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Abstract— The global Connected and Autonomous Mobility 
industry is growing at a rapid pace. To ensure the successful 
adoption of connected automated mobility solutions, their safety, 
reliability and hence the public acceptance are paramount. It is 
widely known that in order to demonstrate that L3+ automated 
systems are safer with respect to human drivers, upwards of 
several millions of miles need to be driven. The only way to 
efficiently achieve this amount of tests in a timely manner is by 
using simulations and high fidelity virtual environments. Two key 
components of being able to test an automated system in a 
synthetic environment are validated sensor models and noise models for each sensor technology. In fact, the sensors 
are the element feeding information into the system in order to enable it to safely plan the trajectory and navigate. In 
this paper, we propose an innovative real-time LiDAR sensor model based on beam propagation and a probabilistic 
rain model, taking into account raindrop distribution and size. The model can seamlessly run in real-time, 
synchronised with the visual rendering, in immersive driving simulators, such as the WMG 3xD simulator. The models 
are developed using Unreal engine, therefore demonstrating that gaming technology can be merged with the 
Automated Vehicles (AVs) simulation toolchain for the creation and visualization of high fidelity scenarios and for AV 
accurate testing. This work can be extended to add more sensors and more noise factors or cyberattacks in real-time 
simulations.  

 
Index Terms—Autonomous and automated vehicles, light detection and ranging (LiDAR), Noise, Perception Sensor, Rain, 

Real-Time Simulation, Sensor Models. 

 

 

I. Introduction 

HE automotive industry is currently focused on Advanced 

Driver Assistance Systems (ADAS) applications and lower 

levels of automation. However, several Original Equipment 

Manufacturers (OEMs) and technology companies are also 

developing higher levels of autonomy with many promises, 

from improved road safety to economical and societal benefits 

[1]. These systems rely on an array of perception sensors 

(camera, LiDAR, RADAR, ultrasonic, etc.) to recognize the 

environment around the vehicle, plan and adapt its actions as it 

goes from point A to B [2]. The Society of Automotive 

Engineers (SAE) have defined 6 levels of autonomy which are 

widely used by many research groups and developers [3]. These 

levels range from level 0 (L0), in which the vehicle’s system 

will only provide warnings and information to the driver, to 

levels 4 and 5 (L4-L5) in which the Autonomous Control 

Systems (ACS) can take full control of the vehicle within its 

designed parameters without the need for any human 

intervention. This control includes bringing autonomously the 

vehicle to a safe state in fault conditions, such as system failures 

or situations that the system does not recognise; on the contrary, 
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L3 vehicles will hand back to the driver/supervisor under these 

conditions. 

To demonstrate that Automated Vehicles (AVs, L3 and 

above) are actually safer with respect to the human drivers,  

upwards of several millions of miles have been quoted by 

different research groups as the number of miles that would 

need to be driven by these technologies [4], [5]. Furthermore, 

any real world incidents involving automated vehicles have an 

enormous negative impact on the developer/manufacturer and 

also on the public’s perception of this technology [6], [7]. 

Traditionally, OEMs use the V-model or a variant of it to 

develop new vehicle systems [8]. Conversely, the rapid increase 

of computing power and software capabilities enables the 

viability of system virtual testing earlier in the development 

process. However, virtual testing and controlled testing are not 

sufficient to demonstrate the ACS safety, more testing 

environments need to complement the development process, as 

shown in Fig.1. The testing continuum shows the different 

testing options available for AV electronic systems and sensors, 

and the benefits of bringing the testing towards the simulation 

side at any stage of the V-model.  

There are several facilities available to test at different stages 

of the testing continuum. For example, in the UK, real world 
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trials can be performed through Midlands Future Mobility 

which contains a 300-mile network of roads, such as highways 

and rural roads [9]. In track/controlled testing, e.g. the Horiba 

Mira Proving Ground or Millbrook Proving Ground, there is a 

higher degree of controllability in which actors can be 

controlled as well as some environmental parameters [10]. 

Testing virtually can bring many benefits such as earlier 

proving, higher degree of control and lower costs for 

prototyping. From the left side of the testing continuum, several 

commercial software such as IPG CarMaker and rFpro provide 

a fully simulated environment to carry out testing [11], [12]. 

Moreover, there are several research and industrial groups 

developing immersive simulators and test beds. These 

simulators allow for testing virtually different aspects of the 

autonomous systems and can entail the emulation of hardware, 

environmental condition, noise factors and road users.  

Examples of these facilities are WMG 3xD simulator and 

AVL’s Driving-CubeTM [13]–[18]. 

Three aspects are fundamental when implementing virtual 

testing (simulation or emulation based): 
1) Fidelity 

It is imperative for the simulator to provide sufficient 

fidelity models: of the environment, to have realistic 

rendered and natural actors; of the sensor models that will 

capture the environment. Simulations can be used by OEMs 

to train and validate the machine learning algorithms with 

fringe or dangerous scenarios [19]. If the ACS under test in 

the simulation does not receive the same sensor input as in 

the real world, the vehicle behavior cannot be truly 

predicted and validated in the simulation.  
2) Real-Time Operations 

During testing of a mixture of real and emulated/simulated 

components, it is difficult to accelerate or slow down the 

simulation due to the physical constraint of the rate at which 

data can be gathered and processed by the hardware. 

Altering the simulation time can generate artifacts in the 

results or can hide timing issues and race conditions that 

might arise in real-time.  
3) Possibility to Inject Noise Factors 

Simulations with hardware in the loop have an advantage 

over proving grounds in that there is a higher control of the 

environment. This capability allows for repeatability of 

tests, and also the testing of the same scenario with subtle 

changes, such as adding different noise factors, to observe 

changes in the ACS reaction. Noise can cause data loss and 

distortion, having a profound impact on the perception 

algorithm; a framework to analyse noise factors affecting 

automotive sensors have been recently proposed [20].  

To the best of our knowledge, this paper presents, for the first 

time, a real-time LiDAR simulation model which includes 

beam propagation effects and a probabilistic rain model, 

evaluating real-time the effect impact of the rain droplets on 

each LiDAR beam. The proposed model can generate data 

comparable to current automotive sensors, in terms of data rates 

and format, and run simultaneously with the visual rendering 

for a 360o projection in a vehicle in the loop simulator. 

II. BACKGROUND 

LiDAR was first used as a perception sensor for an 

autonomous road vehicle in 2004, when it was used on a car 

competing in the DARPA challenge [21]. Equipping LiDAR to 

vehicles will assist towards higher levels of autonomy 

alongside the other sensors, such as RADAR and vision [22]. 

LiDAR boast excellent angular and range resolution making it 

an attractive addition to the vehicle sensor suite [22], [23]. 

A. LiDAR working principles 

The LiDAR unit emits numerous narrow beams of near-

infrared light with circular/elliptical cross-sections, which 

reflect off of objects in their trajectories and returns to the 

detector of the LiDAR sensor [24]. There are three common 

techniques for measuring the distance and position of objects: 
1) Time-of-Flight (ToF) 

Most LiDAR sensors use ToF for measurement where the 

time between emission of the beam and receipt of the 

returned beam determine the distances and position of the 

object (𝑧 = 𝑐 ∙ ∆𝑡 2⁄ ) where 𝑧 is the distance to a target, 𝑐 

is the speed of light and ∆𝑡 is the time between emission 

and receipt of the beam. Dependent upon the specification 

of the LiDAR, a different number of these beams are 

emitted by different laser sources. Each detection from a 

beam can be used to create a point (i.e. x,y,z coordinates) 

where that reflection took place which, when combined, 

form a pointcloud [24], [25]. 
2) Amplitude Modulated Continuous Wave (AMCW) 

For AMCW, the intensity of the emitted light is modulated 

at a particular frequency which undergoes a phase shift 

when reflecting off an object [24]. This phase shift can then 

be used to calculate the distance to the object. 
3) Frequency Modulated Continuous Wave (FMCW) 

With FMCW, the frequency of the emitted light is 

incrementally changed in a ramp or triangular manner. The 

received signal will consequently have a constant phase 

delay equivalent to the TOF. Multiplying this by the 

gradient of the slope gives the frequency of the light at the 

time of measurement and hence the distance to the object. 

This technique also enables relative velocity to be 

determined through the Doppler shift [24]. 

A recent in depth review on LiDAR technologies and its 

working principles can be found in [2]. 

 
Fig. 1.  Schematic view of WMG’s proposal of the Testing Continuum 
for Automated/Intelligent Vehicles, where Simulation performs tests 
entirely within a simulated environment; Emulation tests hardware 
within a simulated environment; Track/Controlled Testing tests in a real 
restricted environment that was created for testing; Real World Trials 
tests in the real environment such as on a public road.  
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B. Effect of adverse weather on LiDAR performance 

In this subsection, recent works investigating effects of 

weather on LiDAR performance are presented. One of the main 

issues with LiDAR is degraded performance in the presence of 

rain [26]. If a LiDAR beam intersects with a raindrop at a short 

distance from the transmitter, the raindrop can reflect enough 

of the beam back to the receiver such that it is detected as an 

object [22], [26]. Alternatively, raindrops can absorb some of 

the emitted light [27]. This degrades the range performance of 

the LiDAR demonstrating the need to model the effect that 

rainfall will have on the sensor [26], [27].  

Goodin et al. produced a simplified rain model [28]. They 

made assumptions that the rain was homogenous and uniformly 

scattered and neglected the spatial variation of the hard target. 

They combined the laser pulse energy, speed of light, effective 

receiver area, transmitter and receiver efficiencies into a single 

coefficient, 𝐶𝑠, where 𝐶𝑠 is the product of the above parameters 

over 2. This reduced the LiDAR equation to: 

𝑃𝑟(𝑧) =  
𝐶𝑠𝜌

𝑧2 exp (−2𝛼𝑧)                          (1) 

where 𝛼 is the scattering coefficient, 𝜌 is the backscatter 

coefficient and 𝑃𝑟  is the received power. Since 𝐶𝑠 is constant 

for a particular sensor they further reduce the equation by 

introducing relative power 𝑃𝑛 = 𝑃𝑟 𝐶𝑠⁄  and representing 𝛼 via a 

power law 𝛼 = 0.01𝑅0.6 which takes into account the rainfall 

intensity, 𝑅, in mm/h.  Hence the equation becomes 

𝑃𝑛(𝑧) =  
𝜌

𝑧2 exp (−0.02𝑅0.6𝑧)                       (2) 

To implement the measured distance variation due to rain, 

Goodin et al. derived an equation using work from Filgueira et 

al. [29], and their new distance (𝑧′) measurement was 

𝑧′ = 𝑧 + 𝑁(0,0.02𝑧(1 − 𝑒−𝑅)2)                   (3) 

However, the measurements taken by Filgueira et al. were 

only using rainfall rates up to 8 mm/h meaning the model is 

only valid up to 8 mm/h rainfall intensity [29]. Rain showers up 

to 2 mm/h is considered a light shower, 10 mm/h a moderate 

shower and above that is considered a heavy shower, with 

rainstorms potentially reaching 100 mm/h [27], [30]. For 

continuous rain less than 0.5 mm/h is considered light, up to 4 

mm/h moderate and more than 4 mm/h heavy [30]. 

In their experiment, Filgueira et al. performed real world 

tests using a Velodyne VLP-16 to investigate range, intensity 

and number of points for the LiDAR with respect to different 

materials, with and without rain [29]. Their results suggest that 

rain has a more pronounced effect on the intensity compared to 

the range measurement at increasing rain intensities. Both 

intensity and number of points reduced with increasing rainfall 

as expected, but at differing rates for different materials. Also 

climate chambers have been used to investigate the effect of 

weather on LiDAR performance, e.g. as presented in [26]. The 

main focus was fog, however rain at 55 mm/h was also tested. 

As in [29], a decrease in both intensity and number of points 

was found in the presence of rain. Another paper complimented 

this by showing that rain reduces the maximum range of LiDAR 

sensors [31].  

Other simulations models have been proposed through the 

years; e.g. a simulation model with a series of physical 

equations to predict and quantify the attenuation of LiDAR 

beams with rain was developed in [27]. Their model was found 

to be within 7.5% of the actual attenuation when compared to 

real data. A model using a “hit ratio” for each beam was 

implemented in [32], whereby the “hit ratio” determines the 

likelihood of the beam hitting a raindrop. Points within the 

pointcloud will only be modified if their hit ratio is greater than 

a selected threshold value, e.g. 10%. This model was then tested 

in a specialised test facility where it was demonstrated that 

some points appeared closer to the sensor. However, the authors 

noted that this method was computationally expensive [32]. 

Recent works have been increasingly focusing on a more 

realistic modelling of the interaction between the LiDAR beams 

and the rain droplets, for example Berk et al. takes into account 

a probabilistic representation of the number of drops in the 

volume surrounding the sensor and depending on the rainfall 

intensity [23].  The number of drops, 𝑁(𝐷), is calculated by 

modelling the drop size distribution using an exponential 

distribution: 

𝑁(𝐷) = 8000 ∙ exp(−4.1 ∙ 𝑅−0.21 ∙ 𝐷)               (4) 

where 𝐷 is drop size in mm. By integrating this with respect 

to drop size, the average number of drops in a unit volume can 

be determined and multiplying by the LiDAR beam volume 

gives the average number of drops in the beams path. This 

model enables the simulation of LiDAR detection performance 

by means of comparing probability of real object detection 

against probability of false alarms due to rain droplets [23]. 

Recent publications have also investigated the validation of 

noise models and the combination of noise effect on sensor 

models in virtual environments [33], [34]. The paper by 

Hasirlioglu and Riener in 2019 proposes a methodology to train 

and validate a virtual rain simulation on a regathered set of 

weather noise free dataset [33]. In the paper by Byeon and 

Yoon, an automotive simulation software, Prescan, was used 

with a rain noise model implemented. The proposed model can 

simulate rain precipitations in three different regions, and the 

impact on the received detected power is evaluated, via a 

Matlab LiDAR model [34].  

Building on these works, and the works summarised in Table 

I, our paper presents a LiDAR model created using Unreal 

TABLE I 
STRENGTHS AND WEAKNESSES OF RECENT PUBLICATIONS IN LIDAR 

NOISE ANALYSIS AND MODELLING 

Author Strengths Weaknesses 

Berk et al. 

[23] 

Simplifies LiDAR equation 

Provides functionality to 

calculate backscatter and 
extinction 

Used theoretical LiDAR 

designs to test effect on 
Probability of detection 

Uses method to calculate 

probability of detection 

rather than pointcloud 
adjustment 

Heinzler et 
al. [26] 

Real conditions physically 

replicated 

Mathematically heavy 

Only considers 55mm/h of 
rain 

Guo et al. 

[27] 

Simulation results compared 

to experimental results 

Detailed representation of 
beam in the presence of rain 

No method to directly 

adjust pointcloud inferable 

from results 
Computationally heavy 

Filgueria et 

al. 

[29] 

Simplistic and easy to 

implement 
Considers introduced error 

on distance measurement 

Only valid for rainfall 

measurements up to 
8mm/h 

Hasirlioglu 

and Riener 

[32] 

Real conditions physically 

replicated 

Computationally 

expensive 
Only considers 100mm/h 

of rain 
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Engine 4. Using this software, our simulation can generate real-

time both visual images and LiDAR data with the possibility to 

add real-time noise factors to the virtual environment, such as 

rain. Furthermore, our LiDAR model generates data in the same 

format of commercial LiDAR pointclouds, therefore can be 

used by any hardware and/or software that can be interfaced 

with the real sensor. Table 1 compares some of the strengths 

and weaknesses of the papers reviewed in this section. 

III. METHODOLOGY 

With the importance of the perception system for the 

decision making of automated vehicles, it is imperative for 

simulated sensor data to be realistic and to take into account 

noise factors in order to be used in the development and testing 

stages. With this aspect in mind, we have reviewed over thirty 

different simulation software suites for automotive use based 

on accessibility to the software/hardware, usability and 

potential for building on additional capabilities, such as 

adding enhanced sensor models and noise factors. We 

shortlisted six software suites that were assessed in depth; the 

shortlist contains a range of open source software and 

commercial software [16]. Out of the six software suites, we 

have chosen to use Unreal Gaming Engine to create our 

environment and sensor model within the WMG 3xD 

simulator, and for this reason the simulations described in this 

paper are based on Unreal Engine. Several open source 

software such as Carla and Airsim uses Unreal Engine as a 

backend. Young et al. has also used Unreal Engine to for 

simulation of autonomous vehicles [35]. Furthermore, Unreal 

Engine offers the best flexibility and fidelity in comparison 

with other shortlisted software, offering the capability to 

develop new adds on in C++, such as our LiDAR model. 

A. LiDAR Model 

The LiDAR sensor model created is based on the available 

LineTrace Function which is a raycast method of the Unreal 

Engine. Raycasting is based on finding the first intersection 

between a 3D object and a line with given start and finish. In 

our model, each one of the LiDAR beams is represented by 

one line generated by the LineTrace Function, and the 3D 

objects will be the road users in the surrounding of the ego-

vehicle, see Fig.2. The origin of the lines is placed on the 

sensor position on the ego car and the end point will depend 

of the angles of emission; in the case there is an object in the 

line trajectory the function then returns a 3D point (the 

intersection point) and the physical properties of the object 

like reflectivity and the normal vector (to the surface of the 

object) of the impact. The distance to the object and the 

properties returned from the raycast are then used in an 

attenuation equation to calculate a relative returned intensity; 

values of returned intensity above the detection threshold will 

add the specific point to the pointcloud. The relative returned 

intensity is an inverse exponential equation, modified from (2). 

The number of raindrops encountered along the beam 

trajectory increasingly reduces the intensity returned and may 

result in an object not detected and therefore a False Negative 

(FN) point. Where there is no object in the beam path, the 

LineTrace Return outputs the max range of the LiDAR sensor. 

The complete and noisy pointcloud is encoded and then 

transferred through TCP to its destination. In our model, this 

is transferred to a visualisation software, but can also be to an 

ACS for example. 

B. Real-Time Rain Model 

The rain model developed builds upon the work in [23]. The 

drop size distribution is calculated using the exponential 

distribution in (4). However, this can be replaced by any 

distribution, should this be found to be more accurate for the 

application of interest [23]. This is then integrated with 

respect to drop size with limits of 0.5 mm and 6 mm, as 

raindrop size is typically in this range [36]. This gives the 

average number of raindrops in a unit volume so multiplying 

by the beam volume gives the average number of raindrops, 

𝜇, in the beams path. For simplicity, no beam divergence is 

assumed, however the effect of beam divergence can be 

assessed by discretising the beam into a number of sections, 

𝑘, and summing the individual beam volumes, as shown in (5-

6). 

𝑉𝑏𝑒𝑎𝑚 =  ∑ 𝑉𝑏𝑒𝑎𝑚𝑖

𝑘
𝑖=1                              (5) 

𝑉𝑏𝑒𝑎𝑚𝑖
=  𝜋 ∗ 𝑟𝑏𝑒𝑎𝑚𝑖

2 ∗ 𝑍 𝑘⁄                          (6) 

Where 𝑟𝑏𝑒𝑎𝑚𝑖
 is the radius of the beam in section 𝑖 and 𝑍 is 

the distance to the object. The average number of raindrops, 

𝜇, is then used as the mean for the Poisson distribution as in 

Berk et al. (7) [23].   

𝑝(𝑛) = exp(−𝜇) ∗ (𝜇𝑛 𝑛!⁄ )                          (7) 

If one or more raindrops are detected within the beam path 

based on (7), an additional partial return will be created due to 

water reflection. The partial return can be interpreted as a false 

positive, as explained below. 

The aim of our model is to be able to generate in real-time 

an ideal pointcloud or a pointcloud affected by the rain in the 

same format and data-rate of the pointcloud generated by a 

real LiDAR sensor. In order to achieve that, our model needs 

to be efficient enough as to not slow down the simulation 

system’s computational efficiency. We can generate up to 60 

frames per second for the simulation visuals and hence the 

LiDAR model should be able to generate a pointcloud 

compatible with the simulation speed and with the number of 

points generated per second by commercial LiDAR sensors.  

The proposed sensor model is able to create an output signal 

with the same format and framerate of a commercial 128 

channel LiDAR, without compromising the real-time 

performance of our virtual environment, i.e. the WMG 3xD 

 
Fig. 2.  Schematic view of the software architecture for obtaining a noisy 
3D pointcloud from the virtual environment. Unreal uses the LineTrace 
Function to generate each one of the ideal 3D points associated with 
the received beams; then the noise model is applied to each point and 
the noisy pointcloud generated.   
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Simulator. The LiDAR and noise models work as 

schematically shown in Fig. 3 that represents the decision 

logic behind the noisy pointcloud composition; this process 

entails: removing points due to high attenuation; returning a 

rain drop point; returning an actual point on one of the objects 

in the scene. In case of no real object in the beam trajectory, 

the code applies the rain model by comparing RIRD, the 

cumulative Returned Intensity of Rain Drops in the beam path 

(the statistical number of raindrops is p(n) from (7)), to the 

detection threshold, DT.  A False Positive (FP) will be 

returned when calculated RIRD > DT. In the case of object 

detection instead, if there are no raindrops in the beam path 

(p(n) < 1) the point is returned regularly. If there are raindrops 

in the beam path (p(n) > 1) the returned raindrop intensity 

RIRD is compared to the Returned Intensity of the Object 

(RIO), and the higher of the two is further compared to the 

receiver DT. If rain intensity is higher than the object one and 

high enough to be detected we would have a false positive (in 

the position of the first rain droplet in the beam trajectory), 

otherwise no detection and therefore a false negative.  

C. Experimental Setup 

For the purposes of this paper, an experiment has been 

carried out to test real-time the deployment of the rain model 

in combination with the LiDAR based on the LineTrace 

function. The experiment consists of running the simulation 

with the modelled LiDAR installed on the virtual vehicle roof 

under no rain and then under two rainfall intensity conditions 

(10 mm/h and 50 mm/h which are the limit of moderate and 

heavy rain showers as defined by the MetOffice [30]). 

Furthermore, we have parameterised our model based on a 

Velodyne 32 channel LiDAR with a vertical aperture of 40° 

(evenly distributed between -25° and 15°), a horizontal 

resolution of 0.2°, and a refresh rate of 10Hz [37]. The relative 

detection threshold (between the emitted and received power) 

value of the LiDAR detector can also be tailored to match the 

specification of any real LiDAR units. In our simulations we 

used three different relative detection threshold values, 

namely 1.0x10-5, 0.5x10-5 and 0.1x10-5, representing different 

limits of detection of the LiDAR detector, similar to those 

used in [23].  Increasing the detection threshold would mean 

that the LiDAR unit can filter out more noise, but it might 

mask some distant object with a low intensity return. A 

LiDAR with a lower detection threshold is able to detect 

signals reflected by objects even if they have been remarkably 

attenuated, but would not be able to filter out all the noise in 

the environment, due to rain in our case. The values 1.0x10-5 

and 0.1x10-5 represent these extreme cases in our simulation, 

whereas going either above or below them won’t change the 

output pointcloud any further. An optimal detection threshold 

for our model should enable the model to mimic the 

pointcloud output by a real LiDAR sensor under the same 

environmental conditions. The value 0.5x10-5 represents this 

case, and it can be fine-tuned based on pointcloud 

measurement performed with a real LiDAR sensor. The output 

of the different simulations (varying rain rate and DT) will be 

the resulting pointclouds that are processed for analysis. The 

scene, built with Unreal Engine, used in our simulation 

consists of the ego vehicle in an empty environment with only 

 
Fig. 4.  A view of the simulation scene created in Unreal Engine. The 
ego vehicle is the black vehicle at the centre. Other objects in the scene 
includes a red vehicle, a boulder and a building at 23m, 47m and 78m 
respectively from the ego vehicle). 

 

 
Fig. 5. (a) PointCloud generated by the sensor model (ground points 
have been filtered out) and (b) number of points detected verses 
distance in ideal weather conditions. In (b) the three circles represents 
positions of the three targets 

b) 

 
Fig. 3.  The flow process for the logic of the rain model where p(n) is 
the number of drops returned by the probabilistic rain model, RIO is the 
Returned Intensity of the Object, RIRD is the Returned Intensity of rain 
drops, and DT is the Detection Threshold for intensity 

a) 
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three objects at specified distances illustrated in the Fig. 4. 

These objects are a red sedan, a rock and a building (at 23m, 

47m and 78m respectively from the ego vehicle). 

IV. RESULTS 

First of all, we performed a simulation of the LiDAR 

detection by the ego vehicle in the scene in Fig. 4 with ideal 

environmental conditions. In this case, the attenuation is 

dependent mainly on the optical path of the beam [23]. The 

ideal pointcloud generated is reported in Fig. 5a, where we 

filtered out the ground points. The figure clearly demonstrates 

that the three objects in the scene are accurately detected, with 

a neat representation of their size and shape. Our model 

generates 57600 line traces per frame. From these emissions, 

36642 points are returned detections in the pointcloud, of which 

circa 2101, 738 and 134 belong to the three objects in the scene 

(the building, the boulder and the second vehicle respectively). 

Fig 5b represents the number of points in the pointcloud at 

different distances from the ego vehicle, including ground 

points. The points detected in vehicle proximity (between 0m-

20m) are mainly ground points, conversely points in the regions 

20m-30m, 40m-50m, and 70m-80m represent the objects in the 

scene. It is worth noting that the number of ground points 

decreases steeply when the distance increases, and also that due 

to the resolution and accuracy degradation with the distance [2].  

Then we generated the simulation for the two rain conditions 

and the three detection threshold values, as described in 

previous section. The pointclouds generated with the same 

threshold value (0.5 x 10-5) and the 2 rainfall intensities are 

depicted in Fig. 6a-b. It can be observed that several points not 

associated to real objects are present in the short range (up to 

around 50 m of distance from the ego vehicle), and these points 

are not on the ground plane and therefore cannot be filtered out. 

Nonetheless the real objects in the scene have a decreased 

number of points representing them in the pointcloud, and this 

degradation is more evident for the highest rainfall. 

In Fig. 7 we compared the detected points at given distance 

intervals with respect to the ideal detection presented in Fig. 5b. 

There is a trend of detecting more points in the short range (with 

a peak value at increasing distance as the detection threshold 

decreases). On the contrary, it is observed that there is a 

significant reduction in points at the farther distances from no 

rain to 10 mm/h to 50 mm/h, and this trend is similar for all the 

thresholds. There is also a significant drop of the detected points 

as the rainfall intensity increases. This roughly matches the 

range reduction observed by [38]. Similarly, the amount of 

points increases at closer range as observed by the same 

authors. 

Fig. 8 shows the amount of False Positive (FPs) points 

(detected points do not corresponding to real objects in the 

scene) and False Negatives (FNs) points (points in scene 

belonging to real objects that are not detected due to the rain 

noise) as a function of the detection threshold used in the model 

and for the two rain conditions; the simulation with no rain has 

been used as the ground truth. It is observed that FPs and FNs 

are affected in an opposite way by the selected DT: FPs 

(continuous lines in Fig.8) increase at a lower intensity 

thresholds and FNs (dashed lines) increase at a higher intensity 

thresholds. However, as expected, these two types of 

misdetections increase when the rainfall increases (in our 

simulations from 10mm/h to 50mm/h).   

 
Fig. 7.  Normalised distribution (using ideal distribution, Fig. 5b, as 
reference) of detected points for different testing parameters of rain and 
detection threshold. In the shadowed areas, points have been 
interpolated 

 
Fig. 8.  Percentage of false positive (solid lines) or false negative 
(dotted lines) points in the pointcloud as a function of the LiDAR 
detector threshold; the higher rain rate is characterised by an increase 
in mis-detected points with respect to the lower rain rate  

 
Fig. 6. (a) Simulated pointcloud with a rain intensity of 10 mm/h and a 
threshold of 0.5 e-5 and (b) Simulated pointcloud with a rain intensity 
of 50 mm/h and a threshold of 0.5 e-5 

a) 

b) 
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V. DISCUSSION 

An important aspect when using simulations for testing 

Automated Vehicle functions is to feed them with sensor signals 

that are of the same type of the signals generated by real sensors. 

Our Unreal LiDAR model can run real-time in our 3xD 

simulator, generate the same information stored in a real LiDAR 

pointcloud and can produce pointclouds with 128 LiDAR 

channels at 20 Hz. Comparing this model with real sensor 

performance, we are able to simulate commercial 360° LiDARs, 

such as the Velodyne’s VLS-128 and the Ouster OS1-128. 

In Fig. 4a, it is clearly shown that in ideal weather condition, 

the pointcloud generated by our model has a richness of details 

typical to LiDAR sensor. However, our interest is not only to 

generate a realistic LiDAR output, but also to have the possibility 

to study, in our immersive 3xD simulator, the effect of noise. In 

particular, in this study, we focused on rain noise, as rainy 

weather is a challenging condition for environmental perception 

sensors, and as mentioned before, particularly for LiDAR [26].   

In our 3xD simulator we have the possibility to real-time change 

the weather conditions, to visually emulate a rainy day. Now, 

with the model that we developed and presented, we can combine 

this kind of scene with its effect on the LiDAR sensors mounted 

of the ego-vehicle. This achievement opens the possibility to 

study the combined real degradation of visual and LiDAR 

sensors in the case of rainfall of different intensities. 

Furthermore, our LiDAR model has the possibility to vary the 

detector threshold, therefore can be tailored to the performance 

of a specific commercial LiDAR. 

The effect of increasing rainfall is clearly shown in Fig. 5. As 

the rain increases, the pointcloud becomes noisier and the objects 

in the scene are more difficult to detect, confirming the decrease 

in range reported in [29]. These visual inspections of the 

pointcloud are confirmed by the distribution of points versus 

distance from the sensor for different rainfall intensities, as 

reported in Fig. 6. All of the generated pointclouds in rainy 

weather show an increased number of points in the short range 

(up to 50 m) due to several rain drops erroneously detected by the 

LiDAR; conversely, the number of points detected in medium 

range (50-100m) is dramatically reduced, and the reduction 

becomes more relevant as the distance from the sensor increases. 

We observed about 40%-80% reduction in number of points for 

10 mm/h rain intensity, and about 80%-100% for 50 mm/h rain 

intensity. The effect of heavy rain obviously hinders the detection 

of objects in medium range. We can also note that the threshold 

has an effect on filtering the noise in the short range, the higher 

the threshold the more evident is this effect; however, this 

reduction of noise has an impact also on detecting points with 

lower intensity reflected by distant objects. This trend is 

confirmed in Fig. 6; in fact, the highest threshold has clearly a 

lower number of false positives with respect to the other two 

lower values of detection threshold. This decrease means that a 

lower number of rain points are detected in the pointcloud. 

However, the highest threshold has also a significant increase in 

false negatives, as explained above. Overall, the medium 

threshold has a good balance between FPs and FNs, which 

accounts for under 25% of the number of points emitted in the 

frame in total. As expected, the lower threshold has a dramatic 

increase in FPs, as several rain droplets in the short range are 

detected with this setting. 

These pointcloud roughly match what is described by Jokela 

et al. in their experiment, however, that was for light snow and 

few false positives are observe as opposed to this work [39].  

VI. CONCLUSION 

This work presents a real-time LiDAR model implemented 

using the Unreal gaming engine that is used in automotive 

testing for high fidelity visual rendering of the testing scenarios. 

The sensor model is combined with a noise model (in our case 

a probabilistic rain model) without affecting simulation real-

time performance and paving the way to combining more noise 

sources using the framework presented in [20]. We tested 

LiDAR performance without and with different rainfall 

intensities, and studied the effect of the detection threshold on 

false positive and false negative detections. The detection 

threshold can be fine-tuned to produce with our model an output 

pointcloud with the same format and speed of a real LiDAR, 

and with realistic data degradation due to environmental noise. 

We are currently working on modelling more noise factors, 

including adversarial attacks and blinding of the LiDAR. 
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