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Abstract

In this paper an Isogeometric Boundary Element Method for three-dimensional

lifting flows based on Morino’s [1] formulation is presented. Analysis-suitable T-

splines are used for the representation of all boundary surfaces and the unknown

perturbation potential is approximated by the same T-spline basis used for the

geometry. A novel numerical application of the so-called Kutta condition is

introduced that utilises the advantages of isogeometric analysis with regard to

the smoothness of the trailing edge curve basis functions. The method shows

good agreement with existing experimental results and superior behaviour when

compared to a low order panel method. The effect of the tip singularity on Kutta

condition is also investigated for different levels of refinement and positions of

the trailing edge collocation points.
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1. Introduction

Accurate and efficient calculation of the pressure distribution of lifting sur-

faces has been a popular topic of interest since the beginning of the 20th century

in the fields of aerodynamics and hydrodynamics. Early works focused on Lift-

ing Surface theory and an overview of methods based on this approach can be5

found, for example, in [2] and [3]. Numerical implementation of these methods

is fast and efficient but leads to reduced accuracy due to the employed funda-

mental simplifications therein; with zero thickness of the lifting surface being

the most critical one.

In recent times, Computational Fluid Dynamics (CFD) methods and es-10

pecially the ones solving Reynolds-Averaged Navier-Stokes equations (RANS)

have become the new norm in many applications. Examples of such methods are

presented in [4] for wings and airfoils and [5] for ducted propellers. They offer

high accuracy at the cost of increased computational resources. Furthermore,

RANS methods are sensitive to the employed computational mesh, especially15

near the body and thus, proper mesh generation is of great importance, which

can be a very time-consuming process.

Boundary Element Methods (BEM) appeared in the 60s and strike a balance

between Lifting Surface theory and CFD methods. They use a boundary repre-

sentation of the lifting surface that can adequately model complex geometries,20

e.g., propeller blades or wings with geometric discontinuities, but at the same

time follow a simplified potential flow approach that is significantly faster to

implement numerically, when compared to RANS.

It was the pioneering work of Hess and Smith [6] that set the groundwork

of boundary element methods for potential flows by introducing the so-called25

panel method. They used a Boundary Integral Equation (BIE) for the unknown

potential distribution on the body surface derived from Green’s second identity.

Later, Hess [7] extended their original method to calculate lift forces on a lifting

body by adding a wake surface leaving the trailing edge of the body and a

numerical implementation of the so-called Kutta condition. Morino in 1974 [1]30
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introduced a different continuous formulation based on a perturbation potential

that satisfied Laplace’s equation and applied his own discrete version of Kutta

condition. In the years that followed Morino’s formulation became the norm

due to its advantages over other approaches; see [8]. However, Morino’s Kutta

condition did not yield accurate results in three-dimensional flows and attempts35

were made to enhance it by including its non-linear character as in [8] and [9] for

low-order panels, and in [10] for higher-order elements. This approach became

the norm in low order panel methods and also appears in modern works as in

[11], [12], [13], [14] and [15]. These works focus mainly on the topic of wake

alignment and the improvement of Kutta condition.40

The advent of IsoGeometric Analysis (IGA) in 2005 [16] offered an alter-

native approach for handling commonly-found problems in finite and boundary

element methods (FEM and BEM). The IGA concept is based on representing

the unknown solution field with the exact same basis used for the geometric rep-

resentation of the body model. This permits the use of the geometrical model45

as an analysis model and no approximate meshes need to be employed as it is

the case in traditional FEM and BEM. Consequently, the time-consuming and

error-prone meshing process can be eliminated. The additional benefits of IGA,

related to the smoothness of the basis in FEM, are well known and described

in [17, 18]. IGA-enhanced BEM approaches have also gained momentum in50

recent years with works in different fields, including hydrodynamics [19, 20, 21],

structures [22], heat transfer [23], acoustics [24], etc.

IGA applications, due to the nature of the approach, require a geomet-

ric representation that is adequately flexible for both modelling and analysis.

Non-Uniform Rational B-Splines (NURBS) [25] have been the CAD industry55

standard for decades but they are not ideal for IGA applications, as their global

tensor product structure introduces unwanted redundancies and disallows local

refinement; see [22]. Many alternative representations, including hierarchical

splines [26], LR-Splines [27] and T-splines [28, 29], that aim to address these

NURBS deficiencies, have been proposed during the last decade. An attempt to60

weaken the tight coupling between geometry and analysis in IGA and remedy
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the issues raised by NURBS was presented in [30]. In that work, NURBS were

used for the geometry and alternative, more sophisticated representations for

the unknown solution field.

In this paper, unstructured analysis-suitable T-splines are used. T-splines,65

introduced by Sederberg et al. in [28], constitute an extension of NURBS, and

the basis linear-independence requirements that guarantee analysis suitability

are described in [31]. T-splines allow T-junctions in their control grids and along

with the support of extraordinary vertices in their unstructured counterpart offer

some considerable advantages for both geometric modelling and analysis:70

• Complex geometries may be modelled via a single T-spline surface patch;

• Local refinement is possible;

• Superfluous points are significantly reduced compared to NURBS repre-

sentations;

• Multi-patch NURBS surfaces can be merged into a single gap-free T-spline75

surface patch.

The rest of the paper is divided into 3 main sections. Section 2 describes the

continuous formulation of the problem based on Morino’s approach. Section 3

begins with a brief introduction to unstructured, analysis-suitable T-splines

(§3.1), followed by the discrete IGA-BEM formulation and the introduction of80

a novel implementation of Kutta condition which leads to a nonlinear system;

see §3.2 and also [32]. Numerical results of the method are presented in §4.1

and discussed in comparison with experiments and a low-order panel method.

Lastly, an investigation on the behaviour of the IGA-based Kutta condition is

carried out in §4.2, with special consideration on the flow near the tip of the85

wing.

2. Problem formulation

Let Oxyz be a left-handed coordinate system, with its origin at the centre of a

full span wing and the y−axis directed upwards; see, Fig. 1. We consider the
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Figure 1: Boundary surfaces and coordinate system

flow of a uniform stream with velocity V∞ of an ideal fluid incident on the wing.90

The flow, except from a free vortex sheet emanating from the trailing edge of

the wing, is considered irrotational. Under these hypotheses, the flow can be

described by the total potential Φ = ϕ∞ + ϕ comprising the undisturbed flow

potential ϕ∞ and the perturbation potential ϕ, which represents the disturbance

of the undisturbed uniform flow due to the presence of the wing. Obviously, the95

perturbation potential satisfies Laplace’s equation:

∇2ϕ(x) = 0, x ∈ D. (1)

Here D denotes the open fluid domain bounded by ∂D := S = SB ∪ SW , where

SB denotes the boundary surface of the wing and SW denotes the trailing vortex

wake; see Fig. 1. The existence of SW is essential for it enables the potential

approach to take into account the circulation that is necessary for the existence100

of lifting forces on the wing [33]. In general, SW is not known a priori and its

final form is part of the problem’s solution. We next proceed to provide the

boundary conditions that should hold true on ∂D.
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On the wing surface SB , the following non-penetrating boundary condition is

applied
∂ϕ

∂n
(x) = −V∞ · n(x), x ∈ SB , (2)

where V∞ = ∇ϕ∞ is the undisturbed inflow velocity and n(x) is the outward-105

pointing unit normal vector of SB .

The wake sheet is regarded as a regular surface of discontinuity in D, where

tangential velocity components exhibit discontinuity, although the same is not

true for the normal velocity components. According to [34], the boundary condi-

tions for the wake surface can be obtained by applying the mass and momentum

conservation equations. Mass conservation yields:

∆
(∂ϕ
∂n

)
≡ ∂ϕu

∂n
− ∂ϕl

∂n
= 0 on SW , (3)

where (•)l,u denote the lower and upper side of the wake, respectively, and n(x)

is the unit normal of SW . next, momentum conservation gives:

pu − pl = 0 on SW , (4)

which can be further manipulated as below, using Bernoulli’s equation:

| Vu |2=| Vl |2
× 1

2==⇒ 1

2
(Vu −Vl)

1

2
(Vu +Vl) = 0 ⇒ Vd ·Vm = 0, (5)

i.e., Vd = 1
2 (Vu−Vl) and Vm = 1

2 (Vu+Vl) should be orthogonal. Condition

(5) is satisfied via Kutta condition and an appropriate wake surface. In its

general form, Kutta condition requires the velocity to remain bounded, i.e.,

|∇ϕ| < ∞, at the trailing edge. Finally, the perturbation velocity must vanish

at an infinite distance from the wing,

∇ϕ → 0, when
√

x2 + y2 + z2 → ∞. (6)

Applying Green’s second identity, along with boundary conditions for the wing

and the wake (Eqs. (2) and (3)), leads to the following Boundary Integral Equa-

tion (BIE):
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2πϕ(P)−
∫
SB

ϕ(Q)
∂G(P,Q)

∂n(Q)
dS(Q)−

∫
SW

∆ϕ(Q)
∂G(P,Q)

∂n(Q)
dS(Q) =

=

∫
SB

V∞ · n(Q)G(P,Q)dS(Q), (7)

where P is permitted to lie on any smooth subset of the total boundary surface

S = SB ∪ SW and G(P,Q) = r−1(P,Q) is the fundamental solution of the 3D

Laplace equation with r(P,Q) denoting the Euclidean distance between points

P and Q. Furthermore, ∆ϕ(Q) = ϕu(Q) − ϕl(Q) is the so-called potential

jump with ϕu(Q), ϕl(Q) denoting the values of ϕ on the point Q for the upper

and lower parts of the wake, respectively. It has been proven (see [35]) that

the potential jump on the wake varies only along its span-wise direction and its

value is determined by the value on the trailing edge, which transforms (7) as

below:

2πϕ(P)−
∫
SB

ϕ(Q)
∂G(P,Q)

∂n(Q)
dS(Q)−

∫
SW

∆ϕ|SW,TE

∂G(P,Q)

∂n(Q)
dS(Q) =

=

∫
SB

V∞ · n(Q)G(P,Q)dS(Q), (8)

where ∆ϕ|SW,TE
denotes the restriction of the potential jump on the wake’s edge110

that coincides with the Trailing Edge (TE). Regarding the remaining boundary

conditions, we get an automatic satisfaction of (6), while (4) is satisfied via the

zero-pressure jump on the trailing edge; see also the relevant Kutta-condition

discussion in §3.2.

3. An IGA-based discretisation of the Boundary Integral Equation115

As mentioned in the introductory section, the IGA approach [29] is based on

approximating the unknown solution field using the exact same basis functions

employed for representing the geometry. This has the benefit of eliminating the

geometrically inaccurate, time-consuming and error-prone process of meshing

the geometrical model.120

Non-Uniform Rational B-Splines (NURBS) constitute the de facto standard

for representing curves and surfaces in CAD packages, however, their use has
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certain drawbacks when considering the analysis phase, such as their inadequacy

for local refinement; see for example [36, 37]. Based on our positive experience

with employing T-splines for the surface representation and isogeometric anal-125

ysis of naval hydrodynamic problems (see [36, 38, 20, 39]), this approach has

been adopted for this application as well. Therefore, in this section we begin

by introducing unstructured analysis-suitable T-splines and then employ them

in the representation of the wing geometry as well as the approximation of the

unknown quantities, namely ϕ and ∆ϕ, appearing in BIE (8).130

3.1. Unstructured Analysis-Suitable T-splines

We focus on analysis-suitable bicubic T-spline surfaces, due to their appropri-

ateness for engineering analysis and their support in modern CAD packages1.

Additional information on T-splines technology, structured and unstructured

T-meshes along with analysis suitability can be found in the works of Seder-135

berg, Bazilevs and Scott; see e.g., [28, 40, 41, 29, 42, 43].

3.1.1. The unstructured T-mesh

The starting point for the definition of a T-spline surface is the T-mesh. A

T-mesh consists of faces (elements), edges, and vertices of valence 4 (regular)

and 3 (T-junctions); the latter depicted with black squares in Fig. 2. Unstruc-140

tured T-meshes additionally support extraordinary vertices, i.e., vertices with a

valence of 3, 5 and above; see for example a vertex with valence 3 depicted with

a red square in Fig. 2. All elements touching an extraordinary vertex constitute

its one-ring neighbourhood and similarly, the elements neighbouring this one-

ring area form the two-ring neighbourhood of the same vertex, and so on. For145

a bicubic T-spline surface, a control point di, i = 0, . . . , nA, is assigned to every

mesh vertex, where nA is the total number of control points/vertices.

A valid knot interval configuration must be applied on the T-mesh before the

T-spline bases and surface can be defined. A non-negative knot interval value

1For example, Autodesk’s Fusion 360 https://www.autodesk.com/products/fusion-360/.
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is assigned on every edge of the T-mesh while making sure that knot intervals150

on opposite edges of the same element sum to the same value. Additionally, we

assume that the assigned values for the knot intervals along the spoke edges of

each extraordinary vertex are all, either zero or non-zero.

3.1.2. T-spline basis

In our work, each basis function Nα, α = 1, . . . , nA, is a bicubic polynomial

spline defined over local knot vectors determined by the process described in

[22]. The T-spline surface over each of its elements/faces e is defined as:

x̃e(ξ̃) =

nA∑
α=1

dαN
e
α(ξ̃) (9)

where ξ̃ = (ξ, η) are the parametric coordinates for the element/face e on the155

T-mesh, Ne
α(ξ̃) is the restriction of the T-spline basis function Nα on the same

parametric face and dα are the surface’s control points

T-spline basis functions are linearly independent when the T-mesh satisfies

the following topological requirements, as stated in [22]:

1. T-junction extensions should not intersect with each other;160

2. no one-bay2 face extension spans an element in the three-ring neighbour-

hood of an extraordinary point;

3. no extraordinary point should lie within the three-ring neighbourhood of

another extraordinary point.

3.1.3. Bézier Extraction165

The T-spline elements, defined in the previous section, can be decomposed into

a collection of surface patches, each of them being a single bivariate polynomial,

that better fits the BEM paradigm. For this purpose a Bézier extraction oper-

ator is applied which maps the global T-spline basis functions to the Bernstein

2The portion of a face extension lying in the face immediately adjacent to the T-junction

is called a one-bay face extension.
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Figure 2: Example of a T-mesh part demonstrating T-junctions (black squares) and an ex-

traordinary vertex (red square)

polynomial bases. Each T-spline basis function that is non-zero over the Bézier170

element e can be written as:

Ne
α(ξ̃) =

(p+1)2∑
b=1

ceα,bBb(ξ̃), α = 1, . . . , ne ≤ nA, (10)

where p is the degree (in our case: p = 3), Bb(ξ̃) are Bernstein basis polynomials

of degree p, and ceα,b are the Bézier extraction coefficients. Equation (10) can

also be written in matrix form:

Ne(ξ̃) = CeB(ξ̃), Ne ∈ Rne ,Ce ∈ Rne×(p+1)2 , B(ξ̃) ∈ R(p+1)2 , e = [1, . . . , n].

(11)

If we further assume rational T-spline basis functions, we may express these in

matrix form as follows:

Re =
WeNe

(we)TNe
=

WeCeB(ξ̃)

(we)TCeB(ξ̃)
, (12)

where we is the vector of the corresponding control point weights and We is175

the diagonal matrix diag(we). We may further note here that Bézier extraction
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produces elements, i.e., Bézier elements, which are obviously represented by the

same set of basis functions that is the expected behaviour of shape functions in

BEM.

3.2. Isogeometric Boundary Element Method180

The wing body, in our examples, assumes a multi-patch boundary represen-

tation, SB , using m bicubic T-spline surfaces, while for the wake SW a single

bicubic T-Spline planar surface is used that is parallel to the uniform velocity

as explained in [44]. Hence,

SB =

m∪
j=1

nej∪
e=1

Sje
B , SW =

1∪
j=1

qej∪
e=1

Sje
W ,

with each of the T-spline elements Sje
[·] , [·] ∈ {B,W}, given by the general

expression:

Sje = x̃j
e(ξ̃) =

(de
j)TWe

jCe
jB(ξ̃)

(we
j)TCe

jB(ξ̃)
= (de

j)TRe
j(ξ̃). (13)

By application of the Isogeometric Analysis approach, we may express the un-

known potential distribution on the wing body using the exact same basis func-

tions employed for the geometric representation of its boundary surface. There-

fore the projection of ϕ in the multi-patch T-spline space will be given by:

ϕ(P) =

nj∑
i=1

ϕj
i R̃

j
i (P), P ∈ Sj

B , j = 1, . . . ,m, (14)

where R̃j
i (P) = Rje

i (ξ̃(P)). The potential jump ∆ϕ occurring at the wake is a

function of the curvilinear span-wise coordinate, sW,TE , on the trailing edge of

the wing. Assuming that the trailing edge is included, in its entirety, on a single

T-spline patch (SjTE

B ), we can write:

∆ϕ(sW,TE) =

nTE∑
i=1

∆ϕjTE

i RjTE

i (ξTE, η), (15)

where the index jTE ∈ {1, . . . ,m} corresponds to the T-spline patch that includes

the trailing edge, and nTE is the number of corresponding bases with support on
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the trailing edge. By collocating now the BIE (8) at K =
∑m

j=1 nj generalised

Greville points (see [22]), a linear system with the same number of equations is

formed:

2π

nj∑
i=1

ϕj
i R̃

j
i (Pk)−

m∑
j=1

nj∑
i=1

ϕj
i

∫
Sj
B

R̃j
i (Q)

∂G(Pk,Q)

∂n(Q)
dS(Q)

−
nTE∑
i=1

∆ϕjTE

i

∫ η2

η1

RjTE

i (ξTE, η)

∫ ξ∞

ξTE

∂G(Pk,Q)

∂n(Q)
dS(Q)

=

m∑
j=1

∫
Sj
B

V∞ · n(Q)G(Pk,Q)dS(Q),

j ∈ {1, . . . ,m} : Pk ∈ Sj
B , k = 1, . . . ,K. (16)

The kernel of (16) is weakly singular. Three different types of integrals are

considered depending on the distance between Pk and Q:

• Far field case: Let the preimage of Q lie on a Bézier patch xe with a con-185

vex hull of its control points convxe . When the preimages of Pk and Q

do not lie on the same element and the Euclidean distance d(Pk, convQ)

between Pk and convxe is greater than two times the diagonal of xe or

d(Pk, convQ) > 2diag(xe), Gauss - Kronrod quadrature with 15 quadra-

ture points is applied.190

• Near field case: When the preimages of Pk and Q do not lie on the same

element but the Euclidean distance d(Pk, convQ) between Pk and convxe

is less than two times the diagonal of xe or d(Pk, convQ) < 2diag(xe), a

Telles’ transformation is applied as introduced in [45] or [46], with the

preimage of Pk regarded as the singular point of the transformation.195

Gauss - Kronrod quadrature with 31 quadrature points is applied on the

transformed integral afterwards.

• In field case: When the preimages of Pk and Q lie on the same element the

interval is partitioned into 4 sub-intervals from I to IV as demonstrated

in Figure (3). Telles transformation is applied again for each sub-interval200
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with the preimage of Pk regarded as the singular point of the transforma-

tion for each of them. Gauss - Kronrod quadrature with 31 quadrature

points is applied on each transformed sub-integral afterwards.

Figure 3: Interval partition for weakly singular integrals

The linear system of (16) is underdetermined, since we have K equations

with K + nTE unknowns. The remaining equations can be obtained through the

numerical application of Kutta condition which states that the fluid velocity at

the trailing edge has to be finite. This definition cannot be applied directly,

but, according to [7], this is equivalent to a zero pressure difference between the

upper and lower parts of the trailing edge, i.e.:

∆p = pu − pl =
1

2
ρV2

t,u − 1

2
ρV2

t,l = 0 (17)

where Vt,u, Vt,l are the total tangential velocities on the upper and lower part
of the trailing edge, respectively, and ρ is the fluid density. In IGA setting, the
zero pressure jump requirement from (17) for nTE collocation points distributed
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on the trailing edge becomes:

∆p = ∆p(ξTE,u, ξTE,l, ηk) =
1

2
ρ
(
V∞,u,t +

e1,u

| m1,u |

njTE∑
i=1

ϕjTE

i

∂R̃jTE

i (ξTE,u, ηk)

∂ξ
+

e2,u

| m2,u | ·sinθu

njTE∑
i=1

ϕjTE

i

∂R̃jTE

i (ξTE,u, ηk)

∂η
−

cosθue2,u

| m1,u | sinθu

njTE∑
i=1

ϕjTE

i

∂R̃jTE

i (ξTE,u, ηk)

∂ξ

)2
−

1

2
ρ
(
V∞,l,t +

e1,l

| m1,l |

njTE∑
i=1

ϕjTE

i

∂R̃jTE

i (ξTE,l, ηk)

∂ξ
+

e2,l

| m2,l | ·sinθl

njTE∑
i=1

ϕjTE

i

∂R̃jTE

i (ξTE,l, ηk)

∂η

−
cosθle2,l

| m1,l | sinθl

njTE∑
i=1

ϕjTE

i

∂R̃jTE

i (ξTE,l, ηk)

∂ξ

)2
= 0, k = 1, . . . , nTE. (18)

For the various new symbols appearing in (18) some explanation is due. Firstly,

m1, m2 are the linearly independent vectors tangent to the isoparametric curves205

on the wing, obtained by evaluating the first-order partial derivatives of the

regular surface representation with respect to the parameters ξ and η, respec-

tively and θ is the non-zero angle between them; see Fig. 4. The vectors

e1 = m1/∥m1∥ and e2 correspond to a local orthonormal system derived from

m1 and m2. To calculate the magnitude of the tangential velocity Vt of the210

flow at a point P, we take the first-order partial derivatives of the velocity po-

tential with respect to ξ and η which yield the velocity components Vt,ξ and

Vt,η along the m1 and m2 directions, respectively. Projecting Vt,ξ and Vt,η

on the orthonormal system e1 and e2 we can readily evaluate the magnitude

of Vt, in a similar way with the one described in [22]. Finally, the subscripts215

u/l denote the upper/lower part of the wing surface SB , respectively, which is

useful when dealing with a full neighborhood of TE as it is the case with (18).
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m
2

e
2

e
1

m1η= constant

ξ= constant

Vt,ξ

Vt,η

T (P)

Figure 4: Velocity decomposition on the tangent plane T at a point P of the wing surface

Finally, the linear system (16) and the quadratic system (18) can be merged

into a single non-linear system of equations as:

Pj(Φ) = 0, j = 1, . . . ,K + nTE (19)

where Φ is the vector of all unknown coefficients:

Φ = (ϕ1
1, . . . , ϕ

1
n1
, ϕ2

1, . . . , ϕ
2
n2
, . . . , ϕm

1 , . . . , ϕm
nm

,∆ϕ1, . . . ,∆ϕnTE
)T . (20)

A Newton-Raphson scheme is applied for solving the non-linear system in (19):

Φr+1 = Φr − J−1
r P(Φr) (21)

where J−1
r is the inverse of the Jacobian matrix of (19) for step r. It is worth

noting that the employed approach allows the analytic evaluation of the Ja-220

cobian matrix. This hasn’t been the case in traditional panel methods where

numerical schemes have been used broadly. It is only recently that an attempt

was made to calculate the Jacobian analytically with an approach described in

[14].

The initial approximation of the solution required by the Newton-Raphson225

scheme is based on Morino’s Kutta condition. According to Morino [1] the
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potential jump on the wake can be regarded as the difference between the po-

tential values on the upper and lower parts of the wing on the trailing edge:

∆ϕ(sW,TE) = ϕ(ξu,TE , η)−ϕ(ξl,TE , η) =

njTE∑
i=1

ϕ0
i R̃i(ξu,TE , η)−

njTE∑
i=1

ϕ0
i R̃i(ξl,TE , η),

(22)

where ϕ0
i are the unknown potential coefficients of the zeroth iteration. Sub-

stituting (22) in the original BIE (8) and collocating again on the generalised230

Greville points produces a linear system whose solution is used as a first ap-

proximation of Φ.

4. Numerical Results

In this section, we firstly compare our IGA-based approach with a common

low-order BEM method and experimental results for simple wings, and then235

provide a detailed numerical experimentation for the benefits stemming from

the application of IGA-based Kutta condition.

4.1. Wings with constant NACA0012 airfoil section

We test the developed method in two constant-section wing cases: a rectangular

unswept wing and a swept one with a 20o sweep angle. Both wings have a240

semi-span of length s = 3m, a chord of length c = 1m and are generated by

translating a NACA0012 profile, represented via the parameterization described

in [47]. The flow is uniform along the x-axis and the angle of attack is equal

to 6.75o. The geometric models of the wings and their respective wakes have

been generated using the T-Spline plug-in for Rhinoceros 3D3. Views of these245

models are included in Fig. 5. Each model consists of the main wing (238 control

points), cap (75 control points) and wake (133 control points) surfaces. This

leads to a total of 320 DoFs for each example. No T-junctions or extraordinary

points exist in the main wing part, and hence, these parts assume a NURBS

3http://www.rhino3d.com
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representation. However, as can be seen by the close-up of the cap surface in250

Fig. 6b, T-junctions and extraordinary vertices exist there.

The pressure coefficient distributions on the pressure and suction sides of

each wing are shown in Figs. 7 and 8, respectively. It is worth noting that around

the tips of both wings and the mid section of the swept wing three-dimensional

effects (or spanwise velocity components) emerge. The velocity vector-fields in255

these regions are presented in Fig. 9. Sectional chordwise pressure coefficients

are calculated for each wing and compared with experimental results from [48],

and simulation results from the open-source low-order panel method xflr54.

The corresponding xlfr5 model has 3050 DoFs. Four sections for each wing

are selected and shown in Fig. 10 for the unswept wing, and Fig. 11 for the260

swept one. Good agreement is achieved between the IGA-BEM approach and

experimental results for much fewer DoFs, when compared to the low-order

simulation. At the same time, the IGA-based Kutta condition shows superior

accuracy on the trailing edge in comparison with xlfr5. This is illustrated in

Fig. 12 for the mid section of the unswept wing. It is clear that the IGA-BEM265

method satisfies the zero pressure jump on the trailing edge while xlfr5 doesn’t.

At the same time, xlfr5 shows an oscillatory behaviour that deteriorates for

higher DoFs.

Deviations between IGA-BEM and experimental results are exhibited only

for sections near the wing tip, as illustrated in Fig. 10d. This occurs due to270

the existence of a wing tip vortex which cannot be modelled in the context of

potential flow theory, as stated, for example, in [49]. A further investigation of

the pressure coefficient behaviour at the tip is discussed in detail in the following

subsection.

4http://www.xflr5.tech/xflr5.htm
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Figure 5: Wing and wake surfaces of tested wings
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(a) Full Cap

(b) T-junctions and an Extraordinary Point of valence 3 near the

trailing edge

Figure 6: Wing Cap Surface

(a) Suction side

(b) Pressure side

Figure 7: Pressure coefficient distribution for an unswept wing
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(a) Suction side

(b) Pressure side

Figure 8: Pressure coefficient distribution for a swept wing

(a) Tip region of unswept wing (b) Mid region of swept wing

Figure 9: Velocity vector-fields in regions where three-dimensional phenomena emerge
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Figure 10: Pressure coefficients for the unswept wing
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Figure 11: Pressure coefficients for the swept wing
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Figure 12: Kutta condition accuracy comparison near the mid section of the unswept wing

4.2. Τhe IGA-based Kutta condition and the flow near the trailing edge275

In this subsection we investigate the behaviour of the IGA-based solution of the

problem at the trailing edge (TE) and especially near its tip. In this connection,

the accuracy and influence of Kutta condition, formulated as a zero pressure-

jump condition on the TE (see (17) ) and numerically implemented via (18), is

assessed and discussed.280

Figure 13 depicts the 0th-order iterations, i.e, initial estimations, employed, for

different levels of refinement, in the Newton-Raphson scheme used for solving the

non-linear system in (18). It is clear from this figure that there is an increasing

error in the estimation of the actual zero pressure-jump requirement, especially

near the wing tip of the TE, for an increasing number of DoFs. It is also worth285

noticing that a small but constant error persists along the whole TE. This

deviation can be explained by the fact that the initial estimation corresponds to

the solution of the non-linear system (18) with the so-called Morino’s condition.

This condition states that the potential jump on the wake can be approximated

by the difference between the potential values on the upper and lower parts of the290

wing on the TE; see (22). The linear nature of Morino’s condition prevents the
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0th-order iteration from revealing the observed span-wise cross flow, especially

near the tip.
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Figure 13: Pressure jump along the trailing edge at the 0th iteration

Figure 13 also indicates that the deviation of the pressure jump from zero

becomes more severe as the DoFs of the problem increase. This behaviour is295

related to the existence of a singularity of the velocity ∇ϕ at the intersection of

the trailing edge with the tip, where the flow encounters two sharp edges with

dihedral angles greater than π. There has been extensive research in the general

field of potential theory as well as in aerodynamic lifting flows for non-smooth

domains including sharp edges; see, e.g., [50], [51], and [52], [34]. This analysis300

concludes that in the vicinity of an edge the gradient of the solution ϕ(P) of 3D

Laplace equation exhibits the following asymptotic behaviour:

∇ϕ(P) = O
(
r−(1−π)/α

)
, (23)

where r denotes the Euclidean distance of the field point P from the edge and

α is the magnitude of the exterior of the dihedral angle formed at the edge of

the body.305

Figure 14 illustrates the configuration for the wing case by taking a plane P(x),

which intersects vertically the wing cap. For the wing geometries considered in

this paper (see Fig. 5) it is evident that, as long as the longitudinal coordinate x

of P(x) is different from that of the trailing edge, α = 3π/2 at both the suction
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and the pressure edge of the wing-cap. Then, (23) gives:310

∇ϕ(P) = O(r−1/3), x ̸=TEx. (24)

α=

α=3π/2

wake

TE (trailing edge)

wing: pressure-side

α=3π/2

2π

TE-tip

wing: cap

wing: suction-side

x

y
z

P(x)

P(x=ΤΕx)

Figure 14: An intersecting plane P(x) sliding towards the trailing edge TE

However, when P(x) reaches the trailing edge, x = TEx, a discontinuity occurs:

the two equal dihedral angles at the pressure and suction intersection collapse

to a single one equal to α = 2π, leading to the estimate:

∇ϕ(P) = O(r−1/2), x=TEx, (25)

which indicates that the singularity of the velocity at the TE-tip is stronger

than that along the remaining cap-edge.

On the basis of the above discussion it seems legitimate to expect that a higher

number of DoFs will have the capacity to reveal the velocity singularity at the tip315

of TE more accurately. As a result, the error of the initial estimation increases

with DoFs, yielding slower convergence in the employed iterative scheme; see

Fig. 15.
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Figure 15: Newton-Raphson scheme convergence for different refinement levels

The effect of tip singularity described in (24) or (25) is of local character, as

it is clearly seen in Fig. 13. The local character of the tip singularity is also320

depicted in Figs. 16 to 19 where the chordwise distribution of Cp at the tip

location (z/s = 1) and in three sections near the tip (z/s = 0.99, 0.95, 0.90)

are presented. However, starting from the section at z/s = 0.95 and for the

remaining wing sections, the initial (0th) and final iterations are almost identical.
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Figure 16: Tip chordwise Cp distribution for different refinement levels
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Figure 17: z/s = 0.99 chordwise Cp distribution for different refinement levels
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Figure 18: z/s = 0.95 chordwise Cp distribution for different refinement levels
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Figure 19: z/s = 0.9 chordwise Cp distribution for different refinement levels

In the light of the singular character of the solution in the vicinity of the tip,325

another critical parameter to be assessed for its influence on the accuracy of

Kutta condition is the position of the collocation points, especially those near

the tip. To assess the performance of Kutta condition we use L1 and L∞ norms,

defined as:

||∆cp(η)||L1 =

∫ ηtip

ηmid

| ∆cp(η) | dη (26)

∥∆cp(η)∥L∞ = max{∆cp(η), ηtip ≤ η ≤ ηmid} (27)

where ηtip and ηmid are the parametric values of the trailing edge curve that330

correspond to the tip and mid sections respectively. The wing used for this

analysis is the original configuration, shown in Fig. 5a, but with local refinement

at the trailing edge region, as shown in Fig. 20. This lets us investigate the

behaviour of Kutta condition and, especially, near the tip singularity without

introducing redundant DoFs. Some of the benefits of local refinement near335

singularities in IGA have been demonstrated in [53] where the mesh is refined

in the direction of crack propagation.

Results for the pressure jump on the trailing edge are presented when the last
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Figure 20: Wing under investigation with TE DoF=35

collocation point is on the tip (z = −3) and after shifting it by 0.01, 0.04, 0.07

and 0.09; see Fig. 21. The rest of the collocation points are also shifted in a340

way that prevents adjacent ones from being too close to each other, in the sense

that the distance between them should not exceed a minimum threshold, while

they still remain inside the support of each basis function of the TE curve.

The corresponding L1 and L∞ norms are presented in Fig. 22. It is clear that,

regarding the accuracy of Kutta condition, the best practice is a small shifting345

of the last collocation point (on the tip); in our case, the best shifting is 0.01.

This result remains valid, independently of the level of refinement of the trailing

edge region.
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Figure 21: Pressure jump on the TE for various positions of the last collocation point. ∗

symbols correspond to positions of collocation points.
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5. Conclusions and future steps

In this work we presented a new Boundary Element Method (BEM) for lifting350

flows, based on Isogeometric Analysis (IGA). T-splines were used for the rep-

resentation of all involved geometries and the approximation of the associated

field (trace of the velocity potential on the wing). Adopting IGA enables the en-

forcement of Kutta condition (zero-pressure jump) exactly on the trailing edge

(TE) as well as revealing the singular behaviour of the velocity at the TE tip355

and the wing cap.

The calculated pressure coefficients show good agreement with experiments and

superior behaviour when compared to a low order panel method in terms of the

required DoFs (Degrees of Freedom) for a given level of accuracy. The imple-

mentation of Kutta condition leads to a quadratic system which is solved by an360

iterative scheme which exhibits fast convergence (5-6 iterations, for all levels of

refinement). Furthermore, a numerical investigation is carried out regarding the

effect of the tip singularity on Kutta condition for different refinement levels and

different locations of the collocation points along the trailing edge. This study

reveals that, as the number of DoFs increases, the unboundedness of pressure365

near the tip becomes evident. Moreover, the zero pressure jump along the trail-
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ing edge shows a low L1 error, especially by slightly shifting the last collocation

point from the tip. Note that, since we have opted for T-splines, local refine-

ment has been employed in the trailing edge region in an effort to investigate

the behaviour of Kutta condition without introducing redundant DoFs.370

This work is based on the assumption of an a-priori known plane wake geometry

which serves as a good approximation of lifting flows around bodies placed in

uniform streams. The next step is to extend this method to treat more general

flows, such as those generated by a rotating propeller of a steadily moving ship.

A challenge in this case is that a-priori wake approximations do not work well375

and it is crucial to develop a wake alignment scheme, that generates a wake

geometry on which zero pressure jump is satisfied. This is especially important

when the advance ratio of the propeller, namely the ratio of the ship speed over

the propeller’s rotational speed, is quite low which imply that one of the blades

could operate within the flow of the wake of another blade, as stated for example380

in [11].
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