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Abstract
We	propose	a	new	method,	 the	confidence	 interval	 (CI)	
method,	 to	 select	 valid	 instruments	 from	 a	 larger	 set	 of	
potential	instruments	for	instrumental	variable	(IV)	esti-
mation	of	the	causal	effect	of	an	exposure	on	an	outcome.	
Invalid	instruments	are	such	that	they	fail	the	exclusion	
conditions	and	enter	the	model	as	explanatory	variables.	
The	CI	method	is	based	on	the	CIs	of	the	per	instrument	
causal	effects	estimates	and	selects	the	largest	group	with	
all	CIs	overlapping	with	each	other	as	the	set	of	valid	in-
struments.	 Under	 a	 plurality	 rule,	 we	 show	 that	 the	 re-
sulting	 standard	 IV,	 or	 two-	stage	 least	 squares	 (2SLS)	
estimator	 has	 oracle	 properties.	 This	 result	 is	 the	 same	
as	for	the	hard	thresholding	with	voting	(HT)	method	of	
Guo	et	al.	 (Journal of the Royal Statistical Society : Series 
B,	2018,	80,	793–	815).	Unlike	the	HT	method,	 the	num-
ber	of	 instruments	selected	as	valid	by	the	CI	method	is	
guaranteed	 to	 be	 monotonically	 decreasing	 for	 decreas-
ing	 values	 of	 the	 tuning	 parameter.	 For	 the	 CI	 method,	
we	can	therefore	use	a	downward	testing	procedure	based	
on	the	Sargan	(Econometrica,	1958,	26,	393–	415)	test	 for	
overidentifying	restrictions	and	a	main	advantage	of	 the	
CI	downward	testing	method	is	that	it	selects	the	model	
with	the	largest	number	of	instruments	selected	as	valid	
that	passes	the	Sargan	test.
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1 |  INTRODUCTION

Instrumental	variables	(IV)	estimation	is	a	well-	established	method	for	determining	causal	ef-
fects	of	an	exposure	on	an	outcome,	when	this	relationship	is	potentially	affected	by	unobserved	
confounding.	 For	 recent	 reviews	 and	 examples,	 see	 Clarke	 and	 Windmeijer	 (2012),	 Imbens	
(2014),	Kang	et	al.	(2016)	and	Burgess	et	al.	(2017).

As	Guo	et	al.	(2018,	p.	793)	state,	an	IV	analysis	requires	instruments	that	

1.	 are	 associated	 with	 the	 exposure	 (Condition	 1),
2.	 have	no	direct	pathway	to	the	outcome	(Condition	2)	and
3.	 are	not	related	to	unmeasured	variables	that	affect	the	exposure	and	the	outcome	(Condition	3).

Condition	1	is	often	referred	to	as	the	relevance	condition	and	Conditions	2	and	3	as	the	exclusion	
conditions,	see	Section	2	for	details.

This	paper	is	concerned	with	violations	of	the	exclusion	conditions	of	the	instruments.	Following	
closely	the	setup	of	Kang	et	al.	(2016),	Windmeijer	et	al.	(2019)	and	Guo	et	al.	(2018),	if	an	instru-
ment	satisfies	the	exclusion	Conditions	2	and	3	it	is	classified	as	a	valid	instrument.	If	an	instrument	
does	not	satisfy	Condition	2	and/or	3,	it	is	classified	as	invalid.	Use	of	invalid	instruments	in	an	IV	
analysis	leads	to	inconsistent	estimates	of	the	causal	effect	and	it	is	therefore	important	to	select	the	
set	of	valid	instruments	from	the	set	of	putative	IVs	that	may	include	invalid	ones.

As	an	example,	Mendelian	randomisation	is	a	technique	employed	in	epidemiology	to	learn	
about	the	causal	effects	of	modifiable	health	exposures	on	disease.	It	posits	that	genetic	variants,	
which	are	known	to	be	associated	with	the	exposure	and	hence	satisfy	Condition	1,	additionally	
satisfy	the	exclusion	conditions	and	are	only	associated	with	the	outcome	through	the	exposure.	
In	our	Mendelian	randomisation	application	in	Section	8,	we	utilise	genetic	variants	as	potential	
instruments	for	BMI	in	order	to	determine	its	causal	effect	on	diastolic	blood	pressure.	However,	
a	genetic	variant	could	be	an	invalid	instrument	for	various	reasons,	such	as	linkage	disequilib-
rium	and	horizontal	pleiotropy,	see,	for	example,	Lawlor	et	al.	(2008)	and	von	Hinke	et	al.	(2016).

The	so-	called	plurality	rule	holds	if	the	set	of	valid	instruments	forms	the	largest	group,	as	
specified	in	Section	2.	An	approach	for	selecting	the	valid	instruments	could	then	be	to	follow	
Andrews	(1999)	and	estimate	the	causal	effect	for	all	2kz −

(
kz + 1

)
	possible	subsets	of	at	least	two	

instruments,	where	kz	denotes	the	total	number	of	instruments,	and	to	select	the	model	that	min-
imises	an	information	criterion	based	on	the	Sargan	(1958)	test	of	overidentifying	restrictions.	A	
large	value	of	the	Sargan	test	statistic	is	an	indication	that	invalid	instruments	are	present.	This	
approach	is	only	feasible	with	a	relatively	small	number	of	instruments,	unlike	in	our	application	
where	we	have	96	putative	genetic	instruments.	We	therefore	need	dimension	reduction	tech-
niques,	even	though	we	are	in	a	setting	of	a	fixed	number	of	instruments	kz	with	a	large	sample	
size	n,	the	setting	referred	to	as	low	dimensional	by	Guo	et	al.	(2018).

Following	 the	 Lasso	 proposal	 by	 Kang	 et	 al.	 (2016),	Windmeijer	 et	 al.	 (2019)	 proposed	 an	
adaptive	Lasso	estimator	in	combination	with	a	downward	testing	procedure	based	on	the	Sargan	
test	as	 in	Andrews	(1999).	When	the	majority	rule	holds,	meaning	that	more	than	50%	of	the	
potential	instruments	are	valid,	then	this	approach	results	in	consistent	selection	of	the	invalid	
instruments	and	oracle	properties	of	the	resulting	standard	IV,	or	two-	stage	least	squares	(2SLS)	
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estimator.	This	means	that	 the	 limiting	distribution	of	 the	estimator	 is	 the	same	as	the	oracle	
estimator,	which	is	the	2SLS	estimator	when	the	set	of	invalid	instruments	is	known.	Guo	et	al.	
(2018)	proposed	a	two-	stage	hard	thresholding	with	voting	(HT)	method	that	results	in	consis-
tent	 selection	 of	 the	 valid	 instruments	 and	 oracle	 properties	 of	 the	 2SLS	 estimator	 when	 the	
weaker	plurality	rule	holds.

In	 this	 paper,	 we	 develop	 an	 alternative	 method,	 which	 we	 call	 the	 confidence	 interval	 (CI)	
method	as	presented	in	Section	3.	This	method	simply	selects	as	valid	instruments	the	largest	group	
of	instruments	where	all	CIs	of	the	instrument-	specific	causal	effect	estimates	overlap,	with	a	tun-
ing	parameter	varying	the	width	of	the	CIs.	Like	the	Guo	et	al.	(2018)	method,	we	show	that	the	CI	
method	results	in	consistent	selection	and	oracle	properties	of	the	resulting	2SLS	estimator	when	the	
plurality	rule	holds.	An	advantage	of	the	CI	method	is	that	the	number	of	instruments	selected	as	
valid	decreases	monotonically	for	decreasing	values	of	the	tuning	parameter,	which	is	not	the	case	
for	the	HT	method	as	we	discuss	in	Section	4.	For	the	CI	method,	we	can	therefore	use	a	downward	
testing	procedure	based	on	the	Sargan	test	and	a	main	advantage	of	this	CI	method	is	that	it	selects	
the	model	with	the	largest	number	of	instruments	selected	as	valid	that	passes	the	Sargan	test.

While	initially	making	the	assumptions	of	conditional	homoskedasticity	and	strong	instru-
ments	 in	 Section	 2	 for	 ease	 of	 exposition,	 we	 discuss	 in	 Section	 5	 how	 to	 adapt	 the	 methods	
to	deal	with	general	forms	of	heteroskedasticity.	We	further	discuss	the	first-	stage	thresholding	
method	of	Guo	et	al.	(2018)	to	dealing	with	weak	instruments	in	Section	6.

We	evaluate	the	two	methods	in	the	Monte	Carlo	exercise	in	Section	7,	for	a	design	very	similar	to	
that	in	Guo	et	al.	(2018).	We	find	that,	overall,	the	CI	method	has	a	better	finite	sample	performance	
than	the	HT	method	in	this	design.	In	the	application	in	Section	8,	we	find	that	the	HT	method	
selects	too	few	instruments	as	invalid,	resulting	in	models	that	are	rejected	by	the	Sargan	test.	By	
design,	the	CI	method	selects	models	that	pass	the	Sargan	test.	It	produces	results	very	similar	to	
the	adaptive	Lasso	method	which	suggests	that	the	majority	rule	is	not	violated	in	this	application.

We	adopt	the	following	notation.	x	denotes	the	vector	with	elements	xj.	For	a	general	matrix	
X ,	X ′	denotes	 its	 transpose.	All	vectors	are	 taken	as	column	vectors,	 including	Xi.,	where	 the	
row	vector	X′

i.	is	the	ith	row	of	the	matrix	X .	For	a	full	column-	rank	matrix	X	with	n	rows	define	
PX = X

(
X�X

)−1
X�,	the	projection	onto	the	column	space	of	X,	and	MX = In − PX,	where	In	is	

the	n-	dimensional	identity	matrix.	Proofs	of	Lemma	1	and	Theorems	3	and	4	in	Section	3	are	
presented	in	the	Supplementary	Appendix	A.1.

2 |  MODEL AND ASSUMPTIONS

Let	the	observed	outcome	for	observation	i	be	denoted	by	the	scalar	Yi,	the	treatment	or	exposure	
by	the	scalar	Di	and	the	vector	of	kz	potential	instruments	by	Zi..	The	instruments	may	not	all	be	
valid	and	can	have	a	direct	effect	on,	and/or	an	indirect	association	with	the	outcome,	violating	
Condition	2	and/or	3.	We	have	a	sample	

{
Yi,Di,Z

�
i.

}n
i=1

.	We	follow	Kang	et	al.	(2016)	and	Guo	
et	al.	(2018),	who,	starting	from	the	additive	linear,	constant	effects	model	of	Holland	(1988),	ar-
rived	at	the	observed	data	model	for	the	sample	given	by

where	�	is	the	causal	parameter	of	interest,	and	with	E
[
ui|Zi.

]
= 0,	but	Di	might	be	correlated	with	

ui.	The	parameter	vector	�	represents	the	possible	violations	of	the	exclusion	conditions	and	can	be	
used	to	formalise	the	definition	of	valid	IVs	as	follows	(Guo	et	al.	2018,	p	797).

(1)Yi=Di�+Z
�
i.�+ui,
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Definition 1	 If	�j = 0,	then	instrument	j,	 j = 1,…, kz,	is	valid,	it	satisfies	both	Conditions	2	and	
3.	If	�j ≠ 0,	then	instrument	j	is	invalid.

We	present	some	graphical	representations	of	the	causal	model	and	possible	violations	of	the	
exclusion	conditions	in	Appendix	A.3.

Let	y	and	d	be	the	n-	vectors	of	n	observations	on	
{
Yi
}
	and	

{
Di
}
,	respectively,	and	let	Z	be	the	

n × kz	matrix	of	potential	instruments.	As	an	intercept	is	implicitly	present	in	the	model,	y,	d	and	
the	columns	of	Z	have	all	been	centered	by	the	subtraction	of	their	means.	Other	covariates	can	
be	partialled	out	in	the	same	way.	Let	Z0	and	Z0

	be	the	sets	of	valid	and	invalid	instruments,	
0 =

{
j: �j = 0

}
,	0 =

{
j: �j ≠ 0

}
,	with	dimensions	k0	and	k0

,	respectively,	and	kz = k0 + k0
.	

 =
{
1, . . . , kz

}
	denotes	the	full	set	and	so	0 = �0.

The	oracle	model	is	then	given	by

Let	d̂ = PZd,	then	the	oracle	2SLS	estimator	for	�	is	the	OLS	estimator	in	the	specification

where	�	is	defined	implicitly,	and	is	given	by

Under	standard	assumptions,	as	detailed	below,	and	as	n→∞,

where

see	Appendix	A.2	for	a	derivation.
The	 vector	 d̂ = PZd = Z�̂	 is	 the	 linear	 projection	 of	d	 on	Z,	 with	 �̂	 the	 OLS	 estimator	 of	

� = E
[
Zi.Z

�
i.

]−1
E
[
Zi.Di

]
	in	the	linear	model	specification

with	E
[
Zi.�di

]
= 0.	We	initially	assume	that	all	instruments	satisfy	Condition	1,	implying	that	the	kz	

elements	� j	in	�,	are	all	different	from	0:

Assumption 1	 � =
(
E
[
Zi.Z

�
i.

])−1
E
[
Zi.Di

]
,	� j ≠ 0,	 j = 1, . . . , kz.

(2)y=d�+Z0
�0

+u.

y = d̂� + Z0
�0

+ �,

(3)�̂or=
(
d̂
�
MZ0

d̂
)−1

d̂
�
MZ0

y.

(4)
√
n
�
�̂or−�

� d
⟶N

�
0, �2�or

�
,

(5)

�2�or
= �2u

(
plim

(
1

n
d̂
�
MZ0

d̂
)−1

)
,

= �2u

(
E
[
Zi.Di

]�
E
[
Zi.Z

�
i.

]−1
E
[
Zi.Di

]
−E

[
Z0,i.

Di

]�
E
[
Z0,i.

Z�
0,i.

]−1
E
[
Z0,i.

Di

])−1

,

(6)Di=Z
�
i.�+�di,
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This	is	the	same	assumption	as	in	Kang	et	al.	(2016)	and	Windmeijer	et	al.	(2019).	Guo	et	al.	
(2018)	relaxed	this	assumption	and	proposed	a	first-	stage	hard	thresholding	procedure	to	consis-
tently	select	only	instruments	with	� j ≠ 0.	We	will	discuss	this	further	in	Section	6	and	apply	this	
first-	stage	thresholding	in	our	application.

Let	Γ = E
[
Zi.Z

�
i.

]−1
E
[
Zi.Yi

]
.	As	Yi = Di� + Z�

i.� + ui = Z�
i.�� + Z�

i.� + ui + �di�,	it	follows	that	
Γ = �� + �.	Then	define	� j	as

for	 j = 1, . . . , kz.	It	follows	from	Definition	1	and	Assumption	1	that	for	valid	instruments,	 j ∈ 0,	
� j = �.	Following	Theorem	1	in	Kang	et	al.	(2016)	and	Guo	et	al.	(2018),	a	necessary	and	sufficient	
condition	to	identify	�	and	the	�j,	given	Γ	and	�,	is	that	the	valid	instruments	form	the	largest	group,	
where	instruments	form	a	group	if	they	have	the	same	value	for	� j.	This	is	the	plurality	rule.	As	in	
Guo	et	al.	(2018),	we	maintain	the	assumption	that	this	condition	is	satisfied:

Assumption 2	 ||0|| >maxg≠0
|||g

|||,	where	g =
{
j:

�j

� j
= g

}
.

For	the	sample	
{
Yi,Di,Z

�
i.

}n
i=1

,	and	models	(1)	and	(6),	we	further	assume	that	the	following	
standard	conditions	hold:

Assumption 3	 E
[
Zi.Z

�
i.

]
= Q,	with	Q	a	finite	and	full	rank	matrix.

Assumption 4	 Let	 wi =
(
ui �di

)�.	 Then	 E
[
wi

]
= 0;	 E

[
wiw

�
i

]
=

[
�2u �u�d
�u�d �2�d

]
= �.	 The	 ele-

ments	of	�	are	finite.

Assumption 5	 plim
(
n−1Z�Z

)
= E

[
Zi.Z

�
i.

]
= Q;	plim

(
n−1Z�d

)
= E

[
Zi.Di

]
;

plim
(
n−1Z�u

)
= E

[
Zi.ui

]
= 0; plim

(
n−1Z��d

)
= E

[
Zi.�di

]
= 0;

plim
�
n−1 ∑ n

i=1
wi

�
= 0; plim

�
n−1 ∑ n

i=1
wiw

�
i

�
= Σ.

Assumption 6	 1√
n

∑ n
i=1

vec
�
Zi.w

�
i

� d
→N (0,�⊗Q)	as	n→∞.

While	Assumption	5	holds	if	the	observations	are	i.i.d.,	as	the	moments	are	assumed	to	exist,	
these	 conditions	 further	 hold	 under	 various	 weak	 dependence	 assumptions,	 see	 Staiger	 and	
Stock	(1997,	p.	560).

Note	 that	 conditional	 homoskedasticity	E
[
wiw

�
i
|Zi.

]
= �	 is	 implicit	 in	 Assumption	 6.	 We	

make	this	assumption	primarily	for	ease	of	exposition	and	will	relax	this	in	Section	5.
The	plurality	rule,	Assumption	2,	is	the	main	assumption	on	the	instruments	needed	to	estab-

lish	oracle	properties	for	the	CI	method	described	below	and	the	HT	method	of	Guo	et	al.	(2018).	
In	particular,	the	values	of	�j	and	� j	can	be	arbitrary	and	arbitrarily	correlated.	The	CI	and	HT	
methods	are	robust	to	any	such	correlation.	Alternatively,	the	methods	of	Kolesár	et	al.	(2015)	
and	Bowden,	Smith	and	Burgess	(2015)	do	not	make	the	plurality	assumption	and	can	have	all	
instruments	 invalid.	A	bias	corrected	2SLS	estimator	 is	 then	consistent	under	the	INstrument	
Strength	Independent	of	Direct	Effect	(INSIDE)	assumption	that	Cov

(
�j, � j

)
= 0,	together	with	

the	requirement	that	the	number	of	instruments	increases	with	the	sample	size.	Guo	et	al.	(2018)	
provide	a	discussion	of	and	comparison	to	 these	methods,	also	 including	alternative	methods	
proposed	by	Bowden	et	al.	(2016),	Hartwig,	Smith	and	Bowden	(2017)	and	Burgess	et	al.	(2018).

(7)� j≡
Γj

� j
=�+

�j

� j
,
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From	the	plurality	rule	Assumption	2,	it	follows	that	consistent	instrument	selection	procedures	
can	be	based	on	consistent	and	asymptotic	normal	estimators	of	the	parameters	� j	as	defined	in	
(7).	Then	groups	of	instruments	are	formed	by	similar	estimates	 �̂ j,	and,	in	large	samples,	the	
largest	group	will	constitute	the	group	of	valid	instruments	under	Assumption	2.	While	in	prin-
ciple	all	combinations	of	instruments	could	be	tested	separately,	see	Andrews	(1999),	in	practice	
this	may	not	be	feasible	when	there	are	a	large	number	of	instruments.	The	Guo	et	al.	(2018)	
method	as	described	further	in	Section	4	reduces	the	dimensionality	of	the	problem	by	essentially	
performing	kz

(
kz − 1

)
∕2	pairwise	tests	of	the	null	H0: � j = �k,	combined	with	a	voting	scheme	

to	group	the	instruments.
A	clear	reduction	of	the	dimensionality	of	the	problem	is	achieved	by	alternatively	consid-

ering	testing	H0: � j = �g,	for	a	grid	�g	spanning	the	possible	values	of	�	and	selecting	as	the	set	
of	valid	instruments	the	largest	set	over	all	values	of	�g	for	which	a	particular	value	of	�g	is	not	
rejected.	The	CI	method	operationalises	this	idea	without	having	to	consider	the	grid	points	�g	by	
grouping	together	instruments	with	overlapping	CIs.

Let	Γ̂	and	�̂	be	the	OLS	estimators	for	Γ	and	�	in	the	model	specifications

Under	Assumptions	3-	6	it	follows	that

where	� = �⊗Q−1,	with	� = E
[
�i�

�
i
|Zi.

]
,	�i =

(
�yi, �di

)�.
Following	Guo	et	al.	(2018),	let	an	estimator	for	� j	be

then	it	follows,	using	the	delta	method,	that	
√
n
�
�̂ j − � j

� d
→N

�
0, �2

j

�
,	with,	denoting	Q−1

jj
	the	jth	

diagonal	element	of	Q−1,

An	estimator	for	the	variance	of	�̂ j	is	then	given	by

where	�̂ =
1

n

∑ n
i=1

�̂i�̂
�
i,	with	�̂i	the	OLS	residual	vector	

(
�̂yi, �̂di

)′.	It	follows	that	nV̂ar
(
�̂ j

) p
→�2

j
.

y = ZΓ + �y; d = Z� + �d.

(8)
√
n

��
Γ̂

�̂

�
−

�
Γ

�

��
d
→N (0,�) ,

(9)�̂ j=
Γ̂j

�̂ j
,

(10)�2j =
�2
j
Q−1
jj

�2
j

; �2j =
(
1 −� j

)
�

(
1

−� j

)
.

(11)V̂ar
(
�̂ j

)
=
�̂2j

(
Z�Z

)−1
jj

�̂2j

; �̂2j =
(
1 − �̂ j

)
�̂

(
1

− �̂ j

)
,



   | 7
THE CONFIDENCE INTERVAL METHOD FOR SELECTING VALID 
INSTRUMENTAL VARIABLES

We	show	in	Appendix	A.5	that	�̂ j	is	identical	to	the	2SLS	estimator	of	� j	in	the	just-	identified	
model

where	Z{−j} = Z�
{
Z.j

}
,	using	Z.j	as	the	instrument	for	d.	This	therefore	implies	that	�̂ j	is	the	IV	es-

timator	for	�	based	on	instrument	Z.j	while	treating	all	other	instruments	as	invalid.	The	variance	
estimator	V̂ar

(
�̂ j

)
	as	defined	in	(11)	is	also	the	same	as	the	standard	2SLS	variance	estimator	in	the	

just-	identified	model	(12).
The	 CI	 method	 is	 a	 fast	 method	 that	 consistently	 selects	 the	 valid	 instruments.	 Let	

v̂j =

√
V̂ar

(
�̂ j

)
.	Given	a	value	�n,	define	the	confidence	interval	cij

(
�n

)
	for	� j	as

for	 j = 1, . . . , kz.	The	following	lemma	gives	the	conditions	on	�n	under	which	all	CIs	within	groups	
g	will	overlap	which	each	other	when	n→∞,	whereas	none	of	 the	CIs	 in	different	groups	will	
overlap	with	each	other.

Lemma 1 Let the groups g be as defined in Assumption 2 and the confidence intervals cij
(
�n

)
,   

j = 1,…, kz, as defined in (13). Then, under Assumptions 1 and 3- 6, for n→∞, �n →∞, 
�n = o

(
n1∕2

)
, and ∀g, all confidence intervals cij

(
�n

)
 within a group, j ∈ g, will overlap 

with each other, whereas none of the confidence intervals in different groups, cij
(
�n

)
, cij′

(
�n

)
,   

j ∈ g, j� ∈ g�, will overlap with each other.

We	can	use	the	results	of	Lemma	1	to	obtain	a	selection	rule	that	consistently	selects	the	valid	
instruments	as	valid,	with	the	resulting	2SLS	estimator	having	oracle	properties.	For	any	value	
�n,	classify	the	instruments	in	groups	̂

over

t

(
�n

)
,	for	t = 1,…,T

(
�n

)
,	with	1 ≤ T

(
�n

)
≤ kz.	For	

members	 j ∈ ̂
over

t

(
�n

)
,	all	cij

(
�n

)
	overlap	with	each	other.	Only	the	largest	of	such	groups	are	

considered,	and	not	their	subdivisions.	If,	for	example,	all	kz	CIs	overlap	with	each	other,	then	
T
(
�n

)
= 1.	It	is	clear	from	this	definition	that	instruments	can	be	members	of	multiple	groups,	

and	a	group	can	be	a	singleton.	For	any	value	�n,	we	then	select	as	the	group	of	valid	instruments	
the	largest	group,	denoted	̂n,	defined	as

Note	that	for	any	value	of	�n,	there	may	be	multiple	groups	with	the	largest	number	of	overlapping	
CIs.	If	that	is	the	case,	at	this	point	we	simply	randomly	select	one	of	these	in	order	to	have	a	single	
set	of	instruments	for	each	�n.	We	will	discuss	selection	using	the	Sargan	test	in	Section	3.1.

The	next	theorem	states	the	conditions	under	which	the	selection	̂n	is	consistent,	which	fol-
lows	directly	from	the	results	of	Lemma	1,	as	0	is	the	largest	group	by	Assumption	2.

Theorem 1 Let the �̂ j be defined as in (9) and their confidence intervals as in (13). Let ̂n be one of 
the largest groups of instruments for which all confidence intervals overlap with each other as 
defined in (14). For �n →∞, �n = o

(
n1∕2

)
, and under Assumptions 1- 6 it follows that

(12)y=d� j+Z{−j}�
[j] +uj,

(13)cij
(
�n

)
=
[
�̂ j− v̂j�n, �̂ j+ v̂j�n

]
,

(14)̂n: =

{
̂m

(
�n

)
:
|||̂m

(
�n

)||| = max
t=1,…,T(�n)

|||̂
over

t

(
�n

)|||
}

.
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The	next	theorem	states	the	oracle	properties	of	the	2SLS	estimator	based	on	selecting	Z
̂n

	as	

the	valid	 instruments	and	thus	Z
̂n

= Z�
{
Z
̂n

}
	as	 the	set	of	 invalid	 instruments.	This	result	

follows	directly	from	Theorem	2	in	Guo	et	al.	(2018).

Theorem 2 Let Z
̂n

= Z�
{
Z
̂n

}
 and let �̂

̂n
 be the 2SLS estimator of �, given by

Then	under	the	conditions	of	Theorem	1,	it	follows	that

For	any	value	�n,	the	sets	of	overlapping	CIs	can	easily	and	rapidly	be	obtained	as	follows.

Algorithm 1 Denote the lower and upper endpoints of cij
(
�n

)
 as defined in (13) by cilj

(
�n

)
 and 

ciuj
(
�n

)
. Order the confidence intervals in ascending order of the lower endpoints, and use the 

notation cil[j]
(
�n

)
 and ciu[j]

(
�n

)
 for the ordered intervals. For j = 2, . . . , kz, let 

no[j]
�
𝜓n

�
=

∑ j−1

k=1
1
�
ciu[k]

�
𝜓n

�
> cil[j]

�
𝜓n

��
. Then the largest set(s) of overlapping in-

tervals are those associated with the maximum value of no[j]
(
�n

)
.

For	the	sequences	�n →∞,	�n = o
(
n1∕2

)
,	it	follows	from	the	results	of	Lemma	1	and	Theorem	

1	that	̂n	as	defined	in	(14)	converges	to	the	unique	set	0.	It	is	therefore	immaterial	for	consis-
tent	selection	and	oracle	properties	how	we	choose	the	set	̂n	for	those	values	of	�n	where	there	
are	 multiple	 groups	 with	 the	 largest	 number	 of	 overlapping	 CIs.	We	 can	 extend	 the	 range	 of	
sequences	�n	if	we	choose	in	that	case	the	group	with	the	minimum	value	of	the	Sargan	test	as	
we	show	next.

3.1 | Sargan test

For	the	oracle	model	(2),

with	X0
=
[
d Z0

]
	and	�0

=
(
� ��

0

)�

,	the	Sargan	(1958)	test	statistic	is	given	by

where	û(�̂0
) = y−X0

�̂0
,	with	�̂0

	the	2SLS	estimator	of	�0
.

lim
n→∞

P
(
̂n = 0

)
= 1.

�̂
̂n

=
(
d̂
�
MZ

̂n
d̂
)−1

d̂
�
MZ

̂n
y.

√
n
�
�̂
̂n

− �
� d
→N

�
0, �2or

�
.

y = d� + Z0
�0

+ u = X0
�0

+ u,

(15)S
(
�̂0

)
=
û(�̂0

)�Z
(
Z�Z

)−1
Z�û(�̂0

)

û(�̂0
)�û(�̂0

)∕n
,
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As	 E
[
Zi.ui

]
= 0,	 and	 for	 k0

< kz,	 it	 follows	 under	 Assumptions	 1	 and	 3-	6	 that	√
n
�
�̂0

− �0

� d
→N

�
0,�0

�
,	 with	 �0 = �2uplim

(
X�
0
Z
(
Z�Z

)−1
Z�X0

∕n
)−1

,	 and	

S
(
�̂0

) d
→�2

kz −k0 −1
.	For	any	other	selection	Z ≠ Z0

	with	k ≤ k0
,	we	have	that	S

(
�̂

)
= Op (n).

The	results	of	the	CI	selection	method	can	be	linked	to	the	behaviour	of	the	Sargan	test	statis-
tic	as	it	follows	from	the	results	of	Theorems	1	and	2	that,	under	the	conditions	of	Theorem	1,	
S
(
�̂
̂n

) d
→�2

kz −k0 −1
.

We	can	now	allow	for	a	wider	range	of	values	of	the	sequence	�n	if	we	select	from	the	groups	
with	the	largest	number	of	overlapping	CIs	the	one	with	the	minimum	value	of	the	Sargan	test	
statistic.	Let	M

(
�n

)
	denote	the	number	of	groups	with	the	largest	number	of	overlapping	CIs,	

the	collection	of	these	groups	denoted	by	
{
̂
max

m′

(
�n

)}
,	m� = 1,…,M

(
�n

)
.

Then	define	̂
sar

n 	as

where	̂m

(
�n

)
=  � ̂m

(
�n

)
	and	̂

max

m�

(
�n

)
=  � ̂

max

m�

(
�n

)
,	m� = 1,…,M

(
�n

)
.

The	next	 theorem	gives	 the	conditions	 for	consistent	 selection	and	oracle	properties	when	
selecting	̂

Sar

n 	as	the	set	of	valid	instruments.

Theorem 3 Let the �̂ j be defined as in (9) and their confidence intervals as in (13). Let ̂
sar

n  be 
as defined in (16) and ̂

sar

n =  � ̂
sar

n . For k0 < kz, let cn = O (1) > 0 be such that when 
n→∞, �n →∞, for �n√

n
≤ cn, maxt=1,…,T(�n)

|||̂
over

t

(
�n

)|||→ k0 and for 𝜓n√
n
> cn, 

maxt=1,…,T(�n)
|||̂

over

t

(
�n

)|||→ K, with K ≥ k0 + 1. Then for n→∞, �n →∞, k0 = kz, or 
k0 < kz and �n√

n
≤ cn, and under Assumptions 1- 6 it follows that

and

3.2 | Downward testing procedure

From	the	results	of	Theorem	3,	we	can	devise	a	downward	testing	procedure	as	in	Andrews	(1999),	
reducing	the	dimension	of	the	problem	by	evaluating	only	the	models	selecting	the	sets	with	the	
largest	number	of	overlapping	CIs	as	valid	instruments.	The	Andrews	(1999)	downward	testing	
procedure	uses	the	Sargan	test	statistic	as	a	selection	device	for	the	consistent	selection	of	the	valid	
instruments.	It	starts	with	the	model	that	selects	all	kz	instruments	as	valid.	If	the	Sargan	test	rejects	
this	model,	then	the	procedure	next	evaluates	the	kz	models	with	kz − 1	instruments	selected	as	
valid,	treating	each	instrument	in	turn	as	invalid.	If	the	minimum	of	the	kz	Sargan	test	statistics	
does	not	reject	the	null,	then	the	associated	model	is	selected	as	the	valid	model.	If	the	minimum	

(16)
̂
sar

n : =

{
̂m

(
�n

)
:
|||̂m

(
�n

)||| = max
t=1,…,T(�n)

|||̂
over

t

(
�n

)||| ,

S
(
�̂
̂m(�n)

)
= min
m�=1,…,M(�n)

S
(
�̂
̂
max

m� (�n)

)}
,

lim
n→∞

P
(
̂
sar

n = 0

)
= 1

√
n
�
�̂
̂
sar

n
− �

� d
→N

�
0, �2or

�
.
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rejects	the	null,	then	all	

(
kz
2

)
	models	with	kz − 2	instruments	selected	as	valid	are	evaluated.	This	

gets	repeated	until	a	model	with	kz − k − 1	degrees	of	freedom	has	a	Sargan	test	result	that	does	

not	reject	the	null	hypothesis.	Denote	the	minimum	of	the	

(
kz
k

)
	Sargan	statistics	of	all	possible	

models	with	k	instruments	selected	as	invalid	by	Smin
(
k

)
.	Let

Then	if	the	critical	values	�n,kz−k−1	of	the	�2
kz −k−1

	distribution	satisfy

it	follows	from	the	results	in	Andrews	(1999),	that,	under	Assumptions	1–	6,
limn→∞P

(
̂ns =0

)
= 1,	or	equivalently,	limn→∞P

(
̂ns = 0

)
= 1,	with	̂ns =  �̂ns.

In	order	to	use	the	CI	method	to	reduce	the	dimension	of	the	downward	testing	procedure,	
consider	the	set	of	breakpoints

for	 j = 1,…, kz − 1,	r = j + 1,…, kz.	 From	 Algorithm	 1	 it	 follows	 that	 for	�n ≤ � ∗
j,r

,	cij
(
�n

)
	 and	

cir
(
�n

)
	 do	 not	 overlap,	 whereas	 they	 do	 when	 𝜓n > 𝜓 ∗

j,r
.	 Let	 � ∗

[kz −1]
=maxj,r

(
� ∗
j,r

)
.	 For	

𝜓n > 𝜓 ∗

[kz −1]
	all	kz	confidence	intervals	overlap.	At	�n = � ∗

[kz −1]
,	the	number	of	overlapping	CIs	in	

the	 largest	 groups	 drops	 by	 one	 to	 kz − 1,	 and	 there	 will	 be	 two	 groups,	 denoted	 as	 before	 as	{
̂
max

m�

(
� ∗

[kz −1]

)}
,	m� = 1,…,M

(
� ∗

[kz −1]

)
,	with	M

(
� ∗

[kz −1]

)
= 2.	The	next	breakpoint	where	

the	size	of	the	largest	groups	of	overlapping	CIs	is	equal	to	kz − 2	is	the	minimum	of	the	maximum	
of	the	breakpoints	(18)	in	the	two	largest	groups	of	size	kz − 1.	Denote	these	maximum	group-	specific	
breakpoints	 by	 � ∗

m�,[kz −2]
=max

{j,r}∈̂
max

m�

(
�∗

[kz−1]

)
(
� ∗
j,r

)
,	 for	m� = 1, 2,	 and	 the	 minimum	 by	

� ∗

[kz −2]
=minm�

(
� ∗
m�,[kz −2]

)
.	Note	that	for	𝜓 ∗

[kz −2]
< 𝜓n ≤ 𝜓 ∗

[kz −1]
,	the	maximum	group	size	re-

mains	kz − 1.	Then	at	�n = � ∗

[kz −2]
,	there	will	be	2 ≤M

(
� ∗

[kz −2]

)
≤ 3	groups	with	the	maximum	

kz − 2	overlapping	CIs,	and	the	next	breakpoint	where	the	size	of	the	largest	groups	of	overlapping	
CIs	is	equal	to	kz − 3	is	again	determined	by	the	minimum	of	the	maxima	of	the	breakpoints	(18)	in	
these	groups.	Repeating	this,	we	get	the	kz − 2	breakpoints

with	� ∗
[s]

=minm�

(
� ∗
m�,[s]

)
,	� ∗

m�,[s]
=max

{j,r}∈̂
max

m�

(
�∗
[s+1]

)
(
� ∗
j,r

)
,	and	at	each	breakpoint	we	have	

2 ≤M
(
� ∗

[s]

)
≤ kz − s + 1 = k + 1	groups	with	the	maximum	s	overlapping	CIs.

�ns : =
{
, k=min

(
0, 1, . . . , kz−2

)
: S

(
�𝜃

)
=Smin

(
k

)
<𝜁n,kz−k−1

}
.

(17)�n,kz−k−1→∞ for n→∞, and �n,kz−k−1=o (n) ,

(18)�∗
j,r =

|||�̂ j− �̂r
|||

v̂j+ v̂r
,

(19)𝜓∗
[2]<𝜓∗

[3]<. . . <𝜓∗

[kz−1]
,
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Combining	the	results	of	Theorem	3	with	the	downward	testing	procedure	of	Andrews	(1999)	
we	get	the	following	consistent	selection	and	oracle	properties.

Theorem 4 Let the breakpoints 
{
� ∗

[s]

}kz −1

s=2
 be as defined in (19) and let � ∗

[kz]
= � ∗

[kz −1]
+ �, for a 

constant 𝛿 > 0, so that the model with all kz instruments selected as valid is included. Let

where	̂
sar

n

(
� ∗

[s]

)
=  � ̂

sar

n

(
� ∗

[s]

)
,	with	̂

sar

n

(
� ∗

[s]

)
	defined	in	(16),	and	where	�n,s−1	satisfy	the	

conditions	stated	in	(17).	Let	̂
dts

n =  � ̂
dts

n .	Then	under	the	conditions	of	Theorem	3,	it	follows	that

and

It	follows	from	Theorem	4	that	� ∗
n = Op

(
n1∕2

)
,	as	� ∗

n	 is	asymptotically	equivalent	to	� ∗[
k0

]	

and	� ∗�
k0

�∕
√
n	is	asymptotically	equivalent	to	cn	as	specified	in	Theorem	3,	see	for	details	the	

proof	in	Appendix	A.1.

Following	a	result	in	Pötscher	(1983),	Andrews	(1999)	shows	that	(17)	holds	if	the	p-	value	of	
the	Sargan	 test	 satisfies	 pn → 0	 and	 log(pn) = o(n).	Therefore,	 instead	of	choosing	values	�n,s−1	
for	each	s,	we	can	choose	a	single	sequence	pn	for	consistent	selection.	Windmeijer	et	al.	(2019)	
choose	as	threshold	p-	value	for	the	Sargan	test	0.1∕log (n),	following	the	suggestion	of	Belloni	et	al.	
(2012)	and	which	satisfies	the	conditions	for	consistent	model	selection	and	oracle	properties	of	
the	resulting	2SLS	estimator.

With	this	strategy,	there	is	a	maximum	of	kz
(
kz − 1

)
∕2	models	to	be	evaluated.	Together	with	

the	use	of	Algorithm	1,	which	has	a	computational	cost	of	O
(
kzlog

(
kz
))

,	at	at	most	kz − 2	break-
points,	the	computational	cost	of	this	downward	testing	algorithm	is	of	the	order	O

(
k2z log

(
kz
))

.	
We	give	a	stepwise	description	of	the	full	downward	testing	algorithm	in	Appendix	A.4,	together	
with	an	illustration	using	a	single	generated	data	set.1

Under	the	plurality	Assumption	2,	the	CI	downward	testing	procedure	will	consistently	se-
lect	the	set	of	valid	instruments.	In	any	application	it	may	well	be	the	case	that	multiple	sets	of	
maximum	size	are	found	for	which	the	Sargan	test	statistics	do	not	reject	the	null.	The	method	of	
Andrews	(1999)	is	then	to	select	the	model	with	the	minimum	value	of	the	Sargan	test	statistics	
for	these	models	with	the	same	degrees	of	freedom,	which	is	replicated	by	̂

dts

n .	In	practice,	how-
ever,	a	researcher	should	acknowledge	the	fact	that	there	are	multiple	such	models,	which	could	
be	an	indication	of	a	violation	of	Assumption	2,	and	investigate	their	results,	which	could	lead	

�
dts

n : =

{
�
sar

n

(
𝜓∗
n

)
;𝜓∗

n=maxs=2,…kz

(
𝜓∗

[s]

)
: S

(
�𝜃 �

sar

n

(
𝜓∗
[s]

)
)

<𝜁n,s−1

}
,

lim
n→∞

P
(
̂
dts

n = 0

)
= 1

√
n

�
�̂
̂
dts

n

− �

�
d
→N

�
0, �2or

�
.

	1This	method	is	available	in	the	R-	package	CIIV,	https://github.com/xlbri	stol/CIIV.	Appendix	A.9	further	discusses	
how	the	method	can	be	applied	with	multisample	(e.g.	GWAS)	summary	data	under	the	assumption	that	the	
instruments	are	independent.

https://github.com/xlbristol/CIIV
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to	additional	insights	on	the	possible	pathways	from	instruments	to	exposure	and	from	exposure	
to	outcomes.

While	the	CI	method	achieves	dimension	reduction	by	ignoring	the	covariances	between	the	
estimators	�̂ j	when	constructing	the	sets	with	overlapping	CIs,	by	using	the	downward	Sargan	
based	testing	procedure	the	selected	model	is	the	one	with	the	largest	number	of	instruments	
with	overlapping	CIs	for	which	the	joint	null	hypothesis	is	not	rejected,	incorporating	the	full	
covariance	structure.

4 |  HARD THRESHOLDING METHOD

Consider	next	pairwise	testing	of	the	null	hypotheses	H0: � j = �k,	j = 1, . . . , kz − 1;k = j + 1, . . . , kz
.	These	are	equivalent	to	H0:

Γj

� j
=

Γk
�k

	and	a	reformulation	is	given	by	H0:Γk −
Γj

� j
�k = �

[j]
k

= 0.	Guo	

et	al.	(2018)	use	the	latter	as	the	basis	for	their	pairwise	testing	using	Wald	test	statistics.	Unlike	
the	score	test,	the	Wald	test	is	not	invariant	to	the	reformulation	of	a	non-	linear	restriction,	see	
for	 example	 Davidson	 and	 MacKinnon	 (2004,	 pp.	 422-	424),	 and	 while	 the	 Wald	 tests	 for	
H0: � j = �k	are	symmetric,	this	is	not	the	case	for	H0:�

[j]
k

= 0.	As	we	discuss	below	in	Section	4.3,	
the	score	test	here	is	the	same	as	the	Sargan	test	for	overidentifying	restrictions	when	Z.j	and	Z.k	
are	the	excluded	instruments.

An	estimator	for	�[j]
k

	is	given	by

It	 follows	 from	 the	 delta	 method	 that	
√
n
�
�̂
[j]
k

− �
[j]
k

� d
→N

�
0, �2

�
[j]
k

�
,	 with	

�2
�
[j]
k

= �2
j

(
Q−1
kk

− 2

(
�k
� j

)
Q−1
kj

+

(
�k
� j

)2

Q−1
jj

)
,	where	�2

j
	is	as	defined	in	(10).	An	estimator	for	the	

variance	of	�̂[j]
k

	is	therefore	given	by

where	�̂2j 	is	as	defined	in	(11),	with	nV̂ar
(
�̂
[j]
k

) p
→�2

�
[j]
k

.

Guo	et	al.	(2018)	consider	the	test	statistics2

(20)�̂
[j]
k

=Γ̂k−
Γ̂j

�̂ j
�̂k .

(21)V̂ar
�
�̂
[j]
k

�
= �̂2j

⎛⎜⎜⎝
�
Z�Z

�−1
kk

−2

�
�̂k

�̂ j

��
Z�Z

�−1
kj

+

�
�̂k

�̂ j

�2 �
Z�Z

�−1
jj

⎞⎟⎟⎠
,

	2We	provide	detail	of	the	correspondence	between	the	specification	in	Guo	et	al.	(2018)	and	our	notation	in	Appendix	
A.6.

(22)t
[j]
k

=
�̂
[j]
k

v̂
�
[j]
k
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for	k, j = 1, . . , kz,	k ≠ j,	where	 v̂
�
[j]
k

=

√
V̂ar

(
�̂
[j]
k

)
.	Let	 �̂

�
[j]
k

=
√
nv̂

�
[j]
k

.	 It	 follows	 that	under	 the	

null,	H0:�
[j]
k

= 0,	t[j]
k

d
→N (0, 1).	Hence,	for	the	sequence	�n →∞,	�n = o

(
n1∕2

)
,	when	�[j]

k
= 0,

and	when	�[j]
k

≠ 0,

Guo	et	al.	(2018)	then	define	the	set	̂[
j]
n 	as

These	are	the	instruments	k = 1, . . . , kz,	for	which	H0:�
[j]
k

= 0	is	not	rejected	using	critical	value,	
or	 threshold,	�n.	Note	 that	 instrument	 j	 is	always	contained	 in	̂[

j]
n .	 It	 follows	that,	 for	�n →∞,	

�n = o
(
n1∕2

)
,	if	�k = � j,	limn→∞P

(
k ∈ ̂

[j]
n

)
= 1	and	if	�k ≠ � j,	limn→∞P

(
k ∈ ̂

[j]
n

)
= 0.

As	these	are	not	joint,	but	only	pairwise	comparisons,	Guo	et	al.	(2018)	propose	a	majority	and	
plurality	voting	scheme	to	consistently	obtain	the	set	of	valid	instruments.	In	their	terminology,	
̂
[j]
n

	 is	expert	 j’s	ballot	 that	contains	expert	 j’s	opinion	about	which	instruments	are	valid.	The	
number	of	votes	an	instrument	k	gets	is	given	by

The	majority	rule	then	selects	an	instrument	as	valid	if	it	gets	a	vote	from	more	than	50%	of	the	ex-
perts.	The	group	of	instruments	selected	as	valid	is	then	given	by

If	none	of	the	instruments	gets	a	majority	vote,	the	plurality	rule	is	applied,	which	defines	the	set	of	
instruments	selected	as	valid	by

Let	̂
HT

n = ̂M ∪ ̂P,	then	Guo	et	al.	(2018,	pp.	13-	14)	show	that	under	Assumptions	1-	6	it	follows	
that

(23)lim
n→∞

P

(||||t
[j]
k

|||| ≤�n

)
=1,

(24)lim
n→∞

P

�����t
[j]
k

���� ≤�n

�
= lim
n→∞

P

⎛⎜⎜⎜⎝

�������

√
n
�
�̂
[j]
k

−�
[j]
k

�

�̂
[j]
�l

+

√
n�

[j]
k

�̂
[j]
�k

�������
≤�n

⎞⎟⎟⎟⎠
=0.

(25)̂
[j]
n =

{
k:
||||t
[j]
k

|||| ≤�n

}
.

VMk =

kz∑
j= 1

1

(
k ∈ ̂

[j]
n

)
.

(26)�M =

{
k:VMk >

kz
2

}
.

(27)̂P =

{
k:VMk =max

l
VMl

}
.

lim
n→∞

P
(
̂
HT

n = 0

)
= 1
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and

where	�̂
HT

n =

(
d̂
�
MZ

̂
HT
n

d̂

)−1

d̂
�
MZ

̂
HT
n

y,	Z
̂
HT

n

= Z�

{
Z
̂
HT

n

}
.

4.1 | Choice of tuning parameter

Guo	et	al.	(2018)	do	not	treat	�n	as	a	classical	tuning	parameter	and	they	do	not	specify	the	rate,	
�n →∞,	 �n = o

(
n1∕2

)
,	 as	 obtained	 for	 results	 (23)	 and	 (24)	 above.	 They	 set	

�n =

√
2. 012log

(
max

(
kz ,n

))
	which	in	the	setting	here	with	fixed	kz	and	n > kz	would	lead	to	

�n =

√
2. 012log (n).	The	motivation	seems	to	be	from	the	fact	that	there	are	kz

(
kz − 1

)
	statistics	

t
[j]
k

.	If	they	were	all	independent	N (0, 1)	distributed	random	variables,	then	it	follows	that	for	an	
increasing	number	of	instruments	kz,

see	Donoho	and	Johnstone	(1994).	For	the	kz	fixed	case	considered	here,	if	the	t[j]
k

	were	independent	
N (0, 1)	distributed	random	variables,	we	have	that

It	is	unclear	how	the	result	in	(29)	translates	into	an	optimal	choice	�n	as	a	function	of	n,	even	if	the	
t
[j]
k

	were	independently	distributed,	which	they	are	clearly	not.	We	find	in	the	Monte	Carlo	experi-
ments	below	that	the	value	of	�n =

√
2. 012log (n)	can	be	much	too	large,	resulting	in	selecting	a	

large	group	of	instruments	as	valid	that	includes	invalid	instruments.	Guo	et	al.	(2018,	p.	800)	state	
that	in	practice,	the	max

(
kz ,n

)
	is	often	replaced	by	kz	or	n	to	improve	the	finite	sample	performance.	

In	 the	R-	routine	TSHT.R,	Kang	(2018),	 the	default	 threshold	parameter	 for	 the	 low	dimensional	
setting	is	set	equal	to	� =

√
2. 012log

(
kz
)
,	in	line	with	the	results	(28)	and	(29)	above.	In	principle	

this	choice	of	�	does	not	lead	to	consistent	selection	for	fixed	kz	and	n→∞.	In	their	Monte	Carlo	
simulations,	Guo	et	al.	(2018)	instead	set	� =

√
2.01log

(
kz
)
	We	will	use	these	latter	two	values	to	

evaluate	the	performance	of	the	hard	thresholding	method	in	the	simulations	and	application	below.

4.2 | Voting

The	Guo	et	al.	(2018)	method	achieves	dimension	reduction	by	pairwise	testing	of	H0:�
[j]
k

= 0	
and	the	voting	mechanism.	A	weakness	of	the	voting	scheme	is	that	it	does	not	have	a	mecha-
nism	to	choose	between	sets	of	instruments	when	there	are	ties,	and	the	number	of	instruments	
selected	as	valid	is	not	guaranteed	to	be	monotonically	decreasing	for	decreasing	values	of	�n.	
Consider	 the	example	as	depicted	 in	Table	1.	There	are	 five	potential	 instruments.	 In	 the	 left	

√
n
�
�̂
HT

n − �
� d
→N

�
0, �2or

�
,

(28)lim
kz→∞

P

(
max
k,j

(||||t
[j]
k

||||
)

>

√
2log

(
kz

(
kz−1

)))
=0,

(29)E

[
max
k,j

(
t
[j]
k

)]
<

√
2log

(
kz

(
kz−1

))
.
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panel	of	the	table,	for	a	value	�1	for	the	tuning	parameter,	instruments	2	and	3	both	get	three	
votes,	including	the	votes	for	themselves,	whereas	instruments	1	and	2	get	two	votes	and	instru-
ment	5	only	one	vote.	Hence,	̂

HT

n,1 = {2, 3}	and	the	number	of	instruments	selected	as	valid	is	
equal	 to	 2.	 Next	 consider	 the	 right	 panel,	 with	 𝜓2 < 𝜓1,	 and	 the	 situation	 is	 such	 that	
�2 ≤

|||t
[2]
3
||| ≤ �1	and	�2 ≤

|||t
[3]
2
||| ≤ �1,	but	

||||t
[j]
k

|||| ≤ �2	for	k, j ∈ {1, 2}	and	k, j ∈ {3, 4}.	Now	instru-

ments	1,	2,	3	and	4	all	get	two	votes.	Application	of	the	plurality	rule	(27)	then	leads	to	selecting	
these	four	instruments	all	as	valid,	̂

HT

n,2 = {1, 2, 3, 4},	and	so	the	number	of	valid	instruments	se-
lected	here	 increases	 for	a	decreasing	value	of	�.	Because	of	 this,	 the	Andrews	(1999)	Sargan	
test-	based	downward	testing	procedure	cannot	be	applied	in	general	to	the	HT	method.

As	is	clear	from	Table	1,	the	voting	mechanism	can	select	the	instruments	in	non-	overlapping	
groups	all	as	valid.	One	way	to	overcome	the	problem	of	ties	in	the	voting	matrix	is	to	find	the	
maximal	cliques,	but	as	this	problem	is	np	complete,	Karp	(1972),	this	negates	the	dimension	re-
duction	properties	of	the	voting	scheme.	This	problem	is	circumvented	in	the	CI	method,	which	
keeps	track	of	the	groupings	and	selects	the	group	of	instruments	with	the	smallest	value	of	the	
Sargan	test	in	case	of	ties.

Further	note	that	for	the	HT	method	the	number	of	instruments	selected	as	valid	can	be	both	
larger	and	smaller	than	the	number	of	votes,	as	the	examples	in	Table	1	show.	With	the	asymmet-
ric	t[k]

j
,	it	could	also	be	the	case	that	only	one	instrument	is	selected	as	valid.	This	would	happen,	

for	example,	if	the	left	panel	was	changed	with	|||t
[3]
2
||| > 𝜓1,	but	|||t

[2]
3
||| ≤ �1,	in	which	case	only	in-

strument	2	is	selected	as	valid	with	three	votes.

4.3 | Relationship with the Sargan test

Proposition	A1	in	Appendix	A.5	shows	that	t[j]
k

	as	defined	in	(22)	can	equivalently	be	specified	as

after	2SLS	estimation	of	the	parameters	in	the	just-	identified	model	(12)

t
[j]
k

=
�̂
[j]
k,2sls√

V̂ar
(
�̂
[j]
k,2sls

) ,

y = d� j + Z{−j}�
[j] + uj,

T A B L E  1 	 Examples	of	voting

�1 𝝍2 < 𝝍1

k ∖ j 1 2 3 4 5 VMk k ∖ j 1 2 3 4 5 VMk

1 × × —	 —	 —	 2 1 × × —	 —	 —	 2

2 × × × —	 —	 3 2 × × —	 —	 —	 2

3 —	 × × × —	 3 3 —	 —	 × × —	 2

4 —	 —	 × × —	 2 4 —	 —	 × × —	 2

5 —	 —	 —	 —	 × 1 5 —	 —	 —	 —	 × 1
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with	Z{−j} = Z�
{
Z.j

}
,	using	Z.j	as	the	instrument	for	d,	and	using	the	notation	�̂[j]

2sls
=
(
�̂
[j]
k,2sls

)
k≠j

.	

Instead	of	the	t,	or	Wald	test,	one	could	perform	a	score	test	for	the	null	H0:�
[j]
k

= 0,	with	the	only	
difference	that	the	variance	is	estimated	under	the	null.	This	score	test	is	the	same	as	the	Sargan	test	
of	overidentifying	restrictions	in	the	model

where	Z{−jk} = Z�
{
Z.j,Z.k

}
,	 using	 both	Z.j	 and	Z.k	 as	 instruments	 for	d,	 see	 Newey	 and	 West	

(1987)	and	the	discussion	in	Appendix	A.5.	Denoting	this	Sargan	statistic	by	Sjk,	then	under	the	null	
H0:E

[
Zi.ujk,i

]
= 0,	and	under	Assumptions	1	and	3-	6,	Sjk

d
→�2

1
.

Unlike	the	t[j]
k

,	for	which	t[j]
k

≠ t
[k]
j

,	the	Sjk	are	symmetric,	Sjk = Skj,	an	invariance	feature	of	the	

score	test	which	is	invariant	to	specifying	the	null	as	H0:
Γk
�k

−
Γj

� j
= 0	or	H0:Γk −

Γj

� j
�k = 0.	There	

are	therefore	kz
(
kz − 1

)
∕2	statistics	Sjk	and,	instead	of	the	selection	rule	̂[

j]
n =

{
k:
||||t
[j]
k

|||| ≤ �n

}

,	we	can	use	the	asymptotically	equivalent	rule	̂[
j]
n =

�
k:
√
Sjk ≤ �n

�
.

5 |  ROBUSTNESS TO HETEROSKEDASTICITY

Both	the	CI	and	hard	thresholding	procedures	can	be	adapted	to	be	robust	to	heteroskedasticity,	
clustering	and/or	serial	correlation.	Consider	for	example	conditional	heteroskedasticity	of	the	
general	 form	 E

[
wiw

�
i
|Zi.

]
= �

(
Zi.

)
	 and	 E

[
�i�

�
i
|Zi.

]
= �

(
Zi.

)
,	 with	 the	 functions	 �

(
Zi.

)
	 and	

�
(
Zi.

)
	unknown.	Let	�̂ =

(
Γ̂
�
�̂
�
)�

,	then	a	robust	estimator	of	Var
(
�̂
)
	is	given	by

and	straightforward	application	of	the	delta	method	results	in	robust	variance	estimators	V̂arr
(
�̂ j

)
	

and	V̂arr
(
�̂
[j]
k

)
.

For	the	CI	method,	instead	of	using	the	Sargan	test	for	selection,	a	robust	score	test	needs	to	
be	used,	like	the	two-	step	Hansen	J-	test,	(Hansen,	1982).	For	the	oracle	model	(2),

the	two-	step	GMM	estimator	is	given	by

where	�̂0,1
	is	an	initial	one-	step	estimator,	for	example	the	2SLS	estimator,	and

(30)y=d� jk+Z{−jk}�
[jk] +ujk,

�Varr
(
��
)
=
(
I2 ⊗

(
Z�Z

)−1 )
(

n∑
i= 1

(
��i��

�
i ⊗ Zi.Z

�
i.

))(
I2 ⊗

(
Z�Z

)−1 )
,

y = d� + Z0
�0

+ u = X0
�0

+ u,

�̂0,2
=
(
X�
0
ZW−1

n

(
�̂0,1

)
Z�X0

)−1
X�
0
ZW−1

n

(
�̂0,1

)
Z�y,

Wn

(
�̂0,1

)
=

n∑
i= 1

(
Yi − X�

0,i.
�̂0,1

)2
Zi.Z

�
i..
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Let	û2 = y − X0
�̂0,2

	then	the	Hansen	J-	test	statistic	is	given	by

As	 E
[
Zi.ui

]
= 0,	 J

(
�̂0,2

, �̂0,1

) d
→�2

kz −k0 −1
,	 thus	 generalising	 the	 result	 for	 the	 Sargan	 test	

under	conditional	homoskedasticity	to	the	case	of	general	heteroskedasticity.
As	the	oracle	estimator,	we	can	then	specify	the	2SLS	estimator	with	robust	standard	errors,	

or	the	efficient	two-	step	GMM	estimator.

6 |  WEAK INSTRUMENTS

The	relevance	Assumption	1	states	that	� j ≠ 0	for	all	 j = 1, . . . , kz.	In	our	application	we	use	96	
single	nucleotide	polymorphisms	(SNPs)	as	potential	instruments	for	BMI	to	investigate	its	ef-
fect	on	blood	pressure.	These	SNPs	have	been	found	to	be	associated	with	BMI	in	independent	
genome	wide	association	studies	(GWAS),	see	Locke	et	al.	(2015).	While	the	assumption	is	there-
fore	very	likely	to	be	valid,	it	may	well	be	the	case	that	in	our	sample	individual	instruments	are	
weak	in	the	sense	that	they	only	explain	a	small	amount	of	the	variation	of	the	exposure.

The	presence	of	many	weak	instruments	leads	to	bias	in	the	2SLS	estimator.	This	many	weak	
instrument	 bias	 is	 much	 less	 for	 the	 Limited	 Information	 Maximum	 Likelihood	 (LIML)	 and	
Continuously	Updated	GMM	(CU-	GMM)	estimators,	see	Davies	et	al.	(2015)	and	the	references	
therein.	 Analogous	 to	 the	 problem	 of	 heteroskedasticity	 discussed	 in	 the	 previous	 section,	 to	
counter	a	potential	many	weak	instruments	bias	problem	of	the	2SLS	estimator,	the	CI	and	HT	
methods	can	estimate	the	parameters	by	LIML	or	CU-	GMM,	with	the	CI	method	adjusting	the	
Sargan	or	Hansen	test	statistic	accordingly.

For	the	selection	of	valid	instruments,	a	very	weak	invalid	instrument	could	often	be	classi-
fied	as	a	valid	instrument	in	the	CI	method	due	to	its	large	standard	error,	and	can	change	the	
selection	in	the	HT	method	by	giving	votes	to	a	large	number	of	instruments.	In	order	to	over-
come	the	selection	problem	with	weak	instruments,	Guo	et	al.	(2018)	proposed	a	first-	stage	hard	
thresholding	for	H0: � j = 0	and	to	classify	instruments	as	uninformative	and	treated	as	invalid	if

with	�n =
√
2.01log

{
max

(
kz ,n

)}
,	and	where	V̂ar

(
�̂ j
)
	can	be	a	robust	variance	estimator	in	case	

of	heteroskedasticity.	As	with	the	setting	of	�n	discussed	in	Section	4.1,	the	threshold	parameter	is	
set	to	�n =

√
2.01log

(
kz
)
	in	the	R	routine	TSHT.R	(Kang,	2018),	also	for	the	low-	dimensional,	fixed	

kz	case,	and	we	will	apply	this	first-	stage	thresholding	in	our	application.

A	potential	problem	with	this	first-	stage	thresholding	is	that,	as	the	instruments	are	not	a	pri-
ori	considered	to	be	valid,	there	is	a	chance	that	invalid	instruments	are	more	likely	to	cross	the	
threshold.	This	may	occur	for	instruments	of	the	type	Z2	as	displayed	in	Figure	A1	in	Appendix	
A.3.	As	Z2	affects	the	unmeasured	confounders	that	in	turn	affect	the	exposure,	the	Z2-	exposure	
relationship	itself	is	confounded	and	could	result	in	a	stronger	observed	effect	of	the	instrument	

J
(
�̂0,2

, �̂0,1

)
= û

�
2ZW

−1
n

(
�̂0,1

)
Z�û2.

(31)|||t𝛾 j
||| =

||||||||

�𝛾 j√
�Var

(
�𝛾 j
)

||||||||
<𝜔n,
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on	the	exposure	than	it	otherwise	would	have	been,	and	a	larger	chance	of	crossing	the	first-	stage	
threshold.

7 |  SOME MONTE CARLO RESULTS

In	order	to	illustrate	how	the	CI	and	HT	methods	utilise	the	available	information,	following	the	
discussion	in	Sections	3	and	4,	we	consider	a	design	similar	to	that	in	Guo	et	al.	(2018;	Table	2)	
who	considered	a	setting	with	a	small	number	of	potential	instruments,	kz = 7,	in	their	design	
where	the	majority	rule	is	violated,	but	the	plurality	rule	holds.	We	consider	here	such	setting	but	
with	a	larger	number	of	potential	instruments,	kz = 21.	We	present	a	replication	of	their	kz = 7	
design	in	Appendix	A.7.

The	data	are	generated	from

T A B L E  2 	 Estimation	results,	kz = 21

Mae Coverage
CI 
length |

|
|
̂n

|
|
|

por pallinv

n = 500

   2SLS	or 0.017 0.943 0.093 12.000 1.000 1.000

   2SLS 0.423 0.000 0.088 0.000 0.000 0.000

   HT4kz 0.321 0.000 0.083 1.982 0.000 0.000

   HT2kz 0.330 0.000 0.091 6.901 0.000 0.000

   CIsar 0.032 0.639 0.097 10.661 0.098 0.106

n = 1000

   2SLS	or 0.011 0.949 0.066 12.000 1.000 1.000

   2SLS 0.423 0.000 0.062 0.000 0.000 0.000

   HT4kz 0.325 0.000 0.065 6.822 0.000 0.000

   HT2kz 0.305 0.088 0.222 17.102 0.001 0.137

   CIsar 0.014 0.889 0.066 11.599 0.538 0.561

n = 2000

   2SLS	or 0.008 0.949 0.047 12.000 1.000 1.000

   2SLS 0.424 0.000 0.044 0.000 0.000 0.000

   HT4kz 0.320 0.176 0.208 18.421 0.018 0.277

   HT2kz 0.012 0.836 0.088 13.681 0.585 0.911

   CIsar 0.008 0.943 0.047 12.008 0.978 0.992

n = 5000

   2SLS	or 0.005 0.950 0.030 12.000 1.000 1.000

   2SLS 0.424 0.000 0.028 0.000 0.000 0.000

   HT4kz 0.005 0.947 0.030 12.031 0.984 1.000

   HT2kz 0.006 0.951 0.035 12.687 0.749 1.000

   CIsar 0.005 0.946 0.030 12.012 0.989 1.000

Notes:	Results	from	10,000	MC	replications;	median	absolute	error;	95%	CI	coverage	and	length;	number	of	instruments	
selected	as	invalid;	frequency	of	selecting	oracle	model;	frequency	of	selecting	all	invalid	instruments	as	invalid.
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where

with	� = 1;	kz = 21;	� = 0.25;	k0
= 12,	� = ca

(
��
6
, 0.5��

6
, 0�9

)�	and	� = c� × �kz,	where	�r	is	an	r-	vector	of	
ones,	and	0r	is	an	r-	vector	of	zeros.	There	are	therefore	3	groups	of	instruments,	c�∕c� = {1, 2,…, 6},	
0.5c�∕c�

= {7, 8,…, 12}	 and	0 = {13, 14,…, 21}.	0	 is	 the	 largest	group	and	 so	 the	plurality	 rule	
holds,	but	not	the	majority	rule.	The	elements	of	�z	are	given	by	Σz,jk = �

|j−k|
z .	We	set	�z = 0.5	and	

c� = c� = 0.4.	As	in	Guo	et	al.	 (2018),	 in	this	setting	all	 instruments	are	strong,	and	the	first-	stage	
thresholding	is	omitted.	Note	that	this	simple	design	represents	invalid	instruments	with	a	direct	ef-
fect	on	the	outcome	of	the	type	Z1	as	displayed	in	Figure	A1	in	Appendix	A.3.

Before	 evaluating	 estimation	 results	 using	 the	 downward	 testing	 CI	 method	 and	 the	 HT	
method	as	described	above,	Figure	1	shows	the	frequency	of	selection	of	the	oracle	model	for	the	
HT	and	CI	methods,	the	latter	on	the	basis	of	̂

sar

n (�)	as	defined	in	(16),	for	10,000	Monte	Carlo	
replications,	as	a	function	of	values	� = (0.15, 0.20, . . . , 6.95, 7)	and	for	a	sample	size	of	n = 2000

.	It	is	clear	that	the	CI	method	utilises	the	available	information	better	in	this	case	and	obtains	
a	maximum	frequency	of	selecting	the	oracle	model	of	0.98	at	� = 2.60,	whereas	the	maximum	
frequency	for	the	HT	method	is	only	0.60	at	� = 2.40.

Di= Z�i.�+�di

Yi= Di�+Z
�
i.�+ui,

(
ui
�di

)
∼ N

((
0

0

)
,

(
1 �

� 1

))
;

Zi. ∼ N
(
0,�z

)
;

F I G U R E  1 	 Frequency	of	selecting	oracle	model	as	a	function	of	�.	n = 2000,	kz = 21,	k0
= 12,	c� = c� = 0.4
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Figure	2	shows	the	average	total	number	of	instruments	selected	as	invalid,	|||̂n
|||,	and	the	av-

erage	number	of	invalid	instruments	selected	as	invalid	as	a	function	of	�.	While	both	methods	
can	correctly	select	the	12	invalid	instruments	as	invalid	for	a	range	of	values	of	�,	the	CI	method	
can	do	so	without	also	selecting	valid	instruments	as	invalid.	In	contrast,	the	HT	method	selects	
on	average	additional	valid	instruments	as	invalid,	resulting	in	the	difference	in	the	frequencies	
of	selecting	the	oracle	model.	At	� = 2.40,	the	HT	method	selects	on	average	11.94	invalid	instru-
ments	 correctly	 as	 invalid,	 but	 selects	 on	 average	 a	 total	 of	 13.52	 instruments	 as	 invalid.	 At	
� = 2.60,	 the	CI	method	selects	on	average	11.99	 invalid	 instruments	correctly	as	 invalid,	and	
selects	on	average	a	total	of	12.01	instruments	as	invalid,	hence	the	much	higher	frequency	of	
selecting	the	oracle	model	for	the	CI	method.

As	is	clear	from	Figure	2,	the	number	of	selected	instruments	as	invalid	is	not	monotonically	
increasing	for	decreasing	values	of	the	threshold	�	for	the	HT	method,	as	discussed	in	Section	
4.2,	whereas	it	is	for	the	CI	method.

The	proposed	 threshold	value	 for	 the	HT	method,	�n =

√
2. 012log (n) = 5.54	 is	clearly	 too	

large	a	value	in	this	design.	The	alternative	choice	is	� =

√
2. 012log

(
kz
)
= 3.51.	As	shown	in	

Figure	1,	the	probability	of	selecting	the	oracle	model	at	this	value	is	equal	to	only	0.018.	Figure	
2	shows	that	the	average	number	of	correctly	selected	invalid	instruments	at	this	value	of	�	is	
10.93,	and	quite	a	few	valid	instruments	are	selected	as	invalid,	with	the	average	total	number	of	
instruments	selected	as	invalid	equal	to	18.42.	Guo	et	al.	(2018)	used	the	value	of	� =

√
2.01log

(
kz
)
	

in	their	Monte	Carlo	simulations,	which	in	this	case	is	equal	to	� = 2.47,	very	close	to	the	optimal	
value	of	� = 2.40	for	the	maximum	frequency	of	oracle	selection.	Here	the	probability	of	select-
ing	the	oracle	model	is	equal	to	0.59,	on	average	correctly	selecting	11.91	invalid	instruments	as	
invalid,	and	selecting	on	average	a	total	number	of	13.68	instruments	as	invalid.

Table	2	shows	estimation	results	for	the	downward	testing	CI	method	and	the	HT	method	for	
this	 design	 for	 different	 values	 of	 the	 sample	 size	n = 500, 1000, 2000, 5000,	 for	 10,000	 Monte	

F I G U R E  2 	 Average	total	number	of	instruments	selected	as	invalid	(all)	and	number	of	invalid	instruments	
selected	as	invalid	(inv)	as	a	function	of	�.	n = 2000,	kz = 21,	k0

= 12,	c� = c� = 0.4
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Carlo	replications.	As	in	Guo	et	al.	(2018),	we	present	the	median	absolute	error	(mae),	the	cov-
erage	probability	of	the	95%	CI	for	�	and	the	average	length	of	the	confidence	intervals.	In	addi-
tion,	we	present	the	average	number	of	instruments	selected	as	invalid,	|||̂n

|||,	the	frequency	of	
selecting	the	oracle	model,	por,	and	the	frequency	of	selecting	all	invalid	instruments	as	invalid,	

pallinv.	The	95%	CI	 is	given	by	
[
�̂
̂n

− 1.96v̂
�̂
̂n

, �̂
̂n

+ 1.96v̂
�̂
̂n

]
,	with	 v̂

�̂
̂n

=

√
V̂ar

(
�̂
̂n

)
,	 the	

2SLS	standard	error.
Results	 are	 presented	 for	 the	 HT	 method,	 using	 � =

√
2. 012log

(
kz
)
= 3.51	 and	

� =

√
2.01log

(
kz
)
= 2.47	as	threshold	values,	denoted	HT4kz	and	HT2kz,	respectively,	and	for	the	

CI	method	using	the	downward	testing	procedure	based	on	the	Sargan	test	threshold	p-	value	of	
0.1∕log (n)	as	described	in	Section	3.2	and	denoted	CIsar.	Also	given	are	the	estimation	results	for	
the	oracle	2SLS	estimator	(2SLS	or)	and	the	naive	2SLS	estimator	(2SLS)	that	treats	all	instru-
ments	as	valid.

The	CIsar	estimator	is	better	behaved	than	the	HT	estimators,	especially	at	the	smaller	sample	
sizes	n = 500	and	n = 1000,	with	the	CIsar	estimator	having	a	much	smaller	mae	and	much	better	
coverage	probability	than	either	HT	estimator.	For	example,	at	n = 1000,	the	mae	for	CIsar	is	very	
similar	to	that	of	oracle	2SLS,	0.014	vs	0.011,	and	the	coverage	probability	is	0.89,	with	the	aver-
age	length	of	the	CI	being	the	same	as	that	of	the	oracle	estimator	and	equal	to	0.066.	In	contrast,	
the	mae	for	HT2kz	at	n = 1000	is	equal	to	0.31.	Its	coverage	probability	is	only	0.088,	and	the	aver-
age	length	of	the	CI	is	large	and	equal	to	0.22.	The	latter	is	due	to	the	fact	that	too	many	instru-
ments	get	selected	as	invalid,	the	average	|||̂n

|||	being	17.10,	compared	to	11.60	for	CIsar.	In	terms	
of	mae	and	coverage	probability	HT2kz	is	better	behaved	than	HT4kz	for	n = 1000	and	n = 2000.	
Although	all	three	estimators	are	close	to	oracle	2SLS	at	n = 5000,	and	select	all	invalid	instru-
ments	correctly	as	invalid,	the	HT4kz	is	now	better	behaved	overall	than	HT2kz	as	HT2kz	still	selects	
on	average	too	many	instruments	as	invalid,	12.69,	versus	12.03	and	12.01	for	HT4kz	and	CIsar,	
respectively.	This	is	as	expected,	as	the	threshold	parameter	needs	to	increase	with	the	sample	
size	for	consistent	selection	in	this	fixed	kz	setup.

The	results	for	the	kz = 7	case	as	presented	in	Appendix	A.7	show	again	a	better	performance	
of	the	CIsar	estimator	in	terms	of	mae	and	coverage	probability	compared	to	the	HT	estimators,	
although	the	differences	are	overall	smaller	due	to	the	smaller	number	of	instruments.

The	CI	method,	as	it	ignores	covariances	for	the	grouping	of	instruments,	is	well	suited	to	low	
instrument	correlation	settings	as	in	Mendelian	randomisation,	but	it	clearly	does	also	very	well	
in	the	instrument	correlation	setting	as	specified	above.	The	HT	method	may	well	have	better	
finite	sample	properties	in	different	settings,	but	a	main	advantage	of	the	CI	downward	testing	
method	is	that	it	selects	the	model	with	the	largest	number	of	instruments	selected	as	valid	that	
passes	the	Sargan	test.	In	contrast,	the	HT	method	may	select	models	that	do	get	rejected	by	the	
Sargan	test,	as	we	find	in	the	application	presented	next.

8 |  APPLICATION: THE EFFECT OF BMI ON 
BLOOD PRESSURE

We	use	data	on	105,276	individuals	from	the	UK	Biobank	and	investigate	the	effect	of	BMI	on	
diastolic	blood	pressure,	DBP.	See	for	further	details	Windmeijer	et	al.	(2019).	We	use	96	SNPs	
as	potential	 instruments	 for	BMI	as	 identified	 in	 independent	GWAS	studies,	see	Locke	et	al.	
(2015).	Because	of	skewness,	we	log-	transformed	both	BMI	and	DBP.	The	linear	model	specifica-
tion	includes	age,	age2	and	sex,	together	with	15	principal	components	of	the	genetic	relatedness	
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matrix	 as	 additional	 explanatory	 variables.	 Because	 of	 the	 log-	transformation,	 the	 interpreta-
tion	of	the	causal	parameter	of	interest	�	is	that	of	an	elasticity,	that	is	an	increase	of	BMI	by	1%	
changes	DPB	by	�%.

Table	3	presents	 the	estimation	results.	R	code	 for	 the	estimation	procedure	 is	available	at	
https://github.com/xlbri	stol/CIIV.	We	present	here	the	results	based	on	the	assumption	of	con-
ditional	homoskedasticity.	Robust	methods	as	discussed	in	Section	5	produce	virtually	identical	
results.	The	first	set	of	results	is	based	on	the	full	set	of	instruments,	not	performing	a	first-	stage	
thresholding,	or	in	other	words	setting	�n = 0	in	(31).	The	OLS	estimate	of	the	causal	parameter	
is	equal	 to	0.206	 (SE	0.002),	whereas	 the	2SLS	estimate	 treating	all	96	 instruments	as	valid	 is	
much	smaller	at	0.087	(SE	0.016).	The	Sargan	test,	however,	rejects	the	null	that	all	the	instru-
ments	are	valid	with	a	p-	value	of	2.05e-	19.

The	HT4kz	 method	 does	 not	 select	 any	 instruments	 as	 invalid,	 whereas	HT2kz	 selects	 three	
instruments	as	invalid.	The	HT2kz	estimate	is	equal	to	0.104	(SE	0.016),	slightly	larger	that	the	
2SLS	estimate,	but	the	Sargan	test	still	has	a	very	small	p-	value	of	3.11e-	11,	rejecting	this	model.

Using	a	threshold	p-	value	of	0.1∕log(n) = 0.0086	for	the	downward	testing	CIsar	procedure	re-
sults	in	a	selection	of	13	instruments	as	invalid.	The	CIsar	estimate	is	0.140	(SE	0.019),	indicating	
a	downward	bias	of	the	2SLS	estimator	when	treating	all	instruments	as	valid.	The	p-	value	of	the	
Sargan	test	in	the	resulting	model	is	equal	to	0.011.

Further	presented	are	the	estimation	results	of	the	post-	adaptive	Lasso	estimator	of	Windmeijer	
et	al.	(2019),	also	using	a	downward	Sargan	p-	value	based	testing	procedure.	This	method	selects	
11	instruments	as	invalid,	resulting	in	an	estimate	of	0.163	(SE	0.018)	and	a	p-	value	of	the	Sargan	
test	of	0.013.	This	method	has	oracle	properties	if	more	than	50%	of	the	instruments	are	valid,	an	
assumption	that	does	not	appear	to	be	invalid	given	the	estimation	results	of	the	CIsar	method.	It	
is	more	efficient	in	this	case	than	the	CIsar	method	as	it	finds	a	model	with	a	larger	group	of	valid	
instruments	that	passes	the	Sargan	test.

T A B L E  3 	 Estimation	results,	the	effect	of	ln(BMI)	on	ln(DBP)

Estimate SE |
|
|
Ân

|
|
|

p- value 
Sargan 
test

�n = 0,	kz = 96

OLS 0.206 0.002

2SLS 0.087 0.016 0 2.05e-	19

HT4kz 0.087 0.016 0 2.05e-	19

HT2kz 0.104 0.016 3 3.11e-	11

CIsar 0.140 0.019 13 0.011

Post-ALassosar 0.163 0.018 11 0.013

�n = 3.03,	kz = 62

OLS 0.206 0.002

2SLS 0.086 0.016 0 2.80e-	19

HT4kz 0.098 0.016 1 5.29e-	14

HT2kz 0.104 0.017 2 1.90e-	11

CIsar 0.174 0.020 9 0.014

Post−ALassosar 0.174 0.020 9 0.014

Notes:	Sample	size	n = 105, 276.

https://github.com/xlbristol/CIIV
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Of	the	selected	invalid	instruments,	the	CI	and	Lasso	methods	have	eight	in	common.	In	par-
ticular,	the	Lasso	method	is	able	to	select	as	invalid	two	instruments	that	are	very	weak	with	large	
values	of	|||�̂ j

|||	and	se
(
�̂ j

)
.	The	CI	method	is	not	able	to	classify	these	as	invalid,	as	discussed	in	

Section	6.	We	can	therefore	apply	the	first-	stage	thresholding	in	order	to	exclude	these	instru-
ments	from	consideration.

The	second	set	of	results	presented	in	Table	3	performs	a	first-	stage	thresholding	using	the	
Guo	et	al.	(2018)	recommended	value	of	�n =

√
2.01log

(
kz
)
= 3.03.	A	total	of	34	instruments	do	

not	pass	 this	 threshold.	They	are	 treated	as	 invalid	and	 included	 in	 the	model	as	explanatory	
variables.	The	OLS	and	naive	2SLS	estimators	are	virtually	unchanged.	The	HT4kz	estimator	se-
lects	one	additional	 instrument	as	 invalid,	with	the	p-	value	of	 the	Sargan	test	of	 the	resulting	
model	 equal	 to	 5.29e-	14,	 clearly	 rejecting	 the	 model.	The	HT2kz	 procedure	 selects	 two	 instru-
ments	as	 invalid	and	the	model	 is	also	rejected	by	the	Sargan	test.	 Interestingly,	 the	CIsar	and	
post-	adaptive	Lasso	procedures	result	 in	the	same	model	selection	with	the	same	nine	instru-
ments	selected	as	invalid.	The	resulting	estimate	is	equal	to	0.174	(SE	0.020),	again	showing	that	
the	naive	2SLS	estimator	of	the	effect	of	log (BMI)	on	log (DBP)	is	downward	biased.	This	result	is	
quite	close	to	the	OLS	result,	indicating	that	there	is	much	less	unobserved	confounding	in	this	
relationship	than	suggested	by	the	naive	2SLS	estimator.	The	9	instruments	selected	as	invalid	for	
�n = 3.03	are	a	subset	of	the	13	instruments	selected	for	�n = 0	for	CIsar.	For	the	Lasso	procedure,	
eight	of	the	nine	instruments	selected	as	invalid	for	�n = 3.03	were	also	selected	as	invalid	for	
�n = 0.

Figure	A4	in	Appendix	A.8	displays	the	CIs	for	the	�n = 3.03,	kz = 62	case	at	the	selected	final	
breakpoint	� ∗

n = 2.35.	Only	one	of	the	instruments	selected	as	invalid	has	a	positive	estimate	for	
the	causal	effect,	whereas	the	other	eight	have	negative	estimates,	resulting	in	a	larger	estimate	
of	the	causal	effect	when	these	instruments	are	treated	as	invalid.

In	order	to	compare	the	results	to	those	found	by	Zhao	et	al.	(2019),	we	also	performed	the	
analysis	on	the	untransformed	BMI	and	DPB	variables.	The	results	for	OLS	in	this	case	are	0.559	
(0.0062),	for	2SLS,	0.248	(0.0452),	and	for	CIsar,	0.568	(0.0565),	with	13	instruments	found	to	be	in-
valid.	For	the	pre-	selected	kz = 62	case,	the	results	for	2SLS	are	0.244	(0.0469),	and	for	CIsar,	0.494	
(0.0557),	with	nine	instruments	found	to	be	invalid.	In	the	latter	case,	these	invalid	instruments	
are	identical	to	the	ones	found	above,	but	this	is	not	the	case	when	kz = 96.	Again	these	results	
suggest	that	the	original	OLS	results	suffer	much	less	from	unobserved	confounding	bias	than	
the	naive	2SLS	estimator	suggests.	These	results	are	similar	to	those	found	in	the	two-	sample	
summary	data	analysis	of	Zhao	et	al.	(2019),	who	found	profile	score,	RAPS,	IVW	and	weighted	
median	estimates	of	0.601	(0.054),	0.402	(0.106),	0.514	(0.102)	and	0.472	(0.176),	respectively	in	
their	analysis	with	160	SNPs	as	potential	instruments.

9 |  CONCLUSION AND DISCUSSION

We	have	shown	that	the	CI	method	for	selecting	the	set	of	valid	instruments	from	a	putative	set	
of	instruments	that	may	include	invalid	ones	for	an	instrumental	variables	analysis	is	a	viable	
alternative	to	the	hard	thresholding	method	and	the	adaptive	Lasso	method	when	the	plurality	
rule	 holds.	 The	 methods	 developed	 for	 selecting	 invalid	 instruments	 thus	 far	 have	 only	 con-
sidered	a	single	endogenous	treatment	variable.	Recent	analyses	have	considered	models	with	
multiple	treatments,	see	for	example	Sanderson	et	al.	(2019)	for	an	examination	of	multivariable	
Mendelian	randomisation.	An	extension	of	the	instrument	selection	methods	for	multiple	treat-
ment	models	is	not	straightforward.	When	the	majority	rule	applies,	the	adaptive	Lasso	method	
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can	 be	 utilised	 by	 constructing	 an	 initial	 consistent	 median-	of-	medians	 estimator,	 see	 Liang	
and	Windmeijer	(2020).	For	the	HT	and	CI	methods,	such	an	extension	is	the	subject	of	future	
research.
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