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Abstract—Most of the sequential importance resampling track-
ing algorithms use arbitrarily high number of particles to achieve
better performance, with consequently huge computational costs.
This article aims to address the problem of occlusion which arises
in visual tracking, using fewer number of particles. To this extent,
the mean-shift algorithm is incorporated in the probabilistic
filtering framework which allows the smaller particle set to
maintain multiple modes of the state probability density function.
Occlusion is detected based on correlation coefficient between
the reference target and the candidate at filtered location. If
occlusion is detected, the transition model for particles is switched
to a random walk model which enables gradual outward spread
of particles in a larger area. This enhances the probability of
recapturing the target post-occlusion, even when it has changed
its normal course of motion while being occluded. The likelihood
model of the target is built using the combination of both
color distribution model and edge orientation histogram features,
which represent the target appearance and the target structure,
respectively. The algorithm is evaluated on three benchmark com-
puter vision datasets: OTB100, V OT18 and TrackingNet. The
performance is compared with fourteen state-of-the-art tracking
algorithms. From the quantitative and qualitative results, it is
observed that the proposed scheme works in real-time and also
performs significantly better than state-of-the-arts for sequences
involving challenges of occlusion and fast motions.

Index Terms—Object tracking, Occlusion, Mean-Shift, Particle
filter.

I. INTRODUCTION

Visual Tracking is among the most important and challenging
research areas in computer vision [1]. The aim of tracking is to
estimate the motion of a target as it moves around the scene in
the image plane [2]. Motion estimates are generally derived by
using predictors such as linear regression techniques, Kalman
Filter and Particle Filter. The particle filter works on the
principle of sequential importance resampling and can be used
as a motion estimator when the target has non-Gaussian state
space. Many methods have been proposed in literature to
overcome the limitations of particle filter, namely degeneracy
problem, sample impoverishment and determining the exact
number of particles for tracking. Most of the algorithms
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arbitrarily select larger number of particles to achieve ap-
preciable results. Although results achieved are satisfactory,
the number of computations increase manifold for each new
particle considered. To tackle this problem and allow tracking
using a smaller set of quality particles, integration of Mean-
Shift and particle filter to fuse the advantages of both in
visual tracking was proposed by Maggio et al. [3]. Shan et
al. [4] proposed integration of mean-shift algorithm along
with the particle filter (MSEPF) to track the movement of a
hand. Here, the modes of distribution of particles are detected
using the mean-shift search, and are weighed based on their
likelihood model. Since modes correspond to high likelihoods,
only the significant particles in the proximity of these modes
are selectively resampled. This integration of mean-shift and
particle filter leads to tracking with a fewer number of particles
as compared to the case where mean-shift is not used. The
integration also enables significant reduction in processing
time due to consideration of a smaller particle set.

One critical factor which makes tracking more challenging
is the variations in object appearance. These variations are
caused by several factors such as occlusion, illumination
change, fast motion, pose variation and noise disturbance
[5]. Among all these challenges, this article focuses on the
challenge of occlusion. Occlusion is said to have occurred
when the attributes of the tracked target are unavailable, even
when the target is present in the scene. For partial occlusions,
designing the motion model is relatively easy due to partial
visibility of the target as compared to full occlusion case,
where the target is not visible. If the target changes its speed
or direction of motion or both when it is fully occluded,
developing the motion model is even more challenging.

In this article, a Mean-Shift Occlusion Aware Particle Filter
(MSOAPF) is proposed to track the targets using both HSV
color and edge oriented histogram (EOH) features of the target.
The particle filter is integrated with the mean-shift algorithm
so as to reduce the number of particles required to maintain
state hypotheses. The mean-shift algorithm allows to focus
only on the particles with high likelihood, thus making the
resampling process more efficient. The weights on particles
are dependent on the likelihood of the color and EOH features
of the reference target and probable candidates, which is
computed using the Bhattacharya coefficient. Occlusion is
detected based on the correlation coefficient between the target
and filtered candidate and, if detected, fast failure recovery
from occlusion is achieved by switching the motion model to
random walk model from the constant velocity model. The
switching of motion model results in gradual increase in the



2

spatial spread of particles allowing more opportunities for
quick recapturing of the target post-occlusion. The algorithm is
capable of recapturing the target even if it changes its direction
of motion while under occlusion. This is a fresh attempt to de-
velop an iterative feature-based tracker which can track the tar-
get not only with a very smaller number of particles, but with
an improved occlusion handling ability using integration of
particle filter framework, mean-shift algorithm and correlation-
based occlusion detector using switching of motion models.
In summary, the proposed method has two fold contributions:
integration of three methodologies for efficiently tracking the
targets with fewer number of particles and switching of motion
model of target to quickly recapture the target in complex
scenes. Results illustrate that the MSOAPF performs better
than some of the advanced learning-based methods, for the
challenges of occlusion and fast-motions and gives comparable
results in terms of tracking accuracy for other challenges.
Further, the proposed method is computationally very fast and
operates at a rate of 38.2 frames per second making it suitable
for real-time applications.

The organization of this article is as follows. Various state-
of-the-art tracking algorithms are presented in Section II.
Section III gives description about the particle filter framework
and mean-shift algorithms used for tracking. The proposed
method is elucidated along with the help of a flowchart in
Section IV. In Section V, a brief of experimental setup and
datasets used are presented, while the results and analysis of
the proposed scheme are carried out in Section VI. Finally,
the conclusions of the work are drawn in Section VII.

II. RELATED WORKS

Various methods exist in literature to recover the target after
occlusion. Meshgi et al. [6] proposed a particle filter algorithm
to handle complex occlusion scenarios, which prevented loss
of target by predicting emerging occlusions and also achieving
quick occlusion recovery of the target. Duan et al. [7] pre-
sented a method for detection and recovery from occlusion
while tracking a target using particle filter. Line et al. [8]
used a patch-based appearance model for handling occlusions
wherein, when the weighing based on the color model is
less than a particular threshold, the particles are weighed
based on Speeded Up Robust Features (SURF). Overall, it
is observed that most of the algorithms opt for template
matching variations to recapture the target from occlusion
wherein entire image area is searched to locate the target
in the scene. Some algorithms like [8] use complex feature
set to recapture the target. In the proposed algorithm, instead
of opting for template matching or its variations, the motion
model is tweaked so as to incorporate all the probable target
reoccurring points. This allows for faster recapturing of the
target without having to search for the entire image area and
also without using any complex feature set for recovery. The
proposed approach also handles the changes in motion and
direction of motion of the target when it is fully occluded.

Recently, there has been a shift from conventional optical
flow method to feature-based visual tracking in tracking ap-
plications. The extraction of features for object representation

has to be done in such a way that the target is uniquely
distinguished from other objects in the feature space [2].
Color model is one of the most widely used feature for
tracking as it is robust to partial occlusions, scale variance
and rotation. Nummiaro et al. [9] used color histogram in
particle filter framework for tracking a target. The approach
mainly involves adapting the target model during stable image
observations for making the tracker immune to changes in
illumination. However, a single feature is not sufficient to
describe the target completely and hence a host of cues have
to be fused in a principled manner to increase the tracking
reliability. Brasnett el al. [10] designed a particle filter for
tracking using multiple cues (edge, color and texture). A
similar method for target tracking was developed by Niu et
al. [11], where fusion of color and SURF is incorporated in
the particle filter framework. Rahimi et al. [12] proposed a
particle filter tracking method using color, cellular local binary
pattern and Histogram of Oriented Gradients (HOG). Hence
it is evident that to build a foolproof and robust feature-
based tracking system, fusion of multiple cues in tracking
framework is essential. In the proposed method, the color
features which represent the target appearance and the edge
oriented histogram features which describe the target structure
are used to characterize the target uniquely in the scene.
Further, the edge features are chosen for their ability to
represent the target structure overcoming the errors occurring
when there exists similar color models between the target and
background and also for their significant robustness towards
illumination variation. These features can be easily extracted
and consume lesser computation time.

Some of the popular algorithms developed recently use
learning-based approach for tracking. Kalal et al. proposed
TLD [13], which decomposes the long-term tracking task into
tracking, learning and detection. An alternate method, Staple
[14], combines two image patches to learn a model, robust
to color change and deformations. A framework for adaptive
tracking using a kernelized structured output support vector
machine, popularly known as STRUCK [15], was proposed by
Hare et al. In order to reduce the learning-based computations,
SRDCF [16] algorithm was proposed which tries to reduce the
problems resulting from periodicity assumptions in learning
correlation filters. ECO [17] is a recent tracker which tries to
drastically reduce the parameters in the model and improve
tracking robustness. As can be seen, more recently the trend
has shifted towards accuracy oriented learning-based models
for tracking which significantly increases the time complexity
and computation costs. Further, some of the methods work
only on high-end GPU thus failing to operate for real-time se-
quences on normal systems [18]. This has led to development
of trackers such as SiamFC [19] and Kernelized Correlation
Filter [20], which operate at frame-rates beyond real-time.

III. PARTICLE FILTER AND MEAN-SHIFT TRACKERS

In this section, the conventional particle filter and mean-
shift tracking algorithms are discussed individually. Also,
the scheme for integration of mean-shift in particle filtering
framework is provided at the end of this section.
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A. Tracking using Particle Filter Framework

Particle Filter [21] is often used when the posterior density
and observation density are non-Gaussian. Sequential Monte
Carlo estimation evaluates the posterior probability density
function p(sk|Zk) of state sk, given the set of measurements
Zk up to time k [10]. In the Monte Carlo approach, samples
are used to represent the probability density function (pdf ) of
the state. These multiple samples are known as particles which
have an associated weight wl

k, which signifies the quality of
specific particle l, where l = {1, 2, ..Ns} and Ns represents
the total number of samples representing the posterior pdf .
The problem of tracking a target can be formulated as,

sk+1 = f(sk, νk+1), (1)
Zk+1 = h(sk+1, nk+1). (2)

where f is the state transition model, h is the observation
model and Zk is the measurement at time instant k. ν and
n represent the process and measurement noise, respectively.
Estimate of a new state is computed using the weighted sum
of particles. To generate this estimate, the two critical steps
are prediction and update.
Using the Bayesian framework, the conditional pdf
p(sk+1|Zk) is recursively modified as per prediction
step and update step. The prediction step is given as,

p(sk+1|Zk) =

∫
<nx

p(sk+1|sk)p(sk|Zk)dxk, (3)

and update step is,

p(sk+1|Zk+1) =
p(Zk+1|sk+1)p(sk+1|Zk)

p(Zk+1|Zk)
. (4)

It is difficult to find a simple analytical expression for propaga-
tion of p(sk+1|Zk+1) through eq (4), hence we use numerical
methods. In the particle filter framework, a set of weighted
Ns particles are drawn from posterior conditional pdf . These
particles are then used to map the integrals into discrete sums.
The discretized posterior can be approximated as,

p̂(sk+1|Zk+1) ≈
Ns∑
l=1

ŵl
k+1δ(sk+1 − slk+1), (5)

where ŵl
k is the normalized weight on each particle. It can

be proved that as Ns → ∞, the approximation in eq (5)
approaches p(sk+1|Zk+1), which is the true posterior density
[21].

B. Visual Tracking using Mean Shift

Mean shift [22] is a robust non-parametric approach used
to find the modes of the probability distribution functions by
climbing the density gradients. In a tracking scenario, if the
target has its characteristics defined as density function q, then
a position y in current frame can be located, which ensures
that the characteristic candidate density function py is most
similar to target characteristic density q. If the characteristics
at location y have highest similarity, it implies that the target
is located at position y. Usually in case of visual tracking,
the most common measure to find similarity between two

distributions is the Bhattacharya coefficient defined in eq (12).
Expanding the Bhattacharya coefficient using the Taylor series
approximation at initial position y0 and using eq (10) give the
following,

ρ[pu(y), qu] ≈ 1
2

√
pu(y0), qu + Ch

2

∑I
i=1 wikw

(∥∥y−xi

h

∥∥2), (6)

where y0 is the location of target in previous frame. In eq
(6), the first term is independent of y, thus there is a need to
minimize only the second term. Also in eq (6), the weight wi

is computed as,

wi =

m∑
u=1

√
qu

pu(y0)
δ(h(xi)− u) (7)

At each iteration, the new target location y1 from previous
location y0 is calculated as,

y1 =

∑I
i=1 xiwig

(
‖y−xi

h ‖
2
)∑I

i=1 wig
(
‖y−xi

h ‖2
) (8)

where g(.) is the derivative of kernel k chosen for the mean-
shift procedure. If Epanechnikov kernel is employed [4], the
derivative of this kernel is constant and hence eq (8) can be
reduced to weighted distance average given as,

y1 =

∑I
i=1 xiwi∑I
i=1 wi

(9)

which corresponds to the new location of the target.

C. Integration of Mean Shift with Particle Filter Framework

Maggio et al. [3] proposed integration of mean-shift in
particle filter framework which combined the individual ad-
vantages of the above two procedures. This approach termed
MSEPF leads to more efficient sampling as it shifts samples
to the neighboring modes, overcoming the degeneracy issue
in particle filter. It also requires fewer number of particles to
maintain multiple state hypotheses resulting in lower compu-
tational costs. The herding of samples to the nearest modes
shifts the focus only on samples with larger weights. Since
samples move to their neighboring local maxima actively after
mean shift analysis, one does not require more samples to
retain multiple modes. Even if there exists a higher number
of samples, many will converge to the same mode due to
mean shift iteration. Hence the retention of multiple modes
in posterior density with fewer particles leads to enhanced
computational efficiency as regards to conventional particle
filter.

A visual representation of MSEPF algorithm is shown in
Fig 1. Once the samples are propagated using the transition
model p(sk+1|sk) as shown in step no.2 of Fig 1, mean-shift
optimization algorithm is applied on each sample. Particles
are shifted in gradient ascent direction to their adjacent local
modes until they converge. These shifted particles represent
the modes of the distribution. Since local maxima are fairly
represented, the multi-modal distribution is now represented
with the aid of very few particles. Using this knowledge of
maxima, a new particle set is generated using Importance Sam-
pling [21] principle without destroying the original distribution
as shown in step no.5 (i.e. Resampling) in Fig 1.
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Fig. 1: Working of MSEPF algorithm.

Thus, it can be observed that the integration of mean-
shift into particle filter allows tracking using fewer number
of particles. The results using these fewer particles might be
satisfactory for sequences with no challenges involved. How-
ever, for sequences with varied challenges such as occlusion,
scale variation, fast motion etc., such tracker fails. The reason
for this being insufficient number of particles available to hold
the multiple and ever-changing state hypotheses in presence of
challenges. This article precisely aims to overcome the above
failure and tries to deal with challenge of occlusions with
selected few particles. A strategy is devised which allows a
smaller particle set to represent sufficient probable states when
the target is occluded. Once occluded, a fast recovery strategy
is also adopted. This additional ability incorporation makes
the tracking more robust with lesser number of particles as
compared to the conventional particle filter. Also, the use of
both color and EOH features makes the tracking less prone to
failures.

IV. PROPOSED METHOD: MEAN-SHIFT OCCLUSION
AWARE PARTICLE FILTER

In this section, the proposed Mean-Shift Occlusion Aware
Particle Filter (MSOAPF) algorithm is presented. The method
enables tracking of the target using a fewer number of
particles, while addressing the challenge of occlusion faced
during tracking. The MSOAPF uses fusion of color and EOH
features to represent the target characteristics while tracking,
as described in the rest of this section.

A. Features used for Tracking

In this section, the features which are used to uniquely
represent the target in the scene are discussed. Two features,
namely color model and EOH features for constructing the
likelihood model are used while tracking. Color model has
the ability to represent target appearance whereas the edge
features can define the outline of the target, effectively. Hence,
they are used together to uniquely characterize the target in
the scene.

1) Color Distribution Model: As color models are robust
to occlusion, rotation and non-rigidness [9] of the target, they
are used as target models in tracking applications. To make

the tracking more robust to changes in illumination, HSV
space is chosen over RGB space [23]. Color histograms for
region are generated using function h(xi) which will assign
the color at location xi to one among the discretized m-
bins. Color distribution of the object at location y given as
py = {pcoloru (y)}u=1,2..m is computed as,

pcoloru (y) = Ch

I∑
i=1

kw

(∥∥∥∥y − xih

∥∥∥∥) δ[h(xi)− u]. (10)

where I is the number of pixels in the selected patch of image,
δ is Kronecker delta function, ||.|| is the norm, kw(.) is the
weighing function allotting higher weights to pixels nearer to
region center than others, h =

√
H2

x +H2
y and Ch is the

normalization factor.
2) Edge Orientation Histogram: Whenever the color of the

target is similar to background, a tracker solely based on the
color model will track poorly. Thus, edge features are added
to the tracker to represent the target contour. The EOH is
constructed once all the target edge points are detected by
the Sobel edge detector [24]. Edge detection is carried out by
computing the horizontal and vertical derivatives obtained by
convolving the grayscale image Im with 3x3 kernels. The pdf
for edge for target candidate as discussed in [25] is given as,

pedgeu (y) = Ce

j∑
i=1

kw

(∥∥∥∥y − xih

∥∥∥∥) δ(be(xi)− u), (11)

where xi is the center of the target candidate, j is the number
of bins, be(xi) is the edge orientation bin in the quantized
edge oriented space at location xi and Ce is the normalization
factor.

3) Similarity measure between features: To find similarities
between these two densities p and q, a parameter known
as Bhattacharya Coefficient is computed, defined for discrete
densities as,

ρ[p(y), q] =

m∑
u=1

√
pu(y)qu, (12)

where u = {1, 2..m} is the bin index of the discrete den-
sity. The discrete densities can be considered equivalent to
histograms of color and edges considered in the proposed
tracker. The color and EOH features are extracted from the
target as well as probable candidates and similarity between
them is computed using the Bhattacharya coefficient. Based
on the Bhattacharya coefficient, the Bhattacharya distance can
be defined as,

d[p(y), q] =
√

1− ρ[p(y), q]. (13)

Higher Bhattacharya coefficient refers to high degree of sim-
ilarity between the two densities, with ρ = 1 indicating a
perfect match between two densities.

B. Detection of Occlusion and Occlusion Recovery

Occlusion recovery strategy is to be adopted only after
occlusion detection, otherwise the algorithm proceeds with
normal tracking procedure. To detect occlusion, a 2D cor-
relation function is used. The 2D correlation function Corr
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(a) (b)

(c) (d)
Fig. 2: An illustration of particles following constant velocity model when
target is not occluded. When target gets occluded, the particle search area is
increased for target recovery.

between the selected target patch in the initial frame and image
patch at filtered location using particle filter is computed as,

Corr =

∑
m

∑
n(Amn − Ā)(Bmn − B̄)√(∑

m

∑
n(Amn − Ā)2)(

∑
m

∑
n(Bmn − B̄)2

) .
(14)

where A and B are the two image patches of dimensions
m × n, and Ā and B̄ represents the 2D mean of A and
B, respectively. Higher values of correlation imply that the
target is tracked properly, whereas lower values imply that the
target is lost or occluded. An appropriate threshold τ for this
correlation value is selected to detect occlusion. If Corr < τ ,
then the target is occluded or lost.

Once occlusion is detected, the area of generation of
particles around the center of the blob is increased radially
outwards to engulf the entire area of the occluding object
in order to identify the position from where the target might
reappear in the scene. The motive of gradually increasing the
search area by spreading out particles is to incorporate all the
changes in direction and velocity that the target may undergo
while being occluded. The goal is to recapture the target as
quickly as possible once it re-enters the view. Hence, once
the object gets occluded, the transition model is altered from
constant velocity model to random walk model. This altered
transition model increases the area for which the target is
to be searched post occlusion. Once occluded, the switched
transition model to update and distribute particles around xk
is given as,

sk+1 = sk + ζk. (15)

where ζk is 2D uniform distribution in a circle with radius
r, which is increased gradually outwards. An illustration of
this occlusion detection and target recovery is shown in Fig
2. In Fig 2 (a), the target, which is the green ball, is clearly
visible in the scene. The correlation value between the target
and reference is 0.6623, which is greater than the chosen
threshold value of 0.1. This implies that there is no occlusion
and tracking proceeds with constant velocity motion model.
The area of spread of particles is also very less as the ball
is not occluded, which can be seen from Fig 2 (a). Now, in
Fig 2(b), the target ball is fully occluded by the hand of a

person. This can be deduced from the correlation value which
is now -0.0735, which is less than the chosen threshold. In
order to locate the position from where the ball will probably
re-enter the scene, the motion model is switched and the area
of particles is gradually spread outward using eq (15) so that it
engulfs the entire hand until the target reappears in the scene.
This can be seen in Fig 2(b) where the particles are spread in
larger area to recapture the target post occlusion. Also, it is
observed that the target ball changes its direction of motion
when it is fully occluded by hand as can be seen from Fig
2(c). The target was initially moving leftwards in Fig 2(a)
and (b) and once it is fully occluded, it changes its direction
towards right and reappears from the opposite side of which it
was expected to reappear. As soon as the target reappears and
is detected (even partially), the correlation value increases,
as can be seen in Fig 2(c), where the correlation value is -
0.0368, which is still less than threshold. Hence, the spread
of particles is still more. This continues till the target is fully
located as shown in Fig 2(d), where the correlation value, now
at 0.6828, is above the threshold value, leading to tracking with
the constant velocity model with lesser particle spread.

The entire process can be summarized as: If Corr < τ , that
means occlusion is detected and the motion model given in eq
(15) is used. Otherwise the constant velocity model is adopted
for Corr ≥ τ .

The method also addresses the challenge of fast moving
targets. The fast motions make the tracker lose track of the
target resulting in lower values of correlation. The lower values
of correlation during tracking implies that the target is not
being tracked effectively and corrective measures ought to be
taken. Using the same strategy of gradual area expansion of
particles as discussed above, the fast moving targets, once
missed can be recaptured and tracked effectively. Thus, the
MSOAPF can handle both the problems of occlusion as well
as fast moving target.

C. Working of MSOAPF Algorithm

We propose to integrate mean-shift in the particle filter
framework and also to incorporate the fast failure recovery
strategy to handle occlusions while tracking. A flowchart of
the proposed method is illustrated in Fig 3.

The target to be tracked is selected by placing a bounding
box around it following which the color and EOH features of
the target within the selected blob are extracted. Initially, for
the first iteration, the spatial centroid of this blob is considered
to be the mean point around which Ns number of particles
representing hypotheses are generated randomly within a spec-
ified width and height. After completion of first iteration, the
spatial centroid is calculated using the weighted average of
particles. Once generated, these samples are updated using the
constant velocity motion model. Thus each of the NS particles
representing state hypotheses is defined as,

{slk}
Ns

l=1 = {xlk, ylk, ẋlk, ẏlk}. (16)

where (xk, yk) denotes the centroid of the blob, while ẋk and
ẏk are x and y directional velocities of the target, respectively.
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Fig. 3: Flowchart illustrating the working of proposed algorithm.

The dynamic model used for transition of particles from one
state to another is represented as,

sk+1 = Fsk + µk. (17)

where F is the transition matrix of the motion model and µk

is a multivariate Gaussian random variable.
After updating the particles using the transition matrix,

mean-shift is applied to each particle. Mean-shift algorithm
moves them in gradient ascent direction as per their observa-
tion likelihoods, until each of them converges to their adjacent
local maxima. This set of particles now represent modes of
the multi-modal distribution. The particle set now corresponds
to probable candidate positions where the target may have
moved after the update step. Considering these locations as the
updated centroid locations of the target, the color and EOH
features are extracted at the updated particle locations. For
each of the Ns particles, color and EOH features are extracted.
These features from probable candidates are then compared

for similarity with the features of the target extracted in the
initial frames. The distance between two feature distributions
is computed using the Bhattacharya distance which determines
the quantum of weight to be assigned to each particle. The
weighing of particles is based on the observation likelihood
model which is characterized by the Gaussian distribution as,

L(Z|s) =
1√

2πσ2
exp

(
− d2

2σ2

)
, (18)

where d corresponds to Bhattacharya distance computed in eq
(13). We consider the same distribution of weights as shown
in eq (18) for both color and EOH features. Bhattacharya
distance for color and EOH features is computed individually
and assuming that likelihood of color and edge are statistically
independent of each other, the multi-cue likelihood of both
features is fused as,

L(Z|s) = Lcolor(Zcolor|s)Ledge(Zedge|s). (19)

Based on the likelihood model given in eq (19), weight w is
assigned to each particle as,

{wl
k+1}

Ns

l=1 ∝ L(Z|s), (20)

These weights are then normalized, using which, the new state
hypothesis is computed by the weighted average method as,

sk+1 =

Ns∑
l=1

wl
k+1s

l
k+1. (21)

At this new position obtained by eq (21), Ns particles are
again generated. Also, 2D correlation is computed between
the reference blob and the blob at new position obtained in eq
(21) to detect occlusion. The value of 2D-correlation obtained
is compared with the threshold as to decide whether occlusion
has occurred or not. If the object is occluded, the motion model
is modified as shown in eq (15), else the algorithm proceeds
with the constant velocity model.

V. EXPERIMENTAL SETUP AND DATASET USED

For analysis of the results, the proposed algorithm is ex-
ecuted on three benchmark datasets: Visual Tracking Bench-
mark (OTB100) [26], Visual Object Tracking 2018 (VOT18)
[27] [28] and TrackingNet [29]. All the algorithms are ex-
ecuted on an Intel Core i7-7700 CPU system with 16 GB
RAM and 3.60 GHz Personal Computer. The algorithm is
implemented in MATLAB R2016a. The number of particles
Ns for the proposed scheme is chosen as 50, based on the
obtained result for Tracking Success Rate as illustrated in
Fig 4 (a). Similarly, based on the Tracking Success Rate, the
experimental threshold for 2D correlation τ is fixed to be 0.1
as shown in Fig 4 (b).

VI. RESULTS AND ANALYSIS

The experiment begins with determining the number of par-
ticles needed for tracking. For this purpose, the performance of
the tracker is observed for sequences from OTB100 dataset.
The number of particles is varied for each observation and
the minimum number of particles which gives higher tracking
success rate is considered. The plot comparing the Tracking
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(a) TSR and FPS for different num-
ber of particles

(b) Plot of TSR vs correlation
threshold.

Fig. 4: Selection of number of particles and correlation threshold

Success Rate (TSR) [1] and the execution speed in terms of
Frames Per Second (FPS) for different number of particles
considered for MSOAPF is shown in Fig 4 (a). It can be
observed that as the number of particles approach 50, the
TSR value stabilizes itself and remains constant even when
the number of particles is increased for MSOAPF. Hence,
the number of particles for the purpose of this experiment
is chosen to be 50. Also, for 50 particles, the FPS is 38.2,
making the algorithm suitable for real-time applications. Next
step is to determine the value of correlation threshold to detect
the occurrence of occlusion. For this purpose, the plot of
correlation vs TSR is shown in Fig 4 (b). The correlation
value is considered in steps of 0.1 in the range 0 to 1. For
each value, the TSR is plotted in Fig 4 (b). It can be observed
that for values below 0.1 the TSR is almost constant. Thus,
inference is drawn to fix the correlation value to be 0.1.
The proposed method is compared with fourteen state-of-the-
art tracking algorithms: DSST [30], TLD [13], ECO [17],
STRUCK [15], KCF [20], IVT [31], STAPLE [14], SiamFC
[19], MDNet [32], SRDCF [16], SAMF [33], SiamRPN [34],
DNT [35] and TADT [36]. Despite being a iterative feature-
based object tracking approach, we have compared MSOAPF
with advanced state-of-the-art learning-based approaches such
as ECO [17] and MDNet [32] in order to illustrate the
performance.

A. Evaluation Methodology

To evaluate the performance, precision plots and overlap
success plots are provided. Precision plot indicates the per-
centage of frames for which the predicted location is within
the chosen threshold distance, 20 pixels in this case, from
ground-truth. These plots are indicated for the entire dataset
as well as for various challenge-specific sequences like scale
variation, occlusion, background clutter, illumination variation
and fast motion which are encountered while tracking. The
success plot shows ratio of successful frames at different
thresholds varied from 0 to 1. The AR-raw plot [28] generated
is also provided for ranking of different algorithms executed
on V OT18 dataset. Also, the performance based on the
processing speed for an algorithm is measured in units FPS.

B. Result Analysis of OTB100 Dataset

The analysis begins by comparing the performance of
proposed MSOAPF (color + EOH features) with MHOG

Fig. 5: Comparison of Success plot for different challenges: Occlusion, Fast
motion, Background Clutter and Illumination Variation (clockwise).

Fig. 6: Overlap Success Plots for all the sequences from OTB100 dataset

(MSOAPF with color and HOG features - 50 particles),
MSEPF (50 particles), conventional particle filter (200 parti-
cles and HOG feature) and particle filter using CNN features
(PFCNN) (50 particles) for sequences with different challenges
from OTB100 dataset. The challenges considered for compar-
ison are of occlusion, fast motion, illumination variation and
background clutter. The success plots for different challenges
are shown in Fig 5. From these figures, it can be observed
that for illumination variation, the performance of MSEPF
and MSOAPF is almost comparable. This is due to the simple
motion of object which does not undergo hefty changes in its
motion. However, the MSOAPF outperforms all the trackers in
case of occlusion and fast motion. The simple motion update
models which cannot anticipate fast and abrupt motions leads
to tracking failures in case of conventional particle filter and
PFCNN. Also, the inadequate target representation leads to
failures in case of MSEPF. However, the MSOAPF robustly
tracks the target and gives better results than the above three
algorithms. It can also be seen from these plots that MSOAPF
can track efficiently using just 50 particles as compared to
conventional particle filter with 200 particles. It can also be
observed that the proposed MSOAPF (with EOH features)
and MHOG give similar and comparable performance without
much variation in the outcome of the experiments.

Next, the success plot and precision plot for the entire
OTB100 dataset is shown in Fig 6 and Fig 7, respectively.
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Fig. 7: Precision plots for all the sequences from OTB100 dataset

Fig. 8: Success plot for different challenges: Occlusion, Scale Variation,
Illumination Variation and Background Clutter (clockwise)

As can be seen from the plots, the proposed MSOAPF ranks
fifth in case of comparison with other considered methods.
The methods which rank higher are ECO, MDNet, TADT
and DNT. This is due to the fact that all these four methods
use learning-based tracking approach whereas the MSOAPF
uses iterative feature-based tracking approach. However, for
such learning based approaches, the execution time in terms
of FPS is much high as can be seen from Table I. MSOAPF
tracker performs faster due to absence of neural networks or
CNNs Also, MSOAPF does not involve training of system
with target information and characteristics. The absence of
all such steps reduces the computational cost greatly without
compromising on the tracking performance. For every one
unit of processing time for MSOAPF, 0.162 unit is used for
feature extraction, 0.472 goes for feature matching, 0.254 is
for mean-shift whereas 0.112 is used for particle filtering. The
KCF tracker, although yielding higher FPS than MSOAPF,
tracks the target poorly as can be seen from precision and
overlap success plots. The MSOAPF algorithm despite ranked
fifth overall, performs better than other trackers which involve
learning. At some instances the MSOAPF does fail but due
to fast recovery strategy, the tracker relocates the target much
faster than other trackers.

In Fig 8, the challenge-wise success plot for challenges of
background clutter, occlusion, scale variation and illumination
variation for sequences from OTB100 dataset is shown. The
MSOAPF gives comparable performance to other methods
and is always within the top five ranks for challenge of
scale variation, background clutter, illumination variation and

Fig. 9: AR- raw plot and comparison for V OT18 dataset

occlusion. Thus, the tracker gives comparable performance
with other state-of-the-art trackers for these challenges. This
is due to the considered feature set for target description and
quick occlusion detection and recovery strategy, which enables
faster relocation of the target.

C. Result Analysis of VOT2018 Dataset

In this section, the results obtained for the V OT2018 dataset
are presented, which has 60 challenging video sequences.
The performance is evaluated based on the robustness and
accuracy of the tracker. As can be observed from AR-raw
plot in Fig 9, the tracker is ranked fourth for robustness.
The MSOAPF tracker has a good balance of both accuracy
as well as robustness. It is re-iterated that trackers ranked
above MSOAPF are learning based trackers which enables
them to achieve higher ranks in robustness and accuracy.
These trackers have a low tracking speed and some even
require GPU for performing in real-time applications [18].
However, the proposed tracker is implemented on CPU and
is found to be suitable for real-time applications. Further,
for V OT18 dataset, comparison of different algorithms in
terms of tracking failures per 100 frames for challenge-specific
sequences is shown in Fig 10. An interesting thing to note is
that MSOAPF ranks first for the challenge of occlusion which
is closely followed by ECO and MDNet. Similar performance
is observed for motion change and camera motion challenges,
where the target either changes its motion abruptly or appears
to have changed its motion due to movement of camera. Even
for these challenges, MSOAPF algorithm ranks among the top
three trackers due to the quick recovery achieved by switching
of motion model when the tracker detects the loss of track.

D. Result Analysis of TrackingNet Dataset

The success plot and precision plot for sequences from
TrackingNet dataset are presented in Fig 11 and Fig 12,
respectively. As was observed in case of OTB100 dataset,
similar results are obtained for TrackingNet dataset. It can
be observed that the tracker overall ranks fourth and gives
comparable performance with other state-of-the-art trackers.

E. Visual Analysis of Results

This section presents visual results of the proposed scheme
on different sequences. Due to space issues, only two se-
quences, one each from OTB100 and V OT18 dataset are
shown which have heavy occlusion present in them. In Fig
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TABLE I: Comparison of Mean FPS for different methods

TADT TLD MSEPF STRUCK KCF DSST STAPLE SRDCF ECO SOD-LT SiamRPN MDNET DNT IVT SiamFC Proposed
Mean FPS 33.7 23.6 39.1 10.4 110.4 11.9 21.8 3.12 4.16 5.21 141.6 0.714 3.2 11.7 58.0 38.2

Fig. 10: Plot showing number of failures per 100 frames for different
challenges involved in V OT18 dataset.

Fig. 11: Overlap Success Plots for sequences from TrackingNet dataset

13 (a), the goal is to track the basketball player in green
jersey who is at certain times occluded by his teammates
and opponents. In frame 17, he is occluded by opponent
despite which he is tracked successfully in consecutive frames.
Between frames 300 and 489, he is occluded by his own
player wearing jersey of same color. However, due to robust
feature set and due to motion model incorporated, the player
is continuously tracked as seen in frames 489 and 620. In Fig
13 (b), the target is a girl who is occluded by an man walking
with a bicycle. The color of the girl’s dress matches with the
color of the cycle despite which the girl is tracked without any
failure. Between frames 106 and 131, the girl is fully occluded
by the man. During occlusion, the tracker tries to relocate the
target, which it successfully does after the girl reappears in
the scene as can be observed in frames 131, 221 and 205.

VII. CONCLUSIONS

A mean-shift occlusion aware particle filter (MSOAPF) is
proposed in this article to track a target with fewer number
of particles while being able to address the challenge of
occlusion. The mean-shift operation allows the particle to be
set to represent the modes of the distribution, enabling tracking
with fewer number of particles as compared to a conventional

Fig. 12: Precision plots for all the sequences from TrackingNet dataset

(a) Tracking results for basketball sequence from OTB100 dataset
Frame No. 17, 64, 489, 620

(b)Tracking results for girl sequence from V OT18 dataset
Frame No. 106, 131, 221, 305

Fig. 13: Comparison of results for basketball and girl sequences.

particle filter. If there is long term occlusion, the situation
is first detected through means of correlation and then an
occlusion recovery strategy is adopted wherein the motion
model of the particles is switched to random walk model for
faster recapturing of the target. The use of simple color and
EOH features for target description yields higher execution
speed as compared to the other algorithms which use complex
feature set, which also leads to lag in video sequences when
executed on CPU.

Performance evaluation is carried out on three benchmark
datasets OTB100, V OT18 and TrackingNet and the results
are compared with fourteen existing state-of-the-art tracking
algorithms including advanced-learning based trackers. The
MSOAPF has ability to process approximately 38 frames per
second on CPU thus making it suitable for real-time tracking
applications. For occlusion-specific cases, which is the focus
of this article, the tracker outperforms even the learning-based
trackers. For other challenges such as illumination variation,
background clutter and fast motion, the tracker gives compa-
rable accuracy to advanced trackers and in certain cases is
ranked above learning-based approaches. Considering the fact
that MSOAPF is an iterative feature-based tracking approach,
the results obtained are comparatively better.
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The proposed MSOAPF algorithm has the ability to handle
occlusion and quickly recapture the target once it reappears
post-occlusion. The advantages of the proposed method are
its easy implementation on a simple CPU and its applicability
for real-time videos. Further, tracking is carried out using
only 50 particles as against conventional particle filter which
requires around 200 particles for holding state hypotheses.
Also, tracking is carried out using the target features sans any
training step, as is done in learning-based trackers.

The MSOAPF focuses mainly on the challenge of occlusion.
However, there are other challenges such as illumination
variation, background clutter, etc. which are required to be
addressed. The ability of the MSOAPF tracker to handle
these challenges needs to be enhanced. Also, a mechanism
to dynamically fix the correlation threshold parameter needs
to be explored.
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