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Abstract: Ticks are blood-feeding arthropods and transmit a variety of medically important viral,
bacterial, protozoan pathogens to animals and humans. Ticks also harbor a diverse community
of microbes linked to their biological processes, such as hematophagy, and hence affect vector
competence. The interactions between bacterial and/or protozoan pathogens and the tick microbiome
is a black-box, and therefore we tested the hypothesis that the presence of a protozoan or bacterial
pathogen will alter the microbial composition within a tick. Hence, this study was designed to
define the microbial composition of two tick species, Hyalomma (H.) anatolicum and Rhipicephalus (R.)
microplus. We used a combination of PCR based pathogen (Anaplasma marginale and Theileria species)
and symbiont (Wolbachia species) identification followed by metagenomic sequencing and comparison
of the microbial communities in PCR positive and negative ticks. A total of 1786 operational taxonomic
units was identified representing 25 phyla, 50 classes, and 342 genera. The phylum Proteobacteria,
Firmicutes, Actinobacteriota, and Bacteroidota were the most represented bacteria group. Alpha and
beta diversity were not significantly affected in the presence or absence of Theileria sp. and A. marginale
as see with H. anatolicum ticks. Interestingly, bacterial communities were significantly reduced in
Theileria sp. infected R. microplus ticks, while also exhibiting a significant reduction in microbial
richness and evenness. Putting these observations together, we referred to the effect the presence of
Theileria sp. has on R. microplus a “pathogen-induced dysbiosis”. We also identify the presence of
Plasmodium falciparum, the causative agent of human malaria from the microbiome of both H. anatolicum
and R. microplus ticks. These findings support the presence of a “pathogen-induced dysbiosis” within
the tick and further validation experiments are required to investigate how they are important in the
vector competence of ticks. Understanding the mechanism of “pathogen-induced dysbiosis” on tick
microbial composition may aid the discovery of intervention strategies for the control of emerging
tick-borne infections.

Keywords: ticks; microbiome; Hyalomma anatolicum; Rhipicephalus microplus; Anaplasma marginale;
Theileria sp.; Francisella; Wolbachia; Pakistan
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1. Introduction

Ticks are obligate, blood-feeding ectoparasites of vertebrate animals that depend on the host’s
blood for nutrition and reproduction. They elicit significant blood loss and also transmit disease-causing
bacteria, viruses, and protozoa from one host to another, which makes them significant to public health.
In Pakistan, livestock farming and production serve as one of the major drivers of the macro-economy as
with the latest animal census showing an estimated population of 40 million, 47.8 million, 76.1 million,
and 30.9 million buffalo, cattle, goats, and sheep, respectively, all contributing to an estimated 11.22%
of the country’s gross domestic product (GDP) [1].

Previously reported tick species infesting livestock in Pakistan includes both hard and soft
tick species. In Pakistan, the most reported ticks found infesting livestock are hard ticks of the
genus Haemaphysalis, Hyalomma, and Rhipicephalus, and soft ticks of the genus Argas and
Ornithodoros [2–5]. Hyalomma and Rhipicephalus ticks are responsible for transmitting major
tick-borne pathogens that affect livestock animals in Pakistan. Anaplasma marginale, Anaplasma centrale,
Babesia bovis, and Babesia bigemina are which are known to cause cattle fever are transmitted
by Rhipicephalus microplus ticks [6]. Tropical theileriosis, a small ruminant disease caused by
Theileria annulata and the Crimean Congo hemorrhagic fever virus have been reported to be transmitted
by Hyalomma anatolicum [6,7].

Ticks also harbor several distinct microbial communities, members of which have been shown
to play an important role in tick biology. Analysis of the genome of such microbes has revealed
specific regions coding for essential vitamins, most of which are lacking in the tick’s blood meal [8–10],
emphasizing their possible role as nutritional mutualists. Recent evidence also suggests that some
members of these microbial communities can potentially interact with tick-borne pathogens both
directly and indirectly. It was reported that removing the midgut bacteria of black-legged ticks
Ixodes scapularis by feeding on antibiotic-treated mice impairs infection by Borrelia burgdorferi [11].
Another tick-borne pathogen, Anaplasma. phagocytophilum was shown to reduce the viability of the
microbial population, thus facilitating its colonization of the I. scapularis midgut [12].

Along with the development in tick microbiome studies, adequate information exists on how
tick-borne human pathogens shape the tick microbial communities to facilitate their colonization
and subsequent transmission. While adequate research has been carried out on the microbiome of
livestock infesting ticks, there is very little scientific understanding of the interactions that occurs
between tick-transmitted pathogens and the tick microbial communities. Apart from Karim et al. [4],
who reported important bacterial genera found in ticks from Pakistan, there is a general lack of
research in understanding how specific bacterial or protozoan pathogens of animal origin shapes the
microbiome of several tick vectors.

The main purpose of this study is to develop an understanding of changes that occurs in the
microbial composition within a tick vector when such a tick acquires a bacterial or protozoan pathogen
of animal source. The key research question of this study was whether or not the overall abundance
and diversity of tick’s microbial communities are reduced in the presence of a protozoan or bacteria
pathogen. This study provides an exciting opportunity to advance our knowledge of tick microbiome
and tick-borne pathogen interactions. A full discussion of the molecular mechanisms of reported
interactions lies beyond the scope of this study. We will proceed to investigate specific microbial
changes and interactions as part of our ongoing study. It is also beyond the scope of this study to
examine whether host blood meal impacts microbial diversity.

2. Materials and Methods

2.1. Tick Collection and Identification

Fully engorged adult Hyalomma anatolicum and Rhipicephalus microplus ticks were randomly
and carefully removed from livestock animals from four livestock producing regions in Pakistan
(Sialkot [32◦29′33.7”N, 74◦31′52.8”E], Gujrat [32◦34′22”N, 74◦04′44” E], Gujranwala [32◦9′24”N,
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74◦11′24”E], and Sheikhupura [31◦42 47” N, 73◦58′41” E]). This was done by careful removal of
fully engorged ticks using tweezers with care been taken to keep the mouthparts intact. All ticks
were kept in separate vials containing 70% ethanol and details of the location, and the host was
recorded. For this study, a total of 320 ticks were selected and shipped from Pakistan to the University
of Southern Mississippi for further analysis using the U.S. Department of Agriculture’s Animal
and Plant Health Inspection Service (permit # 11122050). Identification of ticks to the genus level
was carried out by an expert taxonomist at the United States National Tick Collection (USNTC)
according to the criteria used in previously published reports [2,13,14]. All stages were examined on an
Olympus SZX16 stereoscopic microscope (Olympus Life Science, Center Valley, PA, USA). To further
confirm morphological identification, ticks homogenates were subjected to molecular identification
by amplifying the highly conserved 708 bp mitochondrial Cytochrome Oxidase I gene (COI) [15].
The nucleotide accession numbers were MT876643, MT876644, and MT876645.

2.2. Genomic DNA Extraction

High-quality DNA was extracted from all the 320 ticks. Before DNA extraction, ticks were
removed from the transport vials, cleaned using 100% ethanol, dried, and subsequently cleaned using a
10% sodium hypochlorite solution. Ticks were finally cleaned using distilled water and allowed to dry
on a kimwipe paper. Homogenization of individual ticks was done mechanically, first by cutting ticks
into smaller pieces, followed by complete disruption using an automated, hand-held homogenizer.
The DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD, USA) was used to extract DNA from
individual ticks with minor modification in the volume eluted (30 µL). The DNA concentrations
and quality were quantified using a nanodrop machine (Nanodrop One, Thermo Fisher Scientific,
Pittsburgh, PA, USA) and DNA stored in −20 ◦C till further needed.

2.3. Detection of Pathogen and Endosymbiont

To detect the presence of pathogens and endosymbiont of interest, we utilized a PCR based
approach to amplify the 18S rRNA gene of Theileria sp. [4], 16S rRNA gene of Anaplasma marginale [16],
and GroEL gene of Wolbachia [17]. PCR positive DNAs were amplicon sequenced using both the
forward and reverse primers and the partial sequences were subjected to NCBI BLAST program for
further confirmation. Details of the primers, conditions, and amplicon sizes can be found in Table 1.
The Wolbachia sp. nucleotide accession numbers are MT881679, MT881680, MT881681, MT881682,
MT881683, MT881684, MT881685, MT881686, MT881687, MT881688, MT881689, MT881690, MT881691,
MT881692, MT881693, MT881694, MT881695, MT881696, MT881697, MT881698, MT881699, MT881700,
MT881701 and MT881702.

Table 1. List of primers used in this study and their respective amplicon sizes.

Target Genes Primer Sequence (5’–3’) Amplicon Size (bp) References

Amar 16S-F GGC GGT GAT CTG TAG CTG GTC TGA 270 bp [16]
Amar 16S-R GCC CAA TAA TTC CGA ACA ACG CTT

Theileria sp 18S-F GGT AAT TCC AGC TCCAAT AG 300 bp [4]
Theileria sp 18S-R ACC AAC AAA ATA GAA CCA AAG TC

16S rRNA 27F AGR GTT TGA TCM TGG CTC AG
V1–V3 [13]

16S rRNA 519R GTN TTA CNG CGG CKG CTG
COI-F GGT CAA CAA ATC ATA AAG ATA TTG G 708 bp [15]
COI-R TAA ACT TCA GGG TGA CCA AAA AAT CA

Wolbachia sp GroEL-F TGT ATT AGA TGA TAA CGT GC 800 bp [17]
Wolbachia sp GroEL-R CCA TTT GCA GAA ATT ATT GCA

2.4. 16S rRNA Library Preparation and Sequencing

A total of 40 ticks (20 H. anatolicum and 20 R. microplus) were used for microbiome analysis.
From each tick species, 5 Theileria sp. positive, 5 A. marginale positive, and 10 negative ticks were selected
for 16S rRNA library preparation and sequencing. The hypervariable V1–V3 region of the 16S rRNA
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gene was PCR amplified using the forward primer 27F (5’-AGR GTT TGA TCM TGG CTC AG-3’) and
the reverse primer 519R (5’-GTN TTA CNG CGG CKG CTG-3’) as outlined by the 16S Illumina’s MiSeq
protocol (www.mrdnalab.com, Shallowater, TX, USA. Accessed on 11 July 2020). Briefly, PCR was
performed using the HotStarTaq Plus Master Mix Kit (Qiagen, Germantown, Maryland, USA) under the
following conditions: 94 ◦C for 3 min, followed by 30–35 cycles of 94 ◦C for 30 s, 53 ◦C for 40 s and 72 ◦C
for 1 min, after which a final elongation step at 72 ◦C for 5 min was performed. After amplification,
PCR products were electrophoresed in 2% agarose gel to determine the success of amplification and
the relative intensity of bands. Multiple samples were pooled together in equal proportions based
on their molecular weight and DNA concentrations. Pooled samples were purified using calibrated
Ampure XP beads. Then the pooled and purified PCR product was used to prepare Illumina DNA
library. Sequencing was performed at MR DNA (www.mrdnalab.com, Shallowater, TX, USA. Accessed
on 11 July 2020) on a MiSeq following the manufacturer’s guidelines.

2.5. Sequence Analysis

Sequence analysis was carried out using the Quantitative Insights into Microbial Ecology (QIIME 2)
pipeline unless stated otherwise. Briefly, the processing of raw fastq files was demultiplexed.
The Atacama soil microbiome pipeline was incorporated for quality control of demultiplexed paired-end
reads using the DADA2 plugin as previously described [18]. Low-quality sequences were trimmed and
filtered out, and subsequent merging of paired-end-reads was done ensuring 20 nucleotide overhang
between forward and reverse reads. Chimeric sequences were removed from the sequence table.

Sequence alignment and subsequent construction of phylogenetic tree from representative
sequences were performed using the MAFFT v. 7 and FasTree v. 2.1 plugins [19] Operational taxonomic
assignment was performed using the qiime2 feature-classifier plugin v. 7.0, which was previously
trained against the SILVA 138 database preclustered at 99%. Tables representing operational taxonomic
units (OTUs) and representative taxonomy were exported from R and used for diversity metric analysis
using the Microbiome Analyst web-based interface [20,21]. Raw data from this analysis were submitted
deposited and assigned the GenBank BioProject number #PRJNA600935.

2.6. Alpha Diversity

To establish whether alpha diversity differs across tick samples, reads were transformed and low
abundance OTUs were filtered from the datasets. The Observed OTU metric was used to estimate
species richness by identifying unique OTUs present across the tick groups, while the Shannon index
was used to estimate both richness and evenness.

2.7. Beta Diversity

To compare the differences in the microbiome between tick groups, based on measures of
distance or dissimilarity, dissimilarity matrix was generated from log-transformed sequence data and
ordination of the plots was visualized using both the Principal Coordinates Analysis (PCoA) and the
Nonmetric Multidimensional Scaling (NMDS). The Bray–Curtis distance matrix was used to visualize
compositional differences in the microbiome across all groups.

2.8. Statistical Analysis

Statistical significance was inferred using the Mann–Whitney/Kruskal–Wallis method for
alpha diversity and classical univariate comparison analysis, while the Permutational MANOVA
(PERMANOVA) was used to test for the statistical significance of the dissimilarity measures.

www.mrdnalab.com
www.mrdnalab.com
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3. Results

3.1. Pathogen and Symbiont Prevalence

PCR analysis supported by amplicon sequencing and blast analysis of sequenced PCR product
showed that 23 (7.2%), 90 (28.1%), and 3 (0.9%) of the 320 individually tested ticks were positive for
A. marginale, Theileria sp., and Wolbachia sp. (Table S1). We further determined the genetic relationship
of the identified Wolbachia sp. and the tick species used with publicly available sequences from NCBI
(Figures S1 and S2). The Wolbachia GroEL gene identified in ticks from this study shows high similarity
to Wolbachia pipientis strain wAlbB-HN2016 and wAlbB-FL2016, with 99% query cover and 99.61%
identity (Figure S3). The query cover and percentage identities of the COI sequences from this study
were also compared to those previously deposited in the NCBI database (Figure S4).

3.2. Bacteria 16S rRNA Abundance Profile

A total of 2,787,815 million reads paired-end reads were generated. Analysis of the demultiplexed
paired-end-reads generated 2,787,815 reads which ranged from 36,124 to 123,736 with an average of
65,609 reads. After passing the sequences through quality filtering, 119,802 of the raw reads were
non-chimeric which were subsequently used for taxonomic classification (Tables S2 and S3). Taxonomic
classification using the SILVA reference base identified 472 OTUs generated from R. microplus ticks
belonging to 10 phyla, 17 classes, and 146 genera. H. anatolicum had a total of 1314 OTUs representing
15 phyla, 33 classes, and 196 genera.

3.3. Bacteria Relative Abundance

The relative proportion of bacteria at different taxonomic classification was further analyzed in
both tick species. Figure 1 presents the results obtained from the taxonomic classification of identified
bacteria OTU at phylum, family, and genus taxonomic levels. Additional figures showing relative
abundances of bacteria species in individual samples can be found (Figure S5A,B).

The phylum Proteobacteria, Firmicutes, Actinobacteriota, and Bacteroidota were all found to be
present in H. anatolicum ticks. As shown in Figure 1A, the phylum Proteobacteria was found to be
present at an abundance of 87.5%, 68%, and 49% in Theileria sp. positive, uninfected and A. marginale
positive H. anatolicum ticks, respectively, while Firmicutes (25%) was only present in A. marginale
infected ticks. Phylum level abundance in R. microplus ticks (Figure 1B) contrasts that shown in
H. anatolicum. The entirety of the bacteria identified in Theileria sp. positive A. marginale belongs to the
phylum Firmicutes (100%), while both A. marginale positive and positive R. microplus shares similar
bacteria phylum distribution representing Actinobacteria, Bacteroidota, and Proteobacteria (Figure 1B).

Francisellaceae (37.5%) and Rickettsiales_fa (50%) constituted to approximately 87.5% of the
bacteria family identified within Theileria sp. positive H. anatolicum ticks. These bacteria families were
also identified in uninfected ticks albeit at a much-reduced abundance (Figure 1C). Staphylococcaceae
was identified at a relative abundance of ~30% in A. marginale infected H. anatolicum. The family
Anaplasmataceae (37.5%) were identified at similar abundance in both A. marginale infected and
uninfected H. anatolicum (Figure 1C). Distribution of the bacteria family in R. microplus ticks
identified Bacillaceae at a 100% abundance in Theileria sp. positive R. microplus, while the family
Corynebacteriaceae, Coxiellaceae, Flavobacteriaceae, Staphylococcaceae, and Weeksellaceae were
detected in similar abundances in A. marginale positive and uninfected R. microplus (Figure 1D).

Similar differences in the bacteria abundances were further identified at the genus level which
reflects those seen in the family and phylum. As can be seen from Figure 1E, five major genera;
Acinetobacter, Anaplasma, Devosia, Norcadiopsis, and Sphingomonas which represents 87.5% of the
bacteria were identified from A. marginale infected H. anatolicum ticks. The only genus of bacteria
identified in Theileria sp. positive H. anatolicum ticks was Candidatus_Midichloria (51.5%) and
Francisella (36%). The genus Candidatus_Midichloria and Francisella in addition to Ehrlichia, Hydrobacter,
and Corynebacterium were identified in uninfected ticks (Figure 1E). Figure 1F shows similar bacterial
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composition at the genus level between uninfected and A. marginale positive R. microplus ticks, while the
only identified genus in Theileria sp. positive R. microplus is Bacillus. These results of the bacteria
abundance indicate that there is an association between the presences of Theileria sp. and how it shapes
the bacteria composition of the two different tick species.

Figure 1. 16S bacteria abundance profiles of H. anatolicum and R. microplus. (A,B) Bacteria abundance
at phylum. (C,D). Bacteria abundance at the family level. (E,F) Bacteria abundance at the genus level.
Hyalomma anatolicum (left panel), R. microplus (right panel).
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3.4. Eukaryote 18S rRNA Abundance

We equally identified and compared eukaryote species in both ticks. Surprisingly, we detected
the presence of Plasmodium falciparum in both tick groups, and Hepatozoon americanum in H. anatolicum
ticks, both of which have a higher abundance in the Theileria sp. positive ticks (Figure 2A,B).

Figure 2. 18S eukaryote abundance profiles of H. anatolicum and R. microplus. (A) The relative
abundance of identified eukaryote species from Theileria sp. positive and uninfected H. anatolicum
ticks. (B) The relative abundance of identified eukaryote species from Theileria sp. positive, A. marginale
positive, and uninfected R. microplus ticks.

3.5. Microbial Richness and Evenness

Microbial profile richness and evenness were estimated using the alpha diversity metrics observed
OTUs and Shannon index. There was no significant difference between richness and evenness within
the H. anatolicum ticks, irrespective of the PCR status (Figure S6A,B). Interestingly, R. microplus
ticks showed comparable significant differences between Theileria sp. positive and uninfected ticks
(Figure 3A,B). R. microplus ticks positive for Theileria sp. exhibited significantly reduced species richness
and evenness index across all metrics used to analyze alpha diversity.
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Figure 3. Alpha diversity analysis in R. microplus ticks. (A) Estimation of species richness using
the observed operational taxonomic (OTUs) metrics (Kruskal–Wallis H-test, df = 1, p-value = 0.003).
(B) Estimation of species evenness using the Shannon diversity index (Kruskal–Wallis H-test, df = 1,
p-value = 0.005). Ticks found to be positive for Theileria sp. showed the least diversity using
both measures.

3.6. Microbial Similarity/Dissimilarity Patterns

Differences in the microbial communities were analyzed using Bray–Curtis and Jaccard distance
matrices. No significant observation was made in beta diversity across the H. anatolicum ticks
(Figure S7A,B). Beta diversity was significantly different in R. microplus by both Bray–Curtis
(PERMANOVA, F-value: 4.2171; R-squared: 0.33161; p-value < 0.005; Figure 4A) and Jaccard
(PERMANOVA, F-value: 3.2588; R-squared: 0.27714; p-value < 0.005; Figure 4B). Non-metric
multidimensional scaling (NMDS) plot of microbial communities further showed a distinct separation
of Theileria sp. positive R. microplus ticks from both A. marginale and uninfected (Figure S8).
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Figure 4. Estimation of differences in the microbial communities as a measure of Beta diversity analysis
in R. microplus ticks. (A) Principal coordinate analysis (PCoA) of the Bray–Curtis distance matrix
(PERMANOVA, F-value: 4.2171; R: 0.33161; p-value < 0.005). (B) Principal coordinate analysis (PCoA)
Jaccard distance matrix (PERMANOVA, F-value: 3.2588; R: 0.27714; p-value < 0.005).

3.7. Community Profiling and Correlation Analysis of R. microplus Ticks

To assess the extent to which highly abundant bacteria phylum and genus were represented in
R. microplus ticks, we used a combination of pattern correlation and heat map analysis. A very strong
positive correlation was seen between the presence of Bacillus and Theileria sp. positive R. microplus
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ticks (Figure 5). A similar observation was also seen in the heat map where the genus Bacillus shows
the highest presence in Theileria sp. positive R. microplus ticks (Figure 6A).

Figure 5. Pattern correlation analysis of top 7 bacteria genera in R. microplus ticks. Ticks positive with
Theileria sp. showed a positive correlation with the presence of Bacillus.

To explore how top taxa differ, classical univariate statistical comparisons analysis was applied
to identify bacterial genus that exhibits significant differences (t-test/ANOVA) in their composition.
Significant differences were observed in the abundance of the genus Acinetobacter, Staphylococcus,
and Bacillus. Heat map analysis of OTU abundance was also estimated for H. anatolicum ticks, none of
which was statistically significant (Figure S9).

In summary, the results of alpha and beta diversity as well as correlation analysis suggest that
a strong association exists between Theileria sp., reduced alpha diversity metrics, and the distinct
clustering separation exhibited by Theileria sp. positive R. microplus ticks.
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Figure 6. Heat map and classical univariate compositional analysis in R. microplus ticks. (A) Heat
map correlation analysis between A. marginale positive, Theileria sp. positive and uninfected ticks.
Log-transformed count of (B) Acinetobacter (FDR = 0.19277, df = 1, p-value = 0.007), (C) Staphylococcus
(FDR = 0.19277, df = 1, p-value = 0.007), and (D) Bacillus (FDR = 0.0002, df = 1, p-value = 3.94e-223) in
A. marginale positive, Theileria sp. positive and uninfected R. microplus ticks.

4. Discussion

The present study was designed to determine the changes that occur to the microbiome composition
and diversity within the tick vectors when naturally infected with protozoan and bacterial tick-borne
pathogens. Although many studies have detailed the plethora of interactions that occur between
tick-transmitted pathogens and the microbiome of ticks such as endosymbionts and pathogen
interactions [22], pathogen induction of antimicrobial production by the tick vector [12,23], only one
of such studies compared the microbiome of pathogen-infected and uninfected ticks [24]. In this
study, we tested field-collected H. anatolicum and R. microplus ticks for the presence of Theileria sp.,
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Wolbachia sp., and A. marginale, and further compared the overall microbial distribution, richness,
and diversity between Theileria sp. and R. microplus positive ticks. In the current study, the estimated
percentage of Theileria sp. positive ticks was higher compared to those reported in previous studies for
H. anatolicum, while A. marginale prevalence was similar to previous reports [6,25,26].

The major bacteria phyla reported across all the tick groups irrespective of the PCR status were
Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota. These support observations from
earlier tick microbiome studies [4,11,27,28]. Surprisingly, we identified a much lower number of
bacterial reads and OTU from R. microplus ticks compared to H. anatolicum. This observation could be
a function of the differences in the lifecycle of the two tick species. Rhipicephalus microplus is known
as a one-host tick, whereas H. anatolicum ticks could spend their life cycle using 2–3 hosts. Spending
different life stages on different animal hosts will likely expose the H. anatolicum ticks to a plethora of
host skin microbial communities as well as host-blood [29] associated microbial communities. Some of
the identified bacterial genera from H. anatolicum ticks such as Staphylococcus, Corynebacterium,
Sphingomonas, and Cutibacterium have been previously shown to be common constituents of the skin
microflora [29].

We also observed the presence of Theileria sp. was associated with an increased abundance
of Candidatus_Midichloria and Francisella compared to the uninfected or A. marginale infected H.
anatolicum. Candidatus_Midichloria and Francisella are obligate, vertically maintained endosymbionts
in the phylum Proteobacteria. Candidatus_Midichloria belongs to the Alphaproteobacteria group of
obligate intracellular bacteria first detected in Ixodes ricinus [30], while Francisella-like endosymbiont
is a Gammaproteobacteria with widespread distribution in hard ticks [31]. It is interesting to
compare these findings to an elegant observation made by Budachetri and colleagues [22] who
proposed Candidatus_Midichloria mitochondrii as facilitating Rickettsia parkeri colonization of the
Amblyomma maculatum tissues by protecting R. parkeri from the deleterious effect of reactive oxygen
species. Our observations do require further experimental validation to understand the interaction
between Theileria sp. and Candidatus_Midichloria within the tick vector.

The detection of Bacillus as the only bacteria genera identified from Theileria sp. positive R. microplus
ticks was an unexpected, albeit important finding (Figure 1F). This observation was further validated by
a significantly strong association between the presence of Theileria sp. and the Bacillus group of bacteria
as seen in Figures 5 and 6A. We also found a higher abundance of the phylum Firmicutes (Supplementary
Materials) and genus Bacillus was associated with Theileria sp. presence in R. microplus ticks (Figure 6).
It is difficult to explain this result, but it might be related to the ability of Theileria sp. to interfere with
the mammalian host’s immune response by expressing proteins necessary for its transformation [32].
However, its impact on the tick microbiota has yet to be shown. Inhibition of important microbial
metabolic pathways by Theileria sp.-associated proteins [33] could have led to a pathogen-associated
dysbiosis. Bacillus ability to form spores when exposed to unfavorable physiological conditions would
explain their exclusive presence in Theileria sp. positive R. microplus ticks.

We also observed that R. microplus ticks exhibited a significantly lower microbial diversity and
composition when compared to H. anatolicum ticks. Within the R. microplus, those positive with
Theileria sp. showed a significantly lesser amount of identified bacteria OTUs and a significantly
reduced species richness and evenness (Figure 3A,B), while also displaying a different microbial
composition as observed on the ordination plots (Figure 4A,B; Figure S5). These observations were
consistent with those of Mann et al. [34], who reported that Trypanosoma cruzi infected kissing bugs
exhibited a higher abundance of selected bacteria group, but not consistent with a study by Swei
and Kwan [29] who reported that Ixodes pacificus ticks positive with the Lyme disease spirochete,
Borrelia burgdorferi, had no significant differences in the microbiome richness and composition when
compared to those not infected.

Another interesting finding from our study was the detection of the vertically transmitted
Wolbachia sp. bacteria from a small number of the ticks used in this study. Wolbachia is an endosymbiont
that has been identified in two-thirds of insects, including mosquitos [35], with known ability to
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interfere with their host’s reproduction [36] through a series of physiological alterations, one of which
is cytoplasmic incompatibility [37]. Studies showed the presence of Wolbachia in tick species has
associated it with a form of hyperparasitism where Wolbachia was found infecting another parasitoid
that parasitizes the ticks [38,39].

The unexpected identification of Plasmodium falciparum from ticks used in this study is an
unpredicted finding. Pakistan is a malaria-endemic country and we observed an increase in the
relative abundance of Plasmodium falciparum in Theileria sp. positive H. anatolicum when compared
to the uninfected ticks (Figure 2A,B). It seems possible that this could have occurred from the ticks
accidentally feeding on a P. falciparum-infected human host. While this is a possibility in multi-host
ticks as seen in Hyalomma species, this is highly an unlikely occurrence in R. microplus which is a
one-host tick. These results, therefore, need to be interpreted with caution as ticks are not reservoirs or
competent vectors of P. falciparum.

This finding, while preliminary, suggests that the presence of Theileria sp. within R. microplus
ticks reduces the overall microbial diversity which we proposed as “pathogen-induced dysbiosis”.
The mechanism behind this phenomenon could be induced by Theileria sp. factors in an attempt to
colonize the tick vector, or it could be a result of the innate immune response mounted by the tick.
These findings may help us to understand the intricate interplay of the pathogen–microbiome–vector
interactions. However, more research on these observed interactions needs to be undertaken before
the association between microbiome dysbiosis and the presence of a pathogen can be drawn.

5. Conclusions

The present study was designed to determine the effect of bacteria and protozoan pathogen on the
microbiome of field-collected ticks. Using a combination of PCR based assay and 16S rRNA sequencing,
we investigated how the presence of Theileria sp. and A. marginale shapes the overall microbiome
of both H. anatolicum and R. microplus ticks. We reported a strong association between the presence
of Theileria sp. and a completely reduced microbial diversity and abundance in R. microplus ticks.
This study established the extent of the diversity of the microbial community within two important
tick species from Pakistan and revealed the presence of Theileria sp., A. marginale, and additional
pathogenic bacteria that could be of public health significance. A limitation of this study was the
difficulty in obtaining tissue samples of ticks, as they were field collected. Future tick developmental
and tissue-specific studies will generate new insights into specific interactions between tick-borne
pathogens and their associated microbiomes.
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using Principal coordinate analysis (PCoA) of Bray_Curtis and Jaccard distance matrix, Figure S8: Non-metric
multidimensional scaling (NMDS) plot of Bray_Curtis and Jaccard distance matrix, Table S1: Total number of ticks
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