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Density Deconvolution with Normalizing Flows

Tim Dockhorn * 1 James A. Ritchie * 2 Yaoliang Yu 1 Iain Murray 2

Abstract

Density deconvolution is the task of estimating
a probability density function given only noise-
corrupted samples. We can fit a Gaussian mixture
model to the underlying density by maximum
likelihood if the noise is normally distributed, but
would like to exploit the superior density estima-
tion performance of normalizing flows and allow
for arbitrary noise distributions. Since both adjust-
ments lead to an intractable likelihood, we resort
to amortized variational inference. We demon-
strate some problems involved in this approach,
however, experiments on real data demonstrate
that flows can already out-perform Gaussian mix-
tures for density deconvolution.

1. Introduction
Density estimation is the fundamental statistical task of
estimating the density of a distribution given a finite set
of measurements. However, in many scientific fields (see
examples in Carroll et al., 2006), one only has access to a
noise-corrupted set of measurements. Given knowledge of
the statistics of the noise, density deconvolution methods
attempt to recover the density function of the unobserved
noise-free samples rather than the noisy measurements.

In this work we consider the problem of additive noise,
where observed samples {wi}mi=1 are produced by adding
independent noise to unobserved values {vi}mi=1,

wi = vi + ni. (1)

We also assume that the density function of the noise pni(ni)
is perfectly known for every observation. The density func-
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tion of observations wi is then a convolution

p(wi) =

∫
v

pni(wi − v) p(v) dv. (2)

When the noise distribution is constant, we could estimate
the density of the observations w with any density estimator
and then solve Equation (2), e.g. with a kernel density esti-
mator using Fourier transforms (e.g., Liu & Taylor, 1989;
Carroll & Hall, 1988; Fan, 1991; Devroye, 1989) or wavelet
decompositions (Pensky & Vidakovic, 1999).

When the noise distribution is different for each observation,
we only have one sample from each convolved density. This
extreme deconvolution setting (Bovy et al., 2011) has pre-
viously been tackled by fitting a Gaussian Mixture Model
(GMM) to the underlying density p(v). When the noise
distributions are all Gaussian, the marginal likelihood p(wi)
is tractable, and the GMM can be fitted by Expectation-
Maximisation (EM, Bovy et al., 2011) or Stochastic Gradi-
ent Descent (SGD, Ritchie & Murray, 2019).

Given enough mixture components, any density function
can be approximated arbitrarily closely using GMMs. In
practice, however, other representations of densities can be
easier to fit, and often generalize better. There is growing in-
terest in normalizing flows (Tabak & Vanden-Eijnden, 2010;
Tabak & Turner, 2013), a class of methods that transform
a simple source density into a complex target density. Nor-
malizing flows are an efficient alternative to GMMs (e.g.,
Rezende & Mohamed, 2015), providing both good scalabil-
ity and high expressivity, and have shown promise in applica-
tions similar to density deconvolution (Cranmer et al., 2019).

In this work, we model the underlying density p(v) with
a normalizing flow. The marginal likelihood p(wi) is in-
tractable, so we resort to approximate inference. We use
amortized variational inference (Section 2), closely follow-
ing Variational Auto-Encoders (VAEs, Kingma & Welling,
2014; Rezende et al., 2014). Unlike for VAEs, in our frame-
work, the model between the latent v and observed w vec-
tors is fixed.

In this proof of concept, we use a fixed Gaussian noise distri-
bution, but our approach would also allow us to use arbitrary
and varying noise distributions, as found in realistic applica-
tions (e.g., Anderson et al., 2018). In a setting well-suited to
the existing Gaussian mixture approach, we find that fitting
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flows is harder (Section 4.1), possibly motivating further
work on approximate inference in this setting. Neverthe-
less, on real data, we demonstrate that flows can already
outperform GMMs for density deconvolution (Section 4.2).

2. Methods
We take a variational approach (Jordan et al., 1999) to den-
sity deconvolution. Introducing an approximate posterior
qφ(v) gives a lower bound to the log-marginal likelihood

log p(wi) = log

∫
v

pni
(wi−v) pθ(v) dv (3)

= log

∫
v

pni
(wi−v) pθ(v)

qφ(v)

qφ(v)
dv (4)

≥ Eq[log pni
(wi−v)]− DKL(qφ(v) ‖ pθ(v)) = L, (5)

where L is the evidence lower bound (ELBO, see Ap-
pendix A). Our approximate posterior qφ(v), a recognition
network, represents beliefs about an underlying value v
given an observation w and the parameters of the noise.

The ELBO gives a unified objective for both the parame-
ters θ of the model and the parameters φ of the recognition
network. Stochastic gradient descent only needs unbiased
estimates of the ELBO, which we obtain by Monte Carlo

L ≈ L(K) =
1

K

K∑
k=1

log

[
pni

(wi − vk) pθ(vk)

qφ(vk)

]
, (6)

where K Monte Carlo samples are simulated vk ∼ qφ(v).

Our variational approach follows that of Variational Auto-
Encoders (VAEs, Kingma & Welling, 2014; Rezende et al.,
2014), which provide a framework for amortized variational
inference in graphical models. The focus of VAEs, how-
ever, is usually to build generative models matching the
observations w. In contrast, our main target is estimating
an underlying density function p(v). For certain applica-
tions, e.g. denoising a noisy measurement, we may also
be interested in the approximate posterior qφ(v). Another
difference between our method and VAEs is that we do
not learn a likelihood model between the latent variables v
and the observations w. Instead, our “likelihood model” is
fully-characterized by the problem itself as pni

(wi − v).

We model both pθ(v) and qφ(v) as normalizing flows. Nor-
malizing flows model probability density functions by trans-
forming a source density π(u) into a target density π̂(v)
using an invertible, differentiable transformation T

v = T(u). (7)

The density of v can be computed using the change-of-
variable formula

π̂(v) =
π
(
T−1(v)

)∣∣det ∂T
∂u (T−1(v))

∣∣ (8)

In particular, we model pθ(v) and qφ(v) with autoregres-
sive flows. For pθ(v) we use a Masked Autoregressive Flow
(MAF, Papamakarios et al., 2017), where a single neural
network pass can compute T−1(v), and therefore the densi-
ties π̂(v) required during training. Inverting the network, to
generate samples, requires D neural network passes for D-
dimensional data. For qφ(v) we use the same network archi-
tecture to represent T(u), corresponding to an Inverse Au-
toregressive Flow (IAF, Kingma et al., 2016). During train-
ing, this choice gives fast one-pass generation of samples
with their densities. For an extensive review on normalizing
flows, we refer the reader to Papamakarios et al. (2019).

3. Related Work
Importance weighting: The Importance Weighted Autoen-
coder (Burda et al., 2015) has the same architecture as the
standard VAE, however, it is trained on a lower bound that
is tighter than the standard ELBO. Applying this idea to our
model results in the following lower bound:

log p(wi) ≥ log

[
1

K

K∑
k=1

pni
(wi − vk) pθ(vk)

qφ(vk)

]
(9)

= LIW(K). (10)

It can be shown (Cremer et al., 2017) that, in expectation,
LIW(K) is equivalent to L(K) with an implicit, more ex-
pressive approximate posterior. A theoretical advantage of
LIW(K) over L(K) is that the former is consistent (under
some mild boundedness assumptions, Burda et al., 2015,
Theorem 1), i.e., limK→∞ LIW(K) = log p(wi).

In fact, it is possible to construct an unbiased estimator of
log p(wi) using LIW(K) with finite K (Luo et al., 2020),
in combination with a Russian Roulette Estimator (Kahn,
1955). A drawback of this approach is that there is no
guarantee that the variance of the estimator is finite.

Inference suboptimality: When using the ELBO, or
LIW(K) with finite K, we only have a bound on the
marginal log-likelihood log p(wi). This bound is loose
when the approximate posterior is incorrect, which happens
either because the form of the posterior cannot be repre-
sented, or because the recognition network does not produce
good variational parameters for all data points. Both issues
can be overcome by choosing the approximate posterior
from an expressive variational family (Cremer et al., 2018),
which is why we use a flow.

Expressive priors for representation learning: The stan-
dard VAE has a fixed prior, usually a multivariate standard
normal distribution, but VAEs with more expressive priors
have been proposed. Expressive priors are particularly use-
ful when the distribution of the latent variables is used for
representation learning.
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A simple generalization for the prior is a learnable
GMM (e.g Nalisnick et al., 2016; Dilokthanakul et al., 2016),
which in our context would result in the existing extreme
deconvolution model (Bovy et al., 2011), with no need for
variational inference. Another approach is to model the prior
with a collection of categorical distributions (e.g. van den
Oord et al., 2017), which would be appropriate if an ob-
servation is well-modeled as a composition of prototype
sources. We use MAF, because for the applications we have
in mind (e.g., Anderson et al., 2018), we want to use a flexi-
ble, continuous prior representation. VAEs have also used
autoregressive flow priors before (Chen et al., 2017).

4. Experiments
In this section, we compare our method to a baseline of
GMMs fitted with the Extreme Deconvolution (XD) model
(Bovy et al., 2011), as by Ritchie & Murray (2019).

4.1. Mixture of Gaussians

In this synthetic task, the target underlying density is a
mixture of Gaussians. We fit the models from observations
that include additional noise from a Gaussian with fixed
covariance. Figure 1 shows density plots of both the latent
data v and the observed data w.

The exact posterior for a latent datapoint given a noisy ob-
servation is itself a mixture of Gaussians, and for some
observations the components may be highly isolated. We
have deliberately picked an example where the prior p(v)
should be reasonably easy for a flow to model, but the poste-
rior p(v |w) may cause issues for flows, as they are known
to have trouble fitting mixture of Gaussians when the com-
ponents are well-separated (e.g., Jaini et al., 2019). Full
experimental details are reported in Appendix B.1

Table 1 reports test average negative log-likelihood on both
v and w, referred to as log p(v) and log p(w), respectively.
We estimate log p(w) using LIW(100). The GMM, the true
model class, has the best results for both v and w. The
flows give quite close estimates for log p(w) when K > 1
for both L and LIW, but show very high variance in their
estimates of log p(v) relative to the variance for log p(w).

The top row of Figure 2 shows example density plots using
samples from the priors of our fitted models. The fitted
GMM has matched the ground truth GMM closely. The
flows recover the broad shape of the ground truth model,
but those trained with L(1) and L(50) put too much mass
in the centre. The flow trained with LIW(50) matched the
Gaussian mixture model on the run shown, but the results
had high variance, and other runs do not look as good.

The bottom row of Figure 2 shows example posteriors for
the fitted models. The exact posterior for the GMM has two

p(v) p(w)

Figure 1. 2D histograms of training data for synthetic experiments.
Contour lines are estimated 0.5/1/1.5/2-σ levels, with samples in
the tails plotted directly. Left: Latent data sampled from a mixture
of Gaussians. Right: Observed data created by adding noise to
samples from p(v).

Method K − log p(v) − log p(w)

XD-GMM – 2.667± 0.000 3.600± 0.000

Flow (L) 1 2.897± 0.046 3.609± 0.002
10 3.015± 0.228 3.607± 0.002
25 2.858± 0.077 3.606± 0.004
50 2.913± 0.174 3.605± 0.001

Flow (LIW) 10 2.854± 0.083 3.604± 0.002
25 2.871± 0.045 3.604± 0.001
50 3.070± 0.499 3.603± 0.001

Table 1. Test average negative log-likelihood for the Gaussian mix-
ture toy dataset. Average over five runs with standard deviation.

isolated modes, and is a close match to the ground truth
posterior. The approximate posteriors for the flows trained
with L(1) and L(50) are not good matches to the GMM
posterior, as neither have isolated modes, but are reasonably
consistent with their corresponding priors. The approximate
posterior for the flow trained with LIW(50) uses samples
drawn from qφ with sampling-importance-resampling (e.g.,
Rubin, 1988). The resampling reflects this recognition net-
work’s role as an adaptive proposal distribution under the
LIW objective rather than a direct approximation to the pos-
terior (Cremer et al., 2017). This reweighted approximation
is a much better match to the ground truth posterior, but as
with the prior, the variance across training runs was high,
and other examples are qualitatively worse.

To establish whether the inability of our procedure to consis-
tently recover the correct ground truth model is a problem
with the prior flow itself, the approximate posterior, the in-
teraction of both, or the training objectives, we tried various
methods of training each part separately. All results for
these experiments are summarized in Table 2. Additional
density plots are also available in Appendix C.

The flow pθ(v) was pretrained directly on the noise free
samples underlying the training set via maximum likelihood.
The test average negative log-likelihood on v is much closer
to the GMM. Therefore, while model mismatch is a slight
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p
θ
(v

)
GMM Flow with L(1) Flow with L(50) Flow with LIW(50)

q φ
(v

)

Figure 2. Density plots for fitted models using the same representation as Figure 1. The top row shows samples from the prior, whilst the
bottom row shows samples from the corresponding posterior for a given noisy test point. The red dashed ellipse shows the 1-σ level of the
Gaussian noise around the test point.

Model − log p(v) − log p(w)

Pretrained flows 2.675± 0.017 3.601± 0.002
After variational fitting 2.729± 0.035 3.602± 0.001

GMM, flow posterior 2.731± 0.008 3.602± 0.000
GMM, exact posterior 2.666± 0.001 3.600± 0.000

Table 2. Test average negative log-likelihood for the additional
experiments. Average over five runs with standard deviation.

disadvantage for the flows here, it is not entirely responsible
for their worse results. Similarly, we trained the recognition
network directly on noisy samples from the training set,
paired with samples from the exact ground truth posterior.
When combined with the pretrained prior, the test likelihood
on w was much closer to that of the GMM, suggesting that
the flows can represent useful posteriors.

We then fitted the models with the L(50) objective, but
initialized with the pretrained prior and posterior. The varia-
tional objective was significantly improved by moving to a
model with similar log p(w) as the GMM, however, doing
so made log p(v) worse. Despite using fairly flexible flows,
the variational bound is not tight, and biases us towards
worse prior models.

Finally we tried fitting a GMM with the L(50) objective
rather than by maximizing the log-likelihood directly, using
both samples from the exact posterior and samples from the
conditional flow approximate posterior. When using exact
samples, the variational bound is tight, but we experience
the noisier gradients of variational fitting: the GMM still
recovers the same result as before. However, using posterior
samples from the flow causes a similar bias to before, show-
ing that the flows are not learning good enough posteriors
for variational inference to be accurate.

− log p(v)

Dataset XD-GMM Flow LIW(50)

White wine 9.903± 0.112 8.685± 0.082
Red wine 8.775± 0.152 8.083± 0.128

Table 3. Test average negative log-likelihood for two small UCI
datasets. Average over five runs with standard deviation.

4.2. UCI datasets

We now compare the two methods on two small UCI
datasets (Dua & Graff, 2017) that are difficult to fit with
GMMs (Uria et al., 2013). We discarded discrete-valued at-
tributes and normalized the data. The datasets are then split
into training and testing sets; 90% are used for training and
10% are used for testing. We subsequently add noise from a
zero-mean independent normal distribution with diagonal
covariance matrix Σii=0.1 to each noise-free training point
to generate the observations wi.

For our method, we use the objective LIW(50) as it yielded
the best test average negative log-likelihood in the previous
section. We note, however, that this might not be the best
choice as the high-variance pattern for log p(v) (see Table 1)
might persist. The test results are reported in Table 3; full
experimental details can be found in Appendix B.2. Flows
outperformed GMMs in both cases.

As an ablation, we tried fitting conventional flows to the
noisy observations wi, without correcting for the noise in
any way (Table 4). These flows beat the GMMs on both
datasets, showing the importance of using good representa-
tions, however, the results are still significantly worse than
flows with deconvolution (right column Table 3).
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5. Conclusion
In this preliminary work, we have outlined an approach for
density deconvolution using normalizing flows and arbitrary
noise distributions by turning the deconvolution problem
into an approximate inference problem. Our experiments
on a toy setup have shown that variational inference with
an inaccurate posterior can prevent the model prior from
learning the underlying noise-free density. For future work,
we are planning to experiment with unbiased inference,
e.g., using Markov chain Monte Carlo methods (e.g., Glynn
& Rhee, 2014; Qiu et al., 2020) or importance weighting
in combination with the Russian Roulette Estimator (Luo
et al., 2020). Nevertheless, we have already been able to
demonstrate that normalizing flows fitted with our approach
can beat GMMs for density deconvolution on (small) real-
world datasets, which indicates that further research on how
to fit normalizing flows in this context is worth pursuing.
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A. The Evidence Lower Bound
The KL divergence between the variational distribution and
the posterior can be written as

DKL(qφ(v) ‖ p(v |wi))

= Eq [log qφ(v)−log pθ(v |wi)] (11)
= Eq [log qφ(v)−log pθ(v,wi)] + log pθ(wi). (12)

The joint distribution of v and w can be computed as

pθ(v,wi) =

∫
n

pθ(v,wi,ni) dni (13)

=

∫
n

δ(wi = v + n) pθ(v) pni
(ni) dni (14)

= pθ(v) pni
(wi − v), (15)

where δ(·) is the Dirac delta distribution. Hence,

log pθ(wi) = DKL(qφ(v) ‖ pθ(v |wi))

+ Eq[log pni(wi − v)]

− DKL(qφ(v) ‖ pθ(v)) (16)
= DKL(qφ(v) ‖ pθ(v |wi)) + L. (17)

B. Details for Experiments
All code used to run the experiments is available:
https://github.com/bayesiains/
density-deconvolution

B.1. Mixture of Three Gaussians

Latent datapoints vi were drawn from a mixture of 3 Gaus-
sians, with equal mixture weights, means

m1 =
[
−2 0

]T
, m2 =

[
0 −2

]T
, m3 =

[
0 2

]T
,
(18)

and covariances

C1 =

[
0.32 0
0 1

]
, C2 = C3 =

[
1 0
0 0.32

]
. (19)

Zero-mean Gaussian noise with covariance

S =

[
0.1 0
0 1

]
, (20)

was added to each vi to produce wi. Training and test sets
consisted of 50 000 samples each, whilst the validation set
had 12 500 samples.

Dataset − log p(v)

White wine 9.544± 0.184
Red Wine 8.611± 0.254

Table 4. Test average negative log-likelihood for two small UCI
datasets. Average over five runs with standard deviation. The flow
model is trained directly on noisy-observations wi using maximum
likelihood learning.

The prior pθ(v) was modelled with a standard normal base
distribution with 5 layers of an affine Masked Autoregres-
sive Flow (MAF) interspersed with linear transforms param-
eterized by an LU-decomposition and a random permuta-
tion matrix fixed at the start of training, following Durkan
et al. (2019). A residual network (He et al., 2016a) was
used within each MAF layer, with 2 pre-activation residual
blocks (He et al., 2016b). Each block used two dense layers
with 128 hidden features each. Masking of the residual
blocks was done using the ResMADE architecture (Durkan
& Nash, 2019).

The recognition network qφ(v) used a setup adapted
from Durkan et al. (2019), where the same flow config-
uration as the prior modeled the inverse transformation,
making it an Inverse Autoregressive Flow (IAF, Kingma
et al., 2016). Conditioning was done by concatenating w to
a flattened Cholesky decomposition of the noise covariance
S and applying a 2 block residual network to produce a
64-dimensional embedding vector. This vector was then
concatenated directly onto the input of the neural network
in every IAF layer. Whilst conditioning on the noise covari-
ance S was not strictly necessary, because it was fixed for
this experiment, we included it so that our implementation
could handle the Extreme Deconvolution case where each
observation wi has its own associated noise covariance Si.

We trained with Adam (Kingma & Ba, 2015), with initial
learning rate 0.0001, other parameters set to defaults, a mini-
batch size of 512, and with dropout (Srivastava et al., 2014)
probability 0.2. We trained for 300 epochs, and reduced the
learning rate by a factor of 0.8 if there was no improvement
in validation loss for 20 epochs.

B.2. UCI datasets

Since the datasets are relatively small, we tune the hyper-
parameters of the models using 5-fold cross-validation and
grid search; the parameters of the grid search are reported
in Table 5. Once the hyperparameter values had been deter-
mined, we trained the models using a tenth of the training
data for early-stopping and measured their performance on
the 10% held-out test data.

In contrast to the setup in Appendix B.1, we used simple
dense layers rather than residual layers within each MAF

https://github.com/bayesiains/density-deconvolution
https://github.com/bayesiains/density-deconvolution
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Hyperparameters Tested values

Fixed learning rate 0.001∗†, 0.0005, 0.0001
MAF layers (pθ(v)) 3∗, 4, 5†

MAF layers (qφ(v)) 3, 4∗, 5†

MAF hidden features 64, 128∗†

MAF hidden blocks 1∗†, 2

Fixed learning rate 0.01∗, 0.005†, 0.001
# of mixture components 20†, 50, 100, 200, 300∗

Table 5. Tested values for hyperparameter tuning on UCI datasets.
The chosen values for each dataset are marked as: (∗) White wine,
(†) Red wine.

layer. Masking of the dense layers was done using the
standard MADE architecture (Germain et al., 2015). A
further difference is that we conditioned the recognition
network qφ(v) only on w.

Training ran until no improvement in validation loss was ob-
served for 30 epochs. For this experiment, we did not apply
any Dropout. The minibatch size was chosen to be 100.

C. Additional Plots

pθ(v) qφ(v)

Figure 3. Density plots of pretrained models. Left: Flow trained
directly on noise-free samples. Right: Posterior flow trained as a
conditional density estimator on pairs of noisy observations and
samples from the exact posterior. The trail linking the posterior
modes does not have a large penalty under our objective function.

pθ(v) qφ(v)

Figure 4. Density plots of models initialized with pretrained flows,
then trained jointly with L(50). Left: Prior pθ(v). Right: Poste-
rior qφ(v) for a given test point. The trail between the posterior
modes has been reduced, but is still present. The fitted prior density
has gotten slightly worse (Table 2).

pθ(v) qφ(v)

Figure 5. Density plots of a GMM fitted with the L(50) objective
using a conditional-flow posterior. Left: Prior pθ(v). Right:
Posterior qφ(v) for a given test point. We are using the ground-
truth model class, but the fit of the prior is not as good as when
using the exact posterior. Importance weighted training may help
remove the mass between the modes (Figure 2, right), but we did
not get stable results (Table 1).

pθ(v) qφ(v)

Figure 6. Density plots of a GMM fitted with the L(50) objective
using the exact posterior. Left: Prior pθ(v). Right: Posterior
qφ(v) for a given test point.


