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Abstract
We propose a new method, the confidence interval (CI) 
method, to select valid instruments from a larger set of 
potential instruments for instrumental variable (IV) esti-
mation of the causal effect of an exposure on an outcome. 
Invalid instruments are such that they fail the exclusion 
conditions and enter the model as explanatory variables. 
The CI method is based on the CIs of the per instrument 
causal effects estimates and selects the largest group with 
all CIs overlapping with each other as the set of valid in-
struments. Under a plurality rule, we show that the re-
sulting standard IV, or two-stage least squares (2SLS) 
estimator has oracle properties. This result is the same 
as for the hard thresholding with voting (HT) method of 
Guo et al. (Journal of the Royal Statistical Society : Series 
B, 2018, 80, 793–815). Unlike the HT method, the num-
ber of instruments selected as valid by the CI method is 
guaranteed to be monotonically decreasing for decreas-
ing values of the tuning parameter. For the CI method, 
we can therefore use a downward testing procedure based 
on the Sargan (Econometrica, 1958, 26, 393–415) test for 
overidentifying restrictions and a main advantage of the 
CI downward testing method is that it selects the model 
with the largest number of instruments selected as valid 
that passes the Sargan test.
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1  |   INTRODUCTION

Instrumental variables (IV) estimation is a well-established method for determining causal ef-
fects of an exposure on an outcome, when this relationship is potentially affected by unobserved 
confounding. For recent reviews and examples, see Clarke and Windmeijer (2012), Imbens 
(2014), Kang et al. (2016) and Burgess et al. (2017).

As Guo et al. (2018, p. 793) state, an IV analysis requires instruments that 

1.	 are associated with the exposure (Condition 1),
2.	 have no direct pathway to the outcome (Condition 2) and
3.	 are not related to unmeasured variables that affect the exposure and the outcome (Condition 3).

Condition 1 is often referred to as the relevance condition and Conditions 2 and 3 as the exclusion 
conditions, see Section 2 for details.

This paper is concerned with violations of the exclusion conditions of the instruments. Following 
closely the setup of Kang et al. (2016), Windmeijer et al. (2019) and Guo et al. (2018), if an instru-
ment satisfies the exclusion Conditions 2 and 3 it is classified as a valid instrument. If an instrument 
does not satisfy Condition 2 and/or 3, it is classified as invalid. Use of invalid instruments in an IV 
analysis leads to inconsistent estimates of the causal effect and it is therefore important to select the 
set of valid instruments from the set of putative IVs that may include invalid ones.

As an example, Mendelian randomisation is a technique employed in epidemiology to learn 
about the causal effects of modifiable health exposures on disease. It posits that genetic variants, 
which are known to be associated with the exposure and hence satisfy Condition 1, additionally 
satisfy the exclusion conditions and are only associated with the outcome through the exposure. 
In our Mendelian randomisation application in Section 8, we utilise genetic variants as potential 
instruments for BMI in order to determine its causal effect on diastolic blood pressure. However, 
a genetic variant could be an invalid instrument for various reasons, such as linkage disequilib-
rium and horizontal pleiotropy, see, for example, Lawlor et al. (2008) and von Hinke et al. (2016).

The so-called plurality rule holds if the set of valid instruments forms the largest group, as 
specified in Section 2. An approach for selecting the valid instruments could then be to follow 
Andrews (1999) and estimate the causal effect for all 2kz −

(
kz + 1

)
 possible subsets of at least two 

instruments, where kz denotes the total number of instruments, and to select the model that min-
imises an information criterion based on the Sargan (1958) test of overidentifying restrictions. A 
large value of the Sargan test statistic is an indication that invalid instruments are present. This 
approach is only feasible with a relatively small number of instruments, unlike in our application 
where we have 96 putative genetic instruments. We therefore need dimension reduction tech-
niques, even though we are in a setting of a fixed number of instruments kz with a large sample 
size n, the setting referred to as low dimensional by Guo et al. (2018).

Following the Lasso proposal by Kang et al. (2016), Windmeijer et al. (2019) proposed an 
adaptive Lasso estimator in combination with a downward testing procedure based on the Sargan 
test as in Andrews (1999). When the majority rule holds, meaning that more than 50% of the 
potential instruments are valid, then this approach results in consistent selection of the invalid 
instruments and oracle properties of the resulting standard IV, or two-stage least squares (2SLS) 
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estimator. This means that the limiting distribution of the estimator is the same as the oracle 
estimator, which is the 2SLS estimator when the set of invalid instruments is known. Guo et al. 
(2018) proposed a two-stage hard thresholding with voting (HT) method that results in consis-
tent selection of the valid instruments and oracle properties of the 2SLS estimator when the 
weaker plurality rule holds.

In this paper, we develop an alternative method, which we call the confidence interval (CI) 
method as presented in Section 3. This method simply selects as valid instruments the largest group 
of instruments where all CIs of the instrument-specific causal effect estimates overlap, with a tun-
ing parameter varying the width of the CIs. Like the Guo et al. (2018) method, we show that the CI 
method results in consistent selection and oracle properties of the resulting 2SLS estimator when the 
plurality rule holds. An advantage of the CI method is that the number of instruments selected as 
valid decreases monotonically for decreasing values of the tuning parameter, which is not the case 
for the HT method as we discuss in Section 4. For the CI method, we can therefore use a downward 
testing procedure based on the Sargan test and a main advantage of this CI method is that it selects 
the model with the largest number of instruments selected as valid that passes the Sargan test.

While initially making the assumptions of conditional homoskedasticity and strong instru-
ments in Section 2 for ease of exposition, we discuss in Section 5 how to adapt the methods 
to deal with general forms of heteroskedasticity. We further discuss the first-stage thresholding 
method of Guo et al. (2018) to dealing with weak instruments in Section 6.

We evaluate the two methods in the Monte Carlo exercise in Section 7, for a design very similar to 
that in Guo et al. (2018). We find that, overall, the CI method has a better finite sample performance 
than the HT method in this design. In the application in Section 8, we find that the HT method 
selects too few instruments as invalid, resulting in models that are rejected by the Sargan test. By 
design, the CI method selects models that pass the Sargan test. It produces results very similar to 
the adaptive Lasso method which suggests that the majority rule is not violated in this application.

We adopt the following notation. x denotes the vector with elements xj. For a general matrix 
X , X ′ denotes its transpose. All vectors are taken as column vectors, including Xi., where the 
row vector X′

i. is the ith row of the matrix X . For a full column-rank matrix X with n rows define 
PX = X

(
X�X

)−1
X�, the projection onto the column space of X, and MX = In − PX, where In is 

the n-dimensional identity matrix. Proofs of Lemma 1 and Theorems 3 and 4 in Section 3 are 
presented in the Supplementary Appendix A.1.

2  |   MODEL AND ASSUMPTIONS

Let the observed outcome for observation i be denoted by the scalar Yi, the treatment or exposure 
by the scalar Di and the vector of kz potential instruments by Zi.. The instruments may not all be 
valid and can have a direct effect on, and/or an indirect association with the outcome, violating 
Condition 2 and/or 3. We have a sample 

{
Yi,Di,Z

�
i.

}n
i=1

. We follow Kang et al. (2016) and Guo 
et al. (2018), who, starting from the additive linear, constant effects model of Holland (1988), ar-
rived at the observed data model for the sample given by

where � is the causal parameter of interest, and with E
[
ui|Zi.

]
= 0, but Di might be correlated with 

ui. The parameter vector � represents the possible violations of the exclusion conditions and can be 
used to formalise the definition of valid IVs as follows (Guo et al. 2018, p 797).

(1)Yi=Di�+Z
�
i.�+ui,
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Definition 1  If �j = 0, then instrument j, j = 1,…, kz, is valid, it satisfies both Conditions 2 and 
3. If �j ≠ 0, then instrument j is invalid.

We present some graphical representations of the causal model and possible violations of the 
exclusion conditions in Appendix A.3.

Let y and d be the n-vectors of n observations on 
{
Yi
}
 and 

{
Di
}
, respectively, and let Z be the 

n × kz matrix of potential instruments. As an intercept is implicitly present in the model, y, d and 
the columns of Z have all been centered by the subtraction of their means. Other covariates can 
be partialled out in the same way. Let Z0 and Z0

 be the sets of valid and invalid instruments, 
0 =

{
j: �j = 0

}
, 0 =

{
j: �j ≠ 0

}
, with dimensions k0 and k0

, respectively, and kz = k0 + k0
. 

 =
{
1, . . . , kz

}
 denotes the full set and so 0 = �0.

The oracle model is then given by

Let d̂ = PZd, then the oracle 2SLS estimator for � is the OLS estimator in the specification

where � is defined implicitly, and is given by

Under standard assumptions, as detailed below, and as n→∞,

where

see Appendix A.2 for a derivation.
The vector d̂ = PZd = Z�̂ is the linear projection of d on Z, with �̂ the OLS estimator of 

� = E
[
Zi.Z

�
i.

]−1
E
[
Zi.Di

]
 in the linear model specification

with E
[
Zi.�di

]
= 0. We initially assume that all instruments satisfy Condition 1, implying that the kz 

elements � j in �, are all different from 0:

Assumption 1  � =
(
E
[
Zi.Z

�
i.

])−1
E
[
Zi.Di

]
, � j ≠ 0, j = 1, . . . , kz.

(2)y=d�+Z0
�0

+u.

y = d̂� + Z0
�0

+ �,

(3)�̂or=
(
d̂
�
MZ0

d̂
)−1

d̂
�
MZ0

y.

(4)
√
n
�
�̂or−�

� d
⟶N

�
0, �2�or

�
,

(5)

�2�or
= �2u

(
plim

(
1

n
d̂
�
MZ0

d̂
)−1

)
,

= �2u

(
E
[
Zi.Di

]�
E
[
Zi.Z

�
i.

]−1
E
[
Zi.Di

]
−E

[
Z0,i.

Di

]�
E
[
Z0,i.

Z�
0,i.

]−1
E
[
Z0,i.

Di

])−1

,

(6)Di=Z
�
i.�+�di,
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This is the same assumption as in Kang et al. (2016) and Windmeijer et al. (2019). Guo et al. 
(2018) relaxed this assumption and proposed a first-stage hard thresholding procedure to consis-
tently select only instruments with � j ≠ 0. We will discuss this further in Section 6 and apply this 
first-stage thresholding in our application.

Let Γ = E
[
Zi.Z

�
i.

]−1
E
[
Zi.Yi

]
. As Yi = Di� + Z�

i.� + ui = Z�
i.�� + Z�

i.� + ui + �di�, it follows that 
Γ = �� + �. Then define � j as

for j = 1, . . . , kz. It follows from Definition 1 and Assumption 1 that for valid instruments, j ∈ 0, 
� j = �. Following Theorem 1 in Kang et al. (2016) and Guo et al. (2018), a necessary and sufficient 
condition to identify � and the �j, given Γ and �, is that the valid instruments form the largest group, 
where instruments form a group if they have the same value for � j. This is the plurality rule. As in 
Guo et al. (2018), we maintain the assumption that this condition is satisfied:

Assumption 2  ||0|| >maxg≠0
|||g

|||, where g =
{
j:

�j

� j
= g

}
.

For the sample 
{
Yi,Di,Z

�
i.

}n
i=1

, and models (1) and (6), we further assume that the following 
standard conditions hold:

Assumption 3  E
[
Zi.Z

�
i.

]
= Q, with Q a finite and full rank matrix.

Assumption 4  Let wi =
(
ui �di

)�. Then E
[
wi

]
= 0; E

[
wiw

�
i

]
=

[
�2u �u�d
�u�d �2�d

]
= �. The ele-

ments of � are finite.

Assumption 5  plim
(
n−1Z�Z

)
= E

[
Zi.Z

�
i.

]
= Q; plim

(
n−1Z�d

)
= E

[
Zi.Di

]
;

plim
(
n−1Z�u

)
= E

[
Zi.ui

]
= 0; plim

(
n−1Z��d

)
= E

[
Zi.�di

]
= 0;

plim
�
n−1 ∑ n

i=1
wi

�
= 0; plim

�
n−1 ∑ n

i=1
wiw

�
i

�
= Σ.

Assumption 6  1√
n

∑ n
i=1

vec
�
Zi.w

�
i

� d
→N (0,�⊗Q) as n→∞.

While Assumption 5 holds if the observations are i.i.d., as the moments are assumed to exist, 
these conditions further hold under various weak dependence assumptions, see Staiger and 
Stock (1997, p. 560).

Note that conditional homoskedasticity E
[
wiw

�
i
|Zi.

]
= � is implicit in Assumption 6. We 

make this assumption primarily for ease of exposition and will relax this in Section 5.
The plurality rule, Assumption 2, is the main assumption on the instruments needed to estab-

lish oracle properties for the CI method described below and the HT method of Guo et al. (2018). 
In particular, the values of �j and � j can be arbitrary and arbitrarily correlated. The CI and HT 
methods are robust to any such correlation. Alternatively, the methods of Kolesár et al. (2015) 
and Bowden, Smith and Burgess (2015) do not make the plurality assumption and can have all 
instruments invalid. A bias corrected 2SLS estimator is then consistent under the INstrument 
Strength Independent of Direct Effect (INSIDE) assumption that Cov

(
�j, � j

)
= 0, together with 

the requirement that the number of instruments increases with the sample size. Guo et al. (2018) 
provide a discussion of and comparison to these methods, also including alternative methods 
proposed by Bowden et al. (2016), Hartwig, Smith and Bowden (2017) and Burgess et al. (2018).

(7)� j≡
Γj

� j
=�+

�j

� j
,
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From the plurality rule Assumption 2, it follows that consistent instrument selection procedures 
can be based on consistent and asymptotic normal estimators of the parameters � j as defined in 
(7). Then groups of instruments are formed by similar estimates �̂ j, and, in large samples, the 
largest group will constitute the group of valid instruments under Assumption 2. While in prin-
ciple all combinations of instruments could be tested separately, see Andrews (1999), in practice 
this may not be feasible when there are a large number of instruments. The Guo et al. (2018) 
method as described further in Section 4 reduces the dimensionality of the problem by essentially 
performing kz

(
kz − 1

)
∕2 pairwise tests of the null H0: � j = �k, combined with a voting scheme 

to group the instruments.
A clear reduction of the dimensionality of the problem is achieved by alternatively consid-

ering testing H0: � j = �g, for a grid �g spanning the possible values of � and selecting as the set 
of valid instruments the largest set over all values of �g for which a particular value of �g is not 
rejected. The CI method operationalises this idea without having to consider the grid points �g by 
grouping together instruments with overlapping CIs.

Let Γ̂ and �̂ be the OLS estimators for Γ and � in the model specifications

Under Assumptions 3-6 it follows that

where � = �⊗Q−1, with � = E
[
�i�

�
i
|Zi.

]
, �i =

(
�yi, �di

)�.
Following Guo et al. (2018), let an estimator for � j be

then it follows, using the delta method, that 
√
n
�
�̂ j − � j

� d
→N

�
0, �2

j

�
, with, denoting Q−1

jj
 the jth 

diagonal element of Q−1,

An estimator for the variance of �̂ j is then given by

where �̂ =
1

n

∑ n
i=1

�̂i�̂
�
i, with �̂i the OLS residual vector 

(
�̂yi, �̂di

)′. It follows that nV̂ar
(
�̂ j

) p
→�2

j
.

y = ZΓ + �y; d = Z� + �d.

(8)
√
n

��
Γ̂

�̂

�
−

�
Γ

�

��
d
→N (0,�) ,

(9)�̂ j=
Γ̂j

�̂ j
,

(10)�2j =
�2
j
Q−1
jj

�2
j

; �2j =
(
1 −� j

)
�

(
1

−� j

)
.

(11)V̂ar
(
�̂ j

)
=
�̂2j

(
Z�Z

)−1
jj

�̂2j

; �̂2j =
(
1 − �̂ j

)
�̂

(
1

− �̂ j

)
,
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We show in Appendix A.5 that �̂ j is identical to the 2SLS estimator of � j in the just-identified 
model

where Z{−j} = Z�
{
Z.j

}
, using Z.j as the instrument for d. This therefore implies that �̂ j is the IV es-

timator for � based on instrument Z.j while treating all other instruments as invalid. The variance 
estimator V̂ar

(
�̂ j

)
 as defined in (11) is also the same as the standard 2SLS variance estimator in the 

just-identified model (12).
The CI method is a fast method that consistently selects the valid instruments. Let 

v̂j =

√
V̂ar

(
�̂ j

)
. Given a value �n, define the confidence interval cij

(
�n

)
 for � j as

for j = 1, . . . , kz. The following lemma gives the conditions on �n under which all CIs within groups 
g will overlap which each other when n→∞, whereas none of the CIs in different groups will 
overlap with each other.

Lemma 1  Let the groups g be as defined in Assumption 2 and the confidence intervals cij
(
�n

)
,   

j = 1,…, kz, as defined in (13). Then, under Assumptions 1 and 3-6, for n→∞, �n →∞, 
�n = o

(
n1∕2

)
, and ∀g, all confidence intervals cij

(
�n

)
 within a group, j ∈ g, will overlap 

with each other, whereas none of the confidence intervals in different groups, cij
(
�n

)
, cij′

(
�n

)
,   

j ∈ g, j� ∈ g�, will overlap with each other.

We can use the results of Lemma 1 to obtain a selection rule that consistently selects the valid 
instruments as valid, with the resulting 2SLS estimator having oracle properties. For any value 
�n, classify the instruments in groups ̂

over

t

(
�n

)
, for t = 1,…,T

(
�n

)
, with 1 ≤ T

(
�n

)
≤ kz. For 

members j ∈ ̂
over

t

(
�n

)
, all cij

(
�n

)
 overlap with each other. Only the largest of such groups are 

considered, and not their subdivisions. If, for example, all kz CIs overlap with each other, then 
T
(
�n

)
= 1. It is clear from this definition that instruments can be members of multiple groups, 

and a group can be a singleton. For any value �n, we then select as the group of valid instruments 
the largest group, denoted ̂n, defined as

Note that for any value of �n, there may be multiple groups with the largest number of overlapping 
CIs. If that is the case, at this point we simply randomly select one of these in order to have a single 
set of instruments for each �n. We will discuss selection using the Sargan test in Section 3.1.

The next theorem states the conditions under which the selection ̂n is consistent, which fol-
lows directly from the results of Lemma 1, as 0 is the largest group by Assumption 2.

Theorem 1  Let the �̂ j be defined as in (9) and their confidence intervals as in (13). Let ̂n be one of 
the largest groups of instruments for which all confidence intervals overlap with each other as 
defined in (14). For �n →∞, �n = o

(
n1∕2

)
, and under Assumptions 1-6 it follows that

(12)y=d� j+Z{−j}�
[j] +uj,

(13)cij
(
�n

)
=
[
�̂ j− v̂j�n, �̂ j+ v̂j�n

]
,

(14)̂n: =

{
̂m

(
�n

)
:
|||̂m

(
�n

)||| = max
t=1,…,T(�n)

|||̂
over

t

(
�n

)|||
}

.
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The next theorem states the oracle properties of the 2SLS estimator based on selecting Z
̂n

 as 

the valid instruments and thus Z
̂n

= Z�
{
Z
̂n

}
 as the set of invalid instruments. This result 

follows directly from Theorem 2 in Guo et al. (2018).

Theorem 2  Let Z
̂n

= Z�
{
Z
̂n

}
 and let �̂

̂n
 be the 2SLS estimator of �, given by

Then under the conditions of Theorem 1, it follows that

For any value �n, the sets of overlapping CIs can easily and rapidly be obtained as follows.

Algorithm 1  Denote the lower and upper endpoints of cij
(
�n

)
 as defined in (13) by cilj

(
�n

)
 and 

ciuj
(
�n

)
. Order the confidence intervals in ascending order of the lower endpoints, and use the 

notation cil[j]
(
�n

)
 and ciu[j]

(
�n

)
 for the ordered intervals. For j = 2, . . . , kz, let 

no[j]
�
𝜓n

�
=

∑ j−1

k=1
1
�
ciu[k]

�
𝜓n

�
> cil[j]

�
𝜓n

��
. Then the largest set(s) of overlapping in-

tervals are those associated with the maximum value of no[j]
(
�n

)
.

For the sequences �n →∞, �n = o
(
n1∕2

)
, it follows from the results of Lemma 1 and Theorem 

1 that ̂n as defined in (14) converges to the unique set 0. It is therefore immaterial for consis-
tent selection and oracle properties how we choose the set ̂n for those values of �n where there 
are multiple groups with the largest number of overlapping CIs. We can extend the range of 
sequences �n if we choose in that case the group with the minimum value of the Sargan test as 
we show next.

3.1  |  Sargan test

For the oracle model (2),

with X0
=
[
d Z0

]
 and �0

=
(
� ��

0

)�

, the Sargan (1958) test statistic is given by

where û(�̂0
) = y−X0

�̂0
, with �̂0

 the 2SLS estimator of �0
.

lim
n→∞

P
(
̂n = 0

)
= 1.

�̂
̂n

=
(
d̂
�
MZ

̂n
d̂
)−1

d̂
�
MZ

̂n
y.

√
n
�
�̂
̂n

− �
� d
→N

�
0, �2or

�
.

y = d� + Z0
�0

+ u = X0
�0

+ u,

(15)S
(
�̂0

)
=
û(�̂0

)�Z
(
Z�Z

)−1
Z�û(�̂0

)

û(�̂0
)�û(�̂0

)∕n
,
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As E
[
Zi.ui

]
= 0, and for k0

< kz, it follows under Assumptions 1 and 3-6 that √
n
�
�̂0

− �0

� d
→N

�
0,�0

�
, with �0 = �2uplim

(
X�
0
Z
(
Z�Z

)−1
Z�X0

∕n
)−1

, and 

S
(
�̂0

) d
→�2

kz −k0 −1
. For any other selection Z ≠ Z0

 with k ≤ k0
, we have that S

(
�̂

)
= Op (n).

The results of the CI selection method can be linked to the behaviour of the Sargan test statis-
tic as it follows from the results of Theorems 1 and 2 that, under the conditions of Theorem 1, 
S
(
�̂
̂n

) d
→�2

kz −k0 −1
.

We can now allow for a wider range of values of the sequence �n if we select from the groups 
with the largest number of overlapping CIs the one with the minimum value of the Sargan test 
statistic. Let M

(
�n

)
 denote the number of groups with the largest number of overlapping CIs, 

the collection of these groups denoted by 
{
̂
max

m′

(
�n

)}
, m� = 1,…,M

(
�n

)
.

Then define ̂
sar

n  as

where ̂m

(
�n

)
=  � ̂m

(
�n

)
 and ̂

max

m�

(
�n

)
=  � ̂

max

m�

(
�n

)
, m� = 1,…,M

(
�n

)
.

The next theorem gives the conditions for consistent selection and oracle properties when 
selecting ̂

Sar

n  as the set of valid instruments.

Theorem 3  Let the �̂ j be defined as in (9) and their confidence intervals as in (13). Let ̂
sar

n  be 
as defined in (16) and ̂

sar

n =  � ̂
sar

n . For k0 < kz, let cn = O (1) > 0 be such that when 
n→∞, �n →∞, for �n√

n
≤ cn, maxt=1,…,T(�n)

|||̂
over

t

(
�n

)|||→ k0 and for 𝜓n√
n
> cn, 

maxt=1,…,T(�n)
|||̂

over

t

(
�n

)|||→ K, with K ≥ k0 + 1. Then for n→∞, �n →∞, k0 = kz, or 
k0 < kz and �n√

n
≤ cn, and under Assumptions 1-6 it follows that

and

3.2  |  Downward testing procedure

From the results of Theorem 3, we can devise a downward testing procedure as in Andrews (1999), 
reducing the dimension of the problem by evaluating only the models selecting the sets with the 
largest number of overlapping CIs as valid instruments. The Andrews (1999) downward testing 
procedure uses the Sargan test statistic as a selection device for the consistent selection of the valid 
instruments. It starts with the model that selects all kz instruments as valid. If the Sargan test rejects 
this model, then the procedure next evaluates the kz models with kz − 1 instruments selected as 
valid, treating each instrument in turn as invalid. If the minimum of the kz Sargan test statistics 
does not reject the null, then the associated model is selected as the valid model. If the minimum 

(16)
̂
sar

n : =

{
̂m

(
�n

)
:
|||̂m

(
�n

)||| = max
t=1,…,T(�n)

|||̂
over

t

(
�n

)||| ,

S
(
�̂
̂m(�n)

)
= min
m�=1,…,M(�n)

S
(
�̂
̂
max

m� (�n)

)}
,

lim
n→∞

P
(
̂
sar

n = 0

)
= 1

√
n
�
�̂
̂
sar

n
− �

� d
→N

�
0, �2or

�
.
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rejects the null, then all 

(
kz
2

)
 models with kz − 2 instruments selected as valid are evaluated. This 

gets repeated until a model with kz − k − 1 degrees of freedom has a Sargan test result that does 

not reject the null hypothesis. Denote the minimum of the 

(
kz
k

)
 Sargan statistics of all possible 

models with k instruments selected as invalid by Smin
(
k

)
. Let

Then if the critical values �n,kz−k−1 of the �2
kz −k−1

 distribution satisfy

it follows from the results in Andrews (1999), that, under Assumptions 1–6,
limn→∞P

(
̂ns =0

)
= 1, or equivalently, limn→∞P

(
̂ns = 0

)
= 1, with ̂ns =  �̂ns.

In order to use the CI method to reduce the dimension of the downward testing procedure, 
consider the set of breakpoints

for j = 1,…, kz − 1, r = j + 1,…, kz. From Algorithm 1 it follows that for �n ≤ � ∗
j,r

, cij
(
�n

)
 and 

cir
(
�n

)
 do not overlap, whereas they do when 𝜓n > 𝜓 ∗

j,r
. Let � ∗

[kz −1]
=maxj,r

(
� ∗
j,r

)
. For 

𝜓n > 𝜓 ∗

[kz −1]
 all kz confidence intervals overlap. At �n = � ∗

[kz −1]
, the number of overlapping CIs in 

the largest groups drops by one to kz − 1, and there will be two groups, denoted as before as {
̂
max

m�

(
� ∗

[kz −1]

)}
, m� = 1,…,M

(
� ∗

[kz −1]

)
, with M

(
� ∗

[kz −1]

)
= 2. The next breakpoint where 

the size of the largest groups of overlapping CIs is equal to kz − 2 is the minimum of the maximum 
of the breakpoints (18) in the two largest groups of size kz − 1. Denote these maximum group-specific 
breakpoints by � ∗

m�,[kz −2]
=max

{j,r}∈̂
max

m�

(
�∗

[kz−1]

)
(
� ∗
j,r

)
, for m� = 1, 2, and the minimum by 

� ∗

[kz −2]
=minm�

(
� ∗
m�,[kz −2]

)
. Note that for 𝜓 ∗

[kz −2]
< 𝜓n ≤ 𝜓 ∗

[kz −1]
, the maximum group size re-

mains kz − 1. Then at �n = � ∗

[kz −2]
, there will be 2 ≤M

(
� ∗

[kz −2]

)
≤ 3 groups with the maximum 

kz − 2 overlapping CIs, and the next breakpoint where the size of the largest groups of overlapping 
CIs is equal to kz − 3 is again determined by the minimum of the maxima of the breakpoints (18) in 
these groups. Repeating this, we get the kz − 2 breakpoints

with � ∗
[s]

=minm�

(
� ∗
m�,[s]

)
, � ∗

m�,[s]
=max

{j,r}∈̂
max

m�

(
�∗
[s+1]

)
(
� ∗
j,r

)
, and at each breakpoint we have 

2 ≤M
(
� ∗

[s]

)
≤ kz − s + 1 = k + 1 groups with the maximum s overlapping CIs.

�ns : =
{
, k=min

(
0, 1, . . . , kz−2

)
: S

(
�𝜃

)
=Smin

(
k

)
<𝜁n,kz−k−1

}
.

(17)�n,kz−k−1→∞ for n→∞, and �n,kz−k−1=o (n) ,

(18)�∗
j,r =

|||�̂ j− �̂r
|||

v̂j+ v̂r
,

(19)𝜓∗
[2]<𝜓∗

[3]<. . . <𝜓∗

[kz−1]
,
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Combining the results of Theorem 3 with the downward testing procedure of Andrews (1999) 
we get the following consistent selection and oracle properties.

Theorem 4  Let the breakpoints 
{
� ∗

[s]

}kz −1

s=2
 be as defined in (19) and let � ∗

[kz]
= � ∗

[kz −1]
+ �, for a 

constant 𝛿 > 0, so that the model with all kz instruments selected as valid is included. Let

where ̂
sar

n

(
� ∗

[s]

)
=  � ̂

sar

n

(
� ∗

[s]

)
, with ̂

sar

n

(
� ∗

[s]

)
 defined in (16), and where �n,s−1 satisfy the 

conditions stated in (17). Let ̂
dts

n =  � ̂
dts

n . Then under the conditions of Theorem 3, it follows that

and

It follows from Theorem 4 that � ∗
n = Op

(
n1∕2

)
, as � ∗

n is asymptotically equivalent to � ∗[
k0

] 

and � ∗�
k0

�∕
√
n is asymptotically equivalent to cn as specified in Theorem 3, see for details the 

proof in Appendix A.1.

Following a result in Pötscher (1983), Andrews (1999) shows that (17) holds if the p-value of 
the Sargan test satisfies pn → 0 and log(pn) = o(n). Therefore, instead of choosing values �n,s−1 
for each s, we can choose a single sequence pn for consistent selection. Windmeijer et al. (2019) 
choose as threshold p-value for the Sargan test 0.1∕log (n), following the suggestion of Belloni et al. 
(2012) and which satisfies the conditions for consistent model selection and oracle properties of 
the resulting 2SLS estimator.

With this strategy, there is a maximum of kz
(
kz − 1

)
∕2 models to be evaluated. Together with 

the use of Algorithm 1, which has a computational cost of O
(
kzlog

(
kz
))

, at at most kz − 2 break-
points, the computational cost of this downward testing algorithm is of the order O

(
k2z log

(
kz
))

. 
We give a stepwise description of the full downward testing algorithm in Appendix A.4, together 
with an illustration using a single generated data set.1

Under the plurality Assumption 2, the CI downward testing procedure will consistently se-
lect the set of valid instruments. In any application it may well be the case that multiple sets of 
maximum size are found for which the Sargan test statistics do not reject the null. The method of 
Andrews (1999) is then to select the model with the minimum value of the Sargan test statistics 
for these models with the same degrees of freedom, which is replicated by ̂

dts

n . In practice, how-
ever, a researcher should acknowledge the fact that there are multiple such models, which could 
be an indication of a violation of Assumption 2, and investigate their results, which could lead 

�
dts

n : =

{
�
sar

n

(
𝜓∗
n

)
;𝜓∗

n=maxs=2,…kz

(
𝜓∗

[s]

)
: S

(
�𝜃 �

sar

n

(
𝜓∗
[s]

)
)

<𝜁n,s−1

}
,

lim
n→∞

P
(
̂
dts

n = 0

)
= 1

√
n

�
�̂
̂
dts

n

− �

�
d
→N

�
0, �2or

�
.

 1This method is available in the R-package CIIV, https://github.com/xlbri​stol/CIIV. Appendix A.9 further discusses 
how the method can be applied with multisample (e.g. GWAS) summary data under the assumption that the 
instruments are independent.

https://github.com/xlbristol/CIIV
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to additional insights on the possible pathways from instruments to exposure and from exposure 
to outcomes.

While the CI method achieves dimension reduction by ignoring the covariances between the 
estimators �̂ j when constructing the sets with overlapping CIs, by using the downward Sargan 
based testing procedure the selected model is the one with the largest number of instruments 
with overlapping CIs for which the joint null hypothesis is not rejected, incorporating the full 
covariance structure.

4  |   HARD THRESHOLDING METHOD

Consider next pairwise testing of the null hypotheses H0: � j = �k, j = 1, . . . , kz − 1;k = j + 1, . . . , kz
. These are equivalent to H0:

Γj

� j
=

Γk
�k

 and a reformulation is given by H0:Γk −
Γj

� j
�k = �

[j]
k

= 0. Guo 

et al. (2018) use the latter as the basis for their pairwise testing using Wald test statistics. Unlike 
the score test, the Wald test is not invariant to the reformulation of a non-linear restriction, see 
for example Davidson and MacKinnon (2004, pp. 422-424), and while the Wald tests for 
H0: � j = �k are symmetric, this is not the case for H0:�

[j]
k

= 0. As we discuss below in Section 4.3, 
the score test here is the same as the Sargan test for overidentifying restrictions when Z.j and Z.k 
are the excluded instruments.

An estimator for �[j]
k

 is given by

It follows from the delta method that 
√
n
�
�̂
[j]
k

− �
[j]
k

� d
→N

�
0, �2

�
[j]
k

�
, with 

�2
�
[j]
k

= �2
j

(
Q−1
kk

− 2

(
�k
� j

)
Q−1
kj

+

(
�k
� j

)2

Q−1
jj

)
, where �2

j
 is as defined in (10). An estimator for the 

variance of �̂[j]
k

 is therefore given by

where �̂2j  is as defined in (11), with nV̂ar
(
�̂
[j]
k

) p
→�2

�
[j]
k

.

Guo et al. (2018) consider the test statistics2

(20)�̂
[j]
k

=Γ̂k−
Γ̂j

�̂ j
�̂k .

(21)V̂ar
�
�̂
[j]
k

�
= �̂2j

⎛⎜⎜⎝
�
Z�Z

�−1
kk

−2

�
�̂k

�̂ j

��
Z�Z

�−1
kj

+

�
�̂k

�̂ j

�2 �
Z�Z

�−1
jj

⎞⎟⎟⎠
,

 2We provide detail of the correspondence between the specification in Guo et al. (2018) and our notation in Appendix 
A.6.

(22)t
[j]
k

=
�̂
[j]
k

v̂
�
[j]
k
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for k, j = 1, . . , kz, k ≠ j, where v̂
�
[j]
k

=

√
V̂ar

(
�̂
[j]
k

)
. Let �̂

�
[j]
k

=
√
nv̂

�
[j]
k

. It follows that under the 

null, H0:�
[j]
k

= 0, t[j]
k

d
→N (0, 1). Hence, for the sequence �n →∞, �n = o

(
n1∕2

)
, when �[j]

k
= 0,

and when �[j]
k

≠ 0,

Guo et al. (2018) then define the set ̂[
j]
n  as

These are the instruments k = 1, . . . , kz, for which H0:�
[j]
k

= 0 is not rejected using critical value, 
or threshold, �n. Note that instrument j is always contained in ̂[

j]
n . It follows that, for �n →∞, 

�n = o
(
n1∕2

)
, if �k = � j, limn→∞P

(
k ∈ ̂

[j]
n

)
= 1 and if �k ≠ � j, limn→∞P

(
k ∈ ̂

[j]
n

)
= 0.

As these are not joint, but only pairwise comparisons, Guo et al. (2018) propose a majority and 
plurality voting scheme to consistently obtain the set of valid instruments. In their terminology, 
̂
[j]
n

 is expert j’s ballot that contains expert j’s opinion about which instruments are valid. The 
number of votes an instrument k gets is given by

The majority rule then selects an instrument as valid if it gets a vote from more than 50% of the ex-
perts. The group of instruments selected as valid is then given by

If none of the instruments gets a majority vote, the plurality rule is applied, which defines the set of 
instruments selected as valid by

Let ̂
HT

n = ̂M ∪ ̂P, then Guo et al. (2018, pp. 13-14) show that under Assumptions 1-6 it follows 
that

(23)lim
n→∞

P

(||||t
[j]
k

|||| ≤�n

)
=1,

(24)lim
n→∞

P

�����t
[j]
k

���� ≤�n

�
= lim
n→∞

P

⎛⎜⎜⎜⎝

�������

√
n
�
�̂
[j]
k

−�
[j]
k

�

�̂
[j]
�l

+

√
n�

[j]
k

�̂
[j]
�k

�������
≤�n

⎞⎟⎟⎟⎠
=0.

(25)̂
[j]
n =

{
k:
||||t
[j]
k

|||| ≤�n

}
.

VMk =

kz∑
j= 1

1

(
k ∈ ̂

[j]
n

)
.

(26)�M =

{
k:VMk >

kz
2

}
.

(27)̂P =

{
k:VMk =max

l
VMl

}
.

lim
n→∞

P
(
̂
HT

n = 0

)
= 1



14  |      WINDMEIJER et al.

and

where �̂
HT

n =

(
d̂
�
MZ

̂
HT
n

d̂

)−1

d̂
�
MZ

̂
HT
n

y, Z
̂
HT

n

= Z�

{
Z
̂
HT

n

}
.

4.1  |  Choice of tuning parameter

Guo et al. (2018) do not treat �n as a classical tuning parameter and they do not specify the rate, 
�n →∞, �n = o

(
n1∕2

)
, as obtained for results (23) and (24) above. They set 

�n =

√
2. 012log

(
max

(
kz ,n

))
 which in the setting here with fixed kz and n > kz would lead to 

�n =

√
2. 012log (n). The motivation seems to be from the fact that there are kz

(
kz − 1

)
 statistics 

t
[j]
k

. If they were all independent N (0, 1) distributed random variables, then it follows that for an 
increasing number of instruments kz,

see Donoho and Johnstone (1994). For the kz fixed case considered here, if the t[j]
k

 were independent 
N (0, 1) distributed random variables, we have that

It is unclear how the result in (29) translates into an optimal choice �n as a function of n, even if the 
t
[j]
k

 were independently distributed, which they are clearly not. We find in the Monte Carlo experi-
ments below that the value of �n =

√
2. 012log (n) can be much too large, resulting in selecting a 

large group of instruments as valid that includes invalid instruments. Guo et al. (2018, p. 800) state 
that in practice, the max

(
kz ,n

)
 is often replaced by kz or n to improve the finite sample performance. 

In the R-routine TSHT.R, Kang (2018), the default threshold parameter for the low dimensional 
setting is set equal to � =

√
2. 012log

(
kz
)
, in line with the results (28) and (29) above. In principle 

this choice of � does not lead to consistent selection for fixed kz and n→∞. In their Monte Carlo 
simulations, Guo et al. (2018) instead set � =

√
2.01log

(
kz
)
 We will use these latter two values to 

evaluate the performance of the hard thresholding method in the simulations and application below.

4.2  |  Voting

The Guo et al. (2018) method achieves dimension reduction by pairwise testing of H0:�
[j]
k

= 0 
and the voting mechanism. A weakness of the voting scheme is that it does not have a mecha-
nism to choose between sets of instruments when there are ties, and the number of instruments 
selected as valid is not guaranteed to be monotonically decreasing for decreasing values of �n. 
Consider the example as depicted in Table 1. There are five potential instruments. In the left 

√
n
�
�̂
HT

n − �
� d
→N

�
0, �2or

�
,

(28)lim
kz→∞

P

(
max
k,j

(||||t
[j]
k

||||
)

>

√
2log

(
kz

(
kz−1

)))
=0,

(29)E

[
max
k,j

(
t
[j]
k

)]
<

√
2log

(
kz

(
kz−1

))
.
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panel of the table, for a value �1 for the tuning parameter, instruments 2 and 3 both get three 
votes, including the votes for themselves, whereas instruments 1 and 2 get two votes and instru-
ment 5 only one vote. Hence, ̂

HT

n,1 = {2, 3} and the number of instruments selected as valid is 
equal to 2. Next consider the right panel, with 𝜓2 < 𝜓1, and the situation is such that 
�2 ≤

|||t
[2]
3
||| ≤ �1 and �2 ≤

|||t
[3]
2
||| ≤ �1, but 

||||t
[j]
k

|||| ≤ �2 for k, j ∈ {1, 2} and k, j ∈ {3, 4}. Now instru-

ments 1, 2, 3 and 4 all get two votes. Application of the plurality rule (27) then leads to selecting 
these four instruments all as valid, ̂

HT

n,2 = {1, 2, 3, 4}, and so the number of valid instruments se-
lected here increases for a decreasing value of �. Because of this, the Andrews (1999) Sargan 
test-based downward testing procedure cannot be applied in general to the HT method.

As is clear from Table 1, the voting mechanism can select the instruments in non-overlapping 
groups all as valid. One way to overcome the problem of ties in the voting matrix is to find the 
maximal cliques, but as this problem is np complete, Karp (1972), this negates the dimension re-
duction properties of the voting scheme. This problem is circumvented in the CI method, which 
keeps track of the groupings and selects the group of instruments with the smallest value of the 
Sargan test in case of ties.

Further note that for the HT method the number of instruments selected as valid can be both 
larger and smaller than the number of votes, as the examples in Table 1 show. With the asymmet-
ric t[k]

j
, it could also be the case that only one instrument is selected as valid. This would happen, 

for example, if the left panel was changed with |||t
[3]
2
||| > 𝜓1, but |||t

[2]
3
||| ≤ �1, in which case only in-

strument 2 is selected as valid with three votes.

4.3  |  Relationship with the Sargan test

Proposition A1 in Appendix A.5 shows that t[j]
k

 as defined in (22) can equivalently be specified as

after 2SLS estimation of the parameters in the just-identified model (12)

t
[j]
k

=
�̂
[j]
k,2sls√

V̂ar
(
�̂
[j]
k,2sls

) ,

y = d� j + Z{−j}�
[j] + uj,

T A B L E  1   Examples of voting

�1 𝝍2 < 𝝍1

k ∖ j 1 2 3 4 5 VMk k ∖ j 1 2 3 4 5 VMk

1 × × — — — 2 1 × × — — — 2

2 × × × — — 3 2 × × — — — 2

3 — × × × — 3 3 — — × × — 2

4 — — × × — 2 4 — — × × — 2

5 — — — — × 1 5 — — — — × 1
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with Z{−j} = Z�
{
Z.j

}
, using Z.j as the instrument for d, and using the notation �̂[j]

2sls
=
(
�̂
[j]
k,2sls

)
k≠j

. 

Instead of the t, or Wald test, one could perform a score test for the null H0:�
[j]
k

= 0, with the only 
difference that the variance is estimated under the null. This score test is the same as the Sargan test 
of overidentifying restrictions in the model

where Z{−jk} = Z�
{
Z.j,Z.k

}
, using both Z.j and Z.k as instruments for d, see Newey and West 

(1987) and the discussion in Appendix A.5. Denoting this Sargan statistic by Sjk, then under the null 
H0:E

[
Zi.ujk,i

]
= 0, and under Assumptions 1 and 3-6, Sjk

d
→�2

1
.

Unlike the t[j]
k

, for which t[j]
k

≠ t
[k]
j

, the Sjk are symmetric, Sjk = Skj, an invariance feature of the 

score test which is invariant to specifying the null as H0:
Γk
�k

−
Γj

� j
= 0 or H0:Γk −

Γj

� j
�k = 0. There 

are therefore kz
(
kz − 1

)
∕2 statistics Sjk and, instead of the selection rule ̂[

j]
n =

{
k:
||||t
[j]
k

|||| ≤ �n

}

, we can use the asymptotically equivalent rule ̂[
j]
n =

�
k:
√
Sjk ≤ �n

�
.

5  |   ROBUSTNESS TO HETEROSKEDASTICITY

Both the CI and hard thresholding procedures can be adapted to be robust to heteroskedasticity, 
clustering and/or serial correlation. Consider for example conditional heteroskedasticity of the 
general form E

[
wiw

�
i
|Zi.

]
= �

(
Zi.

)
 and E

[
�i�

�
i
|Zi.

]
= �

(
Zi.

)
, with the functions �

(
Zi.

)
 and 

�
(
Zi.

)
 unknown. Let �̂ =

(
Γ̂
�
�̂
�
)�

, then a robust estimator of Var
(
�̂
)
 is given by

and straightforward application of the delta method results in robust variance estimators V̂arr
(
�̂ j

)
 

and V̂arr
(
�̂
[j]
k

)
.

For the CI method, instead of using the Sargan test for selection, a robust score test needs to 
be used, like the two-step Hansen J-test, (Hansen, 1982). For the oracle model (2),

the two-step GMM estimator is given by

where �̂0,1
 is an initial one-step estimator, for example the 2SLS estimator, and

(30)y=d� jk+Z{−jk}�
[jk] +ujk,

�Varr
(
��
)
=
(
I2 ⊗

(
Z�Z

)−1 )
(

n∑
i= 1

(
��i��

�
i ⊗ Zi.Z

�
i.

))(
I2 ⊗

(
Z�Z

)−1 )
,

y = d� + Z0
�0

+ u = X0
�0

+ u,

�̂0,2
=
(
X�
0
ZW−1

n

(
�̂0,1

)
Z�X0

)−1
X�
0
ZW−1

n

(
�̂0,1

)
Z�y,

Wn

(
�̂0,1

)
=

n∑
i= 1

(
Yi − X�

0,i.
�̂0,1

)2
Zi.Z

�
i..
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Let û2 = y − X0
�̂0,2

 then the Hansen J-test statistic is given by

As E
[
Zi.ui

]
= 0, J

(
�̂0,2

, �̂0,1

) d
→�2

kz −k0 −1
, thus generalising the result for the Sargan test 

under conditional homoskedasticity to the case of general heteroskedasticity.
As the oracle estimator, we can then specify the 2SLS estimator with robust standard errors, 

or the efficient two-step GMM estimator.

6  |   WEAK INSTRUMENTS

The relevance Assumption 1 states that � j ≠ 0 for all j = 1, . . . , kz. In our application we use 96 
single nucleotide polymorphisms (SNPs) as potential instruments for BMI to investigate its ef-
fect on blood pressure. These SNPs have been found to be associated with BMI in independent 
genome wide association studies (GWAS), see Locke et al. (2015). While the assumption is there-
fore very likely to be valid, it may well be the case that in our sample individual instruments are 
weak in the sense that they only explain a small amount of the variation of the exposure.

The presence of many weak instruments leads to bias in the 2SLS estimator. This many weak 
instrument bias is much less for the Limited Information Maximum Likelihood (LIML) and 
Continuously Updated GMM (CU-GMM) estimators, see Davies et al. (2015) and the references 
therein. Analogous to the problem of heteroskedasticity discussed in the previous section, to 
counter a potential many weak instruments bias problem of the 2SLS estimator, the CI and HT 
methods can estimate the parameters by LIML or CU-GMM, with the CI method adjusting the 
Sargan or Hansen test statistic accordingly.

For the selection of valid instruments, a very weak invalid instrument could often be classi-
fied as a valid instrument in the CI method due to its large standard error, and can change the 
selection in the HT method by giving votes to a large number of instruments. In order to over-
come the selection problem with weak instruments, Guo et al. (2018) proposed a first-stage hard 
thresholding for H0: � j = 0 and to classify instruments as uninformative and treated as invalid if

with �n =
√
2.01log

{
max

(
kz ,n

)}
, and where V̂ar

(
�̂ j
)
 can be a robust variance estimator in case 

of heteroskedasticity. As with the setting of �n discussed in Section 4.1, the threshold parameter is 
set to �n =

√
2.01log

(
kz
)
 in the R routine TSHT.R (Kang, 2018), also for the low-dimensional, fixed 

kz case, and we will apply this first-stage thresholding in our application.

A potential problem with this first-stage thresholding is that, as the instruments are not a pri-
ori considered to be valid, there is a chance that invalid instruments are more likely to cross the 
threshold. This may occur for instruments of the type Z2 as displayed in Figure A1 in Appendix 
A.3. As Z2 affects the unmeasured confounders that in turn affect the exposure, the Z2-exposure 
relationship itself is confounded and could result in a stronger observed effect of the instrument 

J
(
�̂0,2

, �̂0,1

)
= û

�
2ZW

−1
n

(
�̂0,1

)
Z�û2.

(31)|||t𝛾 j
||| =

||||||||

�𝛾 j√
�Var

(
�𝛾 j
)

||||||||
<𝜔n,
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on the exposure than it otherwise would have been, and a larger chance of crossing the first-stage 
threshold.

7  |   SOME MONTE CARLO RESULTS

In order to illustrate how the CI and HT methods utilise the available information, following the 
discussion in Sections 3 and 4, we consider a design similar to that in Guo et al. (2018; Table 2) 
who considered a setting with a small number of potential instruments, kz = 7, in their design 
where the majority rule is violated, but the plurality rule holds. We consider here such setting but 
with a larger number of potential instruments, kz = 21. We present a replication of their kz = 7 
design in Appendix A.7.

The data are generated from

T A B L E  2   Estimation results, kz = 21

Mae Coverage
CI 
length |

|
|
̂n

|
|
|

por pallinv

n = 500

   2SLS or 0.017 0.943 0.093 12.000 1.000 1.000

   2SLS 0.423 0.000 0.088 0.000 0.000 0.000

   HT4kz 0.321 0.000 0.083 1.982 0.000 0.000

   HT2kz 0.330 0.000 0.091 6.901 0.000 0.000

   CIsar 0.032 0.639 0.097 10.661 0.098 0.106

n = 1000

   2SLS or 0.011 0.949 0.066 12.000 1.000 1.000

   2SLS 0.423 0.000 0.062 0.000 0.000 0.000

   HT4kz 0.325 0.000 0.065 6.822 0.000 0.000

   HT2kz 0.305 0.088 0.222 17.102 0.001 0.137

   CIsar 0.014 0.889 0.066 11.599 0.538 0.561

n = 2000

   2SLS or 0.008 0.949 0.047 12.000 1.000 1.000

   2SLS 0.424 0.000 0.044 0.000 0.000 0.000

   HT4kz 0.320 0.176 0.208 18.421 0.018 0.277

   HT2kz 0.012 0.836 0.088 13.681 0.585 0.911

   CIsar 0.008 0.943 0.047 12.008 0.978 0.992

n = 5000

   2SLS or 0.005 0.950 0.030 12.000 1.000 1.000

   2SLS 0.424 0.000 0.028 0.000 0.000 0.000

   HT4kz 0.005 0.947 0.030 12.031 0.984 1.000

   HT2kz 0.006 0.951 0.035 12.687 0.749 1.000

   CIsar 0.005 0.946 0.030 12.012 0.989 1.000

Notes: Results from 10,000 MC replications; median absolute error; 95% CI coverage and length; number of instruments 
selected as invalid; frequency of selecting oracle model; frequency of selecting all invalid instruments as invalid.
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where

with � = 1; kz = 21; � = 0.25; k0
= 12, � = ca

(
��
6
, 0.5��

6
, 0�9

)� and � = c� × �kz, where �r is an r-vector of 
ones, and 0r is an r-vector of zeros. There are therefore 3 groups of instruments, c�∕c� = {1, 2,…, 6}, 
0.5c�∕c�

= {7, 8,…, 12} and 0 = {13, 14,…, 21}. 0 is the largest group and so the plurality rule 
holds, but not the majority rule. The elements of �z are given by Σz,jk = �

|j−k|
z . We set �z = 0.5 and 

c� = c� = 0.4. As in Guo et al. (2018), in this setting all instruments are strong, and the first-stage 
thresholding is omitted. Note that this simple design represents invalid instruments with a direct ef-
fect on the outcome of the type Z1 as displayed in Figure A1 in Appendix A.3.

Before evaluating estimation results using the downward testing CI method and the HT 
method as described above, Figure 1 shows the frequency of selection of the oracle model for the 
HT and CI methods, the latter on the basis of ̂

sar

n (�) as defined in (16), for 10,000 Monte Carlo 
replications, as a function of values � = (0.15, 0.20, . . . , 6.95, 7) and for a sample size of n = 2000

. It is clear that the CI method utilises the available information better in this case and obtains 
a maximum frequency of selecting the oracle model of 0.98 at � = 2.60, whereas the maximum 
frequency for the HT method is only 0.60 at � = 2.40.

Di= Z�i.�+�di

Yi= Di�+Z
�
i.�+ui,

(
ui
�di

)
∼ N

((
0

0

)
,

(
1 �

� 1

))
;

Zi. ∼ N
(
0,�z

)
;

F I G U R E  1   Frequency of selecting oracle model as a function of �. n = 2000, kz = 21, k0
= 12, c� = c� = 0.4
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Figure 2 shows the average total number of instruments selected as invalid, |||̂n
|||, and the av-

erage number of invalid instruments selected as invalid as a function of �. While both methods 
can correctly select the 12 invalid instruments as invalid for a range of values of �, the CI method 
can do so without also selecting valid instruments as invalid. In contrast, the HT method selects 
on average additional valid instruments as invalid, resulting in the difference in the frequencies 
of selecting the oracle model. At � = 2.40, the HT method selects on average 11.94 invalid instru-
ments correctly as invalid, but selects on average a total of 13.52 instruments as invalid. At 
� = 2.60, the CI method selects on average 11.99 invalid instruments correctly as invalid, and 
selects on average a total of 12.01 instruments as invalid, hence the much higher frequency of 
selecting the oracle model for the CI method.

As is clear from Figure 2, the number of selected instruments as invalid is not monotonically 
increasing for decreasing values of the threshold � for the HT method, as discussed in Section 
4.2, whereas it is for the CI method.

The proposed threshold value for the HT method, �n =

√
2. 012log (n) = 5.54 is clearly too 

large a value in this design. The alternative choice is � =

√
2. 012log

(
kz
)
= 3.51. As shown in 

Figure 1, the probability of selecting the oracle model at this value is equal to only 0.018. Figure 
2 shows that the average number of correctly selected invalid instruments at this value of � is 
10.93, and quite a few valid instruments are selected as invalid, with the average total number of 
instruments selected as invalid equal to 18.42. Guo et al. (2018) used the value of � =

√
2.01log

(
kz
)
 

in their Monte Carlo simulations, which in this case is equal to � = 2.47, very close to the optimal 
value of � = 2.40 for the maximum frequency of oracle selection. Here the probability of select-
ing the oracle model is equal to 0.59, on average correctly selecting 11.91 invalid instruments as 
invalid, and selecting on average a total number of 13.68 instruments as invalid.

Table 2 shows estimation results for the downward testing CI method and the HT method for 
this design for different values of the sample size n = 500, 1000, 2000, 5000, for 10,000 Monte 

F I G U R E  2   Average total number of instruments selected as invalid (all) and number of invalid instruments 
selected as invalid (inv) as a function of �. n = 2000, kz = 21, k0

= 12, c� = c� = 0.4
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Carlo replications. As in Guo et al. (2018), we present the median absolute error (mae), the cov-
erage probability of the 95% CI for � and the average length of the confidence intervals. In addi-
tion, we present the average number of instruments selected as invalid, |||̂n

|||, the frequency of 
selecting the oracle model, por, and the frequency of selecting all invalid instruments as invalid, 

pallinv. The 95% CI is given by 
[
�̂
̂n

− 1.96v̂
�̂
̂n

, �̂
̂n

+ 1.96v̂
�̂
̂n

]
, with v̂

�̂
̂n

=

√
V̂ar

(
�̂
̂n

)
, the 

2SLS standard error.
Results are presented for the HT method, using � =

√
2. 012log

(
kz
)
= 3.51 and 

� =

√
2.01log

(
kz
)
= 2.47 as threshold values, denoted HT4kz and HT2kz, respectively, and for the 

CI method using the downward testing procedure based on the Sargan test threshold p-value of 
0.1∕log (n) as described in Section 3.2 and denoted CIsar. Also given are the estimation results for 
the oracle 2SLS estimator (2SLS or) and the naive 2SLS estimator (2SLS) that treats all instru-
ments as valid.

The CIsar estimator is better behaved than the HT estimators, especially at the smaller sample 
sizes n = 500 and n = 1000, with the CIsar estimator having a much smaller mae and much better 
coverage probability than either HT estimator. For example, at n = 1000, the mae for CIsar is very 
similar to that of oracle 2SLS, 0.014 vs 0.011, and the coverage probability is 0.89, with the aver-
age length of the CI being the same as that of the oracle estimator and equal to 0.066. In contrast, 
the mae for HT2kz at n = 1000 is equal to 0.31. Its coverage probability is only 0.088, and the aver-
age length of the CI is large and equal to 0.22. The latter is due to the fact that too many instru-
ments get selected as invalid, the average |||̂n

||| being 17.10, compared to 11.60 for CIsar. In terms 
of mae and coverage probability HT2kz is better behaved than HT4kz for n = 1000 and n = 2000. 
Although all three estimators are close to oracle 2SLS at n = 5000, and select all invalid instru-
ments correctly as invalid, the HT4kz is now better behaved overall than HT2kz as HT2kz still selects 
on average too many instruments as invalid, 12.69, versus 12.03 and 12.01 for HT4kz and CIsar, 
respectively. This is as expected, as the threshold parameter needs to increase with the sample 
size for consistent selection in this fixed kz setup.

The results for the kz = 7 case as presented in Appendix A.7 show again a better performance 
of the CIsar estimator in terms of mae and coverage probability compared to the HT estimators, 
although the differences are overall smaller due to the smaller number of instruments.

The CI method, as it ignores covariances for the grouping of instruments, is well suited to low 
instrument correlation settings as in Mendelian randomisation, but it clearly does also very well 
in the instrument correlation setting as specified above. The HT method may well have better 
finite sample properties in different settings, but a main advantage of the CI downward testing 
method is that it selects the model with the largest number of instruments selected as valid that 
passes the Sargan test. In contrast, the HT method may select models that do get rejected by the 
Sargan test, as we find in the application presented next.

8  |   APPLICATION: THE EFFECT OF BMI ON 
BLOOD PRESSURE

We use data on 105,276 individuals from the UK Biobank and investigate the effect of BMI on 
diastolic blood pressure, DBP. See for further details Windmeijer et al. (2019). We use 96 SNPs 
as potential instruments for BMI as identified in independent GWAS studies, see Locke et al. 
(2015). Because of skewness, we log-transformed both BMI and DBP. The linear model specifica-
tion includes age, age2 and sex, together with 15 principal components of the genetic relatedness 
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matrix as additional explanatory variables. Because of the log-transformation, the interpreta-
tion of the causal parameter of interest � is that of an elasticity, that is an increase of BMI by 1% 
changes DPB by �%.

Table 3 presents the estimation results. R code for the estimation procedure is available at 
https://github.com/xlbri​stol/CIIV. We present here the results based on the assumption of con-
ditional homoskedasticity. Robust methods as discussed in Section 5 produce virtually identical 
results. The first set of results is based on the full set of instruments, not performing a first-stage 
thresholding, or in other words setting �n = 0 in (31). The OLS estimate of the causal parameter 
is equal to 0.206 (SE 0.002), whereas the 2SLS estimate treating all 96 instruments as valid is 
much smaller at 0.087 (SE 0.016). The Sargan test, however, rejects the null that all the instru-
ments are valid with a p-value of 2.05e-19.

The HT4kz method does not select any instruments as invalid, whereas HT2kz selects three 
instruments as invalid. The HT2kz estimate is equal to 0.104 (SE 0.016), slightly larger that the 
2SLS estimate, but the Sargan test still has a very small p-value of 3.11e-11, rejecting this model.

Using a threshold p-value of 0.1∕log(n) = 0.0086 for the downward testing CIsar procedure re-
sults in a selection of 13 instruments as invalid. The CIsar estimate is 0.140 (SE 0.019), indicating 
a downward bias of the 2SLS estimator when treating all instruments as valid. The p-value of the 
Sargan test in the resulting model is equal to 0.011.

Further presented are the estimation results of the post-adaptive Lasso estimator of Windmeijer 
et al. (2019), also using a downward Sargan p-value based testing procedure. This method selects 
11 instruments as invalid, resulting in an estimate of 0.163 (SE 0.018) and a p-value of the Sargan 
test of 0.013. This method has oracle properties if more than 50% of the instruments are valid, an 
assumption that does not appear to be invalid given the estimation results of the CIsar method. It 
is more efficient in this case than the CIsar method as it finds a model with a larger group of valid 
instruments that passes the Sargan test.

T A B L E  3   Estimation results, the effect of ln(BMI) on ln(DBP)

Estimate SE |
|
|
Ân

|
|
|

p-value 
Sargan 
test

�n = 0, kz = 96

OLS 0.206 0.002

2SLS 0.087 0.016 0 2.05e-19

HT4kz 0.087 0.016 0 2.05e-19

HT2kz 0.104 0.016 3 3.11e-11

CIsar 0.140 0.019 13 0.011

Post-ALassosar 0.163 0.018 11 0.013

�n = 3.03, kz = 62

OLS 0.206 0.002

2SLS 0.086 0.016 0 2.80e-19

HT4kz 0.098 0.016 1 5.29e-14

HT2kz 0.104 0.017 2 1.90e-11

CIsar 0.174 0.020 9 0.014

Post−ALassosar 0.174 0.020 9 0.014

Notes: Sample size n = 105, 276.

https://github.com/xlbristol/CIIV
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Of the selected invalid instruments, the CI and Lasso methods have eight in common. In par-
ticular, the Lasso method is able to select as invalid two instruments that are very weak with large 
values of |||�̂ j

||| and se
(
�̂ j

)
. The CI method is not able to classify these as invalid, as discussed in 

Section 6. We can therefore apply the first-stage thresholding in order to exclude these instru-
ments from consideration.

The second set of results presented in Table 3 performs a first-stage thresholding using the 
Guo et al. (2018) recommended value of �n =

√
2.01log

(
kz
)
= 3.03. A total of 34 instruments do 

not pass this threshold. They are treated as invalid and included in the model as explanatory 
variables. The OLS and naive 2SLS estimators are virtually unchanged. The HT4kz estimator se-
lects one additional instrument as invalid, with the p-value of the Sargan test of the resulting 
model equal to 5.29e-14, clearly rejecting the model. The HT2kz procedure selects two instru-
ments as invalid and the model is also rejected by the Sargan test. Interestingly, the CIsar and 
post-adaptive Lasso procedures result in the same model selection with the same nine instru-
ments selected as invalid. The resulting estimate is equal to 0.174 (SE 0.020), again showing that 
the naive 2SLS estimator of the effect of log (BMI) on log (DBP) is downward biased. This result is 
quite close to the OLS result, indicating that there is much less unobserved confounding in this 
relationship than suggested by the naive 2SLS estimator. The 9 instruments selected as invalid for 
�n = 3.03 are a subset of the 13 instruments selected for �n = 0 for CIsar. For the Lasso procedure, 
eight of the nine instruments selected as invalid for �n = 3.03 were also selected as invalid for 
�n = 0.

Figure A4 in Appendix A.8 displays the CIs for the �n = 3.03, kz = 62 case at the selected final 
breakpoint � ∗

n = 2.35. Only one of the instruments selected as invalid has a positive estimate for 
the causal effect, whereas the other eight have negative estimates, resulting in a larger estimate 
of the causal effect when these instruments are treated as invalid.

In order to compare the results to those found by Zhao et al. (2019), we also performed the 
analysis on the untransformed BMI and DPB variables. The results for OLS in this case are 0.559 
(0.0062), for 2SLS, 0.248 (0.0452), and for CIsar, 0.568 (0.0565), with 13 instruments found to be in-
valid. For the pre-selected kz = 62 case, the results for 2SLS are 0.244 (0.0469), and for CIsar, 0.494 
(0.0557), with nine instruments found to be invalid. In the latter case, these invalid instruments 
are identical to the ones found above, but this is not the case when kz = 96. Again these results 
suggest that the original OLS results suffer much less from unobserved confounding bias than 
the naive 2SLS estimator suggests. These results are similar to those found in the two-sample 
summary data analysis of Zhao et al. (2019), who found profile score, RAPS, IVW and weighted 
median estimates of 0.601 (0.054), 0.402 (0.106), 0.514 (0.102) and 0.472 (0.176), respectively in 
their analysis with 160 SNPs as potential instruments.

9  |   CONCLUSION AND DISCUSSION

We have shown that the CI method for selecting the set of valid instruments from a putative set 
of instruments that may include invalid ones for an instrumental variables analysis is a viable 
alternative to the hard thresholding method and the adaptive Lasso method when the plurality 
rule holds. The methods developed for selecting invalid instruments thus far have only con-
sidered a single endogenous treatment variable. Recent analyses have considered models with 
multiple treatments, see for example Sanderson et al. (2019) for an examination of multivariable 
Mendelian randomisation. An extension of the instrument selection methods for multiple treat-
ment models is not straightforward. When the majority rule applies, the adaptive Lasso method 
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can be utilised by constructing an initial consistent median-of-medians estimator, see Liang 
and Windmeijer (2020). For the HT and CI methods, such an extension is the subject of future 
research.
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