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Abstract

This article studies a performance-based warranty for products subject to competing hard
and soft failures. The two failure modes are competing in the sense that either one, on a
“whichever-comes-first” basis, can cause the product to fail. A performance-based warranty
not only covers the repair or replacement of any defect, but also guarantees the minimum
performance level throughout the warranty period. In this article, we propose three com-
pensation policies—that is, free replacement, penalty, and full refund, when a product’s
performance fails to meet the guaranteed level. The expected warranty servicing costs for
the three policies are derived, based on the competing risks concept. A warranty design prob-
lem is further formulated to simultaneously determine the optimal product price, warranty
length, and performance guarantee level so as to maximize the manufacturer’s total profit.
Numerical studies are conducted to demonstrate and compare the three performance-based
compensation policies. It is shown that the full refund policy always leads to the lowest total
profit, whereas neither of the other two policies can dominate each other in all scenarios. In
particular, the free replacement policy results in a higher total profit than the penalty policy
when the replacement cost is low, the penalty cost coefficient is high, and/or the product
reliability is high.

Keywords: Warranty, performance deterioration, competing risks, warranty policy design

1. Introduction

Many durable products have specific key performance characteristics (e.g., capacity of
batteries, energy efficiency of refrigerators, rated power output of solar panels) that dete-
riorate with time and usage. Such performance-critical products are subject to two failure
modes—hard and soft failures. Hard failures are usually caused by manufacturing defects,
wearout/aging, or even external shocks, whereas soft failures occur when the product per-
formance becomes unsatisfactory—precisely, when the performance degradation exceeds a
pre-set threshold. In principle, hard and soft failure processes are competing, meaning that
either of the two processes can cause the product to fail.

In today’s highly competitive market, it is a common practice for manufacturers to pro-
vide attractive product warranties along with the sales of their products, in order to protect
consumers against premature failures and signal product quality and reliability (Murthy
and Djamaludin, 2002; Xie et al., 2017). In addition to product failures, consumers are
increasingly concerned about product performance deterioration during the use period (Jin
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et al., 2015; Kim et al., 2007). Driven by consumer desires as well as technological advances,
more and more manufacturers are offering performance warranties (Koschnick and Hartman,
2020). Unlike product warranties that provide protection against functional failures, perfor-
mance warranties focus on the degradation of key performance characteristics and provide
guarantee on the minimum performance level(s) over the warranty period. In general, per-
formance warranties and product warranties are offered simultaneously, although the lengths
of their protection periods might differ. In this article, we refer to the combination of prod-
uct and performance warranties as performance-based warranty, and our aim is to study this
new type of warranty for products subject to competing hard and soft failure processes.

1.1. Motivating examples

Performance-based warranties have received a few applications. Two typical examples
are presented below.

Lithium-ion battery warranties: Lithium-ion batteries experience gradual energy
or power loss with time and usage, which results in capacity reduction. Hard failures of
lithium-ion batteries may take place because of manufacturing defects or wearout/aging,
etc. A typical example of performance-based warranties is the mid-range battery warranty
for Tesla Model 3 electric cars: It covers the repair or replacement of any malfunctioning
or defective battery for 8 years or 100000 miles (whichever comes first), with minimum
70% retention of battery capacity over the warranty period (Tesla, 2019). In this case, the
protection periods of the product and performance warranties coincide.

Solar panel warranties: The performance of photovoltaic panels is also subject to
stochastic degradation which is dependent on operational and environmental conditions.
Brand-new solar panels are usually protected by both performance and product warranties.
Take Canadian Solar’s warranty policy as an example (Canadian Solar, 2019). The per-
formance warranty guarantees that the solar panels’ actual power output should be no less
than 97.5% of the rated power output during the first year, and the actual annual power
decline should be no more than 0.5% from year 2 to year 30. That is, the actual power
output should be no less than 83.0% of the rated power output by the end of 30 years of
operations. In addition, the product warranty guarantees that the solar panels should be
free from defects in materials and workmanship for 12 years. In this case, however, the
protection lengths of the product and performance warranties are different.

1.2. Related literature

In the literature, there are two streams of research that come closely to our work. The first
one is product warranty modeling and analysis, and the second one is reliability assessment
and maintenance planning for systems subject to competing hard and soft failures.

Product warranty modeling and analysis have long been a vibrant topic in the warranty
management field (Murthy and Djamaludin, 2002). In recent years, quite a few novel war-
ranty concepts and policies (in terms of protection duration, compensation mechanisms, and
maintenance strategies, etc.) have been investigated in the literature. Ye and Murthy (2016)
study the design of a two-dimensional warranty menu that contains a number of rectangular
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regions. Luo and Wu (2018) collectively price the warranty policies for a portfolio of differ-
ent products through the mean-variance optimization approach. Wang et al. (2019) develop
cost model for a new piece-wise renewing free replacement warranty policy. Lu and Shang
(2019) develop a new warranty mechanism for online pre-owned tech products to encour-
age product quality information disclosure between e-tailers and online warranty provider.
Wang et al. (2020b) study the design and pricing of extended warranty menus which of-
fer multiple options with differentiated lengths and prices. Liu et al. (2020) investigate
the profit and pricing strategy for a complimentary extended warranty. Cha et al. (2021)
propose a new renewing warranty policy with inspection for heterogeneous, stochastically
degrading items. In addition, some studies attempt to develop novel maintenance strategies
for better warranty servicing. Su and Wang (2016) and Huang et al. (2017) investigate cus-
tomized preventive-maintenance warranty policies, where preventive maintenance strategies
are tailored for different consumer categories. Wang et al. (2020a) propose an unpunctual
preventive maintenance policy for repairable products under two-dimensional warranties,
where consumers are entitled to slightly advance or postpone maintenance executions. Peng
et al. (2020) investigate a dynamic preventive maintenance problem under two-dimensional
warranties, and show that the optimal policy is a control limit policy with usage-dependent
failure rate thresholds. Furthermore, Shang et al. (2018) make the first attempt to study
condition-based warranties for products suffering from stochastic degradation, but the war-
ranty in their work is a traditional policy (failure-based, not performance-based).

To our knowledge, Su and Cheng (2018) and Koschnick and Hartman (2020) are the most
closely related to our work. Su and Cheng (2018) propose an availability-based warranty
under which the manufacturer not only provides free repairs or replacements upon failures,
but also ensures that the operational availability over the warranty period meets a negotiated
level. Our work differs from theirs in two main aspects: (i) The performance measure of
interest in their work is the operational availability, whereas we focus on the stochastic
deterioration of key performance characteristics; and (ii) the products in their work are
subject to only one failure mode (i.e., hard failure), whereas the products in our work exhibit
two competing failure modes—hard and soft failures. Recently, Koschnick and Hartman
(2020) also introduce a performance-based warranty policy, where the manufacturer may
offer to cap the amount of operating costs the consumer will pay each period for a certain
amount of time. That is, if a consumer’s operating cost exceeds the guaranteed level, then
the manufacturer has to offer a compensation. As Koschnick and Hartman (2020) merely
focus on performance warranties against excessive operational costs, their problem setting
is clearly different from ours.

The second stream of research focuses on reliability analysis and maintenance planning
for systems with competing hard and soft failures. Most existing studies in this stream con-
sider (in)dependent competing degradation processes and random shocks. In general, they
assume that hard failures (resp. soft failures) are induced by fatal shocks (resp. stochastic
degradation of key performance characteristics), and nonfatal shocks contribute to instan-
taneous increments in degradation levels or rates. Peng et al. (2010) develop reliability
models and preventive maintenance policies for complex systems with dependent competing
failure processes. Wang and Pham (2011) propose a s-dependent competing risk model for
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systems subject to degradation processes and random shocks. Huynh et al. (2012) study
maintenance strategies for single-unit repairable systems subject to dependent competing
failures due to degradation and shocks. Rafiee et al. (2014) model the reliability of devices
experiencing dependent competing failure processes of random shocks and degradation with
a changing rate. Jiang et al. (2015) explicitly consider zoned shock effects on stochastic
degradation when modeling dependent degradation and shock processes. Song et al. (2016)
develop new reliability models for series systems subject to competing hard and soft failures
with dependent shock effects. Qiu et al. (2018) propose a new maintenance model under
power purchase agreements for complex energy generation systems that experience compet-
ing hard and soft failure processes. Hao and Yang (2018) conduct reliability assessment
for dependent competing failure processes with changing degradation rate and hard failure
thresholds. Yousefi et al. (2019) attempt to optimize on-condition failure thresholds and
inspection intervals for multi-component systems with each component undergoing degra-
dation and shock processes. Gao et al. (2019) develop reliability models for systems subject
to competing risks with degradation-shock dependency.

Our work differs from the second stream of research in two main perspectives: (i) None
of these studies takes product/performance warranties into consideration; and (ii) our work
considers a slightly different setting of competing risks: Hard failures are triggered by manu-
facturing defects, wearout/aging, or external shocks and can be described by a lifetime-based
reliability model; whereas soft failures are induced by the stochastic degradation of key per-
formance characteristics and can be characterized by a degradation-based reliability model.

1.3. Overview of this article

This article makes an early attempt to model and optimize the performance-based
warranty for products subject to competing hard and soft failure processes. Under this
performance-based warranty, the manufacturer not only provides free replacement upon any
failure but also guarantees the minimum performance level throughout the warranty period.
We propose three types of compensation mechanisms when a unit’s actual performance fails
to meet the guaranteed level over the warranty period: (i) the unit will be replaced with
a new one; (ii) a penalty cost will be induced; and (iii) a full refund will be issued and
the warranty terminates. We then derive the expected warranty servicing expenses for the
three compensation policies, based on the well-known competing risks model. An optimiza-
tion problem is further formulated to simultaneously determine the optimal product price,
warranty length, and performance guarantee level of the product so as to maximize the man-
ufacturer’s total profit. Numerical experiments are carried out to demonstrate and compare
the three performance-based warranty policies, as well as answering the following questions:
In terms of total expected profit, does the performance-based warranty has a better outcome
than traditional product warranties? If yes, which compensation policy is the most beneficial
to the manufacturer?

The rest of the article is organized as follows. Section 2 defines the three performance-
based warranty policies, formulates hard and soft failure processes, and then develops the
associated warranty cost models. On this basis, Section 3 develops and discusses a profit-
maximization optimization problem. Section 4 illustrates and compares the proposed com-
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Nomenclature

W Warranty period [decision variable]
P Product price [decision variable]
D Warranty threshold [decision variable]
L Failure threshold
r0 Nominal usage rate
R, r Random usage rate and its realization
G(r) Cumulative distribution function of R

T
(1)
r Latent time to first hard failure under usage rate r

T
(2)
r Latent first hitting time to D under usage rate r

T
(3)
r Latent first hitting time to L under usage rate r

F (i)(t; r) Conditional distribution function of T
(i)
r , i = 1, 2, 3

T I
r = min{T (1)

r , T
(2)
r }

T II
r = min{T (1)

r , T
(3)
r }

Ψi(t; r) Conditional distribution function of T i
r , i = I, II

α, β Scale and shape parameters of Weibull distribution
η(t;ω) Actual degradation path under usage rate r0
ω Degradation rate of the soft failure process
µ, σ mean and standard deviation of normal distribution
γ1, γ2 Accelerating factors of hard and soft failure processes
cf Average replacement cost of a single unit
cp Penalty cost coefficient
C0 Unit manufacturing cost
E[CiT (W,D)] Total expected warranty cost under Policy j, j = I, II
E[CIIIT (P,W,D)] Total expected warranty cost under Policy III
Q(P,W,D) Product demand function
Πj(P,W,D) Total expected profit under Policy j, j = I, II, III

pensation policies through numerical experiments. Finally, Section 5 concludes the article
with some suggestions for future research.

2. Model formulation

Before formally defining the performance-based warranty, the following assumptions are
made to facilitate policy definition.

(i) The performance characteristic of interest is the-higher-the-better, e.g., battery capacity
and solar panel’s power output, so that we normalize the initial performance level to
100%.

(ii) The performance characteristic is gradually deteriorating. Mathematically, the actual
performance level is continuously decreasing.

(iii) The product performance is continuously monitored.

2.1. Performance-based warranty policies

The product is protected by a performance-based warranty of length W , which involves
both product and performance warranties (see Fig. 1). The product warranty guarantees
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Performance 
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Figure 1: Framework of the proposed performance-based warranty.

that if a hard failure or a soft failure (when the actual performance level reaches a prede-
termined failure threshold L) occurs within the warranty period [0,W ], the failed unit will
be replaced with a new identical one, at no cost to the consumer. In addition, the per-
formance warranty specifies that the product’s performance level over the warranty period
[0,W ] should be no lower than the guaranteed level (referred to as the warranty threshold
D ≥ L).

We consider three compensation policies for the performance-based warranty. An un-
derlying difference among them lies in the compensation mechanism when the performance
guarantee level is not satisfied (see Fig. 2). Under Policy I, the manufacturer will provide a
free replacement service immediately; under Policy II, the manufacturer will bear a penalty
cost that is proportional to the additional amount of performance degradation compared
with the warranty threshold; whereas Policy III specifies that a full refund will be offered
by the manufacturer and the warranty thus terminates.

Several properties of the three compensation policies can be drawn:

(1) Soft failures will never occur under Policies I and III because of the constraint D ≥ L.

(2) When D = L, all the three policies reduce to a pure product warranty policy. That
is to say, the manufacturer only provides free replacement services for failed units,
without any guarantee on their performance deterioration levels.

(3) The warranty threshold D has different influences on the three compensation policies.
Under Policy I, it affects the total replacement cost, as free replacement is the only
strategy of servicing warranty claims; under Policy II, it solely impacts the penalty cost,
without any influence on the associated replacement cost; whereas under Policy III, it
has an influence on the time to full refund (if any) and thus on both the replacement
cost and refund cost.
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Figure 2: Schematic description of the three compensation policies.

2.2. Modeling competing failure processes

Products deteriorate with both time and usage. Different products might have different
usage measures, e.g., the number of charging/discharging cycles for batteries, working hours
for solar panels, and driving miles for cars, among others. Suppose that the product of
interest is designed for some nominal usage rate r0 under which the design reliability well
satisfies related requirements. Consumers, however, use the product in different rates. In
reality, both hard and soft failures could be highly related to the usage rate (Jack et al.,
2009). A higher usage rate could accelerate product wearout/aging which results in a shorter
time to hard failure, as well as accelerating performance deterioration process which, in turn,
leads to an earlier soft failure.

In this work, we assume that the usage rate remains constant over the warranty period
for a specific consumer, but varies randomly across the consumer population. Let R repre-
sent the random usage rate with a cumulative distribution function (CDF) G(r), 0 ≤ r <∞.
Further assume that the manufacturer has enough information on this distribution in ad-
vance, either through historical data on previous product generations or from a consumer
survey (Su and Wang, 2016). Conditional on R = r, the hard and soft failure processes
are assumed to be independent (Zhao et al., 2020). Such conditional independence assump-
tion is reasonable for products such as lithium-ion batteries, of whom capacity reduction
is attributed to the deterioration of lithium-ions and electrolyte, whereas hard failures (of,
e.g., electrodes, casing, and separators) are mainly due to manufacturing defects, material
fatigue/aging, and shocks (Hendricks et al., 2015). In this case, the two failure processes are
largely independent.

Let T
(1)
r , T

(2)
r , and T

(3)
r represent the latent time to first hard failure, first hitting time to

D, and first hitting time to L, respectively, under usage rate r. Further define F (i)(t; r) as

the conditional CDF associated with T
(i)
r , i = 1, 2, 3. Recall that under Policy I, a unit will

be replaced when either a hard failure occurs or the performance level reaches D, whichever
happens first. According to the classical competing risks concept, conditional on R = r,
the overall time to first replacement under Policy I is given by T I

r = min{T (1)
r , T

(2)
r }. The
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conditional CDF of T I
r can be derived as

ΨI(t; r) = Pr{min{T (1)
r , T (2)

r } ≤ t | R = r}
= 1− Pr{min{T (1)

r , T (2)
r } > t | R = r}

= 1− Pr{T (1)
r > t, T (2)

r > t | R = r}
= 1− (1− F (1)(t; r))(1− F (2)(t; r)).

(1)

Under Policy II, however, product replacement will be triggered by either a hard failure
or a soft failure (i.e., when the performance level hits L). As a result, the overall time to

first replacement is T II
r = min{T (1)

r , T
(3)
r }, and the associated conditional CDF becomes

ΨII(t; r) = Pr{min{T (1)
r , T (3)

r } ≤ t | R = r}
= 1− (1− F (1)(t; r))(1− F (3)(t; r)).

(2)

Under Policy III, free replacement and full refund—caused by a hard failure and the
violation of performance guarantee (i.e., when the performance level is lower than D), re-
spectively—are competing on a “whichever-occurs-first” basis. Under this policy, the overall
time to first event (either replacement or refund) is also given by T I

r , with conditional CDF
ΨI(t; r).

In the next subsections, we will derive the conditional distribution functions F (1)(t; r),
F (2)(t; r), and F (3)(t; r), respectively.

2.2.1. Hard failure process

The hard failure process is described by a lifetime-based reliability model. The effect of
usage rate on the hard failure process is characterized by the well-known accelerated failure
time (AFT) model (Jack et al., 2009). Denote by T

(1)
0 (resp. T

(1)
r ) the time to first hard

failure under usage rate r0 (resp. r). Using the AFT formulation in Jack et al. (2009), we
have

T
(1)
r

T
(1)
0

=
(r0

r

)γ1

, (3)

where γ1 > 0 is the associated accelerating factor. As the usage rate r increases, the product
wearout/aging accelerates, which, in turn, shortens the time to hard failure.

In this study, T
(1)
0 is assumed to follow a Weibull distribution with scale parameter α

and shape parameter β, which is widely used to model product (hard) failures due to its
flexibility in describing various failure rate properties (Murthy et al., 2004). Then, the CDF

of T
(1)
0 is given by

F
(1)
0 (t) = 1− exp

{
−
(
t

α

)β}
. (4)

According to Eqs. (3) and (4), the conditional CDF of the time to first hard failure T
(1)
r
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can be derived as
F (1)(t; r) = F

(1)
0 (t(r/r0)γ1)

= 1− exp

{
−
(

Λ1(t)

α

)β}
,

(5)

where Λ1(t) = t(r/r0)γ1 is a time-scale transformation. It is clear that Λ1(T
(1)
r ) ∼ F

(1)
0 (t).

2.2.2. Soft failure process

In the literature, three categories of degradation models have been proposed (Ye and Xie,
2015)—that is, general path models, stochastic process models, and other models beyond
these two (such as machine learning models). In this work, we adopt the well-known general
path model in Lu and Meeker (1993) for degradation modeling purposes. It should be noted
that any feasible degradation model, e.g., Wiener process (Zhang et al., 2018), gamma
process (van Noortwijk, 2009), and inverse Gaussian process (Ye and Chen, 2014), can be
used in our problem, as long as the real degradation data justify the model.

Suppose that the product has only one key performance characteristic that is of primary
concern to consumers. Under nominal usage rate r0, the observed degradation path X0(t)
of the performance characteristic is given by

X0(t) = η(t;ω) + ε, (6)

where η(t;ω) is the actual degradation path which is a continuously decreasing function, and
ε is a normally distributed random error with mean zero. Recall that the initial performance
level is normalized to 100%, i.e., η(0;ω) = 1. Possible formulations of η(t;ω) include the
linear form η(t;ω) = 1 − ωt, 0 ≤ t ≤ 1/ω, and the exponential form η(t;ω) = exp{−ωt},
t ≥ 0, where ω > 0 represents the degradation rate. In this work, the exponential form is
adopted for degradation modeling. In practice, ω might vary randomly across the consumer
population due to certain heterogeneity beyond the usage rate (e.g., working temperature
of batteries). Such heterogeneous factors can result in random degradation rates, even for
the same usage rate.

Likewise, the usage rate also has a significant impact on the stochastic degradation of
the key performance characteristic. Conditional on R = r, the observed degradation path
under usage rate r is modeled by

Xr(t) = η(Λ2(t);ω) + ε, (7)

where Λ2(t) = t(r/r0)γ2 is a time-scale transformation with accelerating factor γ2 > 0. Note
that the factor γ2 is not necessarily equal to γ1.

Under Policy I, a unit will be replaced immediately when its actual performance level is
lower than the warranty threshold D, provided that there is no hard failure. Mathematically,
conditional on R = r, the latent first hitting time to D is defined by

T (2)
r = inf{t; η(Λ2(t);ω) ≤ D | R = r}. (8)
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The conditional CDF of T
(2)
r for the exponential degradation path can then be derived

as
F (2)(t; r) = Pr{η(Λ2(t);ω) ≤ D | R = r}

= Pr{exp{−ωΛ2(t)} ≤ D | R = r}
= Pr{ω ≥ − lnD/Λ2(t) | R = r}.

(9)

We further assume that ω follows a normal distribution N(µ, σ2) with σ � µ so that
Pr{ω ≤ 0} is negligible (Lu and Meeker, 1993). Then, Eq. (9) can be rewritten as

F (2)(t; r) = 1− Φ

(
− lnD/µ− Λ2(t)

σΛ2(t)/µ

)
, (10)

where Φ(·) is the standard normal distribution function. Note that if the aforementioned
linear form of η(Λ2(t);ω) is applied, then F (2)(t; r) is given by Eq. (10), with 1−D replacing
− lnD.

Under Policy II, a soft failure (resulting in product replacement) occurs when the actual
performance degradation path hits the failure threshold L. Similarly, conditional on R = r,
the latent time to first soft failure, T

(3)
r = inf{t; η(Λ2(t);ω) ≤ L | R = r}, has a conditional

CDF F (3)(t; r) given by Eq. (10), with L replacing D.

2.3. Modeling warranty costs

In this subsection, we derive the expected warranty servicing costs for the three compen-
sation policies of performance-based warranty, respectively.

2.3.1. Policy I: Free replacement

Under this policy, a unit will be replaced with a new identical one once a hard failure
occurs or its actual performance level is lower than D, whichever comes first. The associated
conditional CDF, ΨI(t; r), of the overall time to first replacement T I

r can be derived by
substituting (5) and (10) into (1). That is,

ΨI(t; r) = 1− exp

{
−
(

Λ1(t)

α

)β}
× Φ

(
− lnD/µ− Λ2(t)

σΛ2(t)/µ

)
. (11)

Since offering free replacement is the only way of servicing warranty claims, the total
warranty servicing cost for an individual unit is simply equal to the replacement cost over
the warranty period. According to the renewal process theory (Ross, 2014), the conditional
expected warranty servicing cost under Policy I can be determined by

E[CI
T (W,D) | R = r] = cf

[
ΨI(W ; r) +

∫ W

0

M I(W − t; r)dΨI(t; r)

]
= cf

[
ΨI(W ; r) +

∫ W

0

ΨI(W − t; r)dM I(t; r)

]
,

(12)

where cf is the average cost of replacing an individual unit, and M I(t; r) is the conditional

renewal function associated with ΨI(t; r). In essence, M I(W ; r) = ΨI(W ; r) +
∫W

0
ΨI(W −
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t; r)dM I(t; r), which exactly represents the conditional expected number of replacements
over the warranty period. The renewal equation M I(t; r) can be efficiently evaluated by the
so-called Riemann-Stieltjes method in Xie (1989), which is briefed in Appendix A.

By removing the conditioning on R, the total expected warranty servicing cost under
Policy I is thus given by

E[CI
T (W,D)] =

∫ ∞
0

E[CI
T (W,D) | R = r]dG(r), (13)

where E[CI
T (W,D) | R = r] is given by (12).

2.3.2. Policy II: Penalty

Under this policy, a unit will be replaced with a new identical one once a hard or soft
failure occurs, whichever comes first. In addition, if the performance guarantee over the
warranty period is violated, then a penalty cost would be incurred to the manufacturer.
Hence, the total warranty servicing cost can be decomposed into two parts: the replacement
cost CF(W ) due to hard and/or soft failures, and the penalty cost CP(W,D) due to the
violation of performance guarantee. That is, CII

T (W,D) = CF(W ) + CP(W,D). Notice that
the warranty threshold D has no influence on the replacement cost, but it does impact the
penalty cost.

The conditional CDF, ΨII(t; r), of the overall time to first replacement T II
r is given by

Eq. (11), with L replacing D. Similarly, the conditional expected replacement cost within
the warranty period, E[CF(W ) | R = r], can be determined by Eq. (12), with ΨII(t; r)
and M II(t; r) replacing ΨI(t; r) and M I(t; r), respectively, where M II(t; r) is the conditional
renewal function associated with ΨII(t; r).

On the other hand, the expected penalty cost is not easy to derive. Suppose that the
penalty cost is evaluated upon a failure (if any) and at the expiry of the warranty period.
If the corresponding performance level is below D, then a penalty cost proportional to the
additional amount of performance deterioration is induced (see Fig. 2(b)). For instance, if a
unit’s performance level upon a failure is d, then the associated penalty cost can be expressed
as cp[D−d]+, where cp is the penalty cost coefficient and [x]+ = max{x, 0}. We further define
T II
r,i as the conditional inter-replacement time between the (i − 1)th and ith replacements

within the warranty period. Clearly, T II
r,i’s are independent and identically distributed, with

conditional CDF ΨII(t; r). Upon a product failure at T II
r,i = ti, the probability that this

failure is caused by a hard failure is equal to

z(ti; r) =
Pr{T (1)

r < T
(3)
r ≤ ti | R = r}

Pr{min{T (1)
r , T

(3)
r } ≤ ti | R = r}

=

∫ ti
0
F (1)(x; r)dF (3)(x; r)

ΨII(ti; r)
,

(14)

and the probability that this failure is due to a soft failure or both of the two triggers is thus
1− z(ti; r).
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It is obvious that if the failure of a unit is caused by a soft failure, then the unit’s
performance level upon this failure is L for sure; otherwise, its performance level is random.
Denote by N (W ) the total number of replacements within the warranty period, under Policy
II. Then, conditional on R = r, N (W ) = n, and T II

r,1 = t1, T II
r,2 = t2, . . . , T II

r,n = tn, the
expected penalty cost over the warranty period can be derived as

E[CP(W,D) | T II
r,1 = t1, . . . , T

II
r,n = tn,N (W ) = n,R = r]

=
n∑
i=1

[
cpz(ti; r)

∫ − lnL
Λ2(ti)

− lnD
Λ2(ti)

(D − η(Λ2(ti);u))dFω(u) + cp(1− z(ti; r))(D − L)

]

+ cp

∫ − lnL
Λ2(tn+1)

− lnD
Λ2(tn+1)

(D − η(Λ2(tn+1);u))dFω(u),

(15)

where Fω(·) is the CDF of ω, a normally distributed random variable with mean µ and
standard deviation σ � µ, and tn+1 = W −

∑n
i=1 ti is the time interval between the last

replacement action and the end of the warranty period. The upper and lower limits in the
integrals are the values of ω under which the performance levels are between L and D. This
specific interval is concerned because any performance level below L will result in a soft
failure (so that the product failure would be caused by a soft failure, rather than a hard
failure), whereas any performance level above D will not be penalized.

Removing the conditioning on T II
r,i, i = 1, 2, . . . , n, yields

E[CP(W,D) | N (W ) = n,R = r]

=

∫ W

0

∫ W−t1

0

· · ·
∫ W−

∑n−1
i=1 ti

0

E
[
CP(W,D) | T II

r,1 = t1, . . . , T
II
r,n = tn,

N II(W ) = n,R = r
]
dΨII(tn; r) · · · dΨII(t2; r)dΨII(t1; r).

(16)

According to the renewal process theory, we have Pr{N (W ) = n | R = r} = ΨII
n (W ; r)−

ΨII
n+1(W ; r), where ΨII

n (t; r) is the n-fold convolution of ΨII(t; r) with itself. Then, we further
have

E[CP(W,D) | R = r] =
∞∑
n=0

(
E[CP(W,D) | N (W ) = n,R = r]

× Pr{N (W ) = n | R = r}
)
.

(17)

In general, the closed-form determination of E[CP(W,D) | R = r] appears to be an onerous
task; numerical integration or simulation offers an alternative. The latter method is adopted
in this work, which is elaborated in Appendix B.

Finally, by removing the conditioning on R = r, the total expected warranty servicing
cost under Policy II is given by

E[CII
T (W,D)] =

∫ ∞
0

(
E[CF(W ) | R = r] + E[CP(W,D) | R = r]

)
dG(r), (18)

where E[CF(W ) | R = r] is given by (12), with ΨII(t; r) and M II(t; r) replacing ΨI(t; r) and
M I(t; r), respectively, and E[CP(W,D) | R = r] is given by (17).
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2.3.3. Policy III: Full refund

Under this policy, if a unit’s actual performance fails to meet the guaranteed level,
then a full refund would be offered to the consumer, and the warranty period terminates
immediately. On the other hand, if any hard failure occurs before a full refund (if any), then
the unit would be replaced with a new identical one. In this case, the product price P , in
addition to the warranty length W and performance guarantee level D, will have an impact
on the total expected warranty servicing cost.

We derive the total expected warranty servicing cost by conditioning on the time to first
event T I

r . Conditional on T I
r = t, the probability that this event is caused by a hard failure

is equal to

q(t; r) =

∫ t
0
F (1)(x; r)dF (2)(x; r)

ΨI(t; r)
, (19)

and the probability that this event is induced by the violation of performance guarantee or
both is thus 1− q(t; r).

Under this policy, if the event is caused by the violation of performance guarantee, then
a full refund is issued and the warranty cost is thus equal to the product price P ; otherwise,
the warranty cost should be cf plus that in the remaining warranty period. Therefore,
conditional on R = r and T I

r = t, the conditional expected warranty cost over the warranty
period is given by

E[CIII
T (P,W,D) | T I

r = t, R = r]

=

{
P, T

(2)
r < T

(1)
r < W,

cf + E[CIII
T (P,W − t,D) | R = r], T

(1)
r ≤ T

(2)
r < W.

(20)

Removing the conditioning on T I
r = t yields

E[CIII
T (P,W,D) | R = r] =

∫ W

0

E[CIII
T (P,W,D) | T I

r = t, R = r]dΨI(t; r)

= P

∫ W

0

(1− q(t; r))dΨI(t; r) + cf

∫ W

0

q(t; r)dΨI(t; r)

+

∫ W

0

q(t; r)E[CIII
T (P,W − t,D) | R = r]dΨI(t; r)

= PΨI(W ; r) + (cf − P )

∫ W

0

q(t; r)dΨI(t; r)

+

∫ W

0

q(t; r)E[CIII
T (P,W − t,D) | R = r]dΨI(t; r).

(21)

The expression above is a generalized renewal-type equation and can be solved by the
Riemann-Stieltjes method as well, with a slight modification.

By further removing the conditioning on R = r, the total expected warranty cost under
Policy III becomes

E[CIII
T (P,W,D)] =

∫ ∞
0

E[CIII
T (P,W,D) | R = r]dG(r), (22)
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where E[CIII
T (P,W,D) | R = r] is given by (21).

3. A profit-maximization optimization problem

In this section, an optimization problem is developed to simultaneously determine the
optimal product price, warranty length, and performance guarantee level, so as to maxi-
mize the manufacturer’s total profit. The optimization of this problem is briefly discussed,
although there is no closed-form solutions to most decision variables.

Product price and warranty length are two typical factors that have a significant effect on
the product demand or sales volume (Glickman and Berger, 1976; Xie et al., 2014; Zhu et al.,
2019). In addition, the performance guarantee level shall also influence the product sales
volume, especially when it is treated as an advertising weapon. One would intuitively expect
that the sales volume increases with the performance guarantee level D. By generalizing
the conventional wisdom in Glickman and Berger (1976), we model the product demand as
a log-linear function of price P , warranty length W , and performance guarantee level D, as
follows:

Q(P,W,D) = κ1P
−ϕ1(W + κ2)ϕ2(D + κ3)ϕ3 , (23)

where κ1 > 0, κ2 ≥ 0, κ3 ≥ 0, ϕ1 > 1, 0 < ϕ2 < 1, 0 < ϕ3 < 1. The constant κ1

is an amplitude factor, and κ2, κ3 are constants for time and performance displacements
that allow for nonzero demand when W or D is zero. Parameters ϕ1, ϕ2, and ϕ3 can
be interpreted as the price elasticity, displaced warranty period elasticity, and displaced
performance guarantee elasticity, respectively. According to Eq. (23), it is clear that the
product sales volume decreases exponentially with respect to product price, and increases
exponentially with warranty length and performance guarantee level.

Suppose that the unit manufacturing cost C0 contains all variable costs related to the
manufacturing of an individual unit, and is independent of the number of units produced.
Then, the expected profit of selling an individual unit is πj = P − C0 − E[Cj

T ], where, for
notation brevity, E[Cj

T ] represents the total expected warranty servicing cost of Policy j,
j = I, II, III, given by Eqs. (13), (18), and (22), respectively. This way, the manufacturer’s
total expected profit can be obtained by multiplying the expected profit extracted from the
sales of each unit by the total number of units sold. That is,

Πj(P,W,D) = Q(P,W,D)πj

= κ1P
−ϕ1(W + κ2)ϕ2(D + κ3)ϕ3

× (P − C0 − E[Cj
T ]), j = I, II, III.

(24)

The manufacturer’s optimization problem is to determine the optimal product price,
warranty length, and performance guarantee level to maximize the total expected profit:

max
P,W,D

Πj(P,W,D)

s.t. P > 0,W ≥ 0,L ≤ D ≤ 100%.
(25)

Analogous to Glickman and Berger (1976), we have the following result for optimization
problem (25):
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Proposition 1. Given any W ≥ 0 and L ≤ D ≤ 100%, the optimal product price for
Policies I and II can be obtained by

P ∗j =
ϕ1

ϕ1 − 1
(C0 + E[Cj

T ]), j = I, II. (26)

Proof. By taking the first derivative of Πj(P,W,D), j = I, II, with respect to P , we have

∂Πj(P,W,D)

∂P
= κ1P

−ϕ1−1(W + κ2)ϕ2(D + κ3)ϕ3

×
(
P − ϕ1

(
P − C0 − E[Cj

T ]
))
, j = I, II.

Setting ∂Πj(P,W,D)/∂P = 0 yields P ∗j = ϕ1(C0 + E[Cj
T ])/(ϕ1 − 1), j = I, II. Further

take the second derivative of Πj(P,W,D) with respect to P :

∂2Πj(P,W,D)

∂P 2
= κ1ϕ1P

−ϕ1−2(W + κ2)ϕ2(D + κ3)ϕ3

×
(

(ϕ1 + 1)
(
P − C0 − E[Cj

T ]
)
− 2P

)
, j = I, II.

Due to the facts that ∂2Πj(P,W,D)/∂P 2|P ∗j = −(C0 +E[Cj
T ]) < 0 and P ∗j is the unique

solution to ∂Πj(P,W,D)/∂P = 0, we know that P ∗j is indeed the optimal solution to problem
(25). This completes the proof.

In essence, Proposition 1 analytically presents the optimal product price for Policies I
and II, when the warranty period W and performance guarantee level D are fixed. It is
straightforward that the optimal product price decreases as the price elasticity ϕ1 increases.
This is because the sales volume would decrease with respect to product price in a faster
manner when the price elasticity is higher, which, in turn, negatively affect the total profit.
As a result, the manufacturer has to set a lower product price to mitigate this effect.

Nevertheless, the optimal product price for Policy III is not easy to derive in an analytical
way, as E[CIII

T ] is a complex function of product price. Likewise, the optimal values of the
warranty period W and performance guarantee level D for all the three policies are also
difficult to obtain, given the complicated forms of expected warranty costs in Eqs. (13),
(18), and (22), so that we resort to numerical search methods. In this study, the Nelder-
Mead method proposed in Nelder and Mead (1965) is employed to solve the optimization
problem. This method does not require the derivatives of the objective function and is
known to be effective for such a complex nonlinear optimization problem.

4. Numerical experiments

In this section, numerical examples are presented to illustrate and compare the three
compensation policies of performance-based warranty. Comprehensive sensitivity analyses
and policy comparisons are conducted with respect to key model parameters. The manage-
rial insights would be of importance to manufacturers who seek the maximum profit to be
generated from new durable products.
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Figure 3: Total expected profits versus W and D for the three policies, with optimal P ∗ fixed. The profit
functions are concave in W and D, ensuring the existence of optimality.

Consider that a firm produces and sells a hypothetical lithium-ion battery model, with
unit manufacturing cost C0 = $2500. The firm intends to design an optimal performance-
based warranty policy for the battery to maximize its total profit. For this purpose, lab
reliability tests are conducted to obtain necessary information on the battery’s hard and soft
failure processes. Reliability and usage data show that the battery’s hard failures are Weibull
distributed, with scale parameter α = 15 and shape parameter β = 2. On the other hand,
the battery’s actual performance degradation path is η(t;ω) = exp{−ωt}, where ω follows a
normal distribution N(µ, σ2) with µ = 0.02 and σ = 0.005. In principle, the battery is said to
have failed when its capacity reduces to L = 50% of its original capacity. Moreover, a market
survey shows that consumer usage rates (in 100 cycles/year) obey a Gamma distribution
g(r) = dG(r)/dr = 1

φρΓ(ρ)
rρ−1e−r/φ with shape parameter ρ = 5.88 and scale parameter

φ = 0.35, where Γ(ρ) =
∫∞

0
xρ−1e−xdx. Also, the minimal and maximal values of consumer

usage rates are rmin = 0.5× 100 cycles/year and rmax = 6.5× 100 cycles/year, respectively.
Further assume that the nominal usage rate is designed to r0 = 3×100 cycles/year, and the
accelerating factors for hard and soft failure processes are γ1 = 0.8 and γ2 = 1.0, respectively.
The parameters in the product demand model are set to κ1 = 5× 1011, κ2 = 1.5, κ3 = 0.55,
ϕ1 = 1.75, ϕ2 = 0.30, and ϕ3 = 0.75. Furthermore, the average replacement cost for an
individual unit is cf = $2000; the penalty cost coefficient is cp = $100000, which implies that
if the actual performance level is lower than the guaranteed level by 1%, then the penalty
cost would be $1000.

Based on the arbitrarily set parameter values, Fig. 3 illustrates the profit functions
for the three policies, with optimal P ∗ fixed. As can be observed, the profit functions are
concave in W and D, which ensures the existence of optimality. The optimal decision for
Policy I is to sell the product at price P ∗ = $6885.9, offer a performance-based warranty
of length W ∗ = 8.8 years, and guarantee a minimum performance level D∗ = 79.9%, of its
original capacity, over the warranty period. The resultant sales volume is Q∗ = 242046, unit
profit is π∗ = $3934.8, and total expected profit is Π∗I = $952400973.1. Likewise, the optimal
results for Policy II are P ∗ = $6580.5, W ∗ = 7.8, D∗ = 79.2%, Q∗ = 253349, π∗ = $3774.7,
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and Π∗II = $956312258.9; the optimal results for Policy III are P ∗ = $6643.6, W ∗ = 8.1,
D∗ = 76.3%, Q∗ = 247254, π∗ = $3758.9, and Π∗III = $929408859.4.

As can be seen, under the current parameter setting, Policies II and III specify shorter
warranty lengths, lower performance guarantees, and lower product prices, when compared
with Policy I. This is because the warranty costs in Policies II and III would be higher
than that in their counterpart if the same W and D are applied to all of them (Notice
that the penalty cost and full refund, especially the latter one, are much higher than the
replacement cost). Hence, the two policies have to set smaller W ∗ and D∗ to control the
warranty servicing costs, which, in turn, would negatively affect the sales volumes. As a
consequence, they have to set lower prices to help attract consumers, although in Policy III
a lower product price is beneficial to warranty cost reduction as well. This is reflected in the
fact that the sales volumes of Policies II and III are larger, and the associated unit profits
are lower.

On the other hand, when comparing the penalty and full refund policies, one can see that
the latter policy has a lower performance guarantee level to control the warranty servicing
cost; the profit margin of the full refund policy is slightly lower, although its optimal price
is higher. This is not surprising because of the high expense of full refund. Nevertheless, in
this single case, we find that the free replacement policy results in a higher total profit than
the other two policies, thanks to its lower warranty cost. However, it may be not always the
case when the values of model parameters vary.

4.1. Sensitivity analyses and policy comparisons

In what follows, we conduct thorough sensitivity analyses and policy comparisons of the
three compensation policies under various parameter settings. One thing noteworthy is that
the penalty cost coefficient cp is unique for Policy II so that its value shall have an impact
on the policy comparisons. Below we investigate the effects of model parameters cf , α, and
µ, in combination with cp, by varying two parameters at a time while keeping the others
unchanged.

We first focus on the combination of penalty cost coefficient cp and replacement cost
cf . In this scenario, three values of cp, i.e., cp = $50000, cp = $100000, and cp = $200000,
are considered, with cf increasing from $1000 to $3000. The corresponding results are
summarized in Table 1 and displayed in Fig. 4. The following observations can be obtained
accordingly:

1. Under Policy I, as the replacement cost cf increases from $1000 to $3000, the optimal
warranty length declines rapidly from 17.8 years to 6.7 years, in order to reduce the
warranty servicing cost. In the meantime, the optimal product price decreases from
$7615.0 to $6758.8, and the optimal performance guarantee level increases slightly
from 76.9% to 81.8%. As a result, the total expected profit shows a downward trend.
To provide a more comprehensive view, Fig. 4 also shows the unit profit and total sales
volume at optimality. One can observe that the unit profit is consistently decreasing in
cf , which is driven by the reduction in product price and the growth in warranty cost.
Interestingly, the total sales volume exhibits an increasing-then-decreasing pattern. It
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Figure 4: Comparison of the three performance-based policies under various combinations of cp and cf .

is increasing at the very beginning because of the rapid decrease in product price; while
it becomes decreasing later, as the sales reduction effect due to the rapid decline in
warranty length dominates the sales growth effect caused by the decrease in product
price and the increase in performance guarantee.

2. Under Policy II, as cf rises, the patterns of optimal warranty length, performance
guarantee level, and total expected profit are the same as those in Policy I; however,
the optimal product price and associated unit profit are relatively stable, although
the optimal price shows a slightly increasing trend. The sales volume under Policy II,
at optimality, exhibits a decreasing trend as cf increases. A decreasing sales volume,
combining a relatively stable unit profit, leads to a decreasing total profit. Under
Policy III, the patterns of all the variables are analogous to those in Policy II.

3. In terms of the impact of penalty cost coefficient cp on the optimal results under Pol-
icy II, one can find that almost all the reported quantities (except the sales volume)
decreases as cp increases. This is consistent with our intuition: When cp becomes
larger, the manufacturer needs to pay more for the violation of the performance guar-
antee. Therefore, the manufacturer has to reduce the warranty length and performance
guarantee level to avoid excessive penalty cost, and also set a lower product price to
mitigate sales volume reduction. Eventually, it results in a lower total profit for the
manufacturer. Nevertheless, compared with cf , the impact of cp on the optimal results
is quite insignificant.

4. More importantly, we compare the reported quantities of the three compensation poli-
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Figure 5: Comparison of the three performance-based policies under various combinations of cp and α.

cies. One can clearly see that the total profit of Policy III is the lowest, whereas the
total profit of Policy I is higher than those of Policy II when cf is small while becomes
lower than those when cf is large; however, the turning point comes later when cp is
larger. This implies that the free replacement policy is superior to the penalty policy,
in terms of total expected profit, when cf is small and/or cp is large. Moreover, the op-
timal product price, warranty length, and unit profit of Policy I are consistently higher
than those in Policies II and III, respectively, whereas the total sales volumes exhibit
an inverse relationship. This shows that Policy I pursues a high profit by extracting
more money from each sold unit, whereas Policy II adopts a different strategy, i.e.,
selling more units at a lower profit margin. Furthermore, the optimal performance
guarantee levels of Policies I and II exhibit a similar pattern to the corresponding
total profits, although the performance guarantee levels are increasing, rather than
decreasing, in cf . The optimal performance guarantee level of Policy III, however, is
obviously lower than those of the other two policies, due to the high expense of full
refund. In addition, for the optimal product price, warranty length, unit profit and
total sales volume, the gap between that of Policy I and those of Policies II and III
becomes narrower as cf increases.

We then examine the combination of penalty cost coefficient cp and scale parameter α
of the Weibull distribution. Basically, a larger (resp. smaller) value of α corresponds to a
higher (resp. lower) product reliability, in terms of the hard failure process. In this scenario,
we consider α increasing from 10 to 20, in combination with cp = $50000, cp = $100000,
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and cp = $200000, respectively. The corresponding results are summarized in Table 2 and
illustrated in Fig. 5. The following findings can be drawn:

1. Under Policy I, as the scale parameter α increases from 10 to 20, the optimal product
price remains relatively stable, and the optimal performance guarantee level decreases
from 84.9% to 75.8%; accordingly, the optimal warranty length increases from 6.0 years
to 11.4 years so as to boost the product sales. On the other hand, the unit profit is
relatively stable, as the warranty cost growth effect induced by the increase in warranty
length is largely offset by the cost reduction effect caused by the decline in performance
guarantee level. As a result, the total sales volume shows an upward trend, which, in
combination with a relatively constant unit profit, results in an increasing total profit.

2. Under Policy II, as α becomes large, the patterns of the optimal warranty length,
performance guarantee, sales volume, and total expected profit are the same as those
in Policy I; however, the optimal product price and associated unit profit show a
slightly decreasing tendency. An increasing sales volume and a slightly decreasing unit
profit lead to an increasing total profit. As before, the patterns of all the variables
under Policy III is analogous to those in Policy II.

3. In terms of the impact of penalty cost coefficient cp on the optimal results under
Policy II, one can still observe that almost all the reported quantities (except the sales
volume) become smaller as cp becomes larger. Again, compared with α, the impact of
cp on most quantities is insignificant.

4. When comparing the reported quantities of the three compensation policies, one can
find that Policy III is always inferior to the other two, in terms of total expected
profit. Policy I is dominated by Policy II, when α is small, while it becomes dominant
when α becomes large; however, the turning point comes earlier when cp is larger.
This implies that Policy I is inferior to Policy II, when α is small and/or cp is small.
In addition, the relative patterns of optimal product prices, warranty lengths, unit
profits and sales volumes for the three policies are consistent with those in Fig. 4.
This comes to the same finding that Policy I seeks a high total profit by extracting
more money from each sold unit, whereas Policy II sells more units at a lower unit
profit. Moreover, the optimal guarantee level in Policy I is lower than those in Policy
II when α is small and then becomes higher than those when α is large; however, the
optimal performance guarantee of Policy III is always lower than those of the other
two policies. Furthermore, for the optimal product price, warranty length, unit profit
and total sales volume, the gap between that of Policy I and those of Policies II and
III grows up as α increases.

We further look at the combination of penalty cost coefficient cp and mean parameter µ
of the normal distribution. In essence, a larger (resp. smaller) value of µ implies a higher
(resp. lower) degradation rate, with respect to the soft failure process. We consider µ
growing from 0.015 to 0.040 with a step size of 0.005, in combination with cp = $50000,
cp = $100000, and cp = $200000 as well. The corresponding results are listed in Table 3 and
illustrated in Fig. 6. The following observations can be summarized:
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Figure 6: Comparison of the three performance-based policies under various combinations of cp and µ.

1. As the mean parameter µ increases from 0.015 to 0.040, all the reported quantities
(including the optimal product price, warranty length, performance guarantee level,
unit profit, sales volume, and total expected profit) of the three policies exhibit a de-
creasing pattern. This can be explained by the fact that when µ rises, the performance
degradation process will accelerate in an exponential manner. Hence, the manufac-
turer has to reduce the warranty length and performance guarantee level to cut down
the warranty servicing cost, and also set a lower product price to mitigate sales vol-
ume decline. On the other hand, the unit profit decreases as µ increases, driven by
the reduction in product price and the growth in warranty cost. As a consequence,
the declines in both sales volume and unit profit generate a decreasing pattern of the
manufacturer’s total profit.

2. Likewise, the impact of penalty cost coefficient cp on the optimal results under Policy II
is not significant, although almost all the reported quantities (except the sales volume)
become smaller as cp rises. This observation is consistent with those in Figs. 4 and 5.

3. One can see that the total profit of Policy I is higher than those of Policy II when µ
is small while becomes lower than them when µ is large; however, the turning point
comes later when cp is larger. This indicates that Policy I is superior to its counterpart,
in terms of total expected profit, when µ is small and/or cp is large. In contrast, Policy
III has the lowest total profit among the three policies, as before. Furthermore, the
relative patterns of optimal product prices, warranty lengths, unit profits and sales
volumes for the three policies are the same as those in Figs. 4 and 5. In addition,
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Table 4: Optimal results for the pure product warranty policy (note: Π∗ is in million dollars).

cf P ∗ W ∗ Π∗ α P ∗ W ∗ Π∗ µ P ∗ W ∗ Π∗

1000 7975.6 23.4 921.2 10 7209.8 7.6 734.7 0.015 7359.5 12.1 816.1
1200 7748.1 19.1 889.4 11 7250.2 8.5 752.6 0.020 7359.6 12.1 816.1
1400 7599.5 16.4 865.1 12 7284.1 9.4 769.6 0.025 7338.6 12.0 816.0
1600 7488.7 14.5 845.8 13 7313.0 10.3 785.8 0.030 7341.7 12.0 815.8
1800 7406.1 13.1 829.7 14 7337.9 11.2 801.3 0.035 7284.7 11.7 815.1
2000 7359.6 12.1 816.1 15 7359.6 12.1 816.1 0.040 7236.3 11.4 813.5
2200 7301.3 11.2 804.3 16 7358.4 12.9 830.3
2400 7262.5 10.5 793.9 17 7376.7 13.8 844.0
2600 7227.1 9.9 784.6 18 7393.3 14.7 857.1
2800 7200.3 9.4 776.3 19 7408.6 15.6 869.8
3000 7186.5 9.0 768.8 20 7406.4 16.4 882.0

the optimal performance guarantee level in Policy III is the lowest among the three
policies, whereas the optimal guarantee level in Policy I is higher than those in Policy
II when µ is small and then becomes lower than those when µ is large.

4.2. Comparison with the pure product warranty policy

As discussed earlier, the performance-based warranty policies reduce to the pure product
warranty policy when D = L. It is thus of interest to compare the proposed performance-
based warranties with the pure product warranty, so as to demonstrate the superiority of
the performance-based warranties. For this purpose, Table 4 shows the optimal results for
the pure product warranty policy under various settings of parameters cf , α, and µ, the
same as those in Section 4.1.

It is clear to observe that the optimal product price and warranty length in the pure
product warranty policy are higher, whereas the resulting total profit is lower than those in
the performance-based warranty policies, respectively. The explanation of this observation
is intuitive: Without the performance guarantee as an advertising weapon, the pure product
warranty policy has to offer a longer protection period so as to mitigate sales volume decrease.
On the other hand, the product price is lifted to cover the growing warranty servicing cost.
As a result, the pure warranty policy has a lower sales volume and a higher unit profit,
although the detailed results are not shown in Table 4. The ability of increasing total
profit shows the superiority of the proposed performance-based warranty, in comparison with
traditional product warranties. In addition, the profit difference between the performance-
based and product warranties becomes larger when the penalty cost coefficient cp is larger,
the scale parameter α is smaller, and/or the mean parameter µ is smaller.

5. Conclusions and future research topics

This article proposes the concept of performance-based warranty for products subject to
competing hard and soft failure modes. Unlike product warranties that protect consumers
solely from premature failures, the performance-based warranty not only covers the repair
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or replacement of any failure, but also guarantees the minimum performance level over the
warranty period. This warranty policy would compensate consumers if the product’s actual
performance throughout the warranty period fails to meet the guaranteed level, which offers
a feasible mechanism to address consumers’ concern on the deterioration of key product
performance characteristics. In this work, three types of compensation mechanisms are
studied, namely, free replacement, penalty, and full refund. We first formulate the warranty
cost models for the three compensation policies, and then develop an optimization problem
to determine the optimal product price, warranty length, and performance guarantee level
so as to maximize the manufacturer’s total profit. Numerical experiments are carried out to
demonstrate and compare the three compensation policies.

Numerical results show that the full refund policy always leads to the lowest total profit,
whereas neither of the other two policies can dominate each other in all scenarios. In partic-
ular, the free replacement policy is superior to the penalty policy, in terms of total expected
profit, when the replacement cost is low, the penalty cost coefficient is high, and/or the prod-
uct reliability is high. More interestingly, we find that under different policies, manufacturers
seek profit maximization through distinct strategies: Under the free replacement policy, the
manufacturers would extract more money from each sold unit but have a lower sales vol-
ume, whereas under the penalty policy they would sell more product units with a lower profit
margin for each unit. Moreover, comparing the performance-based warranty policies with a
pure product warranty policy shows that introducing an additional performance guarantee
mechanism is beneficial for manufacturers to increase sales profit. Nevertheless, the new
type of performance-based warranty has shown a significant potential, and more manufac-
turers could consider this direction for capital-intensive and performance-critical products
whose performance characteristics can be clearly defined and measured.

This work makes an early attempt to study the performance-based warranty. There are
several ways in which the work can be extended. Practical performance-based warranties
might involve multiple performance guarantee levels at different time points within the entire
warranty period; see, e.g., the warranty policies for solar panels mentioned earlier. This will
complicate the warranty modeling and analysis, and Monte Carlo simulation methods shall
be effective for warranty cost evaluation. Moreover, preventive maintenance activities can be
carried out to improve product reliability and mitigate performance deterioration, especially
for capital-intensive products. How to optimally schedule preventive maintenance activities
for performance-critical products is an open problem. Finally, it is also interesting to treat
the penalty cost coefficient cp as an additional decision variable, so that the manufacturer
could seek a tradeoff between the product demand growth and the penalty cost incurred.
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Appendix A. Riemann-Stieltjes method

Under policy I, when computing the conditional total expected warranty servicing cost,
i.e., Eq. (12), we need to solve a renewal-type integral equation. It is not easy to derive
an analytical solution for this equation. Based on the Riemann-Stieltjes sums, Xie (1989)

26



proposes a simple yet accurate numerical method to evaluate this type of equations. To
implement this method, the warranty period is (uniformly) divided into n intervals with
endpoints 0 = t0 < t1 < · · · < tn = W . Then, using the well-known midpoint method in
numerical analysis, the renewal equation can be rewritten as

M I(tj; r) ≈ ΨI(tj; r) +

j∑
k=1

ΨI(tj − tk−1/2; r)
(
M I(tk; r)−M I(tk−1; r)

)
, (A.1)

where tj−1/2 = (tj−1 + tj)/2 is the midpoint of the jth interval.
Therefore, the numerical approximation ofM I(tj; r) can be calculated recursively through

M̃ I(tj; r) =
ΨI(tj; r) + Sj −ΨI(tj − tj−1/2; r)M̃ I(tj−1; r)

1−ΨI(tj − tj−1/2; r)
, (A.2)

where M̃ I(t0; r) = 0 and Sj =
∑j−1

k=1 ΨI(tj − tk−1/2; r)(M̃ I(tk; r) − M̃ I(tk−1; r)). We use

M̃ I(tj; r) to indicate that it is a numerical approximation of M I(tj; r).
One result noteworthy is that Sun et al. (2019) prove that under some mild conditions,

the approximation error, M I(tn; r)− M̃ I(tn; r), is O(n−1).

Appendix B. Simulation algorithm for evaluating Eq. (17)

Given any value of r, we start the simulation by drawing T
(1)
r and T

(3)
r from F (1)(·; r)

and F (3)(·; r), respectively. Then, the time to first replacement can be determined by T II
r =

min{T (1)
r , T

(3)
r }. Define ζ(t) =

∫ − lnL/Λ2(t)

− lnD/Λ2(t)
(D − η(Λ2(t);u))dFω(u). If T II

r ≥ W , then the

penalty cost is CP(W,D; r) = cpζ(W ); otherwise, calculate the penalty cost as follows: If

T
(1)
r ≥ T

(3)
r , i.e., a soft failure induces the product failure, then CP(W,D; r) = cp(D − L);

otherwise, CP(W,D; r) = cpζ(T
(1)
r ). Repeat this procedure until the end of warranty period

is reached.
After a large number of simulation runs, the conditional expected penalty cost in Eq. (17)

can be well approximated by the average of CP(W,D; r), i.e., CP(W,D; r) =
∑Sim

i=1 C
(i)
P (W,D; r)/Sim,

where C
(i)
P (W,D; r) is the penalty cost in the ith simulation run and Sim is the total number

of simulation runs for each single case. The Monte Carlo simulation procedure is detailed
in Algorithm 1.
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