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Approximate symmetries of guiding-centre motion
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Abstract. In a strong, inhomogeneous magnetic field, charged particle dynamics may

be studied in the guiding-centre approximation, which is known to be Hamiltonian.

When the magnetic field is quasisymmetric, the first-order guiding-centre Hamiltonian

structure admits a continuous symmetry, and therefore a conserved quantity in addition

to the energy. Since the first-order guiding-centre system is only an approximation,

it is also interesting to consider approximate symmetries of the guiding-centre

Hamiltonian structure. We find that any approximate spatial symmetry coincides

with quasisymmetry at first order. For approximate phase-space symmetries, we derive

weaker conditions than quasisymmetry. The latter include “weak quasisymmetry” as

a subcase, recently proposed by Rodŕıguez et al. Our results, however, show that

weak quasisymmetry is necessarily non-spatial at first order. Finally, if the magnetic

field is constrained to satisfy magnetohydrostatic force balance then an approximate

symmetry must agree with quasisymmetry to first order.

Submitted to: J. Phys. A: Math. Theor.

1. Introduction

Quasisymmetry was proposed [1] as a way to achieve magnetic confinement and is the

design principle [2] underlying several modern optimised stellarators, including NCSX

(partially constructed at PPPL) and HSX (built and operated at the University of

Wisconsin-Madison). It is a spatial symmetry of first-order guiding-centre motion that

guarantees integrability.

In a previous work [3], necessary and sufficient conditions on a magnetic field were

derived for the existence of quasisymmetry, treating both system and symmetry as exact.

It is worth noting that these hold for all nonzero values of charge, mass and magnetic

moment.

Nevertheless, an approximate symmetry may be just as good as an exact one,

especially since the guiding-centre system is only an approximation. Recently, it was

suggested [4] that approximate considerations of guiding-centre motion can relax the

conditions of quasisymmetry.

In this paper, we expand upon the approximate symmetry analysis presented in [4].

We find that any strictly-spatial approximate symmetry must agree with quasisymmetry
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Approximate symmetries of guiding-centre motion 2

to first order. We also identify the first-order necessary and sufficient conditions for

existence of a general, phase-space approximate symmetry. These conditions include

weak quasisymmetry [4] as a special case, but we prove it is spatial only to lowest order.

Finally, we show that if the magnetic field is restricted to magnetohydrostatic force

balance, then any approximate symmetry is restricted to quasisymmetry.

2. Guiding-centre motion

The very notion of guiding centre is built on an approximate symmetry. It assumes that

the motion of charged particles admits approximately a rotational symmetry about the

magnetic field. As a result, the magnetic moment is an adiabatic invariant. This allows

to reduce the original charged-particle motion to a 2-degree-of-freedom system for the

gyrocentre, which tracks or, to put it the other way round, guides the particle. Guiding-

centre motion averages over the fast, small-radius gyration, and describes the system

reduced under gyrosymmetry.

There have been various formulations of the guiding-centre system that agree to first

order of approximation. Here we follow Littlejohn’s, without taking into account electric

fields, time-dependence or relativistic effects, which can be treated though accordingly.

Guiding-centre motion involves different features of the magnetic field B, such as

its strength or the rotation of the unit field or ultimately the magnetic flux, where

both contravariant and covariant components of B come into play. This suggests

the language of differential forms as more appropriate, especially when it comes to

invariance properties. Calculations and results support its use for brevity and hopefully

clarity. That being said notions and notation are kept to a minimum.‡ For the

calculus of differential forms, besides classical textbooks we refer to the recent tutorial

[5] specifically adapted to 3D and plasma physics.

Throughout this paper we consider a 3-dimensional oriented smooth Riemannian

manifold Q equipped with associated volume-form Ω, and assume that the magnetic

field B is nowhere zero on Q. We set M = Q×R, and also assume enough smoothness

for all objects on M , wherever needed.

Let x and v‖ denote the position and reduced velocity of the guiding centre,

respectively. We think of z = (x, v‖) as a point of M . Following [6, 7], the equations of

first-order guiding-centre (FGC) motion for normalised constants (m = q = 1) read

ẋ = B̃−1‖ (v‖B̃ + εµ b×∇|B|),

v̇‖ = −µB̃−1‖ B̃ · ∇|B|,
(1)

where b = B/|B|, B̃ = B+ εv‖curl b is the so called modified magnetic field, B̃‖ = B̃ · b,
µ is the value of the magnetic moment, and ε is a scaling parameter that indicates the

‡ In short, the main tools are as follows. For any vector field u, Lu denotes the Lie derivative with

respect to u, iu stands for the interior product of a form with u, and u[ the corresponding 1-form.

Finally, [u,w] = Luw stands for the commutator of any two vector fields u,w. The only relations used

next are limited to basic properties among Lu, iu, the exterior derivative d and the wedge product ∧.
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Approximate symmetries of guiding-centre motion 3

order of the guiding-centre approximation. For a weakly inhomogeneous magnetic field,

ε� 1 says that the magnetic field varies slowly within a gyroradius ρ and a gyroperiod

τ . This can be expressed as ρ/L, τ/T ∝ ε, where L and T stand for the characteristic

lengths and time (seen by the particle) over which B changes appreciably. As both ρ

and τ are inversely proportional to the gyrofrequency ΩB = q|B|/m, one may adopt

ε = m/q and treat µ as the magnetic moment per unit mass instead of normalisation.

An equivalent way to express the above system is

B̃ × ẋ+ εv̇‖b+ εµ∇|B| = 0,

b · ẋ− v‖ = 0,
(2)

explicitly defining v‖ as the component of the guiding centre velocity that is parallel to

the magnetic field. Although (1) is in solved form, (2) is often more preferable to use

and in fact precedes it in a Hamiltonian derivation.

In this form, the system admits a Hamiltonian formulation in the sense of iV ω =

− dH for V = (ẋ, v̇‖), where the symplectic form ω and Hamiltonian function H on M

(minus the set where B̃‖ = 0) are given by [6, 8]

ω = β + εd(v‖b
[) (3)

H(x, v‖) = ε(v2‖/2 + µ|B|(x)). (4)

Here β = iBΩ is a 2-form on M expressing the magnetic flux, and the projection

from M to Q that pulls back β and b[ is dropped to simplify notation. Note that

dβ = (divB)Ω = 0, that is, β is closed since B is divergence-free.

In terms of the modified vector potential Ã = A+εv‖b, system (2) is also formulated

as a variational problem described by the Lagrangian [7]

L(x, v‖, ẋ, v̇‖) = Ã(x, v‖)· ẋ−H(x, v‖), (5)

or equally the Poincaré-Cartan form α = Ldt = Ã[ −Hdt on extended state space [8].

The magnetic potential A[ always exists locally, since by the Poincaré lemma the closed

magnetic flux form β is locally also exact on Q, i.e., β = dA[. If
∫
S
β = 0 for all surfaces

S representing the second homology group H2(Q), then A[ is global.

3. Approximate Hamiltonian symmetries

Approximate symmetries were introduced in [9] in a framework very close to Lie’s

symmetry groups. An independent approach was presented in [10] with a particular

focus on dynamical systems and connections with normal forms. See also [11, 12] for

more reading. Here we adapt some of these notions to a Hamiltonian setup.

There are two things that a symmetry of an approximate system being approximate

means. The first is that the symmetry as a transformation is approximate, and the

second is that the symmetry leaves the system approximately invariant. For consistency,

the order of approximation in both cases is the same as the system’s. By symmetry in

this paper, we will mean continuous symmetries on M .
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Approximate symmetries of guiding-centre motion 4

The key ingredient to quantify approximate methods is that any object that depends

on a small parameter ε is considered only up to terms O(εk) for some integer k. To apply

this, it is useful to work on the equivalence class of functions described as follows. Any

two functions f, g that differ by O(εk+1)-terms are regarded as equal. To relax notation,

we express this by writing

f(z; ε) = g(z; ε) +O(εk+1) ⇔ f(z; ε) ≈ g(z; ε) (6)

for some fixed k.

Each equivalence class [f ] under ≈ has a natural representative, namely the kth-

order Taylor polynomial of f in ε about ε = 0. Thus, we can think of any Ck function

f in ε defined on some manifold M as

f(z; ε) ≈
k∑
i=0

εifi(z), (7)

z ∈M . We do the same for any ε-dependent differential form, vector field, and mapping

whatsoever on M , assuming they are sufficiently smooth in a neighbourhood of ε = 0.

In the following we simply let k = 1, as the forthcoming notions straightforwardly

generalise to any order of approximation. So, the term “approximate” from now on will

mean approximate of first order, unless stated otherwise.

Definition 3.1. An approximate dynamical system on a manifold M is a system of

ordinary differential equations ż = V (z; ε) with V ≈ V0 + εV1, where V0, V1 are vector

fields on M .

Under the equivalence ≈, note that any system that agrees up to first order with

the vector field V will do. We can express this by replacing = with ≈ in (1). Within this

class, it is useful to work with Littlejohn’s representative system that has a Hamiltonian

structure.

We think of Hamiltonian systems in terms of symplectic forms, i.e., nondegenerate

closed 2-forms on M . It is useful, however, to relax the nondegeneracy requirement,

allowing presymplectic forms, which are just closed 2-forms. In the approximate setting,

we ask for

Definition 3.2. An approximate Hamiltonian system (ω,H) on a manifold M is an

approximate dynamical system V that satisfies

iV ω = − dH (8)

for ω = ω0 + ε ω1, H = H0 + εH1, where ω0 is a symplectic form, ω1 is a presymplectic

form and H0, H1 are functions all on M .

We start by making precise the first aspect, what is an approximate transformation

of a system.

Definition 3.3. An approximate transformation on a manifold M is a smooth map

Φ : M × I −→M with Φ(z; ε) ≈ Φ0(z)+ εΦ1(z), z ∈M that is invertible for each ε ∈ I,

where I ⊂ R is open and contains 0.
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Approximate symmetries of guiding-centre motion 5

As mentioned above, we consider symmetries in terms of continuous transforma-

tions. This means there is a family of transformations that depend continuously on a

parameter in a manifold of dimension at least 1. Typically this family is required to

form a group. In the approximate context, we have the following notion.

Definition 3.4. A one-parameter approximate transformation group on a manifold M

is a set of approximate transformations Φτ such that

(i) Φτ ≈ Id iff τ = 0,

(ii) Φτ1 ◦ Φτ2 ≈ Φτ1+τ2

for all τ, τ1, τ2 ∈ G, where G ⊂ R is open and contains 0.

Definition 3.5. The infinitesimal generator of a one-parameter approximate

transformation group Φτ on a manifold M is defined by

U(z; ε) ≈ dΦτ (z; ε)

dτ

∣∣∣∣
τ=0

(9)

The converse to this relation, which builds the group from the generator, is given

by the solution z̃ = Φτ (z; ε) to the initial-value problem dz̃/dτ ≈ U(z̃), z̃(0) ≈ z.

Equivalently, it can be constructed from the exponential map in the approximate sense,

Φτ ≈ exp(τU), where the exponential of a vector field is defined by following it for time

one (thus exp(τU) is the map given by following the vector field U for time τ).

Combining Definitions 3.4 and 3.5, we see that the generator (9) is a vector field of

the form U = U0 + εU1, where U0 = dΦτ
0/dτ |τ=0 and U1 = dΦτ

1/dτ |τ=0.

Moving to the second point, a kth-order approximate transformation is a kth-

order approximate symmetry of a kth-order approximate system if it leaves the system

invariant up to O(εk)-terms. For an autonomous system described exactly by a vector

field V , a necessary and sufficient condition for a vector field U to be an exact symmetry

is that U and V commute. In the approximate case, the symmetry criterion applies

accordingly and is given below as a definition.

Definition 3.6. An approximate symmetry of an approximate system ż = V (z; ε) on

a manifold M is a one-parameter approximate transformation group generated by a

vector field U on M that satisfies [U, V ] ≈ 0.

For approximate Hamiltonian systems and symmetries, the invariance criterion

from the exact case also applies here accordingly and is given by the next definition.

Definition 3.7. An approximate Hamiltonian symmetry of an approximate Hamilto-

nian system (ω,H) on a manifold M is a one-parameter approximate transformation

group generated by a vector field U on M that satisfies LUω ≈ 0 and LUH ≈ 0.

For multiple future reference, it is worth noting that under dω = 0 and iV ω = − dH,

for any vector field u we have the relations

LUω = diUω (10)

LUH = iUdH = iV iUω. (11)
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Approximate symmetries of guiding-centre motion 6

Then an approximate version of Noether’s theorem for Hamiltonian systems follows.

While the map from constants of motion to Hamiltonian symmetries is automatic, its

inverse though, given Definition 3.7, stumbles on the exactness of the closed 1-form iUω.

The next result offers a way out.

Lemma 3.8. Let V be an approximate Hamiltonian system (M,ω,H) and U an

approximate Hamiltonian symmetry generator. If closed trajectories of the set of fields

fU + gV with f, g arbitrary functions span H1(M), then iUω is approximately exact.

Proof. If U is a Hamiltonian symmetry generator, then iUω is closed up to first-order

terms from (10), because LUω ≈ 0. Also, iXiUω ≈ 0 for any X = fU + gV from (11),

since LUH ≈ 0. So,
∫
γ
iUω ≈ 0, where [γ] = X, hence the result.

Definition 3.9. A functionK(z; ε) = K0(z)+εK1(z), z ∈M is an approximate constant

of motion for an approximate dynamical system V on a manifold M if LVK ≈ 0.

Theorem 3.10. If a function K is an approximate constant of motion for the

approximate Hamiltonian system (ω,H), then there exists an approximate Hamiltonian

symmetry generated by a vector field U , unique up to equivalence, such that iUω ≈
− dK. Under the assumption of Lemma 3.8, the converse is also true.

Proof. For any function K, a vector field U = U0 + εU1 such that iUω ≈ − dK is well-

defined, since ω0 is nondegenerate. This is because the zeroth-order terms iU0ω0 = −dK0

determine U0 uniquely and then the first-order terms iU1ω0 + iU0ω1 = −dK1 determine

U1 uniquely. Thus, we have LUω ≈ 0 from (10), since iUω is closed up to first-order

terms. If LVK ≈ 0, then LUH ≈ 0 too, because from (11)

LUH = − iU iV ω = − iV dK = −LVK. (12)

In the other direction, if a vector field U generates an approximate Hamiltonian

symmetry, iUω ≈ − dK for some global function K by Lemma 3.8. Then, using (12),

K is approximately conserved, because LUH ≈ 0.

Remark 3.11. Here as well as in [3], we have chosen to use Hamiltonian symmetries.

Equally, one can address the same problem in terms of variational symmetries [13].

In other words, assume that U generates an approximate symmetry of the variational

formulation for the system. This means that, for an O(ε)-Lagrangian, U leaves
∫
Ldt

invariant modulo boundary terms and up to O(ε)-terms. Infinitesimally for the FGC

Lagrangian (5), it is expressed as LUα ≈ df for some arbitrary function f(x, v‖), recalling

α = Ã[−Hdt from section 2. This condition splits by dt into LU Ã
[ ≈ df and LUH ≈ 0.

Note that dÃ[ = ω, so applying d to the former gives LUω ≈ 0. Therefore we recover

Definition 3.7. The opposite direction requires Lemma 3.8. Variational symmetries

assume K = U · Ã − f is global from the beginning, and so Noether’s formulation of

Theorems 3.10 and 4.7 soon to follow does not require this lemma.
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Approximate symmetries of guiding-centre motion 7

4. Noether’s theorem for approximate presymplectic systems

The FGC system does not follow Definition 3.2, as ω0 = β is everywhere degenerate

and therefore not symplectic. Consequently Theorem 3.10 does not apply in this case.

However, nondegeneracy of ω0 is actually a requirement only in the first direction of the

theorem. Thus, if it fails then an approximate conserved quantity may correspond to

more than one approximate Hamiltonian symmetry. The implications of this degeneracy

for Noether’s theorem are illustrated in this section.

A closed 2-form ω is called presymplectic. Thus, presymplectic forms may be

degenerate and of variable rank. The rank of any 2-form ω is the dimension of the

range of the associated linear map ω̂ from tangent vectors to cotangent vectors at each

point, given by ω̂(X) = iXω, and ω is degenerate if and only if the rank is less than the

dimension of the manifold. For ε 6= 0 the guiding-centre form (3) in the exact scenario

is symplectic except where B̃‖ = 0. But for ε = 0 it reduces to β, which is closed

(divB = 0) and its rank is 2 everywhere (as B = 0 is excluded) on the 4-dimensional

manifold M = Q× R, so it is presymplectic and nowhere symplectic.

In general, the kernel of ω consists of all the vector fields that annihilate ω and

degeneracy means nonzero kerω of dimension complementary to the range. In the

approximate setup, in order to include any degeneracies arising from the equivalence

relation ≈, we consider

Definition 4.1. For a 2-form ω = ω0 + ε ω1, kerω is the set of all approximate vector

fields S such that iSω ≈ 0.

For a presymplectic form ω, we continue to say a dynamical system V is Hamiltonian

if iV ω = − dH for some H. In contrast to the symplectic case, however, this does not

have any solutions V if dH is not in the range of ω, and if dH is in the range then it

has an affine space of solutions, consisting of one solution plus anything in its kernel, so

(ω,H) no longer determines V uniquely. Thus, to specify a presymplectic Hamiltonian

system we give (V, ω,H). We do the same for approximate systems. In the sense of

Definition 4.1, note that nondegeneracy of an approximate 2-form ω = ω0+ε ω1 requires

only ω0 to be nondegenerate. Failing to meet this requirement, the guiding-centre form

for ε� 1 can be said to be presymplectic. More generally, we say

Definition 4.2. An approximate presymplectic Hamiltonian system (V, ω,H) on a

manifold M is an approximate dynamical system V that satisfies iV ω = − dH for

ω = ω0 + ε ω1, H = H0 + εH1, where ω0, ω1 are presymplectic forms and H0, H1 are

functions all on M , assuming ω0 is nowhere symplectic.

Next we present some symmetry aspects introduced by presymplectic forms. For

approximate forms, the points we limit ourselves to are very similar to the exact case,

thus we fine-tune them directly for approximate presymplectic systems. So, first, we

adopt again Definition 3.7 for Hamiltonian symmetries. Note though that the kernel of

a presymplectic form gives rise automatically to Hamiltonian symmetries of all systems

V with the same presymplectic form ω regardless of the Hamiltonian function H.
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Approximate symmetries of guiding-centre motion 8

Proposition 4.3. For an approximate presymplectic Hamiltonian system (V, ω,H), any

vector field in kerω generates an approximate Hamiltonian symmetry for all H.

Proof. Let iSω ≈ 0 for some vector field S. Then LSω = diSω ≈ 0 from (10), and

LSH = iV iSω ≈ 0 from (11), as V respects the order of approximation of iSω.

Thus, such symmetries are not triggered by the dynamics of a particular system,

they merely reduce it to a local symplectic submanifold. Moreover, they trivially satisfy

the relation of Theorem 3.10 for a constant function. We say

Definition 4.4. A trivial symmetry of an approximate presymplectic Hamiltonian

system (V, ω,H) is a transformation generated by a vector field in kerω.

Remark 4.5. Unlike the symplectic case, in the presymplectic case we cannot deduce

that a Hamiltonian symmetry U is a symmetry of V , only that [U, V ] ∈ kerω and

[U + S, V ] = 0 for some S ∈ kerω.

In order to restore the one-to-one correspondence in Noether’s theorem, we need to

consider equivalence classes of Hamiltonian symmetries, each differing from one another

by a trivial one. This is where an approximate version meets a presymplectic one.

Definition 4.6. For a 2-form ω = ω0 + ε ω1, ranω is the set of all approximate 1-forms

iXω for approximate vector fields X.

Theorem 4.7. If a functionK is an approximate constant of motion for the approximate

presymplectic Hamiltonian system (V, ω,H) with dK ∈ ranω, then there exists an

approximate Hamiltonian symmetry generated by any vector field U + S such that

iUω ≈ − dK and S ∈ kerω. Under the assumption of Lemma 3.8, the converse is also

true.

Proof. The proof follows from Proposition 4.3 and along the same lines as the proof

of Theorem 3.10. In the first direction, for any function K with dK ∈ ranω, a vector

field Ũ such that iŨω ≈ − dK can be defined uniquely modulo elements of kerω, i.e.,

Ũ = U +S, where iUω ≈ − dK. Then, as in Theorem 3.10, Ũ generates an approximate

Hamiltonian symmetry. In the other direction, if U + S generates an approximate

Hamiltonian symmetry, then so does U by Proposition 4.3. Then, as in Theorem 3.10,

iUω ≈ − dK by Lemma 3.8 and K is an approximate conserved quantity.

For more general presymplectic systems, where V is not unique or only exists on a

submanifold of M , see [14, 15] for a (purely) presymplectic version of Noether’s theorem.

4.1. The guiding-centre case

Back to FGC motion,

Proposition 4.8. The range of the guiding-centre 2-form ω = β + εd(v‖b
[) consists of

all the 1-forms a = a0 + εa1 on M such that a0 ∈ ran β.
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Approximate symmetries of guiding-centre motion 9

Proof. Let a = a0+εa1 be a 1-form such that iXω ≈ a for some vector fieldX = X0+εX1.

Then iX0β = a0 and iX1β+ iX0d(v‖b
[) = a1. Using d(v‖b

[) = dv‖ ∧ b[ + v‖db
[, the second

equation gives

iX1β + (iX0dv‖)b
[ − (iX0b

[)dv‖ + v‖iX0db
[ = a1. (13)

The first three terms show that a1 is any 1-form for arbitrary X1 and v‖-, b-components

of X0. The latter do not enter the first condition, hence the result.

Proposition 4.9. The kernel of the guiding-centre 2-form ω = β + εd(v‖b
[) consists of

all the vector fields S = εS1 on M such that S1 ∈ ker β.

Proof. Let S = S0 + εS1 be a vector field such that iSω ≈ 0. Then iS0β = 0 and

iS1β + iS0d(v‖b
[) = 0. As in the proof of Proposition 4.8, the second equation gives

iS1β + (iS0dv‖)b
[ − (iS0b

[)dv‖ + v‖iS0db
[ = 0. (14)

Now β = iBΩ, b[ and db[ = icΩ, where c = curl b, are all spatial forms, so the only

v‖-component is the third term. Thus, if we split (14) by dv‖, we have iS0b
[ = 0. The

latter together with the first equation yields iS0Ω = 0, applying iS0 on β ∧ b[ = |B|Ω.

Then the last term in (14) also vanishes, because iS0db
[ = iS0icΩ = − iciS0Ω = 0. So, if

we contract (14) with b, we get iS0dv‖ = 0, since ibiS1β = − iS1ibiBΩ = 0. Thus, S0 = 0

because iS0Ω = 0 and iS0dv‖ = 0. Then (14) reduces to just iS1β = 0.

Corollary 4.10. For FGC motion, there is a one-to-one correspondence between

approximate constants of motion K with K0 = const. being flux surfaces and classes

of approximate Hamiltonian symmetries U + ε(fb, g) where f, g are any functions, and

iUω ≈ − dK.

Proof. The range of β on M consists of all the 1-forms on Q that vanish on B, and so for

exact 1-forms dK0 this means iBdK0 = 0, i.e., K0 = const. is a flux surface. The kernel

of β on M consists of all the vector fields (fb, g), where f, g are arbitrary functions. The

result follows from Theorem 4.7 and Propositions 4.8, 4.9.

Remark 4.11. Note that for all values of µ the vector field V0 = (v‖b,−µ b · ∇|B|)
spans ker β, assuming b · ∇|B| 6= 0. Then, iV0dK0 = 0 says that dK0 belongs to ranω

automatically. In other words, instead of asking K0 = const. to be a flux surface in

Corollary 4.10 we can ask K0 to be independent of µ when b · ∇|B| 6= 0.

5. Approximate quasisymmetry

In this section, we address approximate Hamiltonian spatial symmetries for guiding-

centre motion. Our goal is to see how quasisymmetry can be approximated using the

guiding-centre approximation. Either in the exact or the approximate framework,

Definition 5.1. Quasisymmetry is a Hamiltonian symmetry on Q of FGC motion for

all values of the magnetic moment.
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Approximate symmetries of guiding-centre motion 10

Theorem 5.2. Given a magnetic field B, a vector field u = u0 + εu1 on Q generates an

approximate quasisymmetry if and only if Lu0β = 0, Lu0b
[ = 0, Lu0|B| = 0, Lu1β = 0.

Proof. Substitute u and ω,H from (3)-(4) into the conditions of Definition 3.7 and split

up by different powers of ε, dropping any second-order terms. Starting with LuH ≈ 0,

we get Lu0|B| = 0. Similarly from Luω ≈ 0, we have Lu0β = 0 and

Lu0d(v‖b
[) + Lu1β = 0 (15)

from the zero- and first-order terms, respectively. Now

Lu0d(v‖b
[) = dLu0(v‖b

[) = d(v‖Lu0b
[) = dv‖ ∧ Lu0b[ + v‖dLu0b

[. (16)

Thus, contracting (15) with ∂v‖ , we get Lu0b
[ = 0. Substituting this into (16) gives

Lu0d(v‖b
[) = 0, and so (15) yields Lu1β = 0. Going in the opposite direction, it is

straightforward to see that the converse is also true.

As shown in [3], under the above conditions u0 satisfies several additional properties

such as divu0 = 0, [u0, B] = 0, [u0, J ] = 0, Lu0(u0 · b) = 0 and others. Note that u0 and

u1 are uncoupled.

6. Approximate v‖-symmetries

Subsequently we ask how departures from quasisymmetry that depend on parallel

velocity can relax the conditions on B for FGC motion to have a symmetry. Thus,

we investigate the conditions for an approximate Hamiltonian symmetry on phase space

M , which will often be referred to simply as approximate symmetries. It turns out

(Theorem 6.1) that symmetry generators for all values of the magnetic moment have zero

component in the parallel-velocity direction. Thus, we will also refer to symmetries onM

as v‖-symmetries, which is short for parallel-velocity-dependent symmetries generated

on Q.

Symmetries that involve velocities are not new to charged particle motion.

Gyrosymmetry is an example of an approximate Hamiltonian symmetry involving the

perpendicular velocity to leading order.

Example. Consider the full particle’s motion on the cotangent bundle T ∗Q with

symplectic form ω = β + dv ∧ dx, where v is the particle’s velocity. In the case

of a homogeneous magnetic field, the magnetic moment µ = v2⊥/2|B| is an exact

constant of motion and corresponds via iUω = − dµ to the exact symmetry generated

by U = (v⊥/|B|, v⊥× b) on T ∗Q, where v⊥ is the perpendicular velocity vector of the

particle.

For a weakly-inhomogeneous B, we have ω = β+ ε dv∧dx for ε� 1. The magnetic

moment now extends to an adiabatic invariant K = ε2v2⊥/2|B| + O(ε3), which under
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Approximate symmetries of guiding-centre motion 11

iUω = − dK corresponds to an approximate Hamiltonian symmetry that extends to all

orders, generated by the vector field U = U0 + εU1 +O(ε2) with

U0 = (0, v⊥× b), (17)

U1 = |B|−1
(
v⊥,
{(
v‖ b · c− 2K1 n · ∇|B|

)
b− v‖c+ [b× (v⊥ · ∇b) + n · ∇b]/2

}
× v
)
, (18)

where n = b × v⊥ and c = curl b, as shown in Appendix A. Thus, the exact symmetry

from the homogeneous case splits between terms of different order. Note that the leading

order of U is less by two than K’s, same as with V and H. Formulas (17)-(18) recover

equation (4.6) in [16], where a coordinate-free way is presented to build the so called

roto-rate as a means to gyrosymmetry and the corresponding adiabatic invariant to all

orders for nearly-periodic systems (see Theorems 2.11 and 3.5 therein).

For considerations of general symmetries, we need to work on M = Q × R with

volume form Ω ∧ dv‖. For any vector field U on M , we denote by u the projection of

U on Q, i.e., the spatial components of U collectively, and by w the component of U in

the parallel-velocity direction; we write U = (u,w).

Theorem 6.1. Given a magnetic field B, a vector field U = (u,w) = (u0+εu1, w0+εw1)

on M generates an approximate Hamiltonian symmetry of FGC motion if and only if

Lu0β = 0, (19)

d(v‖Lu0b
[) + Lu1β = 0, (20)

Lu0 |B| = 0, (21)

w = 0. (22)

Proof. From LUH ≈ 0 and (4), we have v‖w0 + µLu0|B| = 0. Then for all values of µ,

we get (21) and w0 = 0. Given Corollary 4.10, take also w1 = 0 under the equivalence

by trivial symmetries. Thus, U has overall zero velocity-component w.

Since w = 0, LUω ≈ 0 reduces to Luω ≈ 0. From the latter and (3), we obtain (19)

from the zeroth-order terms, and Lu0d(v‖b
[) + Lu1β = 0 from the first-order ones. This

in turn gives (20), because Lu0d(v‖b
[) = d(v‖Lu0b

[).

Next we explore some further consequences and also subcases.

Theorem 6.2. If u = u0 + εu1 generates an approximate Hamiltonian v‖-symmetry of

FGC motion, then divu0 = 0, [u0, B] = 0 and ibLu0b
[ = 0. Furthermore,

(i) If u1 = 0, then [u0, c] = 0 and icLu0b
[ = 0, where c = curl b.

(ii) If u0 is spatial, then Lu0b
[ = iBi∂v‖u1Ω.

Proof. Note first that Lu0Ω ∧ dv‖ = diu0Ω ∧ dv‖ = (divu0)Ω ∧ dv‖. Take then the

first symmetry condition (19) and split by spatial and velocity components. In order

to do this, wedge with dv‖ and contract with ∂v‖ , respectively. In the first case, write

Lu0β = i[u0,B]Ω + iBLu0Ω, and therefore Lu0β ∧ dv‖ = (i[u0,B] + divu0 iB)Ω ∧ dv‖, where
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Approximate symmetries of guiding-centre motion 12

Ω ∧ dv‖ is nondegenerate. In the second case, we have i∂v‖Lu0β = i∂v‖u0iBΩ, since

[∂v‖ , u0] = ∂v‖u0. Thus, the first symmetry condition splits into

[u0, B] + (divu0)B = 0, (23)

i∂v‖u0iBΩ = 0. (24)

In the same way, split the second symmetry condition (20). First of all, note that

db[ = icΩ and write d(v‖Lu0b
[) = dv‖ ∧ Lu0b[ + v‖Lu0db

[. Similarly then wedge with

dv‖, using now Lu0db
[ = i[u0,c]Ω + icLu0Ω, as well. In contracting with ∂v‖ , note that

i∂v‖Lu0b
[ = i∂v‖u0b

[ and i∂v‖Lu0db
[ = i∂v‖u0icΩ, since b[ lies on Q. Thus, as before, the

second condition gives

v‖[u0, c] + v‖(divu0)c+ [u1, B] + (divu1)B = 0, (25)

Lu0b
[ − (i∂v‖u0b

[)dv‖ + v‖i∂v‖u0icΩ + i∂v‖u1iBΩ = 0. (26)

From (26) and (24), we have ibLu0b
[ = 0.

Now using this, Lu0|B| = i[u0,B]b
[. Then the third symmetry condition (21)

combined with (23) gives divu0 = 0 and so [u0, B] = 0, as well.

The remaining two statements are automatic from (25), substituting divu0 = 0,

and (26).

Remark 6.3. From the proof of Theorem 6.2, we see that under Lu0β = 0, Lu0|B| = 0,

the condition div u0 = 0 is equivalent to either [u0, B] = 0 or ibLu0b
[ = 0.

Note that, in spite of w = 0, the first two symmetry conditions (19)-(20) still have

v‖-components. The next result shows that (19) can be reduced to a condition on Q

and gives a reformulation of (20).

Lemma 6.4. For any two v‖-dependent vector fields u0, u1 on Q, the conditions (19)

and (20) hold if and only if

iu0iBΩ = dψ0, (27)

v‖Lu0b
[ + iu1iBΩ = dψ1, (28)

respectively, where ψ0 is a spatial function on Q and ψ1 is a function on M , both defined

at least locally. Under (27)-(28), ψ1 is spatial if and only if u0 is.

Proof. Lu0β = diu0β, since β is closed. Thus, by the Poincaré lemma, (19) holds if

iu0β = dψ0 for some local function ψ0 on M . The v‖-component then gives ∂v‖ψ0 = 0,

since iu0β is a 1-form on Q. Similarly, (20) holds if v‖Lu0b
[ + iu1β = dψ1 for some local

function ψ1 on M . In the other direction, ψ0 and ψ1 can be global.

Now, on the one hand, the v‖-derivative of (27) gives i∂v‖u0iBΩ = 0, since B and

ψ0 are spatial. On the other, the v‖-component of (28) yields v‖i∂v‖u0b
[ = ∂v‖ψ1. To

see this, use Lu0b
[ = iu0db

[ + diu0b
[ and note that iu1iBΩ lies on Q, and so does iu0db

[.

Therefore, when both conditions hold, we have ∂v‖u0 × B = 0 and v‖ ∂v‖u0 · b = ∂v‖ψ1.

Hence ∂v‖ψ1 = 0 if and only if ∂v‖u0 = 0.
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Approximate symmetries of guiding-centre motion 13

Included in this section to treat the general case, the above lemma can be combined

with either Theorem 5.2 or 6.1.

From Theorem 6.1, we see already that for a general approximate (Hamiltonian)

symmetry, u0 and u1 are now related via (20). From Lemma 6.4 and (28) in particular,

we can express u1 in terms of u0 and give another characterisation of approximate

Hamiltonian symmetries.

Theorem 6.5. Given a magnetic field B, a vector field U = (u,w) = (u0+εu1, w0+εw1)

on M generates an approximate Hamiltonian symmetry of FGC motion up to trivial

symmetries if and only if Lu0β = 0, Lu0|B| = 0, w = 0, and

u1 = |B|−1b× (v‖X0 −∇ψ1), (29)

where X0 = curl b× u0 +∇(u0 · b), ∇ denotes the spatial gradient and ψ1 is a function

on M defined at least locally such that

B · ∇ψ1 = 0, (30a)

∂v‖ψ1 = v‖ b · ∂v‖u0. (30b)

Proof. First of all, note that X[
0 ∧ dv‖ = Lu0b

[ ∧ dv‖. Thus, the spatial part of (28) is

v‖X0 + B × u1 = ∇ψ1. Cross then with b and drop any trivial symmetries to arrive at

(29). Dotting with b yields b · ∇ψ1 = v‖ b · X0 = v‖ibLu0b
[ = 0 by Theorem 6.2. The

velocity part of (28), as shown in the proof of Lemma 6.4, gives (30b).

Note that equally we can replace X0 with |B|−1(J × u0 +∇(u0 ·B)) in (29), where

J = curlB. Condition (30b) says that the v‖-dependence of ψ1 is determined by the

v‖-dependence of u0. For example, if u0 is an nth-order polynomial in v‖, then so is ψ1.

Remark 6.6. From (29), we deduce that, since u0 is spatial if and only if ψ1 is spatial,

u1 is nonzero up to trivial symmetries unless u0 depends on v‖ or Lu0b
[ = 0. In other

words, we cannot have both spatial u0 and zero u1, assuming Lu0b
[ 6= 0.

To connect with other formulations, we express some key relations of the previous

results in vector calculus notation in Appendix B.

7. Approximate flux surfaces and constants of motion

Back to Lemma 6.4, we see that B · ∇ψ0 = 0 from (27). Thus, even in the case of an

approximate phase-space (Hamiltonian) symmetry there exists a flux function ψ0, at

least locally, and we assume it is global.

From (28) and ibLu0b
[ = 0 we also have B · ∇ψ1 = 0, as stated in Theorem 6.5.

Thus, there exists an approximate, generalised notion of a flux function given by

ψ = ψ0 + εψ1 (31)

assuming ψ1 is also global. We say generalised, because although ψ0 is spatial, ψ1 may

depend on the parallel velocity.
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Approximate symmetries of guiding-centre motion 14

From now on, we will assume that both ψ0 and ψ1 are global, and we will refer to

the level sets of ψ0 as flux surfaces.

Finally, to construct the approximate conserved quantity K that arises from an

approximate Hamiltonian symmetry U in general, we employ Corollary 4.10. Recall that

K is uniquely determined by U via iUω ≈ − dK and vice versa, since trivial symmetries

have been factored out. For any vector field U = U0 + εU1 = (u0, w0) + ε(u1, w1), we

have

iUω ≈ iU0β + ε[iU0d(v‖b
[) + iU1β] = iu0iBΩ + ε[(LU0 − diu0)v‖b[ + iu1iBΩ]

= iu0iBΩ + ε[w0b
[ + v‖Lu0b

[ + iu1iBΩ− d(v‖u0 · b)],

and so, using Theorem 6.1 and Lemma 6.4, we arrive at

K = −ψ0 − ε(ψ1 − v‖u0 · b). (32)

This is a generalisation of the exact invariant [3] in that it introduces the generalised

flux function ψ1. Note that this formula applies for spatial symmetries too, only the

conditions on u0 change. By Lemma 6.4, however, the function K is linear in the

velocity if u0 is spatial, but nonlinear otherwise. Interestingly enough, u1 does not enter

explicitly.

8. Weak quasisymmetry

Given Theorems 6.2, 6.5 and Remark 6.3, we conclude that an approximate Hamiltonian

v‖-symmetry generator u0 + εu1 satisfies the conditions

Lu0β = 0, divu0 = 0, Lu0|B| = 0 (33)

to zero order and the first-order term u1 is given by (29). The only additional condition

(30b) restricts the velocity-dependence between u0 and ψ1, and so it is automatic if

either one is spatial by Lemma 6.4.

Here we address the converse with no assumption on u1 whatsoever. Leaving (30b)

aside, we may assume that ψ1 (and so u0) is independent of v‖. To connect also with

[4], we first treat the restriction to ψ1 = 0 considered there.

Proposition 8.1. If iu0iBΩ = dψ0, divu0 = 0 and Lu0|B| = 0 with spatial u0, ψ0, then

p = −ψ0 + ε v‖u0 · b is an approximate conserved quantity for FGC motion.

Proof. To check the approximate invariance of p, compute LV p with V = (ẋ, v̇‖) up to

O(ε)-terms. Thus, assuming u0 is independent of v‖, we have

LV p = −LV ψ0 + ε u0 · b LV v‖ + ε v‖LV (u0 · b)
= − iẋdψ0 + ε v̇‖u0 · b+ ε v‖iẋd(u0 · b)
= − iẋiu0iBΩ + ε v̇‖u0 · b+ ε v‖iẋ(Lu0b

[ − iu0db[)
= − iẋiu0iB̃Ω + ε v̇‖u0 · b+ ε v‖iẋLu0b

[

≈ − ε iu0(v̇‖b[ + µd|B|) + ε v̇‖u0 · b+ ε v‖ibLu0b
[ ≈ 0, (34)

using (1)-(2) in the penultimate equality and Remark 6.3 in the last one.
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Approximate symmetries of guiding-centre motion 15

As with the general case of K, the approximate constant p does not involve u1.

One might ask if u0 on Q is the corresponding Hamiltonian symmetry generator under

(33). Theorem 5.2 rules out this possibility. One can verify that u0 does not even

generate an approximate symmetry of the FGC equations themselves, regardless of the

Hamiltonian structure, in the sense of Definition 3.6 (or at least modulo kerω to include

any degeneracies). However, in light of Noether’s theorem adapted here successively,

leading to Corollary 4.10, we can construct the symmetry from p. Either by direct

calculation or section 6 going backwards, we obtain

Proposition 8.2. The approximate conserved quantity p = −ψ0 + ε v‖u0 · b with

spatial u0, ψ0 satisfying iu0iBΩ = dψ0, divu0 = 0, Lu0|B| = 0 corresponds to the

approximate Hamiltonian symmetry generated by up = u0 + εv‖|B|−1b × X0, where

X0 = curl b× u0 +∇(u0 · b), up to trivial symmetries.

Proposition 8.1 agrees with [4] that p is an approximate conserved quantity under

conditions (33). Contrary to [4], however, Proposition 8.2 shows that under these

conditions the arising symmetry is not purely spatial, but it is spatial to lowest order

and depends linearly on parallel velocity in first order.

This is only an example of such symmetries; within this symmetry class we could

have in general a nonzero, spatial ψ1. Although they escape quasisymmetry, these

symmetries are a weak version of it.

Definition 8.3. A weak quasisymmetry is an approximate Hamiltonian symmetry of

FGC motion which is spatial to leading order and nontrivially linear in v‖ to first order.

Propositions 8.1-8.2 indicate that a spatial vector field u0 that satisfies (33) is the

zeroth-order term of a weak quasisymmetry generator. We extend this to include the

case of spatial ψ1 6= 0.

Theorem 8.4. Assume u0 is a vector field on Q and u1 = |B|−1b×(v‖X0−∇ψ1), where

X0 = curl b× u0 +∇(u0 · b) 6= 0 and ψ1 is a function on Q such that B · ∇ψ1 = 0. The

following are equivalent.

(i) u = u0 + εu1 generates a weak quasisymmetry;

(ii) iu0iBΩ = dψ0, divu0 = 0 and Lu0|B| = 0.

Proof. If u generates a weak quasisymmetry then from Theorems 6.1-6.2 and Lemma

6.4 we see that the conditions (ii) hold.

In the opposite direction, note first that since u0 is spatial, Lu0b
[ lies on Q and

reduces to Lu0b
[ = X[

0 (Theorem 6.5). Now, under the other two conditions, divu0 = 0

is equivalent to b · X0 = 0 (Remark 6.3). Together with B · ∇ψ1 = 0, they guarantee

that we can define a vector field u1 from (29). Then, Theorem 6.5 says that u0 + εu1 is a

Hamiltonian v‖-symmetry with (30b) trivially satisfied. Since X0 and ψ1 are independent

of v‖, it is a weak quasisymmetry.
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Approximate symmetries of guiding-centre motion 16

9. Approximate µ-symmetries

We may as well enlarge the set of symmetries by allowing them to depend on µ, and look

for Hamiltonian symmetries on M for specific values of the magnetic moment. However,

the next theorem shows that these reduce to phase-space Hamiltonian symmetries.

Theorem 9.1. For FGC motion, every approximate µ-dependent Hamiltonian

symmetry on M is an approximate Hamiltonian symmetry up to trivial symmetries.

Proof. Let U(x, v‖, µ, ε) = U0(x, v‖, µ) + εU1(x, v‖, µ) be the symmetry generator on M

with Ui = (ui, wi), i = 1, 2, where w1 = 0 up to trivial symmetries. We work our way

partly through Theorems 6.1 and 6.2 and modify them suitably.

From LUω ≈ 0, the zeroth-order terms give LU0β = 0, which reduces again to (19),

since β is a spatial form on Q. But the first-order terms yield LU0d(v‖b
[) + LU1β = 0,

and note that LU0(v‖b
[) = w0b

[ + v‖Lu0b
[, as b[ is spatial too. So now, instead of (20)

the second symmetry condition reads

d(v‖Lu0b
[ + w0b

[) + Lu1β = 0. (35)

Take then the µ-component of (19) and (35), i.e., contract them with ∂µ. Similarly

to Theorem 6.2, we find

i∂µu0iBΩ = 0, (36)

− (i∂µu0b
[)dv‖ + v‖i∂µu0icΩ + (∂µw0)b

[ + i∂µu1iBΩ = 0, (37)

respectively. The v‖-component of (37) gives ∂µu0 · b = 0 and together with (36), that

is, ∂µu0 × B = 0, they deliver ∂µu0 = 0. Dotting (37) with b, we also find ∂µw0 = 0.

Then (37) reduces to ∂µu1 ×B = 0, which says that ∂µu1 = 0 up to trivial symmetries.

Putting it all together, we conclude that U is independent of µ.

10. Relation to magnetohydrostatics

So far quasisymmetry and symmetries in general of guiding-centre motion were treated

independently of any other assumption on the magnetic field. In this section, we study

approximate Hamiltonian symmetries in the presence of magnetohydrostatics (MHS),

J ×B = ∇p, (38)

where J = curlB is the current density and p is the scalar plasma pressure. This can be

viewed as an extra restriction for the magnetic field that can be added to the previous

symmetry conditions.

Theorem 10.1. For an MHS magnetic field with dp 6= 0 a.e. on Q and density of

irrational surfaces, every approximate Hamiltonian symmetry of FGC motion is an

approximate quasisymmetry.
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Approximate symmetries of guiding-centre motion 17

Proof. First of all, write (38) as iBiJΩ = dp and note that dB[ = iJΩ. For any MHS

field,

LBB
[ = iBdB

[ + diBB
[ = d(p+ |B|2), (39)

i[J,B]Ω = iJLBΩ− LBiJΩ = −LBdB[ = − dLBB[ = 0, (40)

the latter implying [J,B] = 0, since Ω is nondegenerate.

Now let u = u0 + εu1 be the generator of an approximate Hamiltonian symmetry.

By Lemma 6.4, we have (27) displayed here, iu0iBΩ = dψ0, from the first symmetry

condition (19), and by assumption p = p(ψ0). If B is MHS, then

LB(u0 ·B) = iu0LBB
[ = iu0dp+ iu0d|B|2 = 0, (41)

using [u0, B] = 0 from Theorem 6.2, equation (39), iu0dψ0 = 0 from (27), and iu0d|B| = 0

from the third symmetry condition (21).

Next we are going to prove that u0 is independent of v‖. To this end, note first that

J is tangent to flux surfaces and so

J = κu0 + λB (42)

for some functions κ, λ. Crossing with B gives κ = −p′. Applying LB to (42), we deduce

LBλ = 0, because B commutes with J and u0, and κ is a function of ψ0. Taking the

v‖-derivative of (42), we get

κ ∂v‖u0 + (∂v‖λ)B = 0, (43)

since κ, J,B are spatial. Finally, the v‖-derivative of (41) gives ∂v‖λ = 0 for LB|B| 6= 0.

To see this, dot (43) with B and insert it, so

0 = L∂v‖LB(u0 ·B) = LBL∂v‖ (u0 ·B) = −κ−1(∂v‖λ)LB|B|2, (44)

since LBλ = 0 and LBκ = 0. Substituting ∂v‖λ = 0 in (43), we conclude ∂v‖u0 = 0 for

dp 6= 0.

By density of irrational surfaces, (41) implies Lu0(u0·B) = 0 too. Likewise, Lu0λ = 0

from LBλ = 0. Thus, C = u0 ·B and λ are functions of ψ0. Therefore we can write

Lu0B
[ = iu0dB

[ + diu0B
[ = iu0iJΩ + dC = (λ+ C ′)dψ0 (45)

Since u0 is spatial, the conditions iu0iBΩ = dψ0, [u0, B] = 0 and Lu0|B| = 0 imply

u0 generates a local circle action on Q. See [3], Definition VIII.1 of a circle action and

Theorem VIII.2(i) for a proof, as well as (59) there for the definition of circle-average.

Circle-averaging (45) gives then 0 = (λ+C ′)dψ0, because the average of Lu0 of anything

is zero and λ,C are constant along u0. Therefore Lu0B
[ = 0.

Together with (21), this gives Lu0b
[ = 0 and so X0 = 0, and then (20) reduces to

Lu1β = 0. Since u0 is spatial, ψ1 is too from Lemma 6.4. Consequently, so is u1 from

(29), which completes the proof.
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Approximate symmetries of guiding-centre motion 18

11. Discussion

Compared to [3], Theorem 5.2 shows that approximating quasisymmetry under the

guiding-centre precision is to lowest order the same as exact quasisymmetry. While

one might hope that the notion of quasisymmetry could be relaxed using approximate

spatial (Hamiltonian) symmetries of guiding-centre motion, this theorem shows that

it is impossible: if one insists that an approximate Hamiltonian symmetry is spatial

then that symmetry must be a quasisymmetry. This is not much unexpected, since

the quasisymmetry conditions in [3] were derived for all nonzero q,m, µ. Another way

of seeing this is to note that ε- and v‖-terms appear together in the Hamiltonian (or

Lagrangian) formulation. Other spatial ways to approximate quasisymmetry could be

perhaps more effective, as, for example, expansions near the magnetic axis [17, 18].

Among the three conditions of quasisymmetry, Lub
[ = 0 seems the most likely

candidate to relax. Not included in earlier treatments, its necessity was first recognised

in [19]. Theorem 6.1 with Lemma 6.4 say that an approximate phase-space Hamiltonian

symmetry of FGC motion does indeed weaken this condition to v‖Lu0b
[ + iu1iBΩ = dψ1.

All the same, the remaining two conditions remain unchanged, providing flux surfaces

and symmetric field strength. More explicitly, Theorem 6.5 shows that Lu0b
[ is basically

pushed back to the next-order term of the symmetry, the only restriction between u0
and ψ1 being their velocity dependence. Given Theorem 6.2 and Remark 6.3, the

arbitrariness of Lu0b
[ is slightly limited to ibLu0b

[ = 0, which is equivalent to divu0 = 0

under the other symmetry conditions.

In conclusion, an approximate Hamiltonian v‖-symmetry generated by u0 + εu1
satisfies the conditions (33) to zero order and the first-order term is given by (29)-

(30b). In the other direction, Theorem 8.4 shows that a spatial vector field u0 that

satisfies (33) for Lu0b
[ 6= 0 with a second spatial flux function ψ1 is the zeroth-order

term of a weak quasisymmetry (Definition 8.3) generator with u1 given by (29). We

may even extend this and say that a v‖-dependent vector field u0 that satisfies (33) and

(30b) for Lu0b
[ 6= 0 and a v‖-dependent flux function ψ1, is the zeroth-order term of an

approximate Hamiltonian v‖-symmetry with u1 given by (29).

Under the typical requirement of magnetohydrostatics though, every Hamiltonian

v‖-symmetry is spatial and reduces to quasisymmetry again according to Theorem 10.1.

The approximate constant of motion K obtained here from an approximate

Hamiltonian phase-space symmetry generalises the exact one derived for exact

quasisymmetry in two ways. The first one is by introducing approximate flux surfaces

via ψ1 and the second one is its nonlinear character in v‖, when u0 is not spatial. In any

case, there is the question whether the first-order approximate invariant K extends to

higher orders leading to an adiabatic invariant. A more well-posed question would ask in

addition, for which magnetic fields? Ideally, one could repeat the symmetry analysis for

higher-order approximate symmetries, given higher-order terms of the Hamiltonian (or

the Lagrangian) structure. In principle, however, as the order increases the symmetry

cases would be restricted furthermore, as more conditions would be added even to lowest
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Approximate symmetries of guiding-centre motion 19

order. Thus, to start addressing the above question we need to answer first whether the

first-order conserved quantity K exists for nontrivial magnetic fields, which is within

our future plans. Even if it does, the existence of an adiabatic invariant would require

further investigation.

In [4], Rodŕıguez et al introduced the notion of a weakly quasisymmetric magnetic

field. Their approach adopts the Lagrangian formulation, but, as discussed in Remark

3.11, this is not really different from the Hamiltonian one. Their treatment does not

consider first-order corrections to the symmetry and consequently to flux surfaces, i.e.,

they treated the subcase u1 = 0, ψ1 = 0 with spatial u0. More specifically they argued

that (for non-MHS fields) weak quasisymmetry implies that FGC motion admits (a) an

approximate spatial symmetry, and (b) an approximate constant of motion. We agree

with (b) (Proposition 8.1); in fact we have shown that there is a family of approximate

conserved quantities K = −ψ0 − ε(ψ1 − v‖u0 · b) that generalises the single quantity

p = −ψ0 + εv‖u0 · b considered in [4]. In this sense, we have directly expanded upon

the results from [4]. However, we disagree with (a). While the weak quasisymmetry

conditions do imply the existence of an approximate symmetry u = u0 + εu1 for FGC

motion, the symmetry is not spatial. In particular, u0 is spatial, but u1 is not, even for

ψ1 = 0 (Proposition 8.2). Instead, Theorem 8.4 shows that weak quasisymmetry acts

non-trivially on both the guiding-centre position and parallel velocity, i.e., there is no

way to regard the symmetry as operating in configuration space alone. From Theorem

6.2 (ii), also note that for spatial u0 and zero u1, we are back to exact quasisymmetry.

Thus, Rodŕıguez et al correctly identify the conserved quantity associated with weak

quasisymmetry for zero ψ1, but incorrectly identify the infinitesimal generator of the

corresponding phase-space symmetry.

It could be that there are no quasisymmetries (with bounded flux surfaces) other

than axisymmetry for nontrivial magnetic fields. The quest for more general symmetries

becomes then imperative as a means to relax the quasisymmetry notion. One such option

is the longitudinal or second adiabatic invariant coming from a nonlocal symmetry, and

the related concept of omnigeneity as a confinement condition (a sufficient one, but is

it necessary?). A more direct generalisation, adopted here, was to allow symmetries

on phase space instead of restricting to configuration space, and so involve the parallel

velocity. Gyrosymmetry after all invokes the perpendicular velocity. Velocity-dependent

symmetries could be of use, at least when it comes to guiding-centre integrability.

Here we have made a first step of relaxing the requirement of a spatial symmetry

by considering parallel-velocity-dependent symmetries within the approximate setup.

Others could follow.
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Appendix A. Gyrosymmetry

Here we construct the gyrosymmetry generator U up to zeroth-order terms from the

magnetic moment K, using iUω = − dK, i.e., we prove relations (17)-(18).

Recall that the symplectic form of charged particle motion is ω = β+ ε dv∧ dx. As

it will soon become apparent, U ’s leading order is less by two than K’s, so let

U = U0 + εU1 + · · · , (A.1)

K = ε2K2 + ε3K3 + · · · . (A.2)

First of all, note that for i ≥ 0 the (i + 1)-th order terms of iUω = − dK split by

dv and dx into

Ux
i = ∂vKi+1, (A.3)

U v
i +B × Ux

i+1 = − ∂xKi+1, (A.4)

where Ux
i and U v

i are the spatial and velocity components of Ui, respectively. The second

equation shows that the velocity components of Ui are determined by the spatial ones

of Ui+1 and the two combined together that in order to find Ui, we need both Ki+1 and

Ki+2. In other words, a nonzero Ki+2 introduces a nonzero Ui, as we can see from

U v
i = − ∂xKi+1 −B × ∂vKi+2 (A.5)

Thus to build U up to U1, besides K2 = v2⊥/2|B| we need K3, as well. Following

Littlejohn [7], we take

K3 = |B|−2
[
K2 n · ∇|B|+ v2‖ b · ∇b · n+ v‖ (3n · ∇b · v⊥ − v⊥ · ∇b · n)/4

]
, (A.6)

where n = b× v⊥. To apply (A.3)-(A.5), we write down the required derivatives of v‖,

v⊥ and n as functions of x and v,

∂vjv‖ = bj, (A.7)

∂vjv⊥ = v−2⊥ (vj⊥v⊥ + njn), (A.8)

∂vjn = v−2⊥ (vj⊥n− n
jv⊥), (A.9)

∇(v2⊥) = −2v‖(v × c+ v · ∇b), (A.10)

where j = 1, 2, 3 and c = curl b. For the forthcoming calculations, note also the vector

identities

b · ∇|B| = −|B| div b, (A.11)

v⊥ · ∇b · n− n · ∇b · v⊥ = v2⊥ b · c, (A.12)

v⊥ · ∇b · v⊥ + n · ∇b · n = v2⊥ div b. (A.13)

Now, (A.3) and (A.5) for i = 0 give (17), and (A.3) for i = 1 gives the spatial

component of (18). For the velocity part, (A.5) for i = 1 yields

U v
1 = |B|−1

{
K2∇|B|+ v‖(v × c+ v · ∇b)
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Approximate symmetries of guiding-centre motion 21

− v−2⊥
[
K2 v⊥ · ∇|B|+ v2‖ b · ∇b · v⊥ + v‖ (v⊥ · ∇b · v⊥ − n · ∇b · n)/2

]
v⊥

− v−2⊥
[
3K2 n · ∇|B|+ v2‖ b · ∇b · n+ v‖ (3n · ∇b · v⊥ − v⊥ · ∇b · n)/2

]
n
}

(A.14)

= |B|−1
{
−2K2(n · ∇|B|)n− v2⊥(div b)b/2 + v‖v × c+ v‖(b · c)n

+ v‖ [v⊥ · ∇b+ (n · ∇b)× b]/2
}

(A.15)

= |B|−1
{
−2K2(n · ∇|B|)n+ v‖v × c+ v‖(b · c)n

+ [(b× (v⊥ · ∇b))× v + (n · ∇b)× v]/2} . (A.16)

Appendix B. Vector calculus formulation

Below we give some of the expressions in Theorems 5.2-6.4 in vector calculus notation.

As before, X0 = curl b× u0 +∇(u0 · b) and ∂v‖ is short for ∂/∂v‖ .

Table B1. Expressions in vector calculus.

Differential forms Vector calculus

Lu0β = 0 curl (B × u0) = 0 and ∂v‖(B × u0) = 0

Lu1
β + d(v‖Lu0

b[) = 0 curl (B × u1 + v‖X0) = 0 and ∂v‖(B × u1 + v‖X0) = ∇[v‖∂v‖(u0 · b)]

Lu0
|B| u0 · ∇|B|

[u0, B] (u0 · ∇)B − (B · ∇)u0

ibLu0
b[ b ·X0

Lu0b
[ = iBi∂v‖u1Ω X0 = ∂v‖u1 ×B

iu0iBΩ = dψ0 B × u0 = ∇ψ0

iu1
iBΩ + v‖Lu0

b[ = dψ1 B × u1 + v‖X0 = ∇ψ1 and v‖∂v‖(u0 · b) = ∂v‖ψ1
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