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 

Abstract— Real-Time Thermal Rating (RTTR) is a smart grid 

technology that allows electrical conductors to operate at an 

enhanced rating based on local weather conditions. RTTR also 

provides thermal visibility of the network, making system 

operators aware if the actual rating drops below the static 

seasonal rating. This paper investigates how using these 

enhanced, variable ratings affects power network reliability. A 

methodology has been developed to assess network reliability 

with variable conductor ratings. The effect of failures and 

uncertainties in the RTTR system are also considered, and the 

effect of the correlation between conductor ratings due to 

common weather conditions is built into the model. State 

sampling and sequential Monte Carlo simulations are used to 

estimate the reliability of the RBTS 6-bus test network. At low 

loading levels the RTTR appears to reduce network reliability, 

but actually illustrates occasions when the existing ratings are 

being unknowingly infringed. For higher loading the network 

reliability is significantly improved by the use of RTTR, with 

reductions in loss of load expectation of up to 67%. 

 

Index Terms— Power system planning, Power system reliability, 

Transmission lines, Smart grids 

 

I. INTRODUCTION 

EAL-TIME THERMAL RATING  is a smart grid 

technology which allows electrical conductors to operate 

at an enhanced rating based on local weather conditions. 

Conventionally overhead lines are given a fixed rating based 

on a conservative set of weather conditions [1, 2]. The actual 

rating is dependent on the local wind speed, wind direction, 

ambient temperature and solar radiation, and is often 

significantly higher than the seasonal static rating [3]. A 

number of systems have been developed to exploit this 

additional capacity [4-6]. 

 This paper describes a methodology to evaluate the impact 

that of using this enhanced, variable rating on network 

reliability. Energy targets such as the 80% reduction in CO2 

emissions by 2050 target in the EU [7], will cause an increase 

in electricity demand as transport and heating are electrified. 

This could cause the presently reliable transmission and 
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distribution systems to become unreliable and need significant 

reinforcement. RTTR, as part of a larger suite of smart grid 

technologies, could eliminate or reduce the need for new 

conductors while giving network operators more information 

about the state of the system. 

 Although RTTR allows conductor ratings to be set in real 

time, this paper deals with the technology from an offline 

planning perspective. While on first inspection this may seem 

counter intuitive, it is essential to be able to understand the 

impact of a new technology before it is deployed on a real 

network. The methods described allow the impact of the 

variable ratings on network reliability to be quantified at the 

planning stage. Thorough calculations can be performed at this 

stage without the time constraints that may be present during 

operation. 

 The archival value of this paper lies in the adaptation of 

established reliability analysis techniques to work with the 

upcoming RTTR technology, coupled with a quantification of 

the benefits RTTR can provide to network reliability. Further 

to this, RTTR’s deployment is dependent on proper 

understanding of the accuracy and reliability of the RTTR 

system; this paper demonstrates the effect of the uncertainty 

and reliability of RTTR on system reliability. 

II. POWER SYSTEM RELIABILITY 

Power system reliability has always been important to 

network operators. Since the advent of computing power, 

more complex solutions, both analytical and Monte Carlo 

(MC) based, have become available. There are two problems 

to be solved within power system reliability; generation 

adequacy, whether there is sufficient generation to meet 

demand and transmission adequacy, whether there is sufficient 

transmission capacity to connect generation to load [8]. 

Transmission systems are concerned with both problems, 

while distribution networks are only concerned with 

transmission adequacy. That being said, generation at lower 

voltages can be used to assist in transmission adequacy [9]. 

Since RTTR provides a benefit to transmission adequacy, only 

that was considered in this work. 

Network reliability can be quantified in different ways. Loss 

of Load Expectation (LOLE) is the likelihood that the load in 

the system cannot be adequately supplied [8]. Loss of Energy 

Expectation (LOEE) goes further by assessing the deficit 

between the load and the supply. Although it has more 

physical significance than LOLE, it has less flexibility and has 

been less widely applied [8]. 
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A. Probabilistic Reliability Assessment 

Power systems are large and complex; consequently they 

can occupy many different states during operation. This large 

state space makes analytical state space enumeration, where 

the probability and consequence of each state is evaluated, 

difficult and time consuming. MC simulations offer a way to 

explore this state space by simulating a large number of 

random input states to assess system behavior. 

MC simulations can take various forms. For this application 

one option is state sampling MC [10, 11], where each input 

variable is assigned a probability distribution. Samples from 

these distributions are then used to perform a large number of 

calculations to explore the state space. This method is simple, 

but does not account for any time dependencies within the 

model. The sequential MC simulation [12, 13] keeps this time 

dependency intact, but at the cost of greater computational 

resources and complexity. A method for pseudo sequential 

MC simulation was proposed [14] where states are sampled 

randomly from a time series, but on occasions where the 

system was not adequate the duration of this inadequacy was 

examined by looking at the appropriate section of the time 

series.  

A key difficulty in evaluating the impact of RTTR on 

system security is the correlation structure between the ratings 

of the lines in the network. Networks cover a wide 

geographical area, so overhead lines which are directly 

connected will have highly correlated ratings, while lines 

which are more remote from one another will have weakly 

correlated ratings. This implies that stronger correlation will 

be present in meshed networks than radial networks, since in 

meshed networks a large number of conductors cover a 

smaller geographical area. The correlation between conductors 

in transmission networks will generally be lower than those in 

distribution networks, because the transmission network spans 

a larger geographical area. In all cases, the terrain local to the 

conductors will have an impact on these correlations. The 

effect of wind speed correlation on the reliability provided by 

wind generation was investigated by [15] and a methodology 

for incorporating these correlations into the MC simulation 

was developed. The method used a genetic algorithm to ensure 

the sampled variables corresponded to a previously selected 

correlation between wind sites. The methodology used an 

Auto-Regressive Moving Average (ARMA) model of wind 

speed [16]. This allowed a synthetic data set much larger than 

the real data set available to be used in a sequential MC 

simulation. The paper concludes that multiple independent 

wind farms provide a higher contribution to network security 

than a single wind farm, or multiple wind farms in the same 

wind regime. 

This concept is important for assessing the impact of RTTR 

on reliability, though the effect of the correlations may be 

different. The correlation between the ratings of lines must be 

accounted for in any model of network reliability 

incorporating RTTR.  

B. Novel Reliability Assessment Methodologies 

The MC based approach has come under criticism in recent 

years because of its time and computation requirements. 

Consequently new methods have been proposed which attempt 

to provide the same level of detail as MC at a reduced 

computational cost. Several of these approaches, which 

attempt to enumerate the probability states efficiently, were 

considered for this application [17-20]. 

Unfortunately these approaches are not well suited to the 

RTTR application. The variable conductor ratings mean that 

each conductor has many states representing different rating 

levels. This vastly increases the number of low probability 

states, making state enumeration more intensive. The number 

of states could be reduced by breaking the rating of the line 

into a small number of discrete states, but this would lead to a 

loss of detail in the results. The complex correlations between 

the conductor ratings in the network are also difficult to assess 

using a state space method, but can be accounted for using a 

sequential MC simulation. 

After investigating the available methods for assessing 

power system reliability, sequential Monte Carlo simulation 

seems most appropriate for the RTTR application. MC is an 

effective means of exploring a large number of low probability 

states [18], and sequential simulations allow the correlations 

between line ratings to be accounted for. The downside with 

MC is that long calculations are required. Because this work 

deals with network reliability from a planning perspective, 

time consuming calculations are acceptable. 

C. Smart Grid Reliability 

Implementing smart grid projects will have an impact on 

network security [21]. The consensus is that smart grids will 

rely heavily on IT and communications infrastructure [14, 21], 

and that the reliability of these components will heavily 

influence the reliability of the smart grid. It is clear that in 

assessing the impact of RTTR on power network reliability, 

the reliability of the RTTR technology must be taken into 

account. 

III. METHODOLOGY 

A. Overhead Line Reliability Model 

The reliability of the overhead lines in this study was 

represented as a two state Markov process; an up state 

(available) and a  down state (unavailable) [22]. The 

probability of being in the down state is given by:  

Where MTTR is mean time to repair, MTTF is mean time to 

fail (in hours) and f is the failure rate (failures per year). 

Transmission system reliability data were available [23].  

B. Reliability Test Networks 

In order to develop a methodology for assessing the 

reliability of an RTTR enabled network, a test case must be 

used. Probabilistic reliability analysis is more commonly 

performed on transmission networks, due to the high 

complexity and comparatively low impact of distribution 

networks on loss of load. 

Various test networks are available. Figure 1 shows the 

RBTS [24] is a 6 bus, 9 transmission line system. This small 

network was used because it allowed results to be easily 

analyzed. The changes in power flows due to outages are 

obvious, so it is easy to see where RTTR is providing a 
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benefit. The IEEE 14-bus, 24-bus and 39-bus networks were 

used to test the scalability of the method. 

 

 
Figure 1:  Diagram of the test network  

C. State Sampling Simulations 

State sampling Monte Carlo simulations are simple to 

perform. The different parameters in the model are represented 

by probability distributions. In each calculation, every 

parameter is represented by a random sample from these 

probability distributions. The model is then run a large number 

of times to effectively explore the state space. Reliabilities can 

be represented as a simple probability derived from the MTTF 

and MTTR, since the state sampling method does not use any 

kind of time series. 

The line ratings were approximated by a normal distribution 

with µ=1.7 and σ=0.35 as a proportion of static rating. The 

load data were sampled from a simple load distribution curve. 

Since this study is concerned with the impact of RTTR on 

transmission adequacy the generation was considered to be 

perfectly reliable. The impact of RTTR on composite system 

reliability could be considered in a future study. 

 State Sampling studies gave reasonable results, but the 

impact of outage durations, the time domain behavior of the 

line rating and loading and the correlation structure between 

the line ratings were all of interest, and could only be properly 

represented by a sequential simulation. 

D. Sequential Monte Carlo 

Sequential MC was used to give a more complete and 

realistic representation of the system. Synthetic time series 

were used rather than PDFs, and a Markov model was used to 

represent the reliabilities. 

To perform sequential MC studies, the existing sampling 

method for generating rating data was replaced with synthetic 

time series calculated using real data. An Auto Regressive 

Moving Average (ARMA) model was used to represent the 

ratings. Third order auto regressive and first order moving 

average models were used. The model was generated using the 

square root of the ratings data, since this provided a closer 

approximation to a normal distribution than the ratings 

themselves. The distribution used is dependent on the specific 

historical data, and an appropriately selected model will lead 

to more representative results. 

The autoregressive model was of the form: 

 

 ( )            (   )           (   )

           (   )

          (   ) 

 
(2) 

 

Where α is a random sample from a normal distribution 

with µ=0 and σ=1.216. The model is based on data from a 

RTTR trial site with a sampling rate of 5 minutes [4]. The 

thermal time constant of the overhead line is such that the 

rating must be updated every 5 minutes to ensure the 

conductor operates within the thermal limit [25]. One year of 

historical data was available, so the ARMA model was used to 

allow simulations of time periods greater than one year. Using 

ARMA models rather than using historical data directly also 

allowed investigation into the impact of different levels of 

correlation between the overhead line ratings on the overall 

network reliability. Load data were generated using a similar 

model. The model parameters were selected using historical 

load data. Again, the ARMA model used a normal distribution 

based on the square root of the load data, since this gave the 

best approximation to the data. 

The PDFs used were evaluated in terms of the average root 

mean square error (ARMS) [26]: 

     
√∑ (             )
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Where FMod,i and FRef,i are the i
th

 values on the CDF curves of 

the fitting model and the reference respectively. N is the 

number of selected points which are chosen from the range of 

the CDFs within a certain interval. The historical data were 

used as the reference. The ARMS values for the models used 

in the analysis are shown in Table 1. 

Parameter ARMS Error 

Rating 3.57% 

Load 2.70% 

Square Root of Rating 2.03% 

Square Root of Load 0.70% 
Table 1: Average Root Mean Square errors of the load and rating distributions 

E. Correlated Rating Time Series 

In a network, conductors at geographically close locations 

will have ratings which are correlated to one another in some 

way. Figure 2 shows correlations calculated using weather 

data from the UK. The weather data was used to calculate 

conductor ratings via the CIGRE overhead line model [27]. 

Two sets of weather stations were used; one set of tightly 

grouped stations, with a maximum spacing of 15km, and four 

stations spread across the UK with a maximum spacing of 

over 600km. The correlations were calculated using the 

Pearson product-moment correlation: 
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Where cov is the covariance, E is the expectation; µ is the 

mean and σ is the standard deviation. 

 
Figure 2: Plot of correlation between conductor ratings against distance 

between conductors 

The results demonstrate that although the high correlation 

between the ratings of nearby conductors decays quickly with 

distance, there is still some correlation between conductors 

hundreds of kilometers apart. Conductor ratings are governed 

by weather conditions, and conductors hundreds of kilometers 

apart will still be affected by the same large scale weather 

phenomena. 

These correlations must be represented in the model. The 

ARMA model used to represent the ratings uses a random 

number string as part of the moving average model. If these 

strings are specified with set correlations to one another, then 

the resulting ratings data will have a similar correlation [15].  

Specified random number series can be generated using 

Cholesky decomposition [28]. This approach requires a 

positive definite matrix to be specified, where element (a,b) 

represents the desired correlation between conductors a and b 

(resulting in 1s on the leading diagonal, since this represents 

the correlation of a rating with itself). Cholesky decomposition 

is performed, to give the matrix U. A matrix of uncorrelated 

random numbers, R, can then be multiplied by U to give Rc, a 

matrix of correlated random numbers. This is shown in 

equation 5. 
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An example of this for the RBTS ratings is shown in 

equation 4 above. Conductors 1 and 6 and conductors 2 and 7 

were assumed to have the same rating, so only seven sets of 

correlated ratings were generated. Figure 3 shows an example 

of this data. The correlations were checked against the desired 

values before the simulations were carried out. Alternatively 

the correlated random number series could be created through 

eigenvalue decomposition or using genetic algorithms [15]. 

 
Figure 3: 7 sets of rating data with pre specified correlations 

Load data were created using the same method; the 

correlation between all loads was set to 0.8.  

The conductor reliability model was calculated ahead of 

time, with time series of data with each conductor in either the 

0 (down) or 1 (up) state. A model was also included for the 

reliability of the RTTR system. When the RTTR system is in 

the 0 state, the conductor reverts to its static rating. This is a 

worst case assumption, since in operation some form of 

graceful degradation could be applied [29]. The MTTF and 

MTTR values for the conductors were taken from [24]. The 

RTTR system was assigned a MTTF of 3 months and a MTTR 

of 10 hours, though in reality these values would vary 

depending on which RTTR technology was implemented.  

F. Uncertainty Quantification 

In a real system, the operator will not have perfect 

information about the rating of the conductors. If weather 

based RTTR [4] is used, there are uncertainties in the 

measurement of weather parameters, the line rating model and 

using weather station data to estimate conductor ratings at an 

unobserved location. If a tension or sag  monitoring solution 

[30] is used then there is uncertainty in the measurement of 

sag or tension, error in the model used to infer a rating from 

this data and further uncertainty because it is unlikely that 

every conductor span will be instrumented. If this 

methodology is to provide an accurate assessment of the 

benefits of RTTR then these uncertainties must be accounted 

for. Equation 6 shows an uncertainty model for RTTR, where 

emod is the uncertainty associated with the CIGRE ratings 

equations, emeas is the uncertainty in weather or conductor 

rating measurements, ePDF represents the difference between 

the assumed probability distribution and the true data, 

calculated using the ARMS error in section III,  and einterp is 

the uncertainty arising from calculating the rating of a 

conductor based on measurements that are some distance 

away. 

   (                       ) (7) 
This function was evaluated using a Monte Carlo model, 

using typical uncertainty values from RTTR proof of concept 

studies [4, 5] and the uncertainty in the CIGRE rating model 

[31]. The rating equations, along with randomly generated 

input errors, were used to calculate the distribution of errors is 

shown in Figure 4. The largest source of error is the 

interpolation error, which stems from the physical spacing of 

measurement equipment and the variability of weather 
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conditions on relevant space scales. This could be alleviated 

by heavily instrumenting the network or by pre-identifying 

critical spans and instrumenting those areas.  

 
Figure 4: Probability distribution of the error in rating estimation 

 

Figure 5: A Flow chart showing the complete methodology, broken into set up 
and simulation steps 

Figure 4(a) shows the error distribution with an 

interpolation error of 0% (the error at the location of the 

measurement), while 4(b) shows the error distribution with a 

10% interpolation error (equivalent to a distance of 1km from 

the measurement location). 

The sequential simulation was run with different levels of 

rating uncertainty to see how this would affect the system 

reliability. 

The complete methodology is shown in a flow chart in 

Figure 5. The method is broken up into set up and simulation 

steps. 

IV. RESULTS 

A. System Behavior 

The main goal of this paper is to produce a methodology to 

assess the impact of RTTR on transmission reliability. In order 

to do this it is important to first establish confidence that the 

methodology delivers a good representation of system 

behavior with and without RTTR. 

Figure 6 shows 90 hours of data from one line from a 

simulation of the test network. The figure shows a failure of 

the RTTR system, where the rating reverts to the static value 

and a failure of the overhead line where the line flow drops to 

zero. This capacity is made up by the other lines in the 

network, which could cause them to exceed their static ratings. 

An outage on another conductor is also shown, leading to a 

rise in the current flowing through the observed line. 

Figure 6 also illustrates the behavior of the line flow and the 

rating in a system using RTTR. On some occasions the RTTR 

drops below the static rating; having knowledge of this could 

help network operators make decisions during an outage to 

prevent damage to a conductor or a potential cascading failure. 

On other occasions the line flow goes above the static limit, 

but still stays well below the RTTR. This demonstrates the 

benefit of RTTR not just to reliability, but to network 

capacity. 

 
Figure 6: A plot of RTTR, static rating and line flow in amps, with an RTTR 

failure a line outage, the line flow exceeding the static rating and the RTTR 
dropping below the static rating all pictured 

B. Reliability Indices 

The network was assessed in terms of its LOLE for a 

variety of loading conditions using sequential MC simulations. 

Figure 7 shows the LOLE of the RBTS for different loading 

conditions. The load was increased uniformly taking the mean 

loading from 0.285pu up to 0.855pu. For low loading 

conditions the static rating appears to give a lower LOLE. This 

is an artifact from the calculation method used for overhead 

lines, and is effectively giving network operators a false sense 

of security. Conventionally lines are rated such that there is a 

low, but non-zero, probability of the actual rating being below 

the nominal rating. 
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At higher loading conditions the two data series diverge, 

with the RTTR providing a substantially lower LOLE. This is 

because often the high current flows required in the event of 

an outage can be supported by the enhanced capacity provided 

by RTTR, while using the static rating would require load to 

be shed or other corrective action to be taken. 

 
Figure 7: LOLE in hours per year for RTTR and static ratings at different 

network loading conditions 

C. Effect of Correlation 

More geographically dispersed networks will have a lower 

correlation between conductor ratings. Figure 8 shows the 

reliability of the network for different levels of correlation 

between conductor ratings, varying from complete 

independence to complete dependence. 

 
Figure 8: The results demonstrate that although the high correlation between 
the ratings of nearby conductors decays quickly with distance, there is still 

some correlation between conductors hundreds of kilometers apart. 

  The impact of correlation on reliability is small when 

compared with the overall improvement of using RTTR. The 

case with completely independent ratings yielded the lowest 

reliability. This is because there is greater variance between 

the ratings of lines within the network, leading to a higher 

likelihood of one line having a low rating and resulting in a 

loss of load. The effect of correlation increases with loading, 

because at higher loads reliability is more dependent on 

RTTR. 

D. Impact of Uncertainty 

Rather than using a confidence interval, for each step in the 

time series the LOLE was evaluate probabilistically. 

        (         ) (8) 
And from the concept of expectation: 

       
∑ ∏ (        )

 
   

 
   

 
 

(9) 

Where m is the number of iterations, n is the number of 

circuits, R is the line rating, i is the line current, j is the line 

number and k is the time step.  

 Figure 9 shows the impact of accounting for uncertainty on 

the perceived benefit. The uncertainty shown had a standard 

deviation of 30A, which corresponds to the error at the 

location of a sensor. As the distance from the sensor increased, 

the uncertainty increased considerably and consequently the 

LOLE was greater.  

 
Figure 9: LOLE in hours per year for RTTR with and without uncertainty. 
While the uncertainty reduces the improvement in LOLE there is still a 

significant benefit. 

 With the uncertainty in the RTTR represented in the 

simulation there is still a benefit to reliability as loading 

increases. If a more accurate sensor or conductor thermal 

model were available, the LOLE would further decrease, 

approaching the benefit of the ideal RTTR system. 

 

E. Scalability 

The results presented so far used the 6 bus RBTS. Since real 

power systems are larger, it is important to ensure the method 

functions on larger networks and scales reasonably in terms of 

computational time. RTTR calculations were performed for 

the IEEE 14, 24 and 39-bus test networks to test the system at 

multiple voltage levels and to see how well the simulation 

scaled with network size.  

Table 2: The impact of network size on simulation time 

Table 2 shows that the simulation time scales well with 

network size. These simulations were performed on a desktop 

PC with an Intel i5 processor and 8 GB of RAM. A more 

powerful computer could reduce the computational times. 

Figure 10 shows the results of these simulations in terms of 

LOLE for the 14 and 24 bus network. The general trends are 

similar to that of the RBTS, with RTTR providing lower 

LOLE at higher load levels. However, the specific results 

depend on the network topology and loading conditions. 

RTTR deployments are likely to only cover subsections of 

network [6], usually where power flow congestion, load 

growth or high penetrations of wind energy are a problem. 

Consequently, this analysis will be possible within a 

reasonable time frame. 

 No. of Buses Simulation Time (100,000 Iterations) 

6 53 minutes 

14 58 minutes 

24 72 minutes 

39 80 minutes 
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Figure 10: LOLE in hours per year for the (a) 14 and (b) 24 bus network 

with and without RTTR 

V. DISCUSSION 

A. Holistic Smart Grid Approach 

The results show that RTTR can give a substantial reduction 

in LOLE for heavily loaded networks. However the resulting 

LOLE is still higher than network operators would accept. 

Consequently it is clear that RTTR cannot allow a doubling of 

network capacity in isolation. However as part of a holistic 

smart grid deployment RTTR could allow substantial 

increases in network capacity at a lower cost than 

conventional reinforcement. 

For example if RTTR was employed alongside energy 

storage and demand side response (DSR) it should be possible 

to maintain the same high levels of reliability the network 

enjoys today. When the RTTR is high, energy could be 

transferred into storage facilities, and when the rating is low 

the additional capacity could be made up through storage. If 

this was not sufficient, DSR could be used to ensure no 

customers are disconnected. Distributed generation could also 

be used to compensate during periods of low rating. 

B. Financial Benefits 

One of the incentives for network operators to connect 

distributed generation is that it can defer investment in new 

conductors [32]. RTTR can offer a similar financial benefit. A 

scheme implemented by Scottish Power Energy Networks in 

the UK [33] suggests that implementing RTTR could cost less 

than 10% of the cost of otherwise required network 

reinforcement. RTTR is currently still a new technology; if it 

is widely adopted then economies of scale will drive this price 

down further. 

There is an argument that by using variable technologies 

and accepting a level of risk, networks can deliver better value 

for money to consumers and system operators [34]. Network 

capacity is currently deterministic, and is provided through 

asset based redundancy; this is expensive and inefficient. If 

network capacity was subject to a cost-benefit analysis, 

technologies such as RTTR would compare favorably to the 

existing approach. This paper has demonstrated the benefit 

that RTTR can provide to network reliability. However 

changes in policy and standards may be required for before the 

full benefits can be unlocked. 

C. Network Management and RTTR Deployment 

The work presented in this paper has not accounted for the 

benefits of active network management informed by the 

RTTR. In reality it would be possible for network operators to 

embed RTTR into their Network Management System (NMS) 

[29] and use active control to minimize the probability of 

exceeding the RTTR.  

When an outage occurs network operators take steps to 

reconfigure the remaining network such that customers remain 

connected. RTTR adds a powerful additional tool to this, as 

well as alleviating the need to reconfigure the network. The 

benefits of combining network reconfiguration and RTTR has 

been demonstrated by [35]. 

When deploying smart grids, the technology developers 

must be mindful of providing the correct information for 

system operators to make informed decisions. Too much 

information can cause decisions to become too complicated. In 

this case, the ideal information would be the rating of the 

determining span of each circuit, and information about the 

uncertainty of that value. 

RTTR may not be an appropriate solution for all networks 

as many conductors will soon be in need of replacement. 

However, there are areas of network that are fit for purpose, 

but may need reinforcing before they would be replaced. 

These are the areas where RTTR, along with other smart grid 

technologies, could be successfully implemented. Further to 

this, there is no reason that RTTR could not be deployed on 

new networks; indeed networks could even be designed with 

RTTR in mind, possibly leading to a reduction in the number 

of conductors required [34]. 

VI. CONCLUSION 

The primary contribution of this paper is a novel method for 

assessing the contribution of RTTR to power system 

reliability. Though current transmission and distribution 

systems are very reliable, if more load is connected the 

reliability rapidly degrades and corrective action must be 

taken. Conventionally new lines would be used to alleviate the 

risks and provide further reliability. However this paper shows 

how deploying RTTR could offset much of the risk without 

the need for any new infrastructure.  

 RTTR alone cannot deliver the high reliability the power 

systems currently operate under. However if it is deployed as 

part of a holistic smart grid strategy, network reliability could 

be maintained with a minimum of new conductors, instead 

relying on RTTR, DSR and energy storage to keep customers 

connected.  

 The analysis takes account of the reliability and uncertainty 

inherent in the use of RTTR. The uncertainty analysis suggests 

that for RTTR the greatest uncertainty arises from calculating 
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the rating of components far from observation points. To offer 

the greatest benefit critical spans must be identified and 

instrumented, the whole network must be heavily 

instrumented or some means of predicting how ratings vary 

with distance must be devised and implemented. 

 Though this paper has demonstrated that RTTR can make a 

significant contribution to network reliability, it does not fit in 

to the existing paradigm of network design. Network design 

and planning standards must move away from asset based 

redundancy and accept the capacity provided by technologies 

such as RTTR. With proper planning and analysis, this will 

yield more cost-effective networks without compromising 

reliability.  
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