

Edinburgh Research Explorer

Semi-Oblivious Chase Termination: The Sticky Case

Citation for published version:
Calautti, M & Pieris, A 2021, 'Semi-Oblivious Chase Termination: The Sticky Case', Theory of Computing
Systems, vol. 65, no. 1, pp. 84 - 121. https://doi.org/10.1007/s00224-020-09994-5

Digital Object Identifier (DOI):
10.1007/s00224-020-09994-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theory of Computing Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 18. Feb. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/385611761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/marco-calautti(f0a3769d-bc61-42f4-b06a-8b90b20a44dc).html
https://www.research.ed.ac.uk/portal/en/persons/andreas-pieris(41bd3c7d-e9dc-476a-8d9f-d86a8ff4da4b).html
https://www.research.ed.ac.uk/portal/en/publications/semioblivious-chase-termination-the-sticky-case(4f91b89e-b64d-430e-b6e8-01494aeafd09).html
https://doi.org/10.1007/s00224-020-09994-5
https://doi.org/10.1007/s00224-020-09994-5
https://www.research.ed.ac.uk/portal/en/publications/semioblivious-chase-termination-the-sticky-case(4f91b89e-b64d-430e-b6e8-01494aeafd09).html

https://doi.org/10.1007/s00224-020-09994-5

Semi-Oblivious Chase Termination: The Sticky Case

Marco Calautti1 · Andreas Pieris2

© The Author(s) 2020

Abstract
The chase procedure is a fundamental algorithmic tool in database theory with a vari-
ety of applications. A key problem concerning the chase procedure is all-instances
termination: for a given set of tuple-generating dependencies (TGDs), is it the case
that the chase terminates for every input database? In view of the fact that this prob-
lem is undecidable, it is natural to ask whether known well-behaved classes of TGDs,
introduced in different contexts such as ontological reasoning, ensure decidability.
We consider a prominent paradigm that led to a robust TGD-based formalism, called
stickiness. We show that for sticky sets of TGDs, all-instances chase termination is
decidable if we focus on the (semi-)oblivious chase, and we pinpoint its exact com-
plexity: PSPACE-complete in general, and NLOGSPACE-complete for predicates of
bounded arity. These complexity results are obtained via a graph-based syntactic
characterization of chase termination that is of independent interest.

Keywords Chase procedure · Tuple-generating dependencies · Stickiness ·
Termination · Computational complexity

1 Introduction

The chase procedure (or simply chase) is a fundamental algorithmic tool that has
been successfully applied to several database problems such as containment of
queries under constraints [2], checking logical implication of constraints [5, 27],

This article belongs to the Topical Collection: Special Issue on Database Theory (ICDT 2019)
Guest Editor: Pablo Barceló

� Andreas Pieris
apieris@inf.ed.ac.uk

Marco Calautti
marco.calautti@unitn.it

1 Department of Information Engineering and Computer Science, University of Trento,
Trento, Italy

2 School of Informatics, University of Edinburgh, Edinburgh, UK

Theory of Computing Systems (2021) 65:84–121

Published online: 17 August 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-09994-5&domain=pdf
mailto: apieris@inf.ed.ac.uk
mailto: marco.calautti@unitn.it

computing data exchange solutions [17], and query answering under constraints [11],
to name a few. The chase procedure takes as input a database D and a set Σ of
constraints, which, for this work, are tuple-generating dependencies (TGDs) of the
form

∀x̄∀ȳ(φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄)),

where φ (the body) and ψ (the head) are conjunctions of relational atoms, and it
produces an instance DΣ that is a universal model of D and Σ , i.e., a model that
can be homomorphically embedded into every other model of D and Σ . Somehow
DΣ acts as a representative of all the models of D and Σ . This is the reason for the
ubiquity of the chase in database theory, as discussed in [15]. Indeed, many database
problems can be solved by simply exhibiting a universal model.

1.1 The Chase in a Nutshell

Roughly, the chase adds new tuples to the database D (possibly involving null values
that act as witnesses for the existentially quantified variables), as dictated by the
TGDs of Σ , and it keeps doing this until all the TGDs of Σ are satisfied. There
are, in principle, three different ways for formalizing this simple idea, which lead to
different versions of the chase procedure:

Oblivious Chase The first one, which gives rise to the oblivious chase, is as fol-
lows: for each pair (t̄ , ū) of tuples of terms from the instance I constructed so far,
apply a TGD σ of the form ∀x̄∀ȳ (φ(x̄, ȳ)→∃z̄ψ(x̄, z̄)) if φ(t̄, ū) ⊆ I , and σ has
not been applied in a previous chase step due to the same pair (t̄ , ū), and add to I

the set of atoms ψ(t̄, v̄), where v̄ is a tuple of new nulls not occurring in I .
Semi-oblivious Chase The second one, which is a refinement of the oblivious

chase, and it gives rise to the semi-oblivious chase, is as follows: for each pair
(t̄ , ū) of tuples of terms from the instance I constructed so far, apply a TGD σ of
the form ∀x̄∀ȳ (φ(x̄, ȳ)→∃z̄ψ(x̄, z̄)) if φ(t̄, ū) ⊆ I , and σ has not been applied
in a previous chase step due to a pair of tuples (t̄ , ū′) with φ(t̄, ū′) ⊆ I , where ū

and ū′ might be different, and add to I the set of atoms ψ(t̄, v̄), where v̄ is a tuple
of new nulls not in I . In other words, a TGD σ of the above form is applied only
once due to a certain witness t̄ for the variables x̄ that appear both in φ and ψ .

Restricted Chase The third one, which is a refinement of the (semi-)oblivious
chase that leads to the restricted (a.k.a. standard) chase, is as follows: for each
pair (t̄ , ū) of tuples of terms from the instance I constructed so far, apply a TGD
σ of the form ∀x̄∀ȳ (φ(x̄, ȳ)→∃z̄ψ(x̄, z̄)) if φ(t̄, ū) ⊆ I , and there is no tuple ū′
of terms from I such that ψ(t̄, ū′) ⊆ I , i.e., the TGD is not already satisfied, and
add to I the set of atoms ψ(t̄, v̄), where v̄ is a tuple of new nulls not in I .

Thus, the key difference between the (semi-)oblivious and restricted versions of
the chase is that the former apply a TGD whenever the body is satisfied, while the
latter applies a TGD if the body is satisfied but the head is not.

Theory of Computing Systems (2021) 65:84–121 85

1.2 Restricted vs. (Semi-)Oblivious Chase

It should not be difficult to verify that the restricted chase, in general, builds smaller
instances than the (semi-)oblivious one. In fact, it is easy to devise an example where,
according to the restricted chase, none of the TGDs should be applied, while the
(semi-)oblivious chase builds an infinite instance.

Example 1 Consider the database D = {R(a, a)} and the TGD

∀x∀y(R(x, y) → ∃zR(z, x)).

The restricted chase will detect that the database already satisfies the TGD, while the
(semi-)oblivious chase will build the infinite instance

{R(a, a), R(⊥1, a), R(⊥2, ⊥1), R(⊥3, ⊥2), . . .},
where ⊥1, ⊥2, ⊥3, . . . are (labeled) nulls.

It should be also clear that the semi-oblivious chase, in general, builds smaller
instances than the oblivious one. This is illustrated by the following example.

Example 2 Consider the database D = {R(a, a)} and the TGD

∀x∀y(R(x, y) → ∃zR(x, z)),

The semi-oblivious chase will build the instance {R(a, a), R(a, ⊥)}, where ⊥ is a
null, whereas the oblivious chase will build the infinite instance

{R(a, a), R(a, ⊥1), R(a, ⊥2), R(a, ⊥3), . . .},
where ⊥1, ⊥2, ⊥3, . . . are nulls.

The restricted chase has a clear advantage over the (semi-)oblivious chase when
it comes to the size of the final result. But, of course, this advantage does not come
for free: at each application, the restricted chase has to check that there is no way to
satisfy the head of the TGD at hand, and this can be computationally costly in prac-
tice. On the other hand, the advantage of the semi-oblivious chase over the oblivious
chase comes without any additional overhead since both versions have to keep track
of the TGDs and pairs of tuples that have been considered so far.

It has been recently observed that for RAM-based implementations the restricted
chase is the indicated approach since the benefit from producing smaller instances
justifies the additional effort for checking whether a TGD is already satisfied; see,
e.g., [6, 22]. However, as discussed in [6], an RDBMS-based implementation of the
restricted chase is quite challenging, whereas an efficient implementation of the semi-
oblivious chase is feasible. Hence, both the semi-oblivious and restricted versions of
the chase are relevant algorithmic tools for practical implementations, whereas the
oblivious version of the chase is mostly of theoretical interest.

Theory of Computing Systems (2021) 65:84–12186

1.3 The Challenge of Non-Termination

There are indeed efficient implementations of the semi-oblivious and restricted chase
that allow us to solve central database problems by adopting a materialization-based
approach [6, 22, 30, 33]. Nevertheless, for this to be feasible in practice we need a
guarantee that the chase terminates, which is not always the case. This fact motivated
a long line of research on identifying classes of TGDs that ensure the termination of
the semi-oblivious and/or restricted chase, no matter how the input database looks
like. A prime example is the class of weakly-acyclic sets of TGDs [17], which has
been introduced in the context of data exchange, and guarantees the termination of
both the semi-oblivious and restricted chase. Many other termination criteria can be
found in the literature; see, e.g., [4, 9, 14–16, 21, 23, 28, 29].

With so much effort spent on identifying sufficient conditions for the termination
of the chase, the question that immediately comes up is whether a sufficient condition
that is also necessary exists. In other words, given a set Σ of TGDs, is it possible to
decide whether, for every database D, the semi-oblivious or the restricted chase on
D and Σ terminates? The answer is negative, no matter which version of the chase
we consider [18]; this is actually true even for the oblivious version of the chase. The
problem remains undecidable even if the database is known; this has been established
in [15] for the restricted chase, and it was observed in [28] that the same proof shows
undecidability also for the (semi-)oblivious chase.

1.4 Deciding the Termination of the Chase

The undecidability proof given in [18] constructs a sophisticated set of TGDs that
goes beyond existing well-behaved classes of TGDs that enjoy certain syntactic prop-
erties, which in turn ensure useful model-theoretic properties. Such well-behaved
classes of TGDs have been proposed in the context of ontological reasoning. The two
main paradigms that led to robust TGD-based formalisms, without forcing the chase
to terminate, are guardedness [4, 11, 12] and stickiness [13]:

Guardedness A TGD is guarded if its body has an atom that contains (or “guards”)
all the universally quantified variables. This condition has been inspired by the
guarded fragment of first-order logic, and is powerful enough to capture impor-
tant Description Logics (DLs) such as the members of the EL family. The key
model-theoretic property of the class of guarded TGDs, which explains its robust
behaviour, is the existence of tree-like universal models [11].

Stickiness On the other hand, sticky sets of TGDs are powerful enough to model
interesting statements that are inherently non-tree-like, and thus, not expressible
via guarded TGDs. Such a statement, for example, consists of the TGDs

∀x∀y(R(x, y) → ∃zR(y, z) ∧ P(z)) ∀x∀y(P (x) ∧ P(y) → S(x, y)),

which compute the cartesian product of an infinite unary relation, a useful
modeling feature that, in DL parlance, is known as concept product [32].

The fact that the set of TGDs constructed in the undecidability proof of [18] is nei-
ther guarded nor sticky raised the following question: is the semi-oblivious/restricted

Theory of Computing Systems (2021) 65:84–121 87

chase termination problem decidable for guarded or sticky sets of TGDs? The current
state of affairs concerning this central question is as follows:

– For the semi-oblivious chase and guarded TGDs the problem is well-understood:
it is 2EXPTIME-complete in general, and EXPTIME-complete for predicates of
bounded arity [8]. The same paper [8] considered also linear TGDs, i.e., TGDs
with only one body atom, which form a central subclass of guarded TGDs: the
problem becomes PSPACE-complete, and NLOGSPACE-complete for predicates
of bounded arity. An alternative proof for linear TGDs, which relies on derivation
trees, a notion that was originally introduced in the context of ontological query
answering [3], has been recently proposed in [24].

– For the restricted chase and guarded TGDs, it has been recently shown, by
exploiting Monadic-Second Order Logic over infinite trees of bounded degree,
that the problem is decidable in elementary time assuming only one atom in the
head, whereas the case of more than one atoms in the head remains a challeng-
ing open problem [19]. The case of linear TGDs with only one atom in the head
has been explicitly considered in [24], where the decidability of the problem in
question has been shown by relying on derivation trees.

– Finally, for the restricted chase and sticky sets of TGDs, it has been recently
shown, by exploiting Büchi Automata, that the problem is decidable in elemen-
tary time assuming only one atom in the head, whereas the case of more than one
atoms in the head remains a challenging open problem [19].

Towards completing the picture concerning the chase termination problem, in
this work we concentrate on the semi-oblivious chase and sticky sets of TGDs, and
provide precise complexity results: PSPACE-complete in general, and NLOGSPACE-
complete for predicates of bounded arity. Our results apply also to the oblivious chase
that, although is not very useful for practical purposes, it is a relevant technical tool
due to its simplicity; for a discussion on the usefulness of the oblivious chase see [11].

1.5 Summary of Contributions

Our results can be summarized as follows:

– In Section 4, we provide a semantic characterization of non-termination of the
semi-oblivious chase under sticky sets of TGDs via the existence of “path-like”
infinite chase derivations, which forms the basis for our decision procedure.

– By exploiting the above semantic characterization, we then provide, in Section 5,
a syntactic characterization of semi-oblivious chase termination via a graph-
based condition. To this end, we exploit a recent syntactic characterization
from [8] of the termination of the semi-oblivious chase under linear TGDs.

– In Section 6, by using the graph-based syntactic characterization from the
previous section, we establish the desired complexity upper bounds for our
problem: PSPACE in general, and NLOGSPACE for predicates of bounded arity.
We finally establish matching lower bounds. The PSPACE-hardness is obtained
by simulating the behaviour of a polynomial space Turing machine, while the
NLOGSPACE-hardness via a reduction from graph reachability.

Theory of Computing Systems (2021) 65:84–12188

2 Preliminaries

We consider the mutually disjoint countably infinite sets C, N, and V of constants,
(labeled) nulls, and variables, respectively. We refer to constants, nulls and variables
as terms. For an integer n > 0, we may write [n] for the set {1, . . . , n}.

Relational Databases A schema S is a finite set of relation symbols (or predicates)
with associated arity. We write R/n to denote that R has arity n ≥ 0; we may also
write ar(R) for the integer n. A (predicate) position of S is a pair (R, i), where
R/n ∈ S and i ∈ [n], that essentially identifies the i-th argument of R. We write
pos(S) for the set of positions of S, that is, the set {(R, i) | R/n ∈ S and i ∈ [n]}.
An atom over S is an expression of the form R(t̄), where R/n ∈ S and t̄ is an n-tuple
of terms. A fact is an atom whose arguments consist only of constants. An (atom)
position of R(t̄) is a pair (R(t̄), i), where i ∈ [ar(R)], that essentially identifies the
predicate position (R, i) in R(t̄). We write R(t̄)[i] for the term occurring at position
(R(t̄), i). Moreover, for a variable x in t̄ , pos(R(t̄), x) is the set of predicate positions
{(R, i) | R(t̄)[i] = x}. We write var(R(t̄)) for the set of variables in t̄ . The notations
pos(·, x) and var(·) extend to sets of atoms. An instance over S is a (possibly infinite)
set of atoms over S with constants and nulls. A database over S is a finite set of facts
over S. The active domain of an instance I , denoted dom(I), is the set of terms in I .

Substitutions and Homomorphisms A substitution from a set of terms T to a set of
terms T ′ is a function h : T →T ′. Henceforth, we treat a substitution h as the set of
mappings {t �→ h(t) | t ∈ T }. The restriction of h to a subset S of T , denoted h|S , is
the substitution {t �→ h(t) | t ∈ S}. A homomorphism from a set of atoms A to a set
of atoms B is a substitution h from the set of terms in A to the set of terms in B such
that (i) t ∈ C implies h(t) = t , i.e., h is the identity on C, and (ii) R(t1, . . . , tn) ∈ A

implies h(R(t1, . . . , tn)) = R(h(t1), . . . , h(tn)) ∈ B.

Tuple-Generating Dependencies A tuple-generating dependency (TGD) σ is a first-
order sentence (without constants) of the form

∀x̄∀ȳ(φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄)),

where x̄, ȳ and z̄ are mutually disjoint tuples of variables of V, while φ(x̄, ȳ) and
ψ(x̄, z̄) are conjunctions of atoms. For brevity, we write σ as φ(x̄, ȳ)→∃z̄ψ(x̄, z̄),
and use comma instead of ∧ for joining atoms. We refer to φ(x̄, ȳ) and ψ(x̄, z̄) as
the body and head of σ , denoted body(σ) and head(σ), respectively. The frontier of
the TGD σ , denoted fr(σ), is the set of variables x̄, i.e., the variables that appear both
in the body and the head of σ . Note that, by abuse of notation, we may treat a tuple
of variables as a set of variables. The schema of a set Σ of TGDs, denoted sch(Σ), is
the set of predicates occurring in Σ , and we write ar(Σ) for the maximum arity over
all those predicates. An instance I satisfies a TGD σ as the one above, written I |= σ ,
if the following holds: whenever there exists a homomorphism h from φ(x̄, ȳ) to I ,
then there exists h′ ⊇ h|x̄ that is a homomorphism from ψ(x̄, z̄) to I . Note that, by
abuse of notation, we sometimes treat a conjunction of atoms as a set of atoms. The
instance I satisfies a set Σ of TGDs, written I |= Σ , if I |= σ for each σ ∈ Σ .

Theory of Computing Systems (2021) 65:84–121 89

Stickiness One of the main syntactic paradigms for TGDs is stickiness [13]. The key
property underlying this condition is as follows: variables that appear more than once
in the body of a TGD should be inductively propagated (or “stick”) to every head
atom, which can be graphically illustrated as

where the first set of TGDs is sticky, while the second is not. The formal definition
relies on an inductive procedure that marks the variables that may violate the above
property. The base step marks a variable in the body of a TGD that does not occur in
every head atom. Then, the marking is inductively propagated as follows

Stickiness requires a marked variable to appear only once in the body of a TGD.
Let us now formalize the above intuitive discussion. Consider a set Σ of TGDs;

we assume, w.l.o.g., that the TGDs in Σ do not share variables. Let σ ∈ Σ and x a
variable in body(σ). We inductively define when x is marked in Σ :

– If x does not occur in every atom of head(σ), then x is marked in Σ .
– Assuming that head(σ) contains an atom of the form R(t̄) and x ∈ t̄ , if there

exists σ ′ ∈ Σ that has in its body an atom of the form R(t̄ ′), and each variable
in R(t̄ ′) at a position of pos(R(t̄), x) is marked in Σ , then x is marked in Σ .

The set Σ is sticky if there is no TGD whose body contains two occurrences of a
variable that is marked in Σ . We denote by S the family of all sticky finite sets of
TGDs.1

3 The Chase Procedure

The chase procedure (or simply chase) accepts as an input a database D and a set Σ

of TGDs, and constructs a (possibly infinite) instance that contains D and satisfies
Σ . Central notions in this context are those of active trigger and trigger application,
which are coming into two different variations, oblivious and semi-oblivious, which
in turn give rise to the oblivious [11] and the semi-oblivious [20, 28] chase. The
key difference between these two versions of the chase, lies at the adopted naming
scheme for the newly generated null values, which are used as witnesses for the
existentially quantified variables occurring in the head of a TGD.

1We work with finite sets of TGDs only. Thus, in the rest of the paper, a set of TGDs is always finite.

Theory of Computing Systems (2021) 65:84–12190

Definition 1 (Trigger and Trigger Application) A trigger for a set Σ of TGDs on
an instance I is a pair (σ, h), where σ ∈ Σ and h is a homomorphism from body(σ)

to I . The oblivious result and semi-oblivious result of (σ, h), denoted o-result(σ, h)

and so-result(σ, h), is the set of atoms μo(head(σ)) and μso(head(σ)), respectively,
where μo, μso : var(head(σ))→C ∪ N are defined as

μo(x) =
⎧
⎨

⎩

h(x) if x ∈ fr(σ)

⊥x
σ,h otherwise

μso(x) =
⎧
⎨

⎩

h(x) if x ∈ fr(σ)

⊥x
σ,h|fr(σ)

otherwise

where ⊥x
σ,h, ⊥x

σ,h|fr(σ)
are nulls from N. We call the trigger (σ, h) obliviously active if

o-result(σ, h) �⊆ I , and semi-obliviously active if so-result(σ, h) �⊆ I . The oblivious
application of (σ, h) to I returns the instance J = I ∪ o-result(σ, h), and is denoted
as I 〈o, σ, h〉J . Analogously, the semi-oblivious application of (σ, h) to I returns the
instance J = I ∪ so-result(σ, h), and is denoted as I 〈so, σ, h〉J .

Observe that in the definition of �-result(σ, h), where � ∈ {o, so}, each existen-
tially quantified variable x occurring in head(σ) is mapped by μ� to a “fresh” null
value of N whose name is uniquely determined by the trigger (σ, h) and x itself.
Therefore, for a trigger (σ, h), we can unambiguously write down the set of atoms
�-result(σ, h). In our analysis, it would be useful to be able to refer to the terms occur-
ring in �-result(σ, h) that have been propagated (not invented) during the application
of (σ, h). Formally, the frontier of �-result(σ, h), denoted fr(�-result(σ, h)), is the set
of terms dom(h(body(σ))) ∩ dom(�-result(σ, h)).

(Semi-)Oblivious Chase The main idea of the chase is, starting from a database D,
to exhaustively apply active triggers for the given set Σ of TGDs on the instance
constructed so far. We simultaneously define oblivious and semi-oblivious chase
derivations. To this end, we distinguish the two cases where a derivation is finite or
not:

– A finite sequence (Ii)0≤i≤n of instances, with D = I0 and n ≥ 0, is an oblivious
(resp., semi-oblivious) chase derivation of D w.r.t. Σ if, for each i ∈ {0, . . . , n−
1}, there exists an obliviously (resp., semi-obliviously) active trigger (σ, h) for Σ

on Ii such that Ii〈o, σ, h〉Ii+1 (resp., Ii〈so, σ , h〉Ii+1), and no obliviously (resp.,
semi-obliviously) active trigger for Σ on In exists.

– An infinite sequence (Ii)i≥0 of instances, with D = I0, is an oblivious (resp.,
semi-oblivious) chase derivation of D w.r.t. Σ if, for each i ≥ 0, there exists
an obliviously (resp., semi-obliviously) active trigger (σ, h) for Σ on Ii such
that Ii〈o, σ , h〉Ii+1 (resp., Ii〈so, σ , h〉Ii+1). Moreover, (Ii)i≥0 is fair if, for each
i ≥ 0, and for every obliviously (resp., semi-obliviously) active trigger (σ, h)

for Σ on Ii , there exists j > i such that (σ, h) is not an obliviously (resp.,
semi-obliviously) active trigger for Σ on Ij . The latter is known as the fair-
ness condition, and guarantees that all the active triggers will eventually be
deactivated.

Theory of Computing Systems (2021) 65:84–121 91

A (semi-)oblivious chase derivation is valid if it is finite, or infinite and fair. Infinite
but unfair chase derivations are not valid since they do not serve the main purpose of
the chase procedure, i.e., build an instance that satisfies the given TGDs. Henceforth,
we write o-chase and so-chase for oblivious and semi-oblivious chase, respectively.

In general, due to the adopted naming scheme and the definition of active triggers,
the semi-oblivious chase builds smaller instances than the oblivious one. This is
because a trigger that is semi-obliviously active it is also obliviously active, but the
other direction is not always true. This has been already illustrated by Example 2 in
Section 1, which, for the sake of readability, we recall below.

Example 3 Consider the database D = {R(a, a)}, and the TGD

σ = R(x, y) → ∃zR(x, z).

It is easy to verify that the only o-chase derivation of D w.r.t. {σ } is infinite. On the
other hand, the only so-chase derivation of D w.r.t. {σ } is

{R(a, a)},
{
R(a, a), R

(
a, ⊥z

σ,{x �→a}
)}

,

which is, of course, finite. Indeed, if we apply again the TGD σ , then we will obtain

the atom R
(
a, ⊥z

σ,{x �→a}
)

, which is already present.

Chase Relation A useful notion that we are going to use in our proofs is the so-called
chase relation [13], which essentially describes how the atoms generated during the
chase depend on each other. Consider a �-chase derivation δ = (Ii)i≥0, where � ∈
{o, so}, of a database D w.r.t. a set Σ of TGDs, and assume that for each i ≥ 0,
Ii〈�, σi, hi〉Ii+1, which means that Ii+1 = Ii ∪ �-result(σi, hi). The chase relation
of δ, denoted ≺δ , is a binary relation over

⋃
i≥0 Ii such that α ≺δ β iff there exists

i ≥ 0 such that α ∈ hi(body(σi)) and β ∈ Ii+1 \ Ii . Notice that the relation ≺δ is
acyclic, or, in other words, it forms a directed acyclic graph over

⋃
i≥0 Ii .

3.1 Chase Termination Problem

It is known that due to the existentially quantified variables, a valid �-chase deriva-
tion, where � ∈ {o, so}, may be infinite. This is true even for very simple settings:
it is easy to verify that the only �-chase derivation of D = {R(a, b)} w.r.t. the set
Σ consisting of the single TGD R(x, y)→∃zR(y, z) is infinite. The question that
comes up is, given a set Σ of TGDs, can we check whether, for every database D,
all or some valid (semi-)oblivious chase derivations of D w.r.t. Σ are finite? Before
formalizing the above problem, let us recall two central classes of sets of TGDs:

CT
�∀∀ =

{

Σ

∣
∣
∣
∣

for every database D,

every valid �-chase derivation of D w.r.t. Σ is finite

}

CT
�∀∃ =

{

Σ

∣
∣
∣
∣

for every database D,

there exists a finite �-chase derivation of D w.r.t. Σ

}

Theory of Computing Systems (2021) 65:84–12192

The problems tackled in this work are as follows, where C is a class of sets of TGDs:

It is well-known from [20] that the following holds:

CT
o∀∀ = CT

o∀∃ ⊂ CT
so∀∀ = CT

so∀∃.

This immediately implies that, after fixing the version of the chase in question, i.e.,
oblivious or semi-oblivious, the above decision problems are equivalent. Henceforth,
for a class C of sets of TGDs, we simply refer to the problem CT�∀(C), and we write
CT

�∀ for the classes CT�∀∀ and CT
�∀∃, where � ∈ {o, so}.

We know that our main decision problems are, in general, undecidable. Assuming
that TGD denotes the class of arbitrary sets of TGDs, we have that:

Theorem 1 ([18]) For � ∈ {o, so}, CT�∀(TGD) is undecidable, even if we focus on
binary and ternary predicates.

However, the set of TGDs employed in the undecidability proof of [18] is not
sticky. What about CT�∀(S) then? This is a non-trivial problem, and pinpointing its
complexity is the main goal of this work.

3.2 Some Useful Results

Before proceeding with the complexity analysis of CT�∀(S), let us recall a couple of
technical results that would allow us to significantly simplify our investigation.

Critical Database It would be useful to have a special database of a very simple form
that gives rise to a valid infinite chase derivation whenever there is a database with
the same property. Interestingly, such a database exists, which is known as the critical
database for a set Σ of TGDs [28]. Formally, the critical database for Σ is

cr(Σ) = {R(
, . . . ,
) | R ∈ sch(Σ)},
where
 ∈ C is a fixed constant. In other words, cr(Σ) consists of all the atoms that
can be formed using the predicates of sch(Σ) and the constant
. The following result
states that cr(Σ) is indeed the desired database:

Proposition 1 ([28]) Consider a set Σ of TGDs. For � ∈ {o, so}, the following are
equivalent:

1. Σ �∈ CT
�∀.

2. There exists a valid infinite �-chase derivation of cr(Σ) w.r.t. Σ .

Henceforth, we always use
 for the constant that appears in a critical database.
Notice that this special constant does not depend on the set of TGDs in question.

Theory of Computing Systems (2021) 65:84–121 93

Fairness As one might expect, we are going to focus on the complement of CT�∀(S),
for � ∈ {o, so}, and pinpoint the complexity of the following problem: given a set
Σ ∈ S, is there a valid infinite �-chase derivation δ of cr(Σ) w.r.t. Σ (see Proposi-
tion 1). However, as observed in [8], where the same problem is studied but for the
class of guarded TGDs, one of the main difficulties is to ensure that δ enjoys the
fairness condition. Interestingly, as shown in [8], we can completely neglect the fair-
ness condition since the existence of a (possibly unfair) infinite �-chase derivation of
some database w.r.t. Σ implies the existence of a fair one.

Proposition 2 ([8]) Consider a database D and a set Σ of TGDs. For � ∈ {o, so},
the following are equivalent:

1. There exists a valid infinite �-chase derivation of D w.r.t. Σ .
2. There exists an infinite �-chase derivation of D w.r.t. Σ

By combining Propositions 1 and 2, we obtain the following useful corollary:

Corollary 1 Consider a set Σ of TGDs. For � ∈ {o, so}, the following are equivalent

1. Σ �∈ CT
�∀.

2. There exists an infinite �-chase derivation of cr(Σ) w.r.t Σ .

3.3 Our Main Result and Plan of Attack

As discussed above, the main goal of this work is to pinpoint the complexity of chase
termination under sticky sets of TGDs, focussing on the oblivious and semi-oblivious
versions of the chase procedure. Our main result follows:

Theorem 2 CTo∀(S) and CTso∀ (S) are PSPACE-complete, and NLOGSPACE-complete
for predicates of bounded arity.

Consider a set Σ ∈ S. By Corollary 1, our main challenge is to show that the prob-
lem of deciding whether there exists an infinite �-chase derivation of cr(Σ) w.r.t. Σ ,
where � ∈ {o, so}, is PSPACE-complete, and NLOGSPACE-complete for predicates of
bounded arity. In fact, the bulk of our work concentrates on establishing the desired
upper bounds for the semi-oblivious chase, i.e., when � = so. We can then easily
obtain the same upper bounds for the oblivious chase by exploiting a simple reduction
from CTo∀(S) to CTso∀ (S). Our plan of attack follows:

– The upper bounds heavily rely on the following semantic characterization given
in Section 4: there exists an infinite so-chase derivation of cr(Σ) w.r.t. Σ iff there
exists a “path-like” infinite so-chase derivation of cr(Σ) w.r.t. Σ .

– The above semantic characterization allows us to provide, in Section 5, a
syntactic graph-based characterization of the existence of an infinite so-chase
derivation of cr(Σ) w.r.t. Σ . Actually, the latter coincides with the existence of a
certain “bad” cycle in the dependency graph of a “linearized” version of Σ .

Theory of Computing Systems (2021) 65:84–12194

– We show, in Section 6, that checking whether a “bad” cycle exists in the depen-
dency graph of the “linearized” version of Σ is in PSPACE, and in NLOGSPACE

for predicates of bounded arity. This shows the desired upper bounds for CTso∀ (S).
We then explain how the upper bounds for CTso∀ (S) can be transferred to CTo∀(S)

by exploiting a simple construction known as enrichment [20]. We finally pro-
vide matching lower bounds for CTo∀(S) and CTso∀ (S). The PSPACE-hardness is
obtained by simulating a deterministic polynomial space Turing machine, while
the NLOGSPACE-hardness by a reduction from graph reachability.

At this point, one may wonder whether a powerful termination criterion from the
literature allows us to characterize the fragment of sticky sets of TGDs that guar-
antees the termination of the semi-oblivious chase, which in turn will lead to the
desired complexity results. To the best of our knowledge, such a criterion does not
exist. Interestingly, model-faithful acyclicity, one of the largest classes of TGDs that
ensure the termination of the semi-oblivious chase known today [14], is not powerful
enough for characterizing the class S ∩ CT

so∀ . For example, the sticky set of TGDs

P(x, y, z) → S(x, y, z) S(x, y, x) → ∃zP (y, z, x)

belongs to CT
so∀ , but it violates the model-faithful acyclicity condition.

4 Semantic Characterization of Semi-Oblivious Chase
Non-Termination

We proceed to characterize the non-termination of the so-chase under sticky sets of
TGDs. For a set Σ ∈ S, our goal is to show that, if there is an infinite so-chase deriva-
tion of cr(Σ) w.r.t. Σ , then we can isolate a “path-like” infinite so-chase derivation
δ�, which we call linear. Roughly speaking, linearity means that there exists an infi-
nite simple path α0, α1, α2 . . . in the chase relation of δ� such that α0 ∈ cr(Σ) and αi

is constructed during the i-th trigger application, while all the atoms that are needed
to construct this path, and are not already on the path, are atoms of cr(Σ).

Definition 2 (Linearity) Consider a set Σ of TGDs. An infinite so-chase derivation
δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ , where Ii〈so, σi, hi〉Ii+1 for i ≥ 0, is called linear if
there is an infinite sequence of distinct atoms (αi)i≥0 such that the following hold:

1. α0 ∈ cr(Σ).
2. For each i ≥ 0, αi+1 ∈ Ii+1 \ Ii , and there exists β ∈ body(σi) such that

hi(β) = αi and hi(body(σi) \ {β}) ⊆ cr(Σ).

We are now ready to present our main characterization of non-termination of the
semi-oblivious chase under sticky sets of TGDs.

Theorem 3 Consider a set Σ ∈ S. The following are equivalent:

1. There exists an infinite so-chase derivation of cr(Σ) w.r.t Σ .

Theory of Computing Systems (2021) 65:84–121 95

2. There exists a linear infinite so-chase derivation of cr(Σ) w.r.t. Σ .

It is clear that (2) ⇒ (1) holds trivially. The non-trivial direction is (1) ⇒ (2),
which is established in two main steps:

1. We show that the chase relation of an infinite so-chase derivation δ of cr(Σ)

w.r.t. Σ always contains a special path, called continuous, rooted at an atom of
cr(Σ), which essentially guarantees the continuous propagation of a new null.
Note that the existence of such a special path does not rely on stickiness.

2. By exploiting the existence of a continuous path, we construct a linear infinite
so-chase derivation of cr(Σ) w.r.t. Σ . In fact, due to stickiness, we can convert an
infinite suffix P of the continuous path in ≺δ , together with all the atoms that are
needed to generate the atoms on P via a single trigger application, into a linear
infinite so-chase derivation δ� of cr(Σ) w.r.t. Σ . As we shall see, stickiness helps
us to ensure that δ� is linear, while continuity allows us to show that δ� is infinite.

In the rest of this section, we fix a set Σ ∈ S. For technical clarity, we assume
that all the TGDs of Σ have a non-empty frontier, i.e., for every TGD σ ∈ Σ , there
exists at least one variable that appears both in body(σ) and head(σ). Furthermore,
we assume that Σ is in normal form, i.e., each TGD of Σ has only one atom in
its head. The normalization procedure, which preserves stickiness, is rather standard
and can be found, e.g., in [13]. The above simplifying assumptions do not affect the
generality of our proof. In other words, assuming that Σ is what we obtain after
removing from Σ̂ ∈ S all the TGDs with an empty frontier and then normalize it, we
can easily show that there exists a linear infinite so-chase derivation of cr(Σ̂) w.r.t. Σ̂
iff there exists a linear infinite so-chase derivation of cr(Σ) w.r.t. Σ .

4.1 Existence of a Continuous Path

Let us first formalize the notion of path in the chase relation of a derivation. Given
an infinite so-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ , a finite δ-path is a finite
sequence of atoms (αi)0≤i≤n such that α0 ∈ I0 and αi≺δ αi+1. Analogously, we can
define the notion of infinite δ-path, which refers to an infinite sequence of atoms
rooted at an atom of I0. The intention underlying continuity is to ensure the continu-
ous propagation of a new null on a path. Roughly, a δ-path (αi)i≥0 is continuous via
a sequence of indices (�i)i≥0, with �0 = 1, if for each i ≥ 0, a new null is invented
in α�i

that is “necessarily propagated” up to the atom α�i+1 . At this point, it is crucial
to formalize what we mean by “necessarily propagated”.

Let α, β be atoms of
⋃

i≥0 Ii , and assume that β ∈ Ij \ Ij−1, for some j > 0,
with Ij−1〈so, σ, h〉Ij , i.e., β = so-result(σ, h).2 We say that the i-th position of α

and the j -th position of β are related (w.r.t δ), denoted (α, i) �δ (β, j), if there exists
an atom γ ∈ body(σ) such that α = h(γ) and γ [i] = head(σ)[j]. A finite δ-path
(αi)0≤i≤n is (s, t)-connected, where s ∈ [ar(R0)] and t ∈ [ar(Rn)], with R0 and Rn

2Recall that Σ is in normal form, which means that head(σ) is a single atom. By abuse of notation, we
treat so-result(σ, h) as an atom instead of a singleton set.

Theory of Computing Systems (2021) 65:84–12196

being the predicates of α0 and αn, respectively, if there exists a sequence of integers
(�k)1≤k≤n−1 such that

(α0, s) �δ (α1, �1) �δ (α2, �2) �δ · · · �δ (αn−1, �n−1) �δ (αn, t).

In simple words, the term occurring at position (α0, s) is necessarily propagated up
to the position (αn, t) via the intermediate positions (α1, �1), . . . , (αn−1, �n−1).

For introducing continuity, we also need the notion of the birth atom of a null
value. Consider a null ⊥ occurring in

⋃
i≥0 Ii . The birth atom (w.r.t. δ) of ⊥, denoted

birthδ(⊥), is the atom of
⋃

i≥0 Ii such that, for some j > 0, Ij \ Ij−1 = {birthδ(⊥)}
and ⊥ ∈ dom(Ij) \ dom(Ij−1). It is clear that the atom birthδ(⊥) is unique (since we
consider TGDs in normal form). We are now ready to introduce continuity.

Definition 3 (Continuity) Let δ be an infinite so-chase derivation δ of cr(Σ)

w.r.t. Σ . A δ-path (αi)i≥0 is continuous if there exist an infinite sequence (�i)i≥0 of
integers, where �0 = 1 and �0 < �1 < · · · , an infinite sequence (⊥i)i≥0 of nulls, and
infinite sequences of integers (mi)i≥0 and (pi)i≥0 from [ar(Σ)], such that, for each
k ≥ 0: α�k

= birthδ(⊥k), ⊥k = α�k
[mk], and (αi)�k≤i≤�k+1 is (mk, pk)-connected.

A simple example that illustrates the notion of continuity follows:

Example 4 Assume that Σ = {σ1, σ2, σ3}, where3

σ1 = S(x) → ∃y∃zP (x, y, z), R(y, z)

σ2 = P(x, y, z), R(y, w) → P(w, y, z)

σ3 = P(x, y, z), R(y, w) →∃vP (z, y, v), R(y, v), Q(w).

It is easy to verify that there exists an infinite so-chase derivation δ of cr(Σ) w.r.t. Σ

such that the following is part of ≺δ; a black solid edge from α to β labeled by σ

means that (α, β) belongs to ≺δ due to a trigger that involves the TGD σ :

It can be verified that the path with P -atoms is a continuous δ-path. Let us explain
the reason. The first atom in which a null is born is P(c, ⊥1, ⊥2), with ⊥1, ⊥2 being
the new nulls, and continuity is satisfied since ⊥2 is propagated (this is indicated
via the red dashed arrows) to the next atom where the new null ⊥3 is born. Now,
since the null ⊥3 is propagated up to the next birth atom P(⊥3, ⊥1, ⊥6), continuity

3Although we assume that Σ is in normal form, for the sake of readability, in our example we use
TGDs with more than one atom in the head. Moreover, instead of following the naming scheme for nulls
introduced in Definition 1, we are going to use abbreviated names of the form ⊥i , where i > 0.

Theory of Computing Systems (2021) 65:84–121 97

is satisfied. In the rest of the path the same pattern is repeated, and thus continuity is
globally satisfied. In fact, the pattern that we can extract is graphically illustrated as

where the continuous propagation of a new null (red dashed arrows) can be seen.

We are now ready to establish our main technical result concerning continuity.
Note that the next result holds for arbitrary (not necessarily sticky) sets of TGDs.

Lemma 1 For every infinite so-chase derivation δ of cr(Σ) w.r.t Σ , there exists a
δ-path that is continuous.

Proof Assume that δ = (Ii)i≥0 is an infinite so-chase derivation of cr(Σ) w.r.t Σ ,
and let I = ⋃

i≥0 Ii . Given a term t ∈ dom(I), which is either the constant
 or a
null, and a null ⊥ ∈ dom(I), we write t �δ ⊥ if t occurs in fr(birthδ(⊥)).4 Now, for
each t ∈ dom(I), we inductively define the rank (w.r.t. δ) of t as follows:

rankδ(t) =
⎧
⎨

⎩

0 if t =
,

1 + max{rank(t ′) | t ′ �δ t} otherwise.

For a null ⊥ ∈ dom(I), we select a term t ∈ dom(I) such that rank(t) = rank(⊥)−1
and t �δ ⊥, and we write t �δ ⊥.5 Since, by assumption, all the TGDs of Σ have
a non-empty frontier, it is easy to see that the binary relation �δ over dom(I) forms
an infinite rooted tree Tδ , where the root is the constant occurring in cr(Σ). The key
property of Tδ is given by the following result:

Lemma 2 Tδ has finite out-degree.

Proof We can show that, for each i ≥ 0, the set {t ∈ dom(I) | rank(t) = i} is finite.
This can be shown by induction on i ≥ 0, while the key fact is that only finitely many

4Since we focus on TGDs with only one head atom, and since we apply only active triggers, given an atom
α ∈ I \ cr(Σ) that is the birth atom of a null, we can extract the trigger that generates α, and therefore, we
can unambiguously refer to its frontier.
5We assume that there exists some fixed mechanism that selects t . For example, t can be the lexicograph-
ically first element of {t ′ | rankδ(t

′) = rank(⊥) − 1 and t ′ �δ ⊥}.

Theory of Computing Systems (2021) 65:84–12198

semi-obliviously active triggers can be formed due to which a null with rank i + 1
is generated (since, by induction hypothesis, the set of terms with rank at most i is
finite). Therefore, the nodes of Tδ have finite out-degree.

Having Lemma 2 in place, we can apply König’s Lemma on Tδ , and get that Tδ

contains an infinite simple path starting from the root node.6 Let ⊥0, ⊥1, ⊥2, . . . be
such a path, where ⊥0 =
. By construction, for each i ≥ 0, ⊥i ∈ fr(birthδ(⊥i+1)).
Moreover, there is a sequence of atoms

αi
0, α

i
1, α

i
2, . . . , α

i
mi

,

where αi
0 ∈ cr(Σ) if i = 0, αi

0 = birthδ(⊥i) if i > 0, and αi
mi

= birthδ(⊥i+1), such
that αi

k≺δ αi
k+1, for each k ∈ {0, . . . , mi − 1}, and there are integers s, t ∈ [ar(Σ)]

such that (αi
j)0≤j≤mi

is (s, t)-connected. Consequently, the infinite sequence

α0
0, α0

1 = α1
0, α1

1, . . . , α1
m1

= α2
0, α2

1, . . . , α2
m2

= α3
0, . . .

is a continuous δ-path, and the claim follows.

4.2 From Arbitrary to Linear Infinite Derivations

We can now show that an infinite so-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ

can always be converted into a linear infinite so-chase derivation δ�, which in turn
establishes the non-trivial direction (1) ⇒ (2) of Theorem 3. The construction pro-
ceeds in three main steps, which are described below. We first describe those steps
in a semi-formal way, and exploit Example 4 in order to illustrate the key ideas. We
then proceed to give the formal construction.

4.2.1 Semi-Formal Description

Useful part of δ We first isolate a useful part of the so-chase derivation δ = (Ii)i≥0.
By Lemma 1, there exists a continuous infinite δ-path P = (αi)i≥0. Recall that con-
tinuity guarantees the continuous propagation on P of infinitely many nulls, which
we call for the purpose of this discussion pivotal. By stickiness, there exists j ≥ 0
such that αj is the last atom on P in which a term t becomes sticky. By saying that
the term t becomes sticky, we mean that the first time t participates in a join is dur-
ing the trigger application that generates αj , and thus t occurs in (or sticks to) every
atom of {αi}i≥j . Let k ≥ j be the integer such that αk is the first atom on P after
αj in which a new pivotal null is invented. The useful part of δ that we are going to
focus on is the infinite sequence of atoms (αi)i≥k , which we call the backbone, and
the atoms of

⋃
i≥0 Ii , which we call side atoms, that are needed to generate the atoms

6König’s Lemma is a well-known result from graph theory, which states that an infinite rooted tree with
finite out-degree has an infinite directed simple path starting from the root.

Theory of Computing Systems (2021) 65:84–121 99

on the backbone via a single trigger application. In other words, for a backbone atom
α, if α is obtained via the trigger (σ, h) for Σ on instance Ii , for some i ≥ 0, then
the atoms h(body(σ)), excluding the backbone atoms, are side atoms.

Example 5 Consider again the set Σ ∈ S from Example 4. As discussed above,
there exists an infinite so-chase derivation δ of cr(Σ) w.r.t. Σ such that a continuous
infinite δ-path exists (see the figures above). The useful part of δ is as shown below

Observe that the last atom on the continuous path in which a term becomes sticky is
P(⊥2, ⊥1, ⊥3); in fact, the sticky term is ⊥1, which is the only sticky term on the
continuous path. It happened that P(⊥2, ⊥1, ⊥3) invents also a new pivotal null, that
is, ⊥3, and therefore the suffix of the continuous path that starts at P(⊥2, ⊥1, ⊥3) is
the backbone. It is now easy to verify that all the other atoms, apart from S(
), indeed
contribute to the generation of a backbone atom via a single trigger application.

Renaming step We proceed to rename some of the nulls that occur in backbone
atoms or side atoms. In particular, for every null ⊥ occurring in a side atom α, we
apply the following renaming steps; recall that
 is the constant occurring in cr(Σ):
(i) every occurrence of ⊥ in α is replaced by
, and (ii) every occurrence of ⊥ in a
backbone atom β that is propagated from α to β is replaced by
. For a backbone or
side atom α, let ρ(α) be the atom obtained from α after globally applying the above
renaming steps. We now define the sequence of instances δ′ = (Ji)i≥0 as follows:

J0 = {ρ(α) | α is a side atom},
which is a subset of cr(Σ), and

Ji = Ji−1 ∪ {ρ(αk+i−1)} ∪ H, for i > 0,

where H is the set of atoms that are generated together with αk+i−1, after renaming
the propagated nulls that do not occur in ρ(αk+i−1) to
.7 It is crucial to observe that
a new null generated in a backbone atom never participates in a join. This is because
the first backbone atom αk comes after the atom αj , which is the last atom on P in
which a term becomes sticky. This fact allows us to modify triggers from δ in order
to construct, for every i ≥ 0, a trigger (σi, hi) such that Ji〈so, σi, hi〉Ji+1.

7Recall that, although we assume TGDs in normal form, for the sake of readability, in Example 4 (and
thus, also in Example 5), we use TGDs with more than one atom in the head. This is why the set of atoms
H is considered. Notice that H is empty in case of single-head TGDs.

Theory of Computing Systems (2021) 65:84–121100

Example 6 We consider again our running example. Before renaming the nulls that
appear in side atoms, we first need to understand how nulls are propagated from side
atoms to backbone atoms during the chase. This is depicted in the following figure

Note that the boldfaced occurrences of the pivotal nulls ⊥3, ⊥6, . . . are not propa-
gated from side atoms, but generated on the backbone, and thus will not be renamed.
Recall that the existence of such nulls is guaranteed by continuity. By applying the
renaming step, i.e., by replacing every null in a side atom with the constant
, and then
propagating it to the backbone as indicated above, we get the sequence of instances

J0 = {R(
,
), P (
,
,
)},
J1 = J0 ∪ {P(
,
, ⊥3), R(
, ⊥3)},

J2 = J1 ∪ {P(
,
, ⊥3)},
J3 = J2 ∪ {P(
,
, ⊥3)},

J4 = J3 ∪ {P(⊥3,
, ⊥6), R(
, ⊥6)},
...

Observe that, due to stickiness, none of the nulls ⊥3, ⊥6, . . . generated on the back-
bone participates in a join. Hence, the renaming step preserves all the joins, and thus,
by adapting triggers from δ, we can devise a trigger for each pair (Ji, Ji+1).

Pruning step At this point, one may be tempted to think that δ′ = (Ji)i≥0, with
Ji〈so, σi, hi〉Ji+1 for i ≥ 0, is the desired linear infinite so-chase derivation of cr(Σ)

w.r.t. Σ . It is easy to verify that we have the infinite sequence of atoms (ρ(αi))i≥k−1
such that ρ(αk−1) ∈ cr(Σ) since αk−1 is a side atom, and for each i ≥ k − 1,
Ji−k+2 ⊇ Ji−k+1 ∪ {ρ(αi+1)}, and there exists β ∈ body(σi) such that hi(βi) = αi

and hi(body(σi) \ {β}) ⊆ cr(Σ). However, we cannot conclude yet that δ′ is the
desired so-chase derivation since we may apply a trigger that is not semi-obliviously
active. This can be fixed by simply removing the instances that are obtained via a trig-
ger that is not semi-obliviously active, which actually means that we keep only one
occurrence of each instance. However, such a pruning step might be applied infinitely
many times, and thus, the question that we need to answer is whether the obtained so-
chase derivation δ′′ remains infinite. Interestingly, this is the case due to continuity.
Since the backbone (αi)i≥k is part of a continuous δ-path, we get that all the (neces-
sarily consecutive) occurrences of an instance appear between two instances in which
new pivotal nulls are invented. Since the distance between such instances is finite,

Theory of Computing Systems (2021) 65:84–121 101

each instance occurs in δ′ finitely many times. Therefore, after the pruning step, the
obtained so-chase derivation is infinite. Thus, δ′′ is a linear infinite so-chase deriva-
tion of J0 w.r.t. Σ . Since J0 ⊆ cr(Σ), we can construct a linear infinite so-chase
derivation δ� of cr(Σ) w.r.t. Σ by adding to J0 the set of atoms cr(Σ) \ J0.

Example 7 Coming back to our running example, it can be seen that the sequence of
instances devised in Example 6 is not the desired linear derivation due to non-active
triggers, which implies that there are consecutive occurrences of the same instance,
e.g., JI , J2, J3. However, after applying the pruning step, we get the sequence

J ′
0 = J0,

J ′
1 = J1,

J ′
2 = J ′

1 ∪ {P(⊥3,
, ⊥6), R(
, ⊥6)},
J ′

3 = J ′
2 ∪ {P(⊥6,
, ⊥9), R(
, ⊥9)},

...

Now, it is easy to verify that after adding the atoms S(
) and Q(
) to J ′
0, we get a

linear infinite so-chase derivation of cr(Σ) w.r.t. Σ .

4.2.2 The Formal Construction

Useful part of δ In what follows, let I = ⋃
i≥0 Ii . By Lemma 1, there exists a contin-

uous infinite δ-path P = (αi)i≥0. That is, there exist an infinite sequence (�i)i≥0 of
integers, where �0 = 1 and �0 < �1 < · · · , an infinite sequence (⊥i)i≥0 of nulls, and
infinite sequences of integers (mi)i≥0 and (pi)i≥0 from [ar(Σ)], such that, for each
k ≥ 0, α�k

= birthδ(⊥k), ⊥k = α�k
[mk], and (αi)�k≤i≤�k+1 is (mk, pk)-connected.

Given an atom αi = so-result(σ, h) for some i > 0, we say that a term t ∈ dom(I)

becomes sticky in αi if i is the smallest integer such that there is a variable x ∈ fr(σ)

occurring more than once in body(σ) and t = h(x). By stickiness of �, and from the
fact that the arity of each predicate in � is finite, there exists some j ≥ 0 such that,
for every i ≥ j , no term t ∈ dom(I) becomes sticky in αi . Let k ≥ 0 be the smallest
integer such that no term becomes sticky in α�k

. Note that this integer exists since the
sequence of indices (�i)i≥0 is infinite. We call the sequence of atoms B = (αi)i≥�k

the backbone of δ; let B = {αi}i≥�k
. Furthermore, we define the set

S = {α ∈ I \ B | there exists β ∈ B such that α ≺δ β},
which we call the side atoms of B. The set S ∪ B is the useful part of δ.

Renaming step For notational convenience, let B = (βi)i≥0. We define B ′ as the
sequence of atoms obtained from B as follows. For every atom β = R(t̄) ∈ B, and
every integer j ∈ [ar(R)], if there exists an atom α = S(ū) ∈ S, and an integer
i ∈ [ar(S)], with α[i] ∈ N, such that an (i, j)-connected δ-path of the form α, . . . , β

Theory of Computing Systems (2021) 65:84–121102

exists, then the term at position (β, j) is renamed to the constant
. Furthermore,
for each i ≥ 0, assuming that βi = so-result(σ, h), let ηi = (σ, h′) be the trigger
obtained from (σ, h) after updating h to h′ as dictated by the renaming step applied
to βi . Assuming B ′ = (β ′

i)i≥0, we define δ′ = (Ji)i≥0 such that J0 = cr(Σ), and for
i > 0, Ji = Ji−1 ∪ {β ′

i−1}. Since

– no term becomes sticky in some atom of B, and
– for each null ⊥ such that β = birthδ(⊥) ∈ B, which means that ⊥ has been

generated on B, ⊥ is not renamed on B ′,

we get that, for i ≥ 0, ηi is a trigger for Σ on Ji , and thus, Ji+1 = Ji ∪ so-result(ηi).

Pruning step Although δ′ = (Ji)i≥0 is locally consistent, that is, for each i ≥ 0,
Ji〈so, σi, hi〉Ji+1, for some trigger (σi, hi) for Σ on Ji , it is not yet a so-chase
derivation since some of the involved triggers might not be semi-obliviously active.
In other words, there might exist i ≥ 0 such that Ji〈so, σi, hi〉Ji+1, but so-
result(σi, hi) ∈ Ji , which implies that Ji = Ji+1. Let δ′′ be the sequence of instances
obtained from δ′ where only one occurrence of each instance is kept. Clearly, δ′′ is
still locally consistent. Moreover, by exploiting continuity, we can show that, for each
i ≥ 0, Ji occurs in δ′ finitely many times, which in turn implies that δ′′ is a linear
infinite so-chase derivation of cr(Σ) w.r.t. Σ , as needed.

5 Graph-Based Characterization of Semi-Oblivious Chase
Termination

In this section, we characterize the termination of the semi-oblivious chase for sticky
sets of TGDs via a graph-based condition. More precisely, we show that a set Σ ∈ S

belongs to CT
so∀ iff a linearized version of it, i.e., a set of linear TGD obtained

from Σ , enjoys a condition inspired by weak-acyclicity [17], called critical-weak-
acyclicity, introduced in [8]. Recall that linear TGDs are TGDs with only one body
atom [12]; we write L for the class of linear TGDs. The proof of the above result boils
down to showing that the given sticky set Σ of TGDs can be rewritten into a set of lin-
ear TGDs, while this rewriting preserves the termination of the semi-oblivious chase.
The latter heavily relies on Theorem 3, which establishes that non-termination of the
semi-oblivious chase coincides with the existence of a linear infinite chase deriva-
tion of cr(Σ) w.r.t. Σ . We can then apply the characterization for the termination of
the semi-oblivious chase for linear TGDs from [8], which states that a set Σ ∈ L

belongs to CT
so∀ iff it is critically-weakly-acyclic. Let us first recall the notion of

critical-weak-acyclicity for linear TGDs, which has been originally introduced in [8].

5.1 Critically-Weakly-Acyclic Linear TGDs

Since critical-weak-acyclicity is inspired by weak-acyclicity, it is not surprising that
it relies on the dependency graph of a set of TGDs introduced in [17], that encodes

Theory of Computing Systems (2021) 65:84–121 103

how terms might be propagated during the chase. We assume a fixed ordering on the
head-atoms of TGDs.8 For a TGD σ with head(σ) = α1, . . . , αk , we write (σ, i) for
the TGD that has only one atom in its head, called single-head, obtained from σ by
keeping only the atom αi , and the existentially quantified variables in αi . Recall that
pos(α, x) is the set of positions in α at which x occurs, while pos(body(σ), x) is the
set of positions at which x occurs in the body of σ . We also write pos(sch(Σ)) for
the set of positions of sch(Σ), i.e., the set {(R, i) | R/n ∈ sch(Σ) and i ∈ [n]}.

Definition 4 (Dependency Graph) The dependency graph of a set Σ of TGDs
is a labeled directed multigraph dg(�) = (N, E, λ), where N = pos(sch(Σ)),
λ : E→Σ × N, and E contains only the following edges. For each σ ∈ Σ

with head(σ) = α1, . . . , αk , for each x ∈ fr(σ), and for each position π ∈
pos(body(σ), x):

– For each i ∈ [k], and for each position π ′ ∈ pos(αi, x), there is a normal edge
e = (π, π ′) ∈ E with λ(e) = (σ, i).

– For each existentially quantified variable z in σ , for each i ∈ [k], and for each
π ′ ∈ pos(αi, z), there is a special edge e = (π, π ′) ∈ E with λ(e) = (σ, i).

Intuitively speaking, a normal edge (π, π ′) encodes the fact that a term may prop-
agate from π to π ′ during the chase. Moreover, a special edge (π, π ′′) keeps track of
the fact that the propagation of a term from π to π ′ also creates a new null at position
π ′′. A simple example that illustrates the notion of the dependency graph follows:

Example 8 Consider the set Σ consisting of the TGD

σ = R(x, y) → ∃zP (x, z), R(x, z).

The graph dg(Σ) is as follows

where the dashed arrows represent special edges. The normal edges occur due to the
variable x, while the special edges due to the existentially quantified variable z.

The class of weakly-acyclic sets of TGDs is a well-known formalism, introduced
in the context of data exchange, that guarantees the termination of the semi-oblivious
chase [17].9 Formally, a set Σ is weakly-acyclic if there is no cycle in dg(�) that

8Let us clarify that in this section, unlike Section 4, we consider arbitrary TGDs not in normal form. In
the previous section, we assumed TGDs in normal form only for technical reasons.
9Let us clarify that [17] does not consider the semi-oblivious, but the restricted (a.k.a. the standard) version
of the chase. However, the exact same proof applies in the case of the semi-oblivious chase.

Theory of Computing Systems (2021) 65:84–121104

contains a special edge. It would be extremely useful if, whenever we focus on linear
TGDs, weak-acyclicity is also a necessary condition for the termination of the semi-
oblivious chase. Unfortunately, this is not the case. A simple counterexample follows:

Example 9 Consider the set Σ of linear TGDs consisting of R(x, x)→∃zR(z, x). In
dg(�) there is a cycle that contains a special edge. However, there exists only one
so-chase derivation of cr(Σ) w.r.t. Σ that is finite, and thus, Σ ∈ CT

so∀ .

Interestingly, as it has been shown in [8], there is an extension of weak-acyclicity,
called critical-weak-acyclicity, that, whenever we focus on linear TGDs, provides a
necessary and sufficient condition for the termination of the semi-oblivious chase. A
key notion underlying critical-weak-acyclicity is the notion of compatibility among
two single-head linear TGDs. Intuitively, if a single-head linear TGD σ1 is compat-
ible with a single-head linear TGD σ2, then the atom obtained during the chase by
applying σ1 may trigger σ2. To formally define the notion of compatibility, we first
need to recall the standard notion of unification among atoms.

We say that two atoms α and β (containing only variables from V) unify if there
exists a substitution γ from the variables occurring in α and β to V, called unifier
for α and β, such that γ (α) = γ (β). A most general unifier (MGU) for α and β is a
unifier for α and β, denoted mgu(α, β), such that, for each other unifier γ for α and
β, there exists a substitution γ ′ such that γ = γ ′ ◦ mgu(α, β). It is well-known that
if two atoms α and β unify, then they have an MGU that is unique (modulo variable
renaming), and thus, we can refer to the MGU for α and β [1]. For brevity, given a
TGD σ and a variable x, let Πσ

x = pos(body(σ), x). Let var(α, Π), where α is an
atom, and Π a set of positions, be the set of variables in α at positions of Π .

Definition 5 (Compatibility) Consider two single-head linear TGDs σ1 and σ2. We
say that σ1 is compatible with σ2 if the following hold:

1. head(σ1) and body(σ2) unify.
2. For each x ∈ var(body(σ2)), either var(head(σ1), Π

σ2
x) ⊆ fr(σ1), or there is an

existentially quantified variable z in σ1 such that var(head(σ1), �
σ2
x) = {z}.

Having the notion of compatibility among two single-head linear TGDs in place,
we can recall the notion of resolvent of a sequence σ1, . . . , σn of single-head linear
TGDs, which is in turn a single-head TGD. Roughly, such a resolvent mimics the
behavior of the sequence σ1, . . . , σn during the chase. Notice that the existence of
such a resolvent is not guaranteed, but if it exists, this implies that we may have a
sequence of trigger applications that involve the TGDs σ1, . . . , σn in this order. In
such a case, we call the sequence σ1, . . . , σn active.

Definition 6 (Resolvent) The resolvent of a sequence σ1, . . . , σn of single-head lin-
ear TGDs, denoted [σ1, . . . , σn], is inductively defined as follows (for notational
convenience, we simply write ρ for [σ1, . . . , σn−1]):
1. [σ1] = σ1.

Theory of Computing Systems (2021) 65:84–121 105

2. [σ1, . . . , σn] = γ (body(ρ))→γ (head(σn)), with γ = mgu(head(ρ), body(σn)),
if ρ �= � and ρ is compatible with σn; otherwise, [σ1, . . . , σn] = �.

The sequence σ1, . . . , σn is called active if [σ1, . . . , σn] �= �.

At this point, one may think that the right extension of weak-acyclicity, which will
provide a necessary condition for the termination of the semi-oblivious chase under
linear TGDs, is to allow cycles with special edges in the underlying dependency
graph as long as the corresponding sequence of single-head TGDs, which can be
extracted from the edge labels, is not active. However, as thoroughly discussed in [8],
this is not enough. If a cycle with a special edge is labeled with an active sequence,
then we can conclude that it will be traversed at least once during the chase. Never-
theless, it is not guaranteed that it will be traversed infinitely many times. A cycle
that is labeled with an active sequence σ1, . . . , σn, and contains a special edge, will
be certainly traversed infinitely many times if the resolvent of the sequence ρ, . . . , ρ

of length k, where ρ = [σ1, . . . , σn], exists, for every k > 0. Interestingly, for ensur-
ing the latter condition, it suffices to consider sequences of length at most (ω + 1),
where ω is the arity of the predicate of body(σ1). This brings us to critical sequences.
For brevity, we write σk for the sequence σ, . . . , σ of length k.

Definition 7 (Critical Sequence) A sequence σ1, . . . , σn of single-head linear
TGDs is critical if σ1, . . . , σn is active, and [σ1, . . . , σn]ω+1 is active, where ω is the
arity of the predicate of body(σ1).

We can now recall critical-weak-acyclicity as defined in [8]. It is essentially weak-
acyclicity, with the key difference that a cycle in the underlying graph is “dangerous”,
not only if it contains a special edge, but if it is also labeled with a critical sequence
of single-head linear TGDs. The formal definition follows.

Definition 8 (Critical-Weak-Acyclicity) Consider a set Σ ∈ L of TGDs, and let
dg(�) = (N, E, λ). A cycle v0, v1, . . . , vn, v0 in ΣgΣ is critical if the sequence
λ(v0, v1), λ(v1, v2), . . . , λ(vn, v0) of single-head linear TGDs is critical. We call Σ

critically-weakly-acyclic if no critical cycle in dg(�) contains a special edge.

The essence of critical-weak-acyclicity is revealed by the following result:

Theorem 4 ([8]) Consider a set Σ ∈ L of TGDs. The following are equivalent:

1. Σ ∈ CT
so∀ .

2. Σ is critically-weakly-acyclic.

5.2 From Sticky to Linear TGDs

Before presenting the linearization procedure, we need to introduce some auxiliary
notions. Given a tuple t̄ = (t1, . . . , tn) ∈ (V ∪ {
})n, we write shape(t̄) for the

Theory of Computing Systems (2021) 65:84–121106

tuple obtained from t̄ by replacing each variable of V with the special symbol ∗. For
example, shape((x, y,
, z, x,
)) = (∗, ∗,
, ∗, ∗,
). We also write svar(t̄) for the
tuple obtained from t̄ by removing all the occurrences of the constant
. For example,
svar((x, y,
, z, x,
)) = (x, y, z, x). For an atom α = R(t̄), let

-free(α) = Rshape(t̄)(svar(t̄)),

where Rshape(t̄) is of arity |svar(t̄)|. In fact,
-free(α) is the constant-free version of
α, while the subscript shape(t̄) keeps track of the original shape of α, i.e., where
each occurrence of
 occurs in α. Notice that, having the constant-free version of an
atom α in place, we can unambiguously write down α. For a set of atoms A, let

-free(A) = {
-free(α) | α ∈ A}.
Given a TGD σ and an atom α ∈ body(σ), let

Vα,σ = var(body(σ) \ {α}),
that is, the set of body variables of σ that do not occur only in α. Now, given a TGD
σ , and an atom α ∈ body(σ), let

Mα,σ = {h : T →{
} | Vα,σ ⊆ T ⊆ var(body(σ))},
i.e., for each subset T of var(body(σ)) that contains all the variables of Vα,σ , Mα,σ

contains a mapping that maps each variable of T to the special constant
.
We are now ready to introduce the linearization of a set of TGDs. Note that the

following definition talks about arbitrary TGDs. The notion of stickiness is used later
for showing that the termination of the semi-oblivious chase is preserved.

Definition 9 (Linearization) The linearization of a TGD σ of the form
φ(x̄, ȳ)→∃z̄ψ(x̄, z̄), denoted Lin(σ) , is the set of linear TGDs

⋃

α∈φ(x̄,ȳ)

⋃

h∈Mα,σ

{
-free(h(α)) → ∃z̄
-free(h(ψ(x̄, z̄)))} .

The linearization of a set Σ of TGDs is defined as Lin(Σ) = ⋃
σ∈Σ Lin(σ).

The linearization procedure converts a TGD σ into a set of (constant-free) linear
TGDs, where the body atom of each such linear TGD corresponds to an atom α of
body(σ), while the variables in body(σ) \ {α}, and possibly additional variables that
occur only in α, are instantiated with the special constant
. An example follows:

Example 10 Consider the TGD

σ = P(x, y, z)
︸ ︷︷ ︸

α1

, R(y, w)
︸ ︷︷ ︸

α2

→ ∃uS(w, y, u),

Theory of Computing Systems (2021) 65:84–121 107

We have that the set Vα1,σ consists of all the variables in body(σ) \ {α1}, while
Vα2,σ of all the variables in body(σ) \ {α2}, that is,

Vα1,σ = {y, w} Vα2,σ = {x, y, z}.

There are four sets of variables in body(σ) that are supersets of Vα1,σ :

T1 = {y, w} T2 = {x, y, w} T3 = {y, z, w} T4 = {x, y, z, w}.

Moreover, there are two sets of variables in body(σ) that are supersets of Vα2,σ :

T ′
1 = {x, y, z} T ′

2 = {x, y, z, w}.

Therefore, the set of mappings Mα1,σ contains, for each i ∈ {1, . . . , 4}, a mapping of
the form {x �→
 | x ∈ Ti}, whereas Mα2,σ contains, for each i ∈ {1, 2}, a mapping
of the form {x �→
 | x ∈ T ′

i }. Finally, the linearization of σ is the set of linear TGDs
Lin(σ) consisting of the TGDs

P
(∗,
,∗)

(x, z) → ∃uS
(
,
,∗)

(u),

P
(
,
,∗)

(z) → ∃uS
(
,
,∗)

(u),

P
(∗,
,
)

(x) → ∃uS
(
,
,∗)

(u),

P
(
,
,
)

() → ∃uS
(
,
,∗)

(u),

due to the set of mappings Mα1,σ , and the TGDs

R
(
,∗)

(w) → ∃uS
(∗,
,∗)

(w, u),

R
(
,
)

() → ∃uS
(
,
,∗)

(u).

due to the set of mappings Mα2,σ .

Lemma 3 allows us to show that this procedure preserves the termination of the
semi-oblivious chase whenever the input set of TGDs is sticky.

Lemma 3 For every set Σ ∈ S of TGDs, Σ ∈ CT
so∀ iff Lin(Σ) ∈ CT

so∀ .

Proof We assume, w.l.o.g., that Σ is in normal form, i.e., each TGD of Σ has
only one atom in its head. Given a TGD σ = φ(x̄, ȳ)→∃z̄ R(x̄, z̄) of Σ , an
atom α ∈ body(σ), and a mapping h ∈ Mα,σ , we write σα,h for the linear TGD

-free(h(α))→∃z̄
-free(h(R(x̄, z̄))) ∈ Lin(Σ). We are now ready to proceed with
the proof.

(⇒) Assume that Lin(Σ) �∈ CT
so∀ . By Corollary 1, there exists an infinite so-

chase derivation δ = (Ii)i≥0 of cr(Lin(Σ)) w.r.t. Lin(Σ), with Ii〈σαi,gi

i , hi〉Ii+1, or,
equivalently, Ii+1 = Ii ∪ so-result(σ

αi ,gi

i , hi), for each i ≥ 0. By construction, for

Theory of Computing Systems (2021) 65:84–121108

each i ≥ 0, the TGD σ
αi,gi

i is linear, with its body being an atom of the form Rt̄ (x̄),

where x̄ is a tuple of variables, and t̄ is a tuple over {∗,
}. Let ĥi be the extension of
hi that maps each variable in body(σi) that is not in x̄ to
.

Consider the infinite sequence of instances δ′ = (Ji)i≥0, where J0 = cr(Σ), and
Ji+1 = Ji ∪ so-result(σi, ĥi), for each i ≥ 0. By construction of ĥi , for each i ≥ 0,
(σi, ĥi) is a trigger for Σ on Ji , which implies that Ji〈so, σi, ĥi〉Ji+1. However, the
above sequence is not necessarily an infinite so-chase derivation of Σ w.r.t. cr(Σ)

since some of the involved triggers may not be semi-obliviously active. We therefore
consider the infinite sequence of instances δ′′ = (J ′

i)i≥0 obtained from (Ji)i≥0 by
simply removing the triggers that are not semi-obliviously active, or, more formally,
by removing the instances obtained from triggers that are not semi-obliviously active.
Recall that, for each i > 0, Ji is obtained via a trigger that is not semi-obliviously
active iff Ji = Ji−1. It remains to show that δ′′ is infinite, which in turn implies that
Σ �∈ CT

so∀ . It suffices to show that, for each i ≥ 0, Ji occurs in δ′ finitely many
times.

By contradiction, assume that there is k ≥ 0 such that Jk occurs in δ′ infinitely
many times, which means that Jk = Jk+1 = Jk+2 = · · · . Since Lin(Σ) is finite,
there are indices k ≤ j < i such that σ

αi,gi

i = σ
αj ,gj

j ; we refer to those TGDs as ρ.
Since (Ii)i≥0 is a so-chase derivation of Lin(Σ) w.r.t. cr(Lin(Σ)), there is a variable
x ∈ fr(ρ) such that hi(x) �= hj (x). By definition, hi(x) = ĥi (x) and hj (x) = ĥj (x).
This implies that ĥi (x) �= ĥj (x), and therefore, Ji �= Jj , which is a contradiction.

(⇐) Assume now that Σ �∈ CT
so∀ . By Theorem 3, there exists a linear infinite so-

chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ , with Ii〈σi, hi〉Ii+1, for i ≥ 0. In other
words, there exists an infinite sequence of distinct atoms (αi)i≥0 such that

1. α0 ∈ cr(Σ), and
2. for each i ≥ 0, αi+1 ∈ Ii+1 \ Ii , and there exists an atom βi ∈ body(σi) such

that αi = hi(βi) and hi(body(σi) \ {βi}) ⊆ cr(Σ).

For every i ≥ 0, let Xi = var(body(σi) \ {βi}), gi = hi|Xi
, and fi = hi \ gi . Note

that, since δ is linear, for every x ∈ Xi , gi(x) =
. Assuming that σi is of the form
φi(x̄i , ȳi)→∃z̄i Ri(x̄i , z̄i), let

Σ ′ =

⎧
⎪⎨

⎪⎩

-free(gi(βi))→∃z̄i
-free(gi(Ri(x̄i , z̄i)))
︸ ︷︷ ︸

σ ′
i

⎫
⎪⎬

⎪⎭
i≥0

.

By construction, Σ ′ ⊆ Lin(Σ), and therefore, Σ ′ �∈ CT
so∀ implies Lin(Σ) �∈ CT

so∀ .
Hence, to conclude the proof of Lemma 3, it suffices to exhibit an infinite so-chase
derivation of cr(Σ ′) ⊆ cr(Σ) w.r.t. Σ ′. To this end, consider the infinite sequence
of instances δ′ = (Ji)i≥0, where J0 = cr(Σ ′), and Ji = Ji−1 ∪ {α′

i}, where α′
i =

fi(body(σ ′
i)) = fi(
-free(gi(βi))), for each i > 0. It is not difficult to verify that δ′

is an infinite so-chase derivation of cr(Σ ′) w.r.t. Σ ′ (modulo null renaming).

The main result of this section follows from Theorem 4 and Lemma 3:

Theorem 5 Consider a set Σ ∈ S of TGDs. The following are equivalent:

Theory of Computing Systems (2021) 65:84–121 109

1. Σ ∈ CT
so∀ .

2. Lin(Σ) is critically-weakly-acyclic.

We would like to remark that the above characterization of the termination of the
so-chase is different than the one presented in the conference paper [10] (see Corol-
lary 24). More precisely, the linearization procedure in [10] produces TGDs with
constants, and thus, we had to properly extend the notion of critical-weak-acyclicity
from [8], which was defined only for constant-free TGDs. It turned out that we can
directly use the notion of critical-weak-acyclicity as defined in [8], at the price of a
slightly more complex linearization procedure that produces constant-free TGDs.

6 Complexity Analysis

We are now ready to complete the proof of our main result, that is, Theorem 2, which
states that CTo∀(S) and CTso∀ (S) are PSPACE-complete, and NLOGSPACE-complete
for predicates of bounded arity. We first concentrate on the upper bounds.

6.1 Upper Bounds for CTso
∀ (S)

We know that the problem CTso∀ (L) is in PSPACE, and in NLOGSPACE for predicates
of bounded arity [8]. In fact, these results exploit Theorem 4, and are obtained by
showing that deciding whether a set of linear TGDs is critically-weakly-acyclic is
in PSPACE, and in NLOGSPACE for predicates of bounded arity. However, despite
the fact that we can reduce CTso∀ (S) to CTso∀ (L) (see Lemma 3), we cannot directly
exploit the complexity results for linear TGDs. The reason is because the linearization
procedure takes exponential time, in general, and polynomial time in the case of
bounded-arity predicates. Therefore, we cannot simply compute the set Lin(Σ), and
then check for critical-weak-acyclicity, but a more refined approach is needed.

We focus on the complement of our problem, i.e., given a set Σ ∈ S of TGDs,
we want to check whether Σ �∈ CT

so∀ . By Theorem 5, it suffices to show that Lin(Σ)

is not critically-weakly-acyclic. The latter problem can be seen as a generalization
of the standard graph reachability problem. Indeed, we need to check whether there
exists a node in the dependency graph of Lin(Σ) that is reachable from itself via a
critical cycle that contains a special edge. However, as discussed above, we cannot
explicitly construct Lin(Σ) and its dependency graph G. Instead, the above reacha-
bility check should be performed on a compact representation of G, which is the set
Σ itself.

Lemma 4 Consider a set Σ of TGDs. The problem of deciding whether Lin(Σ) is
not critically-weakly-acyclic is in

NSPACE(log |Σ | + ω · log(ω · |sch(Σ)| · 2ω) + ω · log m),

where ω = ar(Σ), and m is the number of variables occurring in Σ .

Theory of Computing Systems (2021) 65:84–121110

Theory of Computing Systems (2021) 65:84–121 111

Proof We employ Algorithm 1, which takes as input a set Σ of TGDs, and checks
whether Lin(Σ) is not critically-weakly-acyclic by non-deterministically searching
for the existence of a critical cycle in dg(Lin(�)) that contains a special edge. Note
that this is done without explicitly computing the graph dg(Lin(�)). Before showing
that Algorithm 1 is correct, and analyzing its space complexity, let us first introduce
an auxiliary notion that is used by the algorithm.

A Σ-label is a tuple � = (σ, α, β, T), where σ ∈ Σ , α ∈ body(σ), β ∈ head(σ),
and Vα,σ ∩ (var(α) ∪ var(β)) ⊆ T ⊆ var(body(σ)) ∩ (var(α) ∪ var(β)). Note that
a Σ-label induces a single-head TGD of Lin(Σ), denoted τ(�), which might be the
label of an edge in dg(Lin(�)); hence the name Σ-label. In fact, τ(�) is the TGD

-free(h(α)) → ∃z̄
-free(h(β)),

where h maps each variable of T to
, and z̄ are the existentially quantified variables
of σ occurring in β. Let us now proceed with the correctness of Algorithm 1.

Correctness It is an easy exercise to show the following claim concerning the
procedure isEdge(·, ·, ·), which is described in Algorithm 2. Let dg(Lin(�)) =
(N, E, λ).

Claim Consider a Σ-label �, and two positions v, u ∈ sch(Lin(Σ)). Then:

1. isEdge(�, v, u) = (1,) iff (v, u) ∈ E and λ((v, u)) = τ(�).
2. isEdge(�, v, u) = (1, 1) iff (v, u) ∈ E is a special edge.

We can now show that Algorithm 1 accepts on input Σ iff there is a critical cycle
in dg(Lin(�)) that contains a special edge:

(⇒) Assume first that Algorithm 1 accepts. This implies that there is an accept-
ing computation that guesses a sequence of Σ-labels �1, . . . , �n, and a sequence of
positions v0, . . . , vn of pos(sch(Lin(Σ))). By construction, the following hold:

– For each i ∈ [n], isEdge(�i, vi−1, vi) = (1,), which implies that (vi−1, vi) ∈ E

and λ((vi−1, vi)) = τ(�).
– There exists i ∈ [n] such that isEdge(�i, vi−1, vi) = (1, 1). Hence, (vi−1, vi) ∈

E is a special edge.
– For each i ∈ [n − 1], [τ(�1), . . . , τ (�i−1)] is compatible with τ(�i+1), which in

turn implies that ρ = [τ(�1), . . . , τ (�n)] is active.
– v0 = vn.
– [ρ]ω+1 is active.

The above properties imply that v0, . . . , vn−1, v0 is a critical cycle in dg(Lin(�)) that
contains at least one special edge, and the claim follows.

(⇐) By hypothesis, there exists a critical cycle v0, . . . , vn−1, v0 in dg(Lin(�)).
Assume that, for each i ∈ [n − 1], λ((vi−1, vi)) = σi and λ((vn−1, v0)) = σn.
Observe that each single-head linear TGD σi , for i ∈ [n], corresponds to a Σ-label �i .
Consider now the computation of Algorithm 1 on input Σ that guesses the sequence
of labels �1, . . . , �n, and the sequence of positions v0, . . . , vn−1, v0. It should be clear
that this is an accepting computation, and the claim follows.

Theory of Computing Systems (2021) 65:84–121112

Space Complexity It remains to show that the space needed at each step of a
computation of Algorithm 1 on input Σ is

O(log |Σ | + ω · log(ω · |sch(Σ)| · 2ω) + ω · log m).

We proceed to analyze the space needed to store a Σ-label, a position of sch(Lin(Σ)),
and a single-head linear TGD τ(�) for a Σ-label �. We also analyze the space for a
compatibility check, for constructing a resolvent, and for checking whether [ρ]ω+1 is
active. It will be then apparent that indeed the space used at each step of a computa-
tion of Algorithm 1 on input Σ is what we claimed above. Note that the latter ensures
the termination of Algorithm 1 since we can always force a space-bounded algorithm
to terminate and reject after exponentially many steps in the required space [31].

– The required space for a Σ-label � = (σ, α, β, T) is

O(log |Σ | + log |sch(Σ)| + ω · log m).

A TGD σ ∈ Σ takes O(log |Σ |) space. For storing an atom occurring in Σ we
need to store a predicate of sch(Σ), and, in the worst-case, ω variables occurring
in Σ , which can be done in space O(log |sch(Σ)| + ω · log m). Finally, since
T contains at most 2ω variables occurring in Σ , it can be stored in space O(ω ·
log m). Summing up, � requires the space stated above.

– A position of sch(Lin(Σ)) takes space

O(log(ω · |sch(Σ)| · 2ω)).

This follows from the fact that, by construction, the number of predicates
occurring in Lin(Σ) is at most |sch(Σ)| · 2ω.

– Given a Σ-label �, the single-head linear TGD τ(�) takes space

O(log(|sch(Σ)| · 2ω) + ω · log m).

It is clear that the two predicates occurring in τ(�) require O(|sch(Σ)|·2ω) space.
We also need to store, in the worst-case, 2ω variables occurring in Σ , which
takes O(ω · log m) space. Summing up, τ(�) requires the space stated above.

– To check whether two single-head linear TGDs σ1, σ2, computed during the exe-
cution of the algorithm, are compatible, we only need to check that, for each
x ∈ var(body(σ2)), either var(head(σ1), Π

σ2
x) ⊆ fr(σ1), or there is an existen-

tially quantified variable z in σ1 such that var(head(σ1), Π
σ2
x) = {z}. The latter

can be performed using space

O(ω · log(ω · |sch(Σ)| · 2ω)),

which is the space needed for storing Π
σ2
x . Note that head(σ1) and body(σ2)

always unify since, at the point that we perform the compatibility check, we
know that they have the same predicate (this has been checked by isEdge), and
thus, there is no way for the unification check to fail.

– Given two single-head linear TGDs σ1, σ2, computed during the execution of the
algorithm, that are compatible, constructing [σ1, σ2] can be done using space

O(ω · log m),

Theory of Computing Systems (2021) 65:84–121 113

which is essentially the space needed for storing mgu(head(σ1), body(σ2)).10

– Finally, given the single-head linear TGD ρ, computed after the execution of the
repeat-until, checking whether [ρ]ω+1 is active can be done using space

O(ω · log(ω · |sch(Σ)| · 2ω) + ω · log m).

This easily follows from the analysis performed above.

Summing up, each step of a computation of Algorithm 1 on input Σ takes space

O(log |Σ | + ω · log(ω · |sch(Σ)| · 2ω) + ω · log m),

and the claim follows.

Having Lemma 4 in place, it is clear that the complement of CTso∀ (S), and thus
CTso∀ (S) itself, is in PSPACE, and in NLOGSPACE for predicates of bounded arity.11

6.2 Upper Bounds for CTo
∀(S)

We proceed to explain how the upper bounds established above for CTso∀ (S) can be
transferred to CTo∀(S). Since the semi-oblivious chase is a refined version of the obliv-
ious chase, it is not surprising that CTo∀(TGD) can be reduced to CTso∀ (TGD). This
relies on a very simple construction, known as enrichment [20]. Formally, the enrich-
ment of a set Σ of TGDs, denoted enrichment(Σ), is the set of TGDs obtained by
replacing each TGD σ ∈ Σ of the form φ(x̄, ȳ)→∃z̄ ψ(x̄, z̄) with the TGD

φ(x̄, ȳ)→∃z̄ ψ(x̄, z̄), Auxσ (x̄, ȳ),

where Auxσ is an auxiliary predicate of arity (|x̄| + |ȳ|) not occurring in sch(Σ).
It is easy to show that the notion of enrichment provides the desired reduction from
CTo∀(TGD) to CTso∀ (TGD). More precisely:

Lemma 5 For a set Σ of TGDs, the following are equivalent:

1. Σ ∈ CT
o∀.

2. enrichment(Σ) ∈ CT
so∀ .

Proof The fact that (2) implies (1) is a consequence of Theorem 6.1 in [20]. We pro-
ceed to show that (1) implies (2). Assume that enrichment(Σ) �∈ CT

so∀ . Therefore,
there exists a database D, and an infinite so-chase derivation δ = (Ii)i≥0 of D w.r.t.
enrichment(�), where Ii〈so, σ ′

i , hi〉, Ii+1, and, for each i ≥ 0, σ ′
i ∈ enrichment(Σ)

is the TGD corresponding to some TGD σi ∈ Σ . We can easily construct an infi-
nite o-chase derivation δ′ = (Ji)i≥0 of D w.r.t. Σ : let J0 = D, and, for each i > 0,
Ji is obtained from Ii by removing every atom with a predicate symbol of the form
Auxσ , for some σ ∈ Σ , and by replacing every null of the form ⊥z

σ ′,h with the null

10For constructing the MGU, one can use a simplified version of Robinson’s unification algorithm that
does not consider functions symbols.
11Recall that by the Immerman-Szelepcsényi Theorem, CONLOGSPACE = NLOGSPACE.

Theory of Computing Systems (2021) 65:84–121114

⊥z
σ,h. The fact that Ji〈o, σi, hi〉Ji+1 and (σi, h) is obliviously active, for each i ≥ 0,

follows by construction and the observation that, for each TGD σ ′
i ∈ enrichment(Σ)

for i ≥ 0, fr(σ ′
i) coincides with var(body(σi)).

It is also crucial to observe that the class of sticky sets of TGDs is closed under
enrichment. In other words:

Lemma 6 For each set Σ ∈ S, enrichment(Σ) ∈ S.

Proof Consider a set Σ ∈ S. The claim follows from the fact that, for each σ ∈ Σ

of the form φ(x̄, ȳ)→∃z̄ ψ(x̄, z̄), the corresponding TGD σ ′ ∈ enrichment(Σ) of
the form φ(x̄, ȳ)→∃z̄ ψ(x̄, z̄), Auxσ (x̄, ȳ) is such that the atom Auxσ (x̄, ȳ) contains
every body variable of σ , and no TGD in enrichment(Σ) has an atom with predicate
Auxσ in its body. Hence, no variable in enrichment(Σ) is marked.

From Lemmas 5 and 6, we can conclude that CTo∀(S) can be reduced in logspace to
CTso∀ (S). Since, as shown above, CTo∀(S) is in PSPACE, and PSPACE is closed under
logspace reductions, we immediately get that CTo∀(S) is in PSPACE, as needed. How-
ever, in the case of predicates of bounded arity, we cannot immediately inherit the
NLOGSPACE upper bound since the reduction provided by Lemmas 5 and 6 intro-
duces auxiliary predicates of the form Auxσ , where σ is a TGD, of unbounded arity.
Indeed, the arity of this auxiliary predicate is the number of variables occurring in
the body of the TGD σ , which can be unbounded even if we use only bounded-arity
predicates. Nevertheless, a predicate Auxσ does not occur in the body of a TGD,
which means that it cannot be part of a cycle in the underlying dependency graph.
Therefore, we can consider a slightly modified version of Algorithm 1 that sim-
ply ignores the atoms that mention a predicate Auxσ . By relying on this modified
algorithm, we get that for a set Σ of TGDs over predicates of bounded arity, check-
ing whether Lin(enrichment(Σ)) is not critically-weakly-acyclic is in NLOGSPACE,
which implies that CTo∀(S) is in NLOGSPACE for predicates of bounded arity.

6.3 Lower Bounds

We conclude the proof of Theorem 2 by providing matching lower bounds. We show
that CTo∀(S) and CTso∀ (S) are PSPACE-hard, and NLOGSPACE-hard for predicates of
bounded arity. Let us start with the general case of unbounded-arity predicates.

Predicates of Unbounded Arity Since, as discussed above, CTo∀(S) can be reduced in
logspace to CTso∀ (S), it suffices to show that CTo∀(S) is PSPACE-hard, or, equivalently,
its complement is PSPACE-hard. We show that every problem in PSPACE can be
reduced in logspace to the complement of CTo∀(S). Fix a problem Π in PSPACE, and
let M = (S, Λ, f, s1) be the deterministic polynomial space Turing machine that
solves Π , where S = {s1, . . . , sq} is the set of states of M , Λ = {0, 1, �} is the tape
alphabet of M with � being the blank symbol, f : S × Λ→(S × Λ × {←, −, →}) is
the transition function of M , and s1 ∈ S is the initial state. We assume, w.l.o.g., that
M is well-behaved and never tries to read beyond its tape boundaries, always halts,

Theory of Computing Systems (2021) 65:84–121 115

and uses exactly n = mk tape cells, where k > 0 and m is the size of the input string.
We also assume that the machine accepts if it reaches a configuration with state s2.
For the purposes of the current proof, we represent a configuration of M as a string

s, t1, c1, t2, c2, . . . , tn, cn,

where s ∈ S, (ti , ci) ∈ Λ × {↑, �}, for each i ∈ [n], and there is exactly one i ∈ [n]
such that ci =↑. Such a string encodes the configuration where the state is s, the i-th
cell of the machine contains the symbol ti , and, assuming that ci =↑, the cursor is
on the i-th cell of the machine. For example, the initial configuration of M on input
I = a1, . . . , am is

s1, a1, ↑, a2, �, . . . , am, �, �, �, . . . ,�, �
︸ ︷︷ ︸

n−m

.

Our goal is to construct a set Σ ∈ S such that M accepts on input I = a1, . . . , am

iff Σ �∈ CT
o∀, or, equivalently, there exists an infinite o-chase derivation of cr(Σ)

w.r.t. Σ . The high-level idea is, starting from an atom of the form Start(
, ⊥,
),
where ⊥ is a null, to apply a TGD σstart and generate the initial configuration of M on
input I , which will be stored in a predicate Config. Then, each application of a TGD
will mimic a transition rule of f and generate a valid configuration of M . Once an
accepting configuration is reached, then an atom of the form Start(⊥, ⊥′,
), where
⊥′ is a null different than ⊥, will be generated, which will trigger again the TGD
σstart. This will give rise to an infinite o-chase derivation of cr(Σ) w.r.t. Σ . To achieve
this, however, via a sticky set of TGDs, we need a proper encoding of a configuration
of M as a Config-atom generated during the execution of the chase. We proceed to
explain this encoding, which will then allow us to define our sticky set of TGDs.

The key idea is to encode a state of M , the symbols of Λ, and the symbols ↑, �, as
tuples consisting of a null ⊥ ∈ N and a single occurrence of the constant
, while the
position at which
 occurs in this tuple identifies the state or symbol in question. In
particular, a state si ∈ S, for i ∈ [q], will be represented in the chase as a tuple

⊥, . . . , ⊥
︸ ︷︷ ︸

i−1

,
, ⊥, . . . , ⊥
︸ ︷︷ ︸

|S|−i

.

The tape alphabet 0, 1, � will be represented as

, ⊥, ⊥ ⊥,
, ⊥ ⊥, ⊥,
,

respectively. Finally, the symbols ↑, � will be represented as

, ⊥ ⊥,
,

respectively. For example, assuming that I = 1, 1, . . . , 1, 0, that is, ai = 1, for each
i ∈ [m−1], and am = 0, the initial configuration of M on input I will be represented
in the chase via an atom of the form Config(t̄1, t̄2, t̄3), where

t̄1 =
s1︷ ︸︸ ︷

, ⊥, . . . , ⊥
︸ ︷︷ ︸

|S|−1

Theory of Computing Systems (2021) 65:84–121116

t̄2 =
1

︷ ︸︸ ︷
⊥,
, ⊥,

↑
︷︸︸︷

, ⊥,

1
︷ ︸︸ ︷
⊥,
, ⊥,

�
︷︸︸︷
⊥,
, . . . ,

1
︷ ︸︸ ︷
⊥,
, ⊥,

�
︷︸︸︷
⊥,

︸ ︷︷ ︸
m−2

,

0
︷ ︸︸ ︷

, ⊥, ⊥,

�
︷︸︸︷
⊥,
,

t̄3 =
�

︷ ︸︸ ︷
⊥, ⊥,
,

�
︷︸︸︷
⊥,
, . . . ,

�
︷ ︸︸ ︷
⊥, ⊥,
,

�
︷︸︸︷
⊥,

︸ ︷︷ ︸
n−m

We are now ready to devise the desired set Σ of TGDs. For notional convenience,
we are going to use the following abbreviations for tuples of variables:

for each i ∈ [q], sisisi = y, . . . , y
︸ ︷︷ ︸

i−1

, z, y, . . . , y
︸ ︷︷ ︸

|S|−i

000 = z, y, y 111 = y, z, y ��� = y, y, z ↑↑↑ = z, y ��� = y, z

Observe that the above abbreviations follow exactly the same pattern as the encodings
described above. In fact, whenever we need to refer to the state si in a TGD, we are
going to use the abbreviation sisisi , which means that the variable y will be mapped to
a null, and the variable z to the constant
. Analogously, if we need to refer to a tape
symbol or to ↑, �, we are going to use the abbreviations 000, 111, ���, ↑↑↑ and ���, respectively.
The set Σ consists of the following TGDs:

Start(x, y, z) → Config(s1s1s1,a1a1a1,↑↑↑,a2a2a2, ���, . . . , amamam,���,���, ���, . . . ,���, ���
︸ ︷︷ ︸

n−m

, y, z)

which generates the initial configuration of M on input I = a1, . . . , am. The rest of
the TGDs are responsible for simulating the transition function of M .

Before defining those TGDs, let us introduce some additional abbreviations. Let

for each i ∈ [n], xixixi = x0
i , x1

i , x�
i and xc

ix
c
ix
c
i = x

↑
i , x

�
i

which will be used as placeholders for the content of the i-th cell, and the position of
the cursor. In fact, the above abbreviations will simply help us to copy the unchanged
cells from a configuration to its subsequent one. In addition, for t ∈ S ∪ Λ ∪ {↑, �},
we write t̂tt for the tuple of variables obtained from the tuple ttt after replacing each
occurrence of the variable y at some position i with the new variable yi

t , while the
variable z remains unchanged. More precisely:

for each i ∈ [q], ŝisisi = y1
si
, . . . , yi−1

si
, z, yi+1

si
, . . . , y

q
si

0̂00 = z, y1
0 , y2

0 1̂11 = y1
1 , z, y2

1 �̂�� = y1�, y2�, z ↑̂↑↑ = z, y1↑ �̂�� = y1
� , z

The above abbreviations will allow us to break some unnecessary joins over the vari-
able y in the bodies of the TGDs, which in turn will ensure that the obtained set of
TGDs is sticky. We proceed to introduce the rest of the TGDs.

We first introduce several TGDs that simulate the transition rules of f where the
cursor moves to the left. In particular, for each transition rule f (si, a) = (sj , b, ←),
and for each � ∈ [n], we have the TGD

Config(ŝisisi , x1x1x1,x
c
1xc
1xc
1, . . . , x�−1x�−1x�−1,x

c
�−1xc
�−1xc
�−1, âaa, ↑̂↑↑,x�+1x�+1x�+1,x

c
�+1xc
�+1xc
�+1, . . . , xnxnxn,x

c
nx
c
nx
c
n, y, z) →

Config(sjsjsj ,x1x1x1,x
c
1xc
1xc
1, . . . , x�−1x�−1x�−1,↑↑↑,bbb,���,x�+1x�+1x�+1,x

c
�+1xc
�+1xc
�+1, . . . , xnxnxn,x

c
nx
c
nx
c
n, y, z).

Theory of Computing Systems (2021) 65:84–121 117

Analogously, we have TGDs that simulate the transition rules of f where the cursor
moves to the right. In particular, for each transition rule f (si, a) = (sj , b, →), and
for each � ∈ [n], we have the TGD

Config(ŝisisi , x1x1x1,x
c
1xc
1xc
1, . . . , x�−1x�−1x�−1,x

c
�−1xc
�−1xc
�−1, âaa, ↑̂↑↑,x�+1x�+1x�+1,x

c
�+1xc
�+1xc
�+1, . . . , xnxnxn,x

c
nx
c
nx
c
n, y, z) →

Config(sjsjsj ,x1x1x1,x
c
1xc
1xc
1, . . . , x�−1x�−1x�−1,x

c
�+1xc
�+1xc
�+1,bbb,���,x�+1x�+1x�+1,↑↑↑,x�+2x�+2x�+2,x

c
�+2xc
�+2xc
�+2, . . . , xnxnxn,x

c
nx
c
nx
c
n, y, z).

We complete the simulation of the transition function by adding TGDs that simulate
the transition rules of f where the cursor stays at the same position. In particular, for
each transition rule f (si, a) = (sj , b, −), and for each � ∈ [n], we have the TGD

Config(ŝisisi , x1x1x1,x
c
1xc
1xc
1, . . . , x�−1x�−1x�−1,x

c
�−1xc
�−1xc
�−1, âaa, ↑̂↑↑,x�+1x�+1x�+1,x

c
�+1xc
�+1xc
�+1, . . . , xnxnxn,x

c
nx
c
nx
c
n, y, z) →

Config(sjsjsj ,x1x1x1,x
c
1xc
1xc
1, . . . , x�−1x�−1x�−1,x

c
�−1xc
�−1xc
�−1,bbb,↑↑↑,x�+1x�+1x�+1,x

c
�+1xc
�+1xc
�+1, . . . , xnxnxn,x

c
nx
c
nx
c
n, y, z).

Finally, we introduce a TGD that checks whether an accepting configuration
has been reached; recall that, by assumption, the machine accepts if it reaches a
configuration with state s2:

Config(ŝ2s2s2,x1x1x1,x
c
1xc
1xc
1, . . . , xnxnxn,x

c
nx
c
nx
c
n, y, z)→∃wStart(y, w, z).

Observe that, if an accepting configuration is reached, then a new atom of the form
Start(, ⊥,
) is obtained, where ⊥ is a new null value, which will trigger again the
first TGD that generates the initial configuration. This completes the definition of Σ .

It is now easy to see that M accepts on input I iff there exists an infinite o-chase
derivation of cr(Σ) w.r.t. Σ , or, equivalently, Σ �∈ CT

o∀. Let us remark that starting
from cr(Σ), the first TGD that will be applied is the one with the Start predicate in the
head, and an atom α of the form Start(
, ⊥,
), where ⊥ is a null, will be generated.
Then, α will trigger the TGD that generates the initial configuration of M on input
I , which will then guarantee a faithful simulation of the computation of M on I .
Moreover, it is easy to verify that Σ ∈ S. The key reason why this holds is because
the only variable that occurs more than once in the body of a TGD is z, which is
always propagated to the head at the same position, which is actually the last one.

Predicates of Bounded Arity. By Lemmas 5 and 6, and the definition of enrichment,
for every set Σ ∈ S, it holds that:

– Σ ∈ CT
o∀ iff enrichment(Σ) ∈ CT

so∀ .
– enrichment(Σ) ∈ S.
– ar(enrichment(Σ)) = max{ar(Σ), k}, where k ≥ 0 is the maximum number of

variables occurring in the body of a TGD of Σ .

Therefore, to show that CTo∀(S) and CTso∀ (S) are NLOGSPACE-hard for predicates
of bounded arity, it suffices to concentrate on CT

o∀ and provide a hardness result
even for TGDs that can have at most k body variables for some fixed integer k ≥ 0.
This can be easily shown via a logspace reduction from graph reachability. Consider
a directed graph G = (N, E), and two nodes s, t ∈ N . The problem of deciding
whether in G the node t is reachable from s is NLOGSPACE-hard. We are going to
construct a sticky set Σ of TGDs that uses only unary predicates, and each TGD has
only one body variable, such that t is reachable from s in G iff Σ �∈ CT

o∀. This in turn

Theory of Computing Systems (2021) 65:84–121118

implies that CTo∀(S) is NLOGSPACE-hard since CONLOGSPACE = NLOGSPACE.
The set Σ consists of the following TGDs:

Loop(x) → Ps(x)

Pv(x) → Pu(x), for each (v, u) ∈ E

Pt(x) → ∃z Loop(z).

It is easy to see that indeed t is reachable from s iff Σ �∈ CT
o∀, and the claim follows.

7 Discussion and Future Work

We have studied all-instances (semi-)oblivious chase termination for sticky sets
of TGDs, and provide precise complexity results. It turned out that our results
and techniques allow us to obtain further complexity results concerning the chase
procedure.

Further Results Interestingly, our main result has already found applications in the
context of (semi-)oblivious chase boundedness, which has been recently studied
in [7]. Roughly, chase boundedness guarantees, not only the termination of the chase
procedure, but also the existence of a uniform bound on the depth of the chase. As
shown in [7], in the case of sticky sets of TGDs, (semi-)oblivious chase termination
and (semi-)oblivious chase boundedness coincide. Therefore, from the main result
of our work, we immediately get the complexity of deciding (semi-)oblivious chase
boundedness in the case of sticky sets of TGDs.

Moreover, the techniques that have been developed in this work can also be applied
to shy sets of TGDs, another well-known TGD-based formalism [25, 26]. Shy sets
of TGDs are not powerful enough to join over null values that have been invented
during the execution of the chase. This central property of shy sets of TGDs allows us
to reuse the machinery developed for stickiness, and show that the (semi-)oblivious
chase termination problem for shy sets of TGDs is PSPACE-complete in general, and
NLOGSPACE-complete for predicates of bounded arity.

Future Work Although all-instances (semi-)oblivious chase termination for sticky
sets of TGDs is well-understood, there are still interesting and highly non-trivial open
questions that we are planning to address in the near future:

1. Whenever the (semi-)oblivious chase terminates under a sticky set of TGDs,
what is the exact size of the final result?

2. Even if the (semi-)oblivious chase does not terminate, it might be the case that
a finite universal model exists [15]. Can we decide, in the case of sticky sets of
TGDs, whether a finite universal model exists? And what about its size?

Acknowledgements This work has been funded by the EPSRC grant EP/S003800/1 “EQUID”, and the
EPSRC programme grant EP/M025268/ “VADA”.

Theory of Computing Systems (2021) 65:84–121 119

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading, MA (1995)
2. Aho, A.V., Sagiv, Y., Ullman, J.D.: Efficient optimization of a class of relational expressions. ACM

Trans. Database Syst. 4(4), 435–454 (1979)
3. Baget, J., Mugnier, M., Rudolph, S., Thomazo, M.: Walking the Complexity Lines for Generalized

Guarded Existential Rules. In: IJCAI, pp. 712–717 (2011)
4. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: walking the

decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)
5. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4), 718–741 (1984)
6. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D., Tsamoura, E.:

Benchmarking the Chase. In: PODS, pp. 37–52 (2017)
7. Bourhis, P., Leclėre, M., Mugnier, M., Tison, S., Ulliana, F., Gallois, L.: Oblivious and Semi-Oblivious

Boundedness for Existential Rules. In: IJCAI, pp. 1581–1587 (2019)
8. Calautti, M., Gottlob, G., Pieris, A.: Chase Termination for Guarded Existential Rules. In: PODS,

pp. 91–103 (2015)
9. Calautti, M., Greco, S., Molinaro, C., Trubitsyna, I.: Exploiting equality generating dependencies in

checking chase termination. PVLDB 9(5), 396–407 (2016)
10. Calautti, M., Pieris, A.: Oblivious Chase Termination: The Sticky Case. In: ICDT, pp. 17:1–17:18

(2019)
11. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational

constraints. J. Artif. Intell. Res. 48, 115–174 (2013)
12. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query

answering over ontologies. J. Web Sem. 14, 57–83 (2012)
13. Calı̀, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the query answering

problem. Artif. Intell. 193, 87–128 (2012)
14. Cuenca Grau, B., Horrocks, I., Krȯtzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.: Acyclicity

notions for existential rules and their application to query answering in ontologies. J. Artif. Intell. Res.
47, 741–808 (2013)

15. Deutsch, A., Nash, A., Remmel, J.B.: The Chase Revisisted. In: PODS, pp. 149–158 (2008)
16. Deutsch, A., Tannen, V.: Reformulation of XML Queries and Constraints. In: ICDT, pp. 225–241

(2003)
17. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor.

Comput. Sci. 336(1), 89–124 (2005)
18. Gogacz, T., Marcinkowski, J.: All-Instances Termination of Chase is Undecidable. In: ICALP,

pp. 293–304 (2014)
19. Gogacz, T., Marcinkowski, J., Pieris, A.: All-Instances Restricted Chase Termination. In: PODS

(2020). To appear
20. Grahne, G., Onet, A.: Anatomy of the chase. Fundam. Inform. 157(3), 221–270 (2018)
21. Greco, S., Spezzano, F., Trubitsyna, I.: Stratification criteria and rewriting techniques for checking

chase termination. PVLDB 4(11), 1158–1168 (2011)
22. Krötzsch, M., Marx, M., Rudolph, S.: The Power of the Terminating Chase (Invited Talk). In: ICDT,

pp. 3:1–3:17 (2019)
23. Krötzsch, M., Rudolph, S.: Extending Decidable Existential Rules by Joining Acyclicity and

Guardedness. In: IJCAI, pp. 963–968 (2011)

Theory of Computing Systems (2021) 65:84–121120

http://creativecommonshorg/licenses/by/4.0/

24. Leclère, M., Mugnier, M., Thomazo, M., Ulliana, F.: A Single Approach to Decide Chase Termination
on Linear Existential Rules. In: ICDT, pp. 18:1–18:19 (2019)

25. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently Computable Datalog∃ Programs. In: KR
(2012)

26. Leone, N., Manna, M., Terracina, G., Veltri, P.: Fast query answering over existential rules. ACM
Trans. Comput. Log. 20(2), 12:1–12:48 (2019)

27. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans
Database Syst. 4(4), 455–469 (1979)

28. Marnette, B.: Generalized Schema-Mappings: from Termination to Tractability. In: PODS, pp. 13–22
(2009)

29. Meier, M., Schmidt, M., Lausen, G.: On chase termination beyond stratification. PVLDB 2(1), 970–
981 (2009)

30. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: Rdfox: a Highly-Scalable RDF
Store. In: ISWC, pp. 3–20 (2015)

31. Papadimitriou, C.H.: Computational complexity. Addison-Wesley, Reading, MA (1994)
32. Rudolph, S., Krötzsch, M., Hitzler, P.: All Elephants are Bigger than All Mice. In: DL (2008)
33. Urbani, J., Krötzsch, M., Jacobs, C.J.H., Dragoste, I., Carral, D.: Efficient Model Construction for

Horn Logic with Vlog - System Description. In: IJCAR, pp. 680–688 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Theory of Computing Systems (2021) 65:84–121 121

	Semi-Oblivious Chase Termination: The Sticky Case
	Abstract
	Introduction
	The Chase in a Nutshell
	Restricted vs. (Semi-)Oblivious Chase
	The Challenge of Non-Termination
	Deciding the Termination of the Chase
	Summary of Contributions

	Preliminaries
	Relational Databases
	Substitutions and Homomorphisms
	Tuple-Generating Dependencies
	Stickiness

	The Chase Procedure
	(Semi-)Oblivious Chase
	Chase Relation

	Chase Termination Problem
	Some Useful Results
	Critical Database
	Fairness

	Our Main Result and Plan of Attack

	Semantic Characterization of Semi-Oblivious Chase Non-Termination
	Existence of a Continuous Path
	From Arbitrary to Linear Infinite Derivations
	Semi-Formal Description
	Useful part of
	Renaming step
	Pruning step

	The Formal Construction
	Useful part of
	Renaming step
	Pruning step

	Graph-Based Characterization of Semi-Oblivious Chase Termination
	Critically-Weakly-Acyclic Linear TGDs
	From Sticky to Linear TGDs

	Complexity Analysis
	Upper Bounds for CTso(S)
	Correctness
	Space Complexity

	Upper Bounds for CTo(S)
	Lower Bounds
	Predicates of Unbounded Arity
	Predicates of Bounded Arity.

	Discussion and Future Work
	Further Results
	Future Work

	References

