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Abstract: Respiratory diseases are frequently characterised by epithelial injury, airway inflammation,
defective tissue repair, and airway remodelling. This may occur in a subacute or chronic context,
such as asthma and chronic obstructive pulmonary disease, or occur acutely as in pathogen challenge
and acute respiratory distress syndrome (ARDS). Despite the frequent challenge of lung homeostasis,
not all pulmonary insults lead to disease. Traditionally thought of as a quiescent organ, emerging
evidence highlights that the lung has significant capacity to respond to injury by repairing and
replacing damaged cells. This occurs with the appropriate and timely resolution of inflammation
and concurrent initiation of tissue repair programmes. Airway epithelial cells are key effectors in
lung homeostasis and host defence; continual exposure to pathogens, toxins, and particulate matter
challenge homeostasis, requiring robust defence and repair mechanisms. As such, the epithelium
is critically involved in the return to homeostasis, orchestrating the resolution of inflammation and
initiating tissue repair. This review examines the pivotal role of pulmonary airway epithelial cells
in initiating and moderating tissue repair and restitution. We discuss emerging evidence of the
interactions between airway epithelial cells and candidate stem or progenitor cells to initiate tissue
repair as well as with cells of the innate and adaptive immune systems in driving successful tissue
regeneration. Understanding the mechanisms of intercellular communication is rapidly increasing,
and a major focus of this review includes the various mediators involved, including growth factors,
extracellular vesicles, soluble lipid mediators, cytokines, and chemokines. Understanding these areas
will ultimately identify potential cells, mediators, and interactions for therapeutic targeting.

Keywords: epithelium; lung; regeneration; repair; inflammation; injury; resolution

1. Epithelial Roles in Tissue Repair

Lungs are continually exposed to infections, toxins, and airborne pollutants that stress
homeostasis. Consequently, respiratory disorders cause a vast burden of global disease and
are among the leading causes of death worldwide [1]. Although a quiescent organ at base-
line the lungs have a significant reparative capacity in response to injury [2] (Figure 1A), but
dysregulated inflammation and aberrant or defective repair mechanisms are increasingly
linked to the pathobiology of several diseases including COPD, asthma pulmonary fibrosis
and acute respiratory distress syndrome (ARDS) [3]. Given that the pulmonary epithelium
is central to host defence, homeostasis, and disease biology, this review highlights the role
of airway epithelium in repair, with a particular focus on the mediators involved. While not
an exhaustive assessment of the current literature, this review will focus on the interaction
and interplay of epithelial regeneration and inflammatory processes.
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Figure 1. Hallmarks of wound healing and pulmonary epithelial organisation. (A) Upon injury, 
epithelial cells undergo a multistage process to repair damage. These phases include i. 
dedifferentiation from specialised and mature cells, ii. adhesion to extracellular matrix, iii. 
spreading and migration towards the wound site, iv. cellular proliferation and finally v. 
redifferentiation and repair. (B) Structure of the pulmonary epithelium and organisation of major 
epithelial cell types. 

2. Epithelial Structure and Evolving Knowledge on Progenitor Populations 
The lung epithelial cellular structure and composition varies significantly along its 

proximal–distal axis (Figure 1B). Within the trachea and conducting airways, the 
epithelium is arranged predominantly as a pseudostratified layer, with the most frequent 
cell types being ciliated cells, secretory cells, and basal cells that are adherent to the basal 
lamina [4]. In addition, small numbers of neuroendocrine cells and tuft cells are also 
present. This is in distinct contrast to the alveolar regions where thin type I cells (AT1) lie 
in close apposition to endothelial cells for efficient gas exchange, along with the presence 
of cuboidal type II cells (AT2) that produce pulmonary surfactant proteins. The three main 
cell types within the pulmonary epithelium that have well-documented progenitor 
potential are basal cells, secretory cells, and the AT2 cells [5]. However, these cells are 
unusual in that they display remarkable plasticity and heterogeneity in response to injury. 
Pulmonary progenitor cells are frequently fully differentiated epithelial cells with 
specialised function rather than populations of immature precursor cells. New 
approaches to identifying and phenotyping epithelial cells (such as single cell sequencing 
approaches) are continuing to reveal additional complexity and heterogeneity to 
respiratory epithelial cell identity [6–8]. 

Original studies using pulsed thymidine [9] have been complemented by recent 
lineage tracing studies that together show the pulmonary epithelium is quiescent during 
homeostasis with very low rates of turnover (Figure 2). However, in response to injury, 
the epithelium can mount a robust response with many cells re-entering the cell cycle to 
divide and/or differentiate or dedifferentiate [2]. Within the trachea and proximal airways 
basal cells appear to be the predominant progenitor population [10]. Basal cells are 

Figure 1. Hallmarks of wound healing and pulmonary epithelial organisation. (A) Upon injury,
epithelial cells undergo a multistage process to repair damage. These phases include i. dediffer-
entiation from specialised and mature cells, ii. adhesion to extracellular matrix, iii. spreading and
migration towards the wound site, iv. cellular proliferation and finally v. redifferentiation and repair.
(B) Structure of the pulmonary epithelium and organisation of major epithelial cell types.

2. Epithelial Structure and Evolving Knowledge on Progenitor Populations

The lung epithelial cellular structure and composition varies significantly along its
proximal–distal axis (Figure 1B). Within the trachea and conducting airways, the epithelium
is arranged predominantly as a pseudostratified layer, with the most frequent cell types
being ciliated cells, secretory cells, and basal cells that are adherent to the basal lamina [4].
In addition, small numbers of neuroendocrine cells and tuft cells are also present. This is in
distinct contrast to the alveolar regions where thin type I cells (AT1) lie in close apposition
to endothelial cells for efficient gas exchange, along with the presence of cuboidal type
II cells (AT2) that produce pulmonary surfactant proteins. The three main cell types
within the pulmonary epithelium that have well-documented progenitor potential are
basal cells, secretory cells, and the AT2 cells [5]. However, these cells are unusual in that
they display remarkable plasticity and heterogeneity in response to injury. Pulmonary
progenitor cells are frequently fully differentiated epithelial cells with specialised function
rather than populations of immature precursor cells. New approaches to identifying and
phenotyping epithelial cells (such as single cell sequencing approaches) are continuing to
reveal additional complexity and heterogeneity to respiratory epithelial cell identity [6–8].

Original studies using pulsed thymidine [9] have been complemented by recent
lineage tracing studies that together show the pulmonary epithelium is quiescent during
homeostasis with very low rates of turnover (Figure 2). However, in response to injury, the
epithelium can mount a robust response with many cells re-entering the cell cycle to divide
and/or differentiate or dedifferentiate [2]. Within the trachea and proximal airways basal
cells appear to be the predominant progenitor population [10]. Basal cells are characterised
by expression of Trp63, cytokeratin Krt5, integrin α6, podoplanin, and nerve growth factor
receptor (p75), and are present in the trachea and most of the conducting airways in human
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lungs (albeit in declining numbers more distally) [2]. By contrast, these cells are only present
in more proximal airways in mice. They proliferate in response to epithelial injury and are
capable of self-renewal and differentiation into secretory and ciliated cells [10]. They can
also restore denuded tracheal xenografts implanted into immunodeficient mice [11].

Cells 2021, 10, 339 3 of 19 
 

 

characterised by expression of Trp63, cytokeratin Krt5, integrin α6, podoplanin, and nerve 
growth factor receptor (p75), and are present in the trachea and most of the conducting 
airways in human lungs (albeit in declining numbers more distally) [2]. By contrast, these 
cells are only present in more proximal airways in mice. They proliferate in response to 
epithelial injury and are capable of self-renewal and differentiation into secretory and 
ciliated cells [10]. They can also restore denuded tracheal xenografts implanted into 
immunodeficient mice [11]. 

 
Figure 2. Pulmonary epithelial cells are quiescent during homeostasis. Staining for Ki67+ve cells 
(brown) shows very low proliferation in the mouse airway under basal conditions (A) with an 
increase in proliferation after airway epithelial injury with naphthalene (B). 

In distal airway epithelium, a more prominent role for secretory cells as the major 
progenitor population has been described, although it should be noted that rodent lungs 
lack basal cells in this region, in contrast to the small numbers of basal cells that also 
populate this region in humans. Secretory cells are characterised by expression of the 
secretoglobins Scgb1a1 and Scgb3a2. Under homeostatic conditions, distal airway 
secretory cells self-renew and differentiate into ciliated cells [12] (which are characterised 
by the expression of the transcription factor Foxj1 and the cytoskeletal component 
Tubb4a). Secretory cell injury is most frequently modelled by systemic administration of 
naphthalene which targets cytochrome p450 (Cyp2f2)-expressing secretory cells. In 
response to naphthalene-induced injury, those secretory cells that survive (Cyp2f2 
negative variant club cells) proliferate and reconstitute both secretory and ciliated cells 
[12,13]. Furthermore, secretory cells are capable of mediating tracheal epithelial repair, 
albeit making a minor contribution in the context of sulfur dioxide (SO2)-induced injury 
[12]. In addition, after marked basal cell injury (induced by a Krt5–diphtheria toxin 
system) secretory cells are capable of dedifferentiating and repopulating the basal cell 

Figure 2. Pulmonary epithelial cells are quiescent during homeostasis. Staining for Ki67+ve cells
(brown) shows very low proliferation in the mouse airway under basal conditions (A) with an
increase in proliferation after airway epithelial injury with naphthalene (B).

In distal airway epithelium, a more prominent role for secretory cells as the major pro-
genitor population has been described, although it should be noted that rodent lungs lack
basal cells in this region, in contrast to the small numbers of basal cells that also populate
this region in humans. Secretory cells are characterised by expression of the secretoglobins
Scgb1a1 and Scgb3a2. Under homeostatic conditions, distal airway secretory cells self-
renew and differentiate into ciliated cells [12] (which are characterised by the expression of
the transcription factor Foxj1 and the cytoskeletal component Tubb4a). Secretory cell injury
is most frequently modelled by systemic administration of naphthalene which targets
cytochrome p450 (Cyp2f2)-expressing secretory cells. In response to naphthalene-induced
injury, those secretory cells that survive (Cyp2f2 negative variant club cells) proliferate and
reconstitute both secretory and ciliated cells [12,13]. Furthermore, secretory cells are capa-
ble of mediating tracheal epithelial repair, albeit making a minor contribution in the context
of sulfur dioxide (SO2)-induced injury [12]. In addition, after marked basal cell injury
(induced by a Krt5–diphtheria toxin system) secretory cells are capable of dedifferentiating
and repopulating the basal cell population with similar self-renewal rates as ‘normal’ basal
cells, with these secretory cell-derived basal cells also able to promote epithelial repair and
give rise to all three main epithelial cell types after influenza infection [14].

Within the alveolar region, the best described progenitor cell is the AT2 cell, which
proliferates after injury and can repopulate AT1 cells [15,16]. However, other candidate
alveolar progenitor cell populations exist. These include a lineage negative progenitor
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that subsequently expresses Trp63 and Krt5 (traditional basal cell markers) and is able
to migrate into the alveoli to repair areas of severe damage after influenza injury [17,18],
an α6β4 integrin-expressing cell type that proliferates in response to bleomycin-induced
alveolar injury and proliferates and expands clonally in ex vivo culture [19], and a H2-K1
high distal airway epithelial population that can differentiate into alveolar structures [20].
In addition, a population of cells at the bronchoalveolar duct junction (BADJ) that co-
expresses both AT2 and secretory markers (surfactant protein C and Scgb1a1, respectively)
has been reported to have both alveolar and airway progenitor potential [21]. Given that
some AT2s co-express these markers, confirmation of this cell type as a bona fide and
independent progenitor population is awaited.

In summary, these studies demonstrate that while the respiratory epithelium has
specific region-defined cellular modes of repair, significant plasticity exists in the cells that
are able to respond to injury, and that injury-specific and magnitude of injury-specific
regenerative process may be invoked. While the cellular players in epithelial reconstitution
are increasingly delineated, much work is needed to define the local microenvironmental
cues that accelerate healing.

3. Epithelial Cell–Immune Cell Crosstalk

The crosstalk between epithelial cells and immune cells (particularly granulocytes
and macrophages) is critical for the appropriate progression of inflammation, resolution,
and repair in the lung (Figure 3). As well as being important barrier cells segregating
organs from potential hostile environments, epithelial cells are important for regulating
immune cell trafficking, triggering changes in mediator and cytokine production, altering
phagocytosis during inflammation resolution, and changing production of proteins/MMP
to allow for epithelial repair. Epithelium and immune cells can also work together for
the generation of certain signals, like specialised pro-resolving mediators (SPMs) which
require transcellular synthesis [22]. The role of immune cells in resolution and repair (and
some of the ways in which epithelial cells promote these functions) have been extensively
reviewed elsewhere.
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Figure 3. Epithelial cells and immune cells engage bidirectional communication to regulate tissue
repair. Activated immune cells, including macrophages, neutrophils, and T lymphocytes, regulate
epithelial cell responses to promote proliferation, alteration of mediator and cytokine production,
and downstream signalling cascades. In turn, injured epithelium can themselves regulate immune
cell trafficking and promote a shift from inflammation to resolution and repair functions.

Immune cells, in turn, are responsible for helping to lay down scaffolding proteins,
promoting epithelial migration and cellular survival and preventing a shift from beneficial
repair to fibrotic processes. Neutrophils act as the first responder in inflammation and
help neutralise the wound area of infection, helping to promote early stages of inflamma-
tion. Regarding the later steps of tissue repair, neutrophils serve as major producers of
reactive oxygen species (ROS), nitric oxide (NO), TGF-β, and other mediators that pro-
mote epithelial cell migration and proliferation. There is also evidence that infiltration
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of neutrophils into mucosal epithelium (within the intestine) triggers increased epithelial
permeability [23]. It is important to recognise that a balance of neutrophil numbers and
activation is key as prolonged neutrophil influx can potentially impair tissue repair, per-
haps by maintaining a pro-inflammatory mediator milieu or impairing a shift to repair
phenotypes in macrophages and epithelial cells.

Macrophages have a more established role in tissue repair, though the precise molecu-
lar mechanisms of action for these cells in tissue repair are still largely unknown. A role for
macrophages in tissue repair was first suggested nearly 50 years ago, and multiple mouse
models with depleted macrophages (or impaired cellular migration) have impaired wound
healing [24–26]. Often, macrophages have a critical, temporally restricted role in tissue
healing. This is elegantly highlighted in salamander limb repair after amputation, whereby
macrophage presence around the initial time of injury is essential for regeneration of the
amputated limb. Furthermore, the defective limb repair observed in macrophage-depleted
states can be rescued by the combination of allowing macrophage replenishment and then
causing additional amputational injury [24]. Some of the roles of macrophages are the
same as neutrophils—production of mediators, cytokines, and growth factors that promote
epithelial cell proliferation; regulation of oxidative stress; and modulation of epithelial
barrier properties—but distinct macrophage roles also exist. For one, macrophages remain
a major phagocytic cell, and clearance of debris, wounded epithelial cell fragments, and
apoptotic neutrophils is critical for promoting a space for repair and for triggering pro-
duction of many downstream cellular signals. Indeed, macrophages (along with cough
and the mucociliary escalator) is an important part of airway clearance within the healthy
lung. Generally, tissue-resident macrophages and recruited monocytes (often differenti-
ated by cytokines and growth factors in the local tissue microenvironment) significantly
contribute to tissue repair, regeneration, and the mechanisms of fibrosis, highlighting their
substantial plasticity [27]. IFN-γ- or LPS-stimulated macrophages are instrumental in the
initial stages, where phagocytosis aids in pathogen killing and clearing debris, whereas
IL-4-treated macrophages support angiogenesis and matrix production in the later stages of
wound healing [27,28]. The unique roles at the different repair stages have been reviewed
elsewhere [29].

Within lung, alveolar macrophages are the most widely studied, and are major reg-
ulators of matrix metalloproteinases (MMPs), which are critical for epithelial cell migra-
tion [30,31]. Lung epithelial cells, as well as macrophages, are also capable of producing
IL-10, with alveolar macrophages having high expression of the IL-10 receptor, which
acts to limit inflammatory responses at least partly via JAK1–STAT3 pathways [32,33].
Finally, there is evidence that macrophages may promote matrix deposition and provide
scaffolding, which would allow for better epithelial cell migration and re-epithelialisation.
In a mouse model investigating the effect of recruited macrophages to the site of skin
repair after mechanical injury, peritoneal and tissue-resident macrophages in the skin,
spleen, and liver in LysMCre/iDTR mice were depleted at the various stages of healing.
Depletion in the inflammatory phase (2 and 1 days prior to wounding as well as at day
2 and 4 post-wounding) resulted in delayed re-epithelialisation and reduced collagen
formation. By contrast, depletion of macrophages in the tissue formation phase (mid-stage
of the repair response 3, 4, 6, and 8 dpi) was shown to delay wound closure and lead to
haemorrhage in the wound tissue [34–36]. Within the lung, a second population of tissue
resident macrophages also exists, namely interstitial macrophages, with both similarities
and differences when compared to alveolar macrophages; their function remains relatively
poorly described [37].

It is important to note that dysregulated macrophage function, such as incomplete
efferocytosis, can contribute to fibrosis and improper wound healing as well as autoimmune
diseases such as systemic lupus erythematous and type I diabetes [38]. For example, in the
case of type I diabetes, which occurs as a result of the destruction of insulin producing B
cells in the pancreas, aberrant efferocytosis of apoptotic pancreatic cells leading to necrosis
is thought to contribute to the release of autoantigens. In addition, impaired efferocytosis is



Cells 2021, 10, 339 6 of 17

seen in a multitude of diseases, including diabetes and asthma, with evidence that efficient
apoptotic cell sensing and clearance is critical for efficient tissue repair [39]. For example,
slow wound healing in diabetes is associated with accumulated apoptotic cells at the
wound site [38]. Therefore, critical to a healthy repair process is the control of macrophage
function and signals that disrupt normal healing and lead to fibrotic scar generation by
epithelium and macrophages.

Like the innate immune system, epithelial cells can trigger and respond to adaptive
immune cells. Damaged cells relay signals to natural killer (NK) cells, T cells, and innate
lymphoid cells (ILCs), among others. For example, the cytokines IL-25 and IL-33 produced
by epithelial cells induce Th2-type adaptive responses where increased expression of both
cytokines has been found in patients with idiopathic pulmonary fibrosis (IPF) [40–42],
and IL-33 has an inhibitory effect on mast cell functions [43]. Lymphocytes can directly
respond to these signals, trafficking into the injured space, or can relay these signals on
to other cell types [44]. Furthermore, certain T cell populations (γδ T cells) can reside in
the intraepithelial spaces; these can provide epithelial growth factors and help regulate
epithelial cell apoptosis [45]. Depletion of adaptive immune cells leads to more severe lung
injury, for example, regulatory T cells promote tissue repair by promoting Th1 and Th17
cell responses [46]. The direct correlation of depleted T cell populations (and NK cells) to
tissue repair seen in other organ systems (like the skin) has not yet been established [45,47].
Lymphocytes are also major producers of cytokines, including IL-22 (a major driver of
epithelial cell proliferation and repair), IL-4/IL-13 (which may regulate the balance between
epithelial cell healing and fibrosis), and amphiregulin (an EGF family member which has
been linked to tissue repair and remodelling) [48–50]. While cytokine production and the
contribution of adaptive immune cells to dysregulated healing is well characterised, the
contributions of these cells in regular pulmonary epithelial healing are less clear. Generally,
both innate and adaptive immune cells appear to have highly regulated and wide-ranging
roles in regulating and responding to epithelial injury; further investigation into the signals
that mediate these responses may reveal significant novel targets to promote repair.

4. Infection Influence on Tissue Repair

Infection by both viral and bacterial pathogens is a very frequent cause of lung epithe-
lial injury while pathogen presence can further impede the repair process by causing addi-
tional tissue damage and by prolonging the effects of pro-inflammatory cytokines [51]. Fur-
thermore, inflammatory cells recruited to injured sites and bacterial endotoxins contribute
to destruction of the ECM by overexpression of matrix metalloproteases [52]. Nowhere
have the consequences of pathogen-induced pulmonary epithelial injury been more appar-
ent than the SARS-CoV-2 pandemic, where diffuse alveolar damage (DAD, the hallmark of
acute respiratory distress syndrome) is a frequent finding in fatal disease [53]. Furthermore,
SARS-CoV-2-triggered inflammation leads to additional virus-independent immunopathol-
ogy with treatment by anti-inflammatory corticosteroids able to reduce mortality in severe
disease [54]. In studies using the Gram-negative bacteria Pseudomonas aeruginosa in airway
epithelial models, infection was found to inhibit cell proliferation and alter directional cell
migration during the repair process [55]. The main Pseudomonas aeruginosa secreted viru-
lence factors (e.g., ExoA and LecB) are thought to enact their effects through the induction
of reactive oxygen species, ERK/p38 (MAPK) signalling and increased NF-κB transcrip-
tional activity [56,57]. Vitamin D, a steroid hormone known to have anti-inflammatory
properties, has been suggested as a prognosticator and potential therapeutic target for pul-
monary fibrosis and viral infections [58]. Vitamin D supplementation was found to prevent
bleomycin-induced lung fibrosis in a murine model which supported previous studies
showing that deficiency exacerbated fibrosis through activation of the renin−angiotensin
system and promotion of the TGF-β/SMAD signalling pathway [58,59]. Vitamin D de-
ficiency is associated with increased risks of pulmonary viral infection [60], with data
suggesting that vitamin D may enhance type I interferon responses, endogenous mediators
of antiviral immunity.
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5. Mechanisms for Promoting Tissue Repair

Key to the promotion of wound repair and resolution is cell–cell communication.
Here, we expand on some of the mechanisms of communication used by immune and
parenchymal cells to promote wound healing effects by epithelial cells (Figure 4 and
Table 1).
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Figure 4. Mechanisms of Wound Healing and opportunities for therapeutic intervention. Epithelial
cells regulate and respond to multiple stimuli which have the potential to mediate and promote
tissue repair, including apoptotic bodies, microvesicles, lipid mediators, soluble signals, RNAs and
miRNAs, and growth factors.

5.1. Growth Factors

The major established mediators which affect epithelial cells in tissue repair are
growth factors, including epidermal growth factor (EGF), insulin growth factor (IGF),
vascular endothelial growth factor (VEGF), and transforming growth factors (TGFs). The
link between EGF, EGF receptor (EGFR), and epithelial cell proliferation/repair is well
established, with early observations that EGFR was increased in epithelial cells after injury
and correlated with increased epithelial proliferation [61,62]. Many different inflammatory
stimuli stimulate EGFR phosphorylation and activation, including endotoxin, cadmium,
dual oxidase-1, house dust mite, naphthalene, and more. The downstream effects of
increased EGFR activation include short-term changes in epithelial cell–cell contacts and
reduced epithelial cell barrier resistance, increased epithelial cell migration, epithelial cell
proliferation, activation of integrin pathways, and smaller wound areas (which could be a
result of either migration or proliferation or both). Evidence exists for EGF being a major
ligand to activate EGFR in these repair processes, although several other ligands can also
activate EGFR [63–66]. More directly, EGF treatment of epithelial cells promoted faster
epithelial cellular proliferation, migration, and wound healing, demonstrably through
phosphorylation of, and signalling by, EGFR [67–70]. EGF may promote tissue repair by
multiple mechanisms, but EGF can stimulate translocation of scaffolding proteins to the
cell membrane, providing evidence for a role of EGF in early repair processes [71].

Insulin growth factor (IGF) signalling is emerging as another major regulator of
epithelial growth and regeneration. IGF-1 and -2 are both expressed throughout gestation,
mainly in the mesodermal-derived components of the respiratory tract, and at the same
time as the proliferation of adjacent epithelial cells [72]. In adult human lungs, IGF-1 has
been detected in interstitial macrophages, alveolar macrophages, and epithelial cells of IPF
patients, despite being primarily present in interstitial macrophages in non-IPF controls. A
higher ratio of IGF-1+ve macrophages (compared to all interstitial macrophages) correlated
with collagen and disease severity [72,73]. IGF-1 is also increased in mouse airways and
primarily in epithelial cells after LPS exposure which, in turn, leads to increased anti-
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apoptotic proteins (Bcl-2) and apoptosis resistance in these cells [74]. Similarly, IGF-1 and
IGF-1R are elevated after 48 h of hyperoxia exposure, and are mainly expressed in the
alveolar and airway epithelium. Hyperoxia also stimulated increased cellular proliferation,
which was moderately reduced by the use of anti-IGF-1 antibodies [75]. Recent studies
have begun to further elucidate the effects of IGF-1 on epithelial cell responses. Using an
LPS-induced lung injury mouse model, alveolar epithelium was found to increase alveolar
macrophage production of IGF-1 through TGF-β. This resulted in decreased IL-1β, TNF,
and MCP-1 production and promoted epithelial phagocytosis of apoptotic cells to promote
the resolution of airway inflammation and accelerate the repair of inflammatory injury [76].
Ghosh et al. also demonstrated that IGF-1 secretion is increased after scratch wounding
of epithelial cells [77]. Scratch wounding and IGF-1 both stimulated WNT expression
alongside differentiation of type II epithelial cells to type I, suggesting that IGF-1 may also
be affecting epithelial cell fate [77]. Overall, the evidence for IGF-1-stimulated proliferation
in other organs [78] and the potential roles for IGF-1 in the lung suggest an untapped
area of research and call for further investigations into the role of IGF-1 in lung epithelial
cell-centred wound repair.

Several other growth factors also play roles, including VEGF, TGF, and TGF-β. Varet
et al. demonstrated that VEGF stimulated proliferation of alveolar type II cells [79], and
Roberts et al. demonstrated that VEGF stimulated faster wound closer and proliferation
following scratching in vitro [80]. However, assessment of protein expression of VEGF and
VEGFxxxb isoforms in tissue using immunohistochemistry and ELISA in BAL of ARDS
patient samples showed decreased expression compared to healthy samples [79,81,82].
A murine model of LPS-induced ALI and lung-targeted ablation of the VEGF gene in
VEGFloxP mice also found no increase in the expression of VEGF in epithelial cells post-
infection and no decrease in alveolar cell proliferation was detected by Western blot in the
VEGF knockout mouse [81,83]. By contrast, TGF-β—which shares 42% sequence homology
with EGF, can stimulate EGFr, and colocalises in the same areas of the airways (including
bronchiolar and alveolar epithelium)—has similar effects as EGF in that it promotes faster
wound healing [84,85]. Finally, TGF-β is a major player in multiple lung processes, and is
increased upon epithelial cell wounding; however, there is far more evidence for TGF-β
as a pro-fibrotic signal that derails normal repair processes rather than stimulating them,
largely through its promotion of epithelial–mesenchymal transitions [86–88]. As research
into epithelial repair processes continues, growth factors still remain the largest category of
established players, both for promoting repair (EGF, IGF-1) and for potentially sabotaging
it (TGF-β).

5.2. Soluble Lipid Mediators

Epithelial cells can also communicate via production of and responsiveness to lipid
mediators, including prostaglandins, leukotrienes, and specialised pro-resolving mediators
(SPMs) via transcellular synthesis [89,90]. Prostaglandins (PGs) are lipid mediators derived
from arachidonic acid via enzymatic production. They can have both pro- and anti-
inflammatory roles, with the most well-studied phenomenon being the contribution of
PGE2 to pain signalling as one of the cardinal signs of inflammation. A large body of
work has focused on the role of PGs in modulating epithelial cell and fibroblast crosstalk,
with particular emphasis on fibrotic remodelling. These studies have been previously
reviewed, but it is worth reiterating the tight regulation of PG production in this context,
underscoring the importance of epithelial cells in controlling the appropriate balance of
repair [91].

PGE2 is constitutively produced by epithelial cells and can be released from dy-
ing cells [92], and can stimulate cellular proliferation and wound closure; blockade of
prostaglandin production also impairs epithelial cell wound healing [93–95]. Interestingly,
the optimal concentrations of PGE2 may be cell dependent, as Savla et al. showed that
higher concentrations were better for 16HBE cells and lower concentrations were better
for normal human bronchial epithelial cells (NHBEs) in enhancing wound closure [95].
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Furthermore, PGE2 was equally effective when given at the same time as wounding or
2 h later, but had reduced efficacy when given 4 or 6 h post-wounding. This, combined
with evidence from studies outside the lung, suggests PGE2 plays a role in early wound
healing processes, though it did not appear to affect cellular migration [94,95]. Given the
wide breadth of action for this particular lipid mediator, and the lack of effect shown with
other PGs and leukotrienes, further investigations into the timing and regulation of PGE2
in the context of proper wound healing may bear important results.

SPMs are endogenously produced lipid mediators derived from omega-3 and omega-6
fatty acids with multiple classes, including lipoxins (Lxs), resolvins (Rvs), and maresins
(MaR) [96,97]. The broad-ranging capabilities of these mediators have been seen in the
lung and epithelial cells (among other organs and cell types) [22]. A growing body of work
has investigated SPMs in promotion of wound healing, particularly regarding epithelial
cells, as they can produce SPMs and express the receptors that they signal through [98,99].
LxA4 treatment of primary human alveolar type II epithelial cells and bronchial cells
increased wound healing and epithelial cell proliferation [100–102]. Similarly, in an acid-
injury model in mice, RvD3 promoted increased epithelial cell proliferation and wound
closure, contributing to faster resolution and healing [103]. LxA4 also assists in late-
stage repair by restoring normal epithelial cell functions, namely tight junctions, liquid
surface tension, and lung compliance (MaR1 also restored tight junctions and normal
lung permeability) [101,104–107]. Lastly, several studies show that SPMs (including RvD1,
LxA4, and MaR1) promote appropriate wound healing by preventing a shift to fibrosis.
This largely occurs through prevention of epithelial–mesenchymal transition, as marked
by a reduction in fibronectin and α-smooth muscle actin, a restoration of E-cadherin to
normal levels, and prevention of morphological change [105,108,109]. This is coupled with
prevention of fibroblast proliferation, demonstrating that the effects on proliferation are cell
specific [100]. While data for the contribution of these lipid mediators are still emerging,
their roles in inflammation resolution and epithelial function suggest that they are also
important regulators of wound healing.

5.3. Cytokines

Several cytokines traditionally thought of as being primarily associated with inflam-
matory responses have also been shown to directly influence epithelial functions and
repair. Chemokine receptor-3 (CCR3) ligands (CCL11, CCL24, and CCL26) accelerate
epithelial wound closure in vitro, with epithelial CCR3 expression upregulated in human
asthma [110]. IL-4 and IL-13, classically associated with a Th2 allergic response, also
influence migration and proliferation of primary airway epithelium, but their roles on
lung repair in vivo require further exploration. IL-22 has been demonstrated to promote
airway epithelial repair in vivo, with IL-22-deficient mice having reduced epithelial pro-
liferation and exacerbated collagen deposition and morbidity in the context of influenza
infection [111,112]. Conventional NK cells were found to be the predominant source of IL-
22 during influenza infection, with adoptive transfer of IL-22 sufficient NK cells into IL-22
deficient mice able to partly rescue the impaired epithelial healing seen in these mice [112].
It seems likely that increasing numbers of inflammatory mediators will subsequently be
recognised as having roles in tissue regeneration, and is an area of investigation that will
likely lead to further leads for pro-reparative strategies.

5.4. RNA, Apoptotic Bodies, Microvesicles, and Exosomes

A number of microRNAs have been identified as having altered expression profiles
in regenerating lungs after influenza injury [113]. These include miR-290, miR-21, let-7,
and miR-200, which are predicted to target genes involved in repair, and direct testing of
their functions in regenerating epithelium is underway. For example, miR-21 works by
silencing signalling molecules involved in NF-κB-induced inflammation and TNF expres-
sion, and has been shown to be upregulated in macrophages after efficient efferocytosis,
thus suppressing TNF and inducing IL-10 [114]. A number of microRNA clusters have



Cells 2021, 10, 339 10 of 17

also been associated with development of the distal airways (e.g., miR-17-92 and the
miR302/367 cluster [115,116], with manipulation of these noncoding RNAs altering epithe-
lial proliferation and differentiation. Whether such developmentally restricted RNAs can
be ‘reactivated’ during injury in the airway epithelium is an exciting avenue of research.

The transfer of cellular contents and signals via extracellular vesicles (including
apoptotic bodies, microvesicles, and exosomes) is another means by which cell–cell com-
munication can occur, and can serve as a means of RNA shuttling between cells. To briefly
review these classes, apoptotic bodies are formed during apoptosis and are typically >1 µm
in diameter. Microvesicles (MVs), also known as extracellular vesicles or microparticles,
are small vesicles that result from plasma membrane budding. They have a diameter in
the range of ~100 nm–1 µm and carry biologically active cargo which they can deliver
to recipient cells. MVs have great heterogeneity and numerous biological roles; details
about their packaging, transfer, and effects in acute lung injury have been reviewed else-
where [117,118]. Exosomes are typically 30–100 nm in size and derived from an endocytic
origin. Importantly, all categories of extracellular vesicles can be taken up by recipient cells
through phagocytic processes and can deliver their contents without additional processing.
These characteristics make them ideal messengers, and underscore why they are of growing
interest in cell biology.

The process of cell death by apoptosis is a frequent outcome of injury, and is known
to induce compensatory proliferation in epithelial beds termed apoptosis-induced prolif-
eration (AiP) [119]. AiP is dependent upon production of reactive oxygen species and is
amplified by immune cell recruitment in drosophila [120], but the role and mechanisms of
AiP in lung epithelial repair remains understudied. Whether apoptotic bodies are involved
in AiP, and the role of apoptotic bodies in lung epithelial repair, await study. Given that
macrophage-derived apoptotic bodies can transfer microRNA-221/222 to induce prolifera-
tion in lung epithelium in vitro [121], the role of apoptotic bodies in lung repair after injury
is worthy of further investigation.

Microvesicles from multiple origins can be taken up by epithelial cells, and have
been shown to promote proliferation and repair in corneal and renal wounds [122–124].
These tubular renal epithelial cells (and lung airway epithelial cells) can also produce
exosomes and MVs themselves, which can influence other cells involved in the repair
process (such as fibroblasts) or promote inflammatory functions in immune cells [125–127].
While the majority of research regarding MVs in the lung has focused on their usefulness
as biomarkers or their effects on immune cells in inflammatory processes, these same
methods of cellular communication could be present during the repair process. From
the few studies that have been conducted, we do know that the cellular origin MVs
plays an important role in modulating cellular responses. For instance, MVs from T cells
inhibited cell growth and promoted apoptosis of recipient 16HBE cells, but exosomes
from bone marrow MSCs promoted epithelial cell proliferation [124,128]. Interestingly,
in the MSC study by Tomasoni et al., the MVs and exosomes from MSCs contained IGF-1
receptor and were no longer effective when IGF-1R had been silenced [124]. Furthermore,
despite the fact that both dermal fibroblasts and BM-MSCs contain IGF-1R, only the
exosomes from BM-MSCs contained this receptor, which suggests specificity in packaging
mechanisms. This study highlights that the role for MVs and exosomes in wound repair
(as well as other processes) may be critically dependent upon cargo selection. Overall,
there is growing evidence that all three categories of extracellular vesicles are important
for cell–cell communication with investigations studying their role in resolution and repair
processes urgently needed. As one of the main potential cargoes of extracellular vesicles
is RNA (including both message RNA and small RNA species), the potential exists for
responding inflammatory cells to directly influence the transcriptome of injured epithelium,
thereby influencing tissue regeneration [121].
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5.5. Secondary Messengers

ATP released by injured epithelial cells binds to purinergic receptors (ligand-gated
P2X receptors and G-coupled P2Y receptors) and triggers a Ca2+ wave as well as G-protein-
coupled receptor activation, leading to downstream EGFR activation and related signalling
pathways [129]. Remodelling the cytoskeleton, regulated by members of the Rho family, is
a key factor for cellular adhesion and migration, allowing for successful wound healing.
Cyclic adenosine monophosphate (cAMP), an intracellular secondary messenger whose
formation is catalysed from ATP by adenylate cyclases enzymes and is implicated in several
downstream signalling pathways activates cAMP-dependent protein kinase A I (PKA).
PKA activation has been shown to promote cellular migration in bronchial epithelial cells
by activation of A2A receptors, thereby accelerating wound closure [130]. Intracellular
cAMP concentration can be increased by agonist binding to adrenergic receptors (ARs),
specifically β-ARs, which are commonly used in patients with pulmonary disease [131].

Table 1. Summary of soluble mediators implicated in epithelial repair and fibrosis.

Mediator Effects on Repair Implication in Fibrosis Key References

Growth factors

EGF

EGF and its receptor upregulated after airway injury.
Promotes migration and wound healing of primary
airway epithelial cells in vitro.
EGF receptor dominant negative mutant impair
basal cell proliferation after injury in vivo.

Overexpression of EGF receptor in bronchial
epithelium and type 2 pneumocytes of IPF patients.
EGFR inhibition by gefitinib results in
development of pulmonary fibrosis.

[62,64,66,132,133]

IGF

Increases expression of anti-apoptotic proteins in
airway epithelial cells.
Also associated with increased ECM deposition and
fibrosis.

Increased IGF-1 present in IPF tissue and
associated with decreased pulmonary function and
disease progression. Inhibition of IGF-1R by
OSI-906 delayed progression and decreased
mortality in murine lung.

[73,74,134]

VEGF Alveolar cell proliferation and enhanced wound
healing in vitro

VEGF-A from AT2 cells may play protective role
and aid regeneration of wall defects.
VEGF-Axxxa family is profibrotic and
VEGF-Axxxb is inhibitory.

[79,80,135,136]

TGFα Increased wound healing of alveolar cells in vitro.
Chronic conditional expression of TGFα induces
pulmonary fibrosis independently of inflammation
in adult murine lung.

[85,137]

Lipid mediators

PGE2
Enhanced proliferation and wound closure of airway
epithelium in vitro.

Inhibition of the PGE2 degrading enzyme,
15-Prostaglandin dehydrogenase, increases PGE2
concentrations and ameliorates lung function and
increases proliferation in a bleomycin mouse
model of pulmonary fibrosis.
Potent downregulator of fibroblast activation.

[94,95,138,139]

Lipoxin A4

Promotes primary alveolar epithelium proliferation
and wound closure, inhibits apoptosis and cytokine
production in vitro.

Decreased lipoxin A4/LTB4 ratio advances fibrosis.
Upregulation of ALX receptor associated with
reduced collagen accumulation in vivo.

[100,101,139]

RvD3
Increased epithelial proliferation and reduced
inflammation and organ injury after acid-induced
lung injury in vivo.

[103]

Cytokines

CCR3 ligands Upregulated epithelial proliferation and chemotaxis
and enhanced wound repair in vitro.

Lung fibrotic response limited by neutralising
CCR3 receptor, expression of profibrotic mediators
decreased.

[110,140]

IL-22
Promotes airway epithelial proliferation and protects
against lung dysfunction, morbidity, and fibrosis
after influenza infection in vivo.

Protective role against severe fibrosis following
bacterial infection. [111,112]

Other

Airway mucin
gene (MUC5B)

Attenuates ciliated cell differentiation in repair.
MUC5B disrupts alveolar repair by interfering with
the interaction between AT2 and the matrix.

Promoter polymorphism is a strong genetic risk for
IPF. [141,142]
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6. Looking Forward: What Lies Next?

Although there is understanding and characterisation of the key mechanisms that
govern tissue homeostasis and repair following lung injury, it is evident that much is still
to be discovered. Whether the soluble mediators, signalling cascades, and cellular regener-
ative responses characterised in murine models are translatable to human disease largely
remains to be determined. The process of augmenting the resolution of inflammation
as a potential therapeutic strategy is increasingly being established within the literature;
accelerating epithelial repair after injury and inflammation may well provide another
complementary approach to addressing unmet clinical needs.
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