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Abstract
Objectives  To develop a regional model of COVID-19 
dynamics for use in estimating the number of 
infections, deaths and required acute and intensive 
care (IC) beds using the South West England (SW) as an 
example case.
Design  Open-source age-structured variant 
of a susceptible-exposed-infectious-recovered 
compartmental mathematical model. Latin hypercube 
sampling and maximum likelihood estimation were 
used to calibrate to cumulative cases and cumulative 
deaths.
Setting  SW at a time considered early in the pandemic, 
where National Health Service authorities required 
evidence to guide localised planning and support decision-
making.
Participants  Publicly available data on patients with 
COVID-19.
Primary and secondary outcome measures  The 
expected numbers of infected cases, deaths due to 
COVID-19 infection, patient occupancy of acute and IC 
beds and the reproduction (‘R’) number over time.
Results  SW model projections indicate that, as of 11 
May 2020 (when ‘lockdown’ measures were eased), 
5793 (95% credible interval (CrI) 2003 to 12 051) 
individuals were still infectious (0.10% of the total 
SW population, 95% CrI 0.04% to 0.22%), and a total 
of 189 048 (95% CrI 141 580 to 277 955) had been 
infected with the virus (either asymptomatically or 
symptomatically), but recovered, which is 3.4% (95% CrI 
2.5% to 5.0%) of the SW population. The total number 
of patients in acute and IC beds in the SW on 11 May 
2020 was predicted to be 701 (95% CrI 169 to 1543) 
and 110 (95% CrI 8 to 464), respectively. The R value in 
SW was predicted to be 2.6 (95% CrI 2.0 to 3.2) prior to 
any interventions, with social distancing reducing this to 
2.3 (95% CrI 1.8 to 2.9) and lockdown/school closures 
further reducing the R value to 0.6 (95% CrI 0.5 to 0.7).
Conclusions  The developed model has proved a valuable 
asset for regional healthcare services. The model will be 
used further in the SW as the pandemic evolves, and—as 
open-source software—is portable to healthcare systems 
in other geographies.

Introduction
Since the initial outbreak in 2019 in Hubei 
Province, China, COVID-19, the disease 
caused by SARS-CoV-2, has gone on to cause 
a pandemic.1 As of 11 May 2020, the Centre 
for Systems Science and Engineering at Johns 
Hopkins University reports over 4 000 000 
confirmed cases and 250 000 deaths glob-
ally.2 National responses to the outbreak have 
varied: from severe restrictions on human 
mobility alongside widespread testing and 
contact tracing in China3 to the comparatively 
relaxed response in Sweden, where lockdown 
measures have not been enacted.4 In the UK, 
advice to socially distance if displaying symp-
toms was given on 15 March, while school 
closures and ‘lockdown’ measures were 
implemented from 23 March onwards.5

Mathematical modelling has been used to 
predict the course of the COVID-19 pandemic 
and to evaluate the effectiveness of proposed 
and enacted interventions.6–11 Prem et al 6 
showed that the premature lifting of control 
strategies at the national level (within China) 
could lead to an earlier secondary peak; 

Strengths and limitations of this study

►► Open-source modelling tool available for wider use 
and reuse.

►► Customisable to a number of granularities such as at 
the local, regional and national levels.

►► Supports a more holistic understanding of interven-
tion efficacy through estimating unobservable quan-
tities, for example, asymptomatic population.

►► While not presented here, future use of the model 
could evaluate the effect of various interventions on 
transmission of COVID-19.

►► Further developments could consider the impact of 
bedded capacity in terms of resulting excess deaths.
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Figure 1  Compartmental flow model diagram depicting stages of disease and transitions between states. Asymptomatic 
infection represents the number of people never showing symptoms while symptomatic infection includes all those who show 
presymptomatic/mild symptoms to those who show more severe symptoms (prehospitalisation). Those who are hospitalised 
first occupy a non-IC bed (acute bed) after which they can either move into IC, recover or die. Those in IC can either recover or 
die at an increased rate compared with those in acute beds. This model does not capture those deaths which occur outside of 
hospital as a result of COVID-19. IC, intensive care.

Flaxman et al7 used a semimechanistic model to predict 
the total COVID-19 infections in 11 countries; Ferguson 
et al8 used an individual-based simulation model of 
COVID-19 transmission to explore the effects of non-
pharmaceutical interventions within the USA and Great 
Britain; Challen et al9 estimated the R number among 
regions of the UK; Danon et al10 used a spatial model to 
predict the potential course of COVID-19 in England and 
Wales in the absence of control measures; while Jarvis et 
al11 analysed the behavioural monitoring data to quantify 
the impact of control measures on COVID-19 transmis-
sion. These models have been predominantly aimed at 
the national level and have largely been based on epide-
miological and biological data sourced from the initial 
epidemic in Wuhan, China,12 and the first large outbreak 
in Lombardy, Italy.13 These models have also mainly 
focused on predicting the scale of COVID-19 transmis-
sion under various intervention measures, rather than 
producing estimates for potential numbers of COVID-19-
related admissions to acute or intensive care (IC).

In the UK, the epidemic escalated most rapidly in 
London,14 and the majority of national modelling is 
seemingly driven by the trends in London due to its large 

case numbers and large population. One of the key issues 
facing National Health Service (NHS) authorities is plan-
ning for more localised capacity needs and estimating 
the timings of surges in demand at a regional or health-
care system level. This is especially challenging given the 
rapidly evolving epidemiological and biological data; 
the changes in COVID-19 testing availability (eg, previ-
ously limited and changing eligibility requirements); 
the uncertainty in the effectiveness of interventions in 
different contexts; significant and uncertain time lags 
between initial infection and hospitalisation or death; 
and different regions being at different points in the 
epidemic curve.9 South West England (SW) is the region 
with the lowest number of total cases in England (as of 
11 May 2020), lagging behind the national data driven by 
the earlier epidemic in London.9 14

COVID-19 results in a significant requirement for 
hospitalisation and high mortality among patients 
requiring admission to critical care (particularly among 
those requiring ventilation).15 16 In the SW, the popula-
tion is on average older than in London17 and is older 
than the UK as a whole (online supplemental table S1). 
Older age puts individuals at elevated risk of requiring 
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hospital care.18–20 Consequently, we might expect higher 
mortality and greater demand for beds in the SW than 
estimations output from national models that may lack 
such granularity or risk sensitivity.

However, the SW’s first case occurred around 2 weeks 
later than the first UK case14; perhaps implying that the 
local SW epidemic may be more effectively controlled due 
to a lower number of baseline cases (than the national 
average) at the time national interventions were imple-
mented, as well as reduced transmission due to rurality. 
This subnational analysis can support in mapping the 
local epidemic, planning local hospital capacity outside 
of the main urban centres and ensuring effective mobil-
isation of additional support and resources if required. 
Should demand be lower than expected, reliable forecasts 
could facilitate more effective use of available resources 
through reintroducing elective treatments (that had 
initially been postponed) and responding to other non-
COVID-19 sources of emergency demand.

In this study, taking into account the timeline of UK-wide 
non-pharmaceutical interventions (social distancing, 
school closures/lockdown), we illustrate use of our model 
in projecting estimates for the expected distributions of 
cases, deaths, asymptomatic and symptomatic infections 
and demand for acute and IC beds. We present the model 
trajectories for SW using publicly available data.

Methods
We developed a deterministic, ordinary differential equa-
tion model of the transmission dynamics of COVID-19, 
including age-structured contact patterns, age-specific 
disease progression and demand for hospitalisation, both 
to acute and IC. We then parameterised the model using 
available literature and calibrated the model to data from 
the SW. The model is readily adapted to fit the data at 
subregional (eg, Clinical Commissioning Group, CCG), 
regional or national level. Key assumptions of the model 
are summarised in the online supplemental information.

The model was developed in R and all code and links 
to source data are freely available (​github.​com/​rdbooton/​
bricovmod). The model is coded using package deSolve, with 
contact matrices from package socialmixr and sampling 
from package lhs.

Model structure
The stages of COVID-19 included within this model are 
S—susceptible, E—exposed (not currently infectious but 
have been exposed to the virus), A—asymptomatic infec-
tion (will never develop symptoms), I—symptomatic infec-
tion (consisting of presymptomatic or mild to moderate 
symptoms), H—severe symptoms requiring hospitalisa-
tion but not IC, C—very severe symptoms requiring IC, 
R—recovered and D—death. The total population is 
‍N = S+ E+ A+ I+H+ C+ R+D‍ (figure 1).

Each compartment ‍Xg‍ is stratified by age group (0–4, 
5–17, 18–29, 30–39, 40–49, 50–59, 60–69, ≥70) where 
‍X‍ denotes the stage of COVID-19 (S, E, A, I, H, C, R, 

D) and ‍g‍ denotes the age group class of individuals. 
Age groups were chosen to capture key social contact 
patterns (primary, secondary and tertiary education and 
employment) and variability in hospitalisation rates and 
outcomes from COVID-19 especially in older age groups. 
The total in each age group is informed by recent Office 
for National Statistics (ONS) estimates.21

Susceptible individuals become exposed to the virus at a 
rate governed by the force of infection ‍λg‍, and individuals 
are non-infectious in the exposed category. A proportion 
‍δ‍ move from exposed to symptomatic infection and the 
remaining to asymptomatic infection, both at the latent 
rate ‍η‍. Individuals leave both the asymptomatic and symp-
tomatic compartments at rate ‍µ‍. All asymptomatic indi-
viduals eventually recover and there are no further stages 
of disease: the rate of leaving the asymptomatic compart-
ment is therefore equivalent to the infectious period, ‍µ
‍. A proportion of symptomatic individuals ‍γg‍ go on to 
develop severe symptoms which require hospitalisation, 
but not IC. Once requiring hospitalisation, we assume 
individuals are no longer infectious to the general popu-
lation due to self-isolation guidelines restricting further 
mixing with anyone aside from household members (if 
unable to be admitted to hospital) or front-line NHS staff 
(if admitted to hospital). Individuals move out of the 
acute hospitalised compartment at rate ‍ρ‍, either through 
death, being moved to IC at rate ﻿‍ϵ‍, or through recovery 
(all remaining individuals). A proportion ‍ωg‍ of patients 
requiring IC will die at rate ‍ψ‍, while the rest will recover.

The model (schematic in figure  1) is therefore 
described by the following differential equations:

Susceptible Sg 	
‍
dSg
dt = −λgSg ‍� (1a)

Exposed Eg 	
‍
dEg
dt = λgSg − ηEg ‍� (1b)

Asymptomatic Ag 	
‍
dAg
dt = η

(
1 − δ

)
Eg − µAg ‍� (1c)

Infectious Ig 	
‍
dIg
dt = ηδEg − µIg ‍� (1d)

Hospitalised in acute 
bed Hg

	
‍
dHg
dt = µγgIg − ρHg ‍� (1e)

Hospitalised in IC Cg 	
‍
dCg
dt = ρϵHg − ψCg ‍� (1f)

Recovered Rg

	
‍

dRg
dt = µAg + µ

(
1 − γg

)
Ig+(

1 − ϵ
) (

1 − κ
)
ρHg+

(1 − ωg)ψCg ‍� (1g)
Death Dg 	

‍
dDg
dt =

(
1 − ϵ

)
κρHg + ωgψCg ‍� (1h)

Contact patterns under national interventions
We assume the population is stratified into predefined 
age groups with age-specific mixing pattern represented 
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by a contact matrix ﻿‍ M‍ with an element of ‍mij‍ repre-
senting the contacts between someone of age group 
‍i ∈ G‍ with someone of age group ‍j ∈ G‍. The baseline 
contact matrix (with no interventions in place) is taken 
from the POLYMOD survey conducted in the UK.22 The 
contact pattern may also be influenced by a range of 
interventions (social distancing was encouraged on 15 
March 2020, schools were closed and lockdown occurred 
on 23 March 2020). We implement these interven-
tions by assuming that the percentage of 0–18 year-olds 
attending school after 23 March 2020 was 5% (reducing 
all contacts between school-age individuals by 95%) and 
that social distancing reduced all contacts by 0%–50%. 
We take the element-wise minimum for each age group’s 
contact with another age group from all active interven-
tions (distancing, schools/lockdown). A study on post-
lockdown contact patterns (CoMix11) is used to inform 
contacts after lockdown (first survey 24 March 2020, with 
an average of 73% reduction in daily contacts observed 
per person compared with POLYMOD).

Moving between contact matrices of multiple inter-
ventions was implemented by assuming a phased, linear 
decrease. After lockdown, we vary a parameter (endphase) 
to capture the time taken to fully adjust (across the popu-
lation, on average) to the new measures (allowed to vary 
from 1 to 31 days). This assumption represents the time 
taken for individuals to fully adapt to new measures (and 
household transmission), and is in line with data on the 
delay in the control of COVID-19 (reductions in hospital 
admissions and deaths after lockdown).23 The param-
eter endphase can be interpreted as accounting for the 
time taken to adjust to all interventions (and not just 
lockdown).

The force of infection
The age-specific force of infection ‍λg‍ depends on the 
proportion of the population who are infectious (asymp-
tomatic ‍Ag‍ and symptomatic ‍Ig‍ only) and probability of 
transmission :

	﻿‍
λg = β

∑
i∈G

mig

(
Ai
Ng

+ Ii
Ng

)
‍�

(2)

The basic reproduction number R0

The basic reproduction number ‍R0‍ of COVID-19 is esti-
mated to be 2.79± 1.16.24 We include this estimate within 
our model by calculating the maximum eigenvalue of the 
contact matrix , and allowing the transmission parameter 
to vary such that ‍R0‍ is equal to the maximum eigenvalue of 
‍M‍ multiplied by the infectious period ‍µ‍ and the transmis-
sion parameter ‍β‍. This gives the value for the initial basic 
reproduction number ‍R0‍, which changes as the contact 
patterns change as lockdown and other interventions are 
implemented.

Parameter estimates and data sources
Model parameters are detailed in table 1. We used avail-
able published literature to inform parameter estimates. 
We used the following publicly available metrics for 

model fitting: regional cumulative cases in SW (tested 
and confirmed cases in hospital), and deaths (daily/
cumulative counts) from the Public Health England 
COVID-19 dashboard,14 and ONS weekly provisional data 
on COVID-19-related deaths.25 The case data are final-
ised prior to the previous 5 days, so we include all data 
until 14 May 2020, based on data reported until 18 May 
2020. The mortality data from ONS do not explicitly state 
the number of COVID-19-related deaths occurring in 
hospital, but they do report this value nationally (83.9% 
of COVID-19 deaths in hospital, as of 17 April 2020). We 
assume that this percentage applies to the SW data and 
rescale the mortality to 83.9% to represent an estimate of 
total deaths in hospital.

Model calibration
Using the available data (table 1), we define ranges for 
all parameters in our model and sample all parameters 
simultaneously between these minimum and maximum 
values assuming uniform distributions using Latin hyper-
cube sampling (statistical method for generating random 
parameters from multidimensional distribution) for a 
total of 100 000 simulations. We used maximum likeli-
hood estimation on total cumulative cases and cumulative 
deaths with a Poisson negative log likelihood calculated 
and summed over all observed and predicted points. 
For ‍i ‍ observed cases ‍Xi‍ (from data) and ‍i‍ predicted 
cases ‍Yi‍ (from simulations of the model), we select the 
best 100 parameter sets which maximise the log likeli-
hood ‍

∑
Xi log

(
Yi

)
− Yi‍ from the total sample of 100 000 

simulations. The best 100 samples were taken as part of 
a bias–variance trade-off (online supplemental informa-
tion, sensitivity analysis), and the qualitative inferences 
would not change with other choices of sample size. For 
each data point (taken from cases and deaths), we calcu-
late this log likelihood and weight each according to the 
square root of the mean of the respective case or death 
data. This ensures that we are considering case and death 
data equally within our likelihood calculations.

Model outputs
For each of the 100 best parameter sets we run the model 
until 11 May 2020 and output the cumulative cases and 
deaths in the SW. We output the predicted proportion of 
the population who are infectious and who have ever been 
infected over time. Finally, we estimate the daily and cumu-
lative patterns of admission to and discharge from hospital 
(IC and acute) and cumulative mortality from COVID-19. 
We perform sensitivity analysis on the performance of the 
model when calibrated to subsets of the full data.

Results and outputs
From 100 000 simulated parameter sets, we selected the 
best 100 baseline model fits on the basis of agreement 
to the calibration data on daily confirmed COVID-19 
cases and weekly mortality due to COVID-19 in SW. The 
distribution of the best fitting values is shown in online 
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Table 1  Parameter estimates used in the model and their sources. The distributions of unknown parameters are shown in 
online supplemental figure S1A for the best 100 fits

Symbol Description Uniform prior (min and max) or point estimate

‍1/η‍ Duration of the non-infectious exposure period 5.1 days41

‍δ‍ Percentage of infections which become symptomatic 82.1%42; vary between 73.15% and 91.05%

‍1/µ‍ Duration of symptoms while not hospitalised (independent 
of outcome)

Vary between 2 and 14 days

‍1/ρ‍ Duration of stay in acute bed (independent of outcome) Vary between 2 and 14 days

‍γg‍ Percentage of symptomatic cases which will require 
hospitalisation

0–4=0.00%, 5–17=0.0408%, 18–29=1.04%,
30–39=2.04%–7.00%, 40–49=2.53%–8.68%,
50–59=4.86%–16.7%, 60–69=7.01%–24.0%,
70+=9.87%–37.6%16

‍1/ψ‍ Duration of stay in IC bed (independent of outcome) 3–11 days43

‍ϵ‍ Percentage of those requiring hospitalisation who will 
require IC

Vary between 0% and 30%

‍ωg‍ Percentage of those requiring IC who will die 0–4=0.00%, 5–17=0.00%, 18–29=18.1%,
30–39=18.1%, 40–49=24.7%,
50–59=39.3%, 60–69=53.9%,
70+=65.3%43

‍κ‍ Percentage of those requiring acute beds (but not IC) who 
will die

Vary between 5% and 35%

school Percentage of 0–18 year-olds attending school after 23 
March 2020

Assume 5%

distancing Percentage reduction in contact rates due to social 
distancing after 15 March 2020

Vary between 0% and 50%

lockdown Percentage reduction in contact rates due to lockdown after 
23 March 2020

Retail/recreation: Bristol 86%, Bath 90%, Plymouth 85%, 
Gloucs 84%, Somerset 82%, Devon 85%, Dorset 84%44

Transit stations: Bristol 78%, Bath 71%, Plymouth 65%, 
Gloucs 69%, Somerset 67%, Devon 66%, Dorset 63%44

Vary between 63% and 90%

‍R0‍ Initial reproductive number of COVID-19 1.63–3.9524

endphase Time taken to fully adjust (across the population, on 
average) to new interventions

Vary between 1 and 31 days

IC, intensive care.

supplemental figure S1A. All results are shown with 
median and 95% credible intervals (CrI).

On 11 May 2020, the reported cumulative number of indi-
viduals with (laboratory confirmed) COVID-19 was 7116 in 
SW,14 and the most recent report on total cumulative deaths 
showed that 2306 had died from COVID-19 (as of 8 May 
2020).25

Estimating the total proportion of individuals with COVID-19 
in SW
Figure 2 shows the projected numbers of exposed, recov-
ered and infectious (asymptomatic and symptomatic 
infections) until lockdown measures were lessened on 11 
May 2020. On this date, the model predicts that a total of 
5793 (95% CrI 2003 to 12 051) were infectious (0.10% 
of the total SW population, 95% CrI 0.04% to 0.22%). 
The model also predicts that a total of 189 048 (95% CrI 
141 580 to 277 955) have had the virus but recovered 
(either asymptomatically or symptomatically), which is 
3.4% (95% CrI 2.5% to 5.0%) of the SW population (not 
infectious and not susceptible to reinfection).

Estimating the total hospitalised patients with COVID-19 in 
acute and IC beds
The total number of patients in acute (non-IC) hospital 
beds across SW was projected to be 701 (95% CrI 169 to 
1543) and the total number of patients in IC hospital 
beds was projected to be 110 (95% CrI 8 to 464) on 11 
May 2020 (figure  3). Note that these ranges are quite 
large due to the uncertainty in the data and as more data 
become available these predictions will change.

Estimating the reproduction number under interventions
Figure 4 shows the model prediction for the reproduction 
(‘R’) number over time until 11 May 2020, when lock-
down measures were relaxed. All interventions (social 
distancing, school closures/lockdown) had a significant 
impact on the reproductive number for COVID-19 in 
the SW. We predict that prior to any interventions R was 
2.6 (95% CrI 2.0 to 3.2), and the introduction of social 
distancing reduced this number to 2.3 (95% CrI 1.8 to 
2.9). At the minimum, R was 0.6 (95% CrI 0.5 to 0.7) 
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Figure 2  The predicted median size of the exposed (E), 
infectious (I) and recovered (R) classes, along with the size of 
asymptomatic and symptomatic individuals on each day in 
South West England until 11 May 2020. Blue and red vertical 
lines represent the date the government introduced social 
distancing and school closures/lockdown, respectively.

Figure 3  The predicted number of hospitalised patients in acute and intensive care beds in the South West England (SW) until 
11 May 2020. The number of daily incoming patients diagnosed with COVID-19 is shown in orange (from SW daily case data14), 
95% credible intervals are shown in light grey, 50% in dark grey and the median value of the fits is highlighted in black. The 
shaded region indicates the prediction of the model from the data. Blue and red vertical lines represent the date the government 
introduced social distancing and school closures/lockdown, respectively. IC, intensive care.

Figure 4  The effect of interventions on estimates of R (y-
axis) over time until 11 May 2020.

after all prior interventions were enacted and adhered to 
(social distancing, school closures and lockdown).

Additional results for the fitting performance of the 
model (online supplemental figure S2A,B and table 
S2), the performance based on prior data (online 

supplemental figure S3A–D) and sensitivity analysis can 
be found in the online supplemental information.

Discussion
We have developed a deterministic ordinary differential 
equation model of the epidemic trajectory of COVID-19 
focusing on acute and IC hospital bed capacity planning 
to support local NHS authorities, calibrating to SW-spe-
cific data. The model is age structured and includes 
time-specific implementation of current interventions 
(following advice and enforcement of social distancing, 
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school closures and lockdown) to predict the potential 
range of COVID-19 epidemic trajectories.

Using the publicly available data on cases and deaths, 
combined with the early estimates of parameters from 
early epidemics in other settings, we predict that on 11 
May 2020 a total of 5793 (95% CrI 2003 to 12 051) were 
infectious, which equates to 0.10% (95% CrI 0.04% to 
0.22%) of the total SW population. In addition, we find 
that the model predicts a total of 189 048 (95% CrI 141 580 
to 277 955) have had the virus but recovered, which is 
3.4% (95% CrI 2.5% to 5.0%) of the SW population.

We also estimate that the total number of patients in 
acute hospital beds in SW on 11 May 2020 was 701 (95% 
CrI 169 to 1543) and in IC was 110 (95% CrI 8 to 464), 
while the R number has decreased from 2.6 (95% CrI 2.0 
to 3.2) to 0.6 (95% CrI 0.5 to 0.7) after all interventions 
were enacted and fully adhered to.

The fits generally agree well with both the daily case 
data and the cumulative count of deaths in the SW, 
although the model overestimates the case data at early 
stages and underestimates later on (which can be seen 
in online supplemental figure S2A, and a scatter plot of 
expected vs observed outputs in online supplemental 
figure S2B). This could be because we are using formal 
fitting methods or from the under-reporting of cases in 
the early epidemic. When assessing model performance 
by projecting the numbers of cases and deaths forward 
from four dates in April, the model performs reason-
ably well, with more reliable predictions occurring when 
more data are used to fit the model (online supplemental 
figure S3A–D). Even when using around half of the avail-
able data to generate forecasts (online supplemental 
figure S3D), the model performs reasonably well and 
captures the observed data later in May, but overestimates 
case numbers and underestimates deaths similar to those 
in the main analysis and in online supplemental figure 
S2A. This suggests that our model could perform reason-
ably well at predicting COVID-19 outcomes but may still 
slightly overestimate case numbers and underestimate 
deaths.

The primary strength of this study is that we have 
developed generalisable and efficient modelling code 
incorporating disease transmission, interventions 
and hospital bed demand which can be adapted for 
use in other regional or national scenarios, with the 
model available on GitHub for open review and use (​
github.​com/​rdbooton/​bricovmod). We have worked closely 
with the NHS and at CCG level to ensure the model 
captures key clinical features of disease management 
in SW hospitals and provides output data in a format 
relevant to support local planning. We combined local 
clinical expertise with detailed literature searches to 
ensure reasonable parameter ranges and assumptions 
in the presence of high levels of parameter uncertainty.

The main challenge of this work is in balancing the 
urgent need locally for prediction tools which are up 
to date (ie, not relying on the national trends to inform 
capacity planning) versus more exhaustive and robust 

methods for model comparison. The latter of which 
uses existing models and more time-consuming (but 
more robust) data-fitting methods.26 27 However, we 
believe that release of this paper and sharing of model 
code will facilitate multidisciplinary collaboration and 
rapid review and support future model comparison 
and uncertainty analyses.27

As with all models of new infections there are significant 
parameter uncertainties. Rapidly emerging literature is 
exploring a wide range of biological and epidemiological 
factors concerning COVID-19, but due to the worldwide 
nature of these studies, often parameter bands are wide 
and may be context specific. For example, early estimates 
of the basic reproduction number ranged from 1.6 to 3.8 
in different locations,28 29 with an early estimate of 2.4 
used in UK model projections.8 In addition, the infor-
mation which informs our parameter selection is rapidly 
evolving as new data are made available, sometimes on 
a daily basis. From our initial analysis, we identified 
the following parameters as critical in determining the 
epidemic trajectory within our model—the percentage 
of infections which become symptomatic, the recovery 
time for cases which do not require hospital, the period 
between acute and IC occupancy, the length of stay in 
IC, the probability of transmission per contact and the 
gradual implementation of lockdown rather than imme-
diate effect. Other parameters (such as the percentage 
reduction in school-age contacts from school closures) 
did not seem to influence the dynamic trajectory as 
strongly—and thus we assume point estimates for these 
parameters. However, for example, assuming that 95% 
of school-age contacts are reduced as a direct result of 
school closures is perhaps an overestimate, and future 
modelling work should address these uncertainties and 
their impacts on the epidemic trajectory of COVID-19 
(but in this case, this value was somewhat arbitrary, and 
the assumption was used in the absence of school-age 
contact survey data). In addition, we did not explicitly 
model the societal effect prior to governmental advice 
(social distancing, school closures, lockdown), instead 
assuming a fixed date, before which we assume there 
were no interventions. This assumption may not be real-
istic and could have influenced the model output, but it 
is difficult to quantify the percentage compliance with 
interventions prior to the official release of governmental 
advice. More research is urgently needed to refine these 
parameter ranges and to validate these biological param-
eters experimentally. These estimates will improve the 
model as more empirical data become available. We look 
forward to reducing the uncertainty in these parameters 
so that we can make better predictions and fit the data 
more accurately.

We have also assumed that there is no nosocomial 
transmission of infection between hospitalised cases 
and healthcare workers, as we do not have good data for 
within-hospital transmission. However, front-line health-
care staff were likely to have been infected early on in 
the epidemic,30 which could have implications for our 
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predicted epidemic trajectory. Our model also assumes 
a closed system, which may not strictly be true due to 
continuing essential travel. But given that up until 
11 May, travel restrictions are very severe due to lock-
down measures,5 any remaining inter-regional travel is 
likely to have minimal effects on our model outputs. In 
addition, we assume that the transmission dynamics of 
asymptomatic individuals is equal to those of symptom-
atic individuals due to the viral load of asymptomatic 
and symptomatic carriers being comparable.31 However, 
this assumption should be further explored in future 
modelling studies due to the potential for asymptomatic 
carriers to engage in higher risk behaviour and poten-
tially impact the transmission dynamics of COVID-19.

Similar to most other COVID-19 models, we use a 
variant on a susceptible-exposed-infectious-recovered 
structure.8–10 16 26 32 33 We do not spatially structure the 
population as in other UK modelling,9 10 but we do 
include age-specific mixing based on POLYMOD data22 
and the postlockdown CoMix study.11 We also explicitly 
measure the total asymptomatic infection, and the total 
in each of the clinically relevant hospital classes (acute or 
IC), which is a strength of our approach. Future models 
could also take into account local bed capacity within 
hospitals (including Nightingale centres) and accommo-
date the effect of demand outstripping supply leading 
to excess deaths, inclusive of non-hospital-based death 
such as is occurring within care homes. Future models 
should also address the way in which we have compart-
mentalised the flow of hospitalisation and death. From 
the symptomatic compartment, patients either recover 
or are admitted to hospital, from where they either die, 
recover or progress to IC. Under our assumption, the 
symptomatic recovery rate is equal to the hospitalisation 
rate, and the time taken for acute patients to move to IC 
is equal to the time to discharge for acute patients. These 
assumptions are a limitation of our model because in 
reality, those patients who progress to IC may have spent 
very little time in an acute bed (either due to rapid dete-
rioration or presenting with severe symptoms). Future 
studies should assess the effects of these assumptions and 
consider other such progressions and outcomes for a 
patient with COVID-19 through the hospital. As with all 
modelling, we have not taken into account all possible 
sources of modelling mis-specification. Some of these 
mis-specifications will tend to increase the predicted 
epidemic period, and others will decrease it. One factor 
that could significantly change our predicted epidemic 
period is the underlying structure within the popula-
tion leading to heterogeneity in the average number of 
contacts under lockdown, for example, key workers have 
high levels of contact but others are able to minimise 
contacts effectively, this might lead to an underestimate 
of ongoing transmission, but potentially an overestimate 
of the effect of releasing lockdown. We also know that 
there are important socioeconomic considerations in 
determining people’s ability to stay at home and particu-
larly to work from home.34

Early UK modelling predicted the infection peak to 
be reached roughly 3 weeks from the initiation of severe 
lockdown measures, as taken by the UK government in 
mid-March.8 A more recent study factoring spatial distri-
bution of the population indicated the peak to follow 
in early April due to ‍R0‍ reducing to below 1 in many 
settings in weeks following lockdown.9 Other modelling 
indicated that deaths in the UK would peak in mid-late 
April; furthermore, that the UK would not have enough 
acute and IC beds to meet demand.35 While modelling 
from the European Centre for Disease Prevention and 
Control estimated peak cases to occur in most Euro-
pean countries in mid-April,20 these estimations were 
largely at a national level. Due to the expected lag of 
other regions behind London, these estimated peaks 
are likely to be shifted further into the future for the 
separate regions of the UK, and as shown by our model 
occurred in early to mid-April. This is also likely to be 
true for future peaks which may result from relaxing 
lockdowns.

Outside of the UK, a similar modelling from France32 
(which went into lockdown at a similar time the UK on 17 
March) predicted the peak in daily IC admissions at the 
end of March. Interestingly, however, when dissected by 
region, the peak in IC bed demand varied by roughly 2 
weeks. Swiss modelling similarly predicted a peak in hospi-
talisation and numbers of patients needing IC beds in 
early April, after lockdown implementation commenced 
on 17 March.33 US modelling36 disaggregated by State 
also highlights the peak of excess bed demand varies 
geographically, with this peak ranging from the second 
week of April through to May, dependent on the State 
under consideration. The modelling based in France also 
cautioned that due to only 5.7% of the population having 
been infected by 11 May when the restrictions would be 
eased, the population would be vulnerable to a second 
epidemic peak thereafter.32

The ONS in England estimated that an average of 
0.25% of the population had COVID-19 between 4 and 
17 May 2020 (95% CI 0.16% to 0.38%),37 which is greater 
than the 0.10% (95% CrI 0.04% to 0.22%) we found with 
our model (on 11 May 2020), but with some overlap. In 
addition, the ONS estimated that 6.78% (95% CrI 5.21% 
to 8.64%) tested positive for antibodies to COVID-19 up 
to 24 May 2020 in England,38 and Public Health England 
estimated that approximately 4% (2%–6%) tested posi-
tive for antibodies to COVID-19 between 20 and 26 April 
2020 in the SW.39 Compared with our model, 3.4% (95% 
CrI 2.5% to 5.0%) had recovered on 11 May 2020 (2 
weeks later), demonstrating that our model estimates 
may be within sensible bounds, and further highlighting 
the need for more regional estimates of crucial epidemio-
logical parameters and seroprevalence. We have assumed 
that individuals are not susceptible to reinfection within 
the model time frame; however, in future work it will be 
important to explore this assumption. It is not known 
what the long-term pattern of immunity to COVID-19 
will be,40 and this will be key to understanding the future 
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epidemiology in the absence of a vaccine or effective 
treatment options.

With this in mind, our findings demonstrate that 
there are still significant data gaps—and in the absence 
of such data, mathematical models can provide a valu-
able asset for local and regional healthcare services. 
This regional model will be used further in the SW as 
the pandemic evolves and could be used within other 
healthcare systems in other geographies to support 
localised predictions. Controlling intervention 
measures at a more local level could be made possible 
through monitoring and assessment at the regional 
level through a combination of clinical expertise and 
local policy, guided by localised predictive forecasting 
as presented in this study.
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