A multibody pantograph model and comparison with experimental data 

A realistic 3D pantograph multibody model was developed by Ambrósio et al. [9, 17]. In [45], 

the parameters of this pantograph multibody model were optimised to fit its response better 

with the experimental data. Note that because this paper is a first conceptual study to investigate 

the benefits of the integrated-damping systems on pantographs and more advanced and detailed 

analyses will follow after the benefits are presented, a simplified pantograph model is 

considered in this work. It should also be noted that the main interest of this work is the contact 

forces between the pantograph and catenary, which occur in the vertical direction. Therefore, 

the 3D multibody model in the reference can be reduced to a 2D multibody model, which 

consists of 7 rigid bodies as shown in Figure 1, along with an actuator as used in the experiments 

[45]. In [9, 45], the local 3D coordinates are denoted as [𝜉𝑖, 𝜂𝑖, 𝜁𝑖] where the subscript indicates 

the name of the body. In this work, the 2D coordinates, [𝜉𝑖, 𝜁𝑖], which form the vertical plane, 

are abstracted from the original 3D coordinates in [9, 45] to establish the simplified multibody 

pantograph model here. The basic equations of motion of the model are explained in Appendix 

1. All the parameter values of the original model are detailed in [9, 45]. In this work, rotation 

of the head is constrained and the head links to the stability arm by a prismatic joint which 

permits only vertical translational motion with respect to the top of the stability arm. The base 

suspension between point b and point d, modelled by spring 𝑘1 and damper 𝑐1 in parallel, and 

the head suspension between the head and the top of the stability arm, modelled by spring 𝑘2 

and damper 𝑐2 in parallel, are applied in the pantograph system for vibration suppression, see 

Figure 1. A static actuator force 𝑓𝑎 = 10 kN is applied between point c and point d to provide 

the uplift force to the pantograph, see Figure 1.  
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Figure 1. Diagram of the simplified multibody pantograph model, excitation and 

measurement points. 

A series of physical dynamic tests of the pantograph have been carried out [7, 46]. A 

sequence of sinusoidal displacement excitations with 1 mm amplitude from 0 Hz to 20 Hz were 

applied on the head via the actuator shown in Figure 1.  In [45], the frequency response 

functions (FRFs) of the measurement points are defined as 

FRF𝑖(𝑓) =
fft(𝑎𝑖(𝑡), 𝑓)

fft(𝑝𝑐(𝑡), 𝑓)
, 𝑖 ∈ {𝑃, 𝐸, 𝐵}, 𝑓 ∈ (0 Hz , 20 Hz] (1) 

where 𝑎𝑖(𝑡) and 𝑝𝑐(𝑡) are the vertical acceleration of the measurement point 𝑖 (as shown in 

Figure 1, pantograph head, top of the upper arm, and top of the lower arm) and the contact force 

applied on the pantograph head at each individual excitation frequency 𝑓, respectively, and 

fft(∙) is the Fourier transform at each corresponding individual excitation frequency 𝑓 . The 

experimental FRF data is available in [45] and is shown as the solid lines in Figure 2. The same 

excitations have also been applied to the original numerical model in [9, 45], with the three 

FRF curves also included in Figure 2. Note that it has been checked that the developed 2D 

model has a very similar response compared with the original 3D model for all three 

measurement points. It is clear from Figure 2 that some discrepancies exist between simulation 

and experimental curves. Firstly, the frequencies of the first peaks (indicated with number 1) in 

the model are too low, while their amplitudes are too high, relative to the corresponding 

experimental peaks. Secondly, the amplitudes of the second peaks (indicated with number 2), 

are much higher for the original numerical model than for the experiments. Thirdly, there are 

peaks around 11 Hz (indicated with number 3) in the experimental data, which are not predicted 

using the original numerical model. There are also discrepancies in terms of the predicted phase 

when compared with the experimental data (Figure 2(b)). It is noted that the phases of the FRFs 

for the upper and lower arms are identical for the original model. This is because they belong 

to one linkage mechanism (formed by 4-bar mechanisms ABCD and BEFG, respectively, with 

BG in common), which hence share the same degree of freedom. 
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Figure 2. Comparison of the FRF, (a) amplitudes and (b) phases, between the original 

numerical multibody model and the experimental data taken from [45]. 

2.2. Analysis of the sources for the observed discrepancies 

Basic mode shape analysis is considered here to find out the sources for the observed 

discrepancies.  The original multibody model consists of 7 rigid bodies and has 2 DOFs in total. 

These are the head’s relative vertical motion with respect to the top of the stability arm and the 

motion of the pantograph frame which is a mechanism with only 1 DOF. This explains why 

only two resonances are observed in the response spectra of the original numerical model 

(Figure 2). Considering the experimental FRFs, first resonance exhibits almost the same 

amplitudes of response for the head and top of the upper arm, with the lower arm response 

being about half of this, which is determined by the pantograph frame kinematics. Also, all 

three measurement points keep in-phase with each other in the frequency range of the first peak. 

These observations indicate that the first mode is dominated by pantograph frame mechanism 

motion with little contribution from the head. For the second peak of the experimental FRFs, 

the amplitudes of the top point of the upper arm and the lower arm are similar, while the 

amplitude of the head motion is significantly larger. For the phases, the head is almost in anti-

phase with the other two measurement points. These observations of the second peak mean that 

this mode is dominated by the motion between the head and the top point of the upper arm. The 

mode shapes of the first two modes are sketched in Figure 3.  

 

Figure 3. Sketches of the first two mode shapes of the pantograph. 

The above mode shape analysis suggests that, for the original numerical multibody 

model, the reason why the frequencies of the first peaks are significantly lower while their 

amplitudes are higher than the corresponding experimental ones is that the stiffness and 
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damping of the pantograph frame mechanism are both underestimated. We hypothesise that this 

may be due to assuming that the arm joints are ideal, exhibiting no damping or stiffness [47]. 

Similarly, it is suggested that the higher amplitudes of the original numerical model’s second 

peaks compared with the experimental ones, especially for the pantograph head, are because 

the damping of the head suspension is underestimated. In addition to the first two rigid body 

modes in the experimental FRFs, there are additional peaks around 11 Hz. This indicates that 

an additional DOF is needed in the numerical model, which could arise from a flexibility effect 

[11]. The phase gap of around 180 degrees, i.e., anti-phase, between the top of the upper arm 

and lower arm for high frequencies in the experimental FRFs in Figure 2(b), also indicate there 

is a flexibility effect.  

3. Improvement of the multibody pantograph model 

Based on the analysis in Section 2.2, in this section, the pantograph model is improved to better 

match the experimental data, to give a reference model to use for optimisation of the lower 

suspension system in the following section. Firstly, parameter values of the head suspension 

are identified using the experimental FRF data. Then a non-ideal joint is introduced, using a 

rotational spring and damper in parallel at joint B. An additional DOFs are also added to 

approximately model the flexibility of the arms.  

3.1.  Identification of the head suspension parameters 

Using the experimental FRFs, the head suspension parameters are identified in this sub-section. 

A sub-system of the pantograph in Figure 1, consisting of the pantograph head, suspension 𝑘2,  

𝑐2, and the top of the stability arm is presented in Figure 4. 

 

Figure 4. The simplified model of the head suspension system. 

The equation of motion of the head is 

𝑚𝐻𝑥̈𝐻(𝑡) + (𝑥̇𝐻(𝑡) − 𝑥̇𝐸(𝑡))𝑐2 + (𝑥𝐻(𝑡) − 𝑥𝐸(𝑡))𝑘2 + 𝑝𝑐(𝑡) = 0 (2)

where 𝑚𝐻 is the mass of the head, 𝑥𝐻(𝑡) and 𝑥𝐸(𝑡) are the time history of displacements of the 

head and the top of the upper arm, respectively. Eq. (2) can be transferred to the Fourier domain 

as 

𝑚𝐻𝑋𝐻(𝑠)𝑠
2

𝑃𝑐(𝑠)
+ (

𝑋𝐻(𝑠)𝑠

𝑃𝑐(𝑠)
−
𝑋𝐸(𝑠)𝑠

𝑃𝑐(𝑠)
) 𝑐2 + (

𝑋𝐻(𝑠)

𝑃𝑐(𝑠)
−
𝑋𝐸(𝑠)

𝑃𝑐(𝑠)
) 𝑘2 + 1 = 0 (3) 

where 𝑋𝐻(𝑠), 𝑋𝐸(𝑠) and 𝑃𝑐(𝑠) are the displacements of the head and the top of the upper arm 

and the contact force in the Fourier domain and 𝑠 = 2𝜋𝑓j, j = √−1. According to the definition 

of the FRF, FRFH and FRFE can be rewritten as complex numbers as 
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FRFH(𝑓) =
𝑋𝐻(𝑠)𝑠

2

𝑃𝑐(𝑠)
= 𝑎𝐻(𝑓) + 𝑏𝐻(𝑓)j (4) 

FRFE(𝑓) =
𝑋𝐸(𝑠)𝑠

2

𝑃𝑐(𝑠)
= 𝑎𝐸(𝑓) + 𝑏𝐸(𝑓)j (5) 

where 𝑎𝐻 = 𝐴𝐻 cos(𝜃𝐻) , 𝑏𝐻 = 𝐴𝐻 sin(𝜃𝐻) , 𝑎𝐸 = 𝐴𝐸 cos(𝜃𝐸) , 𝑏𝐸 = 𝐴𝐸 sin(𝜃𝐸) . The 

amplitudes, i.e., 𝐴𝐻, 𝐴𝐸 , and phases, i.e., 𝜃𝐻 , 𝜃𝐸 , of the experimental FRFs of the head and top 

of the upper arm are plotted in Figure 2, respectively. Substituting Eq. (4) and Eq. (5) into Eq. 

(3), we can get  

𝑚𝐻(𝑎𝐻 + 𝑏𝐻j) + (
𝑏𝐻−𝑎𝐻j

2𝜋𝑓
−
𝑏𝐸−𝑎𝐸j

2𝜋𝑓
) 𝑐2 + (−

𝑎𝐻+𝑏𝐻j

(2𝜋𝑓)2
+
𝑎𝐸+𝑏𝐸j

(2𝜋𝑓)2
) 𝑘2 + 1 = 0. (6)

Splitting Eq. (6) into its real and imaginary parts gives 

{
real(𝑐2, 𝑘2) = 𝑚𝐻𝑎𝐻 +

𝑏𝐻−𝑏𝐸

2𝜋𝑓
𝑐2 +

−𝑎𝐻+𝑎𝐸

(2𝜋𝑓)2
𝑘2 + 1 = 0

img(𝑐2, 𝑘2) = 𝑚𝐻𝑏𝐻 +
−𝑎𝐻+𝑎𝐸

2𝜋𝑓
𝑐2 +

−𝑏𝐻+𝑏𝐸

(2𝜋𝑓)2
𝑘2 = 0    

. (7)

Assuming mH is known accurately, the values of 𝑐2 and 𝑘2 for each individual frequency at 

which the FRFs are defined, can be obtained by solving Eq. (7). The results are shown in Figure 

5. It is observed that the values of both 𝑐2 and 𝑘2 oscillate dramatically between 0Hz and 4Hz. 

This is because the displacement excitation had the same amplitude of 1 mm (see sub-section 

2.1) for all frequency values, which leads to the contact force being too small at low frequencies 

compared with the noise in the measurement data. To avoid the effect of the noise, the 

experimental data for frequencies from 4Hz to 20Hz, over which the values of 𝑐2 and 𝑘2 are 

quite stable, are applied to find the constant values of 𝑐2 and 𝑘2 that minimise the square error 

function 

𝑔1(𝑐2, 𝑘2) =∑((real(𝑐2, 𝑘2))
2
+ (img(𝑐2, 𝑘2))

2
)

𝑓

, 𝑓 ∈ [4Hz, 20Hz]. (8) 

 

Figure 5. Values of 𝑐2 and 𝑘2 for each individual frequency from the experimental data by 

solving Eq. (7). 
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Figure 6. FRF amplitudes and phases of the (a)(b) head, (c)(d) top of the upper arm and (e)(f) 

top of the lower arm. 

The MATLABTM command patternsearch (Generalized pattern search method [48]) is 

applied to minimise 𝑔1(𝑐2, 𝑘2)  using the original values 𝑐2_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 26 Ns/m  and 

𝑘2_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 7.20 kN/m  [45] as initial estimates. The values that minimise 𝑔1(𝑐2, 𝑘2)  are 

𝑐2 = 65 Ns/m and 𝑘2 = 7.20 kN/m. It is noted that the identified value of 𝑐2 is 2.5 times the 

default damping value while 𝑘2 is the same as the default one, which is consistent with the 

analysis in sub-section 2.2. After modifying 𝑐2, the FRFs of the numerical pantograph model 

are shown as pink dashed lines in Figure 6. The amplitudes of the second peaks for the head 

and the upper arm, in Figure 6(a)&(c), now match with the experimental data curves. The 

amplitude for the lower arm, in Figure 6(e), is now a little lower than that observed 

experimentally, but it is considered less important for the pantograph-catenary interaction than 

the amplitude for the head, where the contact takes place. The discrepancies between the model 

and experimental FRFs for the first and third peaks and in the phases are now addressed in the 

following sub-section.  
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3.2. Identification of the non-ideal joint and flexibility effect 

In sub-section 2.2, the discussion of the mode analysis indicated that the stiffness and damping 

of the pantograph frame mechanism were both underestimated and at least one additional DOF 

is needed in the numerical model, which could arise from a flexibility effect. Therefore, the 

effect of non-ideal mechanical joints and flexibility of the frame are considered here. The non-

ideal mechanical joint effect is modelled using a rotational spring 𝑘𝑓 and damper 𝑐𝑓 in parallel 

at joint B, as shown in Figure 7. It should be noted that only a single spring and single damper 

need be introduced since the rotations of all the joints in the pantograph frame are coupled in a 

mechanism. To capture the higher frequency modes, additional DOFs are required, which are 

introduced by modelling flexibility of the arms. This is achieved by introducing a rotational 

spring in each arm, 𝑘𝑢 and 𝑘𝑙, at point B and point A, respectively. The model parameters of 

rigid bodies resulting from breaking arms can be updated according to their geometrical 

properties. In a sensitivity analysis, it was found that the FRFs are insensitive to the lower arm 

bending stiffness 𝑘𝑙, so for simplicity, its value was set to infinity. Hence, only the bending 

stiffness of the upper arm 𝑘𝑢 is considered in this work, as shown in Figure 7. Its value was 

initially estimated from the arm’s physical properties. As shown in Appendix 2, assuming the 

upper arm is a circular-hollow steel beam with 65 mm outside diameter and wall thickness 4 

mm, its estimated bending stiffness is 𝑘𝑢̃ ≈ 120 kNm/rad. Considering the uncertainty in the 

physical properties of the upper arm, its bending stiffness  𝑘𝑢  was optimised to fit the 

experimental data using  𝑘𝑢 = 𝛼𝑘𝑢̃ where 𝛼 is a coefficient in the range 𝛼 ∈ [0.9,1.1]. The 

parameters 𝑘𝑓 , 𝑐𝑓  and 𝛼  identified simultaneously to minimise the total square FRF error 

between the present model and the experimental data, using the cost function 

𝑔2(𝑘𝑓 , 𝑐𝑓 , 𝛼) = ∑ (∑ (abs(FRF𝑖(𝑘𝑓 , 𝑐𝑓 , 𝛼, 𝑓) − FRFi
E(𝑓)))

𝟐

𝑓 )𝑖 ,

 𝑖 ∈ {P, E, B}, 𝑓 ∈ (0Hz, 20Hz] (9)

where FRF𝑖(𝑘𝑓 , 𝑐𝑓 , 𝛼, 𝑓) and FRFi
E(𝑓) are the FRFs of the measurement points 𝑖 ∈ {P, E, B} for 

the present model and the experimental data, respectively, and abs(∙) is the modulus function. 

The results for the best fit are 𝑘𝑓= 6.46 kNm/rad, 𝑐𝑓= 334 Nms/rad and 𝛼 = 1.03, i.e., 𝑘𝑢 =

124 kNm/rad.  Including these modifications to the model for the non-ideal joint effect and 

flexibility effect results in the FRFs shown as red-solid lines in Figure 6. The first peaks’ 

amplitude and frequency match with the experimental data curves and the third peaks, around 

11 Hz, are captured, as well as the amplitudes of the second peaks remaining similar to what 

they were after modifying 𝑐2 only. For the phases, the low frequency of the red-solid lines in 

Figure 6(b), (d)&(f) match accurately with the experimental data. Furthermore, the phase gap 

between the top of the upper arm and top of the lower arm in high frequency has also been 

captured.  It is worth to mention that the discrepancies of the first peaks and the third peaks are 

modified by the identification of the non-ideal joint effect and the flexibility effect, respectively. 

After all these calibration and validation, the proposed multibody model can describe accurately 

the dynamic response with clear physical meaning. This modified multibody pantograph can 

now be used as a default model to study the damping system design.  

4. Inertance-integrated damping system design 

In this section, a simplified pantograph-catenary model with time-varying parameters is 

developed here. The performance measure and the optimization process for the pantograph 

damping system are discussed in detail. An optimal inertance-integrated damping configuration 

is identified to improve the dynamic performance of the pantograph, with promising benefits 

in reduction of the standard deviation of the contact force observed. Lastly, relevant analyses 



 

11 

 
 

are carried out to understand the achieved benefits. 

 

 

Figure 7. Modified multibody pantograph-catenary model and the modification to the base 

suspension. 

4.1. Pantograph-catenary interaction model 

The catenary systems are periodic structures generally composed of a messenger wire, contact 

wire, droppers and masts. The contact wire is the cable which carries the electricity and contacts 

with the pantograph head to supply the electric current to the railway vehicle. To establish an 

accurate mathematical model of the whole catenary system is awkward due to its distributed 

characteristics. Many FEM models of catenary systems have been established [8, 49-52], but 

these models are usually complex and they are not the focus of this paper. 

In this paper, the focus is the design of a novel damping system for the high-speed train 

pantograph using the inertance-integrated damping technique. It is also noted that the pattern 

search methodology which is applied in the following optimization process requires a large 

number of iterations and therefore the dynamic models need to be reasonably fast and simple. 

A simplified catenary model which can represent the basic dynamic properties of the catenary 

system is sufficiently accurate for this purpose at this first concept design stage. Although the 

obtained responses using the simplified catenary model do not exactly match the realistic ones, 

this simplified catenary model favours the aim of the article which is not to evaluate the 

pantograph-catenary in realistic situations but to explore possible benefits in the use of inerters 

in a pantograph system. In a preliminary study, a lumped mass pantograph model coupled with 

a time-varying lumped mass catenary model was adopted to design an inertance-integrated 

damping system of the pantograph and significant dynamic performance benefit was observed 

[53]. For the sake of modelling simplification and calculation efficiency, the time-varying 

lumped mass catenary model in [6], as used in [53], is used in this work. As catenary systems 

are spatial-periodic structures, the equivalent parameters of the catenary system are spatial-

periodic functions of the displacement 𝑥 along the contact wire from a reference mast. If the 

operational speed is denoted as 𝑣𝑜𝑝, the distance 𝑥 = 𝑣𝑜𝑝𝑡. Hence, the equivalent parameters 
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of the catenary system can be converted to time-periodic functions and expressed as a Fourier 

series including the first three harmonics as 

{
 
 

 
 𝑚𝑐(𝑡) = 𝑚𝑐0 + ∑ 𝑚𝑐𝑖 cos (2𝜋𝑖

𝑣𝑜𝑝

𝐿
𝑡)3

𝑖=1

𝑐𝑐(𝑡) = 𝑐𝑐0 + ∑ 𝑐𝑐𝑖 cos (2𝜋𝑖
𝑣𝑜𝑝

𝐿
𝑡)3

𝑖=1     

𝑘𝑐(𝑡) = 𝑘𝑐0 + ∑ 𝑘𝑐𝑖 cos (2𝜋𝑖
𝑣𝑜𝑝

𝐿
𝑡)3

𝑖=1    

(10)

where  
𝑣𝑜𝑝

𝐿
 can be denoted as 𝑓𝑝 called the pumping frequency [54], presenting the fundamental 

frequency of the pantograph passing a span with speed 𝑣𝑜𝑝 . The equivalent mechanical 

parameters of the catenary system i.e., the equivalent mass, stiffness and damper, denoted as 

𝑚𝑐, 𝑘𝑐  and 𝑐𝑐, respectively, present periodic behaviour along each span with the harmonics of 

the first three integer multiples of the pumping frequency. The parameters of the catenary 

model, i.e., 𝑚𝑐𝑖, 𝑐𝑐𝑖 and 𝑘𝑐𝑖,  are detailed in [6]. Pantograph-catenary interaction is depicted in 

Figure 7. The state variables of the pantograph and the catenary system are combined by 

coupling their dynamical equations. The contact wire is an additional lumped mass body 

coupled with the pantograph model. Hence, a revolute joint between the contact points of the 

catenary and the head is adopted to model the contact between them in this paper, see Figure 7. 

The contact force is evaluated as the vertical reaction force of this revolute joint applied on the 

head. In this way, as contact loss is not explicitly modelled, each output of the model has been 

checked to ensure that the contact force does not become positive and hence that this modelling 

approach for the contact is valid. 

4.2. Performance measure and optimization procedure 

In this work, the structure-based approach [44] is used to design a beneficial inertance-

integrated pantograph damping system. The network layouts representing the topology of the 

mechanical components are firstly proposed. Then, the parameter values of each element in the 

mechanical network are selected using an optimization method. The total candidate layout sets 

S are shown in Figure 8 where the inerter, damper and spring are labelled as b, c and k, 

respectively.  Sdefault  in Figure 8 is the conventional damper in the existing design of the 

pantograph. Four simple candidate layouts are proposed here to assess the potential benefits of 

employing an inertance-integrated damping system in the pantograph. A one-element layout, 

S0, with a single inerter, two two-element layouts, S1 and S2, with one inerter and one damper, 

in parallel and in series, respectively, and a three-element layout, S3, known as the TID system 

[55] with one inerter, one damper and one spring, are considered in this work.  

 

Figure 8. Candidate layout set S. 

In practice, in order to ensure the efficiency of power transmission between the contact 

wire and the pantograph head, an optimal mean contact force 𝐹𝑚  is suggested in EN 50367:2012 

[56]. Meanwhile, the standard deviation of the contact force 𝜎 is required to be smaller than 

0.3𝐹𝑚 to ensure the probability that the contact force is lower than 0.1𝐹𝑚  is less than 0.27%, 
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assuming a Gaussian distribution [56]. These specifications aim to ensure the percentage of 

time for electric arcing – the main reason for electrical wear of the contact wire and the head – 

is smaller than 0.2%. Hence, in this work, the standard deviation of the contact force 𝜎 is used 

as the assessment performance.  

 

Figure 9. Contact force for (a) 40 m/s and (b) 60 m/s, (c) contact force standard deviations 

across the whole range of operational speeds from 20 m/s to 80 m/s. 

The proposal is to reduce the standard deviation of the pantograph-catenary contact force 

through designing the base suspension system using inertance-integrated damping, as shown in 

Figure 7. The standard deviation of the contact force 𝜎 for each individual vehicle speed can be 

evaluated via the corresponding contact force time history. For example, for the default 

damping system with a conventional damper, the contact force time histories for 40 m/s and 60 

m/s are shown in Figure 9(a) and (b), respectively. Considering operational speeds between 20 

m/s and 80 m/s, the standard deviation of the contact force for the default damping system is 

shown in Figure 9(c), where the values for 40 m/s and 60 m/s are marked with red and blue 

points, respectively. It is noted that in Figure 9(c) the default pantograph-catenary system has 

a maximum value of the standard deviation 𝜎max = 25.45 N at an operational speed 𝑣𝑜𝑝 =

65 m/s.  Note that given the level of fidelity of the catenary model employed, it is challenging 

to make the simulated responses satisfy an industrial standard for a real system, such as EN 

50367, over the full operating range. Simulations of the system considered do satisfy EN 50367 

near the operational speed of 65 m/s, which is the main speed we are interested in. In this work, 

the optimization aim is to minimise 𝜎max over the whole operational speed range. The cost 

function 𝐽(𝝋𝑖) of the optimization is identified as 

𝐽(𝝋𝑖) = 𝜎max(𝝋𝑖), 𝑖 ∈ 𝐒, 𝑣 ∈ [20 m/s, 80 m/s] (11) 
where 𝝋𝑖 is the design variables for candidate layout i.  For all the optimizations carried out in 

the damping system design, the MATLABTM command patternsearch (Generalized pattern 

search method [48]) is used. A number of sets of random initial values are used to find the 

optimum parameter values to minimise the cost function 𝐽. 
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4.3. Results for optimised inertance-integrated damping systems 

The optimization results, based on the verified multibody pantograph model from Section 3, 

are given in Table 1. It can be observed that the mean contact forces of the proposed inertance-

integrated damping configurations are kept almost constant, closely matching that of the default 

damper. In order to make a fair comparison, the default layout (a conventional damper) is firstly 

optimised for our cost function. The optimised default layout Sdefault_opt results in a 0.04% 

reduction in 𝜎max compared with Sdefault, indicating that the contact force standard deviation 

cannot be reduced significantly using the default damper. In contrast, all the proposed inertance-

integrated configurations, i.e.,  S0, S1, S2 and S3, achieve a significant 40.67% reduction in 

𝜎max. For S0, the optimum inertance value is 10745 kg. Note that the value of this inertance 

does not correspond to the mass of the device achieving this inertance. With a fluid-based 

inerter [57, 58], the ratio of the resultant inertance 𝑏 to the actual fluid mass 𝑚 is (
𝐷1

𝐷2
)
4

 where 

𝐷1 and 𝐷2 are the piston’s and tube’s effective diameters, respectively. A significantly large 

inertance can be achieved with much smaller fluid mass via designing these two diameters. For 

example, if 
𝐷1

𝐷2
= 10, the optimized inertance 10745 kg can be obtained with the actual fluid 

mass as 1.07 kg. Hence, the inertance value obtained in this paper is totally practical for 

pantograph suspensions. The result of  S1 implies that the inerter dominates the performance 

improvement while the damper in parallel contributes little. Hence, S1 can be simplified to S0, 

that is, the damper in parallel can be ignored. This can be concluded from the fact that the 

optimised value of the damper in parallel is so small and the inerter value is very close to the 

optimum inerter value of S0. For S2, the value of the damper in series reaches 2.7 × 1010 Ns/m, 

which implies that the damper in series tends to a rigid connection, again suggesting that the 

inerter dominants the performance improvement in S2. It has been checked that setting the 

damper value of S2 to be infinite, that is, replacing the damper in S2 to a rigid connection, there 

is no significant reduction in performance of S2. Hence, S2 can also be simplified to S0 without 

any significant reduction in performance. For S3, the value of the damper and spring reaches 

1.5 × 1011  Ns/m and 2.5 × 1011  N/m and a similar argument can also be applied to S3 . 

Therefore, the fact that S1, S2 and S3 can all be converted to S0 gives weight to the argument 

that the single inerter configuration S0 is the optimum design among the proposed candidate 

configurations in this case. 

Table 1 Optimization results 

Layout 

Configuration parameters 
𝜎max 
(N) 

Reduction 

(%) 

Velocity 

for 𝜎max 

(m/s) 

Mean 

contact 

force 

(N) 
b (kg) c (Ns/m) k (N/m) 

Sdefault \ 600 \ 25.45 \ 65.0 121.5 

Sdefault_opt \ 2563 \ 25.44 0.04% 65.0 121.5 

S0 10745 \ \ 15.10 40.67% 63.0 121.1 

S1 10728 5 \ 15.10 40.67% 63.0 121.1 

S2 10703 → ∞ \ 15.10 40.67% 63.0 121.9 

S3 10703 → ∞ → ∞ 15.10 40.67% 63.0 121.9 

S1
∗ 10733 600 \ 15.23 40.16% 63.0 121.1 

 

The relationship between the contact force standard deviation and inertance for different 

parallel dampers at 65 m/s is as shown visually in Figure 10. It indicates that about 10000 kg 

of inertance can minimise the standard deviation of the contact force while the smaller or larger 

inertance can deteriorate the contact performance. It is also observed that any inertance value 



 

15 

 
 

between 0 and the optimum value can be beneficial to reduce the contact force standard 

deviation correspondingly. It also noticed that the presence of a damper in parallel with inerter 

has a negative effect on reducing the contact force standard deviation, a further indication why 

S1 should be simplified to S0. This does not mean there is no natural damping in the system but 

shows that an additional damper at the base cannot help improve the contact performance. 

Considering that the original damper in parallel may have a function that is not included in our 

present cost function, for example, suppressing transient vibrations when raising or lowering 

the pantograph, the performance of an additional configuration, S1
∗ is investigated. The layout 

of S1
∗ is the same as S1, but the parallel damper is fixed to 600 Ns/m, i.e., the original value of 

conventional damper, and the inerter is then optimised. It turns out that S1
∗, see the blue line in 

Figure 10, can retain almost the same performance benefit as S0, see the red line in Figure 10. 

 

Figure 10. Standard deviations of the contact force against inertance for different parallel 

dampers at 65 m/s. 

 

Figure 11. Time histories and mean values of the contact force for  S0 and Sdefault based 

pantographs at 65m/s. 

In order to investigate the performance improvement of S0 in detail, analysis in the time 

domain is considered. Time histories of the contact force for S0 and Sdefault at 65 m/s are shown 

in Figure 11. It is clear that the amplitude of contact force variation is reduced significantly for 
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S0 compared with Sdefault. Further, acceleration response for catenary alone with a constant 

upward contact force is evaluated. The constant upward contact force whose value is selected 

as the value of the mean contact force of the default pantograph-catenary system acts on 

catenary along with a sequence of operational speeds, i.e., a sequence of pumping frequencies 

𝑓𝑝. The corresponding acceleration magnitude 𝑈𝑐  of the catenary against different pumping 

frequencies 𝑓𝑝 is investigated as shown in Figure 12, indicating the natural frequency of the 

catenary system is 1 Hz. Note that the theoretical natural frequency of the catenary system can 

be approximated from Eq. (10) as 
1

2𝜋
√
𝑘𝑐0

𝑚𝑐0
≈ 1 Hz, coinciding with the resonance frequency in 

Figure 12. For the pantograph system alone, the FRFs for the head in the magnitude of Sdefault 
and S0 based pantographs are shown in Figure 13. Note that the FRF for the head of Sdefault 
based pantograph in Figure 13 is the same as the FRF curve of the modified model in Figure 

6(a). Compared with Sdefault, the first resonance frequency of the pantograph head for S0 is 

shifted to 1 Hz from 1.5 Hz, see Figure 13, coinciding with the natural frequency of the catenary 

system. This results in the vibration of the pantograph head aligning with that of the catenary 

system which appears to reduce the contact force variation. This can also explain the discussion 

about Figure 10, that is, the fact that the inclusion of 10000 kg of inertance tunes the pantograph 

first resonance frequency coinciding with the natural frequency of the catenary regulates the 

fluctuation of the contact force. 

 

Figure 12. Acceleration amplitude for the catenary alone with a constant upward contact force 

against the pumping frequency. 

 

Figure 13. Comparison of amplitudes of FRF for head between Sdefault and S0 based 

pantographs. 
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Furthermore, the displacements of the catenary alone with the constant upward contact 

force and coupling with the Sdefault and S0 based pantographs are also evaluated in Figure 14. 

The catenary oscillation displacement amplitude across the whole operational speed range is 

shown in Figure 14(a) indicating the amplitudes of the catenary coupling with the pantographs 

are reduced compared with the catenary alone with the constant upward contact force. The 

displacement amplitude of the catenary coupling with S0  based pantograph is also slightly 

reduced compared with the default pantograph indicating that, with the S0 based pantograph, 

the cable motion is acceptable. Figure 14(b) shows the catenary displacements in the time 

domain at 65 m/s. It is clear that the displacement amplitudes of the catenary coupling with 

pantographs are smaller than the catenary alone with the constant upward contact force. 

Meanwhile, the phase gap of the catenary displacement between the catenary alone with the 

constant upward contact force and catenary coupling with the pantograph is reduced for S0 

compared with Sdefault. These means that with S0, the pantograph head tends to have the same 

phase relative to the catenary system, so as the contact force between them is reduced. 

The standard deviation of the contact force across the whole range of operational speed 

are presented in Figure 15 for the Sdefault and S0 based pantographs. There is a 40% reduction 

for the S0 based pantograph compared with the default one and it remains lower than for the 

default one for all velocities less than 75 m/s.  

 

Figure 14. (a) Displacement amplitudes across the whole operational speed range. (b) 

displacement time histories of the catenary with the constant upward contact force and 

coupling with Sdefault and S0 based pantographs at 65 m/s. 
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Figure 15. The standard deviation of the contact force for Sdefault and S0 based pantographs 

across the whole operational speed range. 

5. Conclusions and future developments 

In this paper, a multibody pantograph model with clear physical meaning is developed based 

on a previously published model. Some discrepancies are observed in terms of the FRFs 

compared with experimental data. Basic mode shapes of the pantograph are investigated using 

the experimental FRF data, which indicates characteristics of the internal reaction between each 

physical component of the pantograph and reveals the sources of the observed discrepancies. 

To better match the experimental data, the head suspension damping is updated and additional 

model details are introduced in the model to allow for non-ideal joints and flexibility of the 

pantograph upper arm. A methodology to identify the pantograph parameters with practical 

physical meaning, using optimization methods, is proposed. After the calibration, the modified 

model can match the experimental data accurately and is used as the default model for the 

design of an improved damping system. The structure-based inertance-integrated damping 

method is applied and optimised configurations are obtained for the pantograph damping 

system. The results suggest that a 40 % reduction in the maximum standard deviation of the 

contact forces over the whole range of train speeds is possible to achieve using inerter, based 

on this specified pantograph-catenary modelling approach considered. It might be possible that 

these more in-depth and detailed studies realize a lesser actual reduction on standard deviation. 

However, as it is the main aim of the article, the results obtained suggest that the proposed 

concept is worth being further researched and developed. The inerter with the corresponding 

optimum values can be realised using a ball-screw [30] or fluid-based inerter [57, 58]. Given 

the space limit in the pantograph system, the device size can be altered by changing the screw 

pitch of the ball-screw inerter, or adjusting the ratio of the piston’s effective diameter to the 

tube’s diameter of the fluid-based inerter. Subsequently, the inerter can be designed and 

manufactured, and then replace the conventional damper in the pantograph system. Analyses 

of the contact force in the time domain for the pantograph with the inerter are carried out, which 

shows that the amplitude of the contact force of the S0 based pantograph reduced significantly 

compared with the default one. Furthermore, mode analysis of the pantograph and the catenary 

shows that in optimizing the inertance-integrated damping system the first resonant frequency 

of the pantograph is tuned to the natural frequency of the catenary and that this appears to 
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regulate the pantograph-catenary contact force oscillation. In this paper, the numerical 

implementation of the inertance-integrated damping system suggests promising results in 

improving pantograph-catenary contact performance. Building on the results obtained in this 

study, future developments are worthwhile using other pantograph types and more detailed 

catenary models, which will allow further assessment, including singularities such as overlaps 

and gradients, of the inertance-integrated damping technology in such conditions. 
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Appendix 1 Equations of motion of the multibody model 

A typical multibody model is an assemblage of rigid bodies constrained by kinematic 

mechanical joints and acted upon by external forces [59]. The general forces applied to the 

system components may be the result of mechanical elements, for example, springs, dampers, 

actuators, or externally applied forces, such as contact forces or gravity. The configuration of 

the multibody system can be described by n Cartesian coordinates q, and a set of m algebraic 

kinematic independent holonomic constraints 𝚽, written in a compact form as 

𝚽(𝐪, 𝑡) = 𝟎 (A1)
Differentiating, and doubling differentiating Eq. (A1) with respect to time yields the velocity 

and acceleration constraint equations 

𝚽𝐪𝐪̇ + 𝚽𝑡 = 𝟎 (A2) 

𝚽𝐪𝐪̈ = −𝚽𝑡𝑡 − (𝚽𝐪𝐪̇)𝐪
𝐪̇ − 2𝚽𝐪𝑡𝐪̇ = 𝛄 (A3)

where (∙)𝐪 =
∂(∙)

∂𝐪
, (∙)𝐪𝑡 =

𝜕2(∙)

𝜕𝐪𝜕𝑡
, (∙)𝑡 =

𝜕(∙)

𝜕𝑡
, (∙)𝑡𝑡 =

𝜕2(∙)

𝜕𝑡2
 and (∙)̇ =

𝑑(∙)

𝑑𝑡
, (∙)̈ =

𝑑2(∙)

𝑑𝑡2
, respectively. 

The equations of motion of a constrained rigid multibody system can be expressed as [60] 

𝐌𝐪̈ = 𝐠e + 𝐠c (A4)
where 𝐌 is the generalized mass matrix, 𝐠e  is the generalized external force vector, which 

contains all external forces and moments, and 𝐠cis the generalized constraint forces vector, 

which contains the reaction forces and moments resulting from the constraints. 𝐠c  can be 

expressed in terms of the Jacobian matrix of the constraints and the vector of Lagrange 

multipliers

𝐠c = −𝚽q
T𝛌 (A5)

where 𝛌  is the vector that contains m unknown Lagrange multipliers associated with m 

holonomic constraints. Substituting Eq. (A5) into Eq. (A4) yields 

𝐌𝐪̈ +𝚽q
T𝛌 = 𝐠e (A6)

In the dynamic analysis, a unique solution is obtained when the constraint equations are 

considered simultaneously with the equations of motion with the appropriate initial conditions. 

Therefore, Eq. (A3) is appended to Eq. (A6), yielding a system of differential-algebraic 

equations that are solved for 𝒒̈ and 𝝀. This system is given by  
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[
𝐌 𝚽𝐪

T

𝚽𝐪 𝟎
] [
𝐪̈
𝛌
] = [

𝐠e
𝛄 ] (A7)

The set of differential-algebraic equations of motion, Eq. (A7), does not explicitly ensure that 

the position and velocity kinematic constraint equations, i.e., Eq. (A1) and (A2), are satisfied. 

Consequently, in the case of long-time simulations, the original constraint equations are quickly 

violated due to the integration process. Therefore, in order to keep the potential constraint 

violation under control, the Baumgarte constraint stabilization method [61] is applied in our 

work. Recall that using Eq. (A3), the second time derivative of the constraint equations can be 

written as 

𝚽̈ = 𝚽𝐪𝐪̈ − 𝛄 = 𝟎. (A8) 

In Baumgarte’s constraint stabilization method, the second time derivative of the constraint 

equations is modified and is written in the following form 

𝚽̈ + 𝟐α𝚽̇ + 𝛽2𝚽 = 𝟎 (A9)

where 𝚽̇ = 𝚽𝐪𝐪̇+𝚽𝑡 , α > 0 , 𝛽 ≠ 0 . Eq. (A9) is a differential equation for a closed-loop 

system in terms of the kinematic constraint equations, where the terms 𝟐α𝚽̇ and 𝛽2𝚽 play the 

role of control terms by feeding back the position and velocity of constraint violations. 

Substituting Eq. (A8) into Eq. (A9) leads to 

𝚽𝐪𝐪̈ = 𝛄 − 𝟐𝛼𝚽̇ − 𝛽2𝚽 (A10)

Using Eq. (A10), the equations of motion of the multibody system can be modified and written 

as 

[
𝐌 𝚽𝐪

T

𝚽𝐪 𝟎
] [
𝐪̈
𝛌
] = [

𝐠e
𝛄 − 𝟐α𝚽̇ − 𝛽2𝚽

] (A11)

In this work, the values 𝛼 = 𝛽 = 5  are chosen following the parameter selection process 

outlined in reference [62]. The integration process is performed using a variable step and 

variable order integration algorithm, ode15s solver (Gear’s method [63]) in MATLABTM. 

Appendix 2. Process of estimating 𝒌𝒖̃ 

The main span of the upper arm, BE (Figure 1), can be modelled as a flexible cantilever beam 

fixed at point B with a transverse load 𝑃 applied at E. The deflection of the end E is then 𝛿 =
𝑃𝑙3 3𝐸𝐼⁄  where l ≈ 2 m is the length BE, 𝐸 ≈ 200 × 109 Pa is Young's modulus and I is the 

second moment of area of the beam. In this work, the second moment of area for the hollow 

circular section can be calculated as 

𝐼 =
𝜋

64
(𝐷4 − (𝐷 − 2𝑑)4) ≈ 4 × 10−7 m4 (A12) 

where D is the outside diameter, d is the thickness. 

The cantilever beam can be simplified as a rigid beam constrained by a revolute joint and an 

equivalent rotational spring 𝒌𝒖̃ at B. An angle 𝜃 of the rigid beam can be generated when the 

load P is applied at the other end. Using a small angle approximation, 𝜃 ≈
𝛿

𝑙
. The moment at 

point B is 𝑀B = 𝑃𝑙. The equivalent rotational stiffness at point B can be evaluated as 

𝒌𝒖̃ =
𝑀B

𝜃
≈
𝑃𝑙2

𝛿
=
3𝐸𝐼

𝑙
= 120 kN/rad. (A13) 

 


