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Nomenclature 

𝐴  = forcing amplitude (deg) 

𝐾𝑃  = proportional pilot gain 

OLOP = open-loop onset point 

PIO = pilot-induced oscillation 

𝑞 = pitch rate (deg/s) 

𝑇 = time delay constant (s) 

𝑡 = time (s) 

𝑢 = stick input (deg) 

𝑥 = general state vector 

𝜂  = elevator/elevon deflection (deg) 

𝜆  = general input vector 

𝜔  = forcing frequency (rad/s) 

𝜃  = pitch angle (deg) 

Subscript 

𝑑em  = demanded 
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I. Introduction 

 Actuator saturation has been identified as the leading cause of many high-profile pilot-induced oscillations (PIO) 

and limit-cycle oscillations. The problem stretches back to the early days of fly-by-wire technology with the X-15, 

which encountered both PIO [1, 2] and a fatal limit-cycle oscillation [3] caused by rate saturation in the horizontal 

stabilizers. Due to its highly nonlinear nature, rate saturation can still be overlooked by many existing linear-based 

handling qualities criteria [4], which consider the X-15 to meet level-1 requirements and not PIO-prone [2]. The more 

recent crashes of the highly unstable Gripen fighter jet in 1993 and 1999 were also attributed to rate saturation in its 

elevon, which was overloaded by intensive pitch and roll control demands during the accident [5]. In all these cases, 

the impact of rate limiting was not predicted before the accidents, and subsequent investigations only employed quasi-

nonlinear methods (e.g. describing functions [2, 3, 5]), to supplement the original linear-based analysis. Therefore, 

there is a need to develop a more powerful toolbox for the industry that can not only handle nonlinearities efficiently, 

but also is presented in a familiar manner to facilitate its adoption by the practicing engineers. 

 In recent years, bifurcation analysis and numerical continuation have proven to be a powerful tool for nonlinear 

flight dynamics analysis. Thanks to its ability to fully characterize many nonlinear phenomena in both open- [6-8] and 

closed-loop applications [9-11], the method has gained recognition in the research community as well as in the 

industry. Nevertheless, there is still little (if any) research on the effect of actuator saturation on flight dynamics using 

bifurcation analysis apart from a brief mention in [12]. This is a promising research topic, as previous studies have 

demonstrated the potential of bifurcation analysis on providing a complete picture of the various nonlinear attractors 

that govern the dynamics of the aircraft. The method has also recently been expanded to generate the ‘nonlinear Bode 

plot’ of a harmonically-forced flight dynamics model – a technique we refer to as ‘frequency-domain bifurcation 

analysis’ or ‘nonlinear frequency response’ [13]. There are two advantages to this approach: 1) the Bode plot is a 

familiar tool for many practicing engineers, which would facilitate the adoption of the method in the industry, and 2) 

frequency analysis involves calculating the non-stationary solutions of the system, which means that the effect of 

actuator saturation can be directly observed. Since the latter capability is not available in conventional bifurcation 

analysis of equilibrium solutions (i.e., the approach employed in [6-11]), frequency-domain bifurcation analysis is 

especially suitable for studying the effect of actuator saturation on flight dynamics. 

 This note illustrates how both conventional and frequency-domain bifurcation analysis can be exploited to evaluate 

the contribution of actuator rate and position saturations on pilot-induced oscillations. We first demonstrate how the 
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methods can be directly applied to existing PIO criteria for linear airframes in Sections II and III. Then, Section IV 

examines the Space Shuttle’s PIO incident – an example of a complex closed-loop system – which uncovers additional 

insights that cannot be reflected using existing PIO criteria or analysis methods. The ultimate goal is to provide a 

useful tool for the research community and the industry. All results presented were calculated using numerical 

continuation [14] via the Dynamical Systems Toolbox [15] – a MATLAB/Simulink implementation of the numerical 

continuation software AUTO [16]. 

II. Limit Cycle Analysis 

For the first study, we employ conventional bifurcation analysis to repeat the analysis in [2], which studies the 

formation of limit cycles in the X-15 at landing condition. For a system written in the form �̇� = 𝑓(𝒙, 𝝀), where 𝒙 is 

the state vector and 𝝀 is the input vector, conventional bifurcation analysis solves for �̇� = 𝟎 to generate a map of 

equilibrium and periodic solutions of each state in 𝒙 when one of the input parameters in 𝝀 is varied. This map is 

referred to as a ‘bifurcation diagram’, which also provides information on the solutions’ stability. To illustrate the 

technique using a simple linear example, consider the pilot-vehicle system shown in Fig. 1 consisting of a proportional 

gain representing the pilot and the pitch-angle-to-elevator transfer function of the X-15 airframe at landing condition 

[2]. It should be noted that in [2], the gain in equation (1) has already been adjusted for 0 dB crossing at –110o phase 

in the open-loop frequency response, so a pilot gain of 𝐾𝑃 = 1 in this example refers to the baseline condition. 

 

1. 
𝜃(𝑠)

𝜂(𝑠)
=

3.476(𝑠+0.883)(𝑠+0.0292)

(𝑠2 + 0.038𝑠 + 0.01)(𝑠2 + 1.684𝑠 + 5.29)
 (1) 

 

Fig. 1    Block diagram: X-15 with a synchorous pilot model. 

The linear pilot-vehicle system under consideration becomes unstable when 𝐾𝑃 exceeds the 17 dB gain margin 

obtained from the open-loop frequency response, corresponding to 𝐾𝑃 = 7.1. We can make the same prediction using 

bifurcation analysis by trimming the aircraft at the origin using zero reference input (𝜃𝑑𝑒𝑚 = 0o), then setting the pilot 

gain as the continuation parameter (i.e., making 𝐾𝑃 the varying control parameter in 𝝀). Fig. 2a shows the resulting 
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bifurcation diagram of the pitch angle 𝜃 as a function of 𝐾𝑃, which is a map of the system’s equilibrium solutions as 

𝐾𝑃 increases. Due to the zero reference input, the equilibrium solution is at the origin regardless of the 𝐾𝑃 value, as 

expected. However, there is a change of stability from stable to unstable at 𝐾𝑃 = 7.1 – the same value predicted by the 

linear gain margin. This change of stability is caused by a Hopf bifurcation that gives rise to a limit cycle. As all 

components are linear, the limit cycle is divergent whenever 𝐾𝑃 exceeds 7.1.  

 

 

Fig. 2    Unforced bifurcation diagram of the a) linear and b) rate-limited X-15 pilot-vehicle system. 

 
 

 

Fig. 3    X-15 nonlinear actuator block diagram: a) rate limit only and b) both rate and position limits.  

We now repeat the analysis but with the actuator rate limited at 15 deg/s. Based on [2, 17], rate saturation is 

modelled by limiting the magnitude of the signal just before the integrator block as shown in Fig. 3a. This results in 

the nonlinear rate-limited bifurcation diagram shown in Fig. 2b. Although the Hopf bifurcation still occurs at 𝐾𝑃 = 

7.1, the limit cycle is now bounded and coexists with the equilibrium solutions in the region 2.4 ≤ 𝐾𝑃 ≤ 7.1. In other 

words, the Hopf bifurcation is now subcritical. This is a very undesirable behaviour because a limit cycle now exists 

for 𝐾𝑃 as low as 2.4 and that in the region 2.4 ≤ 𝐾𝑃 ≤ 7.1, the response can jump from the equilibrium branch to the 

limit cycle without warning if the perturbation is sufficiently large. We verify this in Fig. 4, which shows the time 

simulation of the aircraft subjected to a small perturbation at the 5s mark and a larger one at the 20s mark. Unlike the 

a) b) 

a) 

b) 
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first case, the second disturbance is large enough to send the aircraft into the stable limit cycle. The coexistence of the 

limit cycle and the equilibrium solutions also leads to jump phenomena. Fig. 5 shows the rate-limited bifurcation 

diagram with data from another time simulation superimposed in green. The simulation started in a limit cycle at a 

high pilot gain, which was then slowly reduced to 0. It can be seen that as the pilot gain reduces past the Hopf 

bifurcation at 𝐾𝑃 = 7.1, the response remains in the limit cycle until 𝐾𝑃 drops below 2.4, where the oscillation ceases 

and the response converges to the equilibrium solution again. For further reference, mathematical discussions of limit 

cycles in a similar setting can be found in [18, 19]; the latter presents a case in which the limit cycle can been measured 

experimentally.   

 

 

Fig. 4    X-15 response to two elevator impulse inputs – 𝑲𝑷 = 2.41.  

 

Fig. 5    X-15 response to jump phenomenon due to slowly decreasing 𝑲𝑷. 

One might assume that a better actuator with higher travel rate will improve the situation by raising the stability 

margin. This is not necessary the case, however. Fig. 6 shows the rate-limited bifurcation diagram of the pitch angle 

𝜃 and the elevon angle 𝜂 for a range of rate limits. It can be seen that despite the faster actuator, the limit cycle onset 

is still at 𝐾𝑃 = 2.4. The oscillation amplitude, on the other hand, increases with the travel rate, i.e. making the situation 

worse. However, simualtions show that a larger peturbation is needed to enter the limit cycle when the actuator travel 
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rate increases. In practice, this means the input peturbation required can be so large that it might exceed the deflection 

limit of the elevator and therefore has no chance of occuring. To demonstrate, we impose a deflection limit of 20 deg 

and a rate limit of 30 deg/s on the actuator using the scheme shown in Fig. 3b. The ensuing bifurcation diagram is also 

shown in Fig. 6 (marked as ‘30 deg/s + travel limit’). It is clear from Fig. 6b that the deflection limit has confined the 

elevator state 𝜂 within the 20 deg boundary, which results in a reduced limit cycle amplitude of 𝜃 in Fig. 6a compared 

to when deflection limit is not implemented. The value of Fig. 6b is that it demonstrates the susceptibility of an aircraft 

to position saturation. While time series simulations with perturbation inputs can also indicate this, such a technique 

is reliant on giving the system the appropriate level of perturbation at the appropriate time, which can be very difficult 

to predict. Additionally, it does not yield information on the parameter dependence of the dynamics governing the 

behavior observed. 

 

Fig. 6    X-15 bifurcation diagrams of the a) pitch angle and b) elevator states with different actuator rate limits. 

The same analysis using the inverse describing function technique was also presented in [20] and it was noted that 

that while the method can predict existence of limit cycles, it does not provide an indication of the aircraft’s 

susceptibility to entering the oscillation, and hence the PIO. This limitation is also reflected in Fig. 6 by the fact that 

both the limit cycle onset at 𝐾𝑃 = 2.4 and the Hopf bifurcation at 𝐾𝑃 = 7.1 are unaffected by the maximum actuator 

rate. A frequency-domain analysis can overcome this issue, which is discussed in the next section. 

III. Nonlinear Open-Loop Frequency Response 

We now employ frequency-domain bifurcation analysis to generate the open-loop frequency response under the 

original 15 deg/s rate saturation and no deflection constraint. In this instance, the demanded pitch angle takes the form 

𝜃𝑑𝑒𝑚 = 𝐴 sin(𝜔𝑡), where 𝐴 and 𝜔 are the forcing amplitude and frequency in deg and rad/s, respectively. Numerical 

a) b) 
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continuation requires the system to be time-invariant (no 𝑡 on the right-hand side of the state equations). Therefore, it 

is necessary to convert the forcing term 𝜃𝑑𝑒𝑚 = 𝐴 sin(𝜔𝑡) into the required form using equations (3-5). It can be 

shown that 𝑥6 = sin(𝜔𝑡) and 𝑥7 = cos(𝜔𝑡), essentially making them ‘dummy states’ to provide a harmonic forcing. 

The model is now effectively a 7th-order system described by equations (2-5), which consists of [𝑥1, 𝑥2, … , 𝑥4] to 

describe the airframe transfer function in equation (1), 𝑥𝜂 for the actuator state, and the harmonic oscillator [𝑥6, 𝑥7]. 

Nonlinear frequency analysis can be now executed by setting 𝜔 as the continuation parameter. Although the harmonic 

oscillator had been employed in some earlier works [7, 12, 21], a full nonlinear Bode plot with both gain and phase 

information has not employed in a flight dynamics context until recently [13]. 

 

2. [�̇�1, �̇�2, … , �̇�4, �̇�𝜂]
𝑇

= 𝒇(𝑥1, 𝑥2, … , 𝑥4, 𝑥𝜂 , 𝜃𝑑𝑒𝑚) (2) 

3. 𝜃𝑑𝑒𝑚 = 𝐴𝑥6 (3) 

4. �̇�6 = 𝑥6 + 𝜔𝑥7 − 𝑥6(𝑥6
2 + 𝑥7

2) (4) 

5. �̇�7 = 𝑥7 − 𝜔𝑥6 − 𝑥7(𝑥6
2 + 𝑥7

2) (5)  

 

 

Fig. 7    X-15 open-loop 𝜽-to-𝜼𝒅𝒆𝒎 a) Bode and b) Nichols charts under different forcing amplitudes 𝑨: linear 

and rate-limited at 15 deg/s. 

Fig. 7 compares the 𝜃-to-𝜂𝑑𝑒𝑚 frequency responses of the ideal and the rate-limited open-loop aircraft with no pilot. 

The 17 dB gain margin mentioned previously can be seen in the linear response. For the rate-limited case, the 

frequency response is dependent on both the forcing frequency and amplitude – a characteristic of nonlinear systems. 

Increasing the forcing amplitude will significantly reduce gain margin and lead to a lower roll-off frequency because 

a) b) 
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the actuator cannot keep up with the reference signal even at low frequencies. It was shown in [2] that using the linear 

frequency-domain criteria, the aircraft meets level 1 handling qualities and is not PIO-susceptible. However, due to 

the large influence of the actuator rate limiting, the assumptions involved in applying those linear criteria are no longer 

valid due to the strong mismatch between the linear and nonlinear frequency responses. If we ignore the assumption 

of linear dynamics and employ nonlinear frequency response analysis, then Fig. 7b shows that the rate-limited 

responses violate the Gibson PIO criterion.  

 

Fig. 8    X-15 a) closed-loop and b) open-loop 𝜽-to-𝜽𝒅𝒆𝒎 frequency responses at [𝑲𝑷, 𝑨] = [1.5, 2]. 

Using the rate-limited frequency response, we can now employ other frequency-domain Category II PIO criteria 

such as the open-loop onset point (OLOP) boundary [20, 22] in our analysis. The applications of OLOP criterion to 

various aircraft including the X-15, has previously been discussed in [4] using other techniques such as describing 

functions. In this section, the procedure using numerical continuation is explained. We chose a pilot gain of 𝐾𝑃 = 1.5, 

which is well below the limit-cycle onset value in Fig. 6 and may therefore be listed as not PIO-prone using limit-

cycle analysis in Section II. The first step is to determine the onset frequency; this is the lowest frequency at which 

rate limiting first becomes active in the closed-loop system. Fig. 8a compares the closed-loop Bode plots of the linear 

and nonlinear frequency responses. The onset points are marked as black and white circles for two different levels of 

rate limiting. Then, plot the onset frequencies on the open-loop Nichols chart (Fig. 8b). The following observations 

can be made: 

- At 22.5 deg/s rate limiting, the onset point A matches the prediction made based on the procedure described in 

[20]. Point A lies well outside the blue boundary in Fig. 8b, indicating that the aircraft is safe from PIO.  

a) b) 
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- At 15 deg/s rate limiting, there are two possible onset points: point B is the one obtained using the method in [20], 

which lies very close to the PIO boundary in Fig. 8b. The OLOP criterion therefore suggests that the aircraft may 

be on the verge of being PIO prone and requires further examination. Nonlinear frequency response analysis 

reveals that poor handling qualities is indeed a problem, as a small increase in the forcing frequency beyond point 

B results in a cliff-like jump in phase lag. Additionally, a second onset point labelled C is also detected at a lower 

frequency, which falls within the OLOP boundary and provides further evidence of a PIO-prone platform. Time 

simulation verifies that rate limiting can occur above 2.71 rad/s (and below 2.90 rad/s) if the aircraft is given a 

large enough perturbation. 

The behaviour observed in the 15 deg/s case is caused by a pair of fold bifurcations and explains the jump resonance 

mentioned in [20, 22]. This highly nonlinear phenomenon and its implications are discussed in the next section and in 

the appendix; the latter provides an example where jump resonance can be easily observed in a simple second-order 

system. For our current discussion, nonlinear frequency analysis has revealed that rate limiting onset can occur in 

more than one way (at more than one frequency), depending on which side of the 'cliff' the pilot is on.  

It has been shown that rate limiting can lead to highly undesirable dynamics even in a very simple linear system. 

In both the limit cycle and the frequency response analyses, rate saturation causes the aircraft’s responses to differ 

significantly from the linear predictions. Bifurcation analysis, on the other hand, not only accurately predicts the 

dynamics, but can also be directly employed on existing PIO criteria. In the next section, the influence of actuator 

saturation will be further studied in a complex closed-loop system to investigate the flying qualities cliff phenomenon. 

IV. Nonlinear Closed-Loop Frequency Response: Analysis of the Space Shuttle PIO  

A. Description 

 We now investigate the PIO incident encountered on the Space Shuttle Enterprise, which also occurred during 

landing flare on the final flight (FF-5) of the approach and landing test program (ALT). The Enterprise was built for 

pilot training and comes without an engine and heat shield [23]. Its typical mission started on the back of a Boeing 

747, where the Shuttle was released at altitude to glide back to the landing site. Regarding the PIO, investigations by 

NASA concluded that a combination of rate limiting and excessive time delay led to the degraded handling quality of 

the Space Shuttle at landing [24]. Subsequent efforts to prevent further PIO included extensive pilot training [23] and 

the introduction of a new PIO-suppression filter onboard the operational Space Shuttles, which reduces the input gain 
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at certain known problematic frequencies [25]. In this section, we examine the closed-loop frequency response of the 

unmodified Enterprise at landing configuration – the one in which flight FF-5 suffered the PIO. The model used for 

analysis is based on the NASA TM 81366 report [24]. 

 Fig. 9 shows the block diagram of the Shuttle’s linearised pitch rate control system with the airframe transfer 

function described by equation (6). The nonlinear elements (not shown in Fig. 9) are the actuator’s rate and travel 

limits. Input shaping is not considered in this study as only the actuator nonlinearities are of interest. In the original 

NASA report, rate and travel limits were implemented using the scheme described by Fig. 10a, which involves taking 

the derivative of the elevon demand signal 𝜂𝑑𝑒𝑚. Bifurcation analysis requires the components to be written in 

autonomous ordinary differential equations form, so it is impractical to use the derivative signal of 𝜂𝑑𝑒𝑚. To address 

this, the scheme shown in Fig. 10b is used to model rate and travel saturations (similar to the one used for the X-15 

above). We have verified that the simulated responses of these two configurations are very similar. Nevertheless, all 

time simulations presented in this section were generated using the original scheme in Fig. 10a to ensure the validity 

of the results. For the time delay block 𝑒−𝑇𝑠, a Padé 3rd-order approximation is used to ensure that the only nonlinear 

elements in the analysis are still actuator rate and deflection saturations. 

6. 
𝑞(𝑠)

𝜂(𝑠)
=

−1.3𝑠(𝑠+0.648)(𝑠+0.0349)

(𝑠+0.887)(𝑠−0.1)(𝑠2+0.189𝑠+0.238143)
  (6) 

 

Fig. 9    Linear representation of the Space Shuttle’s pitch rate control system (based on [24]). 

 

Fig. 10    Space Shuttle rate and travel limit implementations for a) time simulation and b) bifurcation analysis. 

a) 

b) 
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B. Frequency and amplitude responses  

The original NASA report [24] considers time delays 𝑇 between 0.1 and 0.4 s. For the first analysis, the worst-

case scenario of 𝑇 = 0.4 s is considered. Fig. 11a compares the linear and nonlinear frequency responses. Due to the 

nonlinearity introduced by rate limiting, the nonlinear responses are functions of both forcing frequency 𝜔 and forcing 

amplitude 𝐴. More specifically, larger 𝐴 reduces the roll-off frequency due to the actuator not travelling fast enough 

to follow the input signal. In extreme cases like at 𝐴 = 15o, a pair of fold bifurcations at 1.19 and 1.58 rad/s is detected. 

Each fold bifurcation reverses the direction of the solution branch in the gain plot, causing a change of stability from 

stable to unstable (and vice versa). As a consequence, the resonance curve leans to the left and leads to a region of 

two stable solutions between these two fold bifurcations. Moreover, the stable solutions in this range have a phase 

difference of almost 180o. One might attribute this highly nonlinear behaviour to the large forcing amplitude, which 

requires the elevon to travel at a higher speed at lower frequency. However, it is shown that reducing the forcing 

amplitude to 5o does little to improve the situation as the fold bifurcation and the large phase jump are still observed. 

 

Fig. 11    Space Shuttle closed-loop 𝒒-to-𝒖  a) frequency and b) amplitude responses – 𝑻 = 0.4 s.  

An advantage of numerical continuation methods is that the dependency on the forcing amplitude can be directly 

assessed. By fixing 𝜔 while allowing 𝐴 to vary, the system’s gain and phase responses as a function of only the forcing 

amplitude can be generated as shown Fig. 11b, in which the forcing frequency is fixed at 1.55 rad/s. As before, a 

region of multiple solutions (two stable and one unstable) arising from a pair of fold bifurcations is detected for 3.9o 

≤ 𝐴 ≤ 15.7o, which has dangerous implications. Fig. 12 shows the simulated response with fixed amplitude at 15o and 

a frequency of 1.55 rad/s, which lies inside the region where two stable responses exist. Before the perturbation at the 

a) b) 
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159 s mark, the motion corresponds to the in-phase solution with a phase lag of roughly 22o. The perturbation causes 

a violent transition to the out-of-phase solution and eventually converges to the stable response with a 177o phase lag. 

This transition resembles the ‘flying qualities cliff’ phenomenon, which is described in [2] as a “sudden and dramatic 

incremental shift in the phase lag, equivalent to the sudden insertion of a significant incremental time delay into the 

loop, initiated by only a slight change in pilot input command.” Studies have identified actuator rate limiting as the 

main cause of the flying qualities cliff, making modern high-performance fly-by-wire aircraft especially vulnerable 

[26]. Despite its potential consequence, the issue has not been thoroughly analysed or documented due to its highly 

nonlinear and elusive nature. As shown in the time simulation in Fig. 12, the transition to the out-of-phase motion can 

be sudden and violent, which catches the pilot off guard and contributes to PIO. This also makes it extremely hard to 

predict when the pilot might encounter the cliff and to replicate the phenomenon using time simulation unless the 

exact parameters are known beforehand. On the other hand, we have shown that nonlinear frequency response analysis 

can circumvent this challenge, and Fig. 11 is the first successful attempt at characterising the flying qualities cliff 

using bifurcation analysis and numerical continuation.  

 

Fig. 12    Space Shuttle simulated response to an input perturbation for [𝑻, 𝑨, 𝝎] = [0.4, 15, 1.55]. 

With the PIO fully developed, the pilot may attempt to stop the out-of-phase motion by reducing the forcing 

amplitude. However, the fold bifurcation at 𝐴 = 3.9o in Fig. 11b will impede the recovery process. As the response 

will always follow the nearest stable solution, once the motion lands on the out-of-phase region at 𝐴 = 15o, reducing 

𝐴 sees no change in the pitch rate amplitude along with a very small reduction in phase lag all the way down to 𝐴 = 

3.9o, at which point, a sudden jump back to the low-amplitude and in-phase response is observed. We verify this by 

forcing the aircraft at 1.55 rad/s but with the forcing amplitude reducing linearly at a rate of 0.1 deg/s, shown in Fig. 

13. It can be seen that before 𝐴 passes 3.9o, there is no reduction in the pitch rate response amplitude despite a 

constantly reducing 𝐴. In practical terms, this behavior suggests that the only way to recover the aircraft in this 
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situation is to release the stick, which is hardly an option when the PIO is fully developed with the aircraft already 

close to the ground at landing, potentially while also at a dangerous attitude.  

 

Fig. 13    Space Shuttle simulated response with a linearly reducing forcing amplitude. 

C. Effects of time delay  

Fig. 14 shows the frequency responses at 𝐴 = 15o for a range of time delay constant 𝑇. Although reducing 𝑇 from 

0.4 s to 0.1 s improves the situation by narrowing the frequency separation between the fold bifurcations and reducing 

the magnitude of the phase jump, the fold bifurcations still exist. In fact, they only disappear by reducing the time 

delay further. This suggests that both rate limiting and time delay contribute to the formation of the fold bifurcations 

and consequently the phase jump that caused the PIO, but not time delay alone since the Padé approximation is linear 

and therefore cannot create the fold bifurcations. Although the original NASA report also drew similar conclusions 

through experience, frequency-domain bifurcation analysis can systematically identify the precise mechanism of the  

 

 

Fig. 14    Space Shuttle rate-limited frequency responses for a range of time delay levels at 𝑨 = 15o.  
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flying qualities cliff that contributed to the PIO experienced on the Enterprise. We validate the prediction of multiple 

stable solutions at 𝑇 = 0.1 s, 𝐴 = 15o, and 𝜔 = 1.96 rad/s using time simulation with different initial conditions. Fig. 

15 confirms that there are indeed two possible responses for the same forcing input: one with 45o and one with 95o 

phase lag, and that the elevon is rate-saturated in both instances.  

 

Fig. 15    Space Shuttle pitch rate responses from two different simulations with different initial conditions. 

[𝑻, 𝑨, 𝝎] = [0.1, 15, 1.96]. 

D. Detecting position saturation 

Finally, we demonstrate another advantage of continuation methods: the frequency response of an element inside 

a closed-loop can be examined. Of particular interest in this example is that of the elevon state 𝜂. Its frequency 

responses at 𝑇 = 0.4 s for three different forcing amplitudes are shown in Fig. 16. It can be seen that for 𝐴 = 6.5o and 

above, the resonance peak is flattened at 𝜂 = 21.5o, which is the elevon travel limit. We verify this by forcing the Space 

Shuttle at 𝐴 = 6.5o with a chirp signal that linearly decreases the forcing frequency at a rate of -0.005 rad/s2. Its pitch 

rate response in Fig. 17a shows the jump phenomenon as discussed previously. The elevon response between 1.35 and 

1.25 rad/s is shown in Fig. 17b, and is clearly position-saturated as predicted (in addition to being rate-saturated).   

 

 

Fig. 16    Frequency responses of the Space Shuttle’s elevon state 𝜼 at 𝑻 = 0.4 s. 
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Fig. 17    Space Shuttle a) pitch rate and b) elevon response to a chirp signal for [𝑻, 𝑨] = [0.4, 6.5]. 

The Space Shuttle’s susceptibility to position saturation can be analyzed by examining the movement of the upper 

fold bifurcation as the forcing amplitude and frequency varies. This locus of the fold bifuraction was calculated using 

two-parameter continuation method and is shown as the thin line in Fig. 16, along with its projection onto the 𝐴-𝜂 

plane in Fig. 18. Fig. 18 shows that for 𝑇 = 0.4 s, the line asymptotes to 𝜂 = 21.5o from around 𝐴 = 5o, indicating that 

pumping the stick beyond 5o amplitude will lead to position saturation. Reducing the time delay constant to 0.3 s sees 

a significant improvement, and now a forcing amplitude of 12o is required to induce travel saturation. In practice, a 

margin can be defined to ensure the limit is not reached. The benefit of the two-parameter continuation technique is 

that it can find the locus of a bifurcation point in the two-parameter space in a single run, which is much more 

computationally efficient than generating the individual frequency responses as shown in Fig. 16. Additionally, the 

only way to extract information on position saturation without bifurcation analysis is through time simulation, which 

is very time-consuming and is essentially ‘hit or miss’ if the range of susceptible parameters is not known in advance. 

 

Fig. 18    Two-parameter continuation of the upper fold bifurcation in the 𝑨-𝜼 plane. 

a) 

b) 
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V. Conclusions 

In this note, we have proposed the use of both conventional and frequency-domain bifurcation analysis in assessing 

PIO susceptibility due to rate limiting while also accounting for the contribution of position saturation. Re-

examinations of the X-15 illustrates how bifurcation analysis can be directly implemented on existing Category I and 

II PIO prediction techniques, and the Space Shuttle studies further highlights the method’s advantages by explaining 

the dangerous flying qualities cliff phenomenon, which is very hard to predict and is not reflected in many existing 

PIO criteria. Comparing to other techniques such as the describing function method, bifurcation analysis offers the 

following benefits: 

1) Systems with multiple nonlinear elements can be analysed.  

2) It is not required to know the exact form of the signal going into the nonlinear element. In practice, this means 

frequency analysis involving a nonlinear controller (such as gain scheduled) or a nonlinear plant can be easily done. 

3) In the nonlinear frequency response, both the frequency the amplitude dependencies can be directly assessed.  

4) The frequency response of an element inside a closed loop can be examined, as seen from the travel saturation 

example. 

Presenting the results in the form of a nonlinear Bode plot enables the new findings to be viewed by the practising 

engineers in a familiar context. This further facilitates adoption of the method and makes bifurcation analysis a 

valuable addition to both the industry and academia. Finally, as nonlinear frequency response involves generating the 

(non-equilibrium) periodic solutions, there is potential to expand the method to account for other non-stationary 

phenomena such as unsteady aerodynamics and aeroservoelasticity.  

 

Appendix: Example of Jump Resonance in a Simple Feedback System with Saturation 

Jump resonance may be encountered in feedback systems when the error signal is heavily saturated. A simple 

example is provided here as a potential starting point for further investigations. Consider a second-order actuator 

model from [27] with a 1200 deg/s2 accleration limit and no rate saturation. Its schematic block diagram is shown in 

Fig. 19a, in which the signal limit block has been scaled to compensate for the 21.4 gain in the outer loop. Fig. 19b 

shows the closed-loop frequency responses for a range of forcing amplitudes 𝐴 in degrees. Jump resonance appears at 
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𝐴 = 5 and 7o. For low forcing amplitudes like 1o, the actuator is not acceleration-saturated in the frequency range 

considered, resulting in a linear-like frequency response with a natural frequency of 30 rad/s and damping ratio of 0.7. 

The jump responance leads to a region of two stable solutions, which can be verified in time simulation (Fig. 20). 

Increasing or reducing the forcing amplitude beyond the bistable region will lead to a cliff-like jump in phase lag.  

 

 

Fig. 19   a) Block diagram and b) closed-loop 𝜼-to-𝜼𝒅𝒆𝒎 frequency responses of a second-order actuator 

model with 1200 deg/s2 acceleration limit. 

 

  

Fig. 20   Simulated responses under the same forcing input [𝑨, 𝝎] = [7, 13] but different initial conditions of 𝜼. 

a) 

b) 
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