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Abstract

In this paper, we develop a maintenance model for systems subjected to multiple correlat-
ed degradation processes, where a multivariate stochastic process is used to model the degra-
dation processes, and the covariance matrix is employed to describe the interactions among
the processes. The system is considered failed when any of its degradation features hits the
pre-specified threshold. Due to the dormancy of degradation-based failures, inspection is im-
plemented to detect the hidden failures. The failed systems are replaced upon inspection. We
assume an imperfect inspection, in such a way that a failure can only be detected with a spe-
cific probability. Based on the degradation processes, system reliability is evaluated to serve
as the foundation, followed by a maintenance model to reduce the economic losses. We pro-
vide theoretical boundaries of the cost-optimal inspection intervals, which are then integrated
into the optimization algorithm to relieve the computational burden. Finally, a fatigue crack
propagation process is employed as an example to illustrate the effectiveness and robustness
of the developed maintenance policy. The influence of degradation dependence and inspection
accuracy is investigated to gain more managerial insights. Numerical results imply that the
inspection inaccuracy contributes significantly to the operating cost and it is suggested that
more effort should be paid to improve the inspection accuracy.
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1 Introduction

Maintenance operation is an effective tool to improve the production quality and reduce economic
losses due to system failures. Traditionally, failure data are usually used to establish reliability
models, based on which maintenance decisions are made (Zhao et al., 2018; Vu et al., 2018; Wu
et al., 2016; Finkelstein et al., 2016; Gao et al., 2019; Qin and Li, 2020). Recently, however,
as a result of the improved quality and reliability of systems, it is becoming increasingly more
difficult to obtain the failure data, which frustrates failure-model based reliability analysis and the
associated maintenance strategies.

As an alternative, degradation-based models have attracted an increasing attention on relia-
bility analysis and maintenance modeling for systems with high reliability. Degradation-based
models are established by use of the degradation measurements, which are monitored during sys-
tem operation (Alaswad and Xiang, 2017; Do et al., 2015; Mo and Xie, 2015). In addition, the
degradation-based models are able to characterize the physical failure mechanism and investigate
the influence of environmental variations on system degradation processes (Cherkaoui et al., 2018;
Deloux et al., 2016; Xu et al., 2019). Degradation-based models have been widely employed to
analyze reliability of real systems, e.g., micro-electromechanical systems (MEMS) (Song et al.,
2014; Skima et al., 2016), hard disk devices (Ye et al., 2013), and light-emitting diodes (LEDs)
(Peng and Tseng, 2009).

In literature, considerable studies have been conducted on degradation-based maintenance
(e.g., (Huynh et al., 2012; Xiang et al., 2014; Peng et al., 2012; Liu et al., 2017a,b; Rivera-Gómez
et al., 2018; Khatab et al., 2018, 2019)). An implicit assumption of most existant studies is that
the system is only suffering one degradation process. However, in reality, as industrial systems
are becoming increasingly more complex to perform multiple functions, they are likely to suf-
fer from multi-dimensional degradation processes. Studies on maintenance policies with multiple
degradation processes are still very limited. Barker and Newby (2009) proposed a non-periodic
inspection strategy for systems with a multivariate degradation process. Liu et al. (2013) develope-
d a maintenance strategy for a continuously monitored system subjected to multiple degradation
processes. Liu et al. (2014) developed a preventive maintenance strategy for multi-component
systems subjected to degradation, where importance measure was used to determine the critical
components. Khatab et al. (2018) established a condition-based selective maintenance model for a
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multi-component system under the constraint of limited duration of breaks between two missions
and the required reliability target for the next mission. However, in all studies mentioned above,
the degradation processes are assumed to be independent.

In practice, degradation processes are often mutually correlated in the sense that one degra-
dation process affects other degradation processes (Wang and Pham, 2012; Caballé et al., 2015;
Keizer et al., 2017; Ma et al., 2018; Qin and Li, 2019). For example, multiple cracks may exist
in a rail track, where the degradation processes are imposed upon each crack. Correlation exists
among the cracks when the cracks are exposed to common shocks, e.g., traffic load and environ-
mental variations. However, research focusing on maintenance optimization for multiple correlated
degradation processes is still lacking. In the literature, there exist several investigations for multi-
component systems where the degradation processes of components are correlated. Hong et al.
(2014) developed a condition-based maintenance for a multi-component system with dependent
stochastic degradation processes, in which copula was employed to describe the dependence be-
tween the degradation processes of components. Lin et al. (2015) proposed importance measures
for a multi-component system subjected to dependent degradation process and condition-based
maintenance. Rasmekomen and Parlikad (2016) developed a condition-based maintenance for a
multi-component system subjected to degradation state-rate interactions. Shen et al. (2018) an-
alyzed system reliability for a multi-component system with interacting components, where the
degradation behavior of one component exerts an influence on that of another component. Our s-
tudy investigates maintenance optimization for system subjected to multi-dimensional degradation
processes. Compared with the work focusing on multi-component system with dependent degra-
dation processes between components, mathematically they share some commonalities. Both the
systems can be modelled by multiple dependent or independent degradations. The maintenance
models applied in a multi-component system can be extended to deal with the multi-dimensional
degradation problem. However, the systems differ in nature. We consider a single-unit system
that suffers multiple degradations, instead of a multi-component system. Therefore, maintenance
on the system will influence all the degradation processes, while for a multi-component system,
maintenance on one component may not necessarily affect the degradation processes of other com-
ponents.

Actually, the multi-degradation phenomena have been reported in various industries, such as
in the marine and offshore industry (Von der Ohe et al., 2012). For example, the cylinder position
rod is exposed to wear and corrosion in an offshore corrosive environment. The multi-degradation
effect between wear and corrosion has been well recognized and referred to as tribocorrosion.
The premature surface failure of cylinder position rod is caused by the combined degradation of
corrosion, abrasive wear and mechanical tensile loading.
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Degradation-induced failure is referred to as hidden failure or soft failure, which is usually
not self-evident and needs to be detected by inspections. An implicit assumption of the existent
studies is that the inspection is perfect, i.e., soft failures can always be revealed at inspections
(Ben Mabrouk et al., 2020). However, in reality, an inspection may fail to spot the hidden failures
due to the limitation of inspection techniques, especially in the presence of harsh environment
(Berrade et al., 2013; Chun, 2016; Liu et al., 2016). The probability that a soft failure can be
revealed depends on the dedicated inspection techniques. For example, when detecting a crack in
a bridge or a rail track, the probability of a crack being detected varies with different inspection
techniques, e.g., ultrasonic testing, visual inspection and magnetic particle inspection (Zerbst et al.,
2005).

In literature, extensive research has been conducted regarding imperfect inspection (Kallen and
van Noortwijk, 2005; Yang and Cho, 2014; He et al., 2015; Sarkar and Saren, 2016; Ye et al., 2019;
Liu et al., 2020). He et al. (2015) developed a preventive maintenance scheduling policy based on
an imperfect inspection policy, where the authors analytically established the condition for an opti-
mal inspection interval and number of imperfect inspections between two preventive maintenance
actions. Levitin et al. (2019) developed an imperfect inspection policy for a mission-oriented sys-
tem; an optimal inspection interval was obtained to maximize the mission success probability.
Cavalcante et al. (2019) investigated the effect of imperfect inspection on a system described by a
delay-time model, in which a failure or a defective state was detected with a specific probability.
Zhang et al. (2020) proposed a novel maintenance model considering imperfect inspection and
imperfect repair, where the defects are detected with a non-constant probability. However, an ex-
tensive review of the existing literature reveals that imperfect inspections are investigated largely
for systems with a single degradation process, while no research so far has considered imperfect
inspection for a system with multi-dimensional degradation processes.

It should be noted that correlation between the degradation processes will influence the chance
that system failures are detected. A stronger correlation between the marginal wear processes will
imply a smaller chance of a false negative, since a negative inspection has to be the outcome of each
dimension of the inspection. Degradation processes with a stronger correlation are more likely to
fail together, which increases the probability system failures being detected.

To the best of the authors’ knowledge, investigation on multi-dimensional degradation pro-
cesses under imperfect inspection has not been covered in the maintenance literature. Our research
aims to close the gap and contribute to the knowledge of maintenance policy on multiple depen-
dent degradation processes. To this end, in this paper, we develop a maintenance strategy with
consideration of imperfect inspection for systems subjected to multi-dimensional degradation pro-
cesses. A multivariate Wiener process is employed to model the multi-dimensional degradation
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processes, where a covariance matrix characterizes dependency among the degradation processes.
The system fails when any of the degradation features exceeds its pre-specified threshold. Period-
ic inspection is implemented to detect the existence of soft failures. The inspection is imperfect,
where a hidden failure is detected with a specific probability. When a hidden failure is detected
at inspection, replacement will be carried out immediately to restore the system. Subsequently, a
cost model is developed to decide the optimal inspection interval.

We summarize the contribution of this study in the following three aspects.

• We develop a maintenance policy for systems with multi-dimensional degradation processes
and investigate the impact of degradation dependence on the maintenance decisions.

• We incorporate the imperfect inspection into the maintenance model and show that the main-
tenance cost is highly dependent on the inspection accuracy.

• We theoretically determine the range of the maintenance cost and the optimal inspection
interval to facilitate optimization.

The remainder of this paper is organized as follows. Section 2 describes the general assump-
tions of the paper, the degradation modeling and reliability evaluation. Section 3 presents the
proposed maintenance policy, with the objective to determine the optimal maintenance cost. In
addition, the boundaries of the cost rate and the optimal inspection interval are theoretically inves-
tigated. Section 4 presents an example of fatigue crack development to illustrate the degradation
process and the advantages of the developed maintenance model. Finally, conclusions and future
research directions are summarized in Section 5.

Nomenclature

CR(T ) Long-run cost rate
Hi Failure threshold of the ith degradation process
K1 Number of inspections before failure within a

renewal cycle
K2 Number of inspections after failure within a

renewal cycle
m Number of degradation processes
Pd(t) Probability that a failure is revealed at inspection

given that the system has failed
N f (t) Number of failures by time t
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R(t) System reliability at time t
T Inspection interval
S Length of a renewal cycle
C Cost in a renewal cycle
Td System downtime
Tf System failure time
CI,CR Cost of inspection and replacement
Cd Downtime cost per unit time
U j Failure set containing j failures
Nl Number of simulation histories
V(t) V(t) = (V1(t),V2(t), ...,Vm(t))

T , m-dimensional
Brownian motion

X(t) X(t)=(X1(t),X2(t), ...,Xm(t))
T , vector of

degradation values
β Probability that a failure is not detected at inspection
λ λ = (λ1,λ2, ...,λm)

T , vector of drift coefficients
Ξ Variance-covariance matrix
τ Parameter of time transformation

2 System assumptions and deterioration modelling

2.1 System description and assumptions

Consider a deteriorating system with multi-dimensional degradation processes, in which the degra-
dation processes are indicative of an identical failure mode, e.g., multiple cracks in a rail track. We
consider the case that degradation processes only lead to soft failures, that the system is still oper-
ating when the degradation level exceeds the failure threshold, but at a higher risk or cost. Hard
failure is not considered in this study. The following assumptions are further considered in this
paper:

1. The duration of inspection and replacement is negligible when compared with the operating
horizon.

2. Inspection has no impact on system degradation.

3. The probability that a failure is discovered at inspection is independent of the existence of
other failures.

6



4. The probability of failure detection is identical for all the degradation-induced failures.

5. The system is non-repairable; once a failure is detected at inspection, replacement is carried
out immediately.

The aforementioned assumptions have been widely used in literature, such as (Li and Pham,
2005; Peng et al., 2014). Consider a system that undergoes multiple degradation processes, mod-
eled as a multivariate Wiener process. Wiener process is employed here due to the fact that in
reality some systems do not exhibit monotonic degradation behaviors (Zhai and Ye, 2017). For
example, the length of a crack in tracks is influenced by various factors, such as temperature, hu-
midity, and track smoothness. The size of cracks evolves non-monotonically. Therefore, we use
Wiener process instead of other monotone degradation processes like Gamma and inverse Gaussian
process.

Since our work is motivated by the cracks in rail tracks, where multiple cracks may degrade
in a track, we only consider soft failures, which occurs when one or more degradation features
exceed the failure thresholds, while hard failures are not considered in the study. Definition of
system failure in this work is similar to the concept of competing failure modes. It is important
to note that after a soft failure occurs, the system continues to operate, but at an unsatisfactory
performance level. The system is not continuously monitored, and existence of soft failure is only
detected by at periodic inspection (such as a leak in a pipe). For some systems, failure is not
self-evident and will have to be detected by inspection, such as cracks in tracks or in bridges. For
example, sometimes the crack occurs inside the track or bridge, which is dormant and cannot be
discovered by manual vision. Inspection is used for failure detection. Another typical system with
latent failures is stand-by redundant systems and protection systems.

Inspection policies are typically classified as periodic inspections and non-periodic inspections.
Generally speaking, non-periodic inspection performs better than the periodic inspection policy.
However, in practice, non-periodic inspection is not so easy to implement as one needs to rearrange
the maintenance staff and reallocate the resources frequently. Therefore, periodic inspection policy
is most widely used in real applications. In the literature, there are plenty of studies investigating
maintenance polices with periodic inspection.

We assume in this paper that the probability of discovering a failure at inspection is independent
of the existence of other failures. That is, given the occurrence of j failures, the probability that
at least one failure can be discovered at inspection is 1− β j, where β is the probability that an
inspection fails to detect a single failure. Usually β is determined by the inspection techniques or
the inspection cost invested.

After a soft failure occurs (the limit has been reached by one of the variables), the system
is in the failed state by this failure mode (damage has been done), regardless of the subsequent
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Figure 1: Description of the degradation and inspection process

behaviour of the degradation process. An inspection detects the existing state of the failure mode
(with false negative results), and not the degradation process value. Therefore, for each degradation
process, it is assumed that inspection simply tells whether a failure occurs or not.

The inspection is imperfect in that a failure can only be detected by a specific probability,
which is related to the inspection techniques. We assume a constant probability of failure detection
mainly for two reasons. One is that our focus is to develop a maintenance policy for a system with
multi-dimensional degradation processes. Inspection accuracy is a realistic factor that influences
the maintenance decisions. As the maintenance model itself is quite complicated, considering
a varying detection probability will further complicate the model and impede obtaining useful
managerial insights. Another reason is that it is difficult to accurately describe the relationship
between inspection accuracy and the degradation level. It can be anticipated that probability of
failure detection increases with the growth of crack size. However, it is unknown in what form that
the two are related, whether in linear, exponential or other forms. Therefore, we assume a constant
probability of failure detection to make it simple and focus on the maintenance model. But our
model can be extended considering a varying probability of failure detection, at the cost of more
computational burden.

Fig. 1 describes the degradation process and inspection schedule for a bivariate case. As pre-
sented in Fig. 1, two degradation processes are imposed upon the system, denoted as X1(t) and
X2(t). The degradation-induced failures occur after the third and fourth inspection respectively.
Imperfect inspection is carried out to detect the occurrence of failures. The failures remain un-
revealed until the sixth inspection, where corrective replacement is implemented to restore the
system back to a perfect state.
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2.2 Deterioration process

Suppose that the system comprises m degradation processes, modeled by a multivariate Wiener
degradation process, X(t)= λ t+V(t), where X(t)=(X1(t),X2(t), ...,Xm(t))

T is the vector of degra-
dation by time t, λ = (λ1,λ2, ...,λm)

T denotes the vector of drift coefficients and V(t) is an m-
dimensional Brownian motion, V(t) = (V1(t),V2(t), ...,Vm(t))

T , characterizing the stochasticity of
the degradation processes. In particular, V(t) follows a multivariate normal distribution, V(t) ∼
N (0, tΞ), where Ξ is the variance-covariance matrix, denoted as Ξ =

[
σi j
]
, for i, j ∈ {1, ...,m}.

The joint probability density function (pdf) of V(t) is expressed as

f (v1(t), ..., vm(t)) =
(

1
2π

)m
2

|tΣ|−
1
2 exp

[
− 1

2t
v(t)T

Ξ
−1v(t)

]
. (1)

According to the degradation process, we have

Vi(t) = Xi(t)−λit. (2)

The system fails when any of the degradation features Xi hits the critical failure threshold Hi for
the first time, referred to as the first-passage-time. Let Tf be the time to failure. It follows

Tf = inf{t : Xi(t)> Hi,∃i = 1,2, ...,m} . (3)

System reliability is given as R(t) = P{t ≤ Tf }. However, there exists no closed-form ex-
pression of the FTP for a multi-dimensional Wiener degradation process. Hence, an empirical
distribution will be employed to describe the system reliability R(t). The empirical distribution
can be obtained from the simulated sample data. System reliability R(t) is expressed as the propor-
tion of degradation observations at time t from the sample that are less than or equal to the failure
threshold.

3 Maintenance policy and optimization

This section aims to establish the maintenance model and achieve the optimal inspection interval.
Periodic inspection is implemented upon epochs kT , where k ∈ {1,2,3, ...}, and T is the inspection
interval.

Since the inspection is imperfect, it is possible that a failure is revealed after multiple inspec-
tions. If a failure is discovered at inspection, replacement is carried out instantly. The system
is restored to the as-good-as-new state upon each replacement. Since the system is restored to
a new state, the degradation processes and inspection policy will start over, which constitutes a
regenerative process.
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In the following analysis, we will formulate the the long-run cost rate of the maintenance policy
by considering the effect of multi-dimensional degradation processes and the inspection accuracy.
A search algorithm is then developed to achieve the optimal inspection interval.

3.1 Maintenance cost model

In this study, we aim to determine the optimal inspection interval that minimizes the long-run cost
rate. In the current model, the cost items involve inspection cost CI , replacement cost CR and
downtime cost per unit time Cd . Inspection cost is paid whenever an inspection is applied. Down-
time cost is paid when the system operates in the (soft) failed state. The basic idea of cost model
construction is to investigate the number of inspections before and after failure separately (Berrade
et al., 2012). Since before a failure occurs, the expected number of inspection only depends on the
distribution of failure time. However, after a failure occurs, the number of inspections is related
to the number of existing failures and the inspection accuracy. The distinction in the inspection
number leads to the cost modeling. Consider the number of inspections before and after a failure
separately can simplify the maintenance cost modeling.

Let K1 denote the number of inspections before occurrence of a failure. The probability that
K1 takes value in i (i = 0,1,2, ...) is given as

P(K1 = i) = P
{

Tf ∈ [iT,(i+1)T ]
}
= R(iT )−R((i+1)T ) . (4)

The expectation of K1 is given as

E[K1] =
∞

∑
i=0

iP(K1 = i) =
∞

∑
i=1

R(iT ). (5)

Denote K2 as the number of inspections in a renewal cycle after a failure occurs. Evaluation of
K2 is quite tricky, due to the fact that K2 not only depends on K1, but also on the number of failures
at each inspection. Let N f (t) be the number of existing failures by time t. N f (t) takes values in j
( j = 0,1, ...,m) with the probabilities

P(N f (t) = j) = ∑
U j⊂{1,...,m}:|U j|= j

P

{ {
Tk ≤ t,∀k ∈U j

}
∩
{

Tl ≤ t,∀l /∈U j
} }, (6)

where U j is the set containing j failures, Tk and Tl are the first-passage-time of the kth and lth
degradation processes, i.e., Tk = inf{t : Xk(t)> Hk} and Tl = inf{t : Xl(t)> Hl}.

Eq. (6) measures all the scenarios that j-out-of-m failures have occurred. When m is large, it
is tedious to compute all the P(N f (t) = j), as it contains 2m− 1 subsets. If a system comprises
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a large number of degradation processes (i.e., m is too large), simplification can be achieved by
adopting ranking methods such as importance measures to determine the most influential failure
modes. For a small m, P(N f (t) = j) can be calculated via enumeration. Given the occurrence of
failures, the probability that at least one failure can be discovered at inspection is given by

Pd(t|t > Tf ) =
m

∑
j=1

P
(
N f (t) = j|t > Tf

)
· (1−β

j). (7)

For notational simplicity, Pd(t|t > Tf ) is denoted as Pd(t). If no failure occurs till time t, by
definition Pd(t) = 0.

Intuitively, K2 is related to K1 in a way that a larger K1 leads to a more deteriorated system at
the time of failure occurrence. Given K1 = k1, the probability that K2 equals to i is given as

P(K2=i|K1 = k1) = P{Āk1+1Āk1+2...Āk1+i−1Ak1+i|K1 = k1}

=
P{Āk1+1Āk1+2...Āk1+i−1Ak1+i∩K1 = k1}

P{K1 = k1}

=

Pd(k1T + iT )
i−1
∏
j=0

(1−Pd(k1T + jT ))

R(k1T )−R((k1 +1)T )

, (8)

where A(k1+i) denotes the event that a failure is revealed at the (k1 + i)th inspection. Note that
based on the definition of Pd(t) in Eq. (7), we have Pd(k1T ) = 0 for k1T < Tf . Eq. (8) denotes the
probability that the failure is not discovered until the (k1 + i)th inspection. The probability that K2

is no less than i is given as

P(K2 ≥ i) =
∞

∑
k1=0

i−1

∏
j=0

(1−Pd(k1T + jT )) (9)

Then the expected K2 follows as

E[K2] =
∞

∑
i=1

iP(K2=i)

=
∞

∑
i=1

i(P(K2 ≥ i)−P(K2 ≥ i+1))
(10)

As detection of failures and system replacement can only be carried out at inspections, the
length of a renewal cycle is an integer multiple of the inspection interval. The expected length of a
renewal cycle can be obtained as

E[S] = {E[K1]+E[K2]}T. (11)
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Let Td be the system downtime, so that Td = S−Tf . Since it is widely known that

E[Tf ] =
∫

∞

0
tdF(t) =−

∫
∞

0
tdR(t) =

∫
∞

0
R(t)dt

we have

E[Td] = E[S]−E[Tf ] =
∫

∞

0
tdR(t)+{E[K1]+E[K2]}T (12)

Remark: For a small inspection interval T , the expected downtime E[Td] approaches the time
interval of after-failure inspection E[K2]T , E[Td] ≈ E[K2]T , i.e., E[Td]−E[K2]T → 0 as T → 0.

This is due to lim
T→0

∞

∑
i=1

R(iT )T =
∫

∞

0 R(t)dt =−
∫

∞

0 tdR(t).

We can have the expected cost within a renewal cycle as

E[C] =CR +CI ·E[K1 +K2]+Cd ·E[Td]

= (CI +CdT ) ·E[K1 +K2]+CR−Cd ·E[Tf ]
(13)

Combining Eq. (11) and Eq. (13), the expected long-run cost rate is formulated as

CR(T ) = lim
t→∞

C(t)
t

=
E[C]

E[S]

=Cd +
CI

T
+

CR−CdE[Tf ]

E[K1 +K2] ·T

(14)

where C(t) is the cumulative cost over the interval (0, t]. As presented in Eq. (6), calculation of the
probability of number of failures has to take into account all the scenarios whether a degradation
process leads to a failure, which is exponentially explosive and computationally prohibitive. There-
fore, we fail to achieve a closed-form expression of Eq. (14) for a large number of degradation
processes.

Actually, the cost model of Eq. (14) is a generalization of the existing maintenance models.
For example, if the inspection is perfect, then the cost model is reduced to a simple inspection-
replacement model (Zhao et al., 2010). This can be simply achieved by setting Pd(t|t > Tf ) = 1
and K2 = 1. It follows

E[S] =

(
∞

∑
i=1

R(iT )+1

)
T
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and

E[C] =CR +CI ·

(
∞

∑
i=1

R(iT )+1

)

+Cd ·

(
T

∞

∑
i=1

R(iT )+T −E[Tf ]

)
Combining the above two equations, we have

CR(T ) =Cd +
CI

T
+

CR−CdE[Tf ](
∞

∑
i=1

R(iT )+1
)

T

On the other hand, if one considers a single degradation process, the problem is then reduced
to the issue of optimal replacement under imperfect inspection. The number of inspections after
failure, K2, follows a geometric distribution with parameter 1−β (Badia et al., 2001). Thus, we
have E[K2] = 1/(1−β ) and

CR(T ) =Cd +
CI

T
+

CR−CdE[Tf ](
∞

∑
i=1

R(iT )+ 1
1−β

)
T

3.2 Optimization of maintenance cost

The objective of the study is to minimize the long-run cost rate CR(T ) by selecting the optimal T ,

T ∗ = argmin
T

CR(T ) (15)

An analytical solution of the optimization problem (15) cannot be obtained due to the complexity
of the expression CR(T ). Yet since the inspection interval T is the only decision variable, one-
directional search algorithms can be adopted once CR(T ) can be computed, whether theoretically
or by simulation. However, following the discussion of Eq. (14), a closed-form expression of
CR(T ) cannot be achieved generally. Therefore, Monte Carlo simulation will be adopted instead
to compute CR(T ) (Huynh et al., 2012). With a large number of simulation histories Nl , Eq. (14)
can be expressed as

CR(T ) =
E[C]

E[S]
= lim

N→∞

N
∑

n=1
C(n)

N
∑

n=1
S(n)
'

Nl
∑

n=1
C(n)

Nl
∑

n=1
S(n)

where C(n) and S(n) are respectively the cost and length of a renewal cycle for the nth simulation
history. We determine the number of repetitions for Monte Carlo simulation based on the law of
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large numbers (LLN) and central limit theorem (CLT), with normal distribution which gives very
accurate estimate of the number of repetition. LLN and CLT also applies to the length of a renewal
cycle S. Subsequently, we will investigate the properties of the maintenance cost rate and develop
a search algorithm to determine the optimal inspection interval T and maintenance cost CR(T ).

Assume CR << CdE[Tf ] and CI << CdE[Tf ]. This assumption is reasonable since in reality
the losses due to unexpected failures are much higher than that of replacement and inspection
(Van Oosterom et al., 2014). We provide some properties of the maintenance cost to facilitate the
optimization process. Proposition 1 provides the upper bound and lower bound of the maintenance
cost rate.

Proposition 1. For a given inspection interval T , the maintenance cost rate is limited within
the range

Cd +
CI

T
+

CR−CdE[Tf ]

E[Tf ]+
β mT

1−β m

<CR(T )<Cd +
CI

T
+

CR−CdE[Tf ]

E[Tf ]+
T

1−β

Detailed proof is provided in the Appendix. Proposition 1 determines the boundary of the long-
run cost rate CR. Next, we proceed to determine the boundary of the optimal inspection interval
T ∗. Denote f1(T ) as the lower bound of the long-run cost rate,

f1(T ) =Cd +
CI

T
+

CR−CdE[Tf ]

E[Tf ]+
β mT

1−β m

and f2(T ) the upper bound of the maintenance cost rate,

f2(T ) =Cd +
CI

T
+

CR−CdE[Tf ]

E[Tf ]+
T

1−β

Proposition 2. The optimal inspection interval T ∗ is limited within the range T ∗ ∈ (Ta,Tb),
where Ta and Tb are the roots of the equation f1(T ) = f ∗2 , and f ∗2 is the minimum of f2(T ),

Ta,Tb ∈ {T : f1(T ) = f ∗2 }

Detailed proof is provided in the Appendix. Proposition 2 provides the lower and upper bound
of the optimal inspection interval. Based on Proposition 2, the optimization algorithm can be
developed as follows.

Require: parameters of the degradation processes; cost parameters; parameter of inspection ac-
curacy.

Ensure: optimal inspection interval T ∗ and the associated minimum long-run cost rate CR∗.
1: start from T = Ta.
2: repeat
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3: Monte Carlo simulation to compute the cost rate.
4: repeat
5: initialize: set C = 0 and S = 0;
6: generate a history of the degradation level X(t);
7: calculate the cost and length of a renewal cycle, C(n) and S(n), and the long-run cost

rate;
8: let C =C+C(n), S = S+S(n), and CR =C/S;
9: until CR converges;

10: increase T with a small increment;
11: until T ≥ Tb;
12: return T ∗ and CR∗;

3.3 Extension: existence of false alarm

Due to the inaccuracy of inspection techniques, an imperfect inspection not only suffers from the
inability to detect a failure but also the possibility of false alarm. False alarm occurs when the
detector declares a fault with the system under normal conditions (Berrade et al., 2012). In this
section, we will present the impact of false alarm on the maintenance decisions. In presence of
false alarm, the system is replaced whenever the detector reports a failed state, either at false alarm
or discovery of failure. Based on the type of replacement, the renewal cycle can be divided into
two segments: replacement at false alarm or replacement at discovery of failure. Let E1 denote the
event that replacement occurs at false alarm. The probability that a false alarm occurs before the
occurrence of failure is expressed as

P(E1) = α
∞

∑
i=1

(R(iT )−R((i+1)T ))
i−1
∑
j=0

(1−α) j

=
∞

∑
i=1

(R(iT )−R((i+1)T ))
(

1− (1−α)i
)

where α is the probability that a false alarm occurs for a single feature at each inspection. Given
that a failure occurs between the ith inspection and the (i+1)th inspection, Tf ∈ (iT,(i+1)T ), the
conditional probability that a false alarm occurs at the jth inspection is P1, j = (1−α) j−1

α , for
1≤ j ≤ i. Since replacement is implemented at false alarm, the expected length of a renewal cycle
is given as
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E
[
S|Tf ∈ (iT,(i+1)T ) ,E1

]
= T

i

∑
j=1

jP1,i

= αT
i

∑
j=1

j(1−α) j−1

=
T [1− (1+ iα)(1−α)i]

α

The expected cost of a renewal cycle is expressed as

E
[
C|Tf ∈ (iT,(i+1)T ) ,E1

]
=

CI[1− (1+ iα)(1−α)i]

α
+CR

Denote E2 as the event that the system is replaced at discovery of failure. E2 implies that no
false alarm occurs before the system fails; the associated probability is denoted as

P(E2) =
∞

∑
i=0

(R(iT )−R((i+1)T ))(1−α)i

The expected length and cost of a renewal cycle conditioned on E2 can be obtained in a similar
way. The long-run cost rate can then be formulated by combining the scenarios of E1 and E2.
However, as it is tedious to express an analytical form of E[C] and E[T ], we will resort to Monte
Carlo to calculate the expected cost and length of a renewal cycle.

4 An illustrative example

In this section we use a system with two fatigue crack deterioration processes to illustrate the
effectiveness of the proposed maintenance policy. The data of fatigue crack sizes are obtained
from Meeker and Escobar (1998), which have been widely used for reliability evaluation and
maintenance modeling (e.g., Pan et al. (2013)). The data were collected from fatigue crack growth
experiments of the alloy under constant load amplitude duty cycles (Meeker and Escobar, 1998).
In the original data, 21 units are tested for fatigue crack propagation and the measurements are
observed at the same measurement times. Each unit is recorded per 0.01 million cycles, measured
till 0.09 million cycles. To illustrate the multi-dimensional degradation process, we assume that
there is a product with two possible fatigue crack positions. 20 units are selected and half of the
units are treated as if they are for the first degradation process and the other half for the second
degradation process. In other words, measurements of 10 units are used for each degradation
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process (crack propagation). The system is considered failed if any of the two cracks exceeds 1.6
in. in size. In the following we estimate the degradation parameters as first step and then evaluate
the maintenance policy.

Remark 4.1 Some of the existing studies were using gamma process for crack propagation. But
there are also some reports using Wiener process to describe the crack propagation (e.g., Pan et al.
(2013)). Wiener process with a small variance is also capable to describe the degradation data
that presents an increasing trend. Actually, our maintenance model is very general that can be
easily adapted to a gamma process.

4.1 Estimation of degradation parameters

It should be noted that the aforementioned degradation process exhibits a nonlinear behavior (Pan
et al., 2013). For cases where the degradation path is not linear, a time scale transformation can be
used for linearization (Wang et al., 2014). The transform is denoted as τ = τ(t,γ). The most com-
monly used time scale transformations are exponential and power time transformation (Whitmore
and Schenkelberg, 1997), i.e., τ = 1−exp(−ηtγ) or τ = tγ , where η and γ are positive parameters.
With time scale transformation, the corresponding reliability function can be obtained by replac-
ing t with τ . Here we model the deterioration process by a bivariate Wiener process with a power
time transform τ = tγ . The parameter γ is set to be 1.3 as in the work of Pan et al. (2013). The
degradation model is fitted with the fatigue crack data and maximum likelihood estimation (MLE)
is performed to estimate associated parameters. The estimates are presented in Table 1, where ρ is
the correlation coefficient. Detailed MLE procedure is given in the Appendix.

Table 1: Estimates of the degradation parameters

Parameters λ1 λ2 σ11 σ12(σ21) σ22 ρ

Estimates 12.2187 7.5967 0.0505 0.0147 0.0247 0.4162

We are interested in the value of γ , as γ dominates the transformation of time scale. Sensitivity
analysis is performed to investigate the impact of different γ on the estimates of λ and γ . Fig. 2
presents the variability of estimated λ in term of different γ and Fig. 3 shows the influence on
estimated σ . It can be observed that both the estimates of λ1 and λ2 increase with the value of
γ . This is due to the fact that an increased γ reduces the transformed interval of two consecutive
measurements. Fig. 3 shows an obvious increasing trend of γ when γ is larger than 1.3. The
increasing trend is obvious for a large γ .
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Figure 2: Variability of estimated λ with respect to γ

Figure 3: Variability of estimated σ with respect to γ

4.2 Optimal maintenance policy

The system is deemed as failed whenever the crack size hits the failure threshold of 1.6in. (Pan
et al., 2013). Since the initial degradation levels of the two cracks are 0.9in., to balance the influ-
ence of initial degradation, we redefine the failure threshold as H1 = H2 = 0.7 in.. We assume that
the spare parts for replacement are collected from the same batch, so that the initial degradation
values after replacement are identical to the previous ones. With the estimates of model parame-
ters, system reliability can be numerically evaluated. Fig. 4 plots the system reliability function.

When the volatility of the degradation processes is not too large, system reliability can be
approximated as follow

R(t)≈
∫ H1

0
...
∫ Hm

0
f (x1(t), ..., xm(t))dx1...dxm

=
∫ H1

−∞

...
∫ Hm

−∞

(
1

2π

)m
2

|tΞ|−
1
2 exp

(
− 1

2t
W (t)

)
dx1...dxm,

(16)
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Figure 4: System reliability function

where W (t) = (x(t)−λ t)T
Ξ−1 (x(t)−λ t).

System reliability of Wiener processes are evaluated using the first-passage-time, i.e., the time
epoch when the degradation level hits the threshold for the first time. Generally, the approximation
of Eq (16) fails to describe the first-passage-time, since Wiener process is not a monotonic process,
that the degradation level may cross the failure threshold and then drop below the threshold at in-
spection. However, this effect is not significant when the volatility is small (diffusion parameter of
the Wiener process is relatively small compared with the drift parameter)(Elwany et al., 2011). To
illustrate the appropriateness of the approximation, we compare the original and approximated re-
liability function in terms of distribution similarity. Fig. 5 presents the comparison under different
covariances, where

Ξ=

[
σ11 σ12

σ21 σ22

]
=

[
0.0505 0.0147
0.0147 0.0247

]
It can be observed from Fig. 5 that the approximation of reliability function is quite effective.

In addition, we employ Hellinger distance to measure the similarity of the original and the ap-
proximated reliability function (Beran, 1977; Ciabattoni et al., 2018). Let Fo(t) denote the original
cumulative distribution function of the failure time Tf and Fa(t) the approximated one. Hellinger
distance is expressed as

H(Fo,Fa) =
1
2

∫
∞

0

(√
dFo(t)

dt
−
√

dFa(t)
dt

)2

dt

= 1−
∫

∞

0

√(
dFo(t)

dt
dFa(t)

dt

)
dt

Fig. 6 presents the Hellinger distance in terms of the multiplier of covariance matrix. It can be
observed that the Hellinger distance increases with the covariance, which indicates that the perfor-
mance of approximation decreases with the covariance. It can can be concluded the approximation
is effective given the present covariance.
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Figure 5: Comparison of system reliability under different covariances

Figure 6: Plot of Hellinger distance

The cost parameters in this paper serve for the purpose of illustration. The values are given
as CI = 2, CR = 50 and Cd = 2000. The probability that an inspection fails to detect a failure is
dependent on the inspection technique and the type of failure. The inspection inaccuracy β is set
as β = 0.4. Based on Proposition 2, the lower and upper bounds of the optimal inspection interval
can be obtained as Ta = 0.0053 and Tb = 0.1997. In addition, for illustrative purpose, we plot how
f1(t) and f2(t) vary with the inspection interval T , as shown in Fig. 7.

By searching within the range (Ta,Tb), we obtain the minimal long-run cost rate CR∗ = 675,
and the optimal inspection interval T ∗ = 0.0512. Fig. 8 shows the variation of maintenance cost
rate. By comparison, if the inspection is perfect, i.e., β = 0, the minimal expected cost rate is
obtained as CR∗ = 607, at T ∗ = 0.103. The results show a large difference in T ∗ by introducing
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Figure 7: Plot of f1(t) and f2(t)

Figure 8: Maintenance cost rate vs inspection intervals

Figure 9: Mean and variance of CR∗ with number of repetitions

the imperfect inspection assumption. To show the convergence of the maintenance cost rate, we
plot how the mean and variance of CR∗ vary with respect to Nl in Fig. 9. It can be observed
that the variance decreases with the number of repetitions and the maintenance cost rate gradually
converges to CR∗ = 675.
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Figure 10: Variability of CR(T ∗) and T ∗ vs β

Sensitivity analysis on β is performed to investigate the impact of different inspection tech-
niques on the long-run cost rate. We present in Fig. 10 the variation of CR(T ∗) and T ∗ with
respect to β . As can be seen, the minimal cost rate CR(T ∗) varies from 612 to 1092 when β in-
creases from 0.1 to 0.9. The positive increasing relationship indicates that the long-run cost rate
is highly dependent on the inspection accuracy. It is suggested that managers or engineers should
pay more effort to improve the inspection accuracy so as to reduce the loss caused by soft failures.
In addition, the optimal inspection interval T ∗ shows a nonincreasing trend with respect to the
inspection accuracy β . This can be explained by the fact that an accurate inspection technique is
more likely to detect the failure, which calls for a less frequent inspection policy.

Variation of inspection cost in terms of its accuracy improvement is not considered in this
study. However, high inspection accuracy always comes at a price. There exists a tradeoff between
improvement of inspection accuracy and its cost. The more accurate, the higher cost an inspection
technique will incur. Practitioners may be more interested in the analysis of inspection interval and
the corresponding overall cost with different inspection accuracy at different cost. Actually, the
result in Fig. 10 can be used to evaluate the effectiveness of a specific inspection technique against
its cost. If we have the information regarding inspection accuracy and the associated cost for a
specific inspection technique, the optimal inspection technique can be indicated by comparing its
effectiveness in maintenance cost reduction against the cost. In addition, we compare with gamma
processes to show the applicability of the proposed model. Details are shown in the Appendix.

For illustrative purpose, we consider the case that the company needs to invest in a more ad-
vanced device to improve the inspection accuracy. The investment cost in terms of the inspection
inaccuracy β is given as 300× (1−β ). Fig. 11 presents the variability of the optimal maintenance
cost considering the additional investment cost. It can be observed that the optimal maintenance
cost does not present a monotonic trend considering the additional investment cost. Instead, the
minimal maintenance cost is achieved at inspection inaccuracy β = 0.4.
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Figure 11: Variability of CR(T ∗) considering additional investment cost

(a) (b)

Figure 12: Variability of (a) CR∗ and (b) expected downtime with λ2

In addition, to illustrate the influence of multiple degradation processes, we plot the variation of
CR∗ with respect to λ2 in Fig. 12. It is interesting to observe that CR∗ shows a decreasing trend for
small λ2, and and increasing trend for λ2 ≥ 8. Intuitively, CR∗ should increase monotonically with
λ2. We believe this is due to the fact that existence of multiple failures increases the probability of
failure detection and reduces the downtime time. For a small λ2, process 2 is dominated by process
1, so as if we have one process. When λ2 increases, it will be as dominant as process 1, which
leads to an increased probability of failure detection and a decreased maintenance cost. But with
further increase of λ2, process 2 becomes dominant, so we are again back to the situation as with
one process. To validate this conjecture, we also present how the expected downtime varies with
λ2 in Fig. 12, which shows that the expected downtime exhibits a similar trend as CR∗.

To compare with the maintenance performance under independent degradation processes, Fig.
13 shows the variation of long-run cost rate with the covariances (σ12 and σ21) set to 0. If the
degradation processes are independent, the optimal long-run cost rate is achieved as CR∗ = 678.7,
at the inspection interval T ∗ = 0.0514.
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Figure 13: Plot of CR under independent degradation processes

4.3 Performance analysis of the maintenance policy

We are interested to investigate the maintenance model under parameter estimation uncertainty
with the given data. To study the robustness of the maintenance policy, we employ asymptotic
approaches to quantify the parameter estimation uncertainty. Under reasonably large sample sizes,
a multivariate normal (MVN) distribution is able to approximate the maximum likelihood esti-
mators (Zheng and Fang, 2018). For convenience, we reparametrize the elements in covariance
matrix as: σ1 =

√
σ11, σ2 =

√
σ22 and ρ = σ12/σ1σ2, then the associated unknown parameters

is θ = (λ1,λ2,σ1,σ2,ρ)
T . Denote θ̂ as the MLE of θ . The asymptotic distribution of θ̂ is ap-

proximated by a MVN as θ̂ ∼ N (θ̂ ,[I(θ̂)]−1), where I(θ̂) is the Fisher information matrix at
θ̂ . Detailed derivation of the Fisher information matrix is provided in the Appendix. The Fisher
information matrix can be obtained as

I(θ̂) =


10.5 6.23 0 0 0
6.23 21.4 0 0 0

0 0 3928 −554 −202
0 0 −554 8051 −288
0 0 −202 −288 154


and the covariance matrix

Cov(θ̂) =


1156 −336 0 0 0
−336 565 0 0 0

0 0 2.81 0.34 4.3
0 0 0.34 1.37 3
0 0 4.3 3 76

×10−4
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Figure 14: Histogram of T ∗ and CR(T ∗), and the associated fitted normal pdf curves

θ̂ |θ converges to θ in distribution with the increase of sample size, i.e.,
√

n(θ̂−θ)→N(0, [I(θ)]−1),
which implies that θ̂ gives a good approximation of θ .

The observed Fisher information can be employed to evaluate the asymptotic distribution of
MLE. By drawing from N (θ̂ ,[I(θ̂)]−1), we can obtain the samples that describe the uncertainty
of the MLE.

We generate 1000 samples from the distribution N (θ̂ ,[I(θ̂)]−1). One sample refers to the
set of the estimated parameters, θ = (λ1,λ2,σ1,σ2,ρ)

T . For each sample, we obtain the optimal
inspection interval T ∗ and the associated minimal long-run cost rate CR(T ∗). To investigate how
T ∗ and CR(T ∗) vary with the uncertain estimates of the parameters, we plot the histogram of T ∗

and CR(T ∗) in Fig. 14. As shown in Fig. 14, compared with the mean of T ∗ and CR(T ∗), the
standard deviation is quite small, which indicates a strong robustness of the maintenance policy.

5 Conclusions

This paper presents a maintenance policy for systems subjected to multi-dimensional degradation
processes. Imperfect inspection is implemented to detect the dormant failures, where a failure can
only be discovered with a certain probability. For the multivariate degradation process, a reliability
model is formulated as a first step, followed by a cost model as the objective function. Our study
shows that the optimal inspection interval is mostly influenced by the inspection accuracy and
engineers or managers are suggested to pay more effort to improving the inspection quality so
as to sustain system operation and reduce economic losses. The effect of multiple degradation
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processes is twofold. On one hand, existence of multiple failures can boost the probability of
failure detection and thus can reduce downtime cost. On the other hand, a degradation process
with a large drift rate may make the system more prone to failure and increase the maintenance
cost.

The proposed maintenance model has many potential applications in real life. For example, to
detect the crack size in infrastructures, there may exist multiple options such as visual inspection,
magnetic particle inspection, and ultrasonic testing. By balancing the benefits and cost of the vari-
ous testing options, we can determine the most economic inspection technique and the associated
inspection frequency. Additionally, in some cases, it is tricky to model all the degradations in
presence of numerous degradation processes. Then a decision maker may focus on several most
significant degradation processes and develop maintenance policies accordingly.

In the future, the present maintenance model can be extended in the following two direction-
s. First, in the current model, we assume a constant detection probability of the failures. Yet, in
reality, the detection probability may depend on the degradation level, in addition to the inspec-
tion techniques. It would be more reasonable to model the detection probability as a function of
the degradation level and the inspection cost. Second, we assume in the current paper that the
downtime cost rate remains constant beyond system failure, regardless of the number of existing
failures. In reality, it would be more reasonable to model the downtime cost rate as a function of
the number of the existing failures.
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Chiel D Van Oosterom, Alaa H Elwany, Dilay Çelebi, and Geert-Jan Van Houtum. Optimal policies
for a delay time model with postponed replacement. European Journal of Operational Research,
232(1):186–197, 2014.

CB Von der Ohe, R Johnsen, and N Espallargas. Multi-degradation behavior of austenitic and
super duplex stainless steel–the effect of 4-point static and cyclic bending applied to a simulated
seawater tribocorrosion system. Wear, 288:39–53, 2012.

Hai-Canh Vu, Phuc Do, and Anne Barros. A study on the impacts of maintenance duration on
dynamic grouping modeling and optimization of multicomponent systems. IEEE Transactions
on Reliability, 2018.

Xiaolin Wang, Narayanaswamy Balakrishnan, and Bo Guo. Residual life estimation based on a
generalized wiener degradation process. Reliability Engineering & System Safety, 124:13–23,
2014.

Yaping Wang and Hoang Pham. Modeling the dependent competing risks with multiple degrada-
tion processes and random shock using time-varying copulas. IEEE Transactions on Reliability,
61(1):13–22, 2012.

George Alex Whitmore and Fred Schenkelberg. Modelling accelerated degradation data using
wiener diffusion with a time scale transformation. Lifetime Data Analysis, 3(1):27–45, 1997.

Shaomin Wu, Yi Chen, Qingtai Wu, and Zhonglai Wang. Linking component importance to opti-
misation of preventive maintenance policy. Reliability Engineering & System Safety, 146:26–32,
2016.

31



Yisha Xiang, David W Coit, and Qianmei Feng. Accelerated burn-in and condition-based main-
tenance for n-subpopulations subject to stochastic degradation. IIE Transactions, 46(10):1093–
1106, 2014.

Haiyan Xu, Xiaoping Li, Rubén Ruiz, and Haihong Zhu. Group scheduling with nonperiodical
maintenance and deteriorating effects. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2019.

Moon Hee Yang and Jae Hyung Cho. Minimisation of inspection and rework cost in a blu factory
considering imperfect inspection. International Journal of Production Research, 52(2):384–396,
2014.

Zhenggeng Ye, Zhiqiang Cai, Fuli Zhou, Jiangbin Zhao, and Pan Zhang. Reliability analysis
for series manufacturing system with imperfect inspection considering the interaction between
quality and degradation. Reliability Engineering & System Safety, 189:345–356, 2019.

Zhi-Sheng Ye, Yu Wang, Kwok-Leung Tsui, and Michael Pecht. Degradation data analysis using
wiener processes with measurement errors. IEEE Transactions on Reliability, 62(4):772–780,
2013.
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Appendix

(1) Proof of Proposition 1

K1 can be rewritten as

Tf

T
−1 < K1 =

⌊
Tf

T

⌋
<

Tf

T
.

According to model assumptions, it is easy to obtain that K2 is inversely related to the number of
failures at inspection. The more failure features exist, the easier that a failure will be detected,
which leads to a smaller K2. Since there are m degradation processes, the number of existing
failure features after occurrence of a failure is within the range 1≤ N f ≤m. For any given number
of existing failures j, K2 follows a geometric distribution with the parameter 1−β j. The boundary
of E[K2] can be obtained by relaxing the number of existing failure features (whether it be time-
variant or not) to 1 and m respectively. It follows that

1
1−β m ≤ E[K2]≤

1
1−β

.

Combining the above two equations, we have

E[Tf ]+
β mT

1−β m < E[K1 +K2] ·T < E[Tf ]+
T

1−β
.

By substituting the above equation into Eq. (14), we can have that CR(T ) is limited within the
range

Cd +
CI

T
+

CR−CdE[Tf ]

E[Tf ]+
β mT

1−β m

<CR(T )<Cd +
CI

T
+

CR−CdE[Tf ]

E[Tf ]+
T

1−β

.

(2) Proof of Proposition 2

As the first step, we need to prove that f1(T ) and f2(T ) are unimodal with respect to the inspection
interval T . To do so, rewrite f2(T ) as

f2(T ) =Cd +
a
T
− b

cT +d
,

where a =CI , b =CdE[Tf ]−CR, c = 1
1−β

, and d = E[Tf ]. The derivative of f2(T ) is given as

f ′2(T ) =−
a

T 2 +
bc

(cT +d)2 .
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Figure 15: Illustration of Proposition 2

From f ′2(T ) = 0, we have (
bc−ac2)T 2−2acdT −ad2 = 0.

According to the assumption that b > ac, by solving the above equation, it follows that only one
root exists over the range (0,+∞). Denote by Tu the argmi point of f2(t). As lim

T→0
f2(T )→ +∞,

we know that for T ∈ (0,Tu), f2(T ) is monotonously decreasing, while for T ∈ (Tu,+∞), f2(T )
increases monotonously. Thus, we can conclude that f2(T ) is a unimodal function for T ∈ (0,Tu).
Similarly, we can conclude f1(T ) is a unimodal function for T ∈ (0,Tu).

Before we reach the final conclusion, we first need to prove that Ta and Tb do exist. Since it
holds that f1(T )< f2(T ), ∀T ∈ (0,+∞), we can have f ∗1 < f ∗2 . In addition, it holds lim

T→0
f1(T )> f ∗2

and lim
T→∞

f1(T ) =Cd > f ∗2 . Along with the unimodality of f1(T ), we can conclude that there exist

Ta and Tb that satisfy Ta,Tb ∈ {T : f1(T ) = f ∗2 }. Denote Tu as the minimum of f2(T ), i.e., T = Tu.
The conclusion can be proved by contradiction. Suppose that T ∗ were no less than Tb, T ∗ ≥ Tb, it
follows that

CR(T ∗)> f1(T ∗)≥ f1(Tb) = f ∗2 .

However, in the previous discussion, we have

CR(T ∗)≤CR(Tu)< f2(Tu) = f ∗2 ,

which is a contradiction. Hence, we can conclude that T ∗ < Tb. Likewise, it can be concluded
that T ∗ > Ta, which completes the proof. In addition, we depict the functions in Fig. 15 to better
illustrate the proof of Proposition 2.
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(3) Parameter estimation based on MLE

Let
∆τ j = tγ

j+1− tγ

j ,

and
∆X(t j)=X(t j+1)−X(t j),

where t j is the jth measurement time. According to the independent increment property of Wiener
process, the increased degradation amount ∆X(t j) follows a bivariate normal distribution, i.e.,

∆X(t j)∼N (λ∆τ j,∆τ jΣ).

Denote ∆x j
1,i as the increased degradation amount at jth measurement time for the ith sample,

the log-likelihood function is given as

l(θ) =−
N

∑
i

M

∑
j
[log(2π)+ log(∆τ j)

+
1
2

log(|Ξ|)+ 1
2∆τ j

(U j
i )

T
Ξ
−1U j

i ]

where N is the sample size, M is the number of intervals of a sample, θ is the set of parameters for
estimation, and

U j
i =

[
∆x j

1,i−λ1∆τ j

∆x j
2,i−λ2∆τ j

]
.

By taking derivative with respect to λ1 and λ2, we can get the estimate of λ1 and λ2 as

λ̃k =

N
∑
i

M
∑
j

∆xi
k, j

N
M
∑
j

∆τ j

, k = 1,2.

No closed form can be derived to estimate parameters of the variance matrix. Hence, we turn
to numerical methods. Matlab function f minunc is used to optimize the likelihood function for the
variance matrix parameters.

(4) Comparison with a bivariate gamma process

To compare with gamma processes, we first provide probability plots for Crack A and B respective-
ly, with respect to the increments of the crack size. Figure 16 shows that both gamma and Wiener
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Figure 16: Probability plots for comparison of gamma and Wiener process: (a) Crack A and (b)
Crack B
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Figure 17: Variability of CR(T ∗) and T ∗ vs β for a bivariate gamma process

process fit the data well for Crack A. However, for Crack B, Wiener process performs much better
than gamma process.

In addition, we compare with a bivariate gamma process to show the applicability of our mod-
el. The bivariate gamma process is constructed as follows: Let Z1(t), Z2(t), and Zu(t) be three
independent univariate gamma processes, with parameters (α1,b), (α2,b), and (αu,b). Define
Y1(t) = Z1(t)+Zu(t), and Y2(t) = Z2(t)+Zu(t). The process Y (t) = (Y1(t),Y2(t)) is then a bivariate
subordinator whose marginal process is gamma process with parameters (ai,b), where ai =αi+αu,
i = 1,2. In this way, the correlation coefficient between the two degradation processes is

ρ =
αu√
a1a2

,

The parameters are set as (a1,a2,b,ρ) = (12.2178,7.5967,1,0.1732). Figure 17 shows the
variety of CR(T ∗) and T ∗ with respect to β . One can observe that CR(T ∗) is increasing while T ∗

presents a non-increasing trend with β . The result of Figure 17 is consistent with that in Figure 10,
implying the applicability of our model for gamma processes.
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(5) Derivation of Fisher information

The Fisher information can be evaluated by

I (θ) =


E11 E12 0 0 0
E21 E22 0 0 0
0 0 E33 E34 E35

0 0 E43 E44 E45

0 0 E53 E54 E55

 ,

where

E11 = E
[
−∂ 2l (θ)

∂λ 2
1

]
= N

M

∑
j=1

∆τ j

(1−ρ2)σ2
1

E12 = E21 = E
[
− ∂ 2l (θ)

∂λ1∂λ2

]
= N

M

∑
j=1

ρ∆τ j

(1−ρ2)σ1σ2

E22 = E
[
−∂ 2l (θ)

∂λ 2
2

]
= N

M

∑
j=1

∆τ j

(1−ρ2)σ2
2

E33 = E
[
−∂ 2l (θ)

∂σ2
1

]
= NM

2−ρ2

(1−ρ2)σ2
1

E34 = E43 = E
[
− ∂ 2l (θ)

∂σ1∂σ2

]
=−NM

ρ2

(1−ρ2)σ1σ2

E35 = E53 = E
[
−∂ 2l (θ)

∂σ1∂ρ

]
=−NM

ρ

(1−ρ2)σ1

E44 = E
[
−∂ 2l (θ)

∂σ2
2

]
= NM

2−ρ2

(1−ρ2)σ2
2

E45 = E54 = E
[
−∂ 2l (θ)

∂σ2∂ρ

]
=−NM

ρ

(1−ρ2)σ2

E55 = E
[
−∂ 2l (θ)

∂ρ2

]
= NM

1+ρ2

(1−ρ2)
2
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